GNU Linux-libre 5.17.9-gnu
[releases.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    limits_changed;
44         bool                    need_freq_update;
45 };
46
47 struct sugov_cpu {
48         struct update_util_data update_util;
49         struct sugov_policy     *sg_policy;
50         unsigned int            cpu;
51
52         bool                    iowait_boost_pending;
53         unsigned int            iowait_boost;
54         u64                     last_update;
55
56         unsigned long           util;
57         unsigned long           bw_dl;
58         unsigned long           max;
59
60         /* The field below is for single-CPU policies only: */
61 #ifdef CONFIG_NO_HZ_COMMON
62         unsigned long           saved_idle_calls;
63 #endif
64 };
65
66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67
68 /************************ Governor internals ***********************/
69
70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71 {
72         s64 delta_ns;
73
74         /*
75          * Since cpufreq_update_util() is called with rq->lock held for
76          * the @target_cpu, our per-CPU data is fully serialized.
77          *
78          * However, drivers cannot in general deal with cross-CPU
79          * requests, so while get_next_freq() will work, our
80          * sugov_update_commit() call may not for the fast switching platforms.
81          *
82          * Hence stop here for remote requests if they aren't supported
83          * by the hardware, as calculating the frequency is pointless if
84          * we cannot in fact act on it.
85          *
86          * This is needed on the slow switching platforms too to prevent CPUs
87          * going offline from leaving stale IRQ work items behind.
88          */
89         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90                 return false;
91
92         if (unlikely(sg_policy->limits_changed)) {
93                 sg_policy->limits_changed = false;
94                 sg_policy->need_freq_update = true;
95                 return true;
96         }
97
98         delta_ns = time - sg_policy->last_freq_update_time;
99
100         return delta_ns >= sg_policy->freq_update_delay_ns;
101 }
102
103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104                                    unsigned int next_freq)
105 {
106         if (sg_policy->need_freq_update)
107                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
108         else if (sg_policy->next_freq == next_freq)
109                 return false;
110
111         sg_policy->next_freq = next_freq;
112         sg_policy->last_freq_update_time = time;
113
114         return true;
115 }
116
117 static void sugov_deferred_update(struct sugov_policy *sg_policy)
118 {
119         if (!sg_policy->work_in_progress) {
120                 sg_policy->work_in_progress = true;
121                 irq_work_queue(&sg_policy->irq_work);
122         }
123 }
124
125 /**
126  * get_next_freq - Compute a new frequency for a given cpufreq policy.
127  * @sg_policy: schedutil policy object to compute the new frequency for.
128  * @util: Current CPU utilization.
129  * @max: CPU capacity.
130  *
131  * If the utilization is frequency-invariant, choose the new frequency to be
132  * proportional to it, that is
133  *
134  * next_freq = C * max_freq * util / max
135  *
136  * Otherwise, approximate the would-be frequency-invariant utilization by
137  * util_raw * (curr_freq / max_freq) which leads to
138  *
139  * next_freq = C * curr_freq * util_raw / max
140  *
141  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
142  *
143  * The lowest driver-supported frequency which is equal or greater than the raw
144  * next_freq (as calculated above) is returned, subject to policy min/max and
145  * cpufreq driver limitations.
146  */
147 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
148                                   unsigned long util, unsigned long max)
149 {
150         struct cpufreq_policy *policy = sg_policy->policy;
151         unsigned int freq = arch_scale_freq_invariant() ?
