GNU Linux-libre 5.10.215-gnu1
[releases.git] / kernel / sched / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 #include "sched.h"
10
11 /*
12  * This allows printing both to /proc/sched_debug and
13  * to the console
14  */
15 #define SEQ_printf(m, x...)                     \
16  do {                                           \
17         if (m)                                  \
18                 seq_printf(m, x);               \
19         else                                    \
20                 pr_cont(x);                     \
21  } while (0)
22
23 /*
24  * Ease the printing of nsec fields:
25  */
26 static long long nsec_high(unsigned long long nsec)
27 {
28         if ((long long)nsec < 0) {
29                 nsec = -nsec;
30                 do_div(nsec, 1000000);
31                 return -nsec;
32         }
33         do_div(nsec, 1000000);
34
35         return nsec;
36 }
37
38 static unsigned long nsec_low(unsigned long long nsec)
39 {
40         if ((long long)nsec < 0)
41                 nsec = -nsec;
42
43         return do_div(nsec, 1000000);
44 }
45
46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
47
48 #define SCHED_FEAT(name, enabled)       \
49         #name ,
50
51 static const char * const sched_feat_names[] = {
52 #include "features.h"
53 };
54
55 #undef SCHED_FEAT
56
57 static int sched_feat_show(struct seq_file *m, void *v)
58 {
59         int i;
60
61         for (i = 0; i < __SCHED_FEAT_NR; i++) {
62                 if (!(sysctl_sched_features & (1UL << i)))
63                         seq_puts(m, "NO_");
64                 seq_printf(m, "%s ", sched_feat_names[i]);
65         }
66         seq_puts(m, "\n");
67
68         return 0;
69 }
70
71 #ifdef CONFIG_JUMP_LABEL
72
73 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
74 #define jump_label_key__false STATIC_KEY_INIT_FALSE
75
76 #define SCHED_FEAT(name, enabled)       \
77         jump_label_key__##enabled ,
78
79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
80 #include "features.h"
81 };
82
83 #undef SCHED_FEAT
84
85 static void sched_feat_disable(int i)
86 {
87         static_key_disable_cpuslocked(&sched_feat_keys[i]);
88 }
89
90 static void sched_feat_enable(int i)
91 {
92         static_key_enable_cpuslocked(&sched_feat_keys[i]);
93 }
94 #else
95 static void sched_feat_disable(int i) { };
96 static void sched_feat_enable(int i) { };
97 #endif /* CONFIG_JUMP_LABEL */
98
99 static int sched_feat_set(char *cmp)
100 {
101         int i;
102         int neg = 0;
103
104         if (strncmp(cmp, "NO_", 3) == 0) {
105                 neg = 1;
106                 cmp += 3;
107         }
108
109         i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
110         if (i < 0)
111                 return i;
112
113         if (neg) {
114                 sysctl_sched_features &= ~(1UL << i);
115                 sched_feat_disable(i);
116         } else {
117                 sysctl_sched_features |= (1UL << i);
118                 sched_feat_enable(i);
119         }
120
121         return 0;
122 }
123
124 static ssize_t
125 sched_feat_write(struct file *filp, const char __user *ubuf,
126                 size_t cnt, loff_t *ppos)
127 {
128         char buf[64];
129         char *cmp;
130         int ret;
131         struct inode *inode;
132
133         if (cnt > 63)
134                 cnt = 63;
135
136         if (copy_from_user(&buf, ubuf, cnt))
137                 return -EFAULT;
138
139         buf[cnt] = 0;
140         cmp = strstrip(buf);
141
142         /* Ensure the static_key remains in a consistent state */
143         inode = file_inode(filp);
144         cpus_read_lock();
145         inode_lock(inode);
146         ret = sched_feat_set(cmp);
147         inode_unlock(inode);
148         cpus_read_unlock();
149         if (ret < 0)
150                 return ret;
151
152         *ppos += cnt;
153
154         return cnt;
155 }
156
157 static int sched_feat_open(struct inode *inode, struct file *filp)
158 {
159         return single_open(filp, sched_feat_show, NULL);
160 }
161
162 static const struct file_operations sched_feat_fops = {
163         .open           = sched_feat_open,
164         .write          = sched_feat_write,
165         .read           = seq_read,
166         .llseek         = seq_lseek,
167         .release        = single_release,
168 };
169
170 __read_mostly bool sched_debug_enabled;
171
172 static __init int sched_init_debug(void)
173 {
174         debugfs_create_file("sched_features", 0644, NULL, NULL,
175                         &sched_feat_fops);
176
177         debugfs_create_bool("sched_debug", 0644, NULL,
178                         &sched_debug_enabled);
179
180         return 0;
181 }
182 late_initcall(sched_init_debug);
183
184 #ifdef CONFIG_SMP
185
186 #ifdef CONFIG_SYSCTL
187
188 static struct ctl_table sd_ctl_dir[] = {
189         {
190                 .procname       = "sched_domain",
191                 .mode           = 0555,
192         },
193         {}
194 };
