1 // SPDX-License-Identifier: GPL-2.0-only
5 * Core kernel scheduler code and related syscalls
7 * Copyright (C) 1991-2002 Linus Torvalds
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
74 #include <uapi/linux/sched/types.h>
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
89 #include "autogroup.h"
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
98 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
102 * Export tracepoints that act as a bare tracehook (ie: have no trace event
103 * associated with them) to allow external modules to probe them.
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
120 #ifdef CONFIG_SCHED_DEBUG
122 * Debugging: various feature bits
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
128 #define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
152 __read_mostly int scheduler_running;
154 #ifdef CONFIG_SCHED_CORE
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
185 int pa = __task_prio(a), pb = __task_prio(b);
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
202 static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
205 if (a->core_cookie < b->core_cookie)
208 if (a->core_cookie > b->core_cookie)
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
230 if (cookie < p->core_cookie)
233 if (cookie > p->core_cookie)
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
241 rq->core->core_task_seq++;
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
251 rq->core->core_task_seq++;
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
282 node = rb_next(node);
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
290 } while (sched_task_is_throttled(p, cpu));
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
301 struct task_struct *p;
302 struct rb_node *node;
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
312 return sched_core_next(p, cookie);
316 * Magic required such that:
318 * raw_spin_rq_lock(rq);
320 * raw_spin_rq_unlock(rq);
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
325 * XXX entirely possible to selectively enable cores, don't bother for now.
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
332 static void sched_core_lock(int cpu, unsigned long *flags)
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
342 static void sched_core_unlock(int cpu, unsigned long *flags)
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
352 static void __sched_core_flip(bool enabled)
360 * Toggle the online cores, one by one.
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
366 sched_core_lock(cpu, &flags);
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
373 sched_core_unlock(cpu, &flags);
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
379 * Toggle the offline CPUs.
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
387 static void sched_core_assert_empty(void)
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
395 static void __sched_core_enable(void)
397 static_branch_enable(&__sched_core_enabled);
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
403 __sched_core_flip(true);
404 sched_core_assert_empty();
407 static void __sched_core_disable(void)
409 sched_core_assert_empty();
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
414 void sched_core_get(void)
416 if (atomic_inc_not_zero(&sched_core_count))
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(&sched_core_count))
421 __sched_core_enable();
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
425 mutex_unlock(&sched_core_mutex);
428 static void __sched_core_put(struct work_struct *work)
430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(&sched_core_mutex);
436 void sched_core_put(void)
438 static DECLARE_WORK(_work, __sched_core_put);
441 * "There can be only one"
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
451 #else /* !CONFIG_SCHED_CORE */
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
457 #endif /* CONFIG_SCHED_CORE */
460 * Serialization rules:
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
469 * rq2->lock where: rq1 < rq2
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
502 * p->state <- TASK_*:
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
516 * p->on_cpu <- { 0, 1 }:
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
527 * - Don't call set_task_cpu() on a blocked task:
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
532 * - for try_to_wake_up(), called under p->pi_lock:
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
539 * o move_queued_task()
542 * - for migration called under double_rq_lock():
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
553 raw_spinlock_t *lock;
555 /* Matches synchronize_rcu() in __sched_core_enable() */
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
572 raw_spin_unlock(lock);
576 bool raw_spin_rq_trylock(struct rq *rq)
578 raw_spinlock_t *lock;
581 /* Matches synchronize_rcu() in __sched_core_enable() */
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
596 raw_spin_unlock(lock);
600 void raw_spin_rq_unlock(struct rq *rq)
602 raw_spin_unlock(rq_lockp(rq));
607 * double_rq_lock - safely lock two runqueues
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
611 lockdep_assert_irqs_disabled();
613 if (rq_order_less(rq2, rq1))
616 raw_spin_rq_lock(rq1);
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
620 double_rq_clock_clear_update(rq1, rq2);
625 * __task_rq_lock - lock the rq @p resides on.
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
632 lockdep_assert_held(&p->pi_lock);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
641 raw_spin_rq_unlock(rq);
643 while (unlikely(task_on_rq_migrating(p)))
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
660 raw_spin_rq_lock(rq);
662 * move_queued_task() task_rq_lock()
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
685 while (unlikely(task_on_rq_migrating(p)))
691 * RQ-clock updating methods:
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
700 s64 __maybe_unused steal = 0, irq_delta = 0;
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
720 if (irq_delta > delta)
723 rq->prev_irq_time += irq_delta;
725 psi_account_irqtime(rq->curr, irq_delta);
726 delayacct_irq(rq->curr, irq_delta);
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 if (static_key_false((¶virt_steal_rq_enabled))) {
730 steal = paravirt_steal_clock(cpu_of(rq));
731 steal -= rq->prev_steal_time_rq;
733 if (unlikely(steal > delta))
736 rq->prev_steal_time_rq += steal;
741 rq->clock_task += delta;
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 update_irq_load_avg(rq, irq_delta + steal);
747 update_rq_clock_pelt(rq, delta);
750 void update_rq_clock(struct rq *rq)
754 lockdep_assert_rq_held(rq);
756 if (rq->clock_update_flags & RQCF_ACT_SKIP)
759 #ifdef CONFIG_SCHED_DEBUG
760 if (sched_feat(WARN_DOUBLE_CLOCK))
761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 rq->clock_update_flags |= RQCF_UPDATED;
765 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
769 update_rq_clock_task(rq, delta);
772 #ifdef CONFIG_SCHED_HRTICK
774 * Use HR-timers to deliver accurate preemption points.
777 static void hrtick_clear(struct rq *rq)
779 if (hrtimer_active(&rq->hrtick_timer))
780 hrtimer_cancel(&rq->hrtick_timer);
784 * High-resolution timer tick.
785 * Runs from hardirq context with interrupts disabled.
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
789 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
796 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
799 return HRTIMER_NORESTART;
804 static void __hrtick_restart(struct rq *rq)
806 struct hrtimer *timer = &rq->hrtick_timer;
807 ktime_t time = rq->hrtick_time;
809 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
813 * called from hardirq (IPI) context
815 static void __hrtick_start(void *arg)
821 __hrtick_restart(rq);
826 * Called to set the hrtick timer state.
828 * called with rq->lock held and irqs disabled
830 void hrtick_start(struct rq *rq, u64 delay)
832 struct hrtimer *timer = &rq->hrtick_timer;
836 * Don't schedule slices shorter than 10000ns, that just
837 * doesn't make sense and can cause timer DoS.
839 delta = max_t(s64, delay, 10000LL);
840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
843 __hrtick_restart(rq);
845 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
850 * Called to set the hrtick timer state.
852 * called with rq->lock held and irqs disabled
854 void hrtick_start(struct rq *rq, u64 delay)
857 * Don't schedule slices shorter than 10000ns, that just
858 * doesn't make sense. Rely on vruntime for fairness.
860 delay = max_t(u64, delay, 10000LL);
861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 HRTIMER_MODE_REL_PINNED_HARD);
865 #endif /* CONFIG_SMP */
867 static void hrtick_rq_init(struct rq *rq)
870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 rq->hrtick_timer.function = hrtick;
875 #else /* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
880 static inline void hrtick_rq_init(struct rq *rq)
883 #endif /* CONFIG_SCHED_HRTICK */
886 * cmpxchg based fetch_or, macro so it works for different integer types
888 #define fetch_or(ptr, mask) \
890 typeof(ptr) _ptr = (ptr); \
891 typeof(mask) _mask = (mask); \
892 typeof(*_ptr) _val = *_ptr; \
895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902 * this avoids any races wrt polling state changes and thereby avoids
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
907 struct thread_info *ti = task_thread_info(p);
908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914 * If this returns true, then the idle task promises to call
915 * sched_ttwu_pending() and reschedule soon.
917 static bool set_nr_if_polling(struct task_struct *p)
919 struct thread_info *ti = task_thread_info(p);
920 typeof(ti->flags) val = READ_ONCE(ti->flags);
923 if (!(val & _TIF_POLLING_NRFLAG))
925 if (val & _TIF_NEED_RESCHED)
927 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
933 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 set_tsk_need_resched(p);
940 static inline bool set_nr_if_polling(struct task_struct *p)
947 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 struct wake_q_node *node = &task->wake_q;
952 * Atomically grab the task, if ->wake_q is !nil already it means
953 * it's already queued (either by us or someone else) and will get the
954 * wakeup due to that.
956 * In order to ensure that a pending wakeup will observe our pending
957 * state, even in the failed case, an explicit smp_mb() must be used.
959 smp_mb__before_atomic();
960 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
964 * The head is context local, there can be no concurrency.
967 head->lastp = &node->next;
972 * wake_q_add() - queue a wakeup for 'later' waking.
973 * @head: the wake_q_head to add @task to
974 * @task: the task to queue for 'later' wakeup
976 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
977 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
980 * This function must be used as-if it were wake_up_process(); IOW the task
981 * must be ready to be woken at this location.
983 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 if (__wake_q_add(head, task))
986 get_task_struct(task);
990 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
991 * @head: the wake_q_head to add @task to
992 * @task: the task to queue for 'later' wakeup
994 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
995 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
998 * This function must be used as-if it were wake_up_process(); IOW the task
999 * must be ready to be woken at this location.
1001 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1002 * that already hold reference to @task can call the 'safe' version and trust
1003 * wake_q to do the right thing depending whether or not the @task is already
1004 * queued for wakeup.
1006 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 if (!__wake_q_add(head, task))
1009 put_task_struct(task);
1012 void wake_up_q(struct wake_q_head *head)
1014 struct wake_q_node *node = head->first;
1016 while (node != WAKE_Q_TAIL) {
1017 struct task_struct *task;
1019 task = container_of(node, struct task_struct, wake_q);
1020 /* Task can safely be re-inserted now: */
1022 task->wake_q.next = NULL;
1025 * wake_up_process() executes a full barrier, which pairs with
1026 * the queueing in wake_q_add() so as not to miss wakeups.
1028 wake_up_process(task);
1029 put_task_struct(task);
1034 * resched_curr - mark rq's current task 'to be rescheduled now'.
1036 * On UP this means the setting of the need_resched flag, on SMP it
1037 * might also involve a cross-CPU call to trigger the scheduler on
1040 void resched_curr(struct rq *rq)
1042 struct task_struct *curr = rq->curr;
1045 lockdep_assert_rq_held(rq);
1047 if (test_tsk_need_resched(curr))
1052 if (cpu == smp_processor_id()) {
1053 set_tsk_need_resched(curr);
1054 set_preempt_need_resched();
1058 if (set_nr_and_not_polling(curr))
1059 smp_send_reschedule(cpu);
1061 trace_sched_wake_idle_without_ipi(cpu);
1064 void resched_cpu(int cpu)
1066 struct rq *rq = cpu_rq(cpu);
1067 unsigned long flags;
1069 raw_spin_rq_lock_irqsave(rq, flags);
1070 if (cpu_online(cpu) || cpu == smp_processor_id())
1072 raw_spin_rq_unlock_irqrestore(rq, flags);
1076 #ifdef CONFIG_NO_HZ_COMMON
1078 * In the semi idle case, use the nearest busy CPU for migrating timers
1079 * from an idle CPU. This is good for power-savings.
1081 * We don't do similar optimization for completely idle system, as
1082 * selecting an idle CPU will add more delays to the timers than intended
1083 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085 int get_nohz_timer_target(void)
1087 int i, cpu = smp_processor_id(), default_cpu = -1;
1088 struct sched_domain *sd;
1089 const struct cpumask *hk_mask;
1091 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1097 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1101 for_each_domain(cpu, sd) {
1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1111 if (default_cpu == -1)
1112 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1118 * When add_timer_on() enqueues a timer into the timer wheel of an
1119 * idle CPU then this timer might expire before the next timer event
1120 * which is scheduled to wake up that CPU. In case of a completely
1121 * idle system the next event might even be infinite time into the
1122 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1123 * leaves the inner idle loop so the newly added timer is taken into
1124 * account when the CPU goes back to idle and evaluates the timer
1125 * wheel for the next timer event.
1127 static void wake_up_idle_cpu(int cpu)
1129 struct rq *rq = cpu_rq(cpu);
1131 if (cpu == smp_processor_id())
1134 if (set_nr_and_not_polling(rq->idle))
1135 smp_send_reschedule(cpu);
1137 trace_sched_wake_idle_without_ipi(cpu);
1140 static bool wake_up_full_nohz_cpu(int cpu)
1143 * We just need the target to call irq_exit() and re-evaluate
1144 * the next tick. The nohz full kick at least implies that.
1145 * If needed we can still optimize that later with an
1148 if (cpu_is_offline(cpu))
1149 return true; /* Don't try to wake offline CPUs. */
1150 if (tick_nohz_full_cpu(cpu)) {
1151 if (cpu != smp_processor_id() ||
1152 tick_nohz_tick_stopped())
1153 tick_nohz_full_kick_cpu(cpu);
1161 * Wake up the specified CPU. If the CPU is going offline, it is the
1162 * caller's responsibility to deal with the lost wakeup, for example,
1163 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1165 void wake_up_nohz_cpu(int cpu)
1167 if (!wake_up_full_nohz_cpu(cpu))
1168 wake_up_idle_cpu(cpu);
1171 static void nohz_csd_func(void *info)
1173 struct rq *rq = info;
1174 int cpu = cpu_of(rq);
1178 * Release the rq::nohz_csd.
1180 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1181 WARN_ON(!(flags & NOHZ_KICK_MASK));
1183 rq->idle_balance = idle_cpu(cpu);
1184 if (rq->idle_balance && !need_resched()) {
1185 rq->nohz_idle_balance = flags;
1186 raise_softirq_irqoff(SCHED_SOFTIRQ);
1190 #endif /* CONFIG_NO_HZ_COMMON */
1192 #ifdef CONFIG_NO_HZ_FULL
1193 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1195 if (rq->nr_running != 1)
1198 if (p->sched_class != &fair_sched_class)
1201 if (!task_on_rq_queued(p))
1207 bool sched_can_stop_tick(struct rq *rq)
1209 int fifo_nr_running;
1211 /* Deadline tasks, even if single, need the tick */
1212 if (rq->dl.dl_nr_running)
1216 * If there are more than one RR tasks, we need the tick to affect the
1217 * actual RR behaviour.
1219 if (rq->rt.rr_nr_running) {
1220 if (rq->rt.rr_nr_running == 1)
1227 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1228 * forced preemption between FIFO tasks.
1230 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1231 if (fifo_nr_running)
1235 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1236 * if there's more than one we need the tick for involuntary
1239 if (rq->nr_running > 1)
1243 * If there is one task and it has CFS runtime bandwidth constraints
1244 * and it's on the cpu now we don't want to stop the tick.
1245 * This check prevents clearing the bit if a newly enqueued task here is
1246 * dequeued by migrating while the constrained task continues to run.
1247 * E.g. going from 2->1 without going through pick_next_task().
1249 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1250 if (cfs_task_bw_constrained(rq->curr))
1256 #endif /* CONFIG_NO_HZ_FULL */
1257 #endif /* CONFIG_SMP */
1259 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1260 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1262 * Iterate task_group tree rooted at *from, calling @down when first entering a
1263 * node and @up when leaving it for the final time.
1265 * Caller must hold rcu_lock or sufficient equivalent.
1267 int walk_tg_tree_from(struct task_group *from,
1268 tg_visitor down, tg_visitor up, void *data)
1270 struct task_group *parent, *child;
1276 ret = (*down)(parent, data);
1279 list_for_each_entry_rcu(child, &parent->children, siblings) {
1286 ret = (*up)(parent, data);
1287 if (ret || parent == from)
1291 parent = parent->parent;
1298 int tg_nop(struct task_group *tg, void *data)
1304 static void set_load_weight(struct task_struct *p, bool update_load)
1306 int prio = p->static_prio - MAX_RT_PRIO;
1307 struct load_weight *load = &p->se.load;
1310 * SCHED_IDLE tasks get minimal weight:
1312 if (task_has_idle_policy(p)) {
1313 load->weight = scale_load(WEIGHT_IDLEPRIO);
1314 load->inv_weight = WMULT_IDLEPRIO;
1319 * SCHED_OTHER tasks have to update their load when changing their
1322 if (update_load && p->sched_class == &fair_sched_class) {
1323 reweight_task(p, prio);
1325 load->weight = scale_load(sched_prio_to_weight[prio]);
1326 load->inv_weight = sched_prio_to_wmult[prio];
1330 #ifdef CONFIG_UCLAMP_TASK
1332 * Serializes updates of utilization clamp values
1334 * The (slow-path) user-space triggers utilization clamp value updates which
1335 * can require updates on (fast-path) scheduler's data structures used to
1336 * support enqueue/dequeue operations.
1337 * While the per-CPU rq lock protects fast-path update operations, user-space
1338 * requests are serialized using a mutex to reduce the risk of conflicting
1339 * updates or API abuses.
1341 static DEFINE_MUTEX(uclamp_mutex);
1343 /* Max allowed minimum utilization */
1344 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1346 /* Max allowed maximum utilization */
1347 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1350 * By default RT tasks run at the maximum performance point/capacity of the
1351 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1352 * SCHED_CAPACITY_SCALE.
1354 * This knob allows admins to change the default behavior when uclamp is being
1355 * used. In battery powered devices, particularly, running at the maximum
1356 * capacity and frequency will increase energy consumption and shorten the
1359 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1361 * This knob will not override the system default sched_util_clamp_min defined
1364 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1366 /* All clamps are required to be less or equal than these values */
1367 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1370 * This static key is used to reduce the uclamp overhead in the fast path. It
1371 * primarily disables the call to uclamp_rq_{inc, dec}() in
1372 * enqueue/dequeue_task().
1374 * This allows users to continue to enable uclamp in their kernel config with
1375 * minimum uclamp overhead in the fast path.
1377 * As soon as userspace modifies any of the uclamp knobs, the static key is
1378 * enabled, since we have an actual users that make use of uclamp
1381 * The knobs that would enable this static key are:
1383 * * A task modifying its uclamp value with sched_setattr().
1384 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1385 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1387 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1389 /* Integer rounded range for each bucket */
1390 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1392 #define for_each_clamp_id(clamp_id) \
1393 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1395 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1397 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1400 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1402 if (clamp_id == UCLAMP_MIN)
1404 return SCHED_CAPACITY_SCALE;
1407 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1408 unsigned int value, bool user_defined)
1410 uc_se->value = value;
1411 uc_se->bucket_id = uclamp_bucket_id(value);
1412 uc_se->user_defined = user_defined;
1415 static inline unsigned int
1416 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1417 unsigned int clamp_value)
1420 * Avoid blocked utilization pushing up the frequency when we go
1421 * idle (which drops the max-clamp) by retaining the last known
1424 if (clamp_id == UCLAMP_MAX) {
1425 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1429 return uclamp_none(UCLAMP_MIN);
1432 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1433 unsigned int clamp_value)
1435 /* Reset max-clamp retention only on idle exit */
1436 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1439 uclamp_rq_set(rq, clamp_id, clamp_value);
1443 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1444 unsigned int clamp_value)
1446 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1447 int bucket_id = UCLAMP_BUCKETS - 1;
1450 * Since both min and max clamps are max aggregated, find the
1451 * top most bucket with tasks in.
1453 for ( ; bucket_id >= 0; bucket_id--) {
1454 if (!bucket[bucket_id].tasks)
1456 return bucket[bucket_id].value;
1459 /* No tasks -- default clamp values */
1460 return uclamp_idle_value(rq, clamp_id, clamp_value);
1463 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1465 unsigned int default_util_min;
1466 struct uclamp_se *uc_se;
1468 lockdep_assert_held(&p->pi_lock);
1470 uc_se = &p->uclamp_req[UCLAMP_MIN];
1472 /* Only sync if user didn't override the default */
1473 if (uc_se->user_defined)
1476 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1477 uclamp_se_set(uc_se, default_util_min, false);
1480 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1485 /* Protect updates to p->uclamp_* */
1486 guard(task_rq_lock)(p);
1487 __uclamp_update_util_min_rt_default(p);
1490 static inline struct uclamp_se
1491 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1493 /* Copy by value as we could modify it */
1494 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1495 #ifdef CONFIG_UCLAMP_TASK_GROUP
1496 unsigned int tg_min, tg_max, value;
1499 * Tasks in autogroups or root task group will be
1500 * restricted by system defaults.
1502 if (task_group_is_autogroup(task_group(p)))
1504 if (task_group(p) == &root_task_group)
1507 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1508 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1509 value = uc_req.value;
1510 value = clamp(value, tg_min, tg_max);
1511 uclamp_se_set(&uc_req, value, false);
1518 * The effective clamp bucket index of a task depends on, by increasing
1520 * - the task specific clamp value, when explicitly requested from userspace
1521 * - the task group effective clamp value, for tasks not either in the root
1522 * group or in an autogroup
1523 * - the system default clamp value, defined by the sysadmin
1525 static inline struct uclamp_se
1526 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1528 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1529 struct uclamp_se uc_max = uclamp_default[clamp_id];
1531 /* System default restrictions always apply */
1532 if (unlikely(uc_req.value > uc_max.value))
1538 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1540 struct uclamp_se uc_eff;
1542 /* Task currently refcounted: use back-annotated (effective) value */
1543 if (p->uclamp[clamp_id].active)
1544 return (unsigned long)p->uclamp[clamp_id].value;
1546 uc_eff = uclamp_eff_get(p, clamp_id);
1548 return (unsigned long)uc_eff.value;
1552 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1553 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1554 * updates the rq's clamp value if required.
1556 * Tasks can have a task-specific value requested from user-space, track
1557 * within each bucket the maximum value for tasks refcounted in it.
1558 * This "local max aggregation" allows to track the exact "requested" value
1559 * for each bucket when all its RUNNABLE tasks require the same clamp.
1561 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1562 enum uclamp_id clamp_id)
1564 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1565 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1566 struct uclamp_bucket *bucket;
1568 lockdep_assert_rq_held(rq);
1570 /* Update task effective clamp */
1571 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1573 bucket = &uc_rq->bucket[uc_se->bucket_id];
1575 uc_se->active = true;
1577 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1580 * Local max aggregation: rq buckets always track the max
1581 * "requested" clamp value of its RUNNABLE tasks.
1583 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1584 bucket->value = uc_se->value;
1586 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1587 uclamp_rq_set(rq, clamp_id, uc_se->value);
1591 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1592 * is released. If this is the last task reference counting the rq's max
1593 * active clamp value, then the rq's clamp value is updated.
1595 * Both refcounted tasks and rq's cached clamp values are expected to be
1596 * always valid. If it's detected they are not, as defensive programming,
1597 * enforce the expected state and warn.
1599 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1600 enum uclamp_id clamp_id)
1602 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1603 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1604 struct uclamp_bucket *bucket;
1605 unsigned int bkt_clamp;
1606 unsigned int rq_clamp;
1608 lockdep_assert_rq_held(rq);
1611 * If sched_uclamp_used was enabled after task @p was enqueued,
1612 * we could end up with unbalanced call to uclamp_rq_dec_id().
1614 * In this case the uc_se->active flag should be false since no uclamp
1615 * accounting was performed at enqueue time and we can just return
1618 * Need to be careful of the following enqueue/dequeue ordering
1622 * // sched_uclamp_used gets enabled
1625 * // Must not decrement bucket->tasks here
1628 * where we could end up with stale data in uc_se and
1629 * bucket[uc_se->bucket_id].
1631 * The following check here eliminates the possibility of such race.
1633 if (unlikely(!uc_se->active))
1636 bucket = &uc_rq->bucket[uc_se->bucket_id];
1638 SCHED_WARN_ON(!bucket->tasks);
1639 if (likely(bucket->tasks))
1642 uc_se->active = false;
1645 * Keep "local max aggregation" simple and accept to (possibly)
1646 * overboost some RUNNABLE tasks in the same bucket.
1647 * The rq clamp bucket value is reset to its base value whenever
1648 * there are no more RUNNABLE tasks refcounting it.
1650 if (likely(bucket->tasks))
1653 rq_clamp = uclamp_rq_get(rq, clamp_id);
1655 * Defensive programming: this should never happen. If it happens,
1656 * e.g. due to future modification, warn and fixup the expected value.
1658 SCHED_WARN_ON(bucket->value > rq_clamp);
1659 if (bucket->value >= rq_clamp) {
1660 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1661 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1665 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1667 enum uclamp_id clamp_id;
1670 * Avoid any overhead until uclamp is actually used by the userspace.
1672 * The condition is constructed such that a NOP is generated when
1673 * sched_uclamp_used is disabled.
1675 if (!static_branch_unlikely(&sched_uclamp_used))
1678 if (unlikely(!p->sched_class->uclamp_enabled))
1681 for_each_clamp_id(clamp_id)
1682 uclamp_rq_inc_id(rq, p, clamp_id);
1684 /* Reset clamp idle holding when there is one RUNNABLE task */
1685 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1686 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1689 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1691 enum uclamp_id clamp_id;
1694 * Avoid any overhead until uclamp is actually used by the userspace.
1696 * The condition is constructed such that a NOP is generated when
1697 * sched_uclamp_used is disabled.
1699 if (!static_branch_unlikely(&sched_uclamp_used))
1702 if (unlikely(!p->sched_class->uclamp_enabled))
1705 for_each_clamp_id(clamp_id)
1706 uclamp_rq_dec_id(rq, p, clamp_id);
1709 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1710 enum uclamp_id clamp_id)
1712 if (!p->uclamp[clamp_id].active)
1715 uclamp_rq_dec_id(rq, p, clamp_id);
1716 uclamp_rq_inc_id(rq, p, clamp_id);
1719 * Make sure to clear the idle flag if we've transiently reached 0
1720 * active tasks on rq.
1722 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1723 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1727 uclamp_update_active(struct task_struct *p)
1729 enum uclamp_id clamp_id;
1734 * Lock the task and the rq where the task is (or was) queued.
1736 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1737 * price to pay to safely serialize util_{min,max} updates with
1738 * enqueues, dequeues and migration operations.
1739 * This is the same locking schema used by __set_cpus_allowed_ptr().
1741 rq = task_rq_lock(p, &rf);
1744 * Setting the clamp bucket is serialized by task_rq_lock().
1745 * If the task is not yet RUNNABLE and its task_struct is not
1746 * affecting a valid clamp bucket, the next time it's enqueued,
1747 * it will already see the updated clamp bucket value.
1749 for_each_clamp_id(clamp_id)
1750 uclamp_rq_reinc_id(rq, p, clamp_id);
1752 task_rq_unlock(rq, p, &rf);
1755 #ifdef CONFIG_UCLAMP_TASK_GROUP
1757 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1759 struct css_task_iter it;
1760 struct task_struct *p;
1762 css_task_iter_start(css, 0, &it);
1763 while ((p = css_task_iter_next(&it)))
1764 uclamp_update_active(p);
1765 css_task_iter_end(&it);
1768 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1771 #ifdef CONFIG_SYSCTL
1772 #ifdef CONFIG_UCLAMP_TASK
1773 #ifdef CONFIG_UCLAMP_TASK_GROUP
1774 static void uclamp_update_root_tg(void)
1776 struct task_group *tg = &root_task_group;
1778 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1779 sysctl_sched_uclamp_util_min, false);
1780 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1781 sysctl_sched_uclamp_util_max, false);
1784 cpu_util_update_eff(&root_task_group.css);
1787 static void uclamp_update_root_tg(void) { }
1790 static void uclamp_sync_util_min_rt_default(void)
1792 struct task_struct *g, *p;
1795 * copy_process() sysctl_uclamp
1796 * uclamp_min_rt = X;
1797 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1798 * // link thread smp_mb__after_spinlock()
1799 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1800 * sched_post_fork() for_each_process_thread()
1801 * __uclamp_sync_rt() __uclamp_sync_rt()
1803 * Ensures that either sched_post_fork() will observe the new
1804 * uclamp_min_rt or for_each_process_thread() will observe the new
1807 read_lock(&tasklist_lock);
1808 smp_mb__after_spinlock();
1809 read_unlock(&tasklist_lock);
1812 for_each_process_thread(g, p)
1813 uclamp_update_util_min_rt_default(p);
1816 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1817 void *buffer, size_t *lenp, loff_t *ppos)
1819 bool update_root_tg = false;
1820 int old_min, old_max, old_min_rt;
1823 guard(mutex)(&uclamp_mutex);
1825 old_min = sysctl_sched_uclamp_util_min;
1826 old_max = sysctl_sched_uclamp_util_max;
1827 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1829 result = proc_dointvec(table, write, buffer, lenp, ppos);
1835 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1836 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1837 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1843 if (old_min != sysctl_sched_uclamp_util_min) {
1844 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1845 sysctl_sched_uclamp_util_min, false);
1846 update_root_tg = true;
1848 if (old_max != sysctl_sched_uclamp_util_max) {
1849 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1850 sysctl_sched_uclamp_util_max, false);
1851 update_root_tg = true;
1854 if (update_root_tg) {
1855 static_branch_enable(&sched_uclamp_used);
1856 uclamp_update_root_tg();
1859 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1860 static_branch_enable(&sched_uclamp_used);
1861 uclamp_sync_util_min_rt_default();
1865 * We update all RUNNABLE tasks only when task groups are in use.
1866 * Otherwise, keep it simple and do just a lazy update at each next
1867 * task enqueue time.
1872 sysctl_sched_uclamp_util_min = old_min;
1873 sysctl_sched_uclamp_util_max = old_max;
1874 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1880 static int uclamp_validate(struct task_struct *p,
1881 const struct sched_attr *attr)
1883 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1884 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1886 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1887 util_min = attr->sched_util_min;
1889 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1893 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1894 util_max = attr->sched_util_max;
1896 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1900 if (util_min != -1 && util_max != -1 && util_min > util_max)
1904 * We have valid uclamp attributes; make sure uclamp is enabled.
1906 * We need to do that here, because enabling static branches is a
1907 * blocking operation which obviously cannot be done while holding
1910 static_branch_enable(&sched_uclamp_used);
1915 static bool uclamp_reset(const struct sched_attr *attr,
1916 enum uclamp_id clamp_id,
1917 struct uclamp_se *uc_se)
1919 /* Reset on sched class change for a non user-defined clamp value. */
1920 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1921 !uc_se->user_defined)
1924 /* Reset on sched_util_{min,max} == -1. */
1925 if (clamp_id == UCLAMP_MIN &&
1926 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1927 attr->sched_util_min == -1) {
1931 if (clamp_id == UCLAMP_MAX &&
1932 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1933 attr->sched_util_max == -1) {
1940 static void __setscheduler_uclamp(struct task_struct *p,
1941 const struct sched_attr *attr)
1943 enum uclamp_id clamp_id;
1945 for_each_clamp_id(clamp_id) {
1946 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1949 if (!uclamp_reset(attr, clamp_id, uc_se))
1953 * RT by default have a 100% boost value that could be modified
1956 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1957 value = sysctl_sched_uclamp_util_min_rt_default;
1959 value = uclamp_none(clamp_id);
1961 uclamp_se_set(uc_se, value, false);
1965 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1968 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1969 attr->sched_util_min != -1) {
1970 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1971 attr->sched_util_min, true);
1974 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1975 attr->sched_util_max != -1) {
1976 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1977 attr->sched_util_max, true);
1981 static void uclamp_fork(struct task_struct *p)
1983 enum uclamp_id clamp_id;
1986 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1987 * as the task is still at its early fork stages.
