4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
10 #include <linux/nospec.h>
12 #include <linux/kcov.h>
14 #include <asm/switch_to.h>
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
27 #ifdef CONFIG_SCHED_DEBUG
29 * Debugging: various feature bits
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug unsigned int sysctl_sched_features =
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
47 const_debug unsigned int sysctl_sched_nr_migrate = 32;
50 * period over which we measure -rt task CPU usage in us.
53 unsigned int sysctl_sched_rt_period = 1000000;
55 __read_mostly int scheduler_running;
58 * part of the period that we allow rt tasks to run in us.
61 int sysctl_sched_rt_runtime = 950000;
64 * __task_rq_lock - lock the rq @p resides on.
66 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
71 lockdep_assert_held(&p->pi_lock);
75 raw_spin_lock(&rq->lock);
76 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
80 raw_spin_unlock(&rq->lock);
82 while (unlikely(task_on_rq_migrating(p)))
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
91 __acquires(p->pi_lock)
97 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
99 raw_spin_lock(&rq->lock);
101 * move_queued_task() task_rq_lock()
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
110 * If we observe the old CPU in task_rq_lock(), the acquire of
111 * the old rq->lock will fully serialize against the stores.
113 * If we observe the new CPU in task_rq_lock(), the address
114 * dependency headed by '[L] rq = task_rq()' and the acquire
115 * will pair with the WMB to ensure we then also see migrating.
117 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
121 raw_spin_unlock(&rq->lock);
122 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
124 while (unlikely(task_on_rq_migrating(p)))
130 * RQ-clock updating methods:
133 static void update_rq_clock_task(struct rq *rq, s64 delta)
136 * In theory, the compile should just see 0 here, and optimize out the call
137 * to sched_rt_avg_update. But I don't trust it...
139 s64 __maybe_unused steal = 0, irq_delta = 0;
141 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
142 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
145 * Since irq_time is only updated on {soft,}irq_exit, we might run into
146 * this case when a previous update_rq_clock() happened inside a
149 * When this happens, we stop ->clock_task and only update the
150 * prev_irq_time stamp to account for the part that fit, so that a next
151 * update will consume the rest. This ensures ->clock_task is
154 * It does however cause some slight miss-attribution of {soft,}irq
155 * time, a more accurate solution would be to update the irq_time using
156 * the current rq->clock timestamp, except that would require using
159 if (irq_delta > delta)
162 rq->prev_irq_time += irq_delta;
165 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
166 if (static_key_false((¶virt_steal_rq_enabled))) {
167 steal = paravirt_steal_clock(cpu_of(rq));
168 steal -= rq->prev_steal_time_rq;
170 if (unlikely(steal > delta))
173 rq->prev_steal_time_rq += steal;
178 rq->clock_task += delta;
180 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
181 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
182 update_irq_load_avg(rq, irq_delta + steal);
186 void update_rq_clock(struct rq *rq)
190 lockdep_assert_held(&rq->lock);
192 if (rq->clock_update_flags & RQCF_ACT_SKIP)
195 #ifdef CONFIG_SCHED_DEBUG
196 if (sched_feat(WARN_DOUBLE_CLOCK))
197 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
198 rq->clock_update_flags |= RQCF_UPDATED;
201 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
205 update_rq_clock_task(rq, delta);
209 #ifdef CONFIG_SCHED_HRTICK
211 * Use HR-timers to deliver accurate preemption points.
214 static void hrtick_clear(struct rq *rq)
216 if (hrtimer_active(&rq->hrtick_timer))
217 hrtimer_cancel(&rq->hrtick_timer);
221 * High-resolution timer tick.
222 * Runs from hardirq context with interrupts disabled.
224 static enum hrtimer_restart hrtick(struct hrtimer *timer)
226 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
229 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
233 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
236 return HRTIMER_NORESTART;
241 static void __hrtick_restart(struct rq *rq)
243 struct hrtimer *timer = &rq->hrtick_timer;
245 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
249 * called from hardirq (IPI) context
251 static void __hrtick_start(void *arg)
257 __hrtick_restart(rq);
258 rq->hrtick_csd_pending = 0;
263 * Called to set the hrtick timer state.
265 * called with rq->lock held and irqs disabled
267 void hrtick_start(struct rq *rq, u64 delay)
269 struct hrtimer *timer = &rq->hrtick_timer;
274 * Don't schedule slices shorter than 10000ns, that just
275 * doesn't make sense and can cause timer DoS.
277 delta = max_t(s64, delay, 10000LL);
278 time = ktime_add_ns(timer->base->get_time(), delta);
280 hrtimer_set_expires(timer, time);
282 if (rq == this_rq()) {
283 __hrtick_restart(rq);
284 } else if (!rq->hrtick_csd_pending) {
285 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
286 rq->hrtick_csd_pending = 1;
292 * Called to set the hrtick timer state.
294 * called with rq->lock held and irqs disabled
296 void hrtick_start(struct rq *rq, u64 delay)
299 * Don't schedule slices shorter than 10000ns, that just
300 * doesn't make sense. Rely on vruntime for fairness.
302 delay = max_t(u64, delay, 10000LL);
303 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
304 HRTIMER_MODE_REL_PINNED);
306 #endif /* CONFIG_SMP */
308 static void hrtick_rq_init(struct rq *rq)
311 rq->hrtick_csd_pending = 0;
313 rq->hrtick_csd.flags = 0;
314 rq->hrtick_csd.func = __hrtick_start;
315 rq->hrtick_csd.info = rq;
318 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
319 rq->hrtick_timer.function = hrtick;
321 #else /* CONFIG_SCHED_HRTICK */
322 static inline void hrtick_clear(struct rq *rq)
326 static inline void hrtick_rq_init(struct rq *rq)
329 #endif /* CONFIG_SCHED_HRTICK */
332 * cmpxchg based fetch_or, macro so it works for different integer types
334 #define fetch_or(ptr, mask) \
336 typeof(ptr) _ptr = (ptr); \
337 typeof(mask) _mask = (mask); \
338 typeof(*_ptr) _old, _val = *_ptr; \
341 _old = cmpxchg(_ptr, _val, _val | _mask); \
349 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
351 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
352 * this avoids any races wrt polling state changes and thereby avoids
355 static bool set_nr_and_not_polling(struct task_struct *p)
357 struct thread_info *ti = task_thread_info(p);
358 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
362 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
364 * If this returns true, then the idle task promises to call
365 * sched_ttwu_pending() and reschedule soon.
367 static bool set_nr_if_polling(struct task_struct *p)
369 struct thread_info *ti = task_thread_info(p);
370 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
373 if (!(val & _TIF_POLLING_NRFLAG))
375 if (val & _TIF_NEED_RESCHED)
377 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
386 static bool set_nr_and_not_polling(struct task_struct *p)
388 set_tsk_need_resched(p);
393 static bool set_nr_if_polling(struct task_struct *p)
400 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
402 struct wake_q_node *node = &task->wake_q;
405 * Atomically grab the task, if ->wake_q is !nil already it means
406 * its already queued (either by us or someone else) and will get the
407 * wakeup due to that.
409 * In order to ensure that a pending wakeup will observe our pending
410 * state, even in the failed case, an explicit smp_mb() must be used.
412 smp_mb__before_atomic();
413 if (cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))
416 get_task_struct(task);
419 * The head is context local, there can be no concurrency.
422 head->lastp = &node->next;
425 void wake_up_q(struct wake_q_head *head)
427 struct wake_q_node *node = head->first;
429 while (node != WAKE_Q_TAIL) {
430 struct task_struct *task;
432 task = container_of(node, struct task_struct, wake_q);
434 /* Task can safely be re-inserted now: */
436 task->wake_q.next = NULL;
439 * wake_up_process() executes a full barrier, which pairs with
440 * the queueing in wake_q_add() so as not to miss wakeups.
442 wake_up_process(task);
443 put_task_struct(task);
448 * resched_curr - mark rq's current task 'to be rescheduled now'.
450 * On UP this means the setting of the need_resched flag, on SMP it
451 * might also involve a cross-CPU call to trigger the scheduler on
454 void resched_curr(struct rq *rq)
456 struct task_struct *curr = rq->curr;
459 lockdep_assert_held(&rq->lock);
461 if (test_tsk_need_resched(curr))
466 if (cpu == smp_processor_id()) {
467 set_tsk_need_resched(curr);
468 set_preempt_need_resched();
472 if (set_nr_and_not_polling(curr))
473 smp_send_reschedule(cpu);
475 trace_sched_wake_idle_without_ipi(cpu);
478 void resched_cpu(int cpu)
480 struct rq *rq = cpu_rq(cpu);
483 raw_spin_lock_irqsave(&rq->lock, flags);
484 if (cpu_online(cpu) || cpu == smp_processor_id())
486 raw_spin_unlock_irqrestore(&rq->lock, flags);
490 #ifdef CONFIG_NO_HZ_COMMON
492 * In the semi idle case, use the nearest busy CPU for migrating timers
493 * from an idle CPU. This is good for power-savings.
495 * We don't do similar optimization for completely idle system, as
496 * selecting an idle CPU will add more delays to the timers than intended
497 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
499 int get_nohz_timer_target(void)
501 int i, cpu = smp_processor_id();
502 struct sched_domain *sd;
504 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
508 for_each_domain(cpu, sd) {
509 for_each_cpu(i, sched_domain_span(sd)) {
513 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
520 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
521 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
528 * When add_timer_on() enqueues a timer into the timer wheel of an
529 * idle CPU then this timer might expire before the next timer event
530 * which is scheduled to wake up that CPU. In case of a completely
531 * idle system the next event might even be infinite time into the
532 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
533 * leaves the inner idle loop so the newly added timer is taken into
534 * account when the CPU goes back to idle and evaluates the timer
535 * wheel for the next timer event.
537 static void wake_up_idle_cpu(int cpu)
539 struct rq *rq = cpu_rq(cpu);
541 if (cpu == smp_processor_id())
544 if (set_nr_and_not_polling(rq->idle))
545 smp_send_reschedule(cpu);
547 trace_sched_wake_idle_without_ipi(cpu);
550 static bool wake_up_full_nohz_cpu(int cpu)
553 * We just need the target to call irq_exit() and re-evaluate
554 * the next tick. The nohz full kick at least implies that.
555 * If needed we can still optimize that later with an
558 if (cpu_is_offline(cpu))
559 return true; /* Don't try to wake offline CPUs. */
560 if (tick_nohz_full_cpu(cpu)) {
561 if (cpu != smp_processor_id() ||
562 tick_nohz_tick_stopped())
563 tick_nohz_full_kick_cpu(cpu);
571 * Wake up the specified CPU. If the CPU is going offline, it is the
572 * caller's responsibility to deal with the lost wakeup, for example,
573 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
575 void wake_up_nohz_cpu(int cpu)
577 if (!wake_up_full_nohz_cpu(cpu))
578 wake_up_idle_cpu(cpu);
581 static inline bool got_nohz_idle_kick(void)
583 int cpu = smp_processor_id();
585 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
588 if (idle_cpu(cpu) && !need_resched())
592 * We can't run Idle Load Balance on this CPU for this time so we
593 * cancel it and clear NOHZ_BALANCE_KICK
595 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
599 #else /* CONFIG_NO_HZ_COMMON */
601 static inline bool got_nohz_idle_kick(void)
606 #endif /* CONFIG_NO_HZ_COMMON */
608 #ifdef CONFIG_NO_HZ_FULL
609 bool sched_can_stop_tick(struct rq *rq)
613 /* Deadline tasks, even if single, need the tick */
614 if (rq->dl.dl_nr_running)
618 * If there are more than one RR tasks, we need the tick to effect the
619 * actual RR behaviour.
621 if (rq->rt.rr_nr_running) {
622 if (rq->rt.rr_nr_running == 1)
629 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
630 * forced preemption between FIFO tasks.
632 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
637 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
638 * if there's more than one we need the tick for involuntary
641 if (rq->nr_running > 1)
646 #endif /* CONFIG_NO_HZ_FULL */
647 #endif /* CONFIG_SMP */
649 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
650 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 * Iterate task_group tree rooted at *from, calling @down when first entering a
653 * node and @up when leaving it for the final time.
655 * Caller must hold rcu_lock or sufficient equivalent.
657 int walk_tg_tree_from(struct task_group *from,
658 tg_visitor down, tg_visitor up, void *data)
660 struct task_group *parent, *child;
666 ret = (*down)(parent, data);
669 list_for_each_entry_rcu(child, &parent->children, siblings) {
676 ret = (*up)(parent, data);
677 if (ret || parent == from)
681 parent = parent->parent;
688 int tg_nop(struct task_group *tg, void *data)
694 static void set_load_weight(struct task_struct *p, bool update_load)
696 int prio = p->static_prio - MAX_RT_PRIO;
697 struct load_weight *load = &p->se.load;
700 * SCHED_IDLE tasks get minimal weight:
702 if (idle_policy(p->policy)) {
703 load->weight = scale_load(WEIGHT_IDLEPRIO);
704 load->inv_weight = WMULT_IDLEPRIO;
709 * SCHED_OTHER tasks have to update their load when changing their
712 if (update_load && p->sched_class == &fair_sched_class) {
713 reweight_task(p, prio);
715 load->weight = scale_load(sched_prio_to_weight[prio]);
716 load->inv_weight = sched_prio_to_wmult[prio];
720 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
722 if (!(flags & ENQUEUE_NOCLOCK))
725 if (!(flags & ENQUEUE_RESTORE))
726 sched_info_queued(rq, p);
728 p->sched_class->enqueue_task(rq, p, flags);
731 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
733 if (!(flags & DEQUEUE_NOCLOCK))
736 if (!(flags & DEQUEUE_SAVE))
737 sched_info_dequeued(rq, p);
739 p->sched_class->dequeue_task(rq, p, flags);
742 void activate_task(struct rq *rq, struct task_struct *p, int flags)
744 if (task_contributes_to_load(p))
745 rq->nr_uninterruptible--;
747 enqueue_task(rq, p, flags);
750 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
752 if (task_contributes_to_load(p))
753 rq->nr_uninterruptible++;
755 dequeue_task(rq, p, flags);
759 * __normal_prio - return the priority that is based on the static prio
761 static inline int __normal_prio(struct task_struct *p)
763 return p->static_prio;
767 * Calculate the expected normal priority: i.e. priority
768 * without taking RT-inheritance into account. Might be
769 * boosted by interactivity modifiers. Changes upon fork,
770 * setprio syscalls, and whenever the interactivity
771 * estimator recalculates.
773 static inline int normal_prio(struct task_struct *p)
777 if (task_has_dl_policy(p))
778 prio = MAX_DL_PRIO-1;
779 else if (task_has_rt_policy(p))
780 prio = MAX_RT_PRIO-1 - p->rt_priority;
782 prio = __normal_prio(p);
787 * Calculate the current priority, i.e. the priority
788 * taken into account by the scheduler. This value might
789 * be boosted by RT tasks, or might be boosted by
790 * interactivity modifiers. Will be RT if the task got
791 * RT-boosted. If not then it returns p->normal_prio.
793 static int effective_prio(struct task_struct *p)
795 p->normal_prio = normal_prio(p);
797 * If we are RT tasks or we were boosted to RT priority,
798 * keep the priority unchanged. Otherwise, update priority
799 * to the normal priority:
801 if (!rt_prio(p->prio))
802 return p->normal_prio;
807 * task_curr - is this task currently executing on a CPU?
808 * @p: the task in question.
810 * Return: 1 if the task is currently executing. 0 otherwise.
812 inline int task_curr(const struct task_struct *p)
814 return cpu_curr(task_cpu(p)) == p;
818 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
819 * use the balance_callback list if you want balancing.
821 * this means any call to check_class_changed() must be followed by a call to
822 * balance_callback().
824 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
825 const struct sched_class *prev_class,
828 if (prev_class != p->sched_class) {
829 if (prev_class->switched_from)
830 prev_class->switched_from(rq, p);
832 p->sched_class->switched_to(rq, p);
833 } else if (oldprio != p->prio || dl_task(p))
834 p->sched_class->prio_changed(rq, p, oldprio);
837 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
839 const struct sched_class *class;
841 if (p->sched_class == rq->curr->sched_class) {
842 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
844 for_each_class(class) {
845 if (class == rq->curr->sched_class)
847 if (class == p->sched_class) {
855 * A queue event has occurred, and we're going to schedule. In
856 * this case, we can save a useless back to back clock update.
858 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
859 rq_clock_skip_update(rq);
864 static inline bool is_per_cpu_kthread(struct task_struct *p)
866 if (!(p->flags & PF_KTHREAD))
869 if (p->nr_cpus_allowed != 1)
876 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
877 * __set_cpus_allowed_ptr() and select_fallback_rq().
879 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
881 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
884 if (is_per_cpu_kthread(p))
885 return cpu_online(cpu);
887 return cpu_active(cpu);
891 * This is how migration works:
893 * 1) we invoke migration_cpu_stop() on the target CPU using
895 * 2) stopper starts to run (implicitly forcing the migrated thread
897 * 3) it checks whether the migrated task is still in the wrong runqueue.
898 * 4) if it's in the wrong runqueue then the migration thread removes
899 * it and puts it into the right queue.
900 * 5) stopper completes and stop_one_cpu() returns and the migration
905 * move_queued_task - move a queued task to new rq.
907 * Returns (locked) new rq. Old rq's lock is released.
909 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
910 struct task_struct *p, int new_cpu)
912 lockdep_assert_held(&rq->lock);
914 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
915 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
916 set_task_cpu(p, new_cpu);
919 rq = cpu_rq(new_cpu);
922 BUG_ON(task_cpu(p) != new_cpu);
923 enqueue_task(rq, p, 0);
924 p->on_rq = TASK_ON_RQ_QUEUED;
925 check_preempt_curr(rq, p, 0);
930 struct migration_arg {
931 struct task_struct *task;
936 * Move (not current) task off this CPU, onto the destination CPU. We're doing
937 * this because either it can't run here any more (set_cpus_allowed()
938 * away from this CPU, or CPU going down), or because we're
939 * attempting to rebalance this task on exec (sched_exec).
941 * So we race with normal scheduler movements, but that's OK, as long
942 * as the task is no longer on this CPU.
944 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
945 struct task_struct *p, int dest_cpu)
947 /* Affinity changed (again). */
948 if (!is_cpu_allowed(p, dest_cpu))
952 rq = move_queued_task(rq, rf, p, dest_cpu);
958 * migration_cpu_stop - this will be executed by a highprio stopper thread
959 * and performs thread migration by bumping thread off CPU then
960 * 'pushing' onto another runqueue.
962 static int migration_cpu_stop(void *data)
964 struct migration_arg *arg = data;
965 struct task_struct *p = arg->task;
966 struct rq *rq = this_rq();
970 * The original target CPU might have gone down and we might
971 * be on another CPU but it doesn't matter.
975 * We need to explicitly wake pending tasks before running
976 * __migrate_task() such that we will not miss enforcing cpus_allowed
977 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
979 sched_ttwu_pending();
981 raw_spin_lock(&p->pi_lock);
984 * If task_rq(p) != rq, it cannot be migrated here, because we're
985 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
986 * we're holding p->pi_lock.