195
196 static struct ctl_table sd_ctl_root[] = {
197         {
198                 .procname       = "kernel",
199                 .mode           = 0555,
200                 .child          = sd_ctl_dir,
201         },
202         {}
203 };
204
205 static struct ctl_table *sd_alloc_ctl_entry(int n)
206 {
207         struct ctl_table *entry =
208                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
209
210         return entry;
211 }
212
213 static void sd_free_ctl_entry(struct ctl_table **tablep)
214 {
215         struct ctl_table *entry;
216
217         /*
218          * In the intermediate directories, both the child directory and
219          * procname are dynamically allocated and could fail but the mode
220          * will always be set. In the lowest directory the names are
221          * static strings and all have proc handlers.
222          */
223         for (entry = *tablep; entry->mode; entry++) {
224                 if (entry->child)
225                         sd_free_ctl_entry(&entry->child);
226                 if (entry->proc_handler == NULL)
227                         kfree(entry->procname);
228         }
229
230         kfree(*tablep);
231         *tablep = NULL;
232 }
233
234 static void
235 set_table_entry(struct ctl_table *entry,
236                 const char *procname, void *data, int maxlen,
237                 umode_t mode, proc_handler *proc_handler)
238 {
239         entry->procname = procname;
240         entry->data = data;
241         entry->maxlen = maxlen;
242         entry->mode = mode;
243         entry->proc_handler = proc_handler;
244 }
245
246 static int sd_ctl_doflags(struct ctl_table *table, int write,
247                           void *buffer, size_t *lenp, loff_t *ppos)
248 {
249         unsigned long flags = *(unsigned long *)table->data;
250         size_t data_size = 0;
251         size_t len = 0;
252         char *tmp, *buf;
253         int idx;
254
255         if (write)
256                 return 0;
257
258         for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
259                 char *name = sd_flag_debug[idx].name;
260
261                 /* Name plus whitespace */
262                 data_size += strlen(name) + 1;
263         }
264
265         if (*ppos > data_size) {
266                 *lenp = 0;
267                 return 0;
268         }
269
270         buf = kcalloc(data_size + 1, sizeof(*buf), GFP_KERNEL);
271         if (!buf)
272                 return -ENOMEM;
273
274         for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
275                 char *name = sd_flag_debug[idx].name;
276
277                 len += snprintf(buf + len, strlen(name) + 2, "%s ", name);
278         }
279
280         tmp = buf + *ppos;
281         len -= *ppos;
282
283         if (len > *lenp)
284                 len = *lenp;
285         if (len)
286                 memcpy(buffer, tmp, len);
287         if (len < *lenp) {
288                 ((char *)buffer)[len] = '\n';
289                 len++;
290         }
291
292         *lenp = len;
293         *ppos += len;
294
295         kfree(buf);
296
297         return 0;
298 }
299
300 static struct ctl_table *
301 sd_alloc_ctl_domain_table(struct sched_domain *sd)
302 {
303         struct ctl_table *table = sd_alloc_ctl_entry(9);
304
305         if (table == NULL)
306                 return NULL;
307
308         set_table_entry(&table[0], "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax);
309         set_table_entry(&table[1], "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax);
310         set_table_entry(&table[2], "busy_factor",         &sd->busy_factor,         sizeof(int),  0644, proc_dointvec_minmax);
311         set_table_entry(&table[3], "imbalance_pct",       &sd->imbalance_pct,       sizeof(int),  0644, proc_dointvec_minmax);
312         set_table_entry(&table[4], "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
313         set_table_entry(&table[5], "flags",               &sd->flags,               sizeof(int),  0444, sd_ctl_doflags);
314         set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
315         set_table_entry(&table[7], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring);
316         /* &table[8] is terminator */
317
318         return table;
319 }
320
321 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
322 {
323         struct ctl_table *entry, *table;
324         struct sched_domain *sd;
325         int domain_num = 0, i;
326         char buf[32];
327
328         for_each_domain(cpu, sd)
329                 domain_num++;
330         entry = table = sd_alloc_ctl_entry(domain_num + 1);
331         if (table == NULL)
332                 return NULL;
333
334         i = 0;
335         for_each_domain(cpu, sd) {
336                 snprintf(buf, 32, "domain%d", i);
337                 entry->procname = kstrdup(buf, GFP_KERNEL);
338                 entry->mode = 0555;
339                 entry->child = sd_alloc_ctl_domain_table(sd);
