GNU Linux-libre 4.14.290-gnu1
[releases.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/seq_file.h>
17 #include <linux/kallsyms.h>
18 #include <linux/utsname.h>
19 #include <linux/mempolicy.h>
20 #include <linux/debugfs.h>
21
22 #include "sched.h"
23
24 static DEFINE_SPINLOCK(sched_debug_lock);
25
26 /*
27  * This allows printing both to /proc/sched_debug and
28  * to the console
29  */
30 #define SEQ_printf(m, x...)                     \
31  do {                                           \
32         if (m)                                  \
33                 seq_printf(m, x);               \
34         else                                    \
35                 printk(x);                      \
36  } while (0)
37
38 /*
39  * Ease the printing of nsec fields:
40  */
41 static long long nsec_high(unsigned long long nsec)
42 {
43         if ((long long)nsec < 0) {
44                 nsec = -nsec;
45                 do_div(nsec, 1000000);
46                 return -nsec;
47         }
48         do_div(nsec, 1000000);
49
50         return nsec;
51 }
52
53 static unsigned long nsec_low(unsigned long long nsec)
54 {
55         if ((long long)nsec < 0)
56                 nsec = -nsec;
57
58         return do_div(nsec, 1000000);
59 }
60
61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
62
63 #define SCHED_FEAT(name, enabled)       \
64         #name ,
65
66 static const char * const sched_feat_names[] = {
67 #include "features.h"
68 };
69
70 #undef SCHED_FEAT
71
72 static int sched_feat_show(struct seq_file *m, void *v)
73 {
74         int i;
75
76         for (i = 0; i < __SCHED_FEAT_NR; i++) {
77                 if (!(sysctl_sched_features & (1UL << i)))
78                         seq_puts(m, "NO_");
79                 seq_printf(m, "%s ", sched_feat_names[i]);
80         }
81         seq_puts(m, "\n");
82
83         return 0;
84 }
85
86 #ifdef HAVE_JUMP_LABEL
87
88 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
89 #define jump_label_key__false STATIC_KEY_INIT_FALSE
90
91 #define SCHED_FEAT(name, enabled)       \
92         jump_label_key__##enabled ,
93
94 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
95 #include "features.h"
96 };
97
98 #undef SCHED_FEAT
99
100 static void sched_feat_disable(int i)
101 {
102         static_key_disable(&sched_feat_keys[i]);
103 }
104
105 static void sched_feat_enable(int i)
106 {
107         static_key_enable(&sched_feat_keys[i]);
108 }
109 #else
110 static void sched_feat_disable(int i) { };
111 static void sched_feat_enable(int i) { };
112 #endif /* HAVE_JUMP_LABEL */
113
114 static int sched_feat_set(char *cmp)
115 {
116         int i;
117         int neg = 0;
118
119         if (strncmp(cmp, "NO_", 3) == 0) {
120                 neg = 1;
121                 cmp += 3;
122         }
123
124         for (i = 0; i < __SCHED_FEAT_NR; i++) {
125                 if (strcmp(cmp, sched_feat_names[i]) == 0) {
126                         if (neg) {
127                                 sysctl_sched_features &= ~(1UL << i);
128                                 sched_feat_disable(i);
129                         } else {
130                                 sysctl_sched_features |= (1UL << i);
131                                 sched_feat_enable(i);
132                         }
133                         break;
134                 }
135         }
136
137         return i;
138 }
139
140 static ssize_t
141 sched_feat_write(struct file *filp, const char __user *ubuf,
142                 size_t cnt, loff_t *ppos)
143 {
144         char buf[64];
145         char *cmp;
146         int i;
147         struct inode *inode;
148
149         if (cnt > 63)
150                 cnt = 63;
151
152         if (copy_from_user(&buf, ubuf, cnt))
153                 return -EFAULT;
154
155         buf[cnt] = 0;
156         cmp = strstrip(buf);
157
158         /* Ensure the static_key remains in a consistent state */
159         inode = file_inode(filp);
160         inode_lock(inode);
161         i = sched_feat_set(cmp);
162         inode_unlock(inode);
163         if (i == __SCHED_FEAT_NR)
164                 return -EINVAL;
165
166         *ppos += cnt;
167
168         return cnt;
169 }
170
171 static int sched_feat_open(struct inode *inode, struct file *filp)
172 {
173         return single_open(filp, sched_feat_show, NULL);
174 }
175
176 static const struct file_operations sched_feat_fops = {
177         .open           = sched_feat_open,
178         .write          = sched_feat_write,
179         .read           = seq_read,
180         .llseek         = seq_lseek,
181         .release        = single_release,
182 };
183
184 __read_mostly bool sched_debug_enabled;
185
186 static __init int sched_init_debug(void)
187 {
188         debugfs_create_file("sched_features", 0644, NULL, NULL,
189                         &sched_feat_fops);
190
191         debugfs_create_bool("sched_debug", 0644, NULL,