988 if (task_rq(p) == rq) {
989 if (task_on_rq_queued(p))
990 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
992 p->wake_cpu = arg->dest_cpu;
995 raw_spin_unlock(&p->pi_lock);
1002 * sched_class::set_cpus_allowed must do the below, but is not required to
1003 * actually call this function.
1005 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1007 cpumask_copy(&p->cpus_allowed, new_mask);
1008 p->nr_cpus_allowed = cpumask_weight(new_mask);
1011 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1013 struct rq *rq = task_rq(p);
1014 bool queued, running;
1016 lockdep_assert_held(&p->pi_lock);
1018 queued = task_on_rq_queued(p);
1019 running = task_current(rq, p);
1023 * Because __kthread_bind() calls this on blocked tasks without
1026 lockdep_assert_held(&rq->lock);
1027 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1030 put_prev_task(rq, p);
1032 p->sched_class->set_cpus_allowed(p, new_mask);
1035 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1037 set_curr_task(rq, p);
1041 * Change a given task's CPU affinity. Migrate the thread to a
1042 * proper CPU and schedule it away if the CPU it's executing on
1043 * is removed from the allowed bitmask.
1045 * NOTE: the caller must have a valid reference to the task, the
1046 * task must not exit() & deallocate itself prematurely. The
1047 * call is not atomic; no spinlocks may be held.
1049 static int __set_cpus_allowed_ptr(struct task_struct *p,
1050 const struct cpumask *new_mask, bool check)
1052 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1053 unsigned int dest_cpu;
1058 rq = task_rq_lock(p, &rf);
1059 update_rq_clock(rq);
1061 if (p->flags & PF_KTHREAD) {
1063 * Kernel threads are allowed on online && !active CPUs
1065 cpu_valid_mask = cpu_online_mask;
1069 * Must re-check here, to close a race against __kthread_bind(),
1070 * sched_setaffinity() is not guaranteed to observe the flag.
1072 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1077 if (cpumask_equal(&p->cpus_allowed, new_mask))
1080 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1081 if (dest_cpu >= nr_cpu_ids) {
1086 do_set_cpus_allowed(p, new_mask);
1088 if (p->flags & PF_KTHREAD) {
1090 * For kernel threads that do indeed end up on online &&
1091 * !active we want to ensure they are strict per-CPU threads.
1093 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1094 !cpumask_intersects(new_mask, cpu_active_mask) &&
1095 p->nr_cpus_allowed != 1);
1098 /* Can the task run on the task's current CPU? If so, we're done */
1099 if (cpumask_test_cpu(task_cpu(p), new_mask))
1102 if (task_running(rq, p) || p->state == TASK_WAKING) {
1103 struct migration_arg arg = { p, dest_cpu };
1104 /* Need help from migration thread: drop lock and wait. */
1105 task_rq_unlock(rq, p, &rf);
1106 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1107 tlb_migrate_finish(p->mm);
1109 } else if (task_on_rq_queued(p)) {
1111 * OK, since we're going to drop the lock immediately
1112 * afterwards anyway.
1114 rq = move_queued_task(rq, &rf, p, dest_cpu);
1117 task_rq_unlock(rq, p, &rf);
1122 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1124 return __set_cpus_allowed_ptr(p, new_mask, false);
1126 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1128 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1130 #ifdef CONFIG_SCHED_DEBUG
1132 * We should never call set_task_cpu() on a blocked task,
1133 * ttwu() will sort out the placement.
1135 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1139 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1140 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1141 * time relying on p->on_rq.
1143 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1144 p->sched_class == &fair_sched_class &&
1145 (p->on_rq && !task_on_rq_migrating(p)));
1147 #ifdef CONFIG_LOCKDEP
1149 * The caller should hold either p->pi_lock or rq->lock, when changing
1150 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1152 * sched_move_task() holds both and thus holding either pins the cgroup,
1155 * Furthermore, all task_rq users should acquire both locks, see
1158 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1159 lockdep_is_held(&task_rq(p)->lock)));
1162 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1164 WARN_ON_ONCE(!cpu_online(new_cpu));
1167 trace_sched_migrate_task(p, new_cpu);
1169 if (task_cpu(p) != new_cpu) {
1170 if (p->sched_class->migrate_task_rq)
1171 p->sched_class->migrate_task_rq(p, new_cpu);
1172 p->se.nr_migrations++;
1174 perf_event_task_migrate(p);
1177 __set_task_cpu(p, new_cpu);
1180 #ifdef CONFIG_NUMA_BALANCING
1181 static void __migrate_swap_task(struct task_struct *p, int cpu)
1183 if (task_on_rq_queued(p)) {
1184 struct rq *src_rq, *dst_rq;
1185 struct rq_flags srf, drf;
1187 src_rq = task_rq(p);
1188 dst_rq = cpu_rq(cpu);
1190 rq_pin_lock(src_rq, &srf);
1191 rq_pin_lock(dst_rq, &drf);
1193 p->on_rq = TASK_ON_RQ_MIGRATING;
1194 deactivate_task(src_rq, p, 0);
1195 set_task_cpu(p, cpu);
1196 activate_task(dst_rq, p, 0);
1197 p->on_rq = TASK_ON_RQ_QUEUED;
1198 check_preempt_curr(dst_rq, p, 0);
1200 rq_unpin_lock(dst_rq, &drf);
1201 rq_unpin_lock(src_rq, &srf);
1205 * Task isn't running anymore; make it appear like we migrated
1206 * it before it went to sleep. This means on wakeup we make the
1207 * previous CPU our target instead of where it really is.
1213 struct migration_swap_arg {
1214 struct task_struct *src_task, *dst_task;
1215 int src_cpu, dst_cpu;
1218 static int migrate_swap_stop(void *data)
1220 struct migration_swap_arg *arg = data;
1221 struct rq *src_rq, *dst_rq;
1224 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1227 src_rq = cpu_rq(arg->src_cpu);
1228 dst_rq = cpu_rq(arg->dst_cpu);
1230 double_raw_lock(&arg->src_task->pi_lock,
1231 &arg->dst_task->pi_lock);
1232 double_rq_lock(src_rq, dst_rq);
1234 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1237 if (task_cpu(arg->src_task) != arg->src_cpu)
1240 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1243 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1246 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1247 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1252 double_rq_unlock(src_rq, dst_rq);
1253 raw_spin_unlock(&arg->dst_task->pi_lock);
1254 raw_spin_unlock(&arg->src_task->pi_lock);
1260 * Cross migrate two tasks
1262 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1263 int target_cpu, int curr_cpu)
1265 struct migration_swap_arg arg;
1268 arg = (struct migration_swap_arg){
1270 .src_cpu = curr_cpu,
1272 .dst_cpu = target_cpu,
1275 if (arg.src_cpu == arg.dst_cpu)
1279 * These three tests are all lockless; this is OK since all of them
1280 * will be re-checked with proper locks held further down the line.
1282 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1285 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1288 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1291 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1292 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297 #endif /* CONFIG_NUMA_BALANCING */
1300 * wait_task_inactive - wait for a thread to unschedule.
1302 * If @match_state is nonzero, it's the @p->state value just checked and
1303 * not expected to change. If it changes, i.e. @p might have woken up,
1304 * then return zero. When we succeed in waiting for @p to be off its CPU,
1305 * we return a positive number (its total switch count). If a second call
1306 * a short while later returns the same number, the caller can be sure that
1307 * @p has remained unscheduled the whole time.
1309 * The caller must ensure that the task *will* unschedule sometime soon,
1310 * else this function might spin for a *long* time. This function can't
1311 * be called with interrupts off, or it may introduce deadlock with
1312 * smp_call_function() if an IPI is sent by the same process we are
1313 * waiting to become inactive.
1315 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1317 int running, queued;
1324 * We do the initial early heuristics without holding
1325 * any task-queue locks at all. We'll only try to get
1326 * the runqueue lock when things look like they will
1332 * If the task is actively running on another CPU
1333 * still, just relax and busy-wait without holding
1336 * NOTE! Since we don't hold any locks, it's not
1337 * even sure that "rq" stays as the right runqueue!
1338 * But we don't care, since "task_running()" will
1339 * return false if the runqueue has changed and p
1340 * is actually now running somewhere else!
1342 while (task_running(rq, p)) {
1343 if (match_state && unlikely(p->state != match_state))
1349 * Ok, time to look more closely! We need the rq
1350 * lock now, to be *sure*. If we're wrong, we'll
1351 * just go back and repeat.
1353 rq = task_rq_lock(p, &rf);
1354 trace_sched_wait_task(p);
1355 running = task_running(rq, p);
1356 queued = task_on_rq_queued(p);
1358 if (!match_state || p->state == match_state)
1359 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1360 task_rq_unlock(rq, p, &rf);
1363 * If it changed from the expected state, bail out now.
1365 if (unlikely(!ncsw))
1369 * Was it really running after all now that we
1370 * checked with the proper locks actually held?
1372 * Oops. Go back and try again..
1374 if (unlikely(running)) {
1380 * It's not enough that it's not actively running,
1381 * it must be off the runqueue _entirely_, and not
1384 * So if it was still runnable (but just not actively
1385 * running right now), it's preempted, and we should
1386 * yield - it could be a while.
1388 if (unlikely(queued)) {
1389 ktime_t to = NSEC_PER_SEC / HZ;
1391 set_current_state(TASK_UNINTERRUPTIBLE);
1392 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1397 * Ahh, all good. It wasn't running, and it wasn't
1398 * runnable, which means that it will never become
1399 * running in the future either. We're all done!
1408 * kick_process - kick a running thread to enter/exit the kernel
1409 * @p: the to-be-kicked thread
1411 * Cause a process which is running on another CPU to enter
1412 * kernel-mode, without any delay. (to get signals handled.)
1414 * NOTE: this function doesn't have to take the runqueue lock,
1415 * because all it wants to ensure is that the remote task enters
1416 * the kernel. If the IPI races and the task has been migrated
1417 * to another CPU then no harm is done and the purpose has been
1420 void kick_process(struct task_struct *p)
1426 if ((cpu != smp_processor_id()) && task_curr(p))
1427 smp_send_reschedule(cpu);
1430 EXPORT_SYMBOL_GPL(kick_process);
1433 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1435 * A few notes on cpu_active vs cpu_online:
1437 * - cpu_active must be a subset of cpu_online
1439 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1440 * see __set_cpus_allowed_ptr(). At this point the newly online
1441 * CPU isn't yet part of the sched domains, and balancing will not
1444 * - on CPU-down we clear cpu_active() to mask the sched domains and
1445 * avoid the load balancer to place new tasks on the to be removed
1446 * CPU. Existing tasks will remain running there and will be taken
1449 * This means that fallback selection must not select !active CPUs.
1450 * And can assume that any active CPU must be online. Conversely
1451 * select_task_rq() below may allow selection of !active CPUs in order
1452 * to satisfy the above rules.
1454 static int select_fallback_rq(int cpu, struct task_struct *p)
1456 int nid = cpu_to_node(cpu);
1457 const struct cpumask *nodemask = NULL;
1458 enum { cpuset, possible, fail } state = cpuset;
1462 * If the node that the CPU is on has been offlined, cpu_to_node()
1463 * will return -1. There is no CPU on the node, and we should
1464 * select the CPU on the other node.
1467 nodemask = cpumask_of_node(nid);
1469 /* Look for allowed, online CPU in same node. */
1470 for_each_cpu(dest_cpu, nodemask) {
1471 if (!cpu_active(dest_cpu))
1473 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1479 /* Any allowed, online CPU? */
1480 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1481 if (!is_cpu_allowed(p, dest_cpu))
1487 /* No more Mr. Nice Guy. */
1490 if (IS_ENABLED(CONFIG_CPUSETS)) {
1491 cpuset_cpus_allowed_fallback(p);
1497 do_set_cpus_allowed(p, cpu_possible_mask);
1508 if (state != cpuset) {
1510 * Don't tell them about moving exiting tasks or
1511 * kernel threads (both mm NULL), since they never
1514 if (p->mm && printk_ratelimit()) {
1515 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1516 task_pid_nr(p), p->comm, cpu);
1524 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1527 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1529 lockdep_assert_held(&p->pi_lock);
1531 if (p->nr_cpus_allowed > 1)
1532 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1534 cpu = cpumask_any(&p->cpus_allowed);
1537 * In order not to call set_task_cpu() on a blocking task we need
1538 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1541 * Since this is common to all placement strategies, this lives here.
1543 * [ this allows ->select_task() to simply return task_cpu(p) and
1544 * not worry about this generic constraint ]
1546 if (unlikely(!is_cpu_allowed(p, cpu)))
1547 cpu = select_fallback_rq(task_cpu(p), p);
1552 static void update_avg(u64 *avg, u64 sample)
1554 s64 diff = sample - *avg;
1558 void sched_set_stop_task(int cpu, struct task_struct *stop)
1560 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1561 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1565 * Make it appear like a SCHED_FIFO task, its something
1566 * userspace knows about and won't get confused about.
1568 * Also, it will make PI more or less work without too
1569 * much confusion -- but then, stop work should not
1570 * rely on PI working anyway.
1572 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
1574 stop->sched_class = &stop_sched_class;
1577 cpu_rq(cpu)->stop = stop;
1581 * Reset it back to a normal scheduling class so that
1582 * it can die in pieces.
1584 old_stop->sched_class = &rt_sched_class;
1590 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1591 const struct cpumask *new_mask, bool check)
1593 return set_cpus_allowed_ptr(p, new_mask);
1596 #endif /* CONFIG_SMP */
1599 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1603 if (!schedstat_enabled())
1609 if (cpu == rq->cpu) {
1610 __schedstat_inc(rq->ttwu_local);
1611 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1613 struct sched_domain *sd;
1615 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1617 for_each_domain(rq->cpu, sd) {
1618 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1619 __schedstat_inc(sd->ttwu_wake_remote);
1626 if (wake_flags & WF_MIGRATED)
1627 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1628 #endif /* CONFIG_SMP */
1630 __schedstat_inc(rq->ttwu_count);
1631 __schedstat_inc(p->se.statistics.nr_wakeups);
1633 if (wake_flags & WF_SYNC)
1634 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1637 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1639 activate_task(rq, p, en_flags);
1640 p->on_rq = TASK_ON_RQ_QUEUED;
1642 /* If a worker is waking up, notify the workqueue: */
1643 if (p->flags & PF_WQ_WORKER)
1644 wq_worker_waking_up(p, cpu_of(rq));
1648 * Mark the task runnable and perform wakeup-preemption.
1650 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1651 struct rq_flags *rf)
1653 check_preempt_curr(rq, p, wake_flags);
1654 p->state = TASK_RUNNING;
1655 trace_sched_wakeup(p);
1658 if (p->sched_class->task_woken) {
1660 * Our task @p is fully woken up and running; so its safe to
1661 * drop the rq->lock, hereafter rq is only used for statistics.
1663 rq_unpin_lock(rq, rf);
1664 p->sched_class->task_woken(rq, p);
1665 rq_repin_lock(rq, rf);
1668 if (rq->idle_stamp) {
1669 u64 delta = rq_clock(rq) - rq->idle_stamp;
1670 u64 max = 2*rq->max_idle_balance_cost;
1672 update_avg(&rq->avg_idle, delta);
1674 if (rq->avg_idle > max)
1683 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1684 struct rq_flags *rf)
1686 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1688 lockdep_assert_held(&rq->lock);
1691 if (p->sched_contributes_to_load)
1692 rq->nr_uninterruptible--;
1694 if (wake_flags & WF_MIGRATED)
1695 en_flags |= ENQUEUE_MIGRATED;
1698 ttwu_activate(rq, p, en_flags);
1699 ttwu_do_wakeup(rq, p, wake_flags, rf);
1703 * Called in case the task @p isn't fully descheduled from its runqueue,
1704 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1705 * since all we need to do is flip p->state to TASK_RUNNING, since
1706 * the task is still ->on_rq.
1708 static int ttwu_remote(struct task_struct *p, int wake_flags)
1714 rq = __task_rq_lock(p, &rf);
1715 if (task_on_rq_queued(p)) {
1716 /* check_preempt_curr() may use rq clock */
1717 update_rq_clock(rq);
1718 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1721 __task_rq_unlock(rq, &rf);
1727 void sched_ttwu_pending(void)
1729 struct rq *rq = this_rq();
1730 struct llist_node *llist = llist_del_all(&rq->wake_list);
1731 struct task_struct *p, *t;
1737 rq_lock_irqsave(rq, &rf);
1738 update_rq_clock(rq);
1740 llist_for_each_entry_safe(p, t, llist, wake_entry)
1741 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1743 rq_unlock_irqrestore(rq, &rf);
1746 void scheduler_ipi(void)
1749 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1750 * TIF_NEED_RESCHED remotely (for the first time) will also send
1753 preempt_fold_need_resched();
1755 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1759 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1760 * traditionally all their work was done from the interrupt return
1761 * path. Now that we actually do some work, we need to make sure
1764 * Some archs already do call them, luckily irq_enter/exit nest
1767 * Arguably we should visit all archs and update all handlers,
1768 * however a fair share of IPIs are still resched only so this would
1769 * somewhat pessimize the simple resched case.
1772 sched_ttwu_pending();
1775 * Check if someone kicked us for doing the nohz idle load balance.
1777 if (unlikely(got_nohz_idle_kick())) {
1778 this_rq()->idle_balance = 1;
1779 raise_softirq_irqoff(SCHED_SOFTIRQ);
1784 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1786 struct rq *rq = cpu_rq(cpu);
1788 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1790 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1791 if (!set_nr_if_polling(rq->idle))
1792 smp_send_reschedule(cpu);
1794 trace_sched_wake_idle_without_ipi(cpu);
1798 void wake_up_if_idle(int cpu)
1800 struct rq *rq = cpu_rq(cpu);
1805 if (!is_idle_task(rcu_dereference(rq->curr)))
1808 if (set_nr_if_polling(rq->idle)) {
1809 trace_sched_wake_idle_without_ipi(cpu);
1811 rq_lock_irqsave(rq, &rf);
1812 if (is_idle_task(rq->curr))
1813 smp_send_reschedule(cpu);
1814 /* Else CPU is not idle, do nothing here: */
1815 rq_unlock_irqrestore(rq, &rf);
1822 bool cpus_share_cache(int this_cpu, int that_cpu)
1824 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1826 #endif /* CONFIG_SMP */
1828 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1830 struct rq *rq = cpu_rq(cpu);
1833 #if defined(CONFIG_SMP)
1834 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1835 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1836 ttwu_queue_remote(p, cpu, wake_flags);
1842 update_rq_clock(rq);
1843 ttwu_do_activate(rq, p, wake_flags, &rf);
1848 * Notes on Program-Order guarantees on SMP systems.
1852 * The basic program-order guarantee on SMP systems is that when a task [t]
1853 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1854 * execution on its new CPU [c1].
1856 * For migration (of runnable tasks) this is provided by the following means:
1858 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1859 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1860 * rq(c1)->lock (if not at the same time, then in that order).
1861 * C) LOCK of the rq(c1)->lock scheduling in task
1863 * Release/acquire chaining guarantees that B happens after A and C after B.