1989 for_each_clamp_id(clamp_id)
1990 p->uclamp[clamp_id].active = false;
1992 if (likely(!p->sched_reset_on_fork))
1995 for_each_clamp_id(clamp_id) {
1996 uclamp_se_set(&p->uclamp_req[clamp_id],
1997 uclamp_none(clamp_id), false);
2001 static void uclamp_post_fork(struct task_struct *p)
2003 uclamp_update_util_min_rt_default(p);
2006 static void __init init_uclamp_rq(struct rq *rq)
2008 enum uclamp_id clamp_id;
2009 struct uclamp_rq *uc_rq = rq->uclamp;
2011 for_each_clamp_id(clamp_id) {
2012 uc_rq[clamp_id] = (struct uclamp_rq) {
2013 .value = uclamp_none(clamp_id)
2017 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2020 static void __init init_uclamp(void)
2022 struct uclamp_se uc_max = {};
2023 enum uclamp_id clamp_id;
2026 for_each_possible_cpu(cpu)
2027 init_uclamp_rq(cpu_rq(cpu));
2029 for_each_clamp_id(clamp_id) {
2030 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2031 uclamp_none(clamp_id), false);
2034 /* System defaults allow max clamp values for both indexes */
2035 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2036 for_each_clamp_id(clamp_id) {
2037 uclamp_default[clamp_id] = uc_max;
2038 #ifdef CONFIG_UCLAMP_TASK_GROUP
2039 root_task_group.uclamp_req[clamp_id] = uc_max;
2040 root_task_group.uclamp[clamp_id] = uc_max;
2045 #else /* CONFIG_UCLAMP_TASK */
2046 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2047 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2048 static inline int uclamp_validate(struct task_struct *p,
2049 const struct sched_attr *attr)
2053 static void __setscheduler_uclamp(struct task_struct *p,
2054 const struct sched_attr *attr) { }
2055 static inline void uclamp_fork(struct task_struct *p) { }
2056 static inline void uclamp_post_fork(struct task_struct *p) { }
2057 static inline void init_uclamp(void) { }
2058 #endif /* CONFIG_UCLAMP_TASK */
2060 bool sched_task_on_rq(struct task_struct *p)
2062 return task_on_rq_queued(p);
2065 unsigned long get_wchan(struct task_struct *p)
2067 unsigned long ip = 0;
2070 if (!p || p == current)
2073 /* Only get wchan if task is blocked and we can keep it that way. */
2074 raw_spin_lock_irq(&p->pi_lock);
2075 state = READ_ONCE(p->__state);
2076 smp_rmb(); /* see try_to_wake_up() */
2077 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2078 ip = __get_wchan(p);
2079 raw_spin_unlock_irq(&p->pi_lock);
2084 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2086 if (!(flags & ENQUEUE_NOCLOCK))
2087 update_rq_clock(rq);
2089 if (!(flags & ENQUEUE_RESTORE)) {
2090 sched_info_enqueue(rq, p);
2091 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2094 uclamp_rq_inc(rq, p);
2095 p->sched_class->enqueue_task(rq, p, flags);
2097 if (sched_core_enabled(rq))
2098 sched_core_enqueue(rq, p);
2101 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2103 if (sched_core_enabled(rq))
2104 sched_core_dequeue(rq, p, flags);
2106 if (!(flags & DEQUEUE_NOCLOCK))
2107 update_rq_clock(rq);
2109 if (!(flags & DEQUEUE_SAVE)) {
2110 sched_info_dequeue(rq, p);
2111 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2114 uclamp_rq_dec(rq, p);
2115 p->sched_class->dequeue_task(rq, p, flags);
2118 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2120 if (task_on_rq_migrating(p))
2121 flags |= ENQUEUE_MIGRATED;
2122 if (flags & ENQUEUE_MIGRATED)
2123 sched_mm_cid_migrate_to(rq, p);
2125 enqueue_task(rq, p, flags);
2127 p->on_rq = TASK_ON_RQ_QUEUED;
2130 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2132 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2134 dequeue_task(rq, p, flags);
2137 static inline int __normal_prio(int policy, int rt_prio, int nice)
2141 if (dl_policy(policy))
2142 prio = MAX_DL_PRIO - 1;
2143 else if (rt_policy(policy))
2144 prio = MAX_RT_PRIO - 1 - rt_prio;
2146 prio = NICE_TO_PRIO(nice);
2152 * Calculate the expected normal priority: i.e. priority
2153 * without taking RT-inheritance into account. Might be
2154 * boosted by interactivity modifiers. Changes upon fork,
2155 * setprio syscalls, and whenever the interactivity
2156 * estimator recalculates.
2158 static inline int normal_prio(struct task_struct *p)
2160 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2164 * Calculate the current priority, i.e. the priority
2165 * taken into account by the scheduler. This value might
2166 * be boosted by RT tasks, or might be boosted by
2167 * interactivity modifiers. Will be RT if the task got
2168 * RT-boosted. If not then it returns p->normal_prio.
2170 static int effective_prio(struct task_struct *p)
2172 p->normal_prio = normal_prio(p);
2174 * If we are RT tasks or we were boosted to RT priority,
2175 * keep the priority unchanged. Otherwise, update priority
2176 * to the normal priority:
2178 if (!rt_prio(p->prio))
2179 return p->normal_prio;
2184 * task_curr - is this task currently executing on a CPU?
2185 * @p: the task in question.
2187 * Return: 1 if the task is currently executing. 0 otherwise.
2189 inline int task_curr(const struct task_struct *p)
2191 return cpu_curr(task_cpu(p)) == p;
2195 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2196 * use the balance_callback list if you want balancing.
2198 * this means any call to check_class_changed() must be followed by a call to
2199 * balance_callback().
2201 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2202 const struct sched_class *prev_class,
2205 if (prev_class != p->sched_class) {
2206 if (prev_class->switched_from)
2207 prev_class->switched_from(rq, p);
2209 p->sched_class->switched_to(rq, p);
2210 } else if (oldprio != p->prio || dl_task(p))
2211 p->sched_class->prio_changed(rq, p, oldprio);
2214 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2216 if (p->sched_class == rq->curr->sched_class)
2217 rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2218 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2222 * A queue event has occurred, and we're going to schedule. In
2223 * this case, we can save a useless back to back clock update.
2225 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2226 rq_clock_skip_update(rq);
2229 static __always_inline
2230 int __task_state_match(struct task_struct *p, unsigned int state)
2232 if (READ_ONCE(p->__state) & state)
2235 if (READ_ONCE(p->saved_state) & state)
2241 static __always_inline
2242 int task_state_match(struct task_struct *p, unsigned int state)
2245 * Serialize against current_save_and_set_rtlock_wait_state(),
2246 * current_restore_rtlock_saved_state(), and __refrigerator().
2248 guard(raw_spinlock_irq)(&p->pi_lock);
2249 return __task_state_match(p, state);
2253 * wait_task_inactive - wait for a thread to unschedule.
2255 * Wait for the thread to block in any of the states set in @match_state.
2256 * If it changes, i.e. @p might have woken up, then return zero. When we
2257 * succeed in waiting for @p to be off its CPU, we return a positive number
2258 * (its total switch count). If a second call a short while later returns the
2259 * same number, the caller can be sure that @p has remained unscheduled the
2262 * The caller must ensure that the task *will* unschedule sometime soon,
2263 * else this function might spin for a *long* time. This function can't
2264 * be called with interrupts off, or it may introduce deadlock with
2265 * smp_call_function() if an IPI is sent by the same process we are
2266 * waiting to become inactive.
2268 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2270 int running, queued, match;
2277 * We do the initial early heuristics without holding
2278 * any task-queue locks at all. We'll only try to get
2279 * the runqueue lock when things look like they will
2285 * If the task is actively running on another CPU
2286 * still, just relax and busy-wait without holding
2289 * NOTE! Since we don't hold any locks, it's not
2290 * even sure that "rq" stays as the right runqueue!
2291 * But we don't care, since "task_on_cpu()" will
2292 * return false if the runqueue has changed and p
2293 * is actually now running somewhere else!
2295 while (task_on_cpu(rq, p)) {
2296 if (!task_state_match(p, match_state))
2302 * Ok, time to look more closely! We need the rq
2303 * lock now, to be *sure*. If we're wrong, we'll
2304 * just go back and repeat.
2306 rq = task_rq_lock(p, &rf);
2307 trace_sched_wait_task(p);
2308 running = task_on_cpu(rq, p);
2309 queued = task_on_rq_queued(p);
2311 if ((match = __task_state_match(p, match_state))) {
2313 * When matching on p->saved_state, consider this task
2314 * still queued so it will wait.
2318 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2320 task_rq_unlock(rq, p, &rf);
2323 * If it changed from the expected state, bail out now.
2325 if (unlikely(!ncsw))
2329 * Was it really running after all now that we
2330 * checked with the proper locks actually held?
2332 * Oops. Go back and try again..
2334 if (unlikely(running)) {
2340 * It's not enough that it's not actively running,
2341 * it must be off the runqueue _entirely_, and not
2344 * So if it was still runnable (but just not actively
2345 * running right now), it's preempted, and we should
2346 * yield - it could be a while.
2348 if (unlikely(queued)) {
2349 ktime_t to = NSEC_PER_SEC / HZ;
2351 set_current_state(TASK_UNINTERRUPTIBLE);
2352 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2357 * Ahh, all good. It wasn't running, and it wasn't
2358 * runnable, which means that it will never become
2359 * running in the future either. We're all done!
2370 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2372 static int __set_cpus_allowed_ptr(struct task_struct *p,
2373 struct affinity_context *ctx);
2375 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2377 struct affinity_context ac = {
2378 .new_mask = cpumask_of(rq->cpu),
2379 .flags = SCA_MIGRATE_DISABLE,
2382 if (likely(!p->migration_disabled))
2385 if (p->cpus_ptr != &p->cpus_mask)
2389 * Violates locking rules! see comment in __do_set_cpus_allowed().
2391 __do_set_cpus_allowed(p, &ac);
2394 void migrate_disable(void)
2396 struct task_struct *p = current;
2398 if (p->migration_disabled) {
2399 p->migration_disabled++;
2404 this_rq()->nr_pinned++;
2405 p->migration_disabled = 1;
2407 EXPORT_SYMBOL_GPL(migrate_disable);
2409 void migrate_enable(void)
2411 struct task_struct *p = current;
2412 struct affinity_context ac = {
2413 .new_mask = &p->cpus_mask,
2414 .flags = SCA_MIGRATE_ENABLE,
2417 if (p->migration_disabled > 1) {
2418 p->migration_disabled--;
2422 if (WARN_ON_ONCE(!p->migration_disabled))
2426 * Ensure stop_task runs either before or after this, and that
2427 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2430 if (p->cpus_ptr != &p->cpus_mask)
2431 __set_cpus_allowed_ptr(p, &ac);
2433 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2434 * regular cpus_mask, otherwise things that race (eg.
2435 * select_fallback_rq) get confused.
2438 p->migration_disabled = 0;
2439 this_rq()->nr_pinned--;
2441 EXPORT_SYMBOL_GPL(migrate_enable);
2443 static inline bool rq_has_pinned_tasks(struct rq *rq)
2445 return rq->nr_pinned;
2449 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2450 * __set_cpus_allowed_ptr() and select_fallback_rq().
2452 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2454 /* When not in the task's cpumask, no point in looking further. */
2455 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2458 /* migrate_disabled() must be allowed to finish. */
2459 if (is_migration_disabled(p))
2460 return cpu_online(cpu);
2462 /* Non kernel threads are not allowed during either online or offline. */
2463 if (!(p->flags & PF_KTHREAD))
2464 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2466 /* KTHREAD_IS_PER_CPU is always allowed. */
2467 if (kthread_is_per_cpu(p))
2468 return cpu_online(cpu);
2470 /* Regular kernel threads don't get to stay during offline. */
2474 /* But are allowed during online. */
2475 return cpu_online(cpu);
2479 * This is how migration works:
2481 * 1) we invoke migration_cpu_stop() on the target CPU using
2483 * 2) stopper starts to run (implicitly forcing the migrated thread
2485 * 3) it checks whether the migrated task is still in the wrong runqueue.
2486 * 4) if it's in the wrong runqueue then the migration thread removes
2487 * it and puts it into the right queue.
2488 * 5) stopper completes and stop_one_cpu() returns and the migration
2493 * move_queued_task - move a queued task to new rq.
2495 * Returns (locked) new rq. Old rq's lock is released.
2497 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2498 struct task_struct *p, int new_cpu)
2500 lockdep_assert_rq_held(rq);
2502 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2503 set_task_cpu(p, new_cpu);
2506 rq = cpu_rq(new_cpu);
2509 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2510 activate_task(rq, p, 0);
2511 wakeup_preempt(rq, p, 0);
2516 struct migration_arg {
2517 struct task_struct *task;
2519 struct set_affinity_pending *pending;
2523 * @refs: number of wait_for_completion()
2524 * @stop_pending: is @stop_work in use
2526 struct set_affinity_pending {
2528 unsigned int stop_pending;
2529 struct completion done;
2530 struct cpu_stop_work stop_work;
2531 struct migration_arg arg;
2535 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2536 * this because either it can't run here any more (set_cpus_allowed()
2537 * away from this CPU, or CPU going down), or because we're
2538 * attempting to rebalance this task on exec (sched_exec).
2540 * So we race with normal scheduler movements, but that's OK, as long
2541 * as the task is no longer on this CPU.
2543 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2544 struct task_struct *p, int dest_cpu)
2546 /* Affinity changed (again). */
2547 if (!is_cpu_allowed(p, dest_cpu))
2550 rq = move_queued_task(rq, rf, p, dest_cpu);
2556 * migration_cpu_stop - this will be executed by a highprio stopper thread
2557 * and performs thread migration by bumping thread off CPU then
2558 * 'pushing' onto another runqueue.
2560 static int migration_cpu_stop(void *data)
2562 struct migration_arg *arg = data;
2563 struct set_affinity_pending *pending = arg->pending;
2564 struct task_struct *p = arg->task;
2565 struct rq *rq = this_rq();
2566 bool complete = false;
2570 * The original target CPU might have gone down and we might
2571 * be on another CPU but it doesn't matter.
2573 local_irq_save(rf.flags);
2575 * We need to explicitly wake pending tasks before running
2576 * __migrate_task() such that we will not miss enforcing cpus_ptr
2577 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2579 flush_smp_call_function_queue();
2581 raw_spin_lock(&p->pi_lock);
2585 * If we were passed a pending, then ->stop_pending was set, thus
2586 * p->migration_pending must have remained stable.
2588 WARN_ON_ONCE(pending && pending != p->migration_pending);
2591 * If task_rq(p) != rq, it cannot be migrated here, because we're
2592 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2593 * we're holding p->pi_lock.
2595 if (task_rq(p) == rq) {
2596 if (is_migration_disabled(p))
2600 p->migration_pending = NULL;
2603 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2607 if (task_on_rq_queued(p)) {
2608 update_rq_clock(rq);
2609 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2611 p->wake_cpu = arg->dest_cpu;
2615 * XXX __migrate_task() can fail, at which point we might end
2616 * up running on a dodgy CPU, AFAICT this can only happen
2617 * during CPU hotplug, at which point we'll get pushed out
2618 * anyway, so it's probably not a big deal.
2621 } else if (pending) {
2623 * This happens when we get migrated between migrate_enable()'s
2624 * preempt_enable() and scheduling the stopper task. At that
2625 * point we're a regular task again and not current anymore.
2627 * A !PREEMPT kernel has a giant hole here, which makes it far
2632 * The task moved before the stopper got to run. We're holding
2633 * ->pi_lock, so the allowed mask is stable - if it got
2634 * somewhere allowed, we're done.
2636 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2637 p->migration_pending = NULL;
2643 * When migrate_enable() hits a rq mis-match we can't reliably
2644 * determine is_migration_disabled() and so have to chase after
2647 WARN_ON_ONCE(!pending->stop_pending);
2649 task_rq_unlock(rq, p, &rf);
2650 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2651 &pending->arg, &pending->stop_work);
2657 pending->stop_pending = false;
2658 task_rq_unlock(rq, p, &rf);
2661 complete_all(&pending->done);
2666 int push_cpu_stop(void *arg)
2668 struct rq *lowest_rq = NULL, *rq = this_rq();
2669 struct task_struct *p = arg;
2671 raw_spin_lock_irq(&p->pi_lock);
2672 raw_spin_rq_lock(rq);
2674 if (task_rq(p) != rq)
2677 if (is_migration_disabled(p)) {
2678 p->migration_flags |= MDF_PUSH;
2682 p->migration_flags &= ~MDF_PUSH;
2684 if (p->sched_class->find_lock_rq)
2685 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2690 // XXX validate p is still the highest prio task
2691 if (task_rq(p) == rq) {
2692 deactivate_task(rq, p, 0);
2693 set_task_cpu(p, lowest_rq->cpu);
2694 activate_task(lowest_rq, p, 0);
2695 resched_curr(lowest_rq);
2698 double_unlock_balance(rq, lowest_rq);
2701 rq->push_busy = false;
2702 raw_spin_rq_unlock(rq);
2703 raw_spin_unlock_irq(&p->pi_lock);
2710 * sched_class::set_cpus_allowed must do the below, but is not required to
2711 * actually call this function.
2713 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2715 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2716 p->cpus_ptr = ctx->new_mask;
2720 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2721 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2724 * Swap in a new user_cpus_ptr if SCA_USER flag set
2726 if (ctx->flags & SCA_USER)
2727 swap(p->user_cpus_ptr, ctx->user_mask);
2731 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2733 struct rq *rq = task_rq(p);
2734 bool queued, running;
2737 * This here violates the locking rules for affinity, since we're only
2738 * supposed to change these variables while holding both rq->lock and
2741 * HOWEVER, it magically works, because ttwu() is the only code that
2742 * accesses these variables under p->pi_lock and only does so after
2743 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2744 * before finish_task().
2746 * XXX do further audits, this smells like something putrid.
2748 if (ctx->flags & SCA_MIGRATE_DISABLE)
2749 SCHED_WARN_ON(!p->on_cpu);
2751 lockdep_assert_held(&p->pi_lock);
2753 queued = task_on_rq_queued(p);
2754 running = task_current(rq, p);
2758 * Because __kthread_bind() calls this on blocked tasks without
2761 lockdep_assert_rq_held(rq);
2762 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2765 put_prev_task(rq, p);
2767 p->sched_class->set_cpus_allowed(p, ctx);
2770 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2772 set_next_task(rq, p);
2776 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2777 * affinity (if any) should be destroyed too.
2779 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2781 struct affinity_context ac = {
2782 .new_mask = new_mask,
2784 .flags = SCA_USER, /* clear the user requested mask */
2786 union cpumask_rcuhead {
2788 struct rcu_head rcu;
2791 __do_set_cpus_allowed(p, &ac);
2794 * Because this is called with p->pi_lock held, it is not possible
2795 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2798 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2801 static cpumask_t *alloc_user_cpus_ptr(int node)
2804 * See do_set_cpus_allowed() above for the rcu_head usage.
2806 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2808 return kmalloc_node(size, GFP_KERNEL, node);
2811 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2814 cpumask_t *user_mask;
2815 unsigned long flags;
2818 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2819 * may differ by now due to racing.
2821 dst->user_cpus_ptr = NULL;
2824 * This check is racy and losing the race is a valid situation.
2825 * It is not worth the extra overhead of taking the pi_lock on
2828 if (data_race(!src->user_cpus_ptr))
2831 user_mask = alloc_user_cpus_ptr(node);
2836 * Use pi_lock to protect content of user_cpus_ptr
2838 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2839 * do_set_cpus_allowed().
2841 raw_spin_lock_irqsave(&src->pi_lock, flags);
2842 if (src->user_cpus_ptr) {
2843 swap(dst->user_cpus_ptr, user_mask);
2844 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2846 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2848 if (unlikely(user_mask))
2854 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2856 struct cpumask *user_mask = NULL;
2858 swap(p->user_cpus_ptr, user_mask);
2863 void release_user_cpus_ptr(struct task_struct *p)
2865 kfree(clear_user_cpus_ptr(p));
2869 * This function is wildly self concurrent; here be dragons.
2872 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2873 * designated task is enqueued on an allowed CPU. If that task is currently
2874 * running, we have to kick it out using the CPU stopper.
2876 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2879 * Initial conditions: P0->cpus_mask = [0, 1]
2883 * migrate_disable();
2885 * set_cpus_allowed_ptr(P0, [1]);
2887 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2888 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2889 * This means we need the following scheme:
2893 * migrate_disable();
2895 * set_cpus_allowed_ptr(P0, [1]);
2899 * __set_cpus_allowed_ptr();
2900 * <wakes local stopper>
2901 * `--> <woken on migration completion>
2903 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2904 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2905 * task p are serialized by p->pi_lock, which we can leverage: the one that
2906 * should come into effect at the end of the Migrate-Disable region is the last
2907 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2908 * but we still need to properly signal those waiting tasks at the appropriate
2911 * This is implemented using struct set_affinity_pending. The first
2912 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2913 * setup an instance of that struct and install it on the targeted task_struct.
2914 * Any and all further callers will reuse that instance. Those then wait for
2915 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2916 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2919 * (1) In the cases covered above. There is one more where the completion is
2920 * signaled within affine_move_task() itself: when a subsequent affinity request
2921 * occurs after the stopper bailed out due to the targeted task still being
2922 * Migrate-Disable. Consider:
2924 * Initial conditions: P0->cpus_mask = [0, 1]
2928 * migrate_disable();
2930 * set_cpus_allowed_ptr(P0, [1]);
2933 * migration_cpu_stop()
2934 * is_migration_disabled()
2936 * set_cpus_allowed_ptr(P0, [0, 1]);
2937 * <signal completion>
2940 * Note that the above is safe vs a concurrent migrate_enable(), as any
2941 * pending affinity completion is preceded by an uninstallation of
2942 * p->migration_pending done with p->pi_lock held.
2944 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2945 int dest_cpu, unsigned int flags)
2946 __releases(rq->lock)
2947 __releases(p->pi_lock)
2949 struct set_affinity_pending my_pending = { }, *pending = NULL;
2950 bool stop_pending, complete = false;
2952 /* Can the task run on the task's current CPU? If so, we're done */
2953 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2954 struct task_struct *push_task = NULL;
2956 if ((flags & SCA_MIGRATE_ENABLE) &&
2957 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2958 rq->push_busy = true;
2959 push_task = get_task_struct(p);
2963 * If there are pending waiters, but no pending stop_work,
2964 * then complete now.
2966 pending = p->migration_pending;
2967 if (pending && !pending->stop_pending) {
2968 p->migration_pending = NULL;
2973 task_rq_unlock(rq, p, rf);
2975 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2981 complete_all(&pending->done);
2986 if (!(flags & SCA_MIGRATE_ENABLE)) {
2987 /* serialized by p->pi_lock */
2988 if (!p->migration_pending) {
2989 /* Install the request */
2990 refcount_set(&my_pending.refs, 1);
2991 init_completion(&my_pending.done);
2992 my_pending.arg = (struct migration_arg) {
2994 .dest_cpu = dest_cpu,
2995 .pending = &my_pending,
2998 p->migration_pending = &my_pending;
3000 pending = p->migration_pending;
3001 refcount_inc(&pending->refs);
3003 * Affinity has changed, but we've already installed a
3004 * pending. migration_cpu_stop() *must* see this, else
3005 * we risk a completion of the pending despite having a
3006 * task on a disallowed CPU.
3008 * Serialized by p->pi_lock, so this is safe.
3010 pending->arg.dest_cpu = dest_cpu;
3013 pending = p->migration_pending;
3015 * - !MIGRATE_ENABLE:
3016 * we'll have installed a pending if there wasn't one already.
3019 * we're here because the current CPU isn't matching anymore,
3020 * the only way that can happen is because of a concurrent
3021 * set_cpus_allowed_ptr() call, which should then still be
3022 * pending completion.
3024 * Either way, we really should have a @pending here.
3026 if (WARN_ON_ONCE(!pending)) {
3027 task_rq_unlock(rq, p, rf);
3031 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3033 * MIGRATE_ENABLE gets here because 'p == current', but for
3034 * anything else we cannot do is_migration_disabled(), punt
3035 * and have the stopper function handle it all race-free.
3037 stop_pending = pending->stop_pending;
3039 pending->stop_pending = true;
3041 if (flags & SCA_MIGRATE_ENABLE)
3042 p->migration_flags &= ~MDF_PUSH;
3045 task_rq_unlock(rq, p, rf);
3046 if (!stop_pending) {
3047 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3048 &pending->arg, &pending->stop_work);
3052 if (flags & SCA_MIGRATE_ENABLE)
3056 if (!is_migration_disabled(p)) {
3057 if (task_on_rq_queued(p))
3058 rq = move_queued_task(rq, rf, p, dest_cpu);
3060 if (!pending->stop_pending) {
3061 p->migration_pending = NULL;
3065 task_rq_unlock(rq, p, rf);
3068 complete_all(&pending->done);
3071 wait_for_completion(&pending->done);
3073 if (refcount_dec_and_test(&pending->refs))
3074 wake_up_var(&pending->refs); /* No UaF, just an address */
3077 * Block the original owner of &pending until all subsequent callers
3078 * have seen the completion and decremented the refcount
3080 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3083 WARN_ON_ONCE(my_pending.stop_pending);
3089 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3091 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3092 struct affinity_context *ctx,
3094 struct rq_flags *rf)
3095 __releases(rq->lock)
3096 __releases(p->pi_lock)
3098 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3099 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3100 bool kthread = p->flags & PF_KTHREAD;
3101 unsigned int dest_cpu;
3104 update_rq_clock(rq);
3106 if (kthread || is_migration_disabled(p)) {
3108 * Kernel threads are allowed on online && !active CPUs,
3109 * however, during cpu-hot-unplug, even these might get pushed
3110 * away if not KTHREAD_IS_PER_CPU.
3112 * Specifically, migration_disabled() tasks must not fail the
3113 * cpumask_any_and_distribute() pick below, esp. so on
3114 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3115 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3117 cpu_valid_mask = cpu_online_mask;
3120 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3126 * Must re-check here, to close a race against __kthread_bind(),
3127 * sched_setaffinity() is not guaranteed to observe the flag.
3129 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3134 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3135 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3136 if (ctx->flags & SCA_USER)
3137 swap(p->user_cpus_ptr, ctx->user_mask);
3141 if (WARN_ON_ONCE(p == current &&
3142 is_migration_disabled(p) &&
3143 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3150 * Picking a ~random cpu helps in cases where we are changing affinity
3151 * for groups of tasks (ie. cpuset), so that load balancing is not
3152 * immediately required to distribute the tasks within their new mask.
3154 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3155 if (dest_cpu >= nr_cpu_ids) {
3160 __do_set_cpus_allowed(p, ctx);
3162 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3165 task_rq_unlock(rq, p, rf);
3171 * Change a given task's CPU affinity. Migrate the thread to a
3172 * proper CPU and schedule it away if the CPU it's executing on
3173 * is removed from the allowed bitmask.
3175 * NOTE: the caller must have a valid reference to the task, the
3176 * task must not exit() & deallocate itself prematurely. The
3177 * call is not atomic; no spinlocks may be held.
3179 static int __set_cpus_allowed_ptr(struct task_struct *p,
3180 struct affinity_context *ctx)
3185 rq = task_rq_lock(p, &rf);
3187 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3190 if (p->user_cpus_ptr &&
3191 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3192 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3193 ctx->new_mask = rq->scratch_mask;
3195 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3198 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3200 struct affinity_context ac = {
3201 .new_mask = new_mask,
3205 return __set_cpus_allowed_ptr(p, &ac);
3207 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3210 * Change a given task's CPU affinity to the intersection of its current
3211 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3212 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3213 * affinity or use cpu_online_mask instead.
3215 * If the resulting mask is empty, leave the affinity unchanged and return
3218 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3219 struct cpumask *new_mask,
3220 const struct cpumask *subset_mask)
3222 struct affinity_context ac = {
3223 .new_mask = new_mask,
3230 rq = task_rq_lock(p, &rf);
3233 * Forcefully restricting the affinity of a deadline task is
3234 * likely to cause problems, so fail and noisily override the
3237 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3242 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3247 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3250 task_rq_unlock(rq, p, &rf);
3255 * Restrict the CPU affinity of task @p so that it is a subset of
3256 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3257 * old affinity mask. If the resulting mask is empty, we warn and walk
3258 * up the cpuset hierarchy until we find a suitable mask.
3260 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3262 cpumask_var_t new_mask;
3263 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3265 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3268 * __migrate_task() can fail silently in the face of concurrent
3269 * offlining of the chosen destination CPU, so take the hotplug
3270 * lock to ensure that the migration succeeds.
3273 if (!cpumask_available(new_mask))
3276 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3280 * We failed to find a valid subset of the affinity mask for the
3281 * task, so override it based on its cpuset hierarchy.
3283 cpuset_cpus_allowed(p, new_mask);
3284 override_mask = new_mask;
3287 if (printk_ratelimit()) {
3288 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3289 task_pid_nr(p), p->comm,
3290 cpumask_pr_args(override_mask));
3293 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3296 free_cpumask_var(new_mask);
3300 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3303 * Restore the affinity of a task @p which was previously restricted by a
3304 * call to force_compatible_cpus_allowed_ptr().
3306 * It is the caller's responsibility to serialise this with any calls to
3307 * force_compatible_cpus_allowed_ptr(@p).
3309 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3311 struct affinity_context ac = {
3312 .new_mask = task_user_cpus(p),
3318 * Try to restore the old affinity mask with __sched_setaffinity().
3319 * Cpuset masking will be done there too.
3321 ret = __sched_setaffinity(p, &ac);
3325 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3327 #ifdef CONFIG_SCHED_DEBUG
3328 unsigned int state = READ_ONCE(p->__state);
3331 * We should never call set_task_cpu() on a blocked task,
3332 * ttwu() will sort out the placement.
3334 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3337 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3338 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3339 * time relying on p->on_rq.
3341 WARN_ON_ONCE(state == TASK_RUNNING &&
3342 p->sched_class == &fair_sched_class &&
3343 (p->on_rq && !task_on_rq_migrating(p)));
3345 #ifdef CONFIG_LOCKDEP
3347 * The caller should hold either p->pi_lock or rq->lock, when changing
3348 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3350 * sched_move_task() holds both and thus holding either pins the cgroup,
3353 * Furthermore, all task_rq users should acquire both locks, see
3356 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3357 lockdep_is_held(__rq_lockp(task_rq(p)))));
3360 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3362 WARN_ON_ONCE(!cpu_online(new_cpu));
3364 WARN_ON_ONCE(is_migration_disabled(p));
3367 trace_sched_migrate_task(p, new_cpu);
3369 if (task_cpu(p) != new_cpu) {
3370 if (p->sched_class->migrate_task_rq)
3371 p->sched_class->migrate_task_rq(p, new_cpu);
3372 p->se.nr_migrations++;
3374 sched_mm_cid_migrate_from(p);
3375 perf_event_task_migrate(p);
3378 __set_task_cpu(p, new_cpu);
3381 #ifdef CONFIG_NUMA_BALANCING
3382 static void __migrate_swap_task(struct task_struct *p, int cpu)
3384 if (task_on_rq_queued(p)) {
3385 struct rq *src_rq, *dst_rq;
3386 struct rq_flags srf, drf;
3388 src_rq = task_rq(p);
3389 dst_rq = cpu_rq(cpu);
3391 rq_pin_lock(src_rq, &srf);
3392 rq_pin_lock(dst_rq, &drf);
3394 deactivate_task(src_rq, p, 0);
3395 set_task_cpu(p, cpu);
3396 activate_task(dst_rq, p, 0);
3397 wakeup_preempt(dst_rq, p, 0);
3399 rq_unpin_lock(dst_rq, &drf);
3400 rq_unpin_lock(src_rq, &srf);
3404 * Task isn't running anymore; make it appear like we migrated
3405 * it before it went to sleep. This means on wakeup we make the
3406 * previous CPU our target instead of where it really is.