192                         &sched_debug_enabled);
193
194         return 0;
195 }
196 late_initcall(sched_init_debug);
197
198 #ifdef CONFIG_SMP
199
200 #ifdef CONFIG_SYSCTL
201
202 static struct ctl_table sd_ctl_dir[] = {
203         {
204                 .procname       = "sched_domain",
205                 .mode           = 0555,
206         },
207         {}
208 };
209
210 static struct ctl_table sd_ctl_root[] = {
211         {
212                 .procname       = "kernel",
213                 .mode           = 0555,
214                 .child          = sd_ctl_dir,
215         },
216         {}
217 };
218
219 static struct ctl_table *sd_alloc_ctl_entry(int n)
220 {
221         struct ctl_table *entry =
222                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
223
224         return entry;
225 }
226
227 static void sd_free_ctl_entry(struct ctl_table **tablep)
228 {
229         struct ctl_table *entry;
230
231         /*
232          * In the intermediate directories, both the child directory and
233          * procname are dynamically allocated and could fail but the mode
234          * will always be set. In the lowest directory the names are
235          * static strings and all have proc handlers.
236          */
237         for (entry = *tablep; entry->mode; entry++) {
238                 if (entry->child)
239                         sd_free_ctl_entry(&entry->child);
240                 if (entry->proc_handler == NULL)
241                         kfree(entry->procname);
242         }
243
244         kfree(*tablep);
245         *tablep = NULL;
246 }
247
248 static int min_load_idx = 0;
249 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
250
251 static void
252 set_table_entry(struct ctl_table *entry,
253                 const char *procname, void *data, int maxlen,
254                 umode_t mode, proc_handler *proc_handler,
255                 bool load_idx)
256 {
257         entry->procname = procname;
258         entry->data = data;
259         entry->maxlen = maxlen;
260         entry->mode = mode;
261         entry->proc_handler = proc_handler;
262
263         if (load_idx) {
264                 entry->extra1 = &min_load_idx;
265                 entry->extra2 = &max_load_idx;
266         }
267 }
268
269 static struct ctl_table *
270 sd_alloc_ctl_domain_table(struct sched_domain *sd)
271 {
272         struct ctl_table *table = sd_alloc_ctl_entry(14);
273
274         if (table == NULL)
275                 return NULL;
276
277         set_table_entry(&table[0], "min_interval", &sd->min_interval,
278                 sizeof(long), 0644, proc_doulongvec_minmax, false);
279         set_table_entry(&table[1], "max_interval", &sd->max_interval,
280                 sizeof(long), 0644, proc_doulongvec_minmax, false);
281         set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
282                 sizeof(int), 0644, proc_dointvec_minmax, true);
283         set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
284                 sizeof(int), 0644, proc_dointvec_minmax, true);
285         set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
286                 sizeof(int), 0644, proc_dointvec_minmax, true);
287         set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
288                 sizeof(int), 0644, proc_dointvec_minmax, true);
289         set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
290                 sizeof(int), 0644, proc_dointvec_minmax, true);
291         set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
292                 sizeof(int), 0644, proc_dointvec_minmax, false);
293         set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
294                 sizeof(int), 0644, proc_dointvec_minmax, false);
295         set_table_entry(&table[9], "cache_nice_tries",
296                 &sd->cache_nice_tries,
297                 sizeof(int), 0644, proc_dointvec_minmax, false);
298         set_table_entry(&table[10], "flags", &sd->flags,
299                 sizeof(int), 0644, proc_dointvec_minmax, false);
300         set_table_entry(&table[11], "max_newidle_lb_cost",
301                 &sd->max_newidle_lb_cost,
302                 sizeof(long), 0644, proc_doulongvec_minmax, false);
303         set_table_entry(&table[12], "name", sd->name,
304                 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
305         /* &table[13] is terminator */
306
307         return table;
308 }
309
310 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
311 {
312         struct ctl_table *entry, *table;
313         struct sched_domain *sd;
314         int domain_num = 0, i;
315         char buf[32];
316
317         for_each_domain(cpu, sd)
318                 domain_num++;
319         entry = table = sd_alloc_ctl_entry(domain_num + 1);
320         if (table == NULL)
321                 return NULL;
322
323         i = 0;
324         for_each_domain(cpu, sd) {