1864 * Note: the CPU doing B need not be c0 or c1
1873 * UNLOCK rq(0)->lock
1875 * LOCK rq(0)->lock // orders against CPU0
1877 * UNLOCK rq(0)->lock
1881 * UNLOCK rq(1)->lock
1883 * LOCK rq(1)->lock // orders against CPU2
1886 * UNLOCK rq(1)->lock
1889 * BLOCKING -- aka. SLEEP + WAKEUP
1891 * For blocking we (obviously) need to provide the same guarantee as for
1892 * migration. However the means are completely different as there is no lock
1893 * chain to provide order. Instead we do:
1895 * 1) smp_store_release(X->on_cpu, 0)
1896 * 2) smp_cond_load_acquire(!X->on_cpu)
1900 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1902 * LOCK rq(0)->lock LOCK X->pi_lock
1905 * smp_store_release(X->on_cpu, 0);
1907 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1913 * X->state = RUNNING
1914 * UNLOCK rq(2)->lock
1916 * LOCK rq(2)->lock // orders against CPU1
1919 * UNLOCK rq(2)->lock
1922 * UNLOCK rq(0)->lock
1925 * However, for wakeups there is a second guarantee we must provide, namely we
1926 * must ensure that CONDITION=1 done by the caller can not be reordered with
1927 * accesses to the task state; see try_to_wake_up() and set_current_state().
1931 * try_to_wake_up - wake up a thread
1932 * @p: the thread to be awakened
1933 * @state: the mask of task states that can be woken
1934 * @wake_flags: wake modifier flags (WF_*)
1936 * If (@state & @p->state) @p->state = TASK_RUNNING.
1938 * If the task was not queued/runnable, also place it back on a runqueue.
1940 * Atomic against schedule() which would dequeue a task, also see
1941 * set_current_state().
1943 * This function executes a full memory barrier before accessing the task
1944 * state; see set_current_state().
1946 * Return: %true if @p->state changes (an actual wakeup was done),
1950 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1952 unsigned long flags;
1953 int cpu, success = 0;
1956 * If we are going to wake up a thread waiting for CONDITION we
1957 * need to ensure that CONDITION=1 done by the caller can not be
1958 * reordered with p->state check below. This pairs with mb() in
1959 * set_current_state() the waiting thread does.
1961 raw_spin_lock_irqsave(&p->pi_lock, flags);
1962 smp_mb__after_spinlock();
1963 if (!(p->state & state))
1966 trace_sched_waking(p);
1968 /* We're going to change ->state: */
1973 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1974 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1975 * in smp_cond_load_acquire() below.
1977 * sched_ttwu_pending() try_to_wake_up()
1978 * STORE p->on_rq = 1 LOAD p->state
1981 * __schedule() (switch to task 'p')
1982 * LOCK rq->lock smp_rmb();
1983 * smp_mb__after_spinlock();
1987 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
1989 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1990 * __schedule(). See the comment for smp_mb__after_spinlock().
1993 if (p->on_rq && ttwu_remote(p, wake_flags))
1998 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1999 * possible to, falsely, observe p->on_cpu == 0.
2001 * One must be running (->on_cpu == 1) in order to remove oneself
2002 * from the runqueue.
2004 * __schedule() (switch to task 'p') try_to_wake_up()
2005 * STORE p->on_cpu = 1 LOAD p->on_rq
2008 * __schedule() (put 'p' to sleep)
2009 * LOCK rq->lock smp_rmb();
2010 * smp_mb__after_spinlock();
2011 * STORE p->on_rq = 0 LOAD p->on_cpu
2013 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2014 * __schedule(). See the comment for smp_mb__after_spinlock().
2019 * If the owning (remote) CPU is still in the middle of schedule() with
2020 * this task as prev, wait until its done referencing the task.
2022 * Pairs with the smp_store_release() in finish_task().
2024 * This ensures that tasks getting woken will be fully ordered against
2025 * their previous state and preserve Program Order.
2027 smp_cond_load_acquire(&p->on_cpu, !VAL);
2029 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2030 p->state = TASK_WAKING;
2033 delayacct_blkio_end(p);
2034 atomic_dec(&task_rq(p)->nr_iowait);
2037 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2038 if (task_cpu(p) != cpu) {
2039 wake_flags |= WF_MIGRATED;
2040 set_task_cpu(p, cpu);
2043 #else /* CONFIG_SMP */
2046 delayacct_blkio_end(p);
2047 atomic_dec(&task_rq(p)->nr_iowait);
2050 #endif /* CONFIG_SMP */
2052 ttwu_queue(p, cpu, wake_flags);
2054 ttwu_stat(p, cpu, wake_flags);
2056 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2062 * try_to_wake_up_local - try to wake up a local task with rq lock held
2063 * @p: the thread to be awakened
2064 * @rf: request-queue flags for pinning
2066 * Put @p on the run-queue if it's not already there. The caller must
2067 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2070 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2072 struct rq *rq = task_rq(p);
2074 if (WARN_ON_ONCE(rq != this_rq()) ||
2075 WARN_ON_ONCE(p == current))
2078 lockdep_assert_held(&rq->lock);
2080 if (!raw_spin_trylock(&p->pi_lock)) {
2082 * This is OK, because current is on_cpu, which avoids it being
2083 * picked for load-balance and preemption/IRQs are still
2084 * disabled avoiding further scheduler activity on it and we've
2085 * not yet picked a replacement task.
2088 raw_spin_lock(&p->pi_lock);
2092 if (!(p->state & TASK_NORMAL))
2095 trace_sched_waking(p);
2097 if (!task_on_rq_queued(p)) {
2099 delayacct_blkio_end(p);
2100 atomic_dec(&rq->nr_iowait);
2102 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2105 ttwu_do_wakeup(rq, p, 0, rf);
2106 ttwu_stat(p, smp_processor_id(), 0);
2108 raw_spin_unlock(&p->pi_lock);
2112 * wake_up_process - Wake up a specific process
2113 * @p: The process to be woken up.
2115 * Attempt to wake up the nominated process and move it to the set of runnable
2118 * Return: 1 if the process was woken up, 0 if it was already running.
2120 * This function executes a full memory barrier before accessing the task state.
2122 int wake_up_process(struct task_struct *p)
2124 return try_to_wake_up(p, TASK_NORMAL, 0);
2126 EXPORT_SYMBOL(wake_up_process);
2128 int wake_up_state(struct task_struct *p, unsigned int state)
2130 return try_to_wake_up(p, state, 0);
2134 * Perform scheduler related setup for a newly forked process p.
2135 * p is forked by current.
2137 * __sched_fork() is basic setup used by init_idle() too:
2139 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2144 p->se.exec_start = 0;
2145 p->se.sum_exec_runtime = 0;
2146 p->se.prev_sum_exec_runtime = 0;
2147 p->se.nr_migrations = 0;
2149 INIT_LIST_HEAD(&p->se.group_node);
2151 #ifdef CONFIG_FAIR_GROUP_SCHED
2152 p->se.cfs_rq = NULL;
2155 #ifdef CONFIG_SCHEDSTATS
2156 /* Even if schedstat is disabled, there should not be garbage */
2157 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2160 RB_CLEAR_NODE(&p->dl.rb_node);
2161 init_dl_task_timer(&p->dl);
2162 init_dl_inactive_task_timer(&p->dl);
2163 __dl_clear_params(p);
2165 INIT_LIST_HEAD(&p->rt.run_list);
2167 p->rt.time_slice = sched_rr_timeslice;
2171 #ifdef CONFIG_PREEMPT_NOTIFIERS
2172 INIT_HLIST_HEAD(&p->preempt_notifiers);
2175 init_numa_balancing(clone_flags, p);
2178 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2180 #ifdef CONFIG_NUMA_BALANCING
2182 void set_numabalancing_state(bool enabled)
2185 static_branch_enable(&sched_numa_balancing);
2187 static_branch_disable(&sched_numa_balancing);
2190 #ifdef CONFIG_PROC_SYSCTL
2191 int sysctl_numa_balancing(struct ctl_table *table, int write,
2192 void __user *buffer, size_t *lenp, loff_t *ppos)
2196 int state = static_branch_likely(&sched_numa_balancing);
2198 if (write && !capable(CAP_SYS_ADMIN))
2203 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2207 set_numabalancing_state(state);
2213 #ifdef CONFIG_SCHEDSTATS
2215 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2216 static bool __initdata __sched_schedstats = false;
2218 static void set_schedstats(bool enabled)
2221 static_branch_enable(&sched_schedstats);
2223 static_branch_disable(&sched_schedstats);
2226 void force_schedstat_enabled(void)
2228 if (!schedstat_enabled()) {
2229 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2230 static_branch_enable(&sched_schedstats);
2234 static int __init setup_schedstats(char *str)
2241 * This code is called before jump labels have been set up, so we can't
2242 * change the static branch directly just yet. Instead set a temporary
2243 * variable so init_schedstats() can do it later.
2245 if (!strcmp(str, "enable")) {
2246 __sched_schedstats = true;
2248 } else if (!strcmp(str, "disable")) {
2249 __sched_schedstats = false;
2254 pr_warn("Unable to parse schedstats=\n");
2258 __setup("schedstats=", setup_schedstats);
2260 static void __init init_schedstats(void)
2262 set_schedstats(__sched_schedstats);
2265 #ifdef CONFIG_PROC_SYSCTL
2266 int sysctl_schedstats(struct ctl_table *table, int write,
2267 void __user *buffer, size_t *lenp, loff_t *ppos)
2271 int state = static_branch_likely(&sched_schedstats);
2273 if (write && !capable(CAP_SYS_ADMIN))
2278 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 set_schedstats(state);
2285 #endif /* CONFIG_PROC_SYSCTL */
2286 #else /* !CONFIG_SCHEDSTATS */
2287 static inline void init_schedstats(void) {}
2288 #endif /* CONFIG_SCHEDSTATS */
2291 * fork()/clone()-time setup:
2293 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2295 unsigned long flags;
2297 __sched_fork(clone_flags, p);
2299 * We mark the process as NEW here. This guarantees that
2300 * nobody will actually run it, and a signal or other external
2301 * event cannot wake it up and insert it on the runqueue either.
2303 p->state = TASK_NEW;
2306 * Make sure we do not leak PI boosting priority to the child.
2308 p->prio = current->normal_prio;
2311 * Revert to default priority/policy on fork if requested.
2313 if (unlikely(p->sched_reset_on_fork)) {
2314 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2315 p->policy = SCHED_NORMAL;
2316 p->static_prio = NICE_TO_PRIO(0);
2318 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2319 p->static_prio = NICE_TO_PRIO(0);
2321 p->prio = p->normal_prio = __normal_prio(p);
2322 set_load_weight(p, false);
2325 * We don't need the reset flag anymore after the fork. It has
2326 * fulfilled its duty:
2328 p->sched_reset_on_fork = 0;
2331 if (dl_prio(p->prio))
2333 else if (rt_prio(p->prio))
2334 p->sched_class = &rt_sched_class;
2336 p->sched_class = &fair_sched_class;
2338 init_entity_runnable_average(&p->se);
2341 * The child is not yet in the pid-hash so no cgroup attach races,
2342 * and the cgroup is pinned to this child due to cgroup_fork()
2343 * is ran before sched_fork().
2345 * Silence PROVE_RCU.
2347 raw_spin_lock_irqsave(&p->pi_lock, flags);
2350 * We're setting the CPU for the first time, we don't migrate,
2351 * so use __set_task_cpu().
2353 __set_task_cpu(p, smp_processor_id());
2354 if (p->sched_class->task_fork)
2355 p->sched_class->task_fork(p);
2356 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2358 #ifdef CONFIG_SCHED_INFO
2359 if (likely(sched_info_on()))
2360 memset(&p->sched_info, 0, sizeof(p->sched_info));
2362 #if defined(CONFIG_SMP)
2365 init_task_preempt_count(p);
2367 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2368 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2373 unsigned long to_ratio(u64 period, u64 runtime)
2375 if (runtime == RUNTIME_INF)
2379 * Doing this here saves a lot of checks in all
2380 * the calling paths, and returning zero seems
2381 * safe for them anyway.
2386 return div64_u64(runtime << BW_SHIFT, period);
2390 * wake_up_new_task - wake up a newly created task for the first time.
2392 * This function will do some initial scheduler statistics housekeeping
2393 * that must be done for every newly created context, then puts the task
2394 * on the runqueue and wakes it.
2396 void wake_up_new_task(struct task_struct *p)
2401 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2402 p->state = TASK_RUNNING;
2405 * Fork balancing, do it here and not earlier because:
2406 * - cpus_allowed can change in the fork path
2407 * - any previously selected CPU might disappear through hotplug
2409 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2410 * as we're not fully set-up yet.
2412 p->recent_used_cpu = task_cpu(p);
2414 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2416 rq = __task_rq_lock(p, &rf);
2417 update_rq_clock(rq);
2418 post_init_entity_util_avg(&p->se);
2420 activate_task(rq, p, ENQUEUE_NOCLOCK);
2421 p->on_rq = TASK_ON_RQ_QUEUED;
2422 trace_sched_wakeup_new(p);
2423 check_preempt_curr(rq, p, WF_FORK);
2425 if (p->sched_class->task_woken) {
2427 * Nothing relies on rq->lock after this, so its fine to
2430 rq_unpin_lock(rq, &rf);
2431 p->sched_class->task_woken(rq, p);
2432 rq_repin_lock(rq, &rf);
2435 task_rq_unlock(rq, p, &rf);
2438 #ifdef CONFIG_PREEMPT_NOTIFIERS
2440 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2442 void preempt_notifier_inc(void)
2444 static_branch_inc(&preempt_notifier_key);
2446 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2448 void preempt_notifier_dec(void)
2450 static_branch_dec(&preempt_notifier_key);
2452 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2455 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2456 * @notifier: notifier struct to register
2458 void preempt_notifier_register(struct preempt_notifier *notifier)
2460 if (!static_branch_unlikely(&preempt_notifier_key))
2461 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2463 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2465 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2468 * preempt_notifier_unregister - no longer interested in preemption notifications
2469 * @notifier: notifier struct to unregister
2471 * This is *not* safe to call from within a preemption notifier.
2473 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2475 hlist_del(¬ifier->link);
2477 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2479 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2481 struct preempt_notifier *notifier;
2483 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2484 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2487 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2489 if (static_branch_unlikely(&preempt_notifier_key))
2490 __fire_sched_in_preempt_notifiers(curr);
2494 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2495 struct task_struct *next)
2497 struct preempt_notifier *notifier;
2499 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2500 notifier->ops->sched_out(notifier, next);
2503 static __always_inline void
2504 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2505 struct task_struct *next)
2507 if (static_branch_unlikely(&preempt_notifier_key))
2508 __fire_sched_out_preempt_notifiers(curr, next);
2511 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2513 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2518 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2519 struct task_struct *next)
2523 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2525 static inline void prepare_task(struct task_struct *next)
2529 * Claim the task as running, we do this before switching to it
2530 * such that any running task will have this set.
2536 static inline void finish_task(struct task_struct *prev)
2540 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2541 * We must ensure this doesn't happen until the switch is completely
2544 * In particular, the load of prev->state in finish_task_switch() must
2545 * happen before this.
2547 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2549 smp_store_release(&prev->on_cpu, 0);
2554 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2557 * Since the runqueue lock will be released by the next
2558 * task (which is an invalid locking op but in the case
2559 * of the scheduler it's an obvious special-case), so we
2560 * do an early lockdep release here:
2562 rq_unpin_lock(rq, rf);
2563 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2564 #ifdef CONFIG_DEBUG_SPINLOCK
2565 /* this is a valid case when another task releases the spinlock */
2566 rq->lock.owner = next;
2570 static inline void finish_lock_switch(struct rq *rq)
2573 * If we are tracking spinlock dependencies then we have to
2574 * fix up the runqueue lock - which gets 'carried over' from
2575 * prev into current:
2577 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2578 raw_spin_unlock_irq(&rq->lock);
2582 * NOP if the arch has not defined these:
2585 #ifndef prepare_arch_switch
2586 # define prepare_arch_switch(next) do { } while (0)
2589 #ifndef finish_arch_post_lock_switch
2590 # define finish_arch_post_lock_switch() do { } while (0)
2594 * prepare_task_switch - prepare to switch tasks
2595 * @rq: the runqueue preparing to switch
2596 * @prev: the current task that is being switched out
2597 * @next: the task we are going to switch to.
2599 * This is called with the rq lock held and interrupts off. It must
2600 * be paired with a subsequent finish_task_switch after the context
2603 * prepare_task_switch sets up locking and calls architecture specific
2607 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2608 struct task_struct *next)
2610 kcov_prepare_switch(prev);
2611 sched_info_switch(rq, prev, next);
2612 perf_event_task_sched_out(prev, next);
2614 fire_sched_out_preempt_notifiers(prev, next);
2616 prepare_arch_switch(next);
2620 * finish_task_switch - clean up after a task-switch
2621 * @prev: the thread we just switched away from.
2623 * finish_task_switch must be called after the context switch, paired
2624 * with a prepare_task_switch call before the context switch.
2625 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2626 * and do any other architecture-specific cleanup actions.
2628 * Note that we may have delayed dropping an mm in context_switch(). If
2629 * so, we finish that here outside of the runqueue lock. (Doing it
2630 * with the lock held can cause deadlocks; see schedule() for
2633 * The context switch have flipped the stack from under us and restored the
2634 * local variables which were saved when this task called schedule() in the
2635 * past. prev == current is still correct but we need to recalculate this_rq
2636 * because prev may have moved to another CPU.
2638 static struct rq *finish_task_switch(struct task_struct *prev)
2639 __releases(rq->lock)
2641 struct rq *rq = this_rq();
2642 struct mm_struct *mm = rq->prev_mm;
2646 * The previous task will have left us with a preempt_count of 2
2647 * because it left us after:
2650 * preempt_disable(); // 1
2652 * raw_spin_lock_irq(&rq->lock) // 2
2654 * Also, see FORK_PREEMPT_COUNT.
2656 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2657 "corrupted preempt_count: %s/%d/0x%x\n",
2658 current->comm, current->pid, preempt_count()))
2659 preempt_count_set(FORK_PREEMPT_COUNT);
2664 * A task struct has one reference for the use as "current".
2665 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2666 * schedule one last time. The schedule call will never return, and
2667 * the scheduled task must drop that reference.
2669 * We must observe prev->state before clearing prev->on_cpu (in
2670 * finish_task), otherwise a concurrent wakeup can get prev
2671 * running on another CPU and we could rave with its RUNNING -> DEAD
2672 * transition, resulting in a double drop.
2674 prev_state = prev->state;
2675 vtime_task_switch(prev);
2676 perf_event_task_sched_in(prev, current);
2678 finish_lock_switch(rq);
2679 finish_arch_post_lock_switch();
2680 kcov_finish_switch(current);
2682 fire_sched_in_preempt_notifiers(current);
2684 * When switching through a kernel thread, the loop in
2685 * membarrier_{private,global}_expedited() may have observed that
2686 * kernel thread and not issued an IPI. It is therefore possible to
2687 * schedule between user->kernel->user threads without passing though
2688 * switch_mm(). Membarrier requires a barrier after storing to
2689 * rq->curr, before returning to userspace, so provide them here:
2691 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2692 * provided by mmdrop(),
2693 * - a sync_core for SYNC_CORE.
2696 membarrier_mm_sync_core_before_usermode(mm);
2699 if (unlikely(prev_state == TASK_DEAD)) {
2700 if (prev->sched_class->task_dead)
2701 prev->sched_class->task_dead(prev);
2704 * Remove function-return probe instances associated with this
2705 * task and put them back on the free list.