3412 struct migration_swap_arg {
3413 struct task_struct *src_task, *dst_task;
3414 int src_cpu, dst_cpu;
3417 static int migrate_swap_stop(void *data)
3419 struct migration_swap_arg *arg = data;
3420 struct rq *src_rq, *dst_rq;
3422 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3425 src_rq = cpu_rq(arg->src_cpu);
3426 dst_rq = cpu_rq(arg->dst_cpu);
3428 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3429 guard(double_rq_lock)(src_rq, dst_rq);
3431 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3434 if (task_cpu(arg->src_task) != arg->src_cpu)
3437 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3440 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3443 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3444 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3450 * Cross migrate two tasks
3452 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3453 int target_cpu, int curr_cpu)
3455 struct migration_swap_arg arg;
3458 arg = (struct migration_swap_arg){
3460 .src_cpu = curr_cpu,
3462 .dst_cpu = target_cpu,
3465 if (arg.src_cpu == arg.dst_cpu)
3469 * These three tests are all lockless; this is OK since all of them
3470 * will be re-checked with proper locks held further down the line.
3472 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3475 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3478 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3481 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3482 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3487 #endif /* CONFIG_NUMA_BALANCING */
3490 * kick_process - kick a running thread to enter/exit the kernel
3491 * @p: the to-be-kicked thread
3493 * Cause a process which is running on another CPU to enter
3494 * kernel-mode, without any delay. (to get signals handled.)
3496 * NOTE: this function doesn't have to take the runqueue lock,
3497 * because all it wants to ensure is that the remote task enters
3498 * the kernel. If the IPI races and the task has been migrated
3499 * to another CPU then no harm is done and the purpose has been
3502 void kick_process(struct task_struct *p)
3505 int cpu = task_cpu(p);
3507 if ((cpu != smp_processor_id()) && task_curr(p))
3508 smp_send_reschedule(cpu);
3510 EXPORT_SYMBOL_GPL(kick_process);
3513 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3515 * A few notes on cpu_active vs cpu_online:
3517 * - cpu_active must be a subset of cpu_online
3519 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3520 * see __set_cpus_allowed_ptr(). At this point the newly online
3521 * CPU isn't yet part of the sched domains, and balancing will not
3524 * - on CPU-down we clear cpu_active() to mask the sched domains and
3525 * avoid the load balancer to place new tasks on the to be removed
3526 * CPU. Existing tasks will remain running there and will be taken
3529 * This means that fallback selection must not select !active CPUs.
3530 * And can assume that any active CPU must be online. Conversely
3531 * select_task_rq() below may allow selection of !active CPUs in order
3532 * to satisfy the above rules.
3534 static int select_fallback_rq(int cpu, struct task_struct *p)
3536 int nid = cpu_to_node(cpu);
3537 const struct cpumask *nodemask = NULL;
3538 enum { cpuset, possible, fail } state = cpuset;
3542 * If the node that the CPU is on has been offlined, cpu_to_node()
3543 * will return -1. There is no CPU on the node, and we should
3544 * select the CPU on the other node.
3547 nodemask = cpumask_of_node(nid);
3549 /* Look for allowed, online CPU in same node. */
3550 for_each_cpu(dest_cpu, nodemask) {
3551 if (is_cpu_allowed(p, dest_cpu))
3557 /* Any allowed, online CPU? */
3558 for_each_cpu(dest_cpu, p->cpus_ptr) {
3559 if (!is_cpu_allowed(p, dest_cpu))
3565 /* No more Mr. Nice Guy. */
3568 if (cpuset_cpus_allowed_fallback(p)) {
3575 * XXX When called from select_task_rq() we only
3576 * hold p->pi_lock and again violate locking order.
3578 * More yuck to audit.
3580 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3590 if (state != cpuset) {
3592 * Don't tell them about moving exiting tasks or
3593 * kernel threads (both mm NULL), since they never
3596 if (p->mm && printk_ratelimit()) {
3597 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3598 task_pid_nr(p), p->comm, cpu);
3606 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3609 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3611 lockdep_assert_held(&p->pi_lock);
3613 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3614 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3616 cpu = cpumask_any(p->cpus_ptr);
3619 * In order not to call set_task_cpu() on a blocking task we need
3620 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3623 * Since this is common to all placement strategies, this lives here.
3625 * [ this allows ->select_task() to simply return task_cpu(p) and
3626 * not worry about this generic constraint ]
3628 if (unlikely(!is_cpu_allowed(p, cpu)))
3629 cpu = select_fallback_rq(task_cpu(p), p);
3634 void sched_set_stop_task(int cpu, struct task_struct *stop)
3636 static struct lock_class_key stop_pi_lock;
3637 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3638 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3642 * Make it appear like a SCHED_FIFO task, its something
3643 * userspace knows about and won't get confused about.
3645 * Also, it will make PI more or less work without too
3646 * much confusion -- but then, stop work should not
3647 * rely on PI working anyway.
3649 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3651 stop->sched_class = &stop_sched_class;
3654 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3655 * adjust the effective priority of a task. As a result,
3656 * rt_mutex_setprio() can trigger (RT) balancing operations,
3657 * which can then trigger wakeups of the stop thread to push
3658 * around the current task.
3660 * The stop task itself will never be part of the PI-chain, it
3661 * never blocks, therefore that ->pi_lock recursion is safe.
3662 * Tell lockdep about this by placing the stop->pi_lock in its
3665 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3668 cpu_rq(cpu)->stop = stop;
3672 * Reset it back to a normal scheduling class so that
3673 * it can die in pieces.
3675 old_stop->sched_class = &rt_sched_class;
3679 #else /* CONFIG_SMP */
3681 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3682 struct affinity_context *ctx)
3684 return set_cpus_allowed_ptr(p, ctx->new_mask);
3687 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3689 static inline bool rq_has_pinned_tasks(struct rq *rq)
3694 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3699 #endif /* !CONFIG_SMP */
3702 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3706 if (!schedstat_enabled())
3712 if (cpu == rq->cpu) {
3713 __schedstat_inc(rq->ttwu_local);
3714 __schedstat_inc(p->stats.nr_wakeups_local);
3716 struct sched_domain *sd;
3718 __schedstat_inc(p->stats.nr_wakeups_remote);
3721 for_each_domain(rq->cpu, sd) {
3722 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3723 __schedstat_inc(sd->ttwu_wake_remote);
3729 if (wake_flags & WF_MIGRATED)
3730 __schedstat_inc(p->stats.nr_wakeups_migrate);
3731 #endif /* CONFIG_SMP */
3733 __schedstat_inc(rq->ttwu_count);
3734 __schedstat_inc(p->stats.nr_wakeups);
3736 if (wake_flags & WF_SYNC)
3737 __schedstat_inc(p->stats.nr_wakeups_sync);
3741 * Mark the task runnable.
3743 static inline void ttwu_do_wakeup(struct task_struct *p)
3745 WRITE_ONCE(p->__state, TASK_RUNNING);
3746 trace_sched_wakeup(p);
3750 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3751 struct rq_flags *rf)
3753 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3755 lockdep_assert_rq_held(rq);
3757 if (p->sched_contributes_to_load)
3758 rq->nr_uninterruptible--;
3761 if (wake_flags & WF_MIGRATED)
3762 en_flags |= ENQUEUE_MIGRATED;
3766 delayacct_blkio_end(p);
3767 atomic_dec(&task_rq(p)->nr_iowait);
3770 activate_task(rq, p, en_flags);
3771 wakeup_preempt(rq, p, wake_flags);
3776 if (p->sched_class->task_woken) {
3778 * Our task @p is fully woken up and running; so it's safe to
3779 * drop the rq->lock, hereafter rq is only used for statistics.
3781 rq_unpin_lock(rq, rf);
3782 p->sched_class->task_woken(rq, p);
3783 rq_repin_lock(rq, rf);
3786 if (rq->idle_stamp) {
3787 u64 delta = rq_clock(rq) - rq->idle_stamp;
3788 u64 max = 2*rq->max_idle_balance_cost;
3790 update_avg(&rq->avg_idle, delta);
3792 if (rq->avg_idle > max)
3801 * Consider @p being inside a wait loop:
3804 * set_current_state(TASK_UNINTERRUPTIBLE);
3811 * __set_current_state(TASK_RUNNING);
3813 * between set_current_state() and schedule(). In this case @p is still
3814 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3817 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3818 * then schedule() must still happen and p->state can be changed to
3819 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3820 * need to do a full wakeup with enqueue.
3822 * Returns: %true when the wakeup is done,
3825 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3831 rq = __task_rq_lock(p, &rf);
3832 if (task_on_rq_queued(p)) {
3833 if (!task_on_cpu(rq, p)) {
3835 * When on_rq && !on_cpu the task is preempted, see if
3836 * it should preempt the task that is current now.
3838 update_rq_clock(rq);
3839 wakeup_preempt(rq, p, wake_flags);
3844 __task_rq_unlock(rq, &rf);
3850 void sched_ttwu_pending(void *arg)
3852 struct llist_node *llist = arg;
3853 struct rq *rq = this_rq();
3854 struct task_struct *p, *t;
3860 rq_lock_irqsave(rq, &rf);
3861 update_rq_clock(rq);
3863 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3864 if (WARN_ON_ONCE(p->on_cpu))
3865 smp_cond_load_acquire(&p->on_cpu, !VAL);
3867 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3868 set_task_cpu(p, cpu_of(rq));
3870 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3874 * Must be after enqueueing at least once task such that
3875 * idle_cpu() does not observe a false-negative -- if it does,
3876 * it is possible for select_idle_siblings() to stack a number
3877 * of tasks on this CPU during that window.
3879 * It is ok to clear ttwu_pending when another task pending.
3880 * We will receive IPI after local irq enabled and then enqueue it.
3881 * Since now nr_running > 0, idle_cpu() will always get correct result.
3883 WRITE_ONCE(rq->ttwu_pending, 0);
3884 rq_unlock_irqrestore(rq, &rf);
3888 * Prepare the scene for sending an IPI for a remote smp_call
3890 * Returns true if the caller can proceed with sending the IPI.
3891 * Returns false otherwise.
3893 bool call_function_single_prep_ipi(int cpu)
3895 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3896 trace_sched_wake_idle_without_ipi(cpu);
3904 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3905 * necessary. The wakee CPU on receipt of the IPI will queue the task
3906 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3907 * of the wakeup instead of the waker.
3909 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3911 struct rq *rq = cpu_rq(cpu);
3913 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3915 WRITE_ONCE(rq->ttwu_pending, 1);
3916 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3919 void wake_up_if_idle(int cpu)
3921 struct rq *rq = cpu_rq(cpu);
3924 if (is_idle_task(rcu_dereference(rq->curr))) {
3925 guard(rq_lock_irqsave)(rq);
3926 if (is_idle_task(rq->curr))
3931 bool cpus_share_cache(int this_cpu, int that_cpu)
3933 if (this_cpu == that_cpu)
3936 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3940 * Whether CPUs are share cache resources, which means LLC on non-cluster
3941 * machines and LLC tag or L2 on machines with clusters.
3943 bool cpus_share_resources(int this_cpu, int that_cpu)
3945 if (this_cpu == that_cpu)
3948 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3951 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3954 * Do not complicate things with the async wake_list while the CPU is
3957 if (!cpu_active(cpu))
3960 /* Ensure the task will still be allowed to run on the CPU. */
3961 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3965 * If the CPU does not share cache, then queue the task on the
3966 * remote rqs wakelist to avoid accessing remote data.
3968 if (!cpus_share_cache(smp_processor_id(), cpu))
3971 if (cpu == smp_processor_id())
3975 * If the wakee cpu is idle, or the task is descheduling and the
3976 * only running task on the CPU, then use the wakelist to offload
3977 * the task activation to the idle (or soon-to-be-idle) CPU as
3978 * the current CPU is likely busy. nr_running is checked to
3979 * avoid unnecessary task stacking.
3981 * Note that we can only get here with (wakee) p->on_rq=0,
3982 * p->on_cpu can be whatever, we've done the dequeue, so
3983 * the wakee has been accounted out of ->nr_running.
3985 if (!cpu_rq(cpu)->nr_running)
3991 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3993 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3994 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3995 __ttwu_queue_wakelist(p, cpu, wake_flags);
4002 #else /* !CONFIG_SMP */
4004 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4009 #endif /* CONFIG_SMP */
4011 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4013 struct rq *rq = cpu_rq(cpu);
4016 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4020 update_rq_clock(rq);
4021 ttwu_do_activate(rq, p, wake_flags, &rf);
4026 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4028 * The caller holds p::pi_lock if p != current or has preemption
4029 * disabled when p == current.
4031 * The rules of saved_state:
4033 * The related locking code always holds p::pi_lock when updating
4034 * p::saved_state, which means the code is fully serialized in both cases.
4036 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4037 * No other bits set. This allows to distinguish all wakeup scenarios.
4039 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4040 * allows us to prevent early wakeup of tasks before they can be run on
4041 * asymmetric ISA architectures (eg ARMv9).
4043 static __always_inline
4044 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4048 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4049 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4050 state != TASK_RTLOCK_WAIT);
4053 *success = !!(match = __task_state_match(p, state));
4056 * Saved state preserves the task state across blocking on
4057 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4058 * set p::saved_state to TASK_RUNNING, but do not wake the task
4059 * because it waits for a lock wakeup or __thaw_task(). Also
4060 * indicate success because from the regular waker's point of
4061 * view this has succeeded.
4063 * After acquiring the lock the task will restore p::__state
4064 * from p::saved_state which ensures that the regular
4065 * wakeup is not lost. The restore will also set
4066 * p::saved_state to TASK_RUNNING so any further tests will
4067 * not result in false positives vs. @success
4070 p->saved_state = TASK_RUNNING;
4076 * Notes on Program-Order guarantees on SMP systems.
4080 * The basic program-order guarantee on SMP systems is that when a task [t]
4081 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4082 * execution on its new CPU [c1].
4084 * For migration (of runnable tasks) this is provided by the following means:
4086 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4087 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4088 * rq(c1)->lock (if not at the same time, then in that order).
4089 * C) LOCK of the rq(c1)->lock scheduling in task
4091 * Release/acquire chaining guarantees that B happens after A and C after B.
4092 * Note: the CPU doing B need not be c0 or c1
4101 * UNLOCK rq(0)->lock
4103 * LOCK rq(0)->lock // orders against CPU0
4105 * UNLOCK rq(0)->lock
4109 * UNLOCK rq(1)->lock
4111 * LOCK rq(1)->lock // orders against CPU2
4114 * UNLOCK rq(1)->lock
4117 * BLOCKING -- aka. SLEEP + WAKEUP
4119 * For blocking we (obviously) need to provide the same guarantee as for
4120 * migration. However the means are completely different as there is no lock
4121 * chain to provide order. Instead we do:
4123 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4124 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4128 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4130 * LOCK rq(0)->lock LOCK X->pi_lock
4133 * smp_store_release(X->on_cpu, 0);
4135 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4141 * X->state = RUNNING
4142 * UNLOCK rq(2)->lock
4144 * LOCK rq(2)->lock // orders against CPU1
4147 * UNLOCK rq(2)->lock
4150 * UNLOCK rq(0)->lock
4153 * However, for wakeups there is a second guarantee we must provide, namely we
4154 * must ensure that CONDITION=1 done by the caller can not be reordered with
4155 * accesses to the task state; see try_to_wake_up() and set_current_state().
4159 * try_to_wake_up - wake up a thread
4160 * @p: the thread to be awakened
4161 * @state: the mask of task states that can be woken
4162 * @wake_flags: wake modifier flags (WF_*)
4164 * Conceptually does:
4166 * If (@state & @p->state) @p->state = TASK_RUNNING.
4168 * If the task was not queued/runnable, also place it back on a runqueue.
4170 * This function is atomic against schedule() which would dequeue the task.
4172 * It issues a full memory barrier before accessing @p->state, see the comment
4173 * with set_current_state().
4175 * Uses p->pi_lock to serialize against concurrent wake-ups.
4177 * Relies on p->pi_lock stabilizing:
4180 * - p->sched_task_group
4181 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4183 * Tries really hard to only take one task_rq(p)->lock for performance.
4184 * Takes rq->lock in:
4185 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4186 * - ttwu_queue() -- new rq, for enqueue of the task;
4187 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4189 * As a consequence we race really badly with just about everything. See the
4190 * many memory barriers and their comments for details.
4192 * Return: %true if @p->state changes (an actual wakeup was done),
4195 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4198 int cpu, success = 0;
4202 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4203 * == smp_processor_id()'. Together this means we can special
4204 * case the whole 'p->on_rq && ttwu_runnable()' case below
4205 * without taking any locks.
4208 * - we rely on Program-Order guarantees for all the ordering,
4209 * - we're serialized against set_special_state() by virtue of
4210 * it disabling IRQs (this allows not taking ->pi_lock).
4212 if (!ttwu_state_match(p, state, &success))
4215 trace_sched_waking(p);
4221 * If we are going to wake up a thread waiting for CONDITION we
4222 * need to ensure that CONDITION=1 done by the caller can not be
4223 * reordered with p->state check below. This pairs with smp_store_mb()
4224 * in set_current_state() that the waiting thread does.
4226 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4227 smp_mb__after_spinlock();
4228 if (!ttwu_state_match(p, state, &success))
4231 trace_sched_waking(p);
4234 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4235 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4236 * in smp_cond_load_acquire() below.
4238 * sched_ttwu_pending() try_to_wake_up()
4239 * STORE p->on_rq = 1 LOAD p->state
4242 * __schedule() (switch to task 'p')
4243 * LOCK rq->lock smp_rmb();
4244 * smp_mb__after_spinlock();
4248 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4250 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4251 * __schedule(). See the comment for smp_mb__after_spinlock().
4253 * A similar smp_rmb() lives in __task_needs_rq_lock().
4256 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4261 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4262 * possible to, falsely, observe p->on_cpu == 0.
4264 * One must be running (->on_cpu == 1) in order to remove oneself
4265 * from the runqueue.
4267 * __schedule() (switch to task 'p') try_to_wake_up()
4268 * STORE p->on_cpu = 1 LOAD p->on_rq
4271 * __schedule() (put 'p' to sleep)
4272 * LOCK rq->lock smp_rmb();
4273 * smp_mb__after_spinlock();
4274 * STORE p->on_rq = 0 LOAD p->on_cpu
4276 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4277 * __schedule(). See the comment for smp_mb__after_spinlock().
4279 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4280 * schedule()'s deactivate_task() has 'happened' and p will no longer
4281 * care about it's own p->state. See the comment in __schedule().
4283 smp_acquire__after_ctrl_dep();
4286 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4287 * == 0), which means we need to do an enqueue, change p->state to
4288 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4289 * enqueue, such as ttwu_queue_wakelist().
4291 WRITE_ONCE(p->__state, TASK_WAKING);
4294 * If the owning (remote) CPU is still in the middle of schedule() with
4295 * this task as prev, considering queueing p on the remote CPUs wake_list
4296 * which potentially sends an IPI instead of spinning on p->on_cpu to
4297 * let the waker make forward progress. This is safe because IRQs are
4298 * disabled and the IPI will deliver after on_cpu is cleared.
4300 * Ensure we load task_cpu(p) after p->on_cpu:
4302 * set_task_cpu(p, cpu);
4303 * STORE p->cpu = @cpu
4304 * __schedule() (switch to task 'p')
4306 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4307 * STORE p->on_cpu = 1 LOAD p->cpu
4309 * to ensure we observe the correct CPU on which the task is currently
4312 if (smp_load_acquire(&p->on_cpu) &&
4313 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4317 * If the owning (remote) CPU is still in the middle of schedule() with
4318 * this task as prev, wait until it's done referencing the task.
4320 * Pairs with the smp_store_release() in finish_task().
4322 * This ensures that tasks getting woken will be fully ordered against
4323 * their previous state and preserve Program Order.
4325 smp_cond_load_acquire(&p->on_cpu, !VAL);
4327 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4328 if (task_cpu(p) != cpu) {
4330 delayacct_blkio_end(p);
4331 atomic_dec(&task_rq(p)->nr_iowait);
4334 wake_flags |= WF_MIGRATED;
4335 psi_ttwu_dequeue(p);
4336 set_task_cpu(p, cpu);
4340 #endif /* CONFIG_SMP */
4342 ttwu_queue(p, cpu, wake_flags);
4346 ttwu_stat(p, task_cpu(p), wake_flags);
4351 static bool __task_needs_rq_lock(struct task_struct *p)
4353 unsigned int state = READ_ONCE(p->__state);
4356 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4357 * the task is blocked. Make sure to check @state since ttwu() can drop
4358 * locks at the end, see ttwu_queue_wakelist().
4360 if (state == TASK_RUNNING || state == TASK_WAKING)
4364 * Ensure we load p->on_rq after p->__state, otherwise it would be
4365 * possible to, falsely, observe p->on_rq == 0.
4367 * See try_to_wake_up() for a longer comment.
4375 * Ensure the task has finished __schedule() and will not be referenced
4376 * anymore. Again, see try_to_wake_up() for a longer comment.
4379 smp_cond_load_acquire(&p->on_cpu, !VAL);
4386 * task_call_func - Invoke a function on task in fixed state
4387 * @p: Process for which the function is to be invoked, can be @current.
4388 * @func: Function to invoke.
4389 * @arg: Argument to function.
4391 * Fix the task in it's current state by avoiding wakeups and or rq operations
4392 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4393 * to work out what the state is, if required. Given that @func can be invoked
4394 * with a runqueue lock held, it had better be quite lightweight.
4397 * Whatever @func returns
4399 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4401 struct rq *rq = NULL;
4405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4407 if (__task_needs_rq_lock(p))
4408 rq = __task_rq_lock(p, &rf);
4411 * At this point the task is pinned; either:
4412 * - blocked and we're holding off wakeups (pi->lock)
4413 * - woken, and we're holding off enqueue (rq->lock)
4414 * - queued, and we're holding off schedule (rq->lock)
4415 * - running, and we're holding off de-schedule (rq->lock)
4417 * The called function (@func) can use: task_curr(), p->on_rq and
4418 * p->__state to differentiate between these states.
4425 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4430 * cpu_curr_snapshot - Return a snapshot of the currently running task
4431 * @cpu: The CPU on which to snapshot the task.
4433 * Returns the task_struct pointer of the task "currently" running on
4434 * the specified CPU. If the same task is running on that CPU throughout,
4435 * the return value will be a pointer to that task's task_struct structure.
4436 * If the CPU did any context switches even vaguely concurrently with the
4437 * execution of this function, the return value will be a pointer to the
4438 * task_struct structure of a randomly chosen task that was running on
4439 * that CPU somewhere around the time that this function was executing.
4441 * If the specified CPU was offline, the return value is whatever it
4442 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4443 * task, but there is no guarantee. Callers wishing a useful return
4444 * value must take some action to ensure that the specified CPU remains
4445 * online throughout.
4447 * This function executes full memory barriers before and after fetching
4448 * the pointer, which permits the caller to confine this function's fetch
4449 * with respect to the caller's accesses to other shared variables.
4451 struct task_struct *cpu_curr_snapshot(int cpu)
4453 struct task_struct *t;
4455 smp_mb(); /* Pairing determined by caller's synchronization design. */
4456 t = rcu_dereference(cpu_curr(cpu));
4457 smp_mb(); /* Pairing determined by caller's synchronization design. */
4462 * wake_up_process - Wake up a specific process
4463 * @p: The process to be woken up.
4465 * Attempt to wake up the nominated process and move it to the set of runnable
4468 * Return: 1 if the process was woken up, 0 if it was already running.
4470 * This function executes a full memory barrier before accessing the task state.
4472 int wake_up_process(struct task_struct *p)
4474 return try_to_wake_up(p, TASK_NORMAL, 0);
4476 EXPORT_SYMBOL(wake_up_process);
4478 int wake_up_state(struct task_struct *p, unsigned int state)
4480 return try_to_wake_up(p, state, 0);
4484 * Perform scheduler related setup for a newly forked process p.
4485 * p is forked by current.
4487 * __sched_fork() is basic setup used by init_idle() too:
4489 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4494 p->se.exec_start = 0;
4495 p->se.sum_exec_runtime = 0;
4496 p->se.prev_sum_exec_runtime = 0;
4497 p->se.nr_migrations = 0;
4500 p->se.slice = sysctl_sched_base_slice;
4501 INIT_LIST_HEAD(&p->se.group_node);
4503 #ifdef CONFIG_FAIR_GROUP_SCHED
4504 p->se.cfs_rq = NULL;
4507 #ifdef CONFIG_SCHEDSTATS
4508 /* Even if schedstat is disabled, there should not be garbage */
4509 memset(&p->stats, 0, sizeof(p->stats));
4512 RB_CLEAR_NODE(&p->dl.rb_node);
4513 init_dl_task_timer(&p->dl);
4514 init_dl_inactive_task_timer(&p->dl);
4515 __dl_clear_params(p);
4517 INIT_LIST_HEAD(&p->rt.run_list);
4519 p->rt.time_slice = sched_rr_timeslice;
4523 #ifdef CONFIG_PREEMPT_NOTIFIERS
4524 INIT_HLIST_HEAD(&p->preempt_notifiers);
4527 #ifdef CONFIG_COMPACTION
4528 p->capture_control = NULL;
4530 init_numa_balancing(clone_flags, p);
4532 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4533 p->migration_pending = NULL;
4535 init_sched_mm_cid(p);
4538 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4540 #ifdef CONFIG_NUMA_BALANCING
4542 int sysctl_numa_balancing_mode;
4544 static void __set_numabalancing_state(bool enabled)
4547 static_branch_enable(&sched_numa_balancing);
4549 static_branch_disable(&sched_numa_balancing);
4552 void set_numabalancing_state(bool enabled)
4555 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4557 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4558 __set_numabalancing_state(enabled);
4561 #ifdef CONFIG_PROC_SYSCTL
4562 static void reset_memory_tiering(void)
4564 struct pglist_data *pgdat;
4566 for_each_online_pgdat(pgdat) {
4567 pgdat->nbp_threshold = 0;
4568 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4569 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4573 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4574 void *buffer, size_t *lenp, loff_t *ppos)
4578 int state = sysctl_numa_balancing_mode;
4580 if (write && !capable(CAP_SYS_ADMIN))
4585 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4589 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4590 (state & NUMA_BALANCING_MEMORY_TIERING))
4591 reset_memory_tiering();
4592 sysctl_numa_balancing_mode = state;
4593 __set_numabalancing_state(state);
4600 #ifdef CONFIG_SCHEDSTATS
4602 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4604 static void set_schedstats(bool enabled)
4607 static_branch_enable(&sched_schedstats);
4609 static_branch_disable(&sched_schedstats);
4612 void force_schedstat_enabled(void)
4614 if (!schedstat_enabled()) {
4615 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4616 static_branch_enable(&sched_schedstats);
4620 static int __init setup_schedstats(char *str)
4626 if (!strcmp(str, "enable")) {
4627 set_schedstats(true);
4629 } else if (!strcmp(str, "disable")) {
4630 set_schedstats(false);
4635 pr_warn("Unable to parse schedstats=\n");
4639 __setup("schedstats=", setup_schedstats);
4641 #ifdef CONFIG_PROC_SYSCTL
4642 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4643 size_t *lenp, loff_t *ppos)
4647 int state = static_branch_likely(&sched_schedstats);
4649 if (write && !capable(CAP_SYS_ADMIN))
4654 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4658 set_schedstats(state);
4661 #endif /* CONFIG_PROC_SYSCTL */
4662 #endif /* CONFIG_SCHEDSTATS */
4664 #ifdef CONFIG_SYSCTL
4665 static struct ctl_table sched_core_sysctls[] = {
4666 #ifdef CONFIG_SCHEDSTATS
4668 .procname = "sched_schedstats",
4670 .maxlen = sizeof(unsigned int),
4672 .proc_handler = sysctl_schedstats,
4673 .extra1 = SYSCTL_ZERO,
4674 .extra2 = SYSCTL_ONE,
4676 #endif /* CONFIG_SCHEDSTATS */
4677 #ifdef CONFIG_UCLAMP_TASK
4679 .procname = "sched_util_clamp_min",
4680 .data = &sysctl_sched_uclamp_util_min,
4681 .maxlen = sizeof(unsigned int),
4683 .proc_handler = sysctl_sched_uclamp_handler,
4686 .procname = "sched_util_clamp_max",
4687 .data = &sysctl_sched_uclamp_util_max,
4688 .maxlen = sizeof(unsigned int),
4690 .proc_handler = sysctl_sched_uclamp_handler,
4693 .procname = "sched_util_clamp_min_rt_default",
4694 .data = &sysctl_sched_uclamp_util_min_rt_default,
4695 .maxlen = sizeof(unsigned int),
4697 .proc_handler = sysctl_sched_uclamp_handler,
4699 #endif /* CONFIG_UCLAMP_TASK */
4700 #ifdef CONFIG_NUMA_BALANCING
4702 .procname = "numa_balancing",
4703 .data = NULL, /* filled in by handler */
4704 .maxlen = sizeof(unsigned int),
4706 .proc_handler = sysctl_numa_balancing,
4707 .extra1 = SYSCTL_ZERO,
4708 .extra2 = SYSCTL_FOUR,
4710 #endif /* CONFIG_NUMA_BALANCING */
4713 static int __init sched_core_sysctl_init(void)
4715 register_sysctl_init("kernel", sched_core_sysctls);
4718 late_initcall(sched_core_sysctl_init);
4719 #endif /* CONFIG_SYSCTL */
4722 * fork()/clone()-time setup:
4724 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4726 __sched_fork(clone_flags, p);
4728 * We mark the process as NEW here. This guarantees that
4729 * nobody will actually run it, and a signal or other external
4730 * event cannot wake it up and insert it on the runqueue either.
4732 p->__state = TASK_NEW;
4735 * Make sure we do not leak PI boosting priority to the child.
4737 p->prio = current->normal_prio;
4742 * Revert to default priority/policy on fork if requested.
4744 if (unlikely(p->sched_reset_on_fork)) {
4745 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4746 p->policy = SCHED_NORMAL;
4747 p->static_prio = NICE_TO_PRIO(0);
4749 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4750 p->static_prio = NICE_TO_PRIO(0);
4752 p->prio = p->normal_prio = p->static_prio;
4753 set_load_weight(p, false);
4756 * We don't need the reset flag anymore after the fork. It has
4757 * fulfilled its duty:
4759 p->sched_reset_on_fork = 0;
4762 if (dl_prio(p->prio))
4764 else if (rt_prio(p->prio))
4765 p->sched_class = &rt_sched_class;
4767 p->sched_class = &fair_sched_class;
4769 init_entity_runnable_average(&p->se);
4772 #ifdef CONFIG_SCHED_INFO
4773 if (likely(sched_info_on()))
4774 memset(&p->sched_info, 0, sizeof(p->sched_info));
4776 #if defined(CONFIG_SMP)
4779 init_task_preempt_count(p);
4781 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4782 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4787 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4789 unsigned long flags;
4792 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4793 * required yet, but lockdep gets upset if rules are violated.
4795 raw_spin_lock_irqsave(&p->pi_lock, flags);
4796 #ifdef CONFIG_CGROUP_SCHED
4798 struct task_group *tg;
4799 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4800 struct task_group, css);
4801 tg = autogroup_task_group(p, tg);
4802 p->sched_task_group = tg;
4807 * We're setting the CPU for the first time, we don't migrate,
4808 * so use __set_task_cpu().
4810 __set_task_cpu(p, smp_processor_id());
4811 if (p->sched_class->task_fork)
4812 p->sched_class->task_fork(p);
4813 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4816 void sched_post_fork(struct task_struct *p)
4818 uclamp_post_fork(p);
4821 unsigned long to_ratio(u64 period, u64 runtime)
4823 if (runtime == RUNTIME_INF)
4827 * Doing this here saves a lot of checks in all
4828 * the calling paths, and returning zero seems
4829 * safe for them anyway.
4834 return div64_u64(runtime << BW_SHIFT, period);
4838 * wake_up_new_task - wake up a newly created task for the first time.
