GNU Linux-libre 6.8.9-gnu
[releases.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12         struct gov_attr_set     attr_set;
13         unsigned int            rate_limit_us;
14 };
15
16 struct sugov_policy {
17         struct cpufreq_policy   *policy;
18
19         struct sugov_tunables   *tunables;
20         struct list_head        tunables_hook;
21
22         raw_spinlock_t          update_lock;
23         u64                     last_freq_update_time;
24         s64                     freq_update_delay_ns;
25         unsigned int            next_freq;
26         unsigned int            cached_raw_freq;
27
28         /* The next fields are only needed if fast switch cannot be used: */
29         struct                  irq_work irq_work;
30         struct                  kthread_work work;
31         struct                  mutex work_lock;
32         struct                  kthread_worker worker;
33         struct task_struct      *thread;
34         bool                    work_in_progress;
35
36         bool                    limits_changed;
37         bool                    need_freq_update;
38 };
39
40 struct sugov_cpu {
41         struct update_util_data update_util;
42         struct sugov_policy     *sg_policy;
43         unsigned int            cpu;
44
45         bool                    iowait_boost_pending;
46         unsigned int            iowait_boost;
47         u64                     last_update;
48
49         unsigned long           util;
50         unsigned long           bw_min;
51
52         /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54         unsigned long           saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64         s64 delta_ns;
65
66         /*
67          * Since cpufreq_update_util() is called with rq->lock held for
68          * the @target_cpu, our per-CPU data is fully serialized.
69          *
70          * However, drivers cannot in general deal with cross-CPU
71          * requests, so while get_next_freq() will work, our
72          * sugov_update_commit() call may not for the fast switching platforms.
73          *
74          * Hence stop here for remote requests if they aren't supported
75          * by the hardware, as calculating the frequency is pointless if
76          * we cannot in fact act on it.
77          *
78          * This is needed on the slow switching platforms too to prevent CPUs
79          * going offline from leaving stale IRQ work items behind.
80          */
81         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82                 return false;
83
84         if (unlikely(sg_policy->limits_changed)) {
85                 sg_policy->limits_changed = false;
86                 sg_policy->need_freq_update = true;
87                 return true;
88         }
89
90         delta_ns = time - sg_policy->last_freq_update_time;
91
92         return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96                                    unsigned int next_freq)
97 {
98         if (sg_policy->need_freq_update)
99                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100         else if (sg_policy->next_freq == next_freq)
101                 return false;
102
103         sg_policy->next_freq = next_freq;
104         sg_policy->last_freq_update_time = time;
105
106         return true;
107 }
108
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111         if (!sg_policy->work_in_progress) {
112                 sg_policy->work_in_progress = true;
113                 irq_work_queue(&sg_policy->irq_work);
114         }
115 }
116
117 /**
118  * get_capacity_ref_freq - get the reference frequency that has been used to
119  * correlate frequency and compute capacity for a given cpufreq policy. We use
120  * the CPU managing it for the arch_scale_freq_ref() call in the function.
121  * @policy: the cpufreq policy of the CPU in question.
122  *
123  * Return: the reference CPU frequency to compute a capacity.
124  */
125 static __always_inline
126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127 {
128         unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130         if (freq)
131                 return freq;
132
133         if (arch_scale_freq_invariant())
134                 return policy->cpuinfo.max_freq;
135
136         /*
137          * Apply a 25% margin so that we select a higher frequency than
138          * the current one before the CPU is fully busy:
139          */
140         return policy->cur + (policy->cur >> 2);
141 }
142
143 /**
144  * get_next_freq - Compute a new frequency for a given cpufreq policy.
145  * @sg_policy: schedutil policy object to compute the new frequency for.
146  * @util: Current CPU utilization.
147  * @max: CPU capacity.
148  *
149  * If the utilization is frequency-invariant, choose the new frequency to be
150  * proportional to it, that is
151  *
152  * next_freq = C * max_freq * util / max
153  *
154  * Otherwise, approximate the would-be frequency-invariant utilization by
155  * util_raw * (curr_freq / max_freq) which leads to
156  *
157  * next_freq = C * curr_freq * util_raw / max
158  *
159  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
160  *
161  * The lowest driver-supported frequency which is equal or greater than the raw
162  * next_freq (as calculated above) is returned, subject to policy min/max and
163  * cpufreq driver limitations.