2707 kprobe_flush_task(prev);
2709 /* Task is done with its stack. */
2710 put_task_stack(prev);
2712 put_task_struct(prev);
2715 tick_nohz_task_switch();
2721 /* rq->lock is NOT held, but preemption is disabled */
2722 static void __balance_callback(struct rq *rq)
2724 struct callback_head *head, *next;
2725 void (*func)(struct rq *rq);
2726 unsigned long flags;
2728 raw_spin_lock_irqsave(&rq->lock, flags);
2729 head = rq->balance_callback;
2730 rq->balance_callback = NULL;
2732 func = (void (*)(struct rq *))head->func;
2739 raw_spin_unlock_irqrestore(&rq->lock, flags);
2742 static inline void balance_callback(struct rq *rq)
2744 if (unlikely(rq->balance_callback))
2745 __balance_callback(rq);
2750 static inline void balance_callback(struct rq *rq)
2757 * schedule_tail - first thing a freshly forked thread must call.
2758 * @prev: the thread we just switched away from.
2760 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2761 __releases(rq->lock)
2766 * New tasks start with FORK_PREEMPT_COUNT, see there and
2767 * finish_task_switch() for details.
2769 * finish_task_switch() will drop rq->lock() and lower preempt_count
2770 * and the preempt_enable() will end up enabling preemption (on
2771 * PREEMPT_COUNT kernels).
2774 rq = finish_task_switch(prev);
2775 balance_callback(rq);
2778 if (current->set_child_tid)
2779 put_user(task_pid_vnr(current), current->set_child_tid);
2781 calculate_sigpending();
2785 * context_switch - switch to the new MM and the new thread's register state.
2787 static __always_inline struct rq *
2788 context_switch(struct rq *rq, struct task_struct *prev,
2789 struct task_struct *next, struct rq_flags *rf)
2791 struct mm_struct *mm, *oldmm;
2793 prepare_task_switch(rq, prev, next);
2796 oldmm = prev->active_mm;
2798 * For paravirt, this is coupled with an exit in switch_to to
2799 * combine the page table reload and the switch backend into
2802 arch_start_context_switch(prev);
2805 * If mm is non-NULL, we pass through switch_mm(). If mm is
2806 * NULL, we will pass through mmdrop() in finish_task_switch().
2807 * Both of these contain the full memory barrier required by
2808 * membarrier after storing to rq->curr, before returning to
2812 next->active_mm = oldmm;
2814 enter_lazy_tlb(oldmm, next);
2816 switch_mm_irqs_off(oldmm, mm, next);
2819 prev->active_mm = NULL;
2820 rq->prev_mm = oldmm;
2823 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2825 prepare_lock_switch(rq, next, rf);
2827 /* Here we just switch the register state and the stack. */
2828 switch_to(prev, next, prev);
2831 return finish_task_switch(prev);
2835 * nr_running and nr_context_switches:
2837 * externally visible scheduler statistics: current number of runnable
2838 * threads, total number of context switches performed since bootup.
2840 unsigned long nr_running(void)
2842 unsigned long i, sum = 0;
2844 for_each_online_cpu(i)
2845 sum += cpu_rq(i)->nr_running;
2851 * Check if only the current task is running on the CPU.
2853 * Caution: this function does not check that the caller has disabled
2854 * preemption, thus the result might have a time-of-check-to-time-of-use
2855 * race. The caller is responsible to use it correctly, for example:
2857 * - from a non-preemptable section (of course)
2859 * - from a thread that is bound to a single CPU
2861 * - in a loop with very short iterations (e.g. a polling loop)
2863 bool single_task_running(void)
2865 return raw_rq()->nr_running == 1;
2867 EXPORT_SYMBOL(single_task_running);
2869 unsigned long long nr_context_switches(void)
2872 unsigned long long sum = 0;
2874 for_each_possible_cpu(i)
2875 sum += cpu_rq(i)->nr_switches;
2881 * IO-wait accounting, and how its mostly bollocks (on SMP).
2883 * The idea behind IO-wait account is to account the idle time that we could
2884 * have spend running if it were not for IO. That is, if we were to improve the
2885 * storage performance, we'd have a proportional reduction in IO-wait time.
2887 * This all works nicely on UP, where, when a task blocks on IO, we account
2888 * idle time as IO-wait, because if the storage were faster, it could've been
2889 * running and we'd not be idle.
2891 * This has been extended to SMP, by doing the same for each CPU. This however
2894 * Imagine for instance the case where two tasks block on one CPU, only the one
2895 * CPU will have IO-wait accounted, while the other has regular idle. Even
2896 * though, if the storage were faster, both could've ran at the same time,
2897 * utilising both CPUs.
2899 * This means, that when looking globally, the current IO-wait accounting on
2900 * SMP is a lower bound, by reason of under accounting.
2902 * Worse, since the numbers are provided per CPU, they are sometimes
2903 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2904 * associated with any one particular CPU, it can wake to another CPU than it
2905 * blocked on. This means the per CPU IO-wait number is meaningless.
2907 * Task CPU affinities can make all that even more 'interesting'.
2910 unsigned long nr_iowait(void)
2912 unsigned long i, sum = 0;
2914 for_each_possible_cpu(i)
2915 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2921 * Consumers of these two interfaces, like for example the cpufreq menu
2922 * governor are using nonsensical data. Boosting frequency for a CPU that has
2923 * IO-wait which might not even end up running the task when it does become
2927 unsigned long nr_iowait_cpu(int cpu)
2929 struct rq *this = cpu_rq(cpu);
2930 return atomic_read(&this->nr_iowait);
2933 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2935 struct rq *rq = this_rq();
2936 *nr_waiters = atomic_read(&rq->nr_iowait);
2937 *load = rq->load.weight;
2943 * sched_exec - execve() is a valuable balancing opportunity, because at
2944 * this point the task has the smallest effective memory and cache footprint.
2946 void sched_exec(void)
2948 struct task_struct *p = current;
2949 unsigned long flags;
2952 raw_spin_lock_irqsave(&p->pi_lock, flags);
2953 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2954 if (dest_cpu == smp_processor_id())
2957 if (likely(cpu_active(dest_cpu))) {
2958 struct migration_arg arg = { p, dest_cpu };
2960 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2961 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2965 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2970 DEFINE_PER_CPU(struct kernel_stat, kstat);
2971 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2973 EXPORT_PER_CPU_SYMBOL(kstat);
2974 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2977 * The function fair_sched_class.update_curr accesses the struct curr
2978 * and its field curr->exec_start; when called from task_sched_runtime(),
2979 * we observe a high rate of cache misses in practice.
2980 * Prefetching this data results in improved performance.
2982 static inline void prefetch_curr_exec_start(struct task_struct *p)
2984 #ifdef CONFIG_FAIR_GROUP_SCHED
2985 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2987 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2990 prefetch(&curr->exec_start);
2994 * Return accounted runtime for the task.
2995 * In case the task is currently running, return the runtime plus current's
2996 * pending runtime that have not been accounted yet.
2998 unsigned long long task_sched_runtime(struct task_struct *p)
3004 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3006 * 64-bit doesn't need locks to atomically read a 64-bit value.
3007 * So we have a optimization chance when the task's delta_exec is 0.
3008 * Reading ->on_cpu is racy, but this is ok.
3010 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3011 * If we race with it entering CPU, unaccounted time is 0. This is
3012 * indistinguishable from the read occurring a few cycles earlier.
3013 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3014 * been accounted, so we're correct here as well.
3016 if (!p->on_cpu || !task_on_rq_queued(p))
3017 return p->se.sum_exec_runtime;
3020 rq = task_rq_lock(p, &rf);
3022 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3023 * project cycles that may never be accounted to this
3024 * thread, breaking clock_gettime().
3026 if (task_current(rq, p) && task_on_rq_queued(p)) {
3027 prefetch_curr_exec_start(p);
3028 update_rq_clock(rq);
3029 p->sched_class->update_curr(rq);
3031 ns = p->se.sum_exec_runtime;
3032 task_rq_unlock(rq, p, &rf);
3038 * This function gets called by the timer code, with HZ frequency.
3039 * We call it with interrupts disabled.
3041 void scheduler_tick(void)
3043 int cpu = smp_processor_id();
3044 struct rq *rq = cpu_rq(cpu);
3045 struct task_struct *curr = rq->curr;
3052 update_rq_clock(rq);
3053 curr->sched_class->task_tick(rq, curr, 0);
3054 cpu_load_update_active(rq);
3055 calc_global_load_tick(rq);
3059 perf_event_task_tick();
3062 rq->idle_balance = idle_cpu(cpu);
3063 trigger_load_balance(rq);
3067 #ifdef CONFIG_NO_HZ_FULL
3072 struct delayed_work work;
3074 /* Values for ->state, see diagram below. */
3075 #define TICK_SCHED_REMOTE_OFFLINE 0
3076 #define TICK_SCHED_REMOTE_OFFLINING 1
3077 #define TICK_SCHED_REMOTE_RUNNING 2
3080 * State diagram for ->state:
3083 * TICK_SCHED_REMOTE_OFFLINE
3086 * | | sched_tick_remote()
3089 * +--TICK_SCHED_REMOTE_OFFLINING
3092 * sched_tick_start() | | sched_tick_stop()
3095 * TICK_SCHED_REMOTE_RUNNING
3098 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3099 * and sched_tick_start() are happy to leave the state in RUNNING.
3102 static struct tick_work __percpu *tick_work_cpu;
3104 static void sched_tick_remote(struct work_struct *work)
3106 struct delayed_work *dwork = to_delayed_work(work);
3107 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3108 int cpu = twork->cpu;
3109 struct rq *rq = cpu_rq(cpu);
3110 struct task_struct *curr;
3116 * Handle the tick only if it appears the remote CPU is running in full
3117 * dynticks mode. The check is racy by nature, but missing a tick or
3118 * having one too much is no big deal because the scheduler tick updates
3119 * statistics and checks timeslices in a time-independent way, regardless
3120 * of when exactly it is running.
3122 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3125 rq_lock_irq(rq, &rf);
3127 if (is_idle_task(curr) || cpu_is_offline(cpu))
3130 update_rq_clock(rq);
3131 delta = rq_clock_task(rq) - curr->se.exec_start;
3134 * Make sure the next tick runs within a reasonable
3137 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3138 curr->sched_class->task_tick(rq, curr, 0);
3141 rq_unlock_irq(rq, &rf);
3145 * Run the remote tick once per second (1Hz). This arbitrary
3146 * frequency is large enough to avoid overload but short enough
3147 * to keep scheduler internal stats reasonably up to date. But
3148 * first update state to reflect hotplug activity if required.
3150 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3151 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3152 if (os == TICK_SCHED_REMOTE_RUNNING)
3153 queue_delayed_work(system_unbound_wq, dwork, HZ);
3156 static void sched_tick_start(int cpu)
3159 struct tick_work *twork;
3161 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3164 WARN_ON_ONCE(!tick_work_cpu);
3166 twork = per_cpu_ptr(tick_work_cpu, cpu);
3167 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3168 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3169 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3171 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3172 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3176 #ifdef CONFIG_HOTPLUG_CPU
3177 static void sched_tick_stop(int cpu)
3179 struct tick_work *twork;
3182 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3185 WARN_ON_ONCE(!tick_work_cpu);
3187 twork = per_cpu_ptr(tick_work_cpu, cpu);
3188 /* There cannot be competing actions, but don't rely on stop-machine. */
3189 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3190 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3191 /* Don't cancel, as this would mess up the state machine. */
3193 #endif /* CONFIG_HOTPLUG_CPU */
3195 int __init sched_tick_offload_init(void)
3197 tick_work_cpu = alloc_percpu(struct tick_work);
3198 BUG_ON(!tick_work_cpu);
3202 #else /* !CONFIG_NO_HZ_FULL */
3203 static inline void sched_tick_start(int cpu) { }
3204 static inline void sched_tick_stop(int cpu) { }
3207 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3208 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3210 * If the value passed in is equal to the current preempt count
3211 * then we just disabled preemption. Start timing the latency.
3213 static inline void preempt_latency_start(int val)
3215 if (preempt_count() == val) {
3216 unsigned long ip = get_lock_parent_ip();
3217 #ifdef CONFIG_DEBUG_PREEMPT
3218 current->preempt_disable_ip = ip;
3220 trace_preempt_off(CALLER_ADDR0, ip);
3224 void preempt_count_add(int val)
3226 #ifdef CONFIG_DEBUG_PREEMPT
3230 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3233 __preempt_count_add(val);
3234 #ifdef CONFIG_DEBUG_PREEMPT
3236 * Spinlock count overflowing soon?
3238 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3241 preempt_latency_start(val);
3243 EXPORT_SYMBOL(preempt_count_add);
3244 NOKPROBE_SYMBOL(preempt_count_add);
3247 * If the value passed in equals to the current preempt count
3248 * then we just enabled preemption. Stop timing the latency.
3250 static inline void preempt_latency_stop(int val)
3252 if (preempt_count() == val)
3253 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3256 void preempt_count_sub(int val)
3258 #ifdef CONFIG_DEBUG_PREEMPT
3262 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3265 * Is the spinlock portion underflowing?
3267 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3268 !(preempt_count() & PREEMPT_MASK)))
3272 preempt_latency_stop(val);
3273 __preempt_count_sub(val);
3275 EXPORT_SYMBOL(preempt_count_sub);
3276 NOKPROBE_SYMBOL(preempt_count_sub);
3279 static inline void preempt_latency_start(int val) { }
3280 static inline void preempt_latency_stop(int val) { }
3283 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3285 #ifdef CONFIG_DEBUG_PREEMPT
3286 return p->preempt_disable_ip;
3293 * Print scheduling while atomic bug:
3295 static noinline void __schedule_bug(struct task_struct *prev)
3297 /* Save this before calling printk(), since that will clobber it */
3298 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3300 if (oops_in_progress)
3303 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3304 prev->comm, prev->pid, preempt_count());
3306 debug_show_held_locks(prev);
3308 if (irqs_disabled())
3309 print_irqtrace_events(prev);
3310 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3311 && in_atomic_preempt_off()) {
3312 pr_err("Preemption disabled at:");
3313 print_ip_sym(preempt_disable_ip);
3317 panic("scheduling while atomic\n");
3320 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3324 * Various schedule()-time debugging checks and statistics:
3326 static inline void schedule_debug(struct task_struct *prev)
3328 #ifdef CONFIG_SCHED_STACK_END_CHECK
3329 if (task_stack_end_corrupted(prev))
3330 panic("corrupted stack end detected inside scheduler\n");
3333 if (unlikely(in_atomic_preempt_off())) {
3334 __schedule_bug(prev);
3335 preempt_count_set(PREEMPT_DISABLED);
3339 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3341 schedstat_inc(this_rq()->sched_count);
3345 * Pick up the highest-prio task:
3347 static inline struct task_struct *
3348 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3350 const struct sched_class *class;
3351 struct task_struct *p;
3354 * Optimization: we know that if all tasks are in the fair class we can
3355 * call that function directly, but only if the @prev task wasn't of a
3356 * higher scheduling class, because otherwise those loose the
3357 * opportunity to pull in more work from other CPUs.
3359 if (likely((prev->sched_class == &idle_sched_class ||
3360 prev->sched_class == &fair_sched_class) &&
3361 rq->nr_running == rq->cfs.h_nr_running)) {
3363 p = fair_sched_class.pick_next_task(rq, prev, rf);
3364 if (unlikely(p == RETRY_TASK))
3367 /* Assumes fair_sched_class->next == idle_sched_class */
3369 p = idle_sched_class.pick_next_task(rq, prev, rf);
3375 for_each_class(class) {
3376 p = class->pick_next_task(rq, prev, rf);
3378 if (unlikely(p == RETRY_TASK))
3384 /* The idle class should always have a runnable task: */
3389 * __schedule() is the main scheduler function.
3391 * The main means of driving the scheduler and thus entering this function are:
3393 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3395 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3396 * paths. For example, see arch/x86/entry_64.S.
3398 * To drive preemption between tasks, the scheduler sets the flag in timer
3399 * interrupt handler scheduler_tick().
3401 * 3. Wakeups don't really cause entry into schedule(). They add a
3402 * task to the run-queue and that's it.
3404 * Now, if the new task added to the run-queue preempts the current
3405 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3406 * called on the nearest possible occasion:
3408 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3410 * - in syscall or exception context, at the next outmost
3411 * preempt_enable(). (this might be as soon as the wake_up()'s
3414 * - in IRQ context, return from interrupt-handler to
3415 * preemptible context
3417 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3420 * - cond_resched() call
3421 * - explicit schedule() call
3422 * - return from syscall or exception to user-space
3423 * - return from interrupt-handler to user-space
3425 * WARNING: must be called with preemption disabled!
3427 static void __sched notrace __schedule(bool preempt)
3429 struct task_struct *prev, *next;
3430 unsigned long *switch_count;
3435 cpu = smp_processor_id();
3439 schedule_debug(prev);
3441 if (sched_feat(HRTICK))
3444 local_irq_disable();
3445 rcu_note_context_switch(preempt);
3448 * Make sure that signal_pending_state()->signal_pending() below
3449 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3450 * done by the caller to avoid the race with signal_wake_up().
3452 * The membarrier system call requires a full memory barrier
3453 * after coming from user-space, before storing to rq->curr.
3456 smp_mb__after_spinlock();
3458 /* Promote REQ to ACT */
3459 rq->clock_update_flags <<= 1;
3460 update_rq_clock(rq);
3462 switch_count = &prev->nivcsw;
3463 if (!preempt && prev->state) {
3464 if (unlikely(signal_pending_state(prev->state, prev))) {
3465 prev->state = TASK_RUNNING;
3467 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3470 if (prev->in_iowait) {
3471 atomic_inc(&rq->nr_iowait);
3472 delayacct_blkio_start();
3476 * If a worker went to sleep, notify and ask workqueue
3477 * whether it wants to wake up a task to maintain
3480 if (prev->flags & PF_WQ_WORKER) {
3481 struct task_struct *to_wakeup;
3483 to_wakeup = wq_worker_sleeping(prev);
3485 try_to_wake_up_local(to_wakeup, &rf);
3488 switch_count = &prev->nvcsw;
3491 next = pick_next_task(rq, prev, &rf);
3492 clear_tsk_need_resched(prev);
3493 clear_preempt_need_resched();
3495 if (likely(prev != next)) {
3499 * The membarrier system call requires each architecture
3500 * to have a full memory barrier after updating
3501 * rq->curr, before returning to user-space.
3503 * Here are the schemes providing that barrier on the
3504 * various architectures:
3505 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3506 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3507 * - finish_lock_switch() for weakly-ordered
3508 * architectures where spin_unlock is a full barrier,
3509 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3510 * is a RELEASE barrier),
3514 trace_sched_switch(preempt, prev, next);
3516 /* Also unlocks the rq: */
3517 rq = context_switch(rq, prev, next, &rf);
3519 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3520 rq_unlock_irq(rq, &rf);
3523 balance_callback(rq);
3526 void __noreturn do_task_dead(void)
3528 /* Causes final put_task_struct in finish_task_switch(): */
3529 set_special_state(TASK_DEAD);
3531 /* Tell freezer to ignore us: */
3532 current->flags |= PF_NOFREEZE;
3537 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3542 static inline void sched_submit_work(struct task_struct *tsk)
3544 if (!tsk->state || tsk_is_pi_blocked(tsk))
3547 * If we are going to sleep and we have plugged IO queued,
3548 * make sure to submit it to avoid deadlocks.