325                 snprintf(buf, 32, "domain%d", i);
326                 entry->procname = kstrdup(buf, GFP_KERNEL);
327                 entry->mode = 0555;
328                 entry->child = sd_alloc_ctl_domain_table(sd);
329                 entry++;
330                 i++;
331         }
332         return table;
333 }
334
335 static cpumask_var_t sd_sysctl_cpus;
336 static struct ctl_table_header *sd_sysctl_header;
337
338 void register_sched_domain_sysctl(void)
339 {
340         static struct ctl_table *cpu_entries;
341         static struct ctl_table **cpu_idx;
342         static bool init_done = false;
343         char buf[32];
344         int i;
345
346         if (!cpu_entries) {
347                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
348                 if (!cpu_entries)
349                         return;
350
351                 WARN_ON(sd_ctl_dir[0].child);
352                 sd_ctl_dir[0].child = cpu_entries;
353         }
354
355         if (!cpu_idx) {
356                 struct ctl_table *e = cpu_entries;
357
358                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
359                 if (!cpu_idx)
360                         return;
361
362                 /* deal with sparse possible map */
363                 for_each_possible_cpu(i) {
364                         cpu_idx[i] = e;
365                         e++;
366                 }
367         }
368
369         if (!cpumask_available(sd_sysctl_cpus)) {
370                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
371                         return;
372         }
373
374         if (!init_done) {
375                 init_done = true;
376                 /* init to possible to not have holes in @cpu_entries */
377                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
378         }
379
380         for_each_cpu(i, sd_sysctl_cpus) {
381                 struct ctl_table *e = cpu_idx[i];
382
383                 if (e->child)
384                         sd_free_ctl_entry(&e->child);
385
386                 if (!e->procname) {
387                         snprintf(buf, 32, "cpu%d", i);
388                         e->procname = kstrdup(buf, GFP_KERNEL);
389                 }
390                 e->mode = 0555;
391                 e->child = sd_alloc_ctl_cpu_table(i);
392
393                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
394         }
395
396         WARN_ON(sd_sysctl_header);
397         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
398 }
399
400 void dirty_sched_domain_sysctl(int cpu)
401 {
402         if (cpumask_available(sd_sysctl_cpus))
403                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
404 }
405
406 /* may be called multiple times per register */
407 void unregister_sched_domain_sysctl(void)
408 {
409         unregister_sysctl_table(sd_sysctl_header);
410         sd_sysctl_header = NULL;
411 }
412 #endif /* CONFIG_SYSCTL */
413 #endif /* CONFIG_SMP */
414
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
417 {
418         struct sched_entity *se = tg->se[cpu];
419
420 #define P(F) \
421         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
422 #define P_SCHEDSTAT(F) \
423         SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)schedstat_val(F))
424 #define PN(F) \
425         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
426 #define PN_SCHEDSTAT(F) \
427         SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
428
429         if (!se)
430                 return;
431
432         PN(se->exec_start);
433         PN(se->vruntime);
434         PN(se->sum_exec_runtime);
435         if (schedstat_enabled()) {
436                 PN_SCHEDSTAT(se->statistics.wait_start);
437                 PN_SCHEDSTAT(se->statistics.sleep_start);
438                 PN_SCHEDSTAT(se->statistics.block_start);
439                 PN_SCHEDSTAT(se->statistics.sleep_max);
440                 PN_SCHEDSTAT(se->statistics.block_max);
441                 PN_SCHEDSTAT(se->statistics.exec_max);
442                 PN_SCHEDSTAT(se->statistics.slice_max);
443                 PN_SCHEDSTAT(se->statistics.wait_max);
444                 PN_SCHEDSTAT(se->statistics.wait_sum);
445                 P_SCHEDSTAT(se->statistics.wait_count);
446         }
447         P(se->load.weight);
448 #ifdef CONFIG_SMP
449         P(se->avg.load_avg);
450         P(se->avg.util_avg);
451 #endif
452
453 #undef PN_SCHEDSTAT
454 #undef PN
455 #undef P_SCHEDSTAT
456 #undef P
457 }
458 #endif
459
460 #ifdef CONFIG_CGROUP_SCHED
461 static char group_path[PATH_MAX];
462
463 static char *task_group_path(struct task_group *tg)
464 {
465         if (autogroup_path(tg, group_path, PATH_MAX))
466                 return group_path;
467
468         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
469         return group_path;
470 }
471 #endif
472
473 static void
474 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