164  */
165 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
166                                   unsigned long util, unsigned long max)
167 {
168         struct cpufreq_policy *policy = sg_policy->policy;
169         unsigned int freq;
170
171         freq = get_capacity_ref_freq(policy);
172         freq = map_util_freq(util, freq, max);
173
174         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
175                 return sg_policy->next_freq;
176
177         sg_policy->cached_raw_freq = freq;
178         return cpufreq_driver_resolve_freq(policy, freq);
179 }
180
181 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
182                                  unsigned long min,
183                                  unsigned long max)
184 {
185         /* Add dvfs headroom to actual utilization */
186         actual = map_util_perf(actual);
187         /* Actually we don't need to target the max performance */
188         if (actual < max)
189                 max = actual;
190
191         /*
192          * Ensure at least minimum performance while providing more compute
193          * capacity when possible.
194          */
195         return max(min, max);
196 }
197
198 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
199 {
200         unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
201
202         util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
203         util = max(util, boost);
204         sg_cpu->bw_min = min;
205         sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
206 }
207
208 /**
209  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
210  * @sg_cpu: the sugov data for the CPU to boost
211  * @time: the update time from the caller
212  * @set_iowait_boost: true if an IO boost has been requested
213  *
214  * The IO wait boost of a task is disabled after a tick since the last update
215  * of a CPU. If a new IO wait boost is requested after more then a tick, then
216  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
217  * efficiency by ignoring sporadic wakeups from IO.
218  */
219 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
220                                bool set_iowait_boost)
221 {
222         s64 delta_ns = time - sg_cpu->last_update;
223
224         /* Reset boost only if a tick has elapsed since last request */
225         if (delta_ns <= TICK_NSEC)
226                 return false;
227
228         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
229         sg_cpu->iowait_boost_pending = set_iowait_boost;
230
231         return true;
232 }
233
234 /**
235  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
236  * @sg_cpu: the sugov data for the CPU to boost
237  * @time: the update time from the caller
238  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
239  *
240  * Each time a task wakes up after an IO operation, the CPU utilization can be
241  * boosted to a certain utilization which doubles at each "frequent and
242  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
243  * of the maximum OPP.
244  *
245  * To keep doubling, an IO boost has to be requested at least once per tick,
246  * otherwise we restart from the utilization of the minimum OPP.
247  */
248 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
249                                unsigned int flags)
250 {
251         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
252
253         /* Reset boost if the CPU appears to have been idle enough */
254         if (sg_cpu->iowait_boost &&
255             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
256                 return;
257
258         /* Boost only tasks waking up after IO */
259         if (!set_iowait_boost)
260                 return;
261
262         /* Ensure boost doubles only one time at each request */
263         if (sg_cpu->iowait_boost_pending)
264                 return;
265         sg_cpu->iowait_boost_pending = true;
266
267         /* Double the boost at each request */
268         if (sg_cpu->iowait_boost) {
269                 sg_cpu->iowait_boost =
270                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
271                 return;
272         }
273
274         /* First wakeup after IO: start with minimum boost */
275         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
276 }
277
278 /**
279  * sugov_iowait_apply() - Apply the IO boost to a CPU.
280  * @sg_cpu: the sugov data for the cpu to boost
281  * @time: the update time from the caller
282  * @max_cap: the max CPU capacity
283  *
284  * A CPU running a task which woken up after an IO operation can have its
285  * utilization boosted to speed up the completion of those IO operations.
286  * The IO boost value is increased each time a task wakes up from IO, in
287  * sugov_iowait_apply(), and it's instead decreased by this function,
288  * each time an increase has not been requested (!iowait_boost_pending).
289  *
290  * A CPU which also appears to have been idle for at least one tick has also
291  * its IO boost utilization reset.
292  *
293  * This mechanism is designed to boost high frequently IO waiting tasks, while
294  * being more conservative on tasks which does sporadic IO operations.