3550 if (blk_needs_flush_plug(tsk))
3551 blk_schedule_flush_plug(tsk);
3554 asmlinkage __visible void __sched schedule(void)
3556 struct task_struct *tsk = current;
3558 sched_submit_work(tsk);
3562 sched_preempt_enable_no_resched();
3563 } while (need_resched());
3565 EXPORT_SYMBOL(schedule);
3568 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3569 * state (have scheduled out non-voluntarily) by making sure that all
3570 * tasks have either left the run queue or have gone into user space.
3571 * As idle tasks do not do either, they must not ever be preempted
3572 * (schedule out non-voluntarily).
3574 * schedule_idle() is similar to schedule_preempt_disable() except that it
3575 * never enables preemption because it does not call sched_submit_work().
3577 void __sched schedule_idle(void)
3580 * As this skips calling sched_submit_work(), which the idle task does
3581 * regardless because that function is a nop when the task is in a
3582 * TASK_RUNNING state, make sure this isn't used someplace that the
3583 * current task can be in any other state. Note, idle is always in the
3584 * TASK_RUNNING state.
3586 WARN_ON_ONCE(current->state);
3589 } while (need_resched());
3592 #ifdef CONFIG_CONTEXT_TRACKING
3593 asmlinkage __visible void __sched schedule_user(void)
3596 * If we come here after a random call to set_need_resched(),
3597 * or we have been woken up remotely but the IPI has not yet arrived,
3598 * we haven't yet exited the RCU idle mode. Do it here manually until
3599 * we find a better solution.
3601 * NB: There are buggy callers of this function. Ideally we
3602 * should warn if prev_state != CONTEXT_USER, but that will trigger
3603 * too frequently to make sense yet.
3605 enum ctx_state prev_state = exception_enter();
3607 exception_exit(prev_state);
3612 * schedule_preempt_disabled - called with preemption disabled
3614 * Returns with preemption disabled. Note: preempt_count must be 1
3616 void __sched schedule_preempt_disabled(void)
3618 sched_preempt_enable_no_resched();
3623 static void __sched notrace preempt_schedule_common(void)
3627 * Because the function tracer can trace preempt_count_sub()
3628 * and it also uses preempt_enable/disable_notrace(), if
3629 * NEED_RESCHED is set, the preempt_enable_notrace() called
3630 * by the function tracer will call this function again and
3631 * cause infinite recursion.
3633 * Preemption must be disabled here before the function
3634 * tracer can trace. Break up preempt_disable() into two
3635 * calls. One to disable preemption without fear of being
3636 * traced. The other to still record the preemption latency,
3637 * which can also be traced by the function tracer.
3639 preempt_disable_notrace();
3640 preempt_latency_start(1);
3642 preempt_latency_stop(1);
3643 preempt_enable_no_resched_notrace();
3646 * Check again in case we missed a preemption opportunity
3647 * between schedule and now.
3649 } while (need_resched());
3652 #ifdef CONFIG_PREEMPT
3654 * this is the entry point to schedule() from in-kernel preemption
3655 * off of preempt_enable. Kernel preemptions off return from interrupt
3656 * occur there and call schedule directly.
3658 asmlinkage __visible void __sched notrace preempt_schedule(void)
3661 * If there is a non-zero preempt_count or interrupts are disabled,
3662 * we do not want to preempt the current task. Just return..
3664 if (likely(!preemptible()))
3667 preempt_schedule_common();
3669 NOKPROBE_SYMBOL(preempt_schedule);
3670 EXPORT_SYMBOL(preempt_schedule);
3673 * preempt_schedule_notrace - preempt_schedule called by tracing
3675 * The tracing infrastructure uses preempt_enable_notrace to prevent
3676 * recursion and tracing preempt enabling caused by the tracing
3677 * infrastructure itself. But as tracing can happen in areas coming
3678 * from userspace or just about to enter userspace, a preempt enable
3679 * can occur before user_exit() is called. This will cause the scheduler
3680 * to be called when the system is still in usermode.
3682 * To prevent this, the preempt_enable_notrace will use this function
3683 * instead of preempt_schedule() to exit user context if needed before
3684 * calling the scheduler.
3686 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3688 enum ctx_state prev_ctx;
3690 if (likely(!preemptible()))
3695 * Because the function tracer can trace preempt_count_sub()
3696 * and it also uses preempt_enable/disable_notrace(), if
3697 * NEED_RESCHED is set, the preempt_enable_notrace() called
3698 * by the function tracer will call this function again and
3699 * cause infinite recursion.
3701 * Preemption must be disabled here before the function
3702 * tracer can trace. Break up preempt_disable() into two
3703 * calls. One to disable preemption without fear of being
3704 * traced. The other to still record the preemption latency,
3705 * which can also be traced by the function tracer.
3707 preempt_disable_notrace();
3708 preempt_latency_start(1);
3710 * Needs preempt disabled in case user_exit() is traced
3711 * and the tracer calls preempt_enable_notrace() causing
3712 * an infinite recursion.
3714 prev_ctx = exception_enter();
3716 exception_exit(prev_ctx);
3718 preempt_latency_stop(1);
3719 preempt_enable_no_resched_notrace();
3720 } while (need_resched());
3722 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3724 #endif /* CONFIG_PREEMPT */
3727 * this is the entry point to schedule() from kernel preemption
3728 * off of irq context.
3729 * Note, that this is called and return with irqs disabled. This will
3730 * protect us against recursive calling from irq.
3732 asmlinkage __visible void __sched preempt_schedule_irq(void)
3734 enum ctx_state prev_state;
3736 /* Catch callers which need to be fixed */
3737 BUG_ON(preempt_count() || !irqs_disabled());
3739 prev_state = exception_enter();
3745 local_irq_disable();
3746 sched_preempt_enable_no_resched();
3747 } while (need_resched());
3749 exception_exit(prev_state);
3752 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3755 return try_to_wake_up(curr->private, mode, wake_flags);
3757 EXPORT_SYMBOL(default_wake_function);
3759 #ifdef CONFIG_RT_MUTEXES
3761 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3764 prio = min(prio, pi_task->prio);
3769 static inline int rt_effective_prio(struct task_struct *p, int prio)
3771 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3773 return __rt_effective_prio(pi_task, prio);
3777 * rt_mutex_setprio - set the current priority of a task
3779 * @pi_task: donor task
3781 * This function changes the 'effective' priority of a task. It does
3782 * not touch ->normal_prio like __setscheduler().
3784 * Used by the rt_mutex code to implement priority inheritance
3785 * logic. Call site only calls if the priority of the task changed.
3787 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3789 int prio, oldprio, queued, running, queue_flag =
3790 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3791 const struct sched_class *prev_class;
3795 /* XXX used to be waiter->prio, not waiter->task->prio */
3796 prio = __rt_effective_prio(pi_task, p->normal_prio);
3799 * If nothing changed; bail early.
3801 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3804 rq = __task_rq_lock(p, &rf);
3805 update_rq_clock(rq);
3807 * Set under pi_lock && rq->lock, such that the value can be used under
3810 * Note that there is loads of tricky to make this pointer cache work
3811 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3812 * ensure a task is de-boosted (pi_task is set to NULL) before the
3813 * task is allowed to run again (and can exit). This ensures the pointer
3814 * points to a blocked task -- which guaratees the task is present.
3816 p->pi_top_task = pi_task;
3819 * For FIFO/RR we only need to set prio, if that matches we're done.
3821 if (prio == p->prio && !dl_prio(prio))
3825 * Idle task boosting is a nono in general. There is one
3826 * exception, when PREEMPT_RT and NOHZ is active:
3828 * The idle task calls get_next_timer_interrupt() and holds
3829 * the timer wheel base->lock on the CPU and another CPU wants
3830 * to access the timer (probably to cancel it). We can safely
3831 * ignore the boosting request, as the idle CPU runs this code
3832 * with interrupts disabled and will complete the lock
3833 * protected section without being interrupted. So there is no
3834 * real need to boost.
3836 if (unlikely(p == rq->idle)) {
3837 WARN_ON(p != rq->curr);
3838 WARN_ON(p->pi_blocked_on);
3842 trace_sched_pi_setprio(p, pi_task);
3845 if (oldprio == prio)
3846 queue_flag &= ~DEQUEUE_MOVE;
3848 prev_class = p->sched_class;
3849 queued = task_on_rq_queued(p);
3850 running = task_current(rq, p);
3852 dequeue_task(rq, p, queue_flag);
3854 put_prev_task(rq, p);
3857 * Boosting condition are:
3858 * 1. -rt task is running and holds mutex A
3859 * --> -dl task blocks on mutex A
3861 * 2. -dl task is running and holds mutex A
3862 * --> -dl task blocks on mutex A and could preempt the
3865 if (dl_prio(prio)) {
3866 if (!dl_prio(p->normal_prio) ||
3867 (pi_task && dl_prio(pi_task->prio) &&
3868 dl_entity_preempt(&pi_task->dl, &p->dl))) {
3869 p->dl.dl_boosted = 1;
3870 queue_flag |= ENQUEUE_REPLENISH;
3872 p->dl.dl_boosted = 0;
3873 p->sched_class = &dl_sched_class;
3874 } else if (rt_prio(prio)) {
3875 if (dl_prio(oldprio))
3876 p->dl.dl_boosted = 0;
3878 queue_flag |= ENQUEUE_HEAD;
3879 p->sched_class = &rt_sched_class;
3881 if (dl_prio(oldprio))
3882 p->dl.dl_boosted = 0;
3883 if (rt_prio(oldprio))
3885 p->sched_class = &fair_sched_class;
3891 enqueue_task(rq, p, queue_flag);
3893 set_curr_task(rq, p);
3895 check_class_changed(rq, p, prev_class, oldprio);
3897 /* Avoid rq from going away on us: */
3899 __task_rq_unlock(rq, &rf);
3901 balance_callback(rq);
3905 static inline int rt_effective_prio(struct task_struct *p, int prio)
3911 void set_user_nice(struct task_struct *p, long nice)
3913 bool queued, running;
3914 int old_prio, delta;
3918 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3921 * We have to be careful, if called from sys_setpriority(),
3922 * the task might be in the middle of scheduling on another CPU.
3924 rq = task_rq_lock(p, &rf);
3925 update_rq_clock(rq);
3928 * The RT priorities are set via sched_setscheduler(), but we still
3929 * allow the 'normal' nice value to be set - but as expected
3930 * it wont have any effect on scheduling until the task is
3931 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3933 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3934 p->static_prio = NICE_TO_PRIO(nice);
3937 queued = task_on_rq_queued(p);
3938 running = task_current(rq, p);
3940 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3942 put_prev_task(rq, p);
3944 p->static_prio = NICE_TO_PRIO(nice);
3945 set_load_weight(p, true);
3947 p->prio = effective_prio(p);
3948 delta = p->prio - old_prio;
3951 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3953 * If the task increased its priority or is running and
3954 * lowered its priority, then reschedule its CPU:
3956 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3960 set_curr_task(rq, p);
3962 task_rq_unlock(rq, p, &rf);
3964 EXPORT_SYMBOL(set_user_nice);
3967 * can_nice - check if a task can reduce its nice value
3971 int can_nice(const struct task_struct *p, const int nice)
3973 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3974 int nice_rlim = nice_to_rlimit(nice);
3976 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3977 capable(CAP_SYS_NICE));
3980 #ifdef __ARCH_WANT_SYS_NICE
3983 * sys_nice - change the priority of the current process.
3984 * @increment: priority increment
3986 * sys_setpriority is a more generic, but much slower function that
3987 * does similar things.
3989 SYSCALL_DEFINE1(nice, int, increment)
3994 * Setpriority might change our priority at the same moment.
3995 * We don't have to worry. Conceptually one call occurs first
3996 * and we have a single winner.
3998 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3999 nice = task_nice(current) + increment;
4001 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4002 if (increment < 0 && !can_nice(current, nice))
4005 retval = security_task_setnice(current, nice);
4009 set_user_nice(current, nice);
4016 * task_prio - return the priority value of a given task.
4017 * @p: the task in question.
4019 * Return: The priority value as seen by users in /proc.
4020 * RT tasks are offset by -200. Normal tasks are centered
4021 * around 0, value goes from -16 to +15.
4023 int task_prio(const struct task_struct *p)
4025 return p->prio - MAX_RT_PRIO;
4029 * idle_cpu - is a given CPU idle currently?
4030 * @cpu: the processor in question.
4032 * Return: 1 if the CPU is currently idle. 0 otherwise.
4034 int idle_cpu(int cpu)
4036 struct rq *rq = cpu_rq(cpu);
4038 if (rq->curr != rq->idle)
4045 if (!llist_empty(&rq->wake_list))
4053 * available_idle_cpu - is a given CPU idle for enqueuing work.
4054 * @cpu: the CPU in question.
4056 * Return: 1 if the CPU is currently idle. 0 otherwise.
4058 int available_idle_cpu(int cpu)
4063 if (vcpu_is_preempted(cpu))
4070 * idle_task - return the idle task for a given CPU.
4071 * @cpu: the processor in question.
4073 * Return: The idle task for the CPU @cpu.
4075 struct task_struct *idle_task(int cpu)
4077 return cpu_rq(cpu)->idle;
4081 * find_process_by_pid - find a process with a matching PID value.
4082 * @pid: the pid in question.
4084 * The task of @pid, if found. %NULL otherwise.
4086 static struct task_struct *find_process_by_pid(pid_t pid)
4088 return pid ? find_task_by_vpid(pid) : current;
4092 * sched_setparam() passes in -1 for its policy, to let the functions
4093 * it calls know not to change it.
4095 #define SETPARAM_POLICY -1
4097 static void __setscheduler_params(struct task_struct *p,
4098 const struct sched_attr *attr)
4100 int policy = attr->sched_policy;
4102 if (policy == SETPARAM_POLICY)
4107 if (dl_policy(policy))
4108 __setparam_dl(p, attr);
4109 else if (fair_policy(policy))
4110 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4113 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4114 * !rt_policy. Always setting this ensures that things like
4115 * getparam()/getattr() don't report silly values for !rt tasks.
4117 p->rt_priority = attr->sched_priority;
4118 p->normal_prio = normal_prio(p);
4119 set_load_weight(p, true);
4122 /* Actually do priority change: must hold pi & rq lock. */
4123 static void __setscheduler(struct rq *rq, struct task_struct *p,
4124 const struct sched_attr *attr, bool keep_boost)
4126 __setscheduler_params(p, attr);
4129 * Keep a potential priority boosting if called from
4130 * sched_setscheduler().
4132 p->prio = normal_prio(p);
4134 p->prio = rt_effective_prio(p, p->prio);
4136 if (dl_prio(p->prio))
4137 p->sched_class = &dl_sched_class;
4138 else if (rt_prio(p->prio))
4139 p->sched_class = &rt_sched_class;
4141 p->sched_class = &fair_sched_class;
4145 * Check the target process has a UID that matches the current process's:
4147 static bool check_same_owner(struct task_struct *p)
4149 const struct cred *cred = current_cred(), *pcred;
4153 pcred = __task_cred(p);
4154 match = (uid_eq(cred->euid, pcred->euid) ||
4155 uid_eq(cred->euid, pcred->uid));
4160 static int __sched_setscheduler(struct task_struct *p,
4161 const struct sched_attr *attr,
4164 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4165 MAX_RT_PRIO - 1 - attr->sched_priority;
4166 int retval, oldprio, oldpolicy = -1, queued, running;
4167 int new_effective_prio, policy = attr->sched_policy;
4168 const struct sched_class *prev_class;
4171 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4174 /* The pi code expects interrupts enabled */
4175 BUG_ON(pi && in_interrupt());
4177 /* Double check policy once rq lock held: */
4179 reset_on_fork = p->sched_reset_on_fork;
4180 policy = oldpolicy = p->policy;
4182 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4184 if (!valid_policy(policy))
4188 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4192 * Valid priorities for SCHED_FIFO and SCHED_RR are
4193 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4194 * SCHED_BATCH and SCHED_IDLE is 0.
4196 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4197 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4199 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4200 (rt_policy(policy) != (attr->sched_priority != 0)))
4204 * Allow unprivileged RT tasks to decrease priority:
4206 if (user && !capable(CAP_SYS_NICE)) {
4207 if (fair_policy(policy)) {
4208 if (attr->sched_nice < task_nice(p) &&
4209 !can_nice(p, attr->sched_nice))
4213 if (rt_policy(policy)) {
4214 unsigned long rlim_rtprio =
4215 task_rlimit(p, RLIMIT_RTPRIO);
4217 /* Can't set/change the rt policy: */
4218 if (policy != p->policy && !rlim_rtprio)
4221 /* Can't increase priority: */
4222 if (attr->sched_priority > p->rt_priority &&
4223 attr->sched_priority > rlim_rtprio)
4228 * Can't set/change SCHED_DEADLINE policy at all for now
4229 * (safest behavior); in the future we would like to allow
4230 * unprivileged DL tasks to increase their relative deadline
4231 * or reduce their runtime (both ways reducing utilization)
4233 if (dl_policy(policy))
4237 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4238 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4240 if (idle_policy(p->policy) && !idle_policy(policy)) {
4241 if (!can_nice(p, task_nice(p)))
4245 /* Can't change other user's priorities: */
4246 if (!check_same_owner(p))
4249 /* Normal users shall not reset the sched_reset_on_fork flag: */
4250 if (p->sched_reset_on_fork && !reset_on_fork)
4255 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4258 retval = security_task_setscheduler(p);
4264 * Make sure no PI-waiters arrive (or leave) while we are
4265 * changing the priority of the task:
4267 * To be able to change p->policy safely, the appropriate
4268 * runqueue lock must be held.
4270 rq = task_rq_lock(p, &rf);
4271 update_rq_clock(rq);
4274 * Changing the policy of the stop threads its a very bad idea:
4276 if (p == rq->stop) {
4277 task_rq_unlock(rq, p, &rf);
4282 * If not changing anything there's no need to proceed further,
4283 * but store a possible modification of reset_on_fork.
4285 if (unlikely(policy == p->policy)) {
4286 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4288 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4290 if (dl_policy(policy) && dl_param_changed(p, attr))
4293 p->sched_reset_on_fork = reset_on_fork;
4294 task_rq_unlock(rq, p, &rf);
4300 #ifdef CONFIG_RT_GROUP_SCHED
4302 * Do not allow realtime tasks into groups that have no runtime
4305 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4306 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4307 !task_group_is_autogroup(task_group(p))) {
4308 task_rq_unlock(rq, p, &rf);
4313 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4314 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4315 cpumask_t *span = rq->rd->span;
4318 * Don't allow tasks with an affinity mask smaller than
4319 * the entire root_domain to become SCHED_DEADLINE. We
4320 * will also fail if there's no bandwidth available.