340                 entry++;
341                 i++;
342         }
343         return table;
344 }
345
346 static cpumask_var_t            sd_sysctl_cpus;
347 static struct ctl_table_header  *sd_sysctl_header;
348
349 void register_sched_domain_sysctl(void)
350 {
351         static struct ctl_table *cpu_entries;
352         static struct ctl_table **cpu_idx;
353         static bool init_done = false;
354         char buf[32];
355         int i;
356
357         if (!cpu_entries) {
358                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
359                 if (!cpu_entries)
360                         return;
361
362                 WARN_ON(sd_ctl_dir[0].child);
363                 sd_ctl_dir[0].child = cpu_entries;
364         }
365
366         if (!cpu_idx) {
367                 struct ctl_table *e = cpu_entries;
368
369                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
370                 if (!cpu_idx)
371                         return;
372
373                 /* deal with sparse possible map */
374                 for_each_possible_cpu(i) {
375                         cpu_idx[i] = e;
376                         e++;
377                 }
378         }
379
380         if (!cpumask_available(sd_sysctl_cpus)) {
381                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
382                         return;
383         }
384
385         if (!init_done) {
386                 init_done = true;
387                 /* init to possible to not have holes in @cpu_entries */
388                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
389         }
390
391         for_each_cpu(i, sd_sysctl_cpus) {
392                 struct ctl_table *e = cpu_idx[i];
393
394                 if (e->child)
395                         sd_free_ctl_entry(&e->child);
396
397                 if (!e->procname) {
398                         snprintf(buf, 32, "cpu%d", i);
399                         e->procname = kstrdup(buf, GFP_KERNEL);
400                 }
401                 e->mode = 0555;
402                 e->child = sd_alloc_ctl_cpu_table(i);
403
404                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
405         }
406
407         WARN_ON(sd_sysctl_header);
408         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
409 }
410
411 void dirty_sched_domain_sysctl(int cpu)
412 {
413         if (cpumask_available(sd_sysctl_cpus))
414                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
415 }
416
417 /* may be called multiple times per register */
418 void unregister_sched_domain_sysctl(void)
419 {
420         unregister_sysctl_table(sd_sysctl_header);
421         sd_sysctl_header = NULL;
422 }
423 #endif /* CONFIG_SYSCTL */
424 #endif /* CONFIG_SMP */
425
426 #ifdef CONFIG_FAIR_GROUP_SCHED
427 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
428 {
429         struct sched_entity *se = tg->se[cpu];
430
431 #define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
432 #define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
433 #define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
434 #define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
435
436         if (!se)
437                 return;
438
439         PN(se->exec_start);
440         PN(se->vruntime);
441         PN(se->sum_exec_runtime);
442
443         if (schedstat_enabled()) {
444                 PN_SCHEDSTAT(se->statistics.wait_start);
445                 PN_SCHEDSTAT(se->statistics.sleep_start);
446                 PN_SCHEDSTAT(se->statistics.block_start);
447                 PN_SCHEDSTAT(se->statistics.sleep_max);
448                 PN_SCHEDSTAT(se->statistics.block_max);
449                 PN_SCHEDSTAT(se->statistics.exec_max);
450                 PN_SCHEDSTAT(se->statistics.slice_max);
451                 PN_SCHEDSTAT(se->statistics.wait_max);
452                 PN_SCHEDSTAT(se->statistics.wait_sum);
453                 P_SCHEDSTAT(se->statistics.wait_count);
454         }
455
456         P(se->load.weight);
457 #ifdef CONFIG_SMP
458         P(se->avg.load_avg);
459         P(se->avg.util_avg);
460         P(se->avg.runnable_avg);
461 #endif
462
463 #undef PN_SCHEDSTAT
464 #undef PN
465 #undef P_SCHEDSTAT
466 #undef P
467 }
468 #endif
469
470 #ifdef CONFIG_CGROUP_SCHED
471 static DEFINE_SPINLOCK(sched_debug_lock);
472 static char group_path[PATH_MAX];
473
474 static void task_group_path(struct task_group *tg, char *path, int plen)
475 {
476         if (autogroup_path(tg, path, plen))
477                 return;
478
479         cgroup_path(tg->css.cgroup, path, plen);
480 }
481
482 /*
483  * Only 1 SEQ_printf_task_group_path() caller can use the full length
484  * group_path[] for cgroup path. Other simultaneous callers will have
485  * to use a shorter stack buffer. A "..." suffix is appended at the end
486  * of the stack buffer so that it will show up in case the output length
487  * matches the given buffer size to indicate possible path name truncation.