4840 * This function will do some initial scheduler statistics housekeeping
4841 * that must be done for every newly created context, then puts the task
4842 * on the runqueue and wakes it.
4844 void wake_up_new_task(struct task_struct *p)
4849 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4850 WRITE_ONCE(p->__state, TASK_RUNNING);
4853 * Fork balancing, do it here and not earlier because:
4854 * - cpus_ptr can change in the fork path
4855 * - any previously selected CPU might disappear through hotplug
4857 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4858 * as we're not fully set-up yet.
4860 p->recent_used_cpu = task_cpu(p);
4862 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4864 rq = __task_rq_lock(p, &rf);
4865 update_rq_clock(rq);
4866 post_init_entity_util_avg(p);
4868 activate_task(rq, p, ENQUEUE_NOCLOCK);
4869 trace_sched_wakeup_new(p);
4870 wakeup_preempt(rq, p, WF_FORK);
4872 if (p->sched_class->task_woken) {
4874 * Nothing relies on rq->lock after this, so it's fine to
4877 rq_unpin_lock(rq, &rf);
4878 p->sched_class->task_woken(rq, p);
4879 rq_repin_lock(rq, &rf);
4882 task_rq_unlock(rq, p, &rf);
4885 #ifdef CONFIG_PREEMPT_NOTIFIERS
4887 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4889 void preempt_notifier_inc(void)
4891 static_branch_inc(&preempt_notifier_key);
4893 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4895 void preempt_notifier_dec(void)
4897 static_branch_dec(&preempt_notifier_key);
4899 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4902 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4903 * @notifier: notifier struct to register
4905 void preempt_notifier_register(struct preempt_notifier *notifier)
4907 if (!static_branch_unlikely(&preempt_notifier_key))
4908 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4910 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4912 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4915 * preempt_notifier_unregister - no longer interested in preemption notifications
4916 * @notifier: notifier struct to unregister
4918 * This is *not* safe to call from within a preemption notifier.
4920 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4922 hlist_del(¬ifier->link);
4924 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4926 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4928 struct preempt_notifier *notifier;
4930 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4931 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4934 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4936 if (static_branch_unlikely(&preempt_notifier_key))
4937 __fire_sched_in_preempt_notifiers(curr);
4941 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4942 struct task_struct *next)
4944 struct preempt_notifier *notifier;
4946 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4947 notifier->ops->sched_out(notifier, next);
4950 static __always_inline void
4951 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4952 struct task_struct *next)
4954 if (static_branch_unlikely(&preempt_notifier_key))
4955 __fire_sched_out_preempt_notifiers(curr, next);
4958 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4960 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4965 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4966 struct task_struct *next)
4970 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4972 static inline void prepare_task(struct task_struct *next)
4976 * Claim the task as running, we do this before switching to it
4977 * such that any running task will have this set.
4979 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4980 * its ordering comment.
4982 WRITE_ONCE(next->on_cpu, 1);
4986 static inline void finish_task(struct task_struct *prev)
4990 * This must be the very last reference to @prev from this CPU. After
4991 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4992 * must ensure this doesn't happen until the switch is completely
4995 * In particular, the load of prev->state in finish_task_switch() must
4996 * happen before this.
4998 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5000 smp_store_release(&prev->on_cpu, 0);
5006 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5008 void (*func)(struct rq *rq);
5009 struct balance_callback *next;
5011 lockdep_assert_rq_held(rq);
5014 func = (void (*)(struct rq *))head->func;
5023 static void balance_push(struct rq *rq);
5026 * balance_push_callback is a right abuse of the callback interface and plays
5027 * by significantly different rules.
5029 * Where the normal balance_callback's purpose is to be ran in the same context
5030 * that queued it (only later, when it's safe to drop rq->lock again),
5031 * balance_push_callback is specifically targeted at __schedule().
5033 * This abuse is tolerated because it places all the unlikely/odd cases behind
5034 * a single test, namely: rq->balance_callback == NULL.
5036 struct balance_callback balance_push_callback = {
5038 .func = balance_push,
5041 static inline struct balance_callback *
5042 __splice_balance_callbacks(struct rq *rq, bool split)
5044 struct balance_callback *head = rq->balance_callback;
5049 lockdep_assert_rq_held(rq);
5051 * Must not take balance_push_callback off the list when
5052 * splice_balance_callbacks() and balance_callbacks() are not
5053 * in the same rq->lock section.
5055 * In that case it would be possible for __schedule() to interleave
5056 * and observe the list empty.
5058 if (split && head == &balance_push_callback)
5061 rq->balance_callback = NULL;
5066 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5068 return __splice_balance_callbacks(rq, true);
5071 static void __balance_callbacks(struct rq *rq)
5073 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5076 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5078 unsigned long flags;
5080 if (unlikely(head)) {
5081 raw_spin_rq_lock_irqsave(rq, flags);
5082 do_balance_callbacks(rq, head);
5083 raw_spin_rq_unlock_irqrestore(rq, flags);
5089 static inline void __balance_callbacks(struct rq *rq)
5093 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5098 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5105 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5108 * Since the runqueue lock will be released by the next
5109 * task (which is an invalid locking op but in the case
5110 * of the scheduler it's an obvious special-case), so we
5111 * do an early lockdep release here:
5113 rq_unpin_lock(rq, rf);
5114 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5115 #ifdef CONFIG_DEBUG_SPINLOCK
5116 /* this is a valid case when another task releases the spinlock */
5117 rq_lockp(rq)->owner = next;
5121 static inline void finish_lock_switch(struct rq *rq)
5124 * If we are tracking spinlock dependencies then we have to
5125 * fix up the runqueue lock - which gets 'carried over' from
5126 * prev into current:
5128 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5129 __balance_callbacks(rq);
5130 raw_spin_rq_unlock_irq(rq);
5134 * NOP if the arch has not defined these:
5137 #ifndef prepare_arch_switch
5138 # define prepare_arch_switch(next) do { } while (0)
5141 #ifndef finish_arch_post_lock_switch
5142 # define finish_arch_post_lock_switch() do { } while (0)
5145 static inline void kmap_local_sched_out(void)
5147 #ifdef CONFIG_KMAP_LOCAL
5148 if (unlikely(current->kmap_ctrl.idx))
5149 __kmap_local_sched_out();
5153 static inline void kmap_local_sched_in(void)
5155 #ifdef CONFIG_KMAP_LOCAL
5156 if (unlikely(current->kmap_ctrl.idx))
5157 __kmap_local_sched_in();
5162 * prepare_task_switch - prepare to switch tasks
5163 * @rq: the runqueue preparing to switch
5164 * @prev: the current task that is being switched out
5165 * @next: the task we are going to switch to.
5167 * This is called with the rq lock held and interrupts off. It must
5168 * be paired with a subsequent finish_task_switch after the context
5171 * prepare_task_switch sets up locking and calls architecture specific
5175 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5176 struct task_struct *next)
5178 kcov_prepare_switch(prev);
5179 sched_info_switch(rq, prev, next);
5180 perf_event_task_sched_out(prev, next);
5182 fire_sched_out_preempt_notifiers(prev, next);
5183 kmap_local_sched_out();
5185 prepare_arch_switch(next);
5189 * finish_task_switch - clean up after a task-switch
5190 * @prev: the thread we just switched away from.
5192 * finish_task_switch must be called after the context switch, paired
5193 * with a prepare_task_switch call before the context switch.
5194 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5195 * and do any other architecture-specific cleanup actions.
5197 * Note that we may have delayed dropping an mm in context_switch(). If
5198 * so, we finish that here outside of the runqueue lock. (Doing it
5199 * with the lock held can cause deadlocks; see schedule() for
5202 * The context switch have flipped the stack from under us and restored the
5203 * local variables which were saved when this task called schedule() in the
5204 * past. prev == current is still correct but we need to recalculate this_rq
5205 * because prev may have moved to another CPU.
5207 static struct rq *finish_task_switch(struct task_struct *prev)
5208 __releases(rq->lock)
5210 struct rq *rq = this_rq();
5211 struct mm_struct *mm = rq->prev_mm;
5212 unsigned int prev_state;
5215 * The previous task will have left us with a preempt_count of 2
5216 * because it left us after:
5219 * preempt_disable(); // 1
5221 * raw_spin_lock_irq(&rq->lock) // 2
5223 * Also, see FORK_PREEMPT_COUNT.
5225 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5226 "corrupted preempt_count: %s/%d/0x%x\n",
5227 current->comm, current->pid, preempt_count()))
5228 preempt_count_set(FORK_PREEMPT_COUNT);
5233 * A task struct has one reference for the use as "current".
5234 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5235 * schedule one last time. The schedule call will never return, and
5236 * the scheduled task must drop that reference.
5238 * We must observe prev->state before clearing prev->on_cpu (in
5239 * finish_task), otherwise a concurrent wakeup can get prev
5240 * running on another CPU and we could rave with its RUNNING -> DEAD
5241 * transition, resulting in a double drop.
5243 prev_state = READ_ONCE(prev->__state);
5244 vtime_task_switch(prev);
5245 perf_event_task_sched_in(prev, current);
5247 tick_nohz_task_switch();
5248 finish_lock_switch(rq);
5249 finish_arch_post_lock_switch();
5250 kcov_finish_switch(current);
5252 * kmap_local_sched_out() is invoked with rq::lock held and
5253 * interrupts disabled. There is no requirement for that, but the
5254 * sched out code does not have an interrupt enabled section.
5255 * Restoring the maps on sched in does not require interrupts being
5258 kmap_local_sched_in();
5260 fire_sched_in_preempt_notifiers(current);
5262 * When switching through a kernel thread, the loop in
5263 * membarrier_{private,global}_expedited() may have observed that
5264 * kernel thread and not issued an IPI. It is therefore possible to
5265 * schedule between user->kernel->user threads without passing though
5266 * switch_mm(). Membarrier requires a barrier after storing to
5267 * rq->curr, before returning to userspace, so provide them here:
5269 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5270 * provided by mmdrop_lazy_tlb(),
5271 * - a sync_core for SYNC_CORE.
5274 membarrier_mm_sync_core_before_usermode(mm);
5275 mmdrop_lazy_tlb_sched(mm);
5278 if (unlikely(prev_state == TASK_DEAD)) {
5279 if (prev->sched_class->task_dead)
5280 prev->sched_class->task_dead(prev);
5282 /* Task is done with its stack. */
5283 put_task_stack(prev);
5285 put_task_struct_rcu_user(prev);
5292 * schedule_tail - first thing a freshly forked thread must call.
5293 * @prev: the thread we just switched away from.
5295 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5296 __releases(rq->lock)
5299 * New tasks start with FORK_PREEMPT_COUNT, see there and
5300 * finish_task_switch() for details.
5302 * finish_task_switch() will drop rq->lock() and lower preempt_count
5303 * and the preempt_enable() will end up enabling preemption (on
5304 * PREEMPT_COUNT kernels).
5307 finish_task_switch(prev);
5310 if (current->set_child_tid)
5311 put_user(task_pid_vnr(current), current->set_child_tid);
5313 calculate_sigpending();
5317 * context_switch - switch to the new MM and the new thread's register state.
5319 static __always_inline struct rq *
5320 context_switch(struct rq *rq, struct task_struct *prev,
5321 struct task_struct *next, struct rq_flags *rf)
5323 prepare_task_switch(rq, prev, next);
5326 * For paravirt, this is coupled with an exit in switch_to to
5327 * combine the page table reload and the switch backend into
5330 arch_start_context_switch(prev);
5333 * kernel -> kernel lazy + transfer active
5334 * user -> kernel lazy + mmgrab_lazy_tlb() active
5336 * kernel -> user switch + mmdrop_lazy_tlb() active
5337 * user -> user switch
5339 * switch_mm_cid() needs to be updated if the barriers provided
5340 * by context_switch() are modified.
5342 if (!next->mm) { // to kernel
5343 enter_lazy_tlb(prev->active_mm, next);
5345 next->active_mm = prev->active_mm;
5346 if (prev->mm) // from user
5347 mmgrab_lazy_tlb(prev->active_mm);
5349 prev->active_mm = NULL;
5351 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5353 * sys_membarrier() requires an smp_mb() between setting
5354 * rq->curr / membarrier_switch_mm() and returning to userspace.
5356 * The below provides this either through switch_mm(), or in
5357 * case 'prev->active_mm == next->mm' through
5358 * finish_task_switch()'s mmdrop().
5360 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5361 lru_gen_use_mm(next->mm);
5363 if (!prev->mm) { // from kernel
5364 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5365 rq->prev_mm = prev->active_mm;
5366 prev->active_mm = NULL;
5370 /* switch_mm_cid() requires the memory barriers above. */
5371 switch_mm_cid(rq, prev, next);
5373 prepare_lock_switch(rq, next, rf);
5375 /* Here we just switch the register state and the stack. */
5376 switch_to(prev, next, prev);
5379 return finish_task_switch(prev);
5383 * nr_running and nr_context_switches:
5385 * externally visible scheduler statistics: current number of runnable
5386 * threads, total number of context switches performed since bootup.
5388 unsigned int nr_running(void)
5390 unsigned int i, sum = 0;
5392 for_each_online_cpu(i)
5393 sum += cpu_rq(i)->nr_running;
5399 * Check if only the current task is running on the CPU.
5401 * Caution: this function does not check that the caller has disabled
5402 * preemption, thus the result might have a time-of-check-to-time-of-use
5403 * race. The caller is responsible to use it correctly, for example:
5405 * - from a non-preemptible section (of course)
5407 * - from a thread that is bound to a single CPU
5409 * - in a loop with very short iterations (e.g. a polling loop)
5411 bool single_task_running(void)
5413 return raw_rq()->nr_running == 1;
5415 EXPORT_SYMBOL(single_task_running);
5417 unsigned long long nr_context_switches_cpu(int cpu)
5419 return cpu_rq(cpu)->nr_switches;
5422 unsigned long long nr_context_switches(void)
5425 unsigned long long sum = 0;
5427 for_each_possible_cpu(i)
5428 sum += cpu_rq(i)->nr_switches;
5434 * Consumers of these two interfaces, like for example the cpuidle menu
5435 * governor, are using nonsensical data. Preferring shallow idle state selection
5436 * for a CPU that has IO-wait which might not even end up running the task when
5437 * it does become runnable.
5440 unsigned int nr_iowait_cpu(int cpu)
5442 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5446 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5448 * The idea behind IO-wait account is to account the idle time that we could
5449 * have spend running if it were not for IO. That is, if we were to improve the
5450 * storage performance, we'd have a proportional reduction in IO-wait time.
5452 * This all works nicely on UP, where, when a task blocks on IO, we account
5453 * idle time as IO-wait, because if the storage were faster, it could've been
5454 * running and we'd not be idle.
5456 * This has been extended to SMP, by doing the same for each CPU. This however
5459 * Imagine for instance the case where two tasks block on one CPU, only the one
5460 * CPU will have IO-wait accounted, while the other has regular idle. Even
5461 * though, if the storage were faster, both could've ran at the same time,
5462 * utilising both CPUs.
5464 * This means, that when looking globally, the current IO-wait accounting on
5465 * SMP is a lower bound, by reason of under accounting.
5467 * Worse, since the numbers are provided per CPU, they are sometimes
5468 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5469 * associated with any one particular CPU, it can wake to another CPU than it
5470 * blocked on. This means the per CPU IO-wait number is meaningless.
5472 * Task CPU affinities can make all that even more 'interesting'.
5475 unsigned int nr_iowait(void)
5477 unsigned int i, sum = 0;
5479 for_each_possible_cpu(i)
5480 sum += nr_iowait_cpu(i);
5488 * sched_exec - execve() is a valuable balancing opportunity, because at
5489 * this point the task has the smallest effective memory and cache footprint.
5491 void sched_exec(void)
5493 struct task_struct *p = current;
5494 struct migration_arg arg;
5497 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5498 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5499 if (dest_cpu == smp_processor_id())
5502 if (unlikely(!cpu_active(dest_cpu)))
5505 arg = (struct migration_arg){ p, dest_cpu };
5507 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5512 DEFINE_PER_CPU(struct kernel_stat, kstat);
5513 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5515 EXPORT_PER_CPU_SYMBOL(kstat);
5516 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5519 * The function fair_sched_class.update_curr accesses the struct curr
5520 * and its field curr->exec_start; when called from task_sched_runtime(),
5521 * we observe a high rate of cache misses in practice.
5522 * Prefetching this data results in improved performance.
5524 static inline void prefetch_curr_exec_start(struct task_struct *p)
5526 #ifdef CONFIG_FAIR_GROUP_SCHED
5527 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5529 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5532 prefetch(&curr->exec_start);
5536 * Return accounted runtime for the task.
5537 * In case the task is currently running, return the runtime plus current's
5538 * pending runtime that have not been accounted yet.
5540 unsigned long long task_sched_runtime(struct task_struct *p)
5546 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5548 * 64-bit doesn't need locks to atomically read a 64-bit value.
5549 * So we have a optimization chance when the task's delta_exec is 0.
5550 * Reading ->on_cpu is racy, but this is ok.
5552 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5553 * If we race with it entering CPU, unaccounted time is 0. This is
5554 * indistinguishable from the read occurring a few cycles earlier.
5555 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5556 * been accounted, so we're correct here as well.
5558 if (!p->on_cpu || !task_on_rq_queued(p))
5559 return p->se.sum_exec_runtime;
5562 rq = task_rq_lock(p, &rf);
5564 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5565 * project cycles that may never be accounted to this
5566 * thread, breaking clock_gettime().
5568 if (task_current(rq, p) && task_on_rq_queued(p)) {
5569 prefetch_curr_exec_start(p);
5570 update_rq_clock(rq);
5571 p->sched_class->update_curr(rq);
5573 ns = p->se.sum_exec_runtime;
5574 task_rq_unlock(rq, p, &rf);
5579 #ifdef CONFIG_SCHED_DEBUG
5580 static u64 cpu_resched_latency(struct rq *rq)
5582 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5583 u64 resched_latency, now = rq_clock(rq);
5584 static bool warned_once;
5586 if (sysctl_resched_latency_warn_once && warned_once)
5589 if (!need_resched() || !latency_warn_ms)
5592 if (system_state == SYSTEM_BOOTING)
5595 if (!rq->last_seen_need_resched_ns) {
5596 rq->last_seen_need_resched_ns = now;
5597 rq->ticks_without_resched = 0;
5601 rq->ticks_without_resched++;
5602 resched_latency = now - rq->last_seen_need_resched_ns;
5603 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5608 return resched_latency;
5611 static int __init setup_resched_latency_warn_ms(char *str)
5615 if ((kstrtol(str, 0, &val))) {
5616 pr_warn("Unable to set resched_latency_warn_ms\n");
5620 sysctl_resched_latency_warn_ms = val;
5623 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5625 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5626 #endif /* CONFIG_SCHED_DEBUG */
5629 * This function gets called by the timer code, with HZ frequency.
5630 * We call it with interrupts disabled.
5632 void scheduler_tick(void)
5634 int cpu = smp_processor_id();
5635 struct rq *rq = cpu_rq(cpu);
5636 struct task_struct *curr = rq->curr;
5638 unsigned long thermal_pressure;
5639 u64 resched_latency;
5641 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5642 arch_scale_freq_tick();
5648 update_rq_clock(rq);
5649 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5650 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5651 curr->sched_class->task_tick(rq, curr, 0);
5652 if (sched_feat(LATENCY_WARN))
5653 resched_latency = cpu_resched_latency(rq);
5654 calc_global_load_tick(rq);
5655 sched_core_tick(rq);
5656 task_tick_mm_cid(rq, curr);
5660 if (sched_feat(LATENCY_WARN) && resched_latency)
5661 resched_latency_warn(cpu, resched_latency);
5663 perf_event_task_tick();
5665 if (curr->flags & PF_WQ_WORKER)
5666 wq_worker_tick(curr);
5669 rq->idle_balance = idle_cpu(cpu);
5670 trigger_load_balance(rq);
5674 #ifdef CONFIG_NO_HZ_FULL
5679 struct delayed_work work;
5681 /* Values for ->state, see diagram below. */
5682 #define TICK_SCHED_REMOTE_OFFLINE 0
5683 #define TICK_SCHED_REMOTE_OFFLINING 1
5684 #define TICK_SCHED_REMOTE_RUNNING 2
5687 * State diagram for ->state:
5690 * TICK_SCHED_REMOTE_OFFLINE
5693 * | | sched_tick_remote()
5696 * +--TICK_SCHED_REMOTE_OFFLINING
5699 * sched_tick_start() | | sched_tick_stop()
5702 * TICK_SCHED_REMOTE_RUNNING
5705 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5706 * and sched_tick_start() are happy to leave the state in RUNNING.
5709 static struct tick_work __percpu *tick_work_cpu;
5711 static void sched_tick_remote(struct work_struct *work)
5713 struct delayed_work *dwork = to_delayed_work(work);
5714 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5715 int cpu = twork->cpu;
5716 struct rq *rq = cpu_rq(cpu);
5720 * Handle the tick only if it appears the remote CPU is running in full
5721 * dynticks mode. The check is racy by nature, but missing a tick or
5722 * having one too much is no big deal because the scheduler tick updates
5723 * statistics and checks timeslices in a time-independent way, regardless
5724 * of when exactly it is running.
5726 if (tick_nohz_tick_stopped_cpu(cpu)) {
5727 guard(rq_lock_irq)(rq);
5728 struct task_struct *curr = rq->curr;
5730 if (cpu_online(cpu)) {
5731 update_rq_clock(rq);
5733 if (!is_idle_task(curr)) {
5735 * Make sure the next tick runs within a
5736 * reasonable amount of time.
5738 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5739 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5741 curr->sched_class->task_tick(rq, curr, 0);
5743 calc_load_nohz_remote(rq);
5748 * Run the remote tick once per second (1Hz). This arbitrary
5749 * frequency is large enough to avoid overload but short enough
5750 * to keep scheduler internal stats reasonably up to date. But
5751 * first update state to reflect hotplug activity if required.
5753 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5754 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5755 if (os == TICK_SCHED_REMOTE_RUNNING)
5756 queue_delayed_work(system_unbound_wq, dwork, HZ);
5759 static void sched_tick_start(int cpu)
5762 struct tick_work *twork;
5764 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5767 WARN_ON_ONCE(!tick_work_cpu);
5769 twork = per_cpu_ptr(tick_work_cpu, cpu);
5770 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5771 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5772 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5774 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5775 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5779 #ifdef CONFIG_HOTPLUG_CPU
5780 static void sched_tick_stop(int cpu)
5782 struct tick_work *twork;
5785 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5788 WARN_ON_ONCE(!tick_work_cpu);
5790 twork = per_cpu_ptr(tick_work_cpu, cpu);
5791 /* There cannot be competing actions, but don't rely on stop-machine. */
5792 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5793 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5794 /* Don't cancel, as this would mess up the state machine. */
5796 #endif /* CONFIG_HOTPLUG_CPU */
5798 int __init sched_tick_offload_init(void)
5800 tick_work_cpu = alloc_percpu(struct tick_work);
5801 BUG_ON(!tick_work_cpu);
5805 #else /* !CONFIG_NO_HZ_FULL */
5806 static inline void sched_tick_start(int cpu) { }
5807 static inline void sched_tick_stop(int cpu) { }
5810 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5811 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5813 * If the value passed in is equal to the current preempt count
5814 * then we just disabled preemption. Start timing the latency.
5816 static inline void preempt_latency_start(int val)
5818 if (preempt_count() == val) {
5819 unsigned long ip = get_lock_parent_ip();
5820 #ifdef CONFIG_DEBUG_PREEMPT
5821 current->preempt_disable_ip = ip;
5823 trace_preempt_off(CALLER_ADDR0, ip);
5827 void preempt_count_add(int val)
5829 #ifdef CONFIG_DEBUG_PREEMPT
5833 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5836 __preempt_count_add(val);
5837 #ifdef CONFIG_DEBUG_PREEMPT
5839 * Spinlock count overflowing soon?
5841 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5844 preempt_latency_start(val);
5846 EXPORT_SYMBOL(preempt_count_add);
5847 NOKPROBE_SYMBOL(preempt_count_add);
5850 * If the value passed in equals to the current preempt count
5851 * then we just enabled preemption. Stop timing the latency.
5853 static inline void preempt_latency_stop(int val)
5855 if (preempt_count() == val)
5856 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5859 void preempt_count_sub(int val)
5861 #ifdef CONFIG_DEBUG_PREEMPT
5865 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5868 * Is the spinlock portion underflowing?
5870 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5871 !(preempt_count() & PREEMPT_MASK)))
5875 preempt_latency_stop(val);
5876 __preempt_count_sub(val);
5878 EXPORT_SYMBOL(preempt_count_sub);
5879 NOKPROBE_SYMBOL(preempt_count_sub);
5882 static inline void preempt_latency_start(int val) { }
5883 static inline void preempt_latency_stop(int val) { }
5886 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5888 #ifdef CONFIG_DEBUG_PREEMPT
5889 return p->preempt_disable_ip;
5896 * Print scheduling while atomic bug:
5898 static noinline void __schedule_bug(struct task_struct *prev)
5900 /* Save this before calling printk(), since that will clobber it */
5901 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5903 if (oops_in_progress)
5906 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5907 prev->comm, prev->pid, preempt_count());
5909 debug_show_held_locks(prev);
5911 if (irqs_disabled())
5912 print_irqtrace_events(prev);
5913 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5914 pr_err("Preemption disabled at:");
5915 print_ip_sym(KERN_ERR, preempt_disable_ip);
5917 check_panic_on_warn("scheduling while atomic");
5920 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5924 * Various schedule()-time debugging checks and statistics:
5926 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5928 #ifdef CONFIG_SCHED_STACK_END_CHECK
5929 if (task_stack_end_corrupted(prev))
5930 panic("corrupted stack end detected inside scheduler\n");
5932 if (task_scs_end_corrupted(prev))
5933 panic("corrupted shadow stack detected inside scheduler\n");
5936 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5937 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5938 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5939 prev->comm, prev->pid, prev->non_block_count);
5941 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5945 if (unlikely(in_atomic_preempt_off())) {
5946 __schedule_bug(prev);
5947 preempt_count_set(PREEMPT_DISABLED);
5950 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5952 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5954 schedstat_inc(this_rq()->sched_count);
5957 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5958 struct rq_flags *rf)
5961 const struct sched_class *class;
5963 * We must do the balancing pass before put_prev_task(), such
5964 * that when we release the rq->lock the task is in the same
5965 * state as before we took rq->lock.
5967 * We can terminate the balance pass as soon as we know there is
5968 * a runnable task of @class priority or higher.
5970 for_class_range(class, prev->sched_class, &idle_sched_class) {
5971 if (class->balance(rq, prev, rf))
5976 put_prev_task(rq, prev);
5980 * Pick up the highest-prio task:
5982 static inline struct task_struct *
5983 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5985 const struct sched_class *class;
5986 struct task_struct *p;
5989 * Optimization: we know that if all tasks are in the fair class we can
5990 * call that function directly, but only if the @prev task wasn't of a
5991 * higher scheduling class, because otherwise those lose the
5992 * opportunity to pull in more work from other CPUs.
5994 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5995 rq->nr_running == rq->cfs.h_nr_running)) {
5997 p = pick_next_task_fair(rq, prev, rf);
5998 if (unlikely(p == RETRY_TASK))
6001 /* Assume the next prioritized class is idle_sched_class */
6003 put_prev_task(rq, prev);
6004 p = pick_next_task_idle(rq);
6011 put_prev_task_balance(rq, prev, rf);
6013 for_each_class(class) {
6014 p = class->pick_next_task(rq);
6019 BUG(); /* The idle class should always have a runnable task. */
6022 #ifdef CONFIG_SCHED_CORE
6023 static inline bool is_task_rq_idle(struct task_struct *t)
6025 return (task_rq(t)->idle == t);
6028 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6030 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6033 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6035 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6038 return a->core_cookie == b->core_cookie;
6041 static inline struct task_struct *pick_task(struct rq *rq)
6043 const struct sched_class *class;
6044 struct task_struct *p;
6046 for_each_class(class) {
6047 p = class->pick_task(rq);
6052 BUG(); /* The idle class should always have a runnable task. */
6055 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6057 static void queue_core_balance(struct rq *rq);
6059 static struct task_struct *
6060 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6062 struct task_struct *next, *p, *max = NULL;
6063 const struct cpumask *smt_mask;
6064 bool fi_before = false;
6065 bool core_clock_updated = (rq == rq->core);
6066 unsigned long cookie;
6067 int i, cpu, occ = 0;
6071 if (!sched_core_enabled(rq))
6072 return __pick_next_task(rq, prev, rf);
6076 /* Stopper task is switching into idle, no need core-wide selection. */
6077 if (cpu_is_offline(cpu)) {
6079 * Reset core_pick so that we don't enter the fastpath when
6080 * coming online. core_pick would already be migrated to
6081 * another cpu during offline.
6083 rq->core_pick = NULL;
6084 return __pick_next_task(rq, prev, rf);
6088 * If there were no {en,de}queues since we picked (IOW, the task
6089 * pointers are all still valid), and we haven't scheduled the last
6090 * pick yet, do so now.
6092 * rq->core_pick can be NULL if no selection was made for a CPU because
6093 * it was either offline or went offline during a sibling's core-wide
6094 * selection. In this case, do a core-wide selection.
6096 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6097 rq->core->core_pick_seq != rq->core_sched_seq &&
6099 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6101 next = rq->core_pick;
6103 put_prev_task(rq, prev);
6104 set_next_task(rq, next);
6107 rq->core_pick = NULL;
6111 put_prev_task_balance(rq, prev, rf);
6113 smt_mask = cpu_smt_mask(cpu);
6114 need_sync = !!rq->core->core_cookie;
6117 rq->core->core_cookie = 0UL;
6118 if (rq->core->core_forceidle_count) {
6119 if (!core_clock_updated) {
6120 update_rq_clock(rq->core);
6121 core_clock_updated = true;
6123 sched_core_account_forceidle(rq);
6124 /* reset after accounting force idle */
6125 rq->core->core_forceidle_start = 0;
6126 rq->core->core_forceidle_count = 0;
6127 rq->core->core_forceidle_occupation = 0;
6133 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6135 * @task_seq guards the task state ({en,de}queues)
6136 * @pick_seq is the @task_seq we did a selection on
6137 * @sched_seq is the @pick_seq we scheduled
6139 * However, preemptions can cause multiple picks on the same task set.
6140 * 'Fix' this by also increasing @task_seq for every pick.
6142 rq->core->core_task_seq++;
6145 * Optimize for common case where this CPU has no cookies
6146 * and there are no cookied tasks running on siblings.
6149 next = pick_task(rq);
6150 if (!next->core_cookie) {
6151 rq->core_pick = NULL;
6153 * For robustness, update the min_vruntime_fi for
6154 * unconstrained picks as well.
6156 WARN_ON_ONCE(fi_before);
6157 task_vruntime_update(rq, next, false);
6163 * For each thread: do the regular task pick and find the max prio task
6166 * Tie-break prio towards the current CPU
6168 for_each_cpu_wrap(i, smt_mask, cpu) {
6172 * Current cpu always has its clock updated on entrance to
6173 * pick_next_task(). If the current cpu is not the core,
6174 * the core may also have been updated above.