295  */
296 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
297                                unsigned long max_cap)
298 {
299         /* No boost currently required */
300         if (!sg_cpu->iowait_boost)
301                 return 0;
302
303         /* Reset boost if the CPU appears to have been idle enough */
304         if (sugov_iowait_reset(sg_cpu, time, false))
305                 return 0;
306
307         if (!sg_cpu->iowait_boost_pending) {
308                 /*
309                  * No boost pending; reduce the boost value.
310                  */
311                 sg_cpu->iowait_boost >>= 1;
312                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
313                         sg_cpu->iowait_boost = 0;
314                         return 0;
315                 }
316         }
317
318         sg_cpu->iowait_boost_pending = false;
319
320         /*
321          * sg_cpu->util is already in capacity scale; convert iowait_boost
322          * into the same scale so we can compare.
323          */
324         return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
325 }
326
327 #ifdef CONFIG_NO_HZ_COMMON
328 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
329 {
330         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
331         bool ret = idle_calls == sg_cpu->saved_idle_calls;
332
333         sg_cpu->saved_idle_calls = idle_calls;
334         return ret;
335 }
336 #else
337 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
338 #endif /* CONFIG_NO_HZ_COMMON */
339
340 /*
341  * Make sugov_should_update_freq() ignore the rate limit when DL
342  * has increased the utilization.
343  */
344 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
345 {
346         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
347                 sg_cpu->sg_policy->limits_changed = true;
348 }
349
350 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
351                                               u64 time, unsigned long max_cap,
352                                               unsigned int flags)
353 {
354         unsigned long boost;
355
356         sugov_iowait_boost(sg_cpu, time, flags);
357         sg_cpu->last_update = time;
358
359         ignore_dl_rate_limit(sg_cpu);
360
361         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
362                 return false;
363
364         boost = sugov_iowait_apply(sg_cpu, time, max_cap);
365         sugov_get_util(sg_cpu, boost);
366
367         return true;
368 }
369
370 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
371                                      unsigned int flags)
372 {
373         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
374         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
375         unsigned int cached_freq = sg_policy->cached_raw_freq;
376         unsigned long max_cap;
377         unsigned int next_f;
378
379         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
380
381         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
382                 return;
383
384         next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
385         /*
386          * Do not reduce the frequency if the CPU has not been idle
387          * recently, as the reduction is likely to be premature then.
388          *
389          * Except when the rq is capped by uclamp_max.
390          */
391         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
392             sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
393             !sg_policy->need_freq_update) {
394                 next_f = sg_policy->next_freq;
395
396                 /* Restore cached freq as next_freq has changed */
397                 sg_policy->cached_raw_freq = cached_freq;
398         }
399
400         if (!sugov_update_next_freq(sg_policy, time, next_f))
401                 return;
402
403         /*
404          * This code runs under rq->lock for the target CPU, so it won't run
405          * concurrently on two different CPUs for the same target and it is not
406          * necessary to acquire the lock in the fast switch case.
407          */
408         if (sg_policy->policy->fast_switch_enabled) {
409                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
410         } else {
411                 raw_spin_lock(&sg_policy->update_lock);
412                 sugov_deferred_update(sg_policy);
413                 raw_spin_unlock(&sg_policy->update_lock);
414         }
415 }
416
417 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
418                                      unsigned int flags)
419 {
420         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
421         unsigned long prev_util = sg_cpu->util;
422         unsigned long max_cap;
423
424         /*
425          * Fall back to the "frequency" path if frequency invariance is not
426          * supported, because the direct mapping between the utilization and
427          * the performance levels depends on the frequency invariance.
428          */
429         if (!arch_scale_freq_invariant()) {
430                 sugov_update_single_freq(hook, time, flags);
431                 return;
432         }
433
434         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
435
436         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
437                 return;
438
439         /*
440          * Do not reduce the target performance level if the CPU has not been
441          * idle recently, as the reduction is likely to be premature then.
442          *
443          * Except when the rq is capped by uclamp_max.