152                                 policy->cpuinfo.max_freq : policy->cur;
153
154         util = map_util_perf(util);
155         freq = map_util_freq(util, freq, max);
156
157         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
158                 return sg_policy->next_freq;
159
160         sg_policy->cached_raw_freq = freq;
161         return cpufreq_driver_resolve_freq(policy, freq);
162 }
163
164 static void sugov_get_util(struct sugov_cpu *sg_cpu)
165 {
166         struct rq *rq = cpu_rq(sg_cpu->cpu);
167         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
168
169         sg_cpu->max = max;
170         sg_cpu->bw_dl = cpu_bw_dl(rq);
171         sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu), max,
172                                           FREQUENCY_UTIL, NULL);
173 }
174
175 /**
176  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
177  * @sg_cpu: the sugov data for the CPU to boost
178  * @time: the update time from the caller
179  * @set_iowait_boost: true if an IO boost has been requested
180  *
181  * The IO wait boost of a task is disabled after a tick since the last update
182  * of a CPU. If a new IO wait boost is requested after more then a tick, then
183  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
184  * efficiency by ignoring sporadic wakeups from IO.
185  */
186 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
187                                bool set_iowait_boost)
188 {
189         s64 delta_ns = time - sg_cpu->last_update;
190
191         /* Reset boost only if a tick has elapsed since last request */
192         if (delta_ns <= TICK_NSEC)
193                 return false;
194
195         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
196         sg_cpu->iowait_boost_pending = set_iowait_boost;
197
198         return true;
199 }
200
201 /**
202  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
203  * @sg_cpu: the sugov data for the CPU to boost
204  * @time: the update time from the caller
205  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
206  *
207  * Each time a task wakes up after an IO operation, the CPU utilization can be
208  * boosted to a certain utilization which doubles at each "frequent and
209  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
210  * of the maximum OPP.
211  *
212  * To keep doubling, an IO boost has to be requested at least once per tick,
213  * otherwise we restart from the utilization of the minimum OPP.
214  */
215 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
216                                unsigned int flags)
217 {
218         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
219
220         /* Reset boost if the CPU appears to have been idle enough */
221         if (sg_cpu->iowait_boost &&
222             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
223                 return;
224
225         /* Boost only tasks waking up after IO */
226         if (!set_iowait_boost)
227                 return;
228
229         /* Ensure boost doubles only one time at each request */
230         if (sg_cpu->iowait_boost_pending)
231                 return;
232         sg_cpu->iowait_boost_pending = true;
233
234         /* Double the boost at each request */
235         if (sg_cpu->iowait_boost) {
236                 sg_cpu->iowait_boost =
237                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
238                 return;
239         }
240
241         /* First wakeup after IO: start with minimum boost */
242         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
243 }
244
245 /**
246  * sugov_iowait_apply() - Apply the IO boost to a CPU.
247  * @sg_cpu: the sugov data for the cpu to boost
248  * @time: the update time from the caller
249  *
250  * A CPU running a task which woken up after an IO operation can have its
251  * utilization boosted to speed up the completion of those IO operations.
252  * The IO boost value is increased each time a task wakes up from IO, in
253  * sugov_iowait_apply(), and it's instead decreased by this function,
254  * each time an increase has not been requested (!iowait_boost_pending).
255  *
256  * A CPU which also appears to have been idle for at least one tick has also
257  * its IO boost utilization reset.
258  *
259  * This mechanism is designed to boost high frequently IO waiting tasks, while
260  * being more conservative on tasks which does sporadic IO operations.
261  */
262 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
263 {
264         unsigned long boost;
265
266         /* No boost currently required */
267         if (!sg_cpu->iowait_boost)
268                 return;
269
270         /* Reset boost if the CPU appears to have been idle enough */
271         if (sugov_iowait_reset(sg_cpu, time, false))
272                 return;
273
274         if (!sg_cpu->iowait_boost_pending) {
275                 /*
276                  * No boost pending; reduce the boost value.
277                  */
278                 sg_cpu->iowait_boost >>= 1;
279                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
280                         sg_cpu->iowait_boost = 0;
281                         return;
282                 }
283         }
284
285         sg_cpu->iowait_boost_pending = false;
286
287         /*
288          * sg_cpu->util is already in capacity scale; convert iowait_boost
289          * into the same scale so we can compare.