4322 if (!cpumask_subset(span, &p->cpus_allowed) ||
4323 rq->rd->dl_bw.bw == 0) {
4324 task_rq_unlock(rq, p, &rf);
4331 /* Re-check policy now with rq lock held: */
4332 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4333 policy = oldpolicy = -1;
4334 task_rq_unlock(rq, p, &rf);
4339 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4340 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4343 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4344 task_rq_unlock(rq, p, &rf);
4348 p->sched_reset_on_fork = reset_on_fork;
4353 * Take priority boosted tasks into account. If the new
4354 * effective priority is unchanged, we just store the new
4355 * normal parameters and do not touch the scheduler class and
4356 * the runqueue. This will be done when the task deboost
4359 new_effective_prio = rt_effective_prio(p, newprio);
4360 if (new_effective_prio == oldprio)
4361 queue_flags &= ~DEQUEUE_MOVE;
4364 queued = task_on_rq_queued(p);
4365 running = task_current(rq, p);
4367 dequeue_task(rq, p, queue_flags);
4369 put_prev_task(rq, p);
4371 prev_class = p->sched_class;
4372 __setscheduler(rq, p, attr, pi);
4376 * We enqueue to tail when the priority of a task is
4377 * increased (user space view).
4379 if (oldprio < p->prio)
4380 queue_flags |= ENQUEUE_HEAD;
4382 enqueue_task(rq, p, queue_flags);
4385 set_curr_task(rq, p);
4387 check_class_changed(rq, p, prev_class, oldprio);
4389 /* Avoid rq from going away on us: */
4391 task_rq_unlock(rq, p, &rf);
4394 rt_mutex_adjust_pi(p);
4396 /* Run balance callbacks after we've adjusted the PI chain: */
4397 balance_callback(rq);
4403 static int _sched_setscheduler(struct task_struct *p, int policy,
4404 const struct sched_param *param, bool check)
4406 struct sched_attr attr = {
4407 .sched_policy = policy,
4408 .sched_priority = param->sched_priority,
4409 .sched_nice = PRIO_TO_NICE(p->static_prio),
4412 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4413 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4414 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4415 policy &= ~SCHED_RESET_ON_FORK;
4416 attr.sched_policy = policy;
4419 return __sched_setscheduler(p, &attr, check, true);
4422 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4423 * @p: the task in question.
4424 * @policy: new policy.
4425 * @param: structure containing the new RT priority.
4427 * Return: 0 on success. An error code otherwise.
4429 * NOTE that the task may be already dead.
4431 int sched_setscheduler(struct task_struct *p, int policy,
4432 const struct sched_param *param)
4434 return _sched_setscheduler(p, policy, param, true);
4436 EXPORT_SYMBOL_GPL(sched_setscheduler);
4438 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4440 return __sched_setscheduler(p, attr, true, true);
4442 EXPORT_SYMBOL_GPL(sched_setattr);
4444 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4446 return __sched_setscheduler(p, attr, false, true);
4450 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4451 * @p: the task in question.
4452 * @policy: new policy.
4453 * @param: structure containing the new RT priority.
4455 * Just like sched_setscheduler, only don't bother checking if the
4456 * current context has permission. For example, this is needed in
4457 * stop_machine(): we create temporary high priority worker threads,
4458 * but our caller might not have that capability.
4460 * Return: 0 on success. An error code otherwise.
4462 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4463 const struct sched_param *param)
4465 return _sched_setscheduler(p, policy, param, false);
4467 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4470 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4472 struct sched_param lparam;
4473 struct task_struct *p;
4476 if (!param || pid < 0)
4478 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4483 p = find_process_by_pid(pid);
4485 retval = sched_setscheduler(p, policy, &lparam);
4492 * Mimics kernel/events/core.c perf_copy_attr().
4494 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4499 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4502 /* Zero the full structure, so that a short copy will be nice: */
4503 memset(attr, 0, sizeof(*attr));
4505 ret = get_user(size, &uattr->size);
4509 /* Bail out on silly large: */
4510 if (size > PAGE_SIZE)
4513 /* ABI compatibility quirk: */
4515 size = SCHED_ATTR_SIZE_VER0;
4517 if (size < SCHED_ATTR_SIZE_VER0)
4521 * If we're handed a bigger struct than we know of,
4522 * ensure all the unknown bits are 0 - i.e. new
4523 * user-space does not rely on any kernel feature
4524 * extensions we dont know about yet.
4526 if (size > sizeof(*attr)) {
4527 unsigned char __user *addr;
4528 unsigned char __user *end;
4531 addr = (void __user *)uattr + sizeof(*attr);
4532 end = (void __user *)uattr + size;
4534 for (; addr < end; addr++) {
4535 ret = get_user(val, addr);
4541 size = sizeof(*attr);
4544 ret = copy_from_user(attr, uattr, size);
4549 * XXX: Do we want to be lenient like existing syscalls; or do we want
4550 * to be strict and return an error on out-of-bounds values?
4552 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4557 put_user(sizeof(*attr), &uattr->size);
4562 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4563 * @pid: the pid in question.
4564 * @policy: new policy.
4565 * @param: structure containing the new RT priority.
4567 * Return: 0 on success. An error code otherwise.
4569 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4574 return do_sched_setscheduler(pid, policy, param);
4578 * sys_sched_setparam - set/change the RT priority of a thread
4579 * @pid: the pid in question.
4580 * @param: structure containing the new RT priority.
4582 * Return: 0 on success. An error code otherwise.
4584 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4586 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4590 * sys_sched_setattr - same as above, but with extended sched_attr
4591 * @pid: the pid in question.
4592 * @uattr: structure containing the extended parameters.
4593 * @flags: for future extension.
4595 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4596 unsigned int, flags)
4598 struct sched_attr attr;
4599 struct task_struct *p;
4602 if (!uattr || pid < 0 || flags)
4605 retval = sched_copy_attr(uattr, &attr);
4609 if ((int)attr.sched_policy < 0)
4614 p = find_process_by_pid(pid);
4616 retval = sched_setattr(p, &attr);
4623 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4624 * @pid: the pid in question.
4626 * Return: On success, the policy of the thread. Otherwise, a negative error
4629 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4631 struct task_struct *p;
4639 p = find_process_by_pid(pid);
4641 retval = security_task_getscheduler(p);
4644 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4651 * sys_sched_getparam - get the RT priority of a thread
4652 * @pid: the pid in question.
4653 * @param: structure containing the RT priority.
4655 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4658 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4660 struct sched_param lp = { .sched_priority = 0 };
4661 struct task_struct *p;
4664 if (!param || pid < 0)
4668 p = find_process_by_pid(pid);
4673 retval = security_task_getscheduler(p);
4677 if (task_has_rt_policy(p))
4678 lp.sched_priority = p->rt_priority;
4682 * This one might sleep, we cannot do it with a spinlock held ...
4684 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4693 static int sched_read_attr(struct sched_attr __user *uattr,
4694 struct sched_attr *attr,
4699 if (!access_ok(VERIFY_WRITE, uattr, usize))
4703 * If we're handed a smaller struct than we know of,
4704 * ensure all the unknown bits are 0 - i.e. old
4705 * user-space does not get uncomplete information.
4707 if (usize < sizeof(*attr)) {
4708 unsigned char *addr;
4711 addr = (void *)attr + usize;
4712 end = (void *)attr + sizeof(*attr);
4714 for (; addr < end; addr++) {
4722 ret = copy_to_user(uattr, attr, attr->size);
4730 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4731 * @pid: the pid in question.
4732 * @uattr: structure containing the extended parameters.
4733 * @size: sizeof(attr) for fwd/bwd comp.
4734 * @flags: for future extension.
4736 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4737 unsigned int, size, unsigned int, flags)
4739 struct sched_attr attr = {
4740 .size = sizeof(struct sched_attr),
4742 struct task_struct *p;
4745 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4746 size < SCHED_ATTR_SIZE_VER0 || flags)
4750 p = find_process_by_pid(pid);
4755 retval = security_task_getscheduler(p);
4759 attr.sched_policy = p->policy;
4760 if (p->sched_reset_on_fork)
4761 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4762 if (task_has_dl_policy(p))
4763 __getparam_dl(p, &attr);
4764 else if (task_has_rt_policy(p))
4765 attr.sched_priority = p->rt_priority;
4767 attr.sched_nice = task_nice(p);
4771 retval = sched_read_attr(uattr, &attr, size);
4779 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4781 cpumask_var_t cpus_allowed, new_mask;
4782 struct task_struct *p;
4787 p = find_process_by_pid(pid);
4793 /* Prevent p going away */
4797 if (p->flags & PF_NO_SETAFFINITY) {
4801 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4805 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4807 goto out_free_cpus_allowed;
4810 if (!check_same_owner(p)) {
4812 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4814 goto out_free_new_mask;
4819 retval = security_task_setscheduler(p);
4821 goto out_free_new_mask;
4824 cpuset_cpus_allowed(p, cpus_allowed);
4825 cpumask_and(new_mask, in_mask, cpus_allowed);
4828 * Since bandwidth control happens on root_domain basis,
4829 * if admission test is enabled, we only admit -deadline
4830 * tasks allowed to run on all the CPUs in the task's
4834 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4836 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4839 goto out_free_new_mask;
4845 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4848 cpuset_cpus_allowed(p, cpus_allowed);
4849 if (!cpumask_subset(new_mask, cpus_allowed)) {
4851 * We must have raced with a concurrent cpuset
4852 * update. Just reset the cpus_allowed to the
4853 * cpuset's cpus_allowed
4855 cpumask_copy(new_mask, cpus_allowed);
4860 free_cpumask_var(new_mask);
4861 out_free_cpus_allowed:
4862 free_cpumask_var(cpus_allowed);
4868 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4869 struct cpumask *new_mask)
4871 if (len < cpumask_size())
4872 cpumask_clear(new_mask);
4873 else if (len > cpumask_size())
4874 len = cpumask_size();
4876 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4880 * sys_sched_setaffinity - set the CPU affinity of a process
4881 * @pid: pid of the process
4882 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4883 * @user_mask_ptr: user-space pointer to the new CPU mask
4885 * Return: 0 on success. An error code otherwise.
4887 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4888 unsigned long __user *, user_mask_ptr)
4890 cpumask_var_t new_mask;
4893 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4896 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4898 retval = sched_setaffinity(pid, new_mask);
4899 free_cpumask_var(new_mask);
4903 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4905 struct task_struct *p;
4906 unsigned long flags;
4912 p = find_process_by_pid(pid);
4916 retval = security_task_getscheduler(p);
4920 raw_spin_lock_irqsave(&p->pi_lock, flags);
4921 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4922 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4931 * sys_sched_getaffinity - get the CPU affinity of a process
4932 * @pid: pid of the process
4933 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4934 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4936 * Return: size of CPU mask copied to user_mask_ptr on success. An
4937 * error code otherwise.
4939 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4940 unsigned long __user *, user_mask_ptr)
4945 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4947 if (len & (sizeof(unsigned long)-1))
4950 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4953 ret = sched_getaffinity(pid, mask);
4955 unsigned int retlen = min(len, cpumask_size());
4957 if (copy_to_user(user_mask_ptr, mask, retlen))
4962 free_cpumask_var(mask);
4968 * sys_sched_yield - yield the current processor to other threads.
4970 * This function yields the current CPU to other tasks. If there are no
4971 * other threads running on this CPU then this function will return.
4975 static void do_sched_yield(void)
4980 local_irq_disable();
4984 schedstat_inc(rq->yld_count);
4985 current->sched_class->yield_task(rq);
4988 rq_unlock_irq(rq, &rf);
4989 sched_preempt_enable_no_resched();
4994 SYSCALL_DEFINE0(sched_yield)
5000 #ifndef CONFIG_PREEMPT
5001 int __sched _cond_resched(void)
5003 if (should_resched(0)) {
5004 preempt_schedule_common();
5010 EXPORT_SYMBOL(_cond_resched);
5014 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5015 * call schedule, and on return reacquire the lock.
5017 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5018 * operations here to prevent schedule() from being called twice (once via
5019 * spin_unlock(), once by hand).
5021 int __cond_resched_lock(spinlock_t *lock)
5023 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5026 lockdep_assert_held(lock);
5028 if (spin_needbreak(lock) || resched) {
5031 preempt_schedule_common();
5039 EXPORT_SYMBOL(__cond_resched_lock);
5042 * yield - yield the current processor to other threads.
5044 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5046 * The scheduler is at all times free to pick the calling task as the most
5047 * eligible task to run, if removing the yield() call from your code breaks
5048 * it, its already broken.
5050 * Typical broken usage is:
5055 * where one assumes that yield() will let 'the other' process run that will
5056 * make event true. If the current task is a SCHED_FIFO task that will never
5057 * happen. Never use yield() as a progress guarantee!!
5059 * If you want to use yield() to wait for something, use wait_event().
5060 * If you want to use yield() to be 'nice' for others, use cond_resched().
5061 * If you still want to use yield(), do not!
5063 void __sched yield(void)
5065 set_current_state(TASK_RUNNING);
5068 EXPORT_SYMBOL(yield);
5071 * yield_to - yield the current processor to another thread in
5072 * your thread group, or accelerate that thread toward the
5073 * processor it's on.
5075 * @preempt: whether task preemption is allowed or not
5077 * It's the caller's job to ensure that the target task struct
5078 * can't go away on us before we can do any checks.
5081 * true (>0) if we indeed boosted the target task.
5082 * false (0) if we failed to boost the target.
5083 * -ESRCH if there's no task to yield to.
5085 int __sched yield_to(struct task_struct *p, bool preempt)
5087 struct task_struct *curr = current;
5088 struct rq *rq, *p_rq;
5089 unsigned long flags;
5092 local_irq_save(flags);
5098 * If we're the only runnable task on the rq and target rq also
5099 * has only one task, there's absolutely no point in yielding.
5101 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5106 double_rq_lock(rq, p_rq);
5107 if (task_rq(p) != p_rq) {
5108 double_rq_unlock(rq, p_rq);
5112 if (!curr->sched_class->yield_to_task)
5115 if (curr->sched_class != p->sched_class)
5118 if (task_running(p_rq, p) || p->state)
5121 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5123 schedstat_inc(rq->yld_count);
5125 * Make p's CPU reschedule; pick_next_entity takes care of
5128 if (preempt && rq != p_rq)
5133 double_rq_unlock(rq, p_rq);
5135 local_irq_restore(flags);
5142 EXPORT_SYMBOL_GPL(yield_to);
5144 int io_schedule_prepare(void)
5146 int old_iowait = current->in_iowait;
5148 current->in_iowait = 1;
5149 blk_schedule_flush_plug(current);
5154 void io_schedule_finish(int token)
5156 current->in_iowait = token;
5160 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5161 * that process accounting knows that this is a task in IO wait state.
5163 long __sched io_schedule_timeout(long timeout)
5168 token = io_schedule_prepare();
5169 ret = schedule_timeout(timeout);
5170 io_schedule_finish(token);
5174 EXPORT_SYMBOL(io_schedule_timeout);
5176 void __sched io_schedule(void)
5180 token = io_schedule_prepare();
5182 io_schedule_finish(token);
5184 EXPORT_SYMBOL(io_schedule);
5187 * sys_sched_get_priority_max - return maximum RT priority.
5188 * @policy: scheduling class.
5190 * Return: On success, this syscall returns the maximum
5191 * rt_priority that can be used by a given scheduling class.
5192 * On failure, a negative error code is returned.
5194 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5201 ret = MAX_USER_RT_PRIO-1;
5203 case SCHED_DEADLINE:
5214 * sys_sched_get_priority_min - return minimum RT priority.
5215 * @policy: scheduling class.
5217 * Return: On success, this syscall returns the minimum
5218 * rt_priority that can be used by a given scheduling class.
5219 * On failure, a negative error code is returned.
5221 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5230 case SCHED_DEADLINE:
5239 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5241 struct task_struct *p;
5242 unsigned int time_slice;
5252 p = find_process_by_pid(pid);
5256 retval = security_task_getscheduler(p);
5260 rq = task_rq_lock(p, &rf);
5262 if (p->sched_class->get_rr_interval)
5263 time_slice = p->sched_class->get_rr_interval(rq, p);
5264 task_rq_unlock(rq, p, &rf);
5267 jiffies_to_timespec64(time_slice, t);
5276 * sys_sched_rr_get_interval - return the default timeslice of a process.
5277 * @pid: pid of the process.
5278 * @interval: userspace pointer to the timeslice value.
5280 * this syscall writes the default timeslice value of a given process
5281 * into the user-space timespec buffer. A value of '0' means infinity.
5283 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5286 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5287 struct timespec __user *, interval)
5289 struct timespec64 t;
5290 int retval = sched_rr_get_interval(pid, &t);
5293 retval = put_timespec64(&t, interval);
5298 #ifdef CONFIG_COMPAT
5299 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5301 struct compat_timespec __user *, interval)
5303 struct timespec64 t;
5304 int retval = sched_rr_get_interval(pid, &t);
5307 retval = compat_put_timespec64(&t, interval);
5312 void sched_show_task(struct task_struct *p)
5314 unsigned long free = 0;
5317 if (!try_get_task_stack(p))
5320 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5322 if (p->state == TASK_RUNNING)
5323 printk(KERN_CONT " running task ");
5324 #ifdef CONFIG_DEBUG_STACK_USAGE
5325 free = stack_not_used(p);
5330 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5332 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5333 task_pid_nr(p), ppid,
5334 (unsigned long)task_thread_info(p)->flags);
5336 print_worker_info(KERN_INFO, p);
5337 show_stack(p, NULL);
5340 EXPORT_SYMBOL_GPL(sched_show_task);
5343 state_filter_match(unsigned long state_filter, struct task_struct *p)
5345 /* no filter, everything matches */
5349 /* filter, but doesn't match */
5350 if (!(p->state & state_filter))
5354 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5357 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5364 void show_state_filter(unsigned long state_filter)
5366 struct task_struct *g, *p;
5368 #if BITS_PER_LONG == 32
5370 " task PC stack pid father\n");
5373 " task PC stack pid father\n");
5376 for_each_process_thread(g, p) {
5378 * reset the NMI-timeout, listing all files on a slow
5379 * console might take a lot of time:
5380 * Also, reset softlockup watchdogs on all CPUs, because
5381 * another CPU might be blocked waiting for us to process
5384 touch_nmi_watchdog();
5385 touch_all_softlockup_watchdogs();
5386 if (state_filter_match(state_filter, p))
5390 #ifdef CONFIG_SCHED_DEBUG
5392 sysrq_sched_debug_show();
5396 * Only show locks if all tasks are dumped:
5399 debug_show_all_locks();
5403 * init_idle - set up an idle thread for a given CPU
5404 * @idle: task in question
5405 * @cpu: CPU the idle task belongs to
5407 * NOTE: this function does not set the idle thread's NEED_RESCHED
5408 * flag, to make booting more robust.
5410 void init_idle(struct task_struct *idle, int cpu)
5412 struct rq *rq = cpu_rq(cpu);
5413 unsigned long flags;
5415 __sched_fork(0, idle);
5417 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5418 raw_spin_lock(&rq->lock);
5420 idle->state = TASK_RUNNING;
5421 idle->se.exec_start = sched_clock();
5422 idle->flags |= PF_IDLE;
5424 kasan_unpoison_task_stack(idle);
5428 * Its possible that init_idle() gets called multiple times on a task,
5429 * in that case do_set_cpus_allowed() will not do the right thing.