444          */
445         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
446             sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
447                 sg_cpu->util = prev_util;
448
449         cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
450                                    sg_cpu->util, max_cap);
451
452         sg_cpu->sg_policy->last_freq_update_time = time;
453 }
454
455 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
456 {
457         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
458         struct cpufreq_policy *policy = sg_policy->policy;
459         unsigned long util = 0, max_cap;
460         unsigned int j;
461
462         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
463
464         for_each_cpu(j, policy->cpus) {
465                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
466                 unsigned long boost;
467
468                 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
469                 sugov_get_util(j_sg_cpu, boost);
470
471                 util = max(j_sg_cpu->util, util);
472         }
473
474         return get_next_freq(sg_policy, util, max_cap);
475 }
476
477 static void
478 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
479 {
480         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
481         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
482         unsigned int next_f;
483
484         raw_spin_lock(&sg_policy->update_lock);
485
486         sugov_iowait_boost(sg_cpu, time, flags);
487         sg_cpu->last_update = time;
488
489         ignore_dl_rate_limit(sg_cpu);
490
491         if (sugov_should_update_freq(sg_policy, time)) {
492                 next_f = sugov_next_freq_shared(sg_cpu, time);
493
494                 if (!sugov_update_next_freq(sg_policy, time, next_f))
495                         goto unlock;
496
497                 if (sg_policy->policy->fast_switch_enabled)
498                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
499                 else
500                         sugov_deferred_update(sg_policy);
501         }
502 unlock:
503         raw_spin_unlock(&sg_policy->update_lock);
504 }
505
506 static void sugov_work(struct kthread_work *work)
507 {
508         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
509         unsigned int freq;
510         unsigned long flags;
511
512         /*
513          * Hold sg_policy->update_lock shortly to handle the case where:
514          * in case sg_policy->next_freq is read here, and then updated by
515          * sugov_deferred_update() just before work_in_progress is set to false
516          * here, we may miss queueing the new update.
517          *
518          * Note: If a work was queued after the update_lock is released,
519          * sugov_work() will just be called again by kthread_work code; and the
520          * request will be proceed before the sugov thread sleeps.
521          */
522         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
523         freq = sg_policy->next_freq;
524         sg_policy->work_in_progress = false;
525         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
526
527         mutex_lock(&sg_policy->work_lock);
528         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
529         mutex_unlock(&sg_policy->work_lock);
530 }
531
532 static void sugov_irq_work(struct irq_work *irq_work)
533 {
534         struct sugov_policy *sg_policy;
535
536         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
537
538         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
539 }
540
541 /************************** sysfs interface ************************/
542
543 static struct sugov_tunables *global_tunables;
544 static DEFINE_MUTEX(global_tunables_lock);
545
546 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
547 {
548         return container_of(attr_set, struct sugov_tunables, attr_set);
549 }
550
551 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
552 {
553         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
554
555         return sprintf(buf, "%u\n", tunables->rate_limit_us);
556 }
557
558 static ssize_t
559 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
560 {
561         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
562         struct sugov_policy *sg_policy;
563         unsigned int rate_limit_us;
564
565         if (kstrtouint(buf, 10, &rate_limit_us))
566                 return -EINVAL;
567
568         tunables->rate_limit_us = rate_limit_us;
569
570         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
571                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
572
573         return count;
574 }
575
576 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
577
578 static struct attribute *sugov_attrs[] = {
579         &rate_limit_us.attr,
580         NULL
581 };
582 ATTRIBUTE_GROUPS(sugov);
583
584 static void sugov_tunables_free(struct kobject *kobj)
585 {
586         struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
587
588         kfree(to_sugov_tunables(attr_set));
589 }
590
591 static const struct kobj_type sugov_tunables_ktype = {
592         .default_groups = sugov_groups,
593         .sysfs_ops = &governor_sysfs_ops,
594         .release = &sugov_tunables_free,
595 };
596
597 /********************** cpufreq governor interface *********************/
598
599 #ifdef CONFIG_ENERGY_MODEL
600 static void rebuild_sd_workfn(struct work_struct *work)
601 {
602         rebuild_sched_domains_energy();
603 }
604
605 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
606
607 /*
608  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
609  * on governor changes to make sure the scheduler knows about it.
610  */
611 static void sugov_eas_rebuild_sd(void)
612 {
613         /*
614          * When called from the cpufreq_register_driver() path, the
615          * cpu_hotplug_lock is already held, so use a work item to
616          * avoid nested locking in rebuild_sched_domains().