290          */
291         boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
292         boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
293         if (sg_cpu->util < boost)
294                 sg_cpu->util = boost;
295 }
296
297 #ifdef CONFIG_NO_HZ_COMMON
298 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
299 {
300         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
301         bool ret = idle_calls == sg_cpu->saved_idle_calls;
302
303         sg_cpu->saved_idle_calls = idle_calls;
304         return ret;
305 }
306 #else
307 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
308 #endif /* CONFIG_NO_HZ_COMMON */
309
310 /*
311  * Make sugov_should_update_freq() ignore the rate limit when DL
312  * has increased the utilization.
313  */
314 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
315 {
316         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
317                 sg_cpu->sg_policy->limits_changed = true;
318 }
319
320 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
321                                               u64 time, unsigned int flags)
322 {
323         sugov_iowait_boost(sg_cpu, time, flags);
324         sg_cpu->last_update = time;
325
326         ignore_dl_rate_limit(sg_cpu);
327
328         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
329                 return false;
330
331         sugov_get_util(sg_cpu);
332         sugov_iowait_apply(sg_cpu, time);
333
334         return true;
335 }
336
337 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
338                                      unsigned int flags)
339 {
340         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
341         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
342         unsigned int cached_freq = sg_policy->cached_raw_freq;
343         unsigned int next_f;
344
345         if (!sugov_update_single_common(sg_cpu, time, flags))
346                 return;
347
348         next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
349         /*
350          * Do not reduce the frequency if the CPU has not been idle
351          * recently, as the reduction is likely to be premature then.
352          *
353          * Except when the rq is capped by uclamp_max.
354          */
355         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
356             sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
357                 next_f = sg_policy->next_freq;
358
359                 /* Restore cached freq as next_freq has changed */
360                 sg_policy->cached_raw_freq = cached_freq;
361         }
362
363         if (!sugov_update_next_freq(sg_policy, time, next_f))
364                 return;
365
366         /*
367          * This code runs under rq->lock for the target CPU, so it won't run
368          * concurrently on two different CPUs for the same target and it is not
369          * necessary to acquire the lock in the fast switch case.
370          */
371         if (sg_policy->policy->fast_switch_enabled) {
372                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
373         } else {
374                 raw_spin_lock(&sg_policy->update_lock);
375                 sugov_deferred_update(sg_policy);
376                 raw_spin_unlock(&sg_policy->update_lock);
377         }
378 }
379
380 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
381                                      unsigned int flags)
382 {
383         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
384         unsigned long prev_util = sg_cpu->util;
385
386         /*
387          * Fall back to the "frequency" path if frequency invariance is not
388          * supported, because the direct mapping between the utilization and
389          * the performance levels depends on the frequency invariance.
390          */
391         if (!arch_scale_freq_invariant()) {
392                 sugov_update_single_freq(hook, time, flags);
393                 return;
394         }
395
396         if (!sugov_update_single_common(sg_cpu, time, flags))
397                 return;
398
399         /*
400          * Do not reduce the target performance level if the CPU has not been
401          * idle recently, as the reduction is likely to be premature then.
402          *
403          * Except when the rq is capped by uclamp_max.