488  */
489 #define SEQ_printf_task_group_path(m, tg, fmt...)                       \
490 {                                                                       \
491         if (spin_trylock(&sched_debug_lock)) {                          \
492                 task_group_path(tg, group_path, sizeof(group_path));    \
493                 SEQ_printf(m, fmt, group_path);                         \
494                 spin_unlock(&sched_debug_lock);                         \
495         } else {                                                        \
496                 char buf[128];                                          \
497                 char *bufend = buf + sizeof(buf) - 3;                   \
498                 task_group_path(tg, buf, bufend - buf);                 \
499                 strcpy(bufend - 1, "...");                              \
500                 SEQ_printf(m, fmt, buf);                                \
501         }                                                               \
502 }
503 #endif
504
505 static void
506 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
507 {
508         if (rq->curr == p)
509                 SEQ_printf(m, ">R");
510         else
511                 SEQ_printf(m, " %c", task_state_to_char(p));
512
513         SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
514                 p->comm, task_pid_nr(p),
515                 SPLIT_NS(p->se.vruntime),
516                 (long long)(p->nvcsw + p->nivcsw),
517                 p->prio);
518
519         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
520                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
521                 SPLIT_NS(p->se.sum_exec_runtime),
522                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
523
524 #ifdef CONFIG_NUMA_BALANCING
525         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
526 #endif
527 #ifdef CONFIG_CGROUP_SCHED
528         SEQ_printf_task_group_path(m, task_group(p), " %s")
529 #endif
530
531         SEQ_printf(m, "\n");
532 }
533
534 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
535 {
536         struct task_struct *g, *p;
537
538         SEQ_printf(m, "\n");
539         SEQ_printf(m, "runnable tasks:\n");
540         SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
541                    "     wait-time             sum-exec        sum-sleep\n");
542         SEQ_printf(m, "-------------------------------------------------------"
543                    "------------------------------------------------------\n");
544
545         rcu_read_lock();
546         for_each_process_thread(g, p) {
547                 if (task_cpu(p) != rq_cpu)
548                         continue;
549
550                 print_task(m, rq, p);
551         }
552         rcu_read_unlock();
553 }
554
555 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
556 {
557         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
558                 spread, rq0_min_vruntime, spread0;
559         struct rq *rq = cpu_rq(cpu);
560         struct sched_entity *last;
561         unsigned long flags;
562
563 #ifdef CONFIG_FAIR_GROUP_SCHED
564         SEQ_printf(m, "\n");
565         SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
566 #else
567         SEQ_printf(m, "\n");
568         SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
569 #endif
570         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
571                         SPLIT_NS(cfs_rq->exec_clock));
572
573         raw_spin_lock_irqsave(&rq->lock, flags);
574         if (rb_first_cached(&cfs_rq->tasks_timeline))
575                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
576         last = __pick_last_entity(cfs_rq);
577         if (last)
578                 max_vruntime = last->vruntime;
579         min_vruntime = cfs_rq->min_vruntime;
580         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
581         raw_spin_unlock_irqrestore(&rq->lock, flags);
582         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
583                         SPLIT_NS(MIN_vruntime));
584         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
585                         SPLIT_NS(min_vruntime));
586         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
587                         SPLIT_NS(max_vruntime));
588         spread = max_vruntime - MIN_vruntime;
589         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
590                         SPLIT_NS(spread));
591         spread0 = min_vruntime - rq0_min_vruntime;
592         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
593                         SPLIT_NS(spread0));
594         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
595                         cfs_rq->nr_spread_over);
596         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
597         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
598 #ifdef CONFIG_SMP
599         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
600                         cfs_rq->avg.load_avg);