6176 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6177 update_rq_clock(rq_i);
6179 p = rq_i->core_pick = pick_task(rq_i);
6180 if (!max || prio_less(max, p, fi_before))
6184 cookie = rq->core->core_cookie = max->core_cookie;
6187 * For each thread: try and find a runnable task that matches @max or
6190 for_each_cpu(i, smt_mask) {
6192 p = rq_i->core_pick;
6194 if (!cookie_equals(p, cookie)) {
6197 p = sched_core_find(rq_i, cookie);
6199 p = idle_sched_class.pick_task(rq_i);
6202 rq_i->core_pick = p;
6204 if (p == rq_i->idle) {
6205 if (rq_i->nr_running) {
6206 rq->core->core_forceidle_count++;
6208 rq->core->core_forceidle_seq++;
6215 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6216 rq->core->core_forceidle_start = rq_clock(rq->core);
6217 rq->core->core_forceidle_occupation = occ;
6220 rq->core->core_pick_seq = rq->core->core_task_seq;
6221 next = rq->core_pick;
6222 rq->core_sched_seq = rq->core->core_pick_seq;
6224 /* Something should have been selected for current CPU */
6225 WARN_ON_ONCE(!next);
6228 * Reschedule siblings
6230 * NOTE: L1TF -- at this point we're no longer running the old task and
6231 * sending an IPI (below) ensures the sibling will no longer be running
6232 * their task. This ensures there is no inter-sibling overlap between
6233 * non-matching user state.
6235 for_each_cpu(i, smt_mask) {
6239 * An online sibling might have gone offline before a task
6240 * could be picked for it, or it might be offline but later
6241 * happen to come online, but its too late and nothing was
6242 * picked for it. That's Ok - it will pick tasks for itself,
6245 if (!rq_i->core_pick)
6249 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6250 * fi_before fi update?
6256 if (!(fi_before && rq->core->core_forceidle_count))
6257 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6259 rq_i->core_pick->core_occupation = occ;
6262 rq_i->core_pick = NULL;
6266 /* Did we break L1TF mitigation requirements? */
6267 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6269 if (rq_i->curr == rq_i->core_pick) {
6270 rq_i->core_pick = NULL;
6278 set_next_task(rq, next);
6280 if (rq->core->core_forceidle_count && next == rq->idle)
6281 queue_core_balance(rq);
6286 static bool try_steal_cookie(int this, int that)
6288 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6289 struct task_struct *p;
6290 unsigned long cookie;
6291 bool success = false;
6294 guard(double_rq_lock)(dst, src);
6296 cookie = dst->core->core_cookie;
6300 if (dst->curr != dst->idle)
6303 p = sched_core_find(src, cookie);
6308 if (p == src->core_pick || p == src->curr)
6311 if (!is_cpu_allowed(p, this))
6314 if (p->core_occupation > dst->idle->core_occupation)
6317 * sched_core_find() and sched_core_next() will ensure
6318 * that task @p is not throttled now, we also need to
6319 * check whether the runqueue of the destination CPU is
6322 if (sched_task_is_throttled(p, this))
6325 deactivate_task(src, p, 0);
6326 set_task_cpu(p, this);
6327 activate_task(dst, p, 0);
6335 p = sched_core_next(p, cookie);
6341 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6345 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6352 if (try_steal_cookie(cpu, i))
6359 static void sched_core_balance(struct rq *rq)
6361 struct sched_domain *sd;
6362 int cpu = cpu_of(rq);
6367 raw_spin_rq_unlock_irq(rq);
6368 for_each_domain(cpu, sd) {
6372 if (steal_cookie_task(cpu, sd))
6375 raw_spin_rq_lock_irq(rq);
6378 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6380 static void queue_core_balance(struct rq *rq)
6382 if (!sched_core_enabled(rq))
6385 if (!rq->core->core_cookie)
6388 if (!rq->nr_running) /* not forced idle */
6391 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6394 DEFINE_LOCK_GUARD_1(core_lock, int,
6395 sched_core_lock(*_T->lock, &_T->flags),
6396 sched_core_unlock(*_T->lock, &_T->flags),
6397 unsigned long flags)
6399 static void sched_core_cpu_starting(unsigned int cpu)
6401 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6402 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6405 guard(core_lock)(&cpu);
6407 WARN_ON_ONCE(rq->core != rq);
6409 /* if we're the first, we'll be our own leader */
6410 if (cpumask_weight(smt_mask) == 1)
6413 /* find the leader */
6414 for_each_cpu(t, smt_mask) {
6418 if (rq->core == rq) {
6424 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6427 /* install and validate core_rq */
6428 for_each_cpu(t, smt_mask) {
6434 WARN_ON_ONCE(rq->core != core_rq);
6438 static void sched_core_cpu_deactivate(unsigned int cpu)
6440 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6441 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6444 guard(core_lock)(&cpu);
6446 /* if we're the last man standing, nothing to do */
6447 if (cpumask_weight(smt_mask) == 1) {
6448 WARN_ON_ONCE(rq->core != rq);
6452 /* if we're not the leader, nothing to do */
6456 /* find a new leader */
6457 for_each_cpu(t, smt_mask) {
6460 core_rq = cpu_rq(t);
6464 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6467 /* copy the shared state to the new leader */
6468 core_rq->core_task_seq = rq->core_task_seq;
6469 core_rq->core_pick_seq = rq->core_pick_seq;
6470 core_rq->core_cookie = rq->core_cookie;
6471 core_rq->core_forceidle_count = rq->core_forceidle_count;
6472 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6473 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6476 * Accounting edge for forced idle is handled in pick_next_task().
6477 * Don't need another one here, since the hotplug thread shouldn't
6480 core_rq->core_forceidle_start = 0;
6482 /* install new leader */
6483 for_each_cpu(t, smt_mask) {
6489 static inline void sched_core_cpu_dying(unsigned int cpu)
6491 struct rq *rq = cpu_rq(cpu);
6497 #else /* !CONFIG_SCHED_CORE */
6499 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6500 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6501 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6503 static struct task_struct *
6504 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6506 return __pick_next_task(rq, prev, rf);
6509 #endif /* CONFIG_SCHED_CORE */
6512 * Constants for the sched_mode argument of __schedule().
6514 * The mode argument allows RT enabled kernels to differentiate a
6515 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6516 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6517 * optimize the AND operation out and just check for zero.
6520 #define SM_PREEMPT 0x1
6521 #define SM_RTLOCK_WAIT 0x2
6523 #ifndef CONFIG_PREEMPT_RT
6524 # define SM_MASK_PREEMPT (~0U)
6526 # define SM_MASK_PREEMPT SM_PREEMPT
6530 * __schedule() is the main scheduler function.
6532 * The main means of driving the scheduler and thus entering this function are:
6534 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6536 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6537 * paths. For example, see arch/x86/entry_64.S.
6539 * To drive preemption between tasks, the scheduler sets the flag in timer
6540 * interrupt handler scheduler_tick().
6542 * 3. Wakeups don't really cause entry into schedule(). They add a
6543 * task to the run-queue and that's it.
6545 * Now, if the new task added to the run-queue preempts the current
6546 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6547 * called on the nearest possible occasion:
6549 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6551 * - in syscall or exception context, at the next outmost
6552 * preempt_enable(). (this might be as soon as the wake_up()'s
6555 * - in IRQ context, return from interrupt-handler to
6556 * preemptible context
6558 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6561 * - cond_resched() call
6562 * - explicit schedule() call
6563 * - return from syscall or exception to user-space
6564 * - return from interrupt-handler to user-space
6566 * WARNING: must be called with preemption disabled!
6568 static void __sched notrace __schedule(unsigned int sched_mode)
6570 struct task_struct *prev, *next;
6571 unsigned long *switch_count;
6572 unsigned long prev_state;
6577 cpu = smp_processor_id();
6581 schedule_debug(prev, !!sched_mode);
6583 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6586 local_irq_disable();
6587 rcu_note_context_switch(!!sched_mode);
6590 * Make sure that signal_pending_state()->signal_pending() below
6591 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6592 * done by the caller to avoid the race with signal_wake_up():
6594 * __set_current_state(@state) signal_wake_up()
6595 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6596 * wake_up_state(p, state)
6597 * LOCK rq->lock LOCK p->pi_state
6598 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6599 * if (signal_pending_state()) if (p->state & @state)
6601 * Also, the membarrier system call requires a full memory barrier
6602 * after coming from user-space, before storing to rq->curr.
6605 smp_mb__after_spinlock();
6607 /* Promote REQ to ACT */
6608 rq->clock_update_flags <<= 1;
6609 update_rq_clock(rq);
6610 rq->clock_update_flags = RQCF_UPDATED;
6612 switch_count = &prev->nivcsw;
6615 * We must load prev->state once (task_struct::state is volatile), such
6616 * that we form a control dependency vs deactivate_task() below.
6618 prev_state = READ_ONCE(prev->__state);
6619 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6620 if (signal_pending_state(prev_state, prev)) {
6621 WRITE_ONCE(prev->__state, TASK_RUNNING);
6623 prev->sched_contributes_to_load =
6624 (prev_state & TASK_UNINTERRUPTIBLE) &&
6625 !(prev_state & TASK_NOLOAD) &&
6626 !(prev_state & TASK_FROZEN);
6628 if (prev->sched_contributes_to_load)
6629 rq->nr_uninterruptible++;
6632 * __schedule() ttwu()
6633 * prev_state = prev->state; if (p->on_rq && ...)
6634 * if (prev_state) goto out;
6635 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6636 * p->state = TASK_WAKING
6638 * Where __schedule() and ttwu() have matching control dependencies.
6640 * After this, schedule() must not care about p->state any more.
6642 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6644 if (prev->in_iowait) {
6645 atomic_inc(&rq->nr_iowait);
6646 delayacct_blkio_start();
6649 switch_count = &prev->nvcsw;
6652 next = pick_next_task(rq, prev, &rf);
6653 clear_tsk_need_resched(prev);
6654 clear_preempt_need_resched();
6655 #ifdef CONFIG_SCHED_DEBUG
6656 rq->last_seen_need_resched_ns = 0;
6659 if (likely(prev != next)) {
6662 * RCU users of rcu_dereference(rq->curr) may not see
6663 * changes to task_struct made by pick_next_task().
6665 RCU_INIT_POINTER(rq->curr, next);
6667 * The membarrier system call requires each architecture
6668 * to have a full memory barrier after updating
6669 * rq->curr, before returning to user-space.
6671 * Here are the schemes providing that barrier on the
6672 * various architectures:
6673 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6674 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6675 * - finish_lock_switch() for weakly-ordered
6676 * architectures where spin_unlock is a full barrier,
6677 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6678 * is a RELEASE barrier),
6682 migrate_disable_switch(rq, prev);
6683 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6685 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6687 /* Also unlocks the rq: */
6688 rq = context_switch(rq, prev, next, &rf);
6690 rq_unpin_lock(rq, &rf);
6691 __balance_callbacks(rq);
6692 raw_spin_rq_unlock_irq(rq);
6696 void __noreturn do_task_dead(void)
6698 /* Causes final put_task_struct in finish_task_switch(): */
6699 set_special_state(TASK_DEAD);
6701 /* Tell freezer to ignore us: */
6702 current->flags |= PF_NOFREEZE;
6704 __schedule(SM_NONE);
6707 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6712 static inline void sched_submit_work(struct task_struct *tsk)
6714 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6715 unsigned int task_flags;
6718 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6719 * will use a blocking primitive -- which would lead to recursion.
6721 lock_map_acquire_try(&sched_map);
6723 task_flags = tsk->flags;
6725 * If a worker goes to sleep, notify and ask workqueue whether it
6726 * wants to wake up a task to maintain concurrency.
6728 if (task_flags & PF_WQ_WORKER)
6729 wq_worker_sleeping(tsk);
6730 else if (task_flags & PF_IO_WORKER)
6731 io_wq_worker_sleeping(tsk);
6734 * spinlock and rwlock must not flush block requests. This will
6735 * deadlock if the callback attempts to acquire a lock which is
6738 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6741 * If we are going to sleep and we have plugged IO queued,
6742 * make sure to submit it to avoid deadlocks.
6744 blk_flush_plug(tsk->plug, true);
6746 lock_map_release(&sched_map);
6749 static void sched_update_worker(struct task_struct *tsk)
6751 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6752 if (tsk->flags & PF_WQ_WORKER)
6753 wq_worker_running(tsk);
6755 io_wq_worker_running(tsk);
6759 static __always_inline void __schedule_loop(unsigned int sched_mode)
6763 __schedule(sched_mode);
6764 sched_preempt_enable_no_resched();
6765 } while (need_resched());
6768 asmlinkage __visible void __sched schedule(void)
6770 struct task_struct *tsk = current;
6772 #ifdef CONFIG_RT_MUTEXES
6773 lockdep_assert(!tsk->sched_rt_mutex);
6776 if (!task_is_running(tsk))
6777 sched_submit_work(tsk);
6778 __schedule_loop(SM_NONE);
6779 sched_update_worker(tsk);
6781 EXPORT_SYMBOL(schedule);
6784 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6785 * state (have scheduled out non-voluntarily) by making sure that all
6786 * tasks have either left the run queue or have gone into user space.
6787 * As idle tasks do not do either, they must not ever be preempted
6788 * (schedule out non-voluntarily).
6790 * schedule_idle() is similar to schedule_preempt_disable() except that it
6791 * never enables preemption because it does not call sched_submit_work().
6793 void __sched schedule_idle(void)
6796 * As this skips calling sched_submit_work(), which the idle task does
6797 * regardless because that function is a nop when the task is in a
6798 * TASK_RUNNING state, make sure this isn't used someplace that the
6799 * current task can be in any other state. Note, idle is always in the
6800 * TASK_RUNNING state.
6802 WARN_ON_ONCE(current->__state);
6804 __schedule(SM_NONE);
6805 } while (need_resched());
6808 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6809 asmlinkage __visible void __sched schedule_user(void)
6812 * If we come here after a random call to set_need_resched(),
6813 * or we have been woken up remotely but the IPI has not yet arrived,
6814 * we haven't yet exited the RCU idle mode. Do it here manually until
6815 * we find a better solution.
6817 * NB: There are buggy callers of this function. Ideally we
6818 * should warn if prev_state != CONTEXT_USER, but that will trigger
6819 * too frequently to make sense yet.
6821 enum ctx_state prev_state = exception_enter();
6823 exception_exit(prev_state);
6828 * schedule_preempt_disabled - called with preemption disabled
6830 * Returns with preemption disabled. Note: preempt_count must be 1
6832 void __sched schedule_preempt_disabled(void)
6834 sched_preempt_enable_no_resched();
6839 #ifdef CONFIG_PREEMPT_RT
6840 void __sched notrace schedule_rtlock(void)
6842 __schedule_loop(SM_RTLOCK_WAIT);
6844 NOKPROBE_SYMBOL(schedule_rtlock);
6847 static void __sched notrace preempt_schedule_common(void)
6851 * Because the function tracer can trace preempt_count_sub()
6852 * and it also uses preempt_enable/disable_notrace(), if
6853 * NEED_RESCHED is set, the preempt_enable_notrace() called
6854 * by the function tracer will call this function again and
6855 * cause infinite recursion.
6857 * Preemption must be disabled here before the function
6858 * tracer can trace. Break up preempt_disable() into two
6859 * calls. One to disable preemption without fear of being
6860 * traced. The other to still record the preemption latency,
6861 * which can also be traced by the function tracer.
6863 preempt_disable_notrace();
6864 preempt_latency_start(1);
6865 __schedule(SM_PREEMPT);
6866 preempt_latency_stop(1);
6867 preempt_enable_no_resched_notrace();
6870 * Check again in case we missed a preemption opportunity
6871 * between schedule and now.
6873 } while (need_resched());
6876 #ifdef CONFIG_PREEMPTION
6878 * This is the entry point to schedule() from in-kernel preemption
6879 * off of preempt_enable.
6881 asmlinkage __visible void __sched notrace preempt_schedule(void)
6884 * If there is a non-zero preempt_count or interrupts are disabled,
6885 * we do not want to preempt the current task. Just return..
6887 if (likely(!preemptible()))
6889 preempt_schedule_common();
6891 NOKPROBE_SYMBOL(preempt_schedule);
6892 EXPORT_SYMBOL(preempt_schedule);
6894 #ifdef CONFIG_PREEMPT_DYNAMIC
6895 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6896 #ifndef preempt_schedule_dynamic_enabled
6897 #define preempt_schedule_dynamic_enabled preempt_schedule
6898 #define preempt_schedule_dynamic_disabled NULL
6900 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6901 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6902 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6903 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6904 void __sched notrace dynamic_preempt_schedule(void)
6906 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6910 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6911 EXPORT_SYMBOL(dynamic_preempt_schedule);
6916 * preempt_schedule_notrace - preempt_schedule called by tracing
6918 * The tracing infrastructure uses preempt_enable_notrace to prevent
6919 * recursion and tracing preempt enabling caused by the tracing
6920 * infrastructure itself. But as tracing can happen in areas coming
6921 * from userspace or just about to enter userspace, a preempt enable
6922 * can occur before user_exit() is called. This will cause the scheduler
6923 * to be called when the system is still in usermode.
6925 * To prevent this, the preempt_enable_notrace will use this function
6926 * instead of preempt_schedule() to exit user context if needed before
6927 * calling the scheduler.
6929 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6931 enum ctx_state prev_ctx;
6933 if (likely(!preemptible()))
6938 * Because the function tracer can trace preempt_count_sub()
6939 * and it also uses preempt_enable/disable_notrace(), if
6940 * NEED_RESCHED is set, the preempt_enable_notrace() called
6941 * by the function tracer will call this function again and
6942 * cause infinite recursion.
6944 * Preemption must be disabled here before the function
6945 * tracer can trace. Break up preempt_disable() into two
6946 * calls. One to disable preemption without fear of being
6947 * traced. The other to still record the preemption latency,
6948 * which can also be traced by the function tracer.
6950 preempt_disable_notrace();
6951 preempt_latency_start(1);
6953 * Needs preempt disabled in case user_exit() is traced
6954 * and the tracer calls preempt_enable_notrace() causing
6955 * an infinite recursion.
6957 prev_ctx = exception_enter();
6958 __schedule(SM_PREEMPT);
6959 exception_exit(prev_ctx);
6961 preempt_latency_stop(1);
6962 preempt_enable_no_resched_notrace();
6963 } while (need_resched());
6965 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6967 #ifdef CONFIG_PREEMPT_DYNAMIC
6968 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6969 #ifndef preempt_schedule_notrace_dynamic_enabled
6970 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6971 #define preempt_schedule_notrace_dynamic_disabled NULL
6973 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6974 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6975 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6976 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6977 void __sched notrace dynamic_preempt_schedule_notrace(void)
6979 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6981 preempt_schedule_notrace();
6983 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6984 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6988 #endif /* CONFIG_PREEMPTION */
6991 * This is the entry point to schedule() from kernel preemption
6992 * off of irq context.
6993 * Note, that this is called and return with irqs disabled. This will
6994 * protect us against recursive calling from irq.
6996 asmlinkage __visible void __sched preempt_schedule_irq(void)
6998 enum ctx_state prev_state;
7000 /* Catch callers which need to be fixed */
7001 BUG_ON(preempt_count() || !irqs_disabled());
7003 prev_state = exception_enter();
7008 __schedule(SM_PREEMPT);
7009 local_irq_disable();
7010 sched_preempt_enable_no_resched();
7011 } while (need_resched());
7013 exception_exit(prev_state);
7016 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7019 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7020 return try_to_wake_up(curr->private, mode, wake_flags);
7022 EXPORT_SYMBOL(default_wake_function);
7024 static void __setscheduler_prio(struct task_struct *p, int prio)
7027 p->sched_class = &dl_sched_class;
7028 else if (rt_prio(prio))
7029 p->sched_class = &rt_sched_class;
7031 p->sched_class = &fair_sched_class;
7036 #ifdef CONFIG_RT_MUTEXES
7039 * Would be more useful with typeof()/auto_type but they don't mix with
7040 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7041 * name such that if someone were to implement this function we get to compare
7044 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7046 void rt_mutex_pre_schedule(void)
7048 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7049 sched_submit_work(current);
7052 void rt_mutex_schedule(void)
7054 lockdep_assert(current->sched_rt_mutex);
7055 __schedule_loop(SM_NONE);
7058 void rt_mutex_post_schedule(void)
7060 sched_update_worker(current);
7061 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7064 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7067 prio = min(prio, pi_task->prio);
7072 static inline int rt_effective_prio(struct task_struct *p, int prio)
7074 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7076 return __rt_effective_prio(pi_task, prio);
7080 * rt_mutex_setprio - set the current priority of a task
7082 * @pi_task: donor task
7084 * This function changes the 'effective' priority of a task. It does
7085 * not touch ->normal_prio like __setscheduler().
7087 * Used by the rt_mutex code to implement priority inheritance
7088 * logic. Call site only calls if the priority of the task changed.
7090 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7092 int prio, oldprio, queued, running, queue_flag =
7093 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7094 const struct sched_class *prev_class;
7098 /* XXX used to be waiter->prio, not waiter->task->prio */
7099 prio = __rt_effective_prio(pi_task, p->normal_prio);
7102 * If nothing changed; bail early.
7104 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7107 rq = __task_rq_lock(p, &rf);
7108 update_rq_clock(rq);
7110 * Set under pi_lock && rq->lock, such that the value can be used under
7113 * Note that there is loads of tricky to make this pointer cache work
7114 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7115 * ensure a task is de-boosted (pi_task is set to NULL) before the
7116 * task is allowed to run again (and can exit). This ensures the pointer
7117 * points to a blocked task -- which guarantees the task is present.
7119 p->pi_top_task = pi_task;
7122 * For FIFO/RR we only need to set prio, if that matches we're done.
7124 if (prio == p->prio && !dl_prio(prio))
7128 * Idle task boosting is a nono in general. There is one
7129 * exception, when PREEMPT_RT and NOHZ is active:
7131 * The idle task calls get_next_timer_interrupt() and holds
7132 * the timer wheel base->lock on the CPU and another CPU wants
7133 * to access the timer (probably to cancel it). We can safely
7134 * ignore the boosting request, as the idle CPU runs this code
7135 * with interrupts disabled and will complete the lock
7136 * protected section without being interrupted. So there is no
7137 * real need to boost.
7139 if (unlikely(p == rq->idle)) {
7140 WARN_ON(p != rq->curr);
7141 WARN_ON(p->pi_blocked_on);
7145 trace_sched_pi_setprio(p, pi_task);
7148 if (oldprio == prio)
7149 queue_flag &= ~DEQUEUE_MOVE;
7151 prev_class = p->sched_class;
7152 queued = task_on_rq_queued(p);
7153 running = task_current(rq, p);
7155 dequeue_task(rq, p, queue_flag);
7157 put_prev_task(rq, p);
7160 * Boosting condition are:
7161 * 1. -rt task is running and holds mutex A
7162 * --> -dl task blocks on mutex A
7164 * 2. -dl task is running and holds mutex A
7165 * --> -dl task blocks on mutex A and could preempt the
7168 if (dl_prio(prio)) {
7169 if (!dl_prio(p->normal_prio) ||
7170 (pi_task && dl_prio(pi_task->prio) &&
7171 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7172 p->dl.pi_se = pi_task->dl.pi_se;
7173 queue_flag |= ENQUEUE_REPLENISH;
7175 p->dl.pi_se = &p->dl;
7177 } else if (rt_prio(prio)) {
7178 if (dl_prio(oldprio))
7179 p->dl.pi_se = &p->dl;
7181 queue_flag |= ENQUEUE_HEAD;
7183 if (dl_prio(oldprio))
7184 p->dl.pi_se = &p->dl;
7185 if (rt_prio(oldprio))
7189 __setscheduler_prio(p, prio);
7192 enqueue_task(rq, p, queue_flag);
7194 set_next_task(rq, p);
7196 check_class_changed(rq, p, prev_class, oldprio);
7198 /* Avoid rq from going away on us: */
7201 rq_unpin_lock(rq, &rf);
7202 __balance_callbacks(rq);
7203 raw_spin_rq_unlock(rq);
7208 static inline int rt_effective_prio(struct task_struct *p, int prio)
7214 void set_user_nice(struct task_struct *p, long nice)
7216 bool queued, running;
7220 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7223 * We have to be careful, if called from sys_setpriority(),
7224 * the task might be in the middle of scheduling on another CPU.
7226 CLASS(task_rq_lock, rq_guard)(p);
7229 update_rq_clock(rq);
7232 * The RT priorities are set via sched_setscheduler(), but we still
7233 * allow the 'normal' nice value to be set - but as expected
7234 * it won't have any effect on scheduling until the task is
7235 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7237 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7238 p->static_prio = NICE_TO_PRIO(nice);
7242 queued = task_on_rq_queued(p);
7243 running = task_current(rq, p);
7245 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7247 put_prev_task(rq, p);
7249 p->static_prio = NICE_TO_PRIO(nice);
7250 set_load_weight(p, true);
7252 p->prio = effective_prio(p);
7255 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7257 set_next_task(rq, p);
7260 * If the task increased its priority or is running and
7261 * lowered its priority, then reschedule its CPU:
7263 p->sched_class->prio_changed(rq, p, old_prio);
7265 EXPORT_SYMBOL(set_user_nice);
7268 * is_nice_reduction - check if nice value is an actual reduction
7270 * Similar to can_nice() but does not perform a capability check.
7275 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7277 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7278 int nice_rlim = nice_to_rlimit(nice);
7280 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7284 * can_nice - check if a task can reduce its nice value
7288 int can_nice(const struct task_struct *p, const int nice)
7290 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7293 #ifdef __ARCH_WANT_SYS_NICE
7296 * sys_nice - change the priority of the current process.
7297 * @increment: priority increment
7299 * sys_setpriority is a more generic, but much slower function that
7300 * does similar things.
7302 SYSCALL_DEFINE1(nice, int, increment)
7307 * Setpriority might change our priority at the same moment.
7308 * We don't have to worry. Conceptually one call occurs first
7309 * and we have a single winner.
7311 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7312 nice = task_nice(current) + increment;
7314 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7315 if (increment < 0 && !can_nice(current, nice))
7318 retval = security_task_setnice(current, nice);
7322 set_user_nice(current, nice);
7329 * task_prio - return the priority value of a given task.
7330 * @p: the task in question.
7332 * Return: The priority value as seen by users in /proc.
7334 * sched policy return value kernel prio user prio/nice
7336 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7337 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7338 * deadline -101 -1 0
7340 int task_prio(const struct task_struct *p)
7342 return p->prio - MAX_RT_PRIO;
7346 * idle_cpu - is a given CPU idle currently?
7347 * @cpu: the processor in question.
7349 * Return: 1 if the CPU is currently idle. 0 otherwise.
7351 int idle_cpu(int cpu)
7353 struct rq *rq = cpu_rq(cpu);
7355 if (rq->curr != rq->idle)
7362 if (rq->ttwu_pending)
7370 * available_idle_cpu - is a given CPU idle for enqueuing work.
7371 * @cpu: the CPU in question.
7373 * Return: 1 if the CPU is currently idle. 0 otherwise.
7375 int available_idle_cpu(int cpu)
7380 if (vcpu_is_preempted(cpu))
7387 * idle_task - return the idle task for a given CPU.
7388 * @cpu: the processor in question.
7390 * Return: The idle task for the CPU @cpu.
7392 struct task_struct *idle_task(int cpu)
7394 return cpu_rq(cpu)->idle;
7397 #ifdef CONFIG_SCHED_CORE
7398 int sched_core_idle_cpu(int cpu)
7400 struct rq *rq = cpu_rq(cpu);
7402 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7405 return idle_cpu(cpu);
7412 * This function computes an effective utilization for the given CPU, to be
7413 * used for frequency selection given the linear relation: f = u * f_max.
7415 * The scheduler tracks the following metrics:
7417 * cpu_util_{cfs,rt,dl,irq}()
7420 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7421 * synchronized windows and are thus directly comparable.
7423 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7424 * which excludes things like IRQ and steal-time. These latter are then accrued
7425 * in the irq utilization.
7427 * The DL bandwidth number otoh is not a measured metric but a value computed
7428 * based on the task model parameters and gives the minimal utilization
7429 * required to meet deadlines.
7431 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7432 enum cpu_util_type type,
7433 struct task_struct *p)
7435 unsigned long dl_util, util, irq, max;
7436 struct rq *rq = cpu_rq(cpu);
7438 max = arch_scale_cpu_capacity(cpu);
7440 if (!uclamp_is_used() &&
7441 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7446 * Early check to see if IRQ/steal time saturates the CPU, can be
7447 * because of inaccuracies in how we track these -- see
7448 * update_irq_load_avg().
7450 irq = cpu_util_irq(rq);
7451 if (unlikely(irq >= max))
7455 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7456 * CFS tasks and we use the same metric to track the effective
7457 * utilization (PELT windows are synchronized) we can directly add them
7458 * to obtain the CPU's actual utilization.
7460 * CFS and RT utilization can be boosted or capped, depending on
7461 * utilization clamp constraints requested by currently RUNNABLE
7463 * When there are no CFS RUNNABLE tasks, clamps are released and
7464 * frequency will be gracefully reduced with the utilization decay.
7466 util = util_cfs + cpu_util_rt(rq);
7467 if (type == FREQUENCY_UTIL)
7468 util = uclamp_rq_util_with(rq, util, p);
7470 dl_util = cpu_util_dl(rq);
7473 * For frequency selection we do not make cpu_util_dl() a permanent part
7474 * of this sum because we want to use cpu_bw_dl() later on, but we need
7475 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7476 * that we select f_max when there is no idle time.
7478 * NOTE: numerical errors or stop class might cause us to not quite hit
7479 * saturation when we should -- something for later.
7481 if (util + dl_util >= max)
7485 * OTOH, for energy computation we need the estimated running time, so
7486 * include util_dl and ignore dl_bw.
7488 if (type == ENERGY_UTIL)
7492 * There is still idle time; further improve the number by using the
7493 * irq metric. Because IRQ/steal time is hidden from the task clock we
7494 * need to scale the task numbers:
7497 * U' = irq + --------- * U
7500 util = scale_irq_capacity(util, irq, max);
7504 * Bandwidth required by DEADLINE must always be granted while, for
7505 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7506 * to gracefully reduce the frequency when no tasks show up for longer
7509 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7510 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7511 * an interface. So, we only do the latter for now.
7513 if (type == FREQUENCY_UTIL)
7514 util += cpu_bw_dl(rq);
7516 return min(max, util);
7519 unsigned long sched_cpu_util(int cpu)
7521 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7523 #endif /* CONFIG_SMP */
7526 * find_process_by_pid - find a process with a matching PID value.
7527 * @pid: the pid in question.
7529 * The task of @pid, if found. %NULL otherwise.
7531 static struct task_struct *find_process_by_pid(pid_t pid)
7533 return pid ? find_task_by_vpid(pid) : current;
7536 static struct task_struct *find_get_task(pid_t pid)
7538 struct task_struct *p;
7541 p = find_process_by_pid(pid);
7548 DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7549 find_get_task(pid), pid_t pid)
7552 * sched_setparam() passes in -1 for its policy, to let the functions
7553 * it calls know not to change it.
7555 #define SETPARAM_POLICY -1
7557 static void __setscheduler_params(struct task_struct *p,
7558 const struct sched_attr *attr)
7560 int policy = attr->sched_policy;
7562 if (policy == SETPARAM_POLICY)
7567 if (dl_policy(policy))
7568 __setparam_dl(p, attr);
7569 else if (fair_policy(policy))
7570 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7573 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7574 * !rt_policy. Always setting this ensures that things like
7575 * getparam()/getattr() don't report silly values for !rt tasks.
7577 p->rt_priority = attr->sched_priority;
7578 p->normal_prio = normal_prio(p);
7579 set_load_weight(p, true);
7583 * Check the target process has a UID that matches the current process's:
7585 static bool check_same_owner(struct task_struct *p)
7587 const struct cred *cred = current_cred(), *pcred;
7590 pcred = __task_cred(p);
7591 return (uid_eq(cred->euid, pcred->euid) ||
7592 uid_eq(cred->euid, pcred->uid));
7596 * Allow unprivileged RT tasks to decrease priority.