404          */
405         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
406             sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
407                 sg_cpu->util = prev_util;
408
409         cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
410                                    map_util_perf(sg_cpu->util), sg_cpu->max);
411
412         sg_cpu->sg_policy->last_freq_update_time = time;
413 }
414
415 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
416 {
417         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
418         struct cpufreq_policy *policy = sg_policy->policy;
419         unsigned long util = 0, max = 1;
420         unsigned int j;
421
422         for_each_cpu(j, policy->cpus) {
423                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
424                 unsigned long j_util, j_max;
425
426                 sugov_get_util(j_sg_cpu);
427                 sugov_iowait_apply(j_sg_cpu, time);
428                 j_util = j_sg_cpu->util;
429                 j_max = j_sg_cpu->max;
430
431                 if (j_util * max > j_max * util) {
432                         util = j_util;
433                         max = j_max;
434                 }
435         }
436
437         return get_next_freq(sg_policy, util, max);
438 }
439
440 static void
441 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
442 {
443         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
444         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
445         unsigned int next_f;
446
447         raw_spin_lock(&sg_policy->update_lock);
448
449         sugov_iowait_boost(sg_cpu, time, flags);
450         sg_cpu->last_update = time;
451
452         ignore_dl_rate_limit(sg_cpu);
453
454         if (sugov_should_update_freq(sg_policy, time)) {
455                 next_f = sugov_next_freq_shared(sg_cpu, time);
456
457                 if (!sugov_update_next_freq(sg_policy, time, next_f))
458                         goto unlock;
459
460                 if (sg_policy->policy->fast_switch_enabled)
461                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
462                 else
463                         sugov_deferred_update(sg_policy);
464         }
465 unlock:
466         raw_spin_unlock(&sg_policy->update_lock);
467 }
468
469 static void sugov_work(struct kthread_work *work)
470 {
471         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
472         unsigned int freq;
473         unsigned long flags;
474
475         /*
476          * Hold sg_policy->update_lock shortly to handle the case where:
477          * in case sg_policy->next_freq is read here, and then updated by
478          * sugov_deferred_update() just before work_in_progress is set to false
479          * here, we may miss queueing the new update.
480          *
481          * Note: If a work was queued after the update_lock is released,
482          * sugov_work() will just be called again by kthread_work code; and the
483          * request will be proceed before the sugov thread sleeps.
484          */
485         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
486         freq = sg_policy->next_freq;
487         sg_policy->work_in_progress = false;
488         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
489
490         mutex_lock(&sg_policy->work_lock);
491         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
492         mutex_unlock(&sg_policy->work_lock);
493 }
494
495 static void sugov_irq_work(struct irq_work *irq_work)
496 {
497         struct sugov_policy *sg_policy;
498
499         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
500
501         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
502 }
503
504 /************************** sysfs interface ************************/
505
506 static struct sugov_tunables *global_tunables;
507 static DEFINE_MUTEX(global_tunables_lock);
508
509 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
510 {
511         return container_of(attr_set, struct sugov_tunables, attr_set);
512 }
513
514 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
515 {
516         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
517
518         return sprintf(buf, "%u\n", tunables->rate_limit_us);
519 }
520
521 static ssize_t
522 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
523 {
524         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
525         struct sugov_policy *sg_policy;
526         unsigned int rate_limit_us;
527
528         if (kstrtouint(buf, 10, &rate_limit_us))
529                 return -EINVAL;
530
531         tunables->rate_limit_us = rate_limit_us;
532
533         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
534                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
535
536         return count;
537 }
538
539 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
540
541 static struct attribute *sugov_attrs[] = {
542         &rate_limit_us.attr,
543         NULL
544 };
545 ATTRIBUTE_GROUPS(sugov);
546
547 static void sugov_tunables_free(struct kobject *kobj)
548 {
549         struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
550
551         kfree(to_sugov_tunables(attr_set));
552 }
553
554 static struct kobj_type sugov_tunables_ktype = {
555         .default_groups = sugov_groups,
556         .sysfs_ops = &governor_sysfs_ops,
557         .release = &sugov_tunables_free,
558 };
559
560 /********************** cpufreq governor interface *********************/
561
562 struct cpufreq_governor schedutil_gov;
563
564 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
565 {
566         struct sugov_policy *sg_policy;
567
568         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
569         if (!sg_policy)
570                 return NULL;
571
572         sg_policy->policy = policy;
573         raw_spin_lock_init(&sg_policy->update_lock);
574         return sg_policy;
575 }
576
577 static void sugov_policy_free(struct sugov_policy *sg_policy)
578 {
579         kfree(sg_policy);
580 }
581
582 static int sugov_kthread_create(struct sugov_policy *sg_policy)
583 {
584         struct task_struct *thread;
585         struct sched_attr attr = {
586                 .size           = sizeof(struct sched_attr),
587                 .sched_policy   = SCHED_DEADLINE,
588                 .sched_flags    = SCHED_FLAG_SUGOV,
589                 .sched_nice     = 0,
590                 .sched_priority = 0,
591                 /*
592                  * Fake (unused) bandwidth; workaround to "fix"
593                  * priority inheritance.