601         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
602                         cfs_rq->avg.runnable_avg);
603         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
604                         cfs_rq->avg.util_avg);
605         SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
606                         cfs_rq->avg.util_est.enqueued);
607         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
608                         cfs_rq->removed.load_avg);
609         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
610                         cfs_rq->removed.util_avg);
611         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
612                         cfs_rq->removed.runnable_avg);
613 #ifdef CONFIG_FAIR_GROUP_SCHED
614         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
615                         cfs_rq->tg_load_avg_contrib);
616         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
617                         atomic_long_read(&cfs_rq->tg->load_avg));
618 #endif
619 #endif
620 #ifdef CONFIG_CFS_BANDWIDTH
621         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
622                         cfs_rq->throttled);
623         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
624                         cfs_rq->throttle_count);
625 #endif
626
627 #ifdef CONFIG_FAIR_GROUP_SCHED
628         print_cfs_group_stats(m, cpu, cfs_rq->tg);
629 #endif
630 }
631
632 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
633 {
634 #ifdef CONFIG_RT_GROUP_SCHED
635         SEQ_printf(m, "\n");
636         SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
637 #else
638         SEQ_printf(m, "\n");
639         SEQ_printf(m, "rt_rq[%d]:\n", cpu);
640 #endif
641
642 #define P(x) \
643         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
644 #define PU(x) \
645         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
646 #define PN(x) \
647         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
648
649         PU(rt_nr_running);
650 #ifdef CONFIG_SMP
651         PU(rt_nr_migratory);
652 #endif
653         P(rt_throttled);
654         PN(rt_time);
655         PN(rt_runtime);
656
657 #undef PN
658 #undef PU
659 #undef P
660 }
661
662 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
663 {
664         struct dl_bw *dl_bw;
665
666         SEQ_printf(m, "\n");
667         SEQ_printf(m, "dl_rq[%d]:\n", cpu);
668
669 #define PU(x) \
670         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
671
672         PU(dl_nr_running);
673 #ifdef CONFIG_SMP
674         PU(dl_nr_migratory);
675         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
676 #else
677         dl_bw = &dl_rq->dl_bw;
678 #endif
679         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
680         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
681
682 #undef PU
683 }
684
685 static void print_cpu(struct seq_file *m, int cpu)
686 {
687         struct rq *rq = cpu_rq(cpu);
688
689 #ifdef CONFIG_X86
690         {
691                 unsigned int freq = cpu_khz ? : 1;
692
693                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
694                            cpu, freq / 1000, (freq % 1000));
695         }
696 #else
697         SEQ_printf(m, "cpu#%d\n", cpu);
698 #endif
699
700 #define P(x)                                                            \
701 do {                                                                    \
702         if (sizeof(rq->x) == 4)                                         \
703                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
704         else                                                            \
705                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
706 } while (0)
707
708 #define PN(x) \
709         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
710
711         P(nr_running);
712         P(nr_switches);
713         P(nr_uninterruptible);
714         PN(next_balance);
715         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
716         PN(clock);
717         PN(clock_task);
718 #undef P
719 #undef PN
720
721 #ifdef CONFIG_SMP
722 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
723         P64(avg_idle);
724         P64(max_idle_balance_cost);
725 #undef P64
726 #endif
727
728 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
729         if (schedstat_enabled()) {
730                 P(yld_count);
731                 P(sched_count);
732                 P(sched_goidle);
733                 P(ttwu_count);
734                 P(ttwu_local);
735         }
736 #undef P
737
738         print_cfs_stats(m, cpu);
739         print_rt_stats(m, cpu);
740         print_dl_stats(m, cpu);
741
742         print_rq(m, rq, cpu);
743         SEQ_printf(m, "\n");
744 }
745
746 static const char *sched_tunable_scaling_names[] = {
747         "none",
748         "logarithmic",
749         "linear"
750 };
751
752 static void sched_debug_header(struct seq_file *m)
753 {
754         u64 ktime, sched_clk, cpu_clk;