7597 * Only issue a capable test if needed and only once to avoid an audit
7598 * event on permitted non-privileged operations:
7600 static int user_check_sched_setscheduler(struct task_struct *p,
7601 const struct sched_attr *attr,
7602 int policy, int reset_on_fork)
7604 if (fair_policy(policy)) {
7605 if (attr->sched_nice < task_nice(p) &&
7606 !is_nice_reduction(p, attr->sched_nice))
7610 if (rt_policy(policy)) {
7611 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7613 /* Can't set/change the rt policy: */
7614 if (policy != p->policy && !rlim_rtprio)
7617 /* Can't increase priority: */
7618 if (attr->sched_priority > p->rt_priority &&
7619 attr->sched_priority > rlim_rtprio)
7624 * Can't set/change SCHED_DEADLINE policy at all for now
7625 * (safest behavior); in the future we would like to allow
7626 * unprivileged DL tasks to increase their relative deadline
7627 * or reduce their runtime (both ways reducing utilization)
7629 if (dl_policy(policy))
7633 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7634 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7636 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7637 if (!is_nice_reduction(p, task_nice(p)))
7641 /* Can't change other user's priorities: */
7642 if (!check_same_owner(p))
7645 /* Normal users shall not reset the sched_reset_on_fork flag: */
7646 if (p->sched_reset_on_fork && !reset_on_fork)
7652 if (!capable(CAP_SYS_NICE))
7658 static int __sched_setscheduler(struct task_struct *p,
7659 const struct sched_attr *attr,
7662 int oldpolicy = -1, policy = attr->sched_policy;
7663 int retval, oldprio, newprio, queued, running;
7664 const struct sched_class *prev_class;
7665 struct balance_callback *head;
7668 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7670 bool cpuset_locked = false;
7672 /* The pi code expects interrupts enabled */
7673 BUG_ON(pi && in_interrupt());
7675 /* Double check policy once rq lock held: */
7677 reset_on_fork = p->sched_reset_on_fork;
7678 policy = oldpolicy = p->policy;
7680 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7682 if (!valid_policy(policy))
7686 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7690 * Valid priorities for SCHED_FIFO and SCHED_RR are
7691 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7692 * SCHED_BATCH and SCHED_IDLE is 0.
7694 if (attr->sched_priority > MAX_RT_PRIO-1)
7696 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7697 (rt_policy(policy) != (attr->sched_priority != 0)))
7701 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7705 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7708 retval = security_task_setscheduler(p);
7713 /* Update task specific "requested" clamps */
7714 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7715 retval = uclamp_validate(p, attr);
7721 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7724 if (dl_policy(policy) || dl_policy(p->policy)) {
7725 cpuset_locked = true;
7730 * Make sure no PI-waiters arrive (or leave) while we are
7731 * changing the priority of the task:
7733 * To be able to change p->policy safely, the appropriate
7734 * runqueue lock must be held.
7736 rq = task_rq_lock(p, &rf);
7737 update_rq_clock(rq);
7740 * Changing the policy of the stop threads its a very bad idea:
7742 if (p == rq->stop) {
7748 * If not changing anything there's no need to proceed further,
7749 * but store a possible modification of reset_on_fork.
7751 if (unlikely(policy == p->policy)) {
7752 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7754 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7756 if (dl_policy(policy) && dl_param_changed(p, attr))
7758 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7761 p->sched_reset_on_fork = reset_on_fork;
7768 #ifdef CONFIG_RT_GROUP_SCHED
7770 * Do not allow realtime tasks into groups that have no runtime
7773 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7774 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7775 !task_group_is_autogroup(task_group(p))) {
7781 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7782 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7783 cpumask_t *span = rq->rd->span;
7786 * Don't allow tasks with an affinity mask smaller than
7787 * the entire root_domain to become SCHED_DEADLINE. We
7788 * will also fail if there's no bandwidth available.
7790 if (!cpumask_subset(span, p->cpus_ptr) ||
7791 rq->rd->dl_bw.bw == 0) {
7799 /* Re-check policy now with rq lock held: */
7800 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7801 policy = oldpolicy = -1;
7802 task_rq_unlock(rq, p, &rf);
7809 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7810 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7813 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7818 p->sched_reset_on_fork = reset_on_fork;
7821 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7824 * Take priority boosted tasks into account. If the new
7825 * effective priority is unchanged, we just store the new
7826 * normal parameters and do not touch the scheduler class and
7827 * the runqueue. This will be done when the task deboost
7830 newprio = rt_effective_prio(p, newprio);
7831 if (newprio == oldprio)
7832 queue_flags &= ~DEQUEUE_MOVE;
7835 queued = task_on_rq_queued(p);
7836 running = task_current(rq, p);
7838 dequeue_task(rq, p, queue_flags);
7840 put_prev_task(rq, p);
7842 prev_class = p->sched_class;
7844 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7845 __setscheduler_params(p, attr);
7846 __setscheduler_prio(p, newprio);
7848 __setscheduler_uclamp(p, attr);
7852 * We enqueue to tail when the priority of a task is
7853 * increased (user space view).
7855 if (oldprio < p->prio)
7856 queue_flags |= ENQUEUE_HEAD;
7858 enqueue_task(rq, p, queue_flags);
7861 set_next_task(rq, p);
7863 check_class_changed(rq, p, prev_class, oldprio);
7865 /* Avoid rq from going away on us: */
7867 head = splice_balance_callbacks(rq);
7868 task_rq_unlock(rq, p, &rf);
7873 rt_mutex_adjust_pi(p);
7876 /* Run balance callbacks after we've adjusted the PI chain: */
7877 balance_callbacks(rq, head);
7883 task_rq_unlock(rq, p, &rf);
7889 static int _sched_setscheduler(struct task_struct *p, int policy,
7890 const struct sched_param *param, bool check)
7892 struct sched_attr attr = {
7893 .sched_policy = policy,
7894 .sched_priority = param->sched_priority,
7895 .sched_nice = PRIO_TO_NICE(p->static_prio),
7898 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7899 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7900 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7901 policy &= ~SCHED_RESET_ON_FORK;
7902 attr.sched_policy = policy;
7905 return __sched_setscheduler(p, &attr, check, true);
7908 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7909 * @p: the task in question.
7910 * @policy: new policy.
7911 * @param: structure containing the new RT priority.
7913 * Use sched_set_fifo(), read its comment.
7915 * Return: 0 on success. An error code otherwise.
7917 * NOTE that the task may be already dead.
7919 int sched_setscheduler(struct task_struct *p, int policy,
7920 const struct sched_param *param)
7922 return _sched_setscheduler(p, policy, param, true);
7925 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7927 return __sched_setscheduler(p, attr, true, true);
7930 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7932 return __sched_setscheduler(p, attr, false, true);
7934 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7937 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7938 * @p: the task in question.
7939 * @policy: new policy.
7940 * @param: structure containing the new RT priority.
7942 * Just like sched_setscheduler, only don't bother checking if the
7943 * current context has permission. For example, this is needed in
7944 * stop_machine(): we create temporary high priority worker threads,
7945 * but our caller might not have that capability.
7947 * Return: 0 on success. An error code otherwise.
7949 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7950 const struct sched_param *param)
7952 return _sched_setscheduler(p, policy, param, false);
7956 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7957 * incapable of resource management, which is the one thing an OS really should
7960 * This is of course the reason it is limited to privileged users only.
7962 * Worse still; it is fundamentally impossible to compose static priority
7963 * workloads. You cannot take two correctly working static prio workloads
7964 * and smash them together and still expect them to work.
7966 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7970 * The administrator _MUST_ configure the system, the kernel simply doesn't
7971 * know enough information to make a sensible choice.
7973 void sched_set_fifo(struct task_struct *p)
7975 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7976 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7978 EXPORT_SYMBOL_GPL(sched_set_fifo);
7981 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7983 void sched_set_fifo_low(struct task_struct *p)
7985 struct sched_param sp = { .sched_priority = 1 };
7986 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7988 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7990 void sched_set_normal(struct task_struct *p, int nice)
7992 struct sched_attr attr = {
7993 .sched_policy = SCHED_NORMAL,
7996 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7998 EXPORT_SYMBOL_GPL(sched_set_normal);
8001 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8003 struct sched_param lparam;
8005 if (!param || pid < 0)
8007 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
8010 CLASS(find_get_task, p)(pid);
8014 return sched_setscheduler(p, policy, &lparam);
8018 * Mimics kernel/events/core.c perf_copy_attr().
8020 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8025 /* Zero the full structure, so that a short copy will be nice: */
8026 memset(attr, 0, sizeof(*attr));
8028 ret = get_user(size, &uattr->size);
8032 /* ABI compatibility quirk: */
8034 size = SCHED_ATTR_SIZE_VER0;
8035 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8038 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8045 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8046 size < SCHED_ATTR_SIZE_VER1)
8050 * XXX: Do we want to be lenient like existing syscalls; or do we want
8051 * to be strict and return an error on out-of-bounds values?
8053 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8058 put_user(sizeof(*attr), &uattr->size);
8062 static void get_params(struct task_struct *p, struct sched_attr *attr)
8064 if (task_has_dl_policy(p))
8065 __getparam_dl(p, attr);
8066 else if (task_has_rt_policy(p))
8067 attr->sched_priority = p->rt_priority;
8069 attr->sched_nice = task_nice(p);
8073 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8074 * @pid: the pid in question.
8075 * @policy: new policy.
8076 * @param: structure containing the new RT priority.
8078 * Return: 0 on success. An error code otherwise.
8080 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8085 return do_sched_setscheduler(pid, policy, param);
8089 * sys_sched_setparam - set/change the RT priority of a thread
8090 * @pid: the pid in question.
8091 * @param: structure containing the new RT priority.
8093 * Return: 0 on success. An error code otherwise.
8095 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8097 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8101 * sys_sched_setattr - same as above, but with extended sched_attr
8102 * @pid: the pid in question.
8103 * @uattr: structure containing the extended parameters.
8104 * @flags: for future extension.
8106 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8107 unsigned int, flags)
8109 struct sched_attr attr;
8112 if (!uattr || pid < 0 || flags)
8115 retval = sched_copy_attr(uattr, &attr);
8119 if ((int)attr.sched_policy < 0)
8121 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8122 attr.sched_policy = SETPARAM_POLICY;
8124 CLASS(find_get_task, p)(pid);
8128 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8129 get_params(p, &attr);
8131 return sched_setattr(p, &attr);
8135 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8136 * @pid: the pid in question.
8138 * Return: On success, the policy of the thread. Otherwise, a negative error
8141 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8143 struct task_struct *p;
8150 p = find_process_by_pid(pid);
8154 retval = security_task_getscheduler(p);
8157 if (p->sched_reset_on_fork)
8158 retval |= SCHED_RESET_ON_FORK;
8164 * sys_sched_getparam - get the RT priority of a thread
8165 * @pid: the pid in question.
8166 * @param: structure containing the RT priority.
8168 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8171 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8173 struct sched_param lp = { .sched_priority = 0 };
8174 struct task_struct *p;
8177 if (!param || pid < 0)
8180 scoped_guard (rcu) {
8181 p = find_process_by_pid(pid);
8185 retval = security_task_getscheduler(p);
8189 if (task_has_rt_policy(p))
8190 lp.sched_priority = p->rt_priority;
8194 * This one might sleep, we cannot do it with a spinlock held ...
8196 return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8200 * Copy the kernel size attribute structure (which might be larger
8201 * than what user-space knows about) to user-space.
8203 * Note that all cases are valid: user-space buffer can be larger or
8204 * smaller than the kernel-space buffer. The usual case is that both
8205 * have the same size.
8208 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8209 struct sched_attr *kattr,
8212 unsigned int ksize = sizeof(*kattr);
8214 if (!access_ok(uattr, usize))
8218 * sched_getattr() ABI forwards and backwards compatibility:
8220 * If usize == ksize then we just copy everything to user-space and all is good.
8222 * If usize < ksize then we only copy as much as user-space has space for,
8223 * this keeps ABI compatibility as well. We skip the rest.
8225 * If usize > ksize then user-space is using a newer version of the ABI,
8226 * which part the kernel doesn't know about. Just ignore it - tooling can
8227 * detect the kernel's knowledge of attributes from the attr->size value
8228 * which is set to ksize in this case.
8230 kattr->size = min(usize, ksize);
8232 if (copy_to_user(uattr, kattr, kattr->size))
8239 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8240 * @pid: the pid in question.
8241 * @uattr: structure containing the extended parameters.
8242 * @usize: sizeof(attr) for fwd/bwd comp.
8243 * @flags: for future extension.
8245 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8246 unsigned int, usize, unsigned int, flags)
8248 struct sched_attr kattr = { };
8249 struct task_struct *p;
8252 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8253 usize < SCHED_ATTR_SIZE_VER0 || flags)
8256 scoped_guard (rcu) {
8257 p = find_process_by_pid(pid);
8261 retval = security_task_getscheduler(p);
8265 kattr.sched_policy = p->policy;
8266 if (p->sched_reset_on_fork)
8267 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8268 get_params(p, &kattr);
8269 kattr.sched_flags &= SCHED_FLAG_ALL;
8271 #ifdef CONFIG_UCLAMP_TASK
8273 * This could race with another potential updater, but this is fine
8274 * because it'll correctly read the old or the new value. We don't need
8275 * to guarantee who wins the race as long as it doesn't return garbage.
8277 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8278 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8282 return sched_attr_copy_to_user(uattr, &kattr, usize);
8286 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8289 * If the task isn't a deadline task or admission control is
8290 * disabled then we don't care about affinity changes.
8292 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8296 * Since bandwidth control happens on root_domain basis,
8297 * if admission test is enabled, we only admit -deadline
8298 * tasks allowed to run on all the CPUs in the task's
8302 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8310 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8313 cpumask_var_t cpus_allowed, new_mask;
8315 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8318 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8320 goto out_free_cpus_allowed;
8323 cpuset_cpus_allowed(p, cpus_allowed);
8324 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8326 ctx->new_mask = new_mask;
8327 ctx->flags |= SCA_CHECK;
8329 retval = dl_task_check_affinity(p, new_mask);
8331 goto out_free_new_mask;
8333 retval = __set_cpus_allowed_ptr(p, ctx);
8335 goto out_free_new_mask;
8337 cpuset_cpus_allowed(p, cpus_allowed);
8338 if (!cpumask_subset(new_mask, cpus_allowed)) {
8340 * We must have raced with a concurrent cpuset update.
8341 * Just reset the cpumask to the cpuset's cpus_allowed.
8343 cpumask_copy(new_mask, cpus_allowed);
8346 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8347 * will restore the previous user_cpus_ptr value.
8349 * In the unlikely event a previous user_cpus_ptr exists,
8350 * we need to further restrict the mask to what is allowed
8351 * by that old user_cpus_ptr.
8353 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8354 bool empty = !cpumask_and(new_mask, new_mask,
8357 if (WARN_ON_ONCE(empty))
8358 cpumask_copy(new_mask, cpus_allowed);
8360 __set_cpus_allowed_ptr(p, ctx);
8365 free_cpumask_var(new_mask);
8366 out_free_cpus_allowed:
8367 free_cpumask_var(cpus_allowed);
8371 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8373 struct affinity_context ac;
8374 struct cpumask *user_mask;
8377 CLASS(find_get_task, p)(pid);
8381 if (p->flags & PF_NO_SETAFFINITY)
8384 if (!check_same_owner(p)) {
8386 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8390 retval = security_task_setscheduler(p);
8395 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8396 * alloc_user_cpus_ptr() returns NULL.
8398 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8400 cpumask_copy(user_mask, in_mask);
8401 } else if (IS_ENABLED(CONFIG_SMP)) {
8405 ac = (struct affinity_context){
8406 .new_mask = in_mask,
8407 .user_mask = user_mask,
8411 retval = __sched_setaffinity(p, &ac);
8412 kfree(ac.user_mask);
8417 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8418 struct cpumask *new_mask)
8420 if (len < cpumask_size())
8421 cpumask_clear(new_mask);
8422 else if (len > cpumask_size())
8423 len = cpumask_size();
8425 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8429 * sys_sched_setaffinity - set the CPU affinity of a process
8430 * @pid: pid of the process
8431 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8432 * @user_mask_ptr: user-space pointer to the new CPU mask
8434 * Return: 0 on success. An error code otherwise.
8436 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8437 unsigned long __user *, user_mask_ptr)
8439 cpumask_var_t new_mask;
8442 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8445 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8447 retval = sched_setaffinity(pid, new_mask);
8448 free_cpumask_var(new_mask);
8452 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8454 struct task_struct *p;
8458 p = find_process_by_pid(pid);
8462 retval = security_task_getscheduler(p);
8466 guard(raw_spinlock_irqsave)(&p->pi_lock);
8467 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8473 * sys_sched_getaffinity - get the CPU affinity of a process
8474 * @pid: pid of the process
8475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8476 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8478 * Return: size of CPU mask copied to user_mask_ptr on success. An
8479 * error code otherwise.
8481 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8482 unsigned long __user *, user_mask_ptr)
8487 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8489 if (len & (sizeof(unsigned long)-1))
8492 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8495 ret = sched_getaffinity(pid, mask);
8497 unsigned int retlen = min(len, cpumask_size());
8499 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8504 free_cpumask_var(mask);
8509 static void do_sched_yield(void)
8514 rq = this_rq_lock_irq(&rf);
8516 schedstat_inc(rq->yld_count);
8517 current->sched_class->yield_task(rq);
8520 rq_unlock_irq(rq, &rf);
8521 sched_preempt_enable_no_resched();
8527 * sys_sched_yield - yield the current processor to other threads.
8529 * This function yields the current CPU to other tasks. If there are no
8530 * other threads running on this CPU then this function will return.
8534 SYSCALL_DEFINE0(sched_yield)
8540 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8541 int __sched __cond_resched(void)
8543 if (should_resched(0)) {
8544 preempt_schedule_common();
8548 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8549 * whether the current CPU is in an RCU read-side critical section,
8550 * so the tick can report quiescent states even for CPUs looping
8551 * in kernel context. In contrast, in non-preemptible kernels,
8552 * RCU readers leave no in-memory hints, which means that CPU-bound
8553 * processes executing in kernel context might never report an
8554 * RCU quiescent state. Therefore, the following code causes
8555 * cond_resched() to report a quiescent state, but only when RCU
8556 * is in urgent need of one.
8558 #ifndef CONFIG_PREEMPT_RCU
8563 EXPORT_SYMBOL(__cond_resched);
8566 #ifdef CONFIG_PREEMPT_DYNAMIC
8567 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8568 #define cond_resched_dynamic_enabled __cond_resched
8569 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8570 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8571 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8573 #define might_resched_dynamic_enabled __cond_resched
8574 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8575 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8576 EXPORT_STATIC_CALL_TRAMP(might_resched);
8577 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8578 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8579 int __sched dynamic_cond_resched(void)
8581 klp_sched_try_switch();
8582 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8584 return __cond_resched();
8586 EXPORT_SYMBOL(dynamic_cond_resched);
8588 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8589 int __sched dynamic_might_resched(void)
8591 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8593 return __cond_resched();
8595 EXPORT_SYMBOL(dynamic_might_resched);
8600 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8601 * call schedule, and on return reacquire the lock.
8603 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8604 * operations here to prevent schedule() from being called twice (once via
8605 * spin_unlock(), once by hand).
8607 int __cond_resched_lock(spinlock_t *lock)
8609 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8612 lockdep_assert_held(lock);
8614 if (spin_needbreak(lock) || resched) {
8616 if (!_cond_resched())
8623 EXPORT_SYMBOL(__cond_resched_lock);
8625 int __cond_resched_rwlock_read(rwlock_t *lock)
8627 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8630 lockdep_assert_held_read(lock);
8632 if (rwlock_needbreak(lock) || resched) {
8634 if (!_cond_resched())
8641 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8643 int __cond_resched_rwlock_write(rwlock_t *lock)
8645 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8648 lockdep_assert_held_write(lock);
8650 if (rwlock_needbreak(lock) || resched) {
8652 if (!_cond_resched())
8659 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8661 #ifdef CONFIG_PREEMPT_DYNAMIC
8663 #ifdef CONFIG_GENERIC_ENTRY
8664 #include <linux/entry-common.h>
8670 * SC:preempt_schedule
8671 * SC:preempt_schedule_notrace
8672 * SC:irqentry_exit_cond_resched
8676 * cond_resched <- __cond_resched
8677 * might_resched <- RET0
8678 * preempt_schedule <- NOP
8679 * preempt_schedule_notrace <- NOP
8680 * irqentry_exit_cond_resched <- NOP
8683 * cond_resched <- __cond_resched
8684 * might_resched <- __cond_resched
8685 * preempt_schedule <- NOP
8686 * preempt_schedule_notrace <- NOP
8687 * irqentry_exit_cond_resched <- NOP
8690 * cond_resched <- RET0
8691 * might_resched <- RET0
8692 * preempt_schedule <- preempt_schedule
8693 * preempt_schedule_notrace <- preempt_schedule_notrace
8694 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8698 preempt_dynamic_undefined = -1,
8699 preempt_dynamic_none,
8700 preempt_dynamic_voluntary,
8701 preempt_dynamic_full,
8704 int preempt_dynamic_mode = preempt_dynamic_undefined;
8706 int sched_dynamic_mode(const char *str)
8708 if (!strcmp(str, "none"))
8709 return preempt_dynamic_none;
8711 if (!strcmp(str, "voluntary"))
8712 return preempt_dynamic_voluntary;
8714 if (!strcmp(str, "full"))
8715 return preempt_dynamic_full;
8720 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8721 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8722 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8723 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8724 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8725 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8727 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8730 static DEFINE_MUTEX(sched_dynamic_mutex);
8731 static bool klp_override;
8733 static void __sched_dynamic_update(int mode)
8736 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8737 * the ZERO state, which is invalid.
8740 preempt_dynamic_enable(cond_resched);
8741 preempt_dynamic_enable(might_resched);
8742 preempt_dynamic_enable(preempt_schedule);
8743 preempt_dynamic_enable(preempt_schedule_notrace);
8744 preempt_dynamic_enable(irqentry_exit_cond_resched);
8747 case preempt_dynamic_none:
8749 preempt_dynamic_enable(cond_resched);
8750 preempt_dynamic_disable(might_resched);
8751 preempt_dynamic_disable(preempt_schedule);
8752 preempt_dynamic_disable(preempt_schedule_notrace);
8753 preempt_dynamic_disable(irqentry_exit_cond_resched);
8754 if (mode != preempt_dynamic_mode)
8755 pr_info("Dynamic Preempt: none\n");
8758 case preempt_dynamic_voluntary:
8760 preempt_dynamic_enable(cond_resched);
8761 preempt_dynamic_enable(might_resched);
8762 preempt_dynamic_disable(preempt_schedule);
8763 preempt_dynamic_disable(preempt_schedule_notrace);
8764 preempt_dynamic_disable(irqentry_exit_cond_resched);
8765 if (mode != preempt_dynamic_mode)
8766 pr_info("Dynamic Preempt: voluntary\n");
8769 case preempt_dynamic_full:
8771 preempt_dynamic_disable(cond_resched);
8772 preempt_dynamic_disable(might_resched);
8773 preempt_dynamic_enable(preempt_schedule);
8774 preempt_dynamic_enable(preempt_schedule_notrace);
8775 preempt_dynamic_enable(irqentry_exit_cond_resched);
8776 if (mode != preempt_dynamic_mode)
8777 pr_info("Dynamic Preempt: full\n");
8781 preempt_dynamic_mode = mode;
8784 void sched_dynamic_update(int mode)
8786 mutex_lock(&sched_dynamic_mutex);
8787 __sched_dynamic_update(mode);
8788 mutex_unlock(&sched_dynamic_mutex);
8791 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8793 static int klp_cond_resched(void)
8795 __klp_sched_try_switch();
8796 return __cond_resched();
8799 void sched_dynamic_klp_enable(void)
8801 mutex_lock(&sched_dynamic_mutex);
8803 klp_override = true;
8804 static_call_update(cond_resched, klp_cond_resched);
8806 mutex_unlock(&sched_dynamic_mutex);
8809 void sched_dynamic_klp_disable(void)
8811 mutex_lock(&sched_dynamic_mutex);
8813 klp_override = false;
8814 __sched_dynamic_update(preempt_dynamic_mode);
8816 mutex_unlock(&sched_dynamic_mutex);
8819 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8821 static int __init setup_preempt_mode(char *str)
8823 int mode = sched_dynamic_mode(str);
8825 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8829 sched_dynamic_update(mode);
8832 __setup("preempt=", setup_preempt_mode);
8834 static void __init preempt_dynamic_init(void)
8836 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8837 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8838 sched_dynamic_update(preempt_dynamic_none);
8839 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8840 sched_dynamic_update(preempt_dynamic_voluntary);
8842 /* Default static call setting, nothing to do */
8843 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8844 preempt_dynamic_mode = preempt_dynamic_full;
8845 pr_info("Dynamic Preempt: full\n");
8850 #define PREEMPT_MODEL_ACCESSOR(mode) \
8851 bool preempt_model_##mode(void) \
8853 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8854 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8856 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8858 PREEMPT_MODEL_ACCESSOR(none);
8859 PREEMPT_MODEL_ACCESSOR(voluntary);
8860 PREEMPT_MODEL_ACCESSOR(full);
8862 #else /* !CONFIG_PREEMPT_DYNAMIC */
8864 static inline void preempt_dynamic_init(void) { }
8866 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8869 * yield - yield the current processor to other threads.
8871 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8873 * The scheduler is at all times free to pick the calling task as the most
8874 * eligible task to run, if removing the yield() call from your code breaks
8875 * it, it's already broken.
8877 * Typical broken usage is:
8882 * where one assumes that yield() will let 'the other' process run that will
8883 * make event true. If the current task is a SCHED_FIFO task that will never
8884 * happen. Never use yield() as a progress guarantee!!
8886 * If you want to use yield() to wait for something, use wait_event().
8887 * If you want to use yield() to be 'nice' for others, use cond_resched().
8888 * If you still want to use yield(), do not!
8890 void __sched yield(void)
8892 set_current_state(TASK_RUNNING);
8895 EXPORT_SYMBOL(yield);
8898 * yield_to - yield the current processor to another thread in
8899 * your thread group, or accelerate that thread toward the
8900 * processor it's on.
8902 * @preempt: whether task preemption is allowed or not
8904 * It's the caller's job to ensure that the target task struct
8905 * can't go away on us before we can do any checks.
8908 * true (>0) if we indeed boosted the target task.
8909 * false (0) if we failed to boost the target.
8910 * -ESRCH if there's no task to yield to.
8912 int __sched yield_to(struct task_struct *p, bool preempt)
8914 struct task_struct *curr = current;
8915 struct rq *rq, *p_rq;
8918 scoped_guard (irqsave) {
8924 * If we're the only runnable task on the rq and target rq also
8925 * has only one task, there's absolutely no point in yielding.
8927 if (rq->nr_running == 1 && p_rq->nr_running == 1)
8930 guard(double_rq_lock)(rq, p_rq);
8931 if (task_rq(p) != p_rq)
8934 if (!curr->sched_class->yield_to_task)
8937 if (curr->sched_class != p->sched_class)
8940 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8943 yielded = curr->sched_class->yield_to_task(rq, p);
8945 schedstat_inc(rq->yld_count);
8947 * Make p's CPU reschedule; pick_next_entity
8948 * takes care of fairness.
8950 if (preempt && rq != p_rq)
8960 EXPORT_SYMBOL_GPL(yield_to);
8962 int io_schedule_prepare(void)
8964 int old_iowait = current->in_iowait;
8966 current->in_iowait = 1;
8967 blk_flush_plug(current->plug, true);
8971 void io_schedule_finish(int token)
8973 current->in_iowait = token;
8977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8978 * that process accounting knows that this is a task in IO wait state.
8980 long __sched io_schedule_timeout(long timeout)
8985 token = io_schedule_prepare();
8986 ret = schedule_timeout(timeout);
8987 io_schedule_finish(token);
8991 EXPORT_SYMBOL(io_schedule_timeout);
8993 void __sched io_schedule(void)
8997 token = io_schedule_prepare();
8999 io_schedule_finish(token);
9001 EXPORT_SYMBOL(io_schedule);
9004 * sys_sched_get_priority_max - return maximum RT priority.
9005 * @policy: scheduling class.
9007 * Return: On success, this syscall returns the maximum
9008 * rt_priority that can be used by a given scheduling class.
9009 * On failure, a negative error code is returned.
9011 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9018 ret = MAX_RT_PRIO-1;
9020 case SCHED_DEADLINE:
9031 * sys_sched_get_priority_min - return minimum RT priority.
9032 * @policy: scheduling class.
9034 * Return: On success, this syscall returns the minimum
9035 * rt_priority that can be used by a given scheduling class.
9036 * On failure, a negative error code is returned.
9038 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9047 case SCHED_DEADLINE:
9056 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9058 unsigned int time_slice = 0;
9064 scoped_guard (rcu) {
9065 struct task_struct *p = find_process_by_pid(pid);
9069 retval = security_task_getscheduler(p);
9073 scoped_guard (task_rq_lock, p) {
9074 struct rq *rq = scope.rq;
9075 if (p->sched_class->get_rr_interval)
9076 time_slice = p->sched_class->get_rr_interval(rq, p);
9080 jiffies_to_timespec64(time_slice, t);
9085 * sys_sched_rr_get_interval - return the default timeslice of a process.
9086 * @pid: pid of the process.
9087 * @interval: userspace pointer to the timeslice value.
9089 * this syscall writes the default timeslice value of a given process
9090 * into the user-space timespec buffer. A value of '0' means infinity.
9092 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9095 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9096 struct __kernel_timespec __user *, interval)
9098 struct timespec64 t;
9099 int retval = sched_rr_get_interval(pid, &t);
9102 retval = put_timespec64(&t, interval);
9107 #ifdef CONFIG_COMPAT_32BIT_TIME
9108 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9109 struct old_timespec32 __user *, interval)
9111 struct timespec64 t;
9112 int retval = sched_rr_get_interval(pid, &t);
9115 retval = put_old_timespec32(&t, interval);
9120 void sched_show_task(struct task_struct *p)
9122 unsigned long free = 0;
9125 if (!try_get_task_stack(p))
9128 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9130 if (task_is_running(p))
9131 pr_cont(" running task ");
9132 #ifdef CONFIG_DEBUG_STACK_USAGE
9133 free = stack_not_used(p);
9138 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9140 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9141 free, task_pid_nr(p), task_tgid_nr(p),
9142 ppid, read_task_thread_flags(p));
9144 print_worker_info(KERN_INFO, p);
9145 print_stop_info(KERN_INFO, p);
9146 show_stack(p, NULL, KERN_INFO);
9149 EXPORT_SYMBOL_GPL(sched_show_task);
9152 state_filter_match(unsigned long state_filter, struct task_struct *p)
9154 unsigned int state = READ_ONCE(p->__state);
9156 /* no filter, everything matches */
9160 /* filter, but doesn't match */
9161 if (!(state & state_filter))
9165 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9168 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9175 void show_state_filter(unsigned int state_filter)
9177 struct task_struct *g, *p;
9180 for_each_process_thread(g, p) {
9182 * reset the NMI-timeout, listing all files on a slow
9183 * console might take a lot of time:
9184 * Also, reset softlockup watchdogs on all CPUs, because
9185 * another CPU might be blocked waiting for us to process
9188 touch_nmi_watchdog();
9189 touch_all_softlockup_watchdogs();
9190 if (state_filter_match(state_filter, p))
9194 #ifdef CONFIG_SCHED_DEBUG
9196 sysrq_sched_debug_show();
9200 * Only show locks if all tasks are dumped:
9203 debug_show_all_locks();
9207 * init_idle - set up an idle thread for a given CPU
9208 * @idle: task in question
9209 * @cpu: CPU the idle task belongs to
9211 * NOTE: this function does not set the idle thread's NEED_RESCHED
9212 * flag, to make booting more robust.