617          */
618         schedule_work(&rebuild_sd_work);
619 }
620 #else
621 static inline void sugov_eas_rebuild_sd(void) { };
622 #endif
623
624 struct cpufreq_governor schedutil_gov;
625
626 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
627 {
628         struct sugov_policy *sg_policy;
629
630         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
631         if (!sg_policy)
632                 return NULL;
633
634         sg_policy->policy = policy;
635         raw_spin_lock_init(&sg_policy->update_lock);
636         return sg_policy;
637 }
638
639 static void sugov_policy_free(struct sugov_policy *sg_policy)
640 {
641         kfree(sg_policy);
642 }
643
644 static int sugov_kthread_create(struct sugov_policy *sg_policy)
645 {
646         struct task_struct *thread;
647         struct sched_attr attr = {
648                 .size           = sizeof(struct sched_attr),
649                 .sched_policy   = SCHED_DEADLINE,
650                 .sched_flags    = SCHED_FLAG_SUGOV,
651                 .sched_nice     = 0,
652                 .sched_priority = 0,
653                 /*
654                  * Fake (unused) bandwidth; workaround to "fix"
655                  * priority inheritance.
656                  */
657                 .sched_runtime  =  1000000,
658                 .sched_deadline = 10000000,
659                 .sched_period   = 10000000,
660         };
661         struct cpufreq_policy *policy = sg_policy->policy;
662         int ret;
663
664         /* kthread only required for slow path */
665         if (policy->fast_switch_enabled)
666                 return 0;
667
668         kthread_init_work(&sg_policy->work, sugov_work);
669         kthread_init_worker(&sg_policy->worker);
670         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
671                                 "sugov:%d",
672                                 cpumask_first(policy->related_cpus));
673         if (IS_ERR(thread)) {
674                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
675                 return PTR_ERR(thread);
676         }
677
678         ret = sched_setattr_nocheck(thread, &attr);
679         if (ret) {
680                 kthread_stop(thread);
681                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
682                 return ret;
683         }
684
685         sg_policy->thread = thread;
686         kthread_bind_mask(thread, policy->related_cpus);
687         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
688         mutex_init(&sg_policy->work_lock);
689
690         wake_up_process(thread);
691
692         return 0;
693 }
694
695 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
696 {
697         /* kthread only required for slow path */
698         if (sg_policy->policy->fast_switch_enabled)
699                 return;
700
701         kthread_flush_worker(&sg_policy->worker);
702         kthread_stop(sg_policy->thread);
703         mutex_destroy(&sg_policy->work_lock);
704 }
705
706 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
707 {
708         struct sugov_tunables *tunables;
709
710         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
711         if (tunables) {
712                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
713                 if (!have_governor_per_policy())
714                         global_tunables = tunables;
715         }
716         return tunables;
717 }
718
719 static void sugov_clear_global_tunables(void)
720 {
721         if (!have_governor_per_policy())
722                 global_tunables = NULL;
723 }
724
725 static int sugov_init(struct cpufreq_policy *policy)
726 {
727         struct sugov_policy *sg_policy;
728         struct sugov_tunables *tunables;
729         int ret = 0;
730
731         /* State should be equivalent to EXIT */
732         if (policy->governor_data)
733                 return -EBUSY;
734
735         cpufreq_enable_fast_switch(policy);
736
737         sg_policy = sugov_policy_alloc(policy);
738         if (!sg_policy) {
739                 ret = -ENOMEM;
740                 goto disable_fast_switch;
741         }
742
743         ret = sugov_kthread_create(sg_policy);
744         if (ret)
745                 goto free_sg_policy;
746
747         mutex_lock(&global_tunables_lock);
748
749         if (global_tunables) {
750                 if (WARN_ON(have_governor_per_policy())) {
751                         ret = -EINVAL;
752                         goto stop_kthread;
753                 }
754                 policy->governor_data = sg_policy;
755                 sg_policy->tunables = global_tunables;
756
757                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
758                 goto out;
759         }
760
761         tunables = sugov_tunables_alloc(sg_policy);