594                  */
595                 .sched_runtime  =  1000000,
596                 .sched_deadline = 10000000,
597                 .sched_period   = 10000000,
598         };
599         struct cpufreq_policy *policy = sg_policy->policy;
600         int ret;
601
602         /* kthread only required for slow path */
603         if (policy->fast_switch_enabled)
604                 return 0;
605
606         kthread_init_work(&sg_policy->work, sugov_work);
607         kthread_init_worker(&sg_policy->worker);
608         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
609                                 "sugov:%d",
610                                 cpumask_first(policy->related_cpus));
611         if (IS_ERR(thread)) {
612                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
613                 return PTR_ERR(thread);
614         }
615
616         ret = sched_setattr_nocheck(thread, &attr);
617         if (ret) {
618                 kthread_stop(thread);
619                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
620                 return ret;
621         }
622
623         sg_policy->thread = thread;
624         kthread_bind_mask(thread, policy->related_cpus);
625         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
626         mutex_init(&sg_policy->work_lock);
627
628         wake_up_process(thread);
629
630         return 0;
631 }
632
633 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
634 {
635         /* kthread only required for slow path */
636         if (sg_policy->policy->fast_switch_enabled)
637                 return;
638
639         kthread_flush_worker(&sg_policy->worker);
640         kthread_stop(sg_policy->thread);
641         mutex_destroy(&sg_policy->work_lock);
642 }
643
644 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
645 {
646         struct sugov_tunables *tunables;
647
648         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
649         if (tunables) {
650                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
651                 if (!have_governor_per_policy())
652                         global_tunables = tunables;
653         }
654         return tunables;
655 }
656
657 static void sugov_clear_global_tunables(void)
658 {
659         if (!have_governor_per_policy())
660                 global_tunables = NULL;
661 }
662
663 static int sugov_init(struct cpufreq_policy *policy)
664 {
665         struct sugov_policy *sg_policy;
666         struct sugov_tunables *tunables;
667         int ret = 0;
668
669         /* State should be equivalent to EXIT */
670         if (policy->governor_data)
671                 return -EBUSY;
672
673         cpufreq_enable_fast_switch(policy);
674
675         sg_policy = sugov_policy_alloc(policy);
676         if (!sg_policy) {
677                 ret = -ENOMEM;
678                 goto disable_fast_switch;
679         }
680
681         ret = sugov_kthread_create(sg_policy);
682         if (ret)
683                 goto free_sg_policy;
684
685         mutex_lock(&global_tunables_lock);
686
687         if (global_tunables) {
688                 if (WARN_ON(have_governor_per_policy())) {
689                         ret = -EINVAL;
690                         goto stop_kthread;
691                 }
692                 policy->governor_data = sg_policy;
693                 sg_policy->tunables = global_tunables;
694
695                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
696                 goto out;
697         }
698
699         tunables = sugov_tunables_alloc(sg_policy);
700         if (!tunables) {
701                 ret = -ENOMEM;
702                 goto stop_kthread;
703         }
704
705         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
706
707         policy->governor_data = sg_policy;
708         sg_policy->tunables = tunables;
709
710         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
711                                    get_governor_parent_kobj(policy), "%s",
712                                    schedutil_gov.name);
713         if (ret)
714                 goto fail;
715
716 out:
717         mutex_unlock(&global_tunables_lock);
718         return 0;
719
720 fail:
721         kobject_put(&tunables->attr_set.kobj);
722         policy->governor_data = NULL;
723         sugov_clear_global_tunables();
724
725 stop_kthread:
726         sugov_kthread_stop(sg_policy);
727         mutex_unlock(&global_tunables_lock);
728
729 free_sg_policy:
730         sugov_policy_free(sg_policy);
731
732 disable_fast_switch:
733         cpufreq_disable_fast_switch(policy);
734
735         pr_err("initialization failed (error %d)\n", ret);
736         return ret;
737 }
738