9214 void __init init_idle(struct task_struct *idle, int cpu)
9217 struct affinity_context ac = (struct affinity_context) {
9218 .new_mask = cpumask_of(cpu),
9222 struct rq *rq = cpu_rq(cpu);
9223 unsigned long flags;
9225 __sched_fork(0, idle);
9227 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9228 raw_spin_rq_lock(rq);
9230 idle->__state = TASK_RUNNING;
9231 idle->se.exec_start = sched_clock();
9233 * PF_KTHREAD should already be set at this point; regardless, make it
9234 * look like a proper per-CPU kthread.
9236 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9237 kthread_set_per_cpu(idle, cpu);
9241 * It's possible that init_idle() gets called multiple times on a task,
9242 * in that case do_set_cpus_allowed() will not do the right thing.
9244 * And since this is boot we can forgo the serialization.
9246 set_cpus_allowed_common(idle, &ac);
9249 * We're having a chicken and egg problem, even though we are
9250 * holding rq->lock, the CPU isn't yet set to this CPU so the
9251 * lockdep check in task_group() will fail.
9253 * Similar case to sched_fork(). / Alternatively we could
9254 * use task_rq_lock() here and obtain the other rq->lock.
9259 __set_task_cpu(idle, cpu);
9263 rcu_assign_pointer(rq->curr, idle);
9264 idle->on_rq = TASK_ON_RQ_QUEUED;
9268 raw_spin_rq_unlock(rq);
9269 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9271 /* Set the preempt count _outside_ the spinlocks! */
9272 init_idle_preempt_count(idle, cpu);
9275 * The idle tasks have their own, simple scheduling class:
9277 idle->sched_class = &idle_sched_class;
9278 ftrace_graph_init_idle_task(idle, cpu);
9279 vtime_init_idle(idle, cpu);
9281 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9287 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9288 const struct cpumask *trial)
9292 if (cpumask_empty(cur))
9295 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9300 int task_can_attach(struct task_struct *p)
9305 * Kthreads which disallow setaffinity shouldn't be moved
9306 * to a new cpuset; we don't want to change their CPU
9307 * affinity and isolating such threads by their set of
9308 * allowed nodes is unnecessary. Thus, cpusets are not
9309 * applicable for such threads. This prevents checking for
9310 * success of set_cpus_allowed_ptr() on all attached tasks
9311 * before cpus_mask may be changed.
9313 if (p->flags & PF_NO_SETAFFINITY)
9319 bool sched_smp_initialized __read_mostly;
9321 #ifdef CONFIG_NUMA_BALANCING
9322 /* Migrate current task p to target_cpu */
9323 int migrate_task_to(struct task_struct *p, int target_cpu)
9325 struct migration_arg arg = { p, target_cpu };
9326 int curr_cpu = task_cpu(p);
9328 if (curr_cpu == target_cpu)
9331 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9334 /* TODO: This is not properly updating schedstats */
9336 trace_sched_move_numa(p, curr_cpu, target_cpu);
9337 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9341 * Requeue a task on a given node and accurately track the number of NUMA
9342 * tasks on the runqueues
9344 void sched_setnuma(struct task_struct *p, int nid)
9346 bool queued, running;
9350 rq = task_rq_lock(p, &rf);
9351 queued = task_on_rq_queued(p);
9352 running = task_current(rq, p);
9355 dequeue_task(rq, p, DEQUEUE_SAVE);
9357 put_prev_task(rq, p);
9359 p->numa_preferred_nid = nid;
9362 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9364 set_next_task(rq, p);
9365 task_rq_unlock(rq, p, &rf);
9367 #endif /* CONFIG_NUMA_BALANCING */
9369 #ifdef CONFIG_HOTPLUG_CPU
9371 * Ensure that the idle task is using init_mm right before its CPU goes
9374 void idle_task_exit(void)
9376 struct mm_struct *mm = current->active_mm;
9378 BUG_ON(cpu_online(smp_processor_id()));
9379 BUG_ON(current != this_rq()->idle);
9381 if (mm != &init_mm) {
9382 switch_mm(mm, &init_mm, current);
9383 finish_arch_post_lock_switch();
9386 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9389 static int __balance_push_cpu_stop(void *arg)
9391 struct task_struct *p = arg;
9392 struct rq *rq = this_rq();
9396 raw_spin_lock_irq(&p->pi_lock);
9399 update_rq_clock(rq);
9401 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9402 cpu = select_fallback_rq(rq->cpu, p);
9403 rq = __migrate_task(rq, &rf, p, cpu);
9407 raw_spin_unlock_irq(&p->pi_lock);
9414 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9417 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9419 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9420 * effective when the hotplug motion is down.
9422 static void balance_push(struct rq *rq)
9424 struct task_struct *push_task = rq->curr;
9426 lockdep_assert_rq_held(rq);
9429 * Ensure the thing is persistent until balance_push_set(.on = false);
9431 rq->balance_callback = &balance_push_callback;
9434 * Only active while going offline and when invoked on the outgoing
9437 if (!cpu_dying(rq->cpu) || rq != this_rq())
9441 * Both the cpu-hotplug and stop task are in this case and are
9442 * required to complete the hotplug process.
9444 if (kthread_is_per_cpu(push_task) ||
9445 is_migration_disabled(push_task)) {
9448 * If this is the idle task on the outgoing CPU try to wake
9449 * up the hotplug control thread which might wait for the
9450 * last task to vanish. The rcuwait_active() check is
9451 * accurate here because the waiter is pinned on this CPU
9452 * and can't obviously be running in parallel.
9454 * On RT kernels this also has to check whether there are
9455 * pinned and scheduled out tasks on the runqueue. They
9456 * need to leave the migrate disabled section first.
9458 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9459 rcuwait_active(&rq->hotplug_wait)) {
9460 raw_spin_rq_unlock(rq);
9461 rcuwait_wake_up(&rq->hotplug_wait);
9462 raw_spin_rq_lock(rq);
9467 get_task_struct(push_task);
9469 * Temporarily drop rq->lock such that we can wake-up the stop task.
9470 * Both preemption and IRQs are still disabled.
9473 raw_spin_rq_unlock(rq);
9474 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9475 this_cpu_ptr(&push_work));
9478 * At this point need_resched() is true and we'll take the loop in
9479 * schedule(). The next pick is obviously going to be the stop task
9480 * which kthread_is_per_cpu() and will push this task away.
9482 raw_spin_rq_lock(rq);
9485 static void balance_push_set(int cpu, bool on)
9487 struct rq *rq = cpu_rq(cpu);
9490 rq_lock_irqsave(rq, &rf);
9492 WARN_ON_ONCE(rq->balance_callback);
9493 rq->balance_callback = &balance_push_callback;
9494 } else if (rq->balance_callback == &balance_push_callback) {
9495 rq->balance_callback = NULL;
9497 rq_unlock_irqrestore(rq, &rf);
9501 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9502 * inactive. All tasks which are not per CPU kernel threads are either
9503 * pushed off this CPU now via balance_push() or placed on a different CPU
9504 * during wakeup. Wait until the CPU is quiescent.
9506 static void balance_hotplug_wait(void)
9508 struct rq *rq = this_rq();
9510 rcuwait_wait_event(&rq->hotplug_wait,
9511 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9512 TASK_UNINTERRUPTIBLE);
9517 static inline void balance_push(struct rq *rq)
9521 static inline void balance_push_set(int cpu, bool on)
9525 static inline void balance_hotplug_wait(void)
9529 #endif /* CONFIG_HOTPLUG_CPU */
9531 void set_rq_online(struct rq *rq)
9534 const struct sched_class *class;
9536 cpumask_set_cpu(rq->cpu, rq->rd->online);
9539 for_each_class(class) {
9540 if (class->rq_online)
9541 class->rq_online(rq);
9546 void set_rq_offline(struct rq *rq)
9549 const struct sched_class *class;
9551 update_rq_clock(rq);
9552 for_each_class(class) {
9553 if (class->rq_offline)
9554 class->rq_offline(rq);
9557 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9563 * used to mark begin/end of suspend/resume:
9565 static int num_cpus_frozen;
9568 * Update cpusets according to cpu_active mask. If cpusets are
9569 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9570 * around partition_sched_domains().
9572 * If we come here as part of a suspend/resume, don't touch cpusets because we
9573 * want to restore it back to its original state upon resume anyway.
9575 static void cpuset_cpu_active(void)
9577 if (cpuhp_tasks_frozen) {
9579 * num_cpus_frozen tracks how many CPUs are involved in suspend
9580 * resume sequence. As long as this is not the last online
9581 * operation in the resume sequence, just build a single sched
9582 * domain, ignoring cpusets.
9584 partition_sched_domains(1, NULL, NULL);
9585 if (--num_cpus_frozen)
9588 * This is the last CPU online operation. So fall through and
9589 * restore the original sched domains by considering the
9590 * cpuset configurations.
9592 cpuset_force_rebuild();
9594 cpuset_update_active_cpus();
9597 static int cpuset_cpu_inactive(unsigned int cpu)
9599 if (!cpuhp_tasks_frozen) {
9600 int ret = dl_bw_check_overflow(cpu);
9604 cpuset_update_active_cpus();
9607 partition_sched_domains(1, NULL, NULL);
9612 int sched_cpu_activate(unsigned int cpu)
9614 struct rq *rq = cpu_rq(cpu);
9618 * Clear the balance_push callback and prepare to schedule
9621 balance_push_set(cpu, false);
9623 #ifdef CONFIG_SCHED_SMT
9625 * When going up, increment the number of cores with SMT present.
9627 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9628 static_branch_inc_cpuslocked(&sched_smt_present);
9630 set_cpu_active(cpu, true);
9632 if (sched_smp_initialized) {
9633 sched_update_numa(cpu, true);
9634 sched_domains_numa_masks_set(cpu);
9635 cpuset_cpu_active();
9639 * Put the rq online, if not already. This happens:
9641 * 1) In the early boot process, because we build the real domains
9642 * after all CPUs have been brought up.
9644 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9647 rq_lock_irqsave(rq, &rf);
9649 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9652 rq_unlock_irqrestore(rq, &rf);
9657 int sched_cpu_deactivate(unsigned int cpu)
9659 struct rq *rq = cpu_rq(cpu);
9664 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9665 * load balancing when not active
9667 nohz_balance_exit_idle(rq);
9669 set_cpu_active(cpu, false);
9672 * From this point forward, this CPU will refuse to run any task that
9673 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9674 * push those tasks away until this gets cleared, see
9675 * sched_cpu_dying().
9677 balance_push_set(cpu, true);
9680 * We've cleared cpu_active_mask / set balance_push, wait for all
9681 * preempt-disabled and RCU users of this state to go away such that
9682 * all new such users will observe it.
9684 * Specifically, we rely on ttwu to no longer target this CPU, see
9685 * ttwu_queue_cond() and is_cpu_allowed().
9687 * Do sync before park smpboot threads to take care the rcu boost case.
9691 rq_lock_irqsave(rq, &rf);
9693 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9696 rq_unlock_irqrestore(rq, &rf);
9698 #ifdef CONFIG_SCHED_SMT
9700 * When going down, decrement the number of cores with SMT present.
9702 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9703 static_branch_dec_cpuslocked(&sched_smt_present);
9705 sched_core_cpu_deactivate(cpu);
9708 if (!sched_smp_initialized)
9711 sched_update_numa(cpu, false);
9712 ret = cpuset_cpu_inactive(cpu);
9714 balance_push_set(cpu, false);
9715 set_cpu_active(cpu, true);
9716 sched_update_numa(cpu, true);
9719 sched_domains_numa_masks_clear(cpu);
9723 static void sched_rq_cpu_starting(unsigned int cpu)
9725 struct rq *rq = cpu_rq(cpu);
9727 rq->calc_load_update = calc_load_update;
9728 update_max_interval();
9731 int sched_cpu_starting(unsigned int cpu)
9733 sched_core_cpu_starting(cpu);
9734 sched_rq_cpu_starting(cpu);
9735 sched_tick_start(cpu);
9739 #ifdef CONFIG_HOTPLUG_CPU
9742 * Invoked immediately before the stopper thread is invoked to bring the
9743 * CPU down completely. At this point all per CPU kthreads except the
9744 * hotplug thread (current) and the stopper thread (inactive) have been
9745 * either parked or have been unbound from the outgoing CPU. Ensure that
9746 * any of those which might be on the way out are gone.
9748 * If after this point a bound task is being woken on this CPU then the
9749 * responsible hotplug callback has failed to do it's job.
9750 * sched_cpu_dying() will catch it with the appropriate fireworks.
9752 int sched_cpu_wait_empty(unsigned int cpu)
9754 balance_hotplug_wait();
9759 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9760 * might have. Called from the CPU stopper task after ensuring that the
9761 * stopper is the last running task on the CPU, so nr_active count is
9762 * stable. We need to take the teardown thread which is calling this into
9763 * account, so we hand in adjust = 1 to the load calculation.
9765 * Also see the comment "Global load-average calculations".
9767 static void calc_load_migrate(struct rq *rq)
9769 long delta = calc_load_fold_active(rq, 1);
9772 atomic_long_add(delta, &calc_load_tasks);
9775 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9777 struct task_struct *g, *p;
9778 int cpu = cpu_of(rq);
9780 lockdep_assert_rq_held(rq);
9782 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9783 for_each_process_thread(g, p) {
9784 if (task_cpu(p) != cpu)
9787 if (!task_on_rq_queued(p))
9790 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9794 int sched_cpu_dying(unsigned int cpu)
9796 struct rq *rq = cpu_rq(cpu);
9799 /* Handle pending wakeups and then migrate everything off */
9800 sched_tick_stop(cpu);
9802 rq_lock_irqsave(rq, &rf);
9803 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9804 WARN(true, "Dying CPU not properly vacated!");
9805 dump_rq_tasks(rq, KERN_WARNING);
9807 rq_unlock_irqrestore(rq, &rf);
9809 calc_load_migrate(rq);
9810 update_max_interval();
9812 sched_core_cpu_dying(cpu);
9817 void __init sched_init_smp(void)
9819 sched_init_numa(NUMA_NO_NODE);
9822 * There's no userspace yet to cause hotplug operations; hence all the
9823 * CPU masks are stable and all blatant races in the below code cannot
9826 mutex_lock(&sched_domains_mutex);
9827 sched_init_domains(cpu_active_mask);
9828 mutex_unlock(&sched_domains_mutex);
9830 /* Move init over to a non-isolated CPU */
9831 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9833 current->flags &= ~PF_NO_SETAFFINITY;
9834 sched_init_granularity();
9836 init_sched_rt_class();
9837 init_sched_dl_class();
9839 sched_smp_initialized = true;
9842 static int __init migration_init(void)
9844 sched_cpu_starting(smp_processor_id());
9847 early_initcall(migration_init);
9850 void __init sched_init_smp(void)
9852 sched_init_granularity();
9854 #endif /* CONFIG_SMP */
9856 int in_sched_functions(unsigned long addr)
9858 return in_lock_functions(addr) ||
9859 (addr >= (unsigned long)__sched_text_start
9860 && addr < (unsigned long)__sched_text_end);
9863 #ifdef CONFIG_CGROUP_SCHED
9865 * Default task group.
9866 * Every task in system belongs to this group at bootup.
9868 struct task_group root_task_group;
9869 LIST_HEAD(task_groups);
9871 /* Cacheline aligned slab cache for task_group */
9872 static struct kmem_cache *task_group_cache __ro_after_init;
9875 void __init sched_init(void)
9877 unsigned long ptr = 0;
9880 /* Make sure the linker didn't screw up */
9881 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9882 &fair_sched_class != &rt_sched_class + 1 ||
9883 &rt_sched_class != &dl_sched_class + 1);
9885 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9890 #ifdef CONFIG_FAIR_GROUP_SCHED
9891 ptr += 2 * nr_cpu_ids * sizeof(void **);
9893 #ifdef CONFIG_RT_GROUP_SCHED
9894 ptr += 2 * nr_cpu_ids * sizeof(void **);
9897 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9899 #ifdef CONFIG_FAIR_GROUP_SCHED
9900 root_task_group.se = (struct sched_entity **)ptr;
9901 ptr += nr_cpu_ids * sizeof(void **);
9903 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9904 ptr += nr_cpu_ids * sizeof(void **);
9906 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9907 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9908 #endif /* CONFIG_FAIR_GROUP_SCHED */
9909 #ifdef CONFIG_RT_GROUP_SCHED
9910 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9911 ptr += nr_cpu_ids * sizeof(void **);
9913 root_task_group.rt_rq = (struct rt_rq **)ptr;
9914 ptr += nr_cpu_ids * sizeof(void **);
9916 #endif /* CONFIG_RT_GROUP_SCHED */
9919 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9922 init_defrootdomain();
9925 #ifdef CONFIG_RT_GROUP_SCHED
9926 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9927 global_rt_period(), global_rt_runtime());
9928 #endif /* CONFIG_RT_GROUP_SCHED */
9930 #ifdef CONFIG_CGROUP_SCHED
9931 task_group_cache = KMEM_CACHE(task_group, 0);
9933 list_add(&root_task_group.list, &task_groups);
9934 INIT_LIST_HEAD(&root_task_group.children);
9935 INIT_LIST_HEAD(&root_task_group.siblings);
9936 autogroup_init(&init_task);
9937 #endif /* CONFIG_CGROUP_SCHED */
9939 for_each_possible_cpu(i) {
9943 raw_spin_lock_init(&rq->__lock);
9945 rq->calc_load_active = 0;
9946 rq->calc_load_update = jiffies + LOAD_FREQ;
9947 init_cfs_rq(&rq->cfs);
9948 init_rt_rq(&rq->rt);
9949 init_dl_rq(&rq->dl);
9950 #ifdef CONFIG_FAIR_GROUP_SCHED
9951 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9952 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9954 * How much CPU bandwidth does root_task_group get?
9956 * In case of task-groups formed thr' the cgroup filesystem, it
9957 * gets 100% of the CPU resources in the system. This overall
9958 * system CPU resource is divided among the tasks of
9959 * root_task_group and its child task-groups in a fair manner,
9960 * based on each entity's (task or task-group's) weight
9961 * (se->load.weight).
9963 * In other words, if root_task_group has 10 tasks of weight
9964 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9965 * then A0's share of the CPU resource is:
9967 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9969 * We achieve this by letting root_task_group's tasks sit
9970 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9972 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9973 #endif /* CONFIG_FAIR_GROUP_SCHED */
9975 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9976 #ifdef CONFIG_RT_GROUP_SCHED
9977 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9982 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
9983 rq->balance_callback = &balance_push_callback;
9984 rq->active_balance = 0;
9985 rq->next_balance = jiffies;
9990 rq->avg_idle = 2*sysctl_sched_migration_cost;
9991 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9993 INIT_LIST_HEAD(&rq->cfs_tasks);
9995 rq_attach_root(rq, &def_root_domain);
9996 #ifdef CONFIG_NO_HZ_COMMON
9997 rq->last_blocked_load_update_tick = jiffies;
9998 atomic_set(&rq->nohz_flags, 0);
10000 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10002 #ifdef CONFIG_HOTPLUG_CPU
10003 rcuwait_init(&rq->hotplug_wait);
10005 #endif /* CONFIG_SMP */
10006 hrtick_rq_init(rq);
10007 atomic_set(&rq->nr_iowait, 0);
10009 #ifdef CONFIG_SCHED_CORE
10011 rq->core_pick = NULL;
10012 rq->core_enabled = 0;
10013 rq->core_tree = RB_ROOT;
10014 rq->core_forceidle_count = 0;
10015 rq->core_forceidle_occupation = 0;
10016 rq->core_forceidle_start = 0;
10018 rq->core_cookie = 0UL;
10020 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10023 set_load_weight(&init_task, false);
10026 * The boot idle thread does lazy MMU switching as well:
10028 mmgrab_lazy_tlb(&init_mm);
10029 enter_lazy_tlb(&init_mm, current);
10032 * The idle task doesn't need the kthread struct to function, but it
10033 * is dressed up as a per-CPU kthread and thus needs to play the part
10034 * if we want to avoid special-casing it in code that deals with per-CPU
10037 WARN_ON(!set_kthread_struct(current));
10040 * Make us the idle thread. Technically, schedule() should not be
10041 * called from this thread, however somewhere below it might be,
10042 * but because we are the idle thread, we just pick up running again
10043 * when this runqueue becomes "idle".
10045 init_idle(current, smp_processor_id());
10047 calc_load_update = jiffies + LOAD_FREQ;
10050 idle_thread_set_boot_cpu();
10051 balance_push_set(smp_processor_id(), false);
10053 init_sched_fair_class();
10059 preempt_dynamic_init();
10061 scheduler_running = 1;
10064 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10066 void __might_sleep(const char *file, int line)
10068 unsigned int state = get_current_state();
10070 * Blocking primitives will set (and therefore destroy) current->state,
10071 * since we will exit with TASK_RUNNING make sure we enter with it,
10072 * otherwise we will destroy state.
10074 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10075 "do not call blocking ops when !TASK_RUNNING; "
10076 "state=%x set at [<%p>] %pS\n", state,
10077 (void *)current->task_state_change,
10078 (void *)current->task_state_change);
10080 __might_resched(file, line, 0);
10082 EXPORT_SYMBOL(__might_sleep);
10084 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10086 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10089 if (preempt_count() == preempt_offset)
10092 pr_err("Preemption disabled at:");
10093 print_ip_sym(KERN_ERR, ip);
10096 static inline bool resched_offsets_ok(unsigned int offsets)
10098 unsigned int nested = preempt_count();
10100 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10102 return nested == offsets;
10105 void __might_resched(const char *file, int line, unsigned int offsets)
10107 /* Ratelimiting timestamp: */
10108 static unsigned long prev_jiffy;
10110 unsigned long preempt_disable_ip;
10112 /* WARN_ON_ONCE() by default, no rate limit required: */
10115 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10116 !is_idle_task(current) && !current->non_block_count) ||
10117 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10121 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10123 prev_jiffy = jiffies;
10125 /* Save this before calling printk(), since that will clobber it: */
10126 preempt_disable_ip = get_preempt_disable_ip(current);
10128 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10130 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10131 in_atomic(), irqs_disabled(), current->non_block_count,
10132 current->pid, current->comm);
10133 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10134 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10136 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10137 pr_err("RCU nest depth: %d, expected: %u\n",
10138 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10141 if (task_stack_end_corrupted(current))
10142 pr_emerg("Thread overran stack, or stack corrupted\n");
10144 debug_show_held_locks(current);
10145 if (irqs_disabled())
10146 print_irqtrace_events(current);
10148 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10149 preempt_disable_ip);
10152 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10154 EXPORT_SYMBOL(__might_resched);
10156 void __cant_sleep(const char *file, int line, int preempt_offset)
10158 static unsigned long prev_jiffy;
10160 if (irqs_disabled())
10163 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10166 if (preempt_count() > preempt_offset)
10169 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10171 prev_jiffy = jiffies;
10173 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10174 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10175 in_atomic(), irqs_disabled(),
10176 current->pid, current->comm);
10178 debug_show_held_locks(current);
10180 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10182 EXPORT_SYMBOL_GPL(__cant_sleep);
10185 void __cant_migrate(const char *file, int line)
10187 static unsigned long prev_jiffy;
10189 if (irqs_disabled())
10192 if (is_migration_disabled(current))
10195 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10198 if (preempt_count() > 0)
10201 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10203 prev_jiffy = jiffies;
10205 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10206 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10207 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10208 current->pid, current->comm);
10210 debug_show_held_locks(current);
10212 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10214 EXPORT_SYMBOL_GPL(__cant_migrate);
10218 #ifdef CONFIG_MAGIC_SYSRQ
10219 void normalize_rt_tasks(void)
10221 struct task_struct *g, *p;
10222 struct sched_attr attr = {
10223 .sched_policy = SCHED_NORMAL,
10226 read_lock(&tasklist_lock);
10227 for_each_process_thread(g, p) {
10229 * Only normalize user tasks:
10231 if (p->flags & PF_KTHREAD)
10234 p->se.exec_start = 0;
10235 schedstat_set(p->stats.wait_start, 0);
10236 schedstat_set(p->stats.sleep_start, 0);
10237 schedstat_set(p->stats.block_start, 0);
10239 if (!dl_task(p) && !rt_task(p)) {
10241 * Renice negative nice level userspace
10244 if (task_nice(p) < 0)
10245 set_user_nice(p, 0);
10249 __sched_setscheduler(p, &attr, false, false);
10251 read_unlock(&tasklist_lock);
10254 #endif /* CONFIG_MAGIC_SYSRQ */
10256 #if defined(CONFIG_KGDB_KDB)
10258 * These functions are only useful for kdb.
10260 * They can only be called when the whole system has been
10261 * stopped - every CPU needs to be quiescent, and no scheduling
10262 * activity can take place. Using them for anything else would
10263 * be a serious bug, and as a result, they aren't even visible
10264 * under any other configuration.
10268 * curr_task - return the current task for a given CPU.
10269 * @cpu: the processor in question.
10271 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10273 * Return: The current task for @cpu.
10275 struct task_struct *curr_task(int cpu)
10277 return cpu_curr(cpu);
10280 #endif /* defined(CONFIG_KGDB_KDB) */
10282 #ifdef CONFIG_CGROUP_SCHED
10283 /* task_group_lock serializes the addition/removal of task groups */
10284 static DEFINE_SPINLOCK(task_group_lock);
10286 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10287 struct task_group *parent)
10289 #ifdef CONFIG_UCLAMP_TASK_GROUP
10290 enum uclamp_id clamp_id;
10292 for_each_clamp_id(clamp_id) {
10293 uclamp_se_set(&tg->uclamp_req[clamp_id],
10294 uclamp_none(clamp_id), false);
10295 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10300 static void sched_free_group(struct task_group *tg)
10302 free_fair_sched_group(tg);
10303 free_rt_sched_group(tg);
10304 autogroup_free(tg);
10305 kmem_cache_free(task_group_cache, tg);
10308 static void sched_free_group_rcu(struct rcu_head *rcu)
10310 sched_free_group(container_of(rcu, struct task_group, rcu));
10313 static void sched_unregister_group(struct task_group *tg)
10315 unregister_fair_sched_group(tg);
10316 unregister_rt_sched_group(tg);
10318 * We have to wait for yet another RCU grace period to expire, as
10319 * print_cfs_stats() might run concurrently.
10321 call_rcu(&tg->rcu, sched_free_group_rcu);
10324 /* allocate runqueue etc for a new task group */
10325 struct task_group *sched_create_group(struct task_group *parent)
10327 struct task_group *tg;
10329 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10331 return ERR_PTR(-ENOMEM);
10333 if (!alloc_fair_sched_group(tg, parent))
10336 if (!alloc_rt_sched_group(tg, parent))
10339 alloc_uclamp_sched_group(tg, parent);
10344 sched_free_group(tg);
10345 return ERR_PTR(-ENOMEM);
10348 void sched_online_group(struct task_group *tg, struct task_group *parent)
10350 unsigned long flags;
10352 spin_lock_irqsave(&task_group_lock, flags);
10353 list_add_rcu(&tg->list, &task_groups);
10355 /* Root should already exist: */
10358 tg->parent = parent;
10359 INIT_LIST_HEAD(&tg->children);
10360 list_add_rcu(&tg->siblings, &parent->children);
10361 spin_unlock_irqrestore(&task_group_lock, flags);
10363 online_fair_sched_group(tg);
10366 /* rcu callback to free various structures associated with a task group */
10367 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10369 /* Now it should be safe to free those cfs_rqs: */
10370 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10373 void sched_destroy_group(struct task_group *tg)
10375 /* Wait for possible concurrent references to cfs_rqs complete: */
10376 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10379 void sched_release_group(struct task_group *tg)
10381 unsigned long flags;
10384 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10385 * sched_cfs_period_timer()).
10387 * For this to be effective, we have to wait for all pending users of
10388 * this task group to leave their RCU critical section to ensure no new
10389 * user will see our dying task group any more. Specifically ensure
10390 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10392 * We therefore defer calling unregister_fair_sched_group() to
10393 * sched_unregister_group() which is guarantied to get called only after the
10394 * current RCU grace period has expired.
10396 spin_lock_irqsave(&task_group_lock, flags);
10397 list_del_rcu(&tg->list);
10398 list_del_rcu(&tg->siblings);
10399 spin_unlock_irqrestore(&task_group_lock, flags);
10402 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10404 struct task_group *tg;
10407 * All callers are synchronized by task_rq_lock(); we do not use RCU
10408 * which is pointless here. Thus, we pass "true" to task_css_check()
10409 * to prevent lockdep warnings.
10411 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10412 struct task_group, css);
10413 tg = autogroup_task_group(tsk, tg);
10418 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10420 tsk->sched_task_group = group;
10422 #ifdef CONFIG_FAIR_GROUP_SCHED
10423 if (tsk->sched_class->task_change_group)
10424 tsk->sched_class->task_change_group(tsk);
10427 set_task_rq(tsk, task_cpu(tsk));
10431 * Change task's runqueue when it moves between groups.
10433 * The caller of this function should have put the task in its new group by
10434 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10437 void sched_move_task(struct task_struct *tsk)
10439 int queued, running, queue_flags =
10440 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10441 struct task_group *group;
10444 CLASS(task_rq_lock, rq_guard)(tsk);
10448 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10451 group = sched_get_task_group(tsk);
10452 if (group == tsk->sched_task_group)
10455 update_rq_clock(rq);
10457 running = task_current(rq, tsk);
10458 queued = task_on_rq_queued(tsk);
10461 dequeue_task(rq, tsk, queue_flags);
10463 put_prev_task(rq, tsk);
10465 sched_change_group(tsk, group);
10468 enqueue_task(rq, tsk, queue_flags);
10470 set_next_task(rq, tsk);
10472 * After changing group, the running task may have joined a
10473 * throttled one but it's still the running task. Trigger a
10474 * resched to make sure that task can still run.
10480 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10482 return css ? container_of(css, struct task_group, css) : NULL;
10485 static struct cgroup_subsys_state *
10486 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10488 struct task_group *parent = css_tg(parent_css);
10489 struct task_group *tg;
10492 /* This is early initialization for the top cgroup */
10493 return &root_task_group.css;
10496 tg = sched_create_group(parent);
10498 return ERR_PTR(-ENOMEM);
10503 /* Expose task group only after completing cgroup initialization */
10504 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10506 struct task_group *tg = css_tg(css);
10507 struct task_group *parent = css_tg(css->parent);
10510 sched_online_group(tg, parent);
10512 #ifdef CONFIG_UCLAMP_TASK_GROUP
10513 /* Propagate the effective uclamp value for the new group */
10514 guard(mutex)(&uclamp_mutex);
10516 cpu_util_update_eff(css);
10522 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10524 struct task_group *tg = css_tg(css);
10526 sched_release_group(tg);
10529 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10531 struct task_group *tg = css_tg(css);
10534 * Relies on the RCU grace period between css_released() and this.