5431 * And since this is boot we can forgo the serialization.
5433 set_cpus_allowed_common(idle, cpumask_of(cpu));
5436 * We're having a chicken and egg problem, even though we are
5437 * holding rq->lock, the CPU isn't yet set to this CPU so the
5438 * lockdep check in task_group() will fail.
5440 * Similar case to sched_fork(). / Alternatively we could
5441 * use task_rq_lock() here and obtain the other rq->lock.
5446 __set_task_cpu(idle, cpu);
5449 rq->curr = rq->idle = idle;
5450 idle->on_rq = TASK_ON_RQ_QUEUED;
5454 raw_spin_unlock(&rq->lock);
5455 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5457 /* Set the preempt count _outside_ the spinlocks! */
5458 init_idle_preempt_count(idle, cpu);
5461 * The idle tasks have their own, simple scheduling class:
5463 idle->sched_class = &idle_sched_class;
5464 ftrace_graph_init_idle_task(idle, cpu);
5465 vtime_init_idle(idle, cpu);
5467 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5473 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5474 const struct cpumask *trial)
5478 if (!cpumask_weight(cur))
5481 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5486 int task_can_attach(struct task_struct *p,
5487 const struct cpumask *cs_cpus_allowed)
5492 * Kthreads which disallow setaffinity shouldn't be moved
5493 * to a new cpuset; we don't want to change their CPU
5494 * affinity and isolating such threads by their set of
5495 * allowed nodes is unnecessary. Thus, cpusets are not
5496 * applicable for such threads. This prevents checking for
5497 * success of set_cpus_allowed_ptr() on all attached tasks
5498 * before cpus_allowed may be changed.
5500 if (p->flags & PF_NO_SETAFFINITY) {
5505 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5507 ret = dl_task_can_attach(p, cs_cpus_allowed);
5513 bool sched_smp_initialized __read_mostly;
5515 #ifdef CONFIG_NUMA_BALANCING
5516 /* Migrate current task p to target_cpu */
5517 int migrate_task_to(struct task_struct *p, int target_cpu)
5519 struct migration_arg arg = { p, target_cpu };
5520 int curr_cpu = task_cpu(p);
5522 if (curr_cpu == target_cpu)
5525 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5528 /* TODO: This is not properly updating schedstats */
5530 trace_sched_move_numa(p, curr_cpu, target_cpu);
5531 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5535 * Requeue a task on a given node and accurately track the number of NUMA
5536 * tasks on the runqueues
5538 void sched_setnuma(struct task_struct *p, int nid)
5540 bool queued, running;
5544 rq = task_rq_lock(p, &rf);
5545 queued = task_on_rq_queued(p);
5546 running = task_current(rq, p);
5549 dequeue_task(rq, p, DEQUEUE_SAVE);
5551 put_prev_task(rq, p);
5553 p->numa_preferred_nid = nid;
5556 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5558 set_curr_task(rq, p);
5559 task_rq_unlock(rq, p, &rf);
5561 #endif /* CONFIG_NUMA_BALANCING */
5563 #ifdef CONFIG_HOTPLUG_CPU
5565 * Ensure that the idle task is using init_mm right before its CPU goes
5568 void idle_task_exit(void)
5570 struct mm_struct *mm = current->active_mm;
5572 BUG_ON(cpu_online(smp_processor_id()));
5573 BUG_ON(current != this_rq()->idle);
5575 if (mm != &init_mm) {
5576 switch_mm(mm, &init_mm, current);
5577 finish_arch_post_lock_switch();
5580 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
5584 * Since this CPU is going 'away' for a while, fold any nr_active delta
5585 * we might have. Assumes we're called after migrate_tasks() so that the
5586 * nr_active count is stable. We need to take the teardown thread which
5587 * is calling this into account, so we hand in adjust = 1 to the load
5590 * Also see the comment "Global load-average calculations".
5592 static void calc_load_migrate(struct rq *rq)
5594 long delta = calc_load_fold_active(rq, 1);
5596 atomic_long_add(delta, &calc_load_tasks);
5599 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5603 static const struct sched_class fake_sched_class = {
5604 .put_prev_task = put_prev_task_fake,
5607 static struct task_struct fake_task = {
5609 * Avoid pull_{rt,dl}_task()
5611 .prio = MAX_PRIO + 1,
5612 .sched_class = &fake_sched_class,
5616 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5617 * try_to_wake_up()->select_task_rq().
5619 * Called with rq->lock held even though we'er in stop_machine() and
5620 * there's no concurrency possible, we hold the required locks anyway
5621 * because of lock validation efforts.
5623 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5625 struct rq *rq = dead_rq;
5626 struct task_struct *next, *stop = rq->stop;
5627 struct rq_flags orf = *rf;
5631 * Fudge the rq selection such that the below task selection loop
5632 * doesn't get stuck on the currently eligible stop task.
5634 * We're currently inside stop_machine() and the rq is either stuck
5635 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5636 * either way we should never end up calling schedule() until we're
5642 * put_prev_task() and pick_next_task() sched
5643 * class method both need to have an up-to-date
5644 * value of rq->clock[_task]
5646 update_rq_clock(rq);
5650 * There's this thread running, bail when that's the only
5653 if (rq->nr_running == 1)
5657 * pick_next_task() assumes pinned rq->lock:
5659 next = pick_next_task(rq, &fake_task, rf);
5661 put_prev_task(rq, next);
5664 * Rules for changing task_struct::cpus_allowed are holding
5665 * both pi_lock and rq->lock, such that holding either
5666 * stabilizes the mask.
5668 * Drop rq->lock is not quite as disastrous as it usually is
5669 * because !cpu_active at this point, which means load-balance
5670 * will not interfere. Also, stop-machine.
5673 raw_spin_lock(&next->pi_lock);
5677 * Since we're inside stop-machine, _nothing_ should have
5678 * changed the task, WARN if weird stuff happened, because in
5679 * that case the above rq->lock drop is a fail too.
5681 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5682 raw_spin_unlock(&next->pi_lock);
5686 /* Find suitable destination for @next, with force if needed. */
5687 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5688 rq = __migrate_task(rq, rf, next, dest_cpu);
5689 if (rq != dead_rq) {
5695 raw_spin_unlock(&next->pi_lock);
5700 #endif /* CONFIG_HOTPLUG_CPU */
5702 void set_rq_online(struct rq *rq)
5705 const struct sched_class *class;
5707 cpumask_set_cpu(rq->cpu, rq->rd->online);
5710 for_each_class(class) {
5711 if (class->rq_online)
5712 class->rq_online(rq);
5717 void set_rq_offline(struct rq *rq)
5720 const struct sched_class *class;
5722 for_each_class(class) {
5723 if (class->rq_offline)
5724 class->rq_offline(rq);
5727 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5733 * used to mark begin/end of suspend/resume:
5735 static int num_cpus_frozen;
5738 * Update cpusets according to cpu_active mask. If cpusets are
5739 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5740 * around partition_sched_domains().
5742 * If we come here as part of a suspend/resume, don't touch cpusets because we
5743 * want to restore it back to its original state upon resume anyway.
5745 static void cpuset_cpu_active(void)
5747 if (cpuhp_tasks_frozen) {
5749 * num_cpus_frozen tracks how many CPUs are involved in suspend
5750 * resume sequence. As long as this is not the last online
5751 * operation in the resume sequence, just build a single sched
5752 * domain, ignoring cpusets.
5754 partition_sched_domains(1, NULL, NULL);
5755 if (--num_cpus_frozen)
5758 * This is the last CPU online operation. So fall through and
5759 * restore the original sched domains by considering the
5760 * cpuset configurations.
5762 cpuset_force_rebuild();
5764 cpuset_update_active_cpus();
5767 static int cpuset_cpu_inactive(unsigned int cpu)
5769 if (!cpuhp_tasks_frozen) {
5770 if (dl_cpu_busy(cpu))
5772 cpuset_update_active_cpus();
5775 partition_sched_domains(1, NULL, NULL);
5780 int sched_cpu_activate(unsigned int cpu)
5782 struct rq *rq = cpu_rq(cpu);
5785 #ifdef CONFIG_SCHED_SMT
5787 * When going up, increment the number of cores with SMT present.
5789 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5790 static_branch_inc_cpuslocked(&sched_smt_present);
5792 set_cpu_active(cpu, true);
5794 if (sched_smp_initialized) {
5795 sched_domains_numa_masks_set(cpu);
5796 cpuset_cpu_active();
5800 * Put the rq online, if not already. This happens:
5802 * 1) In the early boot process, because we build the real domains
5803 * after all CPUs have been brought up.
5805 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5808 rq_lock_irqsave(rq, &rf);
5810 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5813 rq_unlock_irqrestore(rq, &rf);
5815 update_max_interval();
5820 int sched_cpu_deactivate(unsigned int cpu)
5824 set_cpu_active(cpu, false);
5826 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5827 * users of this state to go away such that all new such users will
5830 * Do sync before park smpboot threads to take care the rcu boost case.
5832 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5834 #ifdef CONFIG_SCHED_SMT
5836 * When going down, decrement the number of cores with SMT present.
5838 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
5839 static_branch_dec_cpuslocked(&sched_smt_present);
5842 if (!sched_smp_initialized)
5845 ret = cpuset_cpu_inactive(cpu);
5847 set_cpu_active(cpu, true);
5850 sched_domains_numa_masks_clear(cpu);
5854 static void sched_rq_cpu_starting(unsigned int cpu)
5856 struct rq *rq = cpu_rq(cpu);
5858 rq->calc_load_update = calc_load_update;
5859 update_max_interval();
5862 int sched_cpu_starting(unsigned int cpu)
5864 sched_rq_cpu_starting(cpu);
5865 sched_tick_start(cpu);
5869 #ifdef CONFIG_HOTPLUG_CPU
5870 int sched_cpu_dying(unsigned int cpu)
5872 struct rq *rq = cpu_rq(cpu);
5875 /* Handle pending wakeups and then migrate everything off */
5876 sched_ttwu_pending();
5877 sched_tick_stop(cpu);
5879 rq_lock_irqsave(rq, &rf);
5881 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5884 migrate_tasks(rq, &rf);
5885 BUG_ON(rq->nr_running != 1);
5886 rq_unlock_irqrestore(rq, &rf);
5888 calc_load_migrate(rq);
5889 update_max_interval();
5890 nohz_balance_exit_idle(rq);
5896 void __init sched_init_smp(void)
5901 * There's no userspace yet to cause hotplug operations; hence all the
5902 * CPU masks are stable and all blatant races in the below code cannot
5903 * happen. The hotplug lock is nevertheless taken to satisfy lockdep,
5904 * but there won't be any contention on it.
5907 mutex_lock(&sched_domains_mutex);
5908 sched_init_domains(cpu_active_mask);
5909 mutex_unlock(&sched_domains_mutex);
5912 /* Move init over to a non-isolated CPU */
5913 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5915 sched_init_granularity();
5917 init_sched_rt_class();
5918 init_sched_dl_class();
5920 sched_smp_initialized = true;
5923 static int __init migration_init(void)
5925 sched_rq_cpu_starting(smp_processor_id());
5928 early_initcall(migration_init);
5931 void __init sched_init_smp(void)
5933 sched_init_granularity();
5935 #endif /* CONFIG_SMP */
5937 int in_sched_functions(unsigned long addr)
5939 return in_lock_functions(addr) ||
5940 (addr >= (unsigned long)__sched_text_start
5941 && addr < (unsigned long)__sched_text_end);
5944 #ifdef CONFIG_CGROUP_SCHED
5946 * Default task group.
5947 * Every task in system belongs to this group at bootup.
5949 struct task_group root_task_group;
5950 LIST_HEAD(task_groups);
5952 /* Cacheline aligned slab cache for task_group */
5953 static struct kmem_cache *task_group_cache __read_mostly;
5956 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5957 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5959 void __init sched_init(void)
5962 unsigned long alloc_size = 0, ptr;
5966 #ifdef CONFIG_FAIR_GROUP_SCHED
5967 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5969 #ifdef CONFIG_RT_GROUP_SCHED
5970 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5973 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5975 #ifdef CONFIG_FAIR_GROUP_SCHED
5976 root_task_group.se = (struct sched_entity **)ptr;
5977 ptr += nr_cpu_ids * sizeof(void **);
5979 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5980 ptr += nr_cpu_ids * sizeof(void **);
5982 #endif /* CONFIG_FAIR_GROUP_SCHED */
5983 #ifdef CONFIG_RT_GROUP_SCHED
5984 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5985 ptr += nr_cpu_ids * sizeof(void **);
5987 root_task_group.rt_rq = (struct rt_rq **)ptr;
5988 ptr += nr_cpu_ids * sizeof(void **);
5990 #endif /* CONFIG_RT_GROUP_SCHED */
5992 #ifdef CONFIG_CPUMASK_OFFSTACK
5993 for_each_possible_cpu(i) {
5994 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5995 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5996 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5997 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5999 #endif /* CONFIG_CPUMASK_OFFSTACK */
6001 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6002 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6005 init_defrootdomain();
6008 #ifdef CONFIG_RT_GROUP_SCHED
6009 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6010 global_rt_period(), global_rt_runtime());
6011 #endif /* CONFIG_RT_GROUP_SCHED */
6013 #ifdef CONFIG_CGROUP_SCHED
6014 task_group_cache = KMEM_CACHE(task_group, 0);
6016 list_add(&root_task_group.list, &task_groups);
6017 INIT_LIST_HEAD(&root_task_group.children);
6018 INIT_LIST_HEAD(&root_task_group.siblings);
6019 autogroup_init(&init_task);
6020 #endif /* CONFIG_CGROUP_SCHED */
6022 for_each_possible_cpu(i) {
6026 raw_spin_lock_init(&rq->lock);
6028 rq->calc_load_active = 0;
6029 rq->calc_load_update = jiffies + LOAD_FREQ;
6030 init_cfs_rq(&rq->cfs);
6031 init_rt_rq(&rq->rt);
6032 init_dl_rq(&rq->dl);
6033 #ifdef CONFIG_FAIR_GROUP_SCHED
6034 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6035 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6036 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6038 * How much CPU bandwidth does root_task_group get?
6040 * In case of task-groups formed thr' the cgroup filesystem, it
6041 * gets 100% of the CPU resources in the system. This overall
6042 * system CPU resource is divided among the tasks of
6043 * root_task_group and its child task-groups in a fair manner,
6044 * based on each entity's (task or task-group's) weight
6045 * (se->load.weight).
6047 * In other words, if root_task_group has 10 tasks of weight
6048 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6049 * then A0's share of the CPU resource is:
6051 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6053 * We achieve this by letting root_task_group's tasks sit
6054 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6056 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6057 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6058 #endif /* CONFIG_FAIR_GROUP_SCHED */
6060 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6061 #ifdef CONFIG_RT_GROUP_SCHED
6062 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6065 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6066 rq->cpu_load[j] = 0;
6071 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6072 rq->balance_callback = NULL;
6073 rq->active_balance = 0;
6074 rq->next_balance = jiffies;
6079 rq->avg_idle = 2*sysctl_sched_migration_cost;
6080 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6082 INIT_LIST_HEAD(&rq->cfs_tasks);
6084 rq_attach_root(rq, &def_root_domain);
6085 #ifdef CONFIG_NO_HZ_COMMON
6086 rq->last_load_update_tick = jiffies;
6087 rq->last_blocked_load_update_tick = jiffies;
6088 atomic_set(&rq->nohz_flags, 0);
6090 #endif /* CONFIG_SMP */
6092 atomic_set(&rq->nr_iowait, 0);
6095 set_load_weight(&init_task, false);
6098 * The boot idle thread does lazy MMU switching as well:
6101 enter_lazy_tlb(&init_mm, current);
6104 * Make us the idle thread. Technically, schedule() should not be
6105 * called from this thread, however somewhere below it might be,
6106 * but because we are the idle thread, we just pick up running again
6107 * when this runqueue becomes "idle".
6109 init_idle(current, smp_processor_id());
6111 calc_load_update = jiffies + LOAD_FREQ;
6114 idle_thread_set_boot_cpu();
6116 init_sched_fair_class();
6120 scheduler_running = 1;
6123 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6124 static inline int preempt_count_equals(int preempt_offset)
6126 int nested = preempt_count() + rcu_preempt_depth();
6128 return (nested == preempt_offset);
6131 void __might_sleep(const char *file, int line, int preempt_offset)
6134 * Blocking primitives will set (and therefore destroy) current->state,
6135 * since we will exit with TASK_RUNNING make sure we enter with it,
6136 * otherwise we will destroy state.
6138 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6139 "do not call blocking ops when !TASK_RUNNING; "
6140 "state=%lx set at [<%p>] %pS\n",
6142 (void *)current->task_state_change,
6143 (void *)current->task_state_change);
6145 ___might_sleep(file, line, preempt_offset);
6147 EXPORT_SYMBOL(__might_sleep);
6149 void ___might_sleep(const char *file, int line, int preempt_offset)
6151 /* Ratelimiting timestamp: */
6152 static unsigned long prev_jiffy;
6154 unsigned long preempt_disable_ip;
6156 /* WARN_ON_ONCE() by default, no rate limit required: */
6159 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6160 !is_idle_task(current)) ||
6161 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6165 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6167 prev_jiffy = jiffies;
6169 /* Save this before calling printk(), since that will clobber it: */
6170 preempt_disable_ip = get_preempt_disable_ip(current);
6173 "BUG: sleeping function called from invalid context at %s:%d\n",
6176 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6177 in_atomic(), irqs_disabled(),
6178 current->pid, current->comm);
6180 if (task_stack_end_corrupted(current))
6181 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6183 debug_show_held_locks(current);
6184 if (irqs_disabled())
6185 print_irqtrace_events(current);
6186 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6187 && !preempt_count_equals(preempt_offset)) {
6188 pr_err("Preemption disabled at:");
6189 print_ip_sym(preempt_disable_ip);
6193 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6195 EXPORT_SYMBOL(___might_sleep);
6198 #ifdef CONFIG_MAGIC_SYSRQ
6199 void normalize_rt_tasks(void)
6201 struct task_struct *g, *p;
6202 struct sched_attr attr = {
6203 .sched_policy = SCHED_NORMAL,
6206 read_lock(&tasklist_lock);
6207 for_each_process_thread(g, p) {
6209 * Only normalize user tasks:
6211 if (p->flags & PF_KTHREAD)
6214 p->se.exec_start = 0;
6215 schedstat_set(p->se.statistics.wait_start, 0);
6216 schedstat_set(p->se.statistics.sleep_start, 0);
6217 schedstat_set(p->se.statistics.block_start, 0);
6219 if (!dl_task(p) && !rt_task(p)) {
6221 * Renice negative nice level userspace
6224 if (task_nice(p) < 0)
6225 set_user_nice(p, 0);
6229 __sched_setscheduler(p, &attr, false, false);
6231 read_unlock(&tasklist_lock);
6234 #endif /* CONFIG_MAGIC_SYSRQ */
6236 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6238 * These functions are only useful for the IA64 MCA handling, or kdb.
6240 * They can only be called when the whole system has been
6241 * stopped - every CPU needs to be quiescent, and no scheduling
6242 * activity can take place. Using them for anything else would
6243 * be a serious bug, and as a result, they aren't even visible
6244 * under any other configuration.