475 {
476         if (rq->curr == p)
477                 SEQ_printf(m, ">R");
478         else
479                 SEQ_printf(m, " %c", task_state_to_char(p));
480
481         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
482                 p->comm, task_pid_nr(p),
483                 SPLIT_NS(p->se.vruntime),
484                 (long long)(p->nvcsw + p->nivcsw),
485                 p->prio);
486
487         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
488                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
489                 SPLIT_NS(p->se.sum_exec_runtime),
490                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
491
492 #ifdef CONFIG_NUMA_BALANCING
493         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
494 #endif
495 #ifdef CONFIG_CGROUP_SCHED
496         SEQ_printf(m, " %s", task_group_path(task_group(p)));
497 #endif
498
499         SEQ_printf(m, "\n");
500 }
501
502 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
503 {
504         struct task_struct *g, *p;
505
506         SEQ_printf(m,
507         "\nrunnable tasks:\n"
508         " S           task   PID         tree-key  switches  prio"
509         "     wait-time             sum-exec        sum-sleep\n"
510         "-------------------------------------------------------"
511         "----------------------------------------------------\n");
512
513         rcu_read_lock();
514         for_each_process_thread(g, p) {
515                 if (task_cpu(p) != rq_cpu)
516                         continue;
517
518                 print_task(m, rq, p);
519         }
520         rcu_read_unlock();
521 }
522
523 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
524 {
525         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
526                 spread, rq0_min_vruntime, spread0;
527         struct rq *rq = cpu_rq(cpu);
528         struct sched_entity *last;
529         unsigned long flags;
530
531 #ifdef CONFIG_FAIR_GROUP_SCHED
532         SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
533 #else
534         SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
535 #endif
536         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
537                         SPLIT_NS(cfs_rq->exec_clock));
538
539         raw_spin_lock_irqsave(&rq->lock, flags);
540         if (rb_first_cached(&cfs_rq->tasks_timeline))
541                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
542         last = __pick_last_entity(cfs_rq);
543         if (last)
544                 max_vruntime = last->vruntime;
545         min_vruntime = cfs_rq->min_vruntime;
546         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
547         raw_spin_unlock_irqrestore(&rq->lock, flags);
548         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
549                         SPLIT_NS(MIN_vruntime));
550         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
551                         SPLIT_NS(min_vruntime));
552         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
553                         SPLIT_NS(max_vruntime));
554         spread = max_vruntime - MIN_vruntime;
555         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
556                         SPLIT_NS(spread));
557         spread0 = min_vruntime - rq0_min_vruntime;
558         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
559                         SPLIT_NS(spread0));
560         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
561                         cfs_rq->nr_spread_over);
562         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
563         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
564 #ifdef CONFIG_SMP
565         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
566                         cfs_rq->avg.load_avg);
567         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
568                         cfs_rq->runnable_load_avg);
569         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
570                         cfs_rq->avg.util_avg);
571         SEQ_printf(m, "  .%-30s: %ld\n", "removed_load_avg",
572                         atomic_long_read(&cfs_rq->removed_load_avg));
573         SEQ_printf(m, "  .%-30s: %ld\n", "removed_util_avg",
574                         atomic_long_read(&cfs_rq->removed_util_avg));
575 #ifdef CONFIG_FAIR_GROUP_SCHED
576         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
577                         cfs_rq->tg_load_avg_contrib);
578         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
579                         atomic_long_read(&cfs_rq->tg->load_avg));
580 #endif
581 #endif
582 #ifdef CONFIG_CFS_BANDWIDTH
583         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
584                         cfs_rq->throttled);
585         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
586                         cfs_rq->throttle_count);