755         unsigned long flags;
756
757         local_irq_save(flags);
758         ktime = ktime_to_ns(ktime_get());
759         sched_clk = sched_clock();
760         cpu_clk = local_clock();
761         local_irq_restore(flags);
762
763         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
764                 init_utsname()->release,
765                 (int)strcspn(init_utsname()->version, " "),
766                 init_utsname()->version);
767
768 #define P(x) \
769         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
770 #define PN(x) \
771         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
772         PN(ktime);
773         PN(sched_clk);
774         PN(cpu_clk);
775         P(jiffies);
776 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
777         P(sched_clock_stable());
778 #endif
779 #undef PN
780 #undef P
781
782         SEQ_printf(m, "\n");
783         SEQ_printf(m, "sysctl_sched\n");
784
785 #define P(x) \
786         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
787 #define PN(x) \
788         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
789         PN(sysctl_sched_latency);
790         PN(sysctl_sched_min_granularity);
791         PN(sysctl_sched_wakeup_granularity);
792         P(sysctl_sched_child_runs_first);
793         P(sysctl_sched_features);
794 #undef PN
795 #undef P
796
797         SEQ_printf(m, "  .%-40s: %d (%s)\n",
798                 "sysctl_sched_tunable_scaling",
799                 sysctl_sched_tunable_scaling,
800                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
801         SEQ_printf(m, "\n");
802 }
803
804 static int sched_debug_show(struct seq_file *m, void *v)
805 {
806         int cpu = (unsigned long)(v - 2);
807
808         if (cpu != -1)
809                 print_cpu(m, cpu);
810         else
811                 sched_debug_header(m);
812
813         return 0;
814 }
815
816 void sysrq_sched_debug_show(void)
817 {
818         int cpu;
819
820         sched_debug_header(NULL);
821         for_each_online_cpu(cpu) {
822                 /*
823                  * Need to reset softlockup watchdogs on all CPUs, because
824                  * another CPU might be blocked waiting for us to process
825                  * an IPI or stop_machine.
826                  */
827                 touch_nmi_watchdog();
828                 touch_all_softlockup_watchdogs();
829                 print_cpu(NULL, cpu);
830         }
831 }
832
833 /*
834  * This itererator needs some explanation.
835  * It returns 1 for the header position.
836  * This means 2 is CPU 0.
837  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
838  * to use cpumask_* to iterate over the CPUs.
839  */
840 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
841 {
842         unsigned long n = *offset;
843
844         if (n == 0)
845                 return (void *) 1;
846
847         n--;
848
849         if (n > 0)
850                 n = cpumask_next(n - 1, cpu_online_mask);
851         else
852                 n = cpumask_first(cpu_online_mask);
853
854         *offset = n + 1;
855
856         if (n < nr_cpu_ids)
857                 return (void *)(unsigned long)(n + 2);
858
859         return NULL;
860 }
861
862 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
863 {
864         (*offset)++;
865         return sched_debug_start(file, offset);
866 }
867
868 static void sched_debug_stop(struct seq_file *file, void *data)
869 {
870 }
871
872 static const struct seq_operations sched_debug_sops = {
873         .start          = sched_debug_start,
874         .next           = sched_debug_next,
875         .stop           = sched_debug_stop,
876         .show           = sched_debug_show,
877 };
878
879 static int __init init_sched_debug_procfs(void)
880 {
881         if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
882                 return -ENOMEM;
883         return 0;
884 }
885
886 __initcall(init_sched_debug_procfs);
887
888 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
889 #define __P(F) __PS(#F, F)
890 #define   P(F) __PS(#F, p->F)
891 #define   PM(F, M) __PS(#F, p->F & (M))
892 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
893 #define __PN(F) __PSN(#F, F)
894 #define   PN(F) __PSN(#F, p->F)
895
896
897 #ifdef CONFIG_NUMA_BALANCING
898 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
899                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
900 {
901         SEQ_printf(m, "numa_faults node=%d ", node);
902         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
903         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
904 }
905 #endif
906
907
908 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
909 {
910 #ifdef CONFIG_NUMA_BALANCING
911         if (p->mm)
912                 P(mm->numa_scan_seq);
913
914         P(numa_pages_migrated);
915         P(numa_preferred_nid);
916         P(total_numa_faults);
917         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