6248 * curr_task - return the current task for a given CPU.
6249 * @cpu: the processor in question.
6251 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6253 * Return: The current task for @cpu.
6255 struct task_struct *curr_task(int cpu)
6257 return cpu_curr(cpu);
6260 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6264 * set_curr_task - set the current task for a given CPU.
6265 * @cpu: the processor in question.
6266 * @p: the task pointer to set.
6268 * Description: This function must only be used when non-maskable interrupts
6269 * are serviced on a separate stack. It allows the architecture to switch the
6270 * notion of the current task on a CPU in a non-blocking manner. This function
6271 * must be called with all CPU's synchronized, and interrupts disabled, the
6272 * and caller must save the original value of the current task (see
6273 * curr_task() above) and restore that value before reenabling interrupts and
6274 * re-starting the system.
6276 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6278 void ia64_set_curr_task(int cpu, struct task_struct *p)
6285 #ifdef CONFIG_CGROUP_SCHED
6286 /* task_group_lock serializes the addition/removal of task groups */
6287 static DEFINE_SPINLOCK(task_group_lock);
6289 static void sched_free_group(struct task_group *tg)
6291 free_fair_sched_group(tg);
6292 free_rt_sched_group(tg);
6294 kmem_cache_free(task_group_cache, tg);
6297 /* allocate runqueue etc for a new task group */
6298 struct task_group *sched_create_group(struct task_group *parent)
6300 struct task_group *tg;
6302 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6304 return ERR_PTR(-ENOMEM);
6306 if (!alloc_fair_sched_group(tg, parent))
6309 if (!alloc_rt_sched_group(tg, parent))
6315 sched_free_group(tg);
6316 return ERR_PTR(-ENOMEM);
6319 void sched_online_group(struct task_group *tg, struct task_group *parent)
6321 unsigned long flags;
6323 spin_lock_irqsave(&task_group_lock, flags);
6324 list_add_rcu(&tg->list, &task_groups);
6326 /* Root should already exist: */
6329 tg->parent = parent;
6330 INIT_LIST_HEAD(&tg->children);
6331 list_add_rcu(&tg->siblings, &parent->children);
6332 spin_unlock_irqrestore(&task_group_lock, flags);
6334 online_fair_sched_group(tg);
6337 /* rcu callback to free various structures associated with a task group */
6338 static void sched_free_group_rcu(struct rcu_head *rhp)
6340 /* Now it should be safe to free those cfs_rqs: */
6341 sched_free_group(container_of(rhp, struct task_group, rcu));
6344 void sched_destroy_group(struct task_group *tg)
6346 /* Wait for possible concurrent references to cfs_rqs complete: */
6347 call_rcu(&tg->rcu, sched_free_group_rcu);
6350 void sched_offline_group(struct task_group *tg)
6352 unsigned long flags;
6354 /* End participation in shares distribution: */
6355 unregister_fair_sched_group(tg);
6357 spin_lock_irqsave(&task_group_lock, flags);
6358 list_del_rcu(&tg->list);
6359 list_del_rcu(&tg->siblings);
6360 spin_unlock_irqrestore(&task_group_lock, flags);
6363 static void sched_change_group(struct task_struct *tsk, int type)
6365 struct task_group *tg;
6368 * All callers are synchronized by task_rq_lock(); we do not use RCU
6369 * which is pointless here. Thus, we pass "true" to task_css_check()
6370 * to prevent lockdep warnings.
6372 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6373 struct task_group, css);
6374 tg = autogroup_task_group(tsk, tg);
6375 tsk->sched_task_group = tg;
6377 #ifdef CONFIG_FAIR_GROUP_SCHED
6378 if (tsk->sched_class->task_change_group)
6379 tsk->sched_class->task_change_group(tsk, type);
6382 set_task_rq(tsk, task_cpu(tsk));
6386 * Change task's runqueue when it moves between groups.
6388 * The caller of this function should have put the task in its new group by
6389 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6392 void sched_move_task(struct task_struct *tsk)
6394 int queued, running, queue_flags =
6395 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6399 rq = task_rq_lock(tsk, &rf);
6400 update_rq_clock(rq);
6402 running = task_current(rq, tsk);
6403 queued = task_on_rq_queued(tsk);
6406 dequeue_task(rq, tsk, queue_flags);
6408 put_prev_task(rq, tsk);
6410 sched_change_group(tsk, TASK_MOVE_GROUP);
6413 enqueue_task(rq, tsk, queue_flags);
6415 set_curr_task(rq, tsk);
6417 task_rq_unlock(rq, tsk, &rf);
6420 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6422 return css ? container_of(css, struct task_group, css) : NULL;
6425 static struct cgroup_subsys_state *
6426 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6428 struct task_group *parent = css_tg(parent_css);
6429 struct task_group *tg;
6432 /* This is early initialization for the top cgroup */
6433 return &root_task_group.css;
6436 tg = sched_create_group(parent);
6438 return ERR_PTR(-ENOMEM);
6443 /* Expose task group only after completing cgroup initialization */
6444 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6446 struct task_group *tg = css_tg(css);
6447 struct task_group *parent = css_tg(css->parent);
6450 sched_online_group(tg, parent);
6454 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6456 struct task_group *tg = css_tg(css);
6458 sched_offline_group(tg);
6461 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6463 struct task_group *tg = css_tg(css);
6466 * Relies on the RCU grace period between css_released() and this.
6468 sched_free_group(tg);
6472 * This is called before wake_up_new_task(), therefore we really only
6473 * have to set its group bits, all the other stuff does not apply.
6475 static void cpu_cgroup_fork(struct task_struct *task)
6480 rq = task_rq_lock(task, &rf);
6482 update_rq_clock(rq);
6483 sched_change_group(task, TASK_SET_GROUP);
6485 task_rq_unlock(rq, task, &rf);
6488 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6490 struct task_struct *task;
6491 struct cgroup_subsys_state *css;
6494 cgroup_taskset_for_each(task, css, tset) {
6495 #ifdef CONFIG_RT_GROUP_SCHED
6496 if (!sched_rt_can_attach(css_tg(css), task))
6500 * Serialize against wake_up_new_task() such that if its
6501 * running, we're sure to observe its full state.
6503 raw_spin_lock_irq(&task->pi_lock);
6505 * Avoid calling sched_move_task() before wake_up_new_task()
6506 * has happened. This would lead to problems with PELT, due to
6507 * move wanting to detach+attach while we're not attached yet.
6509 if (task->state == TASK_NEW)
6511 raw_spin_unlock_irq(&task->pi_lock);
6519 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6521 struct task_struct *task;
6522 struct cgroup_subsys_state *css;
6524 cgroup_taskset_for_each(task, css, tset)
6525 sched_move_task(task);
6528 #ifdef CONFIG_FAIR_GROUP_SCHED
6529 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6530 struct cftype *cftype, u64 shareval)
6532 if (shareval > scale_load_down(ULONG_MAX))
6533 shareval = MAX_SHARES;
6534 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6537 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6540 struct task_group *tg = css_tg(css);
6542 return (u64) scale_load_down(tg->shares);
6545 #ifdef CONFIG_CFS_BANDWIDTH
6546 static DEFINE_MUTEX(cfs_constraints_mutex);
6548 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6549 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6551 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6553 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6555 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6556 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6558 if (tg == &root_task_group)
6562 * Ensure we have at some amount of bandwidth every period. This is
6563 * to prevent reaching a state of large arrears when throttled via
6564 * entity_tick() resulting in prolonged exit starvation.
6566 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6570 * Likewise, bound things on the otherside by preventing insane quota
6571 * periods. This also allows us to normalize in computing quota
6574 if (period > max_cfs_quota_period)
6578 * Prevent race between setting of cfs_rq->runtime_enabled and
6579 * unthrottle_offline_cfs_rqs().
6582 mutex_lock(&cfs_constraints_mutex);
6583 ret = __cfs_schedulable(tg, period, quota);
6587 runtime_enabled = quota != RUNTIME_INF;
6588 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6590 * If we need to toggle cfs_bandwidth_used, off->on must occur
6591 * before making related changes, and on->off must occur afterwards
6593 if (runtime_enabled && !runtime_was_enabled)
6594 cfs_bandwidth_usage_inc();
6595 raw_spin_lock_irq(&cfs_b->lock);
6596 cfs_b->period = ns_to_ktime(period);
6597 cfs_b->quota = quota;
6599 __refill_cfs_bandwidth_runtime(cfs_b);
6601 /* Restart the period timer (if active) to handle new period expiry: */
6602 if (runtime_enabled)
6603 start_cfs_bandwidth(cfs_b);
6605 raw_spin_unlock_irq(&cfs_b->lock);
6607 for_each_online_cpu(i) {
6608 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6609 struct rq *rq = cfs_rq->rq;
6612 rq_lock_irq(rq, &rf);
6613 cfs_rq->runtime_enabled = runtime_enabled;
6614 cfs_rq->runtime_remaining = 0;
6616 if (cfs_rq->throttled)
6617 unthrottle_cfs_rq(cfs_rq);
6618 rq_unlock_irq(rq, &rf);
6620 if (runtime_was_enabled && !runtime_enabled)
6621 cfs_bandwidth_usage_dec();
6623 mutex_unlock(&cfs_constraints_mutex);
6629 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6633 period = ktime_to_ns(tg->cfs_bandwidth.period);
6634 if (cfs_quota_us < 0)
6635 quota = RUNTIME_INF;
6636 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
6637 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6641 return tg_set_cfs_bandwidth(tg, period, quota);
6644 long tg_get_cfs_quota(struct task_group *tg)
6648 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6651 quota_us = tg->cfs_bandwidth.quota;
6652 do_div(quota_us, NSEC_PER_USEC);
6657 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6661 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
6664 period = (u64)cfs_period_us * NSEC_PER_USEC;
6665 quota = tg->cfs_bandwidth.quota;
6667 return tg_set_cfs_bandwidth(tg, period, quota);
6670 long tg_get_cfs_period(struct task_group *tg)
6674 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6675 do_div(cfs_period_us, NSEC_PER_USEC);
6677 return cfs_period_us;
6680 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6683 return tg_get_cfs_quota(css_tg(css));
6686 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6687 struct cftype *cftype, s64 cfs_quota_us)
6689 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6692 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6695 return tg_get_cfs_period(css_tg(css));
6698 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6699 struct cftype *cftype, u64 cfs_period_us)
6701 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6704 struct cfs_schedulable_data {
6705 struct task_group *tg;
6710 * normalize group quota/period to be quota/max_period
6711 * note: units are usecs
6713 static u64 normalize_cfs_quota(struct task_group *tg,
6714 struct cfs_schedulable_data *d)
6722 period = tg_get_cfs_period(tg);
6723 quota = tg_get_cfs_quota(tg);
6726 /* note: these should typically be equivalent */
6727 if (quota == RUNTIME_INF || quota == -1)
6730 return to_ratio(period, quota);
6733 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6735 struct cfs_schedulable_data *d = data;
6736 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6737 s64 quota = 0, parent_quota = -1;
6740 quota = RUNTIME_INF;
6742 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6744 quota = normalize_cfs_quota(tg, d);
6745 parent_quota = parent_b->hierarchical_quota;
6748 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6749 * always take the min. On cgroup1, only inherit when no
6752 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
6753 quota = min(quota, parent_quota);
6755 if (quota == RUNTIME_INF)
6756 quota = parent_quota;
6757 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6761 cfs_b->hierarchical_quota = quota;
6766 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6769 struct cfs_schedulable_data data = {
6775 if (quota != RUNTIME_INF) {
6776 do_div(data.period, NSEC_PER_USEC);
6777 do_div(data.quota, NSEC_PER_USEC);
6781 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6787 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6789 struct task_group *tg = css_tg(seq_css(sf));
6790 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6792 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6793 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6794 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6796 if (schedstat_enabled() && tg != &root_task_group) {
6800 for_each_possible_cpu(i)
6801 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
6803 seq_printf(sf, "wait_sum %llu\n", ws);
6808 #endif /* CONFIG_CFS_BANDWIDTH */
6809 #endif /* CONFIG_FAIR_GROUP_SCHED */
6811 #ifdef CONFIG_RT_GROUP_SCHED
6812 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6813 struct cftype *cft, s64 val)
6815 return sched_group_set_rt_runtime(css_tg(css), val);
6818 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6821 return sched_group_rt_runtime(css_tg(css));
6824 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6825 struct cftype *cftype, u64 rt_period_us)
6827 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6830 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6833 return sched_group_rt_period(css_tg(css));
6835 #endif /* CONFIG_RT_GROUP_SCHED */
6837 static struct cftype cpu_legacy_files[] = {
6838 #ifdef CONFIG_FAIR_GROUP_SCHED
6841 .read_u64 = cpu_shares_read_u64,
6842 .write_u64 = cpu_shares_write_u64,
6845 #ifdef CONFIG_CFS_BANDWIDTH
6847 .name = "cfs_quota_us",
6848 .read_s64 = cpu_cfs_quota_read_s64,
6849 .write_s64 = cpu_cfs_quota_write_s64,
6852 .name = "cfs_period_us",
6853 .read_u64 = cpu_cfs_period_read_u64,
6854 .write_u64 = cpu_cfs_period_write_u64,
6858 .seq_show = cpu_cfs_stat_show,
6861 #ifdef CONFIG_RT_GROUP_SCHED
6863 .name = "rt_runtime_us",
6864 .read_s64 = cpu_rt_runtime_read,
6865 .write_s64 = cpu_rt_runtime_write,
6868 .name = "rt_period_us",
6869 .read_u64 = cpu_rt_period_read_uint,
6870 .write_u64 = cpu_rt_period_write_uint,
6876 static int cpu_extra_stat_show(struct seq_file *sf,
6877 struct cgroup_subsys_state *css)
6879 #ifdef CONFIG_CFS_BANDWIDTH
6881 struct task_group *tg = css_tg(css);
6882 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6885 throttled_usec = cfs_b->throttled_time;
6886 do_div(throttled_usec, NSEC_PER_USEC);
6888 seq_printf(sf, "nr_periods %d\n"
6890 "throttled_usec %llu\n",
6891 cfs_b->nr_periods, cfs_b->nr_throttled,
6898 #ifdef CONFIG_FAIR_GROUP_SCHED
6899 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6902 struct task_group *tg = css_tg(css);
6903 u64 weight = scale_load_down(tg->shares);
6905 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6908 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6909 struct cftype *cft, u64 weight)
6912 * cgroup weight knobs should use the common MIN, DFL and MAX
6913 * values which are 1, 100 and 10000 respectively. While it loses
6914 * a bit of range on both ends, it maps pretty well onto the shares
6915 * value used by scheduler and the round-trip conversions preserve
6916 * the original value over the entire range.
6918 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6921 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6923 return sched_group_set_shares(css_tg(css), scale_load(weight));
6926 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6929 unsigned long weight = scale_load_down(css_tg(css)->shares);
6930 int last_delta = INT_MAX;
6933 /* find the closest nice value to the current weight */
6934 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6935 delta = abs(sched_prio_to_weight[prio] - weight);
6936 if (delta >= last_delta)
6941 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6944 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6945 struct cftype *cft, s64 nice)
6947 unsigned long weight;
6950 if (nice < MIN_NICE || nice > MAX_NICE)
6953 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
6954 idx = array_index_nospec(idx, 40);
6955 weight = sched_prio_to_weight[idx];
6957 return sched_group_set_shares(css_tg(css), scale_load(weight));
6961 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6962 long period, long quota)
6965 seq_puts(sf, "max");
6967 seq_printf(sf, "%ld", quota);
6969 seq_printf(sf, " %ld\n", period);
6972 /* caller should put the current value in *@periodp before calling */
6973 static int __maybe_unused cpu_period_quota_parse(char *buf,
6974 u64 *periodp, u64 *quotap)
6976 char tok[21]; /* U64_MAX */
6978 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
6981 *periodp *= NSEC_PER_USEC;
6983 if (sscanf(tok, "%llu", quotap))
6984 *quotap *= NSEC_PER_USEC;
6985 else if (!strcmp(tok, "max"))
6986 *quotap = RUNTIME_INF;
6993 #ifdef CONFIG_CFS_BANDWIDTH
6994 static int cpu_max_show(struct seq_file *sf, void *v)
6996 struct task_group *tg = css_tg(seq_css(sf));
6998 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7002 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7003 char *buf, size_t nbytes, loff_t off)
7005 struct task_group *tg = css_tg(of_css(of));
7006 u64 period = tg_get_cfs_period(tg);
7010 ret = cpu_period_quota_parse(buf, &period, "a);
7012 ret = tg_set_cfs_bandwidth(tg, period, quota);
7013 return ret ?: nbytes;
7017 static struct cftype cpu_files[] = {
7018 #ifdef CONFIG_FAIR_GROUP_SCHED
7021 .flags = CFTYPE_NOT_ON_ROOT,
7022 .read_u64 = cpu_weight_read_u64,
7023 .write_u64 = cpu_weight_write_u64,
7026 .name = "weight.nice",
7027 .flags = CFTYPE_NOT_ON_ROOT,
7028 .read_s64 = cpu_weight_nice_read_s64,
7029 .write_s64 = cpu_weight_nice_write_s64,
7032 #ifdef CONFIG_CFS_BANDWIDTH
7035 .flags = CFTYPE_NOT_ON_ROOT,
7036 .seq_show = cpu_max_show,
7037 .write = cpu_max_write,
7043 struct cgroup_subsys cpu_cgrp_subsys = {
7044 .css_alloc = cpu_cgroup_css_alloc,
7045 .css_online = cpu_cgroup_css_online,
7046 .css_released = cpu_cgroup_css_released,
7047 .css_free = cpu_cgroup_css_free,
7048 .css_extra_stat_show = cpu_extra_stat_show,
7049 .fork = cpu_cgroup_fork,
7050 .can_attach = cpu_cgroup_can_attach,
7051 .attach = cpu_cgroup_attach,
7052 .legacy_cftypes = cpu_legacy_files,
7053 .dfl_cftypes = cpu_files,
7058 #endif /* CONFIG_CGROUP_SCHED */
7060 void dump_cpu_task(int cpu)
7062 pr_info("Task dump for CPU %d:\n", cpu);
7063 sched_show_task(cpu_curr(cpu));
7067 * Nice levels are multiplicative, with a gentle 10% change for every
7068 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7069 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7070 * that remained on nice 0.
7072 * The "10% effect" is relative and cumulative: from _any_ nice level,
7073 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7074 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7075 * If a task goes up by ~10% and another task goes down by ~10% then
7076 * the relative distance between them is ~25%.)
7078 const int sched_prio_to_weight[40] = {
7079 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7080 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7081 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7082 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7083 /* 0 */ 1024, 820, 655, 526, 423,
7084 /* 5 */ 335, 272, 215, 172, 137,
7085 /* 10 */ 110, 87, 70, 56, 45,
7086 /* 15 */ 36, 29, 23, 18, 15,
7090 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7092 * In cases where the weight does not change often, we can use the
7093 * precalculated inverse to speed up arithmetics by turning divisions
7094 * into multiplications:
7096 const u32 sched_prio_to_wmult[40] = {
7097 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7098 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7099 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7100 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7101 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7102 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7103 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7104 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7107 #undef CREATE_TRACE_POINTS