587 #endif
588
589 #ifdef CONFIG_FAIR_GROUP_SCHED
590         print_cfs_group_stats(m, cpu, cfs_rq->tg);
591 #endif
592 }
593
594 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
595 {
596 #ifdef CONFIG_RT_GROUP_SCHED
597         SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
598 #else
599         SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
600 #endif
601
602 #define P(x) \
603         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
604 #define PU(x) \
605         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
606 #define PN(x) \
607         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
608
609         PU(rt_nr_running);
610 #ifdef CONFIG_SMP
611         PU(rt_nr_migratory);
612 #endif
613         P(rt_throttled);
614         PN(rt_time);
615         PN(rt_runtime);
616
617 #undef PN
618 #undef PU
619 #undef P
620 }
621
622 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
623 {
624         struct dl_bw *dl_bw;
625
626         SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
627
628 #define PU(x) \
629         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
630
631         PU(dl_nr_running);
632 #ifdef CONFIG_SMP
633         PU(dl_nr_migratory);
634         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
635 #else
636         dl_bw = &dl_rq->dl_bw;
637 #endif
638         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
639         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
640
641 #undef PU
642 }
643
644 extern __read_mostly int sched_clock_running;
645
646 static void print_cpu(struct seq_file *m, int cpu)
647 {
648         struct rq *rq = cpu_rq(cpu);
649         unsigned long flags;
650
651 #ifdef CONFIG_X86
652         {
653                 unsigned int freq = cpu_khz ? : 1;
654
655                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
656                            cpu, freq / 1000, (freq % 1000));
657         }
658 #else
659         SEQ_printf(m, "cpu#%d\n", cpu);
660 #endif
661
662 #define P(x)                                                            \
663 do {                                                                    \
664         if (sizeof(rq->x) == 4)                                         \
665                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
666         else                                                            \
667                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
668 } while (0)
669
670 #define PN(x) \
671         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
672
673         P(nr_running);
674         SEQ_printf(m, "  .%-30s: %lu\n", "load",
675                    rq->load.weight);
676         P(nr_switches);
677         P(nr_load_updates);
678         P(nr_uninterruptible);
679         PN(next_balance);
680         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
681         PN(clock);
682         PN(clock_task);
683         P(cpu_load[0]);
684         P(cpu_load[1]);
685         P(cpu_load[2]);
686         P(cpu_load[3]);
687         P(cpu_load[4]);
688 #undef P
689 #undef PN
690
691 #ifdef CONFIG_SMP
692 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
693         P64(avg_idle);
694         P64(max_idle_balance_cost);
695 #undef P64
696 #endif
697
698 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
699         if (schedstat_enabled()) {
700                 P(yld_count);
701                 P(sched_count);
702                 P(sched_goidle);
703                 P(ttwu_count);
704                 P(ttwu_local);
705         }
706 #undef P
707
708         spin_lock_irqsave(&sched_debug_lock, flags);
709         print_cfs_stats(m, cpu);
710         print_rt_stats(m, cpu);
711         print_dl_stats(m, cpu);
712
713         print_rq(m, rq, cpu);
714         spin_unlock_irqrestore(&sched_debug_lock, flags);
715         SEQ_printf(m, "\n");
716 }
717
718 static const char *sched_tunable_scaling_names[] = {
719         "none",
720         "logaritmic",
721         "linear"
722 };
723
724 static void sched_debug_header(struct seq_file *m)
725 {
726         u64 ktime, sched_clk, cpu_clk;
727         unsigned long flags;
728
729         local_irq_save(flags);
730         ktime = ktime_to_ns(ktime_get());
731         sched_clk = sched_clock();
732         cpu_clk = local_clock();
733         local_irq_restore(flags);
734
735         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
736                 init_utsname()->release,
737                 (int)strcspn(init_utsname()->version, " "),
738                 init_utsname()->version);
739
740 #define P(x) \
741         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
742 #define PN(x) \
743         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
744         PN(ktime);
745         PN(sched_clk);
746         PN(cpu_clk);
747         P(jiffies);