918                         task_node(p), task_numa_group_id(p));
919         show_numa_stats(p, m);
920 #endif
921 }
922
923 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
924                                                   struct seq_file *m)
925 {
926         unsigned long nr_switches;
927
928         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
929                                                 get_nr_threads(p));
930         SEQ_printf(m,
931                 "---------------------------------------------------------"
932                 "----------\n");
933
934 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->F))
935 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
936
937         PN(se.exec_start);
938         PN(se.vruntime);
939         PN(se.sum_exec_runtime);
940
941         nr_switches = p->nvcsw + p->nivcsw;
942
943         P(se.nr_migrations);
944
945         if (schedstat_enabled()) {
946                 u64 avg_atom, avg_per_cpu;
947
948                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
949                 PN_SCHEDSTAT(se.statistics.wait_start);
950                 PN_SCHEDSTAT(se.statistics.sleep_start);
951                 PN_SCHEDSTAT(se.statistics.block_start);
952                 PN_SCHEDSTAT(se.statistics.sleep_max);
953                 PN_SCHEDSTAT(se.statistics.block_max);
954                 PN_SCHEDSTAT(se.statistics.exec_max);
955                 PN_SCHEDSTAT(se.statistics.slice_max);
956                 PN_SCHEDSTAT(se.statistics.wait_max);
957                 PN_SCHEDSTAT(se.statistics.wait_sum);
958                 P_SCHEDSTAT(se.statistics.wait_count);
959                 PN_SCHEDSTAT(se.statistics.iowait_sum);
960                 P_SCHEDSTAT(se.statistics.iowait_count);
961                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
962                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
963                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
964                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
965                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
966                 P_SCHEDSTAT(se.statistics.nr_wakeups);
967                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
968                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
969                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
970                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
971                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
972                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
973                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
974                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
975
976                 avg_atom = p->se.sum_exec_runtime;
977                 if (nr_switches)
978                         avg_atom = div64_ul(avg_atom, nr_switches);
979                 else
980                         avg_atom = -1LL;
981
982                 avg_per_cpu = p->se.sum_exec_runtime;
983                 if (p->se.nr_migrations) {
984                         avg_per_cpu = div64_u64(avg_per_cpu,
985                                                 p->se.nr_migrations);
986                 } else {
987                         avg_per_cpu = -1LL;
988                 }
989
990                 __PN(avg_atom);
991                 __PN(avg_per_cpu);
992         }
993
994         __P(nr_switches);
995         __PS("nr_voluntary_switches", p->nvcsw);
996         __PS("nr_involuntary_switches", p->nivcsw);
997
998         P(se.load.weight);
999 #ifdef CONFIG_SMP
1000         P(se.avg.load_sum);
1001         P(se.avg.runnable_sum);
1002         P(se.avg.util_sum);
1003         P(se.avg.load_avg);
1004         P(se.avg.runnable_avg);
1005         P(se.avg.util_avg);
1006         P(se.avg.last_update_time);
1007         P(se.avg.util_est.ewma);
1008         PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1009 #endif
1010 #ifdef CONFIG_UCLAMP_TASK
1011         __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1012         __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1013         __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1014         __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1015 #endif
1016         P(policy);
1017         P(prio);
1018         if (task_has_dl_policy(p)) {
1019                 P(dl.runtime);
1020                 P(dl.deadline);
1021         }
1022 #undef PN_SCHEDSTAT
1023 #undef P_SCHEDSTAT
1024
1025         {
1026                 unsigned int this_cpu = raw_smp_processor_id();
1027                 u64 t0, t1;
1028
1029                 t0 = cpu_clock(this_cpu);
1030                 t1 = cpu_clock(this_cpu);
1031                 __PS("clock-delta", t1-t0);
1032         }
1033
1034         sched_show_numa(p, m);
1035 }
1036
1037 void proc_sched_set_task(struct task_struct *p)
1038 {
1039 #ifdef CONFIG_SCHEDSTATS
1040         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1041 #endif
1042 }