10536 sched_unregister_group(tg);
10539 #ifdef CONFIG_RT_GROUP_SCHED
10540 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10542 struct task_struct *task;
10543 struct cgroup_subsys_state *css;
10545 cgroup_taskset_for_each(task, css, tset) {
10546 if (!sched_rt_can_attach(css_tg(css), task))
10553 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10555 struct task_struct *task;
10556 struct cgroup_subsys_state *css;
10558 cgroup_taskset_for_each(task, css, tset)
10559 sched_move_task(task);
10562 #ifdef CONFIG_UCLAMP_TASK_GROUP
10563 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10565 struct cgroup_subsys_state *top_css = css;
10566 struct uclamp_se *uc_parent = NULL;
10567 struct uclamp_se *uc_se = NULL;
10568 unsigned int eff[UCLAMP_CNT];
10569 enum uclamp_id clamp_id;
10570 unsigned int clamps;
10572 lockdep_assert_held(&uclamp_mutex);
10573 SCHED_WARN_ON(!rcu_read_lock_held());
10575 css_for_each_descendant_pre(css, top_css) {
10576 uc_parent = css_tg(css)->parent
10577 ? css_tg(css)->parent->uclamp : NULL;
10579 for_each_clamp_id(clamp_id) {
10580 /* Assume effective clamps matches requested clamps */
10581 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10582 /* Cap effective clamps with parent's effective clamps */
10584 eff[clamp_id] > uc_parent[clamp_id].value) {
10585 eff[clamp_id] = uc_parent[clamp_id].value;
10588 /* Ensure protection is always capped by limit */
10589 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10591 /* Propagate most restrictive effective clamps */
10593 uc_se = css_tg(css)->uclamp;
10594 for_each_clamp_id(clamp_id) {
10595 if (eff[clamp_id] == uc_se[clamp_id].value)
10597 uc_se[clamp_id].value = eff[clamp_id];
10598 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10599 clamps |= (0x1 << clamp_id);
10602 css = css_rightmost_descendant(css);
10606 /* Immediately update descendants RUNNABLE tasks */
10607 uclamp_update_active_tasks(css);
10612 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10613 * C expression. Since there is no way to convert a macro argument (N) into a
10614 * character constant, use two levels of macros.
10616 #define _POW10(exp) ((unsigned int)1e##exp)
10617 #define POW10(exp) _POW10(exp)
10619 struct uclamp_request {
10620 #define UCLAMP_PERCENT_SHIFT 2
10621 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10627 static inline struct uclamp_request
10628 capacity_from_percent(char *buf)
10630 struct uclamp_request req = {
10631 .percent = UCLAMP_PERCENT_SCALE,
10632 .util = SCHED_CAPACITY_SCALE,
10637 if (strcmp(buf, "max")) {
10638 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10642 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10647 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10648 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10654 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10655 size_t nbytes, loff_t off,
10656 enum uclamp_id clamp_id)
10658 struct uclamp_request req;
10659 struct task_group *tg;
10661 req = capacity_from_percent(buf);
10665 static_branch_enable(&sched_uclamp_used);
10667 guard(mutex)(&uclamp_mutex);
10670 tg = css_tg(of_css(of));
10671 if (tg->uclamp_req[clamp_id].value != req.util)
10672 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10675 * Because of not recoverable conversion rounding we keep track of the
10676 * exact requested value
10678 tg->uclamp_pct[clamp_id] = req.percent;
10680 /* Update effective clamps to track the most restrictive value */
10681 cpu_util_update_eff(of_css(of));
10686 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10687 char *buf, size_t nbytes,
10690 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10693 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10694 char *buf, size_t nbytes,
10697 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10700 static inline void cpu_uclamp_print(struct seq_file *sf,
10701 enum uclamp_id clamp_id)
10703 struct task_group *tg;
10708 scoped_guard (rcu) {
10709 tg = css_tg(seq_css(sf));
10710 util_clamp = tg->uclamp_req[clamp_id].value;
10713 if (util_clamp == SCHED_CAPACITY_SCALE) {
10714 seq_puts(sf, "max\n");
10718 percent = tg->uclamp_pct[clamp_id];
10719 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10720 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10723 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10725 cpu_uclamp_print(sf, UCLAMP_MIN);
10729 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10731 cpu_uclamp_print(sf, UCLAMP_MAX);
10734 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10736 #ifdef CONFIG_FAIR_GROUP_SCHED
10737 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10738 struct cftype *cftype, u64 shareval)
10740 if (shareval > scale_load_down(ULONG_MAX))
10741 shareval = MAX_SHARES;
10742 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10745 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10746 struct cftype *cft)
10748 struct task_group *tg = css_tg(css);
10750 return (u64) scale_load_down(tg->shares);
10753 #ifdef CONFIG_CFS_BANDWIDTH
10754 static DEFINE_MUTEX(cfs_constraints_mutex);
10756 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10757 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10758 /* More than 203 days if BW_SHIFT equals 20. */
10759 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10761 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10763 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10766 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10767 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10769 if (tg == &root_task_group)
10773 * Ensure we have at some amount of bandwidth every period. This is
10774 * to prevent reaching a state of large arrears when throttled via
10775 * entity_tick() resulting in prolonged exit starvation.
10777 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10781 * Likewise, bound things on the other side by preventing insane quota
10782 * periods. This also allows us to normalize in computing quota
10785 if (period > max_cfs_quota_period)
10789 * Bound quota to defend quota against overflow during bandwidth shift.
10791 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10794 if (quota != RUNTIME_INF && (burst > quota ||
10795 burst + quota > max_cfs_runtime))
10799 * Prevent race between setting of cfs_rq->runtime_enabled and
10800 * unthrottle_offline_cfs_rqs().
10802 guard(cpus_read_lock)();
10803 guard(mutex)(&cfs_constraints_mutex);
10805 ret = __cfs_schedulable(tg, period, quota);
10809 runtime_enabled = quota != RUNTIME_INF;
10810 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10812 * If we need to toggle cfs_bandwidth_used, off->on must occur
10813 * before making related changes, and on->off must occur afterwards
10815 if (runtime_enabled && !runtime_was_enabled)
10816 cfs_bandwidth_usage_inc();
10818 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10819 cfs_b->period = ns_to_ktime(period);
10820 cfs_b->quota = quota;
10821 cfs_b->burst = burst;
10823 __refill_cfs_bandwidth_runtime(cfs_b);
10826 * Restart the period timer (if active) to handle new
10829 if (runtime_enabled)
10830 start_cfs_bandwidth(cfs_b);
10833 for_each_online_cpu(i) {
10834 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10835 struct rq *rq = cfs_rq->rq;
10837 guard(rq_lock_irq)(rq);
10838 cfs_rq->runtime_enabled = runtime_enabled;
10839 cfs_rq->runtime_remaining = 0;
10841 if (cfs_rq->throttled)
10842 unthrottle_cfs_rq(cfs_rq);
10845 if (runtime_was_enabled && !runtime_enabled)
10846 cfs_bandwidth_usage_dec();
10851 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10853 u64 quota, period, burst;
10855 period = ktime_to_ns(tg->cfs_bandwidth.period);
10856 burst = tg->cfs_bandwidth.burst;
10857 if (cfs_quota_us < 0)
10858 quota = RUNTIME_INF;
10859 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10860 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10864 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10867 static long tg_get_cfs_quota(struct task_group *tg)
10871 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10874 quota_us = tg->cfs_bandwidth.quota;
10875 do_div(quota_us, NSEC_PER_USEC);
10880 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10882 u64 quota, period, burst;
10884 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10887 period = (u64)cfs_period_us * NSEC_PER_USEC;
10888 quota = tg->cfs_bandwidth.quota;
10889 burst = tg->cfs_bandwidth.burst;
10891 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10894 static long tg_get_cfs_period(struct task_group *tg)
10898 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10899 do_div(cfs_period_us, NSEC_PER_USEC);
10901 return cfs_period_us;
10904 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10906 u64 quota, period, burst;
10908 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10911 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10912 period = ktime_to_ns(tg->cfs_bandwidth.period);
10913 quota = tg->cfs_bandwidth.quota;
10915 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10918 static long tg_get_cfs_burst(struct task_group *tg)
10922 burst_us = tg->cfs_bandwidth.burst;
10923 do_div(burst_us, NSEC_PER_USEC);
10928 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10929 struct cftype *cft)
10931 return tg_get_cfs_quota(css_tg(css));
10934 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10935 struct cftype *cftype, s64 cfs_quota_us)
10937 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10940 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10941 struct cftype *cft)
10943 return tg_get_cfs_period(css_tg(css));
10946 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10947 struct cftype *cftype, u64 cfs_period_us)
10949 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10952 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10953 struct cftype *cft)
10955 return tg_get_cfs_burst(css_tg(css));
10958 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10959 struct cftype *cftype, u64 cfs_burst_us)
10961 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10964 struct cfs_schedulable_data {
10965 struct task_group *tg;
10970 * normalize group quota/period to be quota/max_period
10971 * note: units are usecs
10973 static u64 normalize_cfs_quota(struct task_group *tg,
10974 struct cfs_schedulable_data *d)
10979 period = d->period;
10982 period = tg_get_cfs_period(tg);
10983 quota = tg_get_cfs_quota(tg);
10986 /* note: these should typically be equivalent */
10987 if (quota == RUNTIME_INF || quota == -1)
10988 return RUNTIME_INF;
10990 return to_ratio(period, quota);
10993 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10995 struct cfs_schedulable_data *d = data;
10996 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10997 s64 quota = 0, parent_quota = -1;
11000 quota = RUNTIME_INF;
11002 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11004 quota = normalize_cfs_quota(tg, d);
11005 parent_quota = parent_b->hierarchical_quota;
11008 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11009 * always take the non-RUNTIME_INF min. On cgroup1, only
11010 * inherit when no limit is set. In both cases this is used
11011 * by the scheduler to determine if a given CFS task has a
11012 * bandwidth constraint at some higher level.
11014 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11015 if (quota == RUNTIME_INF)
11016 quota = parent_quota;
11017 else if (parent_quota != RUNTIME_INF)
11018 quota = min(quota, parent_quota);
11020 if (quota == RUNTIME_INF)
11021 quota = parent_quota;
11022 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11026 cfs_b->hierarchical_quota = quota;
11031 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11033 struct cfs_schedulable_data data = {
11039 if (quota != RUNTIME_INF) {
11040 do_div(data.period, NSEC_PER_USEC);
11041 do_div(data.quota, NSEC_PER_USEC);
11045 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11048 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11050 struct task_group *tg = css_tg(seq_css(sf));
11051 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11053 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11054 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11055 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11057 if (schedstat_enabled() && tg != &root_task_group) {
11058 struct sched_statistics *stats;
11062 for_each_possible_cpu(i) {
11063 stats = __schedstats_from_se(tg->se[i]);
11064 ws += schedstat_val(stats->wait_sum);
11067 seq_printf(sf, "wait_sum %llu\n", ws);
11070 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11071 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11076 static u64 throttled_time_self(struct task_group *tg)
11081 for_each_possible_cpu(i) {
11082 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11088 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11090 struct task_group *tg = css_tg(seq_css(sf));
11092 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11096 #endif /* CONFIG_CFS_BANDWIDTH */
11097 #endif /* CONFIG_FAIR_GROUP_SCHED */
11099 #ifdef CONFIG_RT_GROUP_SCHED
11100 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11101 struct cftype *cft, s64 val)
11103 return sched_group_set_rt_runtime(css_tg(css), val);
11106 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11107 struct cftype *cft)
11109 return sched_group_rt_runtime(css_tg(css));
11112 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11113 struct cftype *cftype, u64 rt_period_us)
11115 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11118 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11119 struct cftype *cft)
11121 return sched_group_rt_period(css_tg(css));
11123 #endif /* CONFIG_RT_GROUP_SCHED */
11125 #ifdef CONFIG_FAIR_GROUP_SCHED
11126 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11127 struct cftype *cft)
11129 return css_tg(css)->idle;
11132 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11133 struct cftype *cft, s64 idle)
11135 return sched_group_set_idle(css_tg(css), idle);
11139 static struct cftype cpu_legacy_files[] = {
11140 #ifdef CONFIG_FAIR_GROUP_SCHED
11143 .read_u64 = cpu_shares_read_u64,
11144 .write_u64 = cpu_shares_write_u64,
11148 .read_s64 = cpu_idle_read_s64,
11149 .write_s64 = cpu_idle_write_s64,
11152 #ifdef CONFIG_CFS_BANDWIDTH
11154 .name = "cfs_quota_us",
11155 .read_s64 = cpu_cfs_quota_read_s64,
11156 .write_s64 = cpu_cfs_quota_write_s64,
11159 .name = "cfs_period_us",
11160 .read_u64 = cpu_cfs_period_read_u64,
11161 .write_u64 = cpu_cfs_period_write_u64,
11164 .name = "cfs_burst_us",
11165 .read_u64 = cpu_cfs_burst_read_u64,
11166 .write_u64 = cpu_cfs_burst_write_u64,
11170 .seq_show = cpu_cfs_stat_show,
11173 .name = "stat.local",
11174 .seq_show = cpu_cfs_local_stat_show,
11177 #ifdef CONFIG_RT_GROUP_SCHED
11179 .name = "rt_runtime_us",
11180 .read_s64 = cpu_rt_runtime_read,
11181 .write_s64 = cpu_rt_runtime_write,
11184 .name = "rt_period_us",
11185 .read_u64 = cpu_rt_period_read_uint,
11186 .write_u64 = cpu_rt_period_write_uint,
11189 #ifdef CONFIG_UCLAMP_TASK_GROUP
11191 .name = "uclamp.min",
11192 .flags = CFTYPE_NOT_ON_ROOT,
11193 .seq_show = cpu_uclamp_min_show,
11194 .write = cpu_uclamp_min_write,
11197 .name = "uclamp.max",
11198 .flags = CFTYPE_NOT_ON_ROOT,
11199 .seq_show = cpu_uclamp_max_show,
11200 .write = cpu_uclamp_max_write,
11203 { } /* Terminate */
11206 static int cpu_extra_stat_show(struct seq_file *sf,
11207 struct cgroup_subsys_state *css)
11209 #ifdef CONFIG_CFS_BANDWIDTH
11211 struct task_group *tg = css_tg(css);
11212 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11213 u64 throttled_usec, burst_usec;
11215 throttled_usec = cfs_b->throttled_time;
11216 do_div(throttled_usec, NSEC_PER_USEC);
11217 burst_usec = cfs_b->burst_time;
11218 do_div(burst_usec, NSEC_PER_USEC);
11220 seq_printf(sf, "nr_periods %d\n"
11221 "nr_throttled %d\n"
11222 "throttled_usec %llu\n"
11224 "burst_usec %llu\n",
11225 cfs_b->nr_periods, cfs_b->nr_throttled,
11226 throttled_usec, cfs_b->nr_burst, burst_usec);
11232 static int cpu_local_stat_show(struct seq_file *sf,
11233 struct cgroup_subsys_state *css)
11235 #ifdef CONFIG_CFS_BANDWIDTH
11237 struct task_group *tg = css_tg(css);
11238 u64 throttled_self_usec;
11240 throttled_self_usec = throttled_time_self(tg);
11241 do_div(throttled_self_usec, NSEC_PER_USEC);
11243 seq_printf(sf, "throttled_usec %llu\n",
11244 throttled_self_usec);
11250 #ifdef CONFIG_FAIR_GROUP_SCHED
11251 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11252 struct cftype *cft)
11254 struct task_group *tg = css_tg(css);
11255 u64 weight = scale_load_down(tg->shares);
11257 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11260 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11261 struct cftype *cft, u64 weight)
11264 * cgroup weight knobs should use the common MIN, DFL and MAX
11265 * values which are 1, 100 and 10000 respectively. While it loses
11266 * a bit of range on both ends, it maps pretty well onto the shares
11267 * value used by scheduler and the round-trip conversions preserve
11268 * the original value over the entire range.
11270 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11273 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11275 return sched_group_set_shares(css_tg(css), scale_load(weight));
11278 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11279 struct cftype *cft)
11281 unsigned long weight = scale_load_down(css_tg(css)->shares);
11282 int last_delta = INT_MAX;
11285 /* find the closest nice value to the current weight */
11286 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11287 delta = abs(sched_prio_to_weight[prio] - weight);
11288 if (delta >= last_delta)
11290 last_delta = delta;
11293 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11296 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11297 struct cftype *cft, s64 nice)
11299 unsigned long weight;
11302 if (nice < MIN_NICE || nice > MAX_NICE)
11305 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11306 idx = array_index_nospec(idx, 40);
11307 weight = sched_prio_to_weight[idx];
11309 return sched_group_set_shares(css_tg(css), scale_load(weight));
11313 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11314 long period, long quota)
11317 seq_puts(sf, "max");
11319 seq_printf(sf, "%ld", quota);
11321 seq_printf(sf, " %ld\n", period);
11324 /* caller should put the current value in *@periodp before calling */
11325 static int __maybe_unused cpu_period_quota_parse(char *buf,
11326 u64 *periodp, u64 *quotap)
11328 char tok[21]; /* U64_MAX */
11330 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11333 *periodp *= NSEC_PER_USEC;
11335 if (sscanf(tok, "%llu", quotap))
11336 *quotap *= NSEC_PER_USEC;
11337 else if (!strcmp(tok, "max"))
11338 *quotap = RUNTIME_INF;
11345 #ifdef CONFIG_CFS_BANDWIDTH
11346 static int cpu_max_show(struct seq_file *sf, void *v)
11348 struct task_group *tg = css_tg(seq_css(sf));
11350 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11354 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11355 char *buf, size_t nbytes, loff_t off)
11357 struct task_group *tg = css_tg(of_css(of));
11358 u64 period = tg_get_cfs_period(tg);
11359 u64 burst = tg_get_cfs_burst(tg);
11363 ret = cpu_period_quota_parse(buf, &period, "a);
11365 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11366 return ret ?: nbytes;
11370 static struct cftype cpu_files[] = {
11371 #ifdef CONFIG_FAIR_GROUP_SCHED
11374 .flags = CFTYPE_NOT_ON_ROOT,
11375 .read_u64 = cpu_weight_read_u64,
11376 .write_u64 = cpu_weight_write_u64,
11379 .name = "weight.nice",
11380 .flags = CFTYPE_NOT_ON_ROOT,
11381 .read_s64 = cpu_weight_nice_read_s64,
11382 .write_s64 = cpu_weight_nice_write_s64,
11386 .flags = CFTYPE_NOT_ON_ROOT,
11387 .read_s64 = cpu_idle_read_s64,
11388 .write_s64 = cpu_idle_write_s64,
11391 #ifdef CONFIG_CFS_BANDWIDTH
11394 .flags = CFTYPE_NOT_ON_ROOT,
11395 .seq_show = cpu_max_show,
11396 .write = cpu_max_write,
11399 .name = "max.burst",
11400 .flags = CFTYPE_NOT_ON_ROOT,
11401 .read_u64 = cpu_cfs_burst_read_u64,
11402 .write_u64 = cpu_cfs_burst_write_u64,
11405 #ifdef CONFIG_UCLAMP_TASK_GROUP
11407 .name = "uclamp.min",
11408 .flags = CFTYPE_NOT_ON_ROOT,
11409 .seq_show = cpu_uclamp_min_show,
11410 .write = cpu_uclamp_min_write,
11413 .name = "uclamp.max",
11414 .flags = CFTYPE_NOT_ON_ROOT,
11415 .seq_show = cpu_uclamp_max_show,
11416 .write = cpu_uclamp_max_write,
11419 { } /* terminate */
11422 struct cgroup_subsys cpu_cgrp_subsys = {
11423 .css_alloc = cpu_cgroup_css_alloc,
11424 .css_online = cpu_cgroup_css_online,
11425 .css_released = cpu_cgroup_css_released,
11426 .css_free = cpu_cgroup_css_free,
11427 .css_extra_stat_show = cpu_extra_stat_show,
11428 .css_local_stat_show = cpu_local_stat_show,
11429 #ifdef CONFIG_RT_GROUP_SCHED
11430 .can_attach = cpu_cgroup_can_attach,
11432 .attach = cpu_cgroup_attach,
11433 .legacy_cftypes = cpu_legacy_files,
11434 .dfl_cftypes = cpu_files,
11435 .early_init = true,
11439 #endif /* CONFIG_CGROUP_SCHED */
11441 void dump_cpu_task(int cpu)
11443 if (cpu == smp_processor_id() && in_hardirq()) {
11444 struct pt_regs *regs;
11446 regs = get_irq_regs();
11453 if (trigger_single_cpu_backtrace(cpu))
11456 pr_info("Task dump for CPU %d:\n", cpu);
11457 sched_show_task(cpu_curr(cpu));
11461 * Nice levels are multiplicative, with a gentle 10% change for every
11462 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11463 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11464 * that remained on nice 0.
11466 * The "10% effect" is relative and cumulative: from _any_ nice level,
11467 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11468 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11469 * If a task goes up by ~10% and another task goes down by ~10% then
11470 * the relative distance between them is ~25%.)
11472 const int sched_prio_to_weight[40] = {
11473 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11474 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11475 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11476 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11477 /* 0 */ 1024, 820, 655, 526, 423,
11478 /* 5 */ 335, 272, 215, 172, 137,
11479 /* 10 */ 110, 87, 70, 56, 45,
11480 /* 15 */ 36, 29, 23, 18, 15,
11484 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11486 * In cases where the weight does not change often, we can use the
11487 * precalculated inverse to speed up arithmetics by turning divisions
11488 * into multiplications:
11490 const u32 sched_prio_to_wmult[40] = {
11491 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11492 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11493 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11494 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11495 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11496 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11497 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11498 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11501 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11503 trace_sched_update_nr_running_tp(rq, count);
11506 #ifdef CONFIG_SCHED_MM_CID
11509 * @cid_lock: Guarantee forward-progress of cid allocation.
11511 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11512 * is only used when contention is detected by the lock-free allocation so
11513 * forward progress can be guaranteed.
11515 DEFINE_RAW_SPINLOCK(cid_lock);
11518 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11520 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11521 * detected, it is set to 1 to ensure that all newly coming allocations are
11522 * serialized by @cid_lock until the allocation which detected contention
11523 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11524 * of a cid allocation.
11529 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11530 * concurrently with respect to the execution of the source runqueue context
11533 * There is one basic properties we want to guarantee here:
11535 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11536 * used by a task. That would lead to concurrent allocation of the cid and
11537 * userspace corruption.
11539 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11540 * that a pair of loads observe at least one of a pair of stores, which can be
11549 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11550 * values 0 and 1, this algorithm cares about specific state transitions of the
11551 * runqueue current task (as updated by the scheduler context switch), and the
11552 * per-mm/cpu cid value.
11554 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11555 * task->mm != mm for the rest of the discussion. There are two scheduler state
11556 * transitions on context switch we care about:
11558 * (TSA) Store to rq->curr with transition from (N) to (Y)
11560 * (TSB) Store to rq->curr with transition from (Y) to (N)
11562 * On the remote-clear side, there is one transition we care about:
11564 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11566 * There is also a transition to UNSET state which can be performed from all
11567 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11568 * guarantees that only a single thread will succeed:
11570 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11572 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11573 * when a thread is actively using the cid (property (1)).
11575 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11577 * Scenario A) (TSA)+(TMA) (from next task perspective)
11581 * Context switch CS-1 Remote-clear
11582 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11583 * (implied barrier after cmpxchg)
11584 * - switch_mm_cid()
11585 * - memory barrier (see switch_mm_cid()
11586 * comment explaining how this barrier
11587 * is combined with other scheduler
11589 * - mm_cid_get (next)
11590 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11592 * This Dekker ensures that either task (Y) is observed by the
11593 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11596 * If task (Y) store is observed by rcu_dereference(), it means that there is
11597 * still an active task on the cpu. Remote-clear will therefore not transition
11598 * to UNSET, which fulfills property (1).
11600 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11601 * it will move its state to UNSET, which clears the percpu cid perhaps
11602 * uselessly (which is not an issue for correctness). Because task (Y) is not
11603 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11604 * state to UNSET is done with a cmpxchg expecting that the old state has the
11605 * LAZY flag set, only one thread will successfully UNSET.
11607 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11608 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11609 * CPU1 will observe task (Y) and do nothing more, which is fine.
11611 * What we are effectively preventing with this Dekker is a scenario where
11612 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11613 * because this would UNSET a cid which is actively used.
11616 void sched_mm_cid_migrate_from(struct task_struct *t)
11618 t->migrate_from_cpu = task_cpu(t);
11622 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11623 struct task_struct *t,
11624 struct mm_cid *src_pcpu_cid)
11626 struct mm_struct *mm = t->mm;
11627 struct task_struct *src_task;
11628 int src_cid, last_mm_cid;
11633 last_mm_cid = t->last_mm_cid;
11635 * If the migrated task has no last cid, or if the current
11636 * task on src rq uses the cid, it means the source cid does not need
11637 * to be moved to the destination cpu.
11639 if (last_mm_cid == -1)
11641 src_cid = READ_ONCE(src_pcpu_cid->cid);
11642 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11646 * If we observe an active task using the mm on this rq, it means we
11647 * are not the last task to be migrated from this cpu for this mm, so
11648 * there is no need to move src_cid to the destination cpu.
11651 src_task = rcu_dereference(src_rq->curr);
11652 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11653 t->last_mm_cid = -1;
11661 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11662 struct task_struct *t,
11663 struct mm_cid *src_pcpu_cid,
11666 struct task_struct *src_task;
11667 struct mm_struct *mm = t->mm;
11674 * Attempt to clear the source cpu cid to move it to the destination
11677 lazy_cid = mm_cid_set_lazy_put(src_cid);
11678 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11682 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11683 * rq->curr->mm matches the scheduler barrier in context_switch()
11684 * between store to rq->curr and load of prev and next task's
11687 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11688 * rq->curr->mm_cid_active matches the barrier in
11689 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11690 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11691 * load of per-mm/cpu cid.
11695 * If we observe an active task using the mm on this rq after setting
11696 * the lazy-put flag, this task will be responsible for transitioning
11697 * from lazy-put flag set to MM_CID_UNSET.
11699 scoped_guard (rcu) {
11700 src_task = rcu_dereference(src_rq->curr);
11701 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11703 * We observed an active task for this mm, there is therefore
11704 * no point in moving this cid to the destination cpu.
11706 t->last_mm_cid = -1;
11712 * The src_cid is unused, so it can be unset.
11714 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11720 * Migration to dst cpu. Called with dst_rq lock held.
11721 * Interrupts are disabled, which keeps the window of cid ownership without the
11722 * source rq lock held small.
11724 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11726 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11727 struct mm_struct *mm = t->mm;
11728 int src_cid, dst_cid, src_cpu;
11731 lockdep_assert_rq_held(dst_rq);
11735 src_cpu = t->migrate_from_cpu;
11736 if (src_cpu == -1) {
11737 t->last_mm_cid = -1;
11741 * Move the src cid if the dst cid is unset. This keeps id
11742 * allocation closest to 0 in cases where few threads migrate around
11745 * If destination cid is already set, we may have to just clear
11746 * the src cid to ensure compactness in frequent migrations
11749 * It is not useful to clear the src cid when the number of threads is
11750 * greater or equal to the number of allowed cpus, because user-space
11751 * can expect that the number of allowed cids can reach the number of
11754 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11755 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11756 if (!mm_cid_is_unset(dst_cid) &&
11757 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11759 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11760 src_rq = cpu_rq(src_cpu);
11761 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11764 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11768 if (!mm_cid_is_unset(dst_cid)) {
11769 __mm_cid_put(mm, src_cid);
11772 /* Move src_cid to dst cpu. */
11773 mm_cid_snapshot_time(dst_rq, mm);
11774 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11777 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11780 struct rq *rq = cpu_rq(cpu);
11781 struct task_struct *t;
11784 cid = READ_ONCE(pcpu_cid->cid);
11785 if (!mm_cid_is_valid(cid))
11789 * Clear the cpu cid if it is set to keep cid allocation compact. If
11790 * there happens to be other tasks left on the source cpu using this
11791 * mm, the next task using this mm will reallocate its cid on context
11794 lazy_cid = mm_cid_set_lazy_put(cid);
11795 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11799 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11800 * rq->curr->mm matches the scheduler barrier in context_switch()
11801 * between store to rq->curr and load of prev and next task's
11804 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11805 * rq->curr->mm_cid_active matches the barrier in
11806 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11807 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11808 * load of per-mm/cpu cid.
11812 * If we observe an active task using the mm on this rq after setting
11813 * the lazy-put flag, that task will be responsible for transitioning
11814 * from lazy-put flag set to MM_CID_UNSET.
11816 scoped_guard (rcu) {
11817 t = rcu_dereference(rq->curr);
11818 if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11823 * The cid is unused, so it can be unset.
11824 * Disable interrupts to keep the window of cid ownership without rq
11827 scoped_guard (irqsave) {
11828 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11829 __mm_cid_put(mm, cid);
11833 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11835 struct rq *rq = cpu_rq(cpu);
11836 struct mm_cid *pcpu_cid;
11837 struct task_struct *curr;
11841 * rq->clock load is racy on 32-bit but one spurious clear once in a
11842 * while is irrelevant.
11844 rq_clock = READ_ONCE(rq->clock);
11845 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11848 * In order to take care of infrequently scheduled tasks, bump the time
11849 * snapshot associated with this cid if an active task using the mm is
11850 * observed on this rq.
11852 scoped_guard (rcu) {
11853 curr = rcu_dereference(rq->curr);
11854 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11855 WRITE_ONCE(pcpu_cid->time, rq_clock);
11860 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11862 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11865 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11868 struct mm_cid *pcpu_cid;
11871 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11872 cid = READ_ONCE(pcpu_cid->cid);
11873 if (!mm_cid_is_valid(cid) || cid < weight)
11875 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11878 static void task_mm_cid_work(struct callback_head *work)
11880 unsigned long now = jiffies, old_scan, next_scan;
11881 struct task_struct *t = current;
11882 struct cpumask *cidmask;
11883 struct mm_struct *mm;
11886 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11888 work->next = work; /* Prevent double-add */
11889 if (t->flags & PF_EXITING)
11894 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11895 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11899 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11900 if (res != old_scan)
11903 old_scan = next_scan;
11905 if (time_before(now, old_scan))
11907 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11909 cidmask = mm_cidmask(mm);
11910 /* Clear cids that were not recently used. */
11911 for_each_possible_cpu(cpu)
11912 sched_mm_cid_remote_clear_old(mm, cpu);
11913 weight = cpumask_weight(cidmask);
11915 * Clear cids that are greater or equal to the cidmask weight to
11918 for_each_possible_cpu(cpu)
11919 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11922 void init_sched_mm_cid(struct task_struct *t)
11924 struct mm_struct *mm = t->mm;
11928 mm_users = atomic_read(&mm->mm_users);
11930 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11932 t->cid_work.next = &t->cid_work; /* Protect against double add */
11933 init_task_work(&t->cid_work, task_mm_cid_work);
11936 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11938 struct callback_head *work = &curr->cid_work;
11939 unsigned long now = jiffies;
11941 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11942 work->next != work)
11944 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11946 task_work_add(curr, work, TWA_RESUME);
11949 void sched_mm_cid_exit_signals(struct task_struct *t)
11951 struct mm_struct *mm = t->mm;
11959 guard(rq_lock_irqsave)(rq);
11960 preempt_enable_no_resched(); /* holding spinlock */
11961 WRITE_ONCE(t->mm_cid_active, 0);
11963 * Store t->mm_cid_active before loading per-mm/cpu cid.
11964 * Matches barrier in sched_mm_cid_remote_clear_old().
11968 t->last_mm_cid = t->mm_cid = -1;
11971 void sched_mm_cid_before_execve(struct task_struct *t)
11973 struct mm_struct *mm = t->mm;
11981 guard(rq_lock_irqsave)(rq);
11982 preempt_enable_no_resched(); /* holding spinlock */
11983 WRITE_ONCE(t->mm_cid_active, 0);
11985 * Store t->mm_cid_active before loading per-mm/cpu cid.
11986 * Matches barrier in sched_mm_cid_remote_clear_old().
11990 t->last_mm_cid = t->mm_cid = -1;
11993 void sched_mm_cid_after_execve(struct task_struct *t)
11995 struct mm_struct *mm = t->mm;
12003 scoped_guard (rq_lock_irqsave, rq) {
12004 preempt_enable_no_resched(); /* holding spinlock */
12005 WRITE_ONCE(t->mm_cid_active, 1);
12007 * Store t->mm_cid_active before loading per-mm/cpu cid.
12008 * Matches barrier in sched_mm_cid_remote_clear_old().
12011 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12013 rseq_set_notify_resume(t);
12016 void sched_mm_cid_fork(struct task_struct *t)
12018 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12019 t->mm_cid_active = 1;