748 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
749         P(sched_clock_stable());
750 #endif
751 #undef PN
752 #undef P
753
754         SEQ_printf(m, "\n");
755         SEQ_printf(m, "sysctl_sched\n");
756
757 #define P(x) \
758         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
759 #define PN(x) \
760         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
761         PN(sysctl_sched_latency);
762         PN(sysctl_sched_min_granularity);
763         PN(sysctl_sched_wakeup_granularity);
764         P(sysctl_sched_child_runs_first);
765         P(sysctl_sched_features);
766 #undef PN
767 #undef P
768
769         SEQ_printf(m, "  .%-40s: %d (%s)\n",
770                 "sysctl_sched_tunable_scaling",
771                 sysctl_sched_tunable_scaling,
772                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
773         SEQ_printf(m, "\n");
774 }
775
776 static int sched_debug_show(struct seq_file *m, void *v)
777 {
778         int cpu = (unsigned long)(v - 2);
779
780         if (cpu != -1)
781                 print_cpu(m, cpu);
782         else
783                 sched_debug_header(m);
784
785         return 0;
786 }
787
788 void sysrq_sched_debug_show(void)
789 {
790         int cpu;
791
792         sched_debug_header(NULL);
793         for_each_online_cpu(cpu)
794                 print_cpu(NULL, cpu);
795
796 }
797
798 /*
799  * This itererator needs some explanation.
800  * It returns 1 for the header position.
801  * This means 2 is cpu 0.
802  * In a hotplugged system some cpus, including cpu 0, may be missing so we have
803  * to use cpumask_* to iterate over the cpus.
804  */
805 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
806 {
807         unsigned long n = *offset;
808
809         if (n == 0)
810                 return (void *) 1;
811
812         n--;
813
814         if (n > 0)
815                 n = cpumask_next(n - 1, cpu_online_mask);
816         else
817                 n = cpumask_first(cpu_online_mask);
818
819         *offset = n + 1;
820
821         if (n < nr_cpu_ids)
822                 return (void *)(unsigned long)(n + 2);
823         return NULL;
824 }
825
826 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
827 {
828         (*offset)++;
829         return sched_debug_start(file, offset);
830 }
831
832 static void sched_debug_stop(struct seq_file *file, void *data)
833 {
834 }
835
836 static const struct seq_operations sched_debug_sops = {
837         .start = sched_debug_start,
838         .next = sched_debug_next,
839         .stop = sched_debug_stop,
840         .show = sched_debug_show,
841 };
842
843 static int sched_debug_release(struct inode *inode, struct file *file)
844 {
845         seq_release(inode, file);
846
847         return 0;
848 }
849
850 static int sched_debug_open(struct inode *inode, struct file *filp)
851 {
852         int ret = 0;
853
854         ret = seq_open(filp, &sched_debug_sops);
855
856         return ret;
857 }
858
859 static const struct file_operations sched_debug_fops = {
860         .open           = sched_debug_open,
861         .read           = seq_read,
862         .llseek         = seq_lseek,
863         .release        = sched_debug_release,
864 };
865
866 static int __init init_sched_debug_procfs(void)
867 {
868         struct proc_dir_entry *pe;
869
870         pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
871         if (!pe)
872                 return -ENOMEM;
873         return 0;
874 }
875
876 __initcall(init_sched_debug_procfs);
877
878 #define __P(F) \
879         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
880 #define P(F) \
881         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
882 #define __PN(F) \
883         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
884 #define PN(F) \
885         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
886
887
888 #ifdef CONFIG_NUMA_BALANCING
889 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
890                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
891 {
892         SEQ_printf(m, "numa_faults node=%d ", node);
893         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
894         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
895 }
896 #endif
897
898
899 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
900 {
901 #ifdef CONFIG_NUMA_BALANCING
902         if (p->mm)
903                 P(mm->numa_scan_seq);
904
905         P(numa_pages_migrated);
906         P(numa_preferred_nid);
907         P(total_numa_faults);
908         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
909                         task_node(p), task_numa_group_id(p));
910         show_numa_stats(p, m);
911 #endif
912 }
913
914 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
915                                                   struct seq_file *m)
916 {
917         unsigned long nr_switches;
918