762         if (!tunables) {
763                 ret = -ENOMEM;
764                 goto stop_kthread;
765         }
766
767         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
768
769         policy->governor_data = sg_policy;
770         sg_policy->tunables = tunables;
771
772         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
773                                    get_governor_parent_kobj(policy), "%s",
774                                    schedutil_gov.name);
775         if (ret)
776                 goto fail;
777
778         sugov_eas_rebuild_sd();
779
780 out:
781         mutex_unlock(&global_tunables_lock);
782         return 0;
783
784 fail:
785         kobject_put(&tunables->attr_set.kobj);
786         policy->governor_data = NULL;
787         sugov_clear_global_tunables();
788
789 stop_kthread:
790         sugov_kthread_stop(sg_policy);
791         mutex_unlock(&global_tunables_lock);
792
793 free_sg_policy:
794         sugov_policy_free(sg_policy);
795
796 disable_fast_switch:
797         cpufreq_disable_fast_switch(policy);
798
799         pr_err("initialization failed (error %d)\n", ret);
800         return ret;
801 }
802
803 static void sugov_exit(struct cpufreq_policy *policy)
804 {
805         struct sugov_policy *sg_policy = policy->governor_data;
806         struct sugov_tunables *tunables = sg_policy->tunables;
807         unsigned int count;
808
809         mutex_lock(&global_tunables_lock);
810
811         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
812         policy->governor_data = NULL;
813         if (!count)
814                 sugov_clear_global_tunables();
815
816         mutex_unlock(&global_tunables_lock);
817
818         sugov_kthread_stop(sg_policy);
819         sugov_policy_free(sg_policy);
820         cpufreq_disable_fast_switch(policy);
821
822         sugov_eas_rebuild_sd();
823 }
824
825 static int sugov_start(struct cpufreq_policy *policy)
826 {
827         struct sugov_policy *sg_policy = policy->governor_data;
828         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
829         unsigned int cpu;
830
831         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
832         sg_policy->last_freq_update_time        = 0;
833         sg_policy->next_freq                    = 0;
834         sg_policy->work_in_progress             = false;
835         sg_policy->limits_changed               = false;
836         sg_policy->cached_raw_freq              = 0;
837
838         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
839
840         if (policy_is_shared(policy))
841                 uu = sugov_update_shared;
842         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
843                 uu = sugov_update_single_perf;
844         else
845                 uu = sugov_update_single_freq;
846
847         for_each_cpu(cpu, policy->cpus) {
848                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
849
850                 memset(sg_cpu, 0, sizeof(*sg_cpu));
851                 sg_cpu->cpu = cpu;
852                 sg_cpu->sg_policy = sg_policy;
853                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
854         }
855         return 0;
856 }
857
858 static void sugov_stop(struct cpufreq_policy *policy)
859 {
860         struct sugov_policy *sg_policy = policy->governor_data;
861         unsigned int cpu;
862
863         for_each_cpu(cpu, policy->cpus)
864                 cpufreq_remove_update_util_hook(cpu);
865
866         synchronize_rcu();
867
868         if (!policy->fast_switch_enabled) {
869                 irq_work_sync(&sg_policy->irq_work);
870                 kthread_cancel_work_sync(&sg_policy->work);
871         }
872 }
873
874 static void sugov_limits(struct cpufreq_policy *policy)
875 {
876         struct sugov_policy *sg_policy = policy->governor_data;
877
878         if (!policy->fast_switch_enabled) {
879                 mutex_lock(&sg_policy->work_lock);
880                 cpufreq_policy_apply_limits(policy);
881                 mutex_unlock(&sg_policy->work_lock);
882         }
883
884         sg_policy->limits_changed = true;
885 }
886
887 struct cpufreq_governor schedutil_gov = {
888         .name                   = "schedutil",
889         .owner                  = THIS_MODULE,
890         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
891         .init                   = sugov_init,
892         .exit                   = sugov_exit,
893         .start                  = sugov_start,
894         .stop                   = sugov_stop,
895         .limits                 = sugov_limits,
896 };
897
898 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
899 struct cpufreq_governor *cpufreq_default_governor(void)
900 {
901         return &schedutil_gov;
902 }
903 #endif
904
905 cpufreq_governor_init(schedutil_gov);