739 static void sugov_exit(struct cpufreq_policy *policy)
740 {
741         struct sugov_policy *sg_policy = policy->governor_data;
742         struct sugov_tunables *tunables = sg_policy->tunables;
743         unsigned int count;
744
745         mutex_lock(&global_tunables_lock);
746
747         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
748         policy->governor_data = NULL;
749         if (!count)
750                 sugov_clear_global_tunables();
751
752         mutex_unlock(&global_tunables_lock);
753
754         sugov_kthread_stop(sg_policy);
755         sugov_policy_free(sg_policy);
756         cpufreq_disable_fast_switch(policy);
757 }
758
759 static int sugov_start(struct cpufreq_policy *policy)
760 {
761         struct sugov_policy *sg_policy = policy->governor_data;
762         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
763         unsigned int cpu;
764
765         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
766         sg_policy->last_freq_update_time        = 0;
767         sg_policy->next_freq                    = 0;
768         sg_policy->work_in_progress             = false;
769         sg_policy->limits_changed               = false;
770         sg_policy->cached_raw_freq              = 0;
771
772         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
773
774         for_each_cpu(cpu, policy->cpus) {
775                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
776
777                 memset(sg_cpu, 0, sizeof(*sg_cpu));
778                 sg_cpu->cpu                     = cpu;
779                 sg_cpu->sg_policy               = sg_policy;
780         }
781
782         if (policy_is_shared(policy))
783                 uu = sugov_update_shared;
784         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
785                 uu = sugov_update_single_perf;
786         else
787                 uu = sugov_update_single_freq;
788
789         for_each_cpu(cpu, policy->cpus) {
790                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
791
792                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
793         }
794         return 0;
795 }
796
797 static void sugov_stop(struct cpufreq_policy *policy)
798 {
799         struct sugov_policy *sg_policy = policy->governor_data;
800         unsigned int cpu;
801
802         for_each_cpu(cpu, policy->cpus)
803                 cpufreq_remove_update_util_hook(cpu);
804
805         synchronize_rcu();
806
807         if (!policy->fast_switch_enabled) {
808                 irq_work_sync(&sg_policy->irq_work);
809                 kthread_cancel_work_sync(&sg_policy->work);
810         }
811 }
812
813 static void sugov_limits(struct cpufreq_policy *policy)
814 {
815         struct sugov_policy *sg_policy = policy->governor_data;
816
817         if (!policy->fast_switch_enabled) {
818                 mutex_lock(&sg_policy->work_lock);
819                 cpufreq_policy_apply_limits(policy);
820                 mutex_unlock(&sg_policy->work_lock);
821         }
822
823         sg_policy->limits_changed = true;
824 }
825
826 struct cpufreq_governor schedutil_gov = {
827         .name                   = "schedutil",
828         .owner                  = THIS_MODULE,
829         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
830         .init                   = sugov_init,
831         .exit                   = sugov_exit,
832         .start                  = sugov_start,
833         .stop                   = sugov_stop,
834         .limits                 = sugov_limits,
835 };
836
837 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
838 struct cpufreq_governor *cpufreq_default_governor(void)
839 {
840         return &schedutil_gov;
841 }
842 #endif
843
844 cpufreq_governor_init(schedutil_gov);
845
846 #ifdef CONFIG_ENERGY_MODEL
847 static void rebuild_sd_workfn(struct work_struct *work)
848 {
849         rebuild_sched_domains_energy();
850 }
851 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
852
853 /*
854  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
855  * on governor changes to make sure the scheduler knows about it.
856  */
857 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
858                                   struct cpufreq_governor *old_gov)
859 {
860         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
861                 /*
862                  * When called from the cpufreq_register_driver() path, the
863                  * cpu_hotplug_lock is already held, so use a work item to
864                  * avoid nested locking in rebuild_sched_domains().
865                  */
866                 schedule_work(&rebuild_sd_work);
867         }
868
869 }
870 #endif