919         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
920                                                 get_nr_threads(p));
921         SEQ_printf(m,
922                 "---------------------------------------------------------"
923                 "----------\n");
924 #define __P(F) \
925         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
926 #define P(F) \
927         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
928 #define P_SCHEDSTAT(F) \
929         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
930 #define __PN(F) \
931         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
932 #define PN(F) \
933         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
934 #define PN_SCHEDSTAT(F) \
935         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
936
937         PN(se.exec_start);
938         PN(se.vruntime);
939         PN(se.sum_exec_runtime);
940
941         nr_switches = p->nvcsw + p->nivcsw;
942
943         P(se.nr_migrations);
944
945         if (schedstat_enabled()) {
946                 u64 avg_atom, avg_per_cpu;
947
948                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
949                 PN_SCHEDSTAT(se.statistics.wait_start);
950                 PN_SCHEDSTAT(se.statistics.sleep_start);
951                 PN_SCHEDSTAT(se.statistics.block_start);
952                 PN_SCHEDSTAT(se.statistics.sleep_max);
953                 PN_SCHEDSTAT(se.statistics.block_max);
954                 PN_SCHEDSTAT(se.statistics.exec_max);
955                 PN_SCHEDSTAT(se.statistics.slice_max);
956                 PN_SCHEDSTAT(se.statistics.wait_max);
957                 PN_SCHEDSTAT(se.statistics.wait_sum);
958                 P_SCHEDSTAT(se.statistics.wait_count);
959                 PN_SCHEDSTAT(se.statistics.iowait_sum);
960                 P_SCHEDSTAT(se.statistics.iowait_count);
961                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
962                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
963                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
964                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
965                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
966                 P_SCHEDSTAT(se.statistics.nr_wakeups);
967                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
968                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
969                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
970                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
971                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
972                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
973                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
974                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
975
976                 avg_atom = p->se.sum_exec_runtime;
977                 if (nr_switches)
978                         avg_atom = div64_ul(avg_atom, nr_switches);
979                 else
980                         avg_atom = -1LL;
981
982                 avg_per_cpu = p->se.sum_exec_runtime;
983                 if (p->se.nr_migrations) {
984                         avg_per_cpu = div64_u64(avg_per_cpu,
985                                                 p->se.nr_migrations);
986                 } else {
987                         avg_per_cpu = -1LL;
988                 }
989
990                 __PN(avg_atom);
991                 __PN(avg_per_cpu);
992         }
993
994         __P(nr_switches);
995         SEQ_printf(m, "%-45s:%21Ld\n",
996                    "nr_voluntary_switches", (long long)p->nvcsw);
997         SEQ_printf(m, "%-45s:%21Ld\n",
998                    "nr_involuntary_switches", (long long)p->nivcsw);
999
1000         P(se.load.weight);
1001 #ifdef CONFIG_SMP
1002         P(se.avg.load_sum);
1003         P(se.avg.util_sum);
1004         P(se.avg.load_avg);
1005         P(se.avg.util_avg);
1006         P(se.avg.last_update_time);
1007 #endif
1008         P(policy);
1009         P(prio);
1010         if (p->policy == SCHED_DEADLINE) {
1011                 P(dl.runtime);
1012                 P(dl.deadline);
1013         }
1014 #undef PN_SCHEDSTAT
1015 #undef PN
1016 #undef __PN
1017 #undef P_SCHEDSTAT
1018 #undef P
1019 #undef __P
1020
1021         {
1022                 unsigned int this_cpu = raw_smp_processor_id();
1023                 u64 t0, t1;
1024
1025                 t0 = cpu_clock(this_cpu);
1026                 t1 = cpu_clock(this_cpu);
1027                 SEQ_printf(m, "%-45s:%21Ld\n",
1028                            "clock-delta", (long long)(t1-t0));
1029         }
1030
1031         sched_show_numa(p, m);
1032 }
1033
1034 void proc_sched_set_task(struct task_struct *p)
1035 {
1036 #ifdef CONFIG_SCHEDSTATS
1037         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1038 #endif
1039 }