GNU Linux-libre 5.10.217-gnu1
[releases.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
40                 pr_info("\tRCU strict (and thus non-scalable) grace periods enabled.\n");
41         if (RCU_NUM_LVLS >= 4)
42                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
43         if (RCU_FANOUT_LEAF != 16)
44                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
45                         RCU_FANOUT_LEAF);
46         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
47                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
48                         rcu_fanout_leaf);
49         if (nr_cpu_ids != NR_CPUS)
50                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
51 #ifdef CONFIG_RCU_BOOST
52         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
53                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
54 #endif
55         if (blimit != DEFAULT_RCU_BLIMIT)
56                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
57         if (qhimark != DEFAULT_RCU_QHIMARK)
58                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
59         if (qlowmark != DEFAULT_RCU_QLOMARK)
60                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
61         if (qovld != DEFAULT_RCU_QOVLD)
62                 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
63         if (jiffies_till_first_fqs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
65         if (jiffies_till_next_fqs != ULONG_MAX)
66                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
67         if (jiffies_till_sched_qs != ULONG_MAX)
68                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
69         if (rcu_kick_kthreads)
70                 pr_info("\tKick kthreads if too-long grace period.\n");
71         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
72                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
73         if (gp_preinit_delay)
74                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
75         if (gp_init_delay)
76                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
77         if (gp_cleanup_delay)
78                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
79         if (!use_softirq)
80                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
81         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
82                 pr_info("\tRCU debug extended QS entry/exit.\n");
83         rcupdate_announce_bootup_oddness();
84 }
85
86 #ifdef CONFIG_PREEMPT_RCU
87
88 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
89 static void rcu_read_unlock_special(struct task_struct *t);
90
91 /*
92  * Tell them what RCU they are running.
93  */
94 static void __init rcu_bootup_announce(void)
95 {
96         pr_info("Preemptible hierarchical RCU implementation.\n");
97         rcu_bootup_announce_oddness();
98 }
99
100 /* Flags for rcu_preempt_ctxt_queue() decision table. */
101 #define RCU_GP_TASKS    0x8
102 #define RCU_EXP_TASKS   0x4
103 #define RCU_GP_BLKD     0x2
104 #define RCU_EXP_BLKD    0x1
105
106 /*
107  * Queues a task preempted within an RCU-preempt read-side critical
108  * section into the appropriate location within the ->blkd_tasks list,
109  * depending on the states of any ongoing normal and expedited grace
110  * periods.  The ->gp_tasks pointer indicates which element the normal
111  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
112  * indicates which element the expedited grace period is waiting on (again,
113  * NULL if none).  If a grace period is waiting on a given element in the
114  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
115  * adding a task to the tail of the list blocks any grace period that is
116  * already waiting on one of the elements.  In contrast, adding a task
117  * to the head of the list won't block any grace period that is already
118  * waiting on one of the elements.
119  *
120  * This queuing is imprecise, and can sometimes make an ongoing grace
121  * period wait for a task that is not strictly speaking blocking it.
122  * Given the choice, we needlessly block a normal grace period rather than
123  * blocking an expedited grace period.
124  *
125  * Note that an endless sequence of expedited grace periods still cannot
126  * indefinitely postpone a normal grace period.  Eventually, all of the
127  * fixed number of preempted tasks blocking the normal grace period that are
128  * not also blocking the expedited grace period will resume and complete
129  * their RCU read-side critical sections.  At that point, the ->gp_tasks
130  * pointer will equal the ->exp_tasks pointer, at which point the end of
131  * the corresponding expedited grace period will also be the end of the
132  * normal grace period.
133  */
134 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
135         __releases(rnp->lock) /* But leaves rrupts disabled. */
136 {
137         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
138                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
139                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
140                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
141         struct task_struct *t = current;
142
143         raw_lockdep_assert_held_rcu_node(rnp);
144         WARN_ON_ONCE(rdp->mynode != rnp);
145         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
146         /* RCU better not be waiting on newly onlined CPUs! */
147         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
148                      rdp->grpmask);
149
150         /*
151          * Decide where to queue the newly blocked task.  In theory,
152          * this could be an if-statement.  In practice, when I tried
153          * that, it was quite messy.
154          */
155         switch (blkd_state) {
156         case 0:
157         case                RCU_EXP_TASKS:
158         case                RCU_EXP_TASKS + RCU_GP_BLKD:
159         case RCU_GP_TASKS:
160         case RCU_GP_TASKS + RCU_EXP_TASKS:
161
162                 /*
163                  * Blocking neither GP, or first task blocking the normal
164                  * GP but not blocking the already-waiting expedited GP.
165                  * Queue at the head of the list to avoid unnecessarily
166                  * blocking the already-waiting GPs.
167                  */
168                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
169                 break;
170
171         case                                              RCU_EXP_BLKD:
172         case                                RCU_GP_BLKD:
173         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
174         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
175         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
176         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177
178                 /*
179                  * First task arriving that blocks either GP, or first task
180                  * arriving that blocks the expedited GP (with the normal
181                  * GP already waiting), or a task arriving that blocks
182                  * both GPs with both GPs already waiting.  Queue at the
183                  * tail of the list to avoid any GP waiting on any of the
184                  * already queued tasks that are not blocking it.
185                  */
186                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
187                 break;
188
189         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
190         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
191         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
192
193                 /*
194                  * Second or subsequent task blocking the expedited GP.
195                  * The task either does not block the normal GP, or is the
196                  * first task blocking the normal GP.  Queue just after
197                  * the first task blocking the expedited GP.
198                  */
199                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
200                 break;
201
202         case RCU_GP_TASKS +                 RCU_GP_BLKD:
203         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204
205                 /*
206                  * Second or subsequent task blocking the normal GP.
207                  * The task does not block the expedited GP. Queue just
208                  * after the first task blocking the normal GP.
209                  */
210                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
211                 break;
212
213         default:
214
215                 /* Yet another exercise in excessive paranoia. */
216                 WARN_ON_ONCE(1);
217                 break;
218         }
219
220         /*
221          * We have now queued the task.  If it was the first one to
222          * block either grace period, update the ->gp_tasks and/or
223          * ->exp_tasks pointers, respectively, to reference the newly
224          * blocked tasks.
225          */
226         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
227                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
228                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
229         }
230         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
231                 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
232         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
233                      !(rnp->qsmask & rdp->grpmask));
234         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
235                      !(rnp->expmask & rdp->grpmask));
236         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237
238         /*
239          * Report the quiescent state for the expedited GP.  This expedited
240          * GP should not be able to end until we report, so there should be
241          * no need to check for a subsequent expedited GP.  (Though we are
242          * still in a quiescent state in any case.)
243          */
244         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
245                 rcu_report_exp_rdp(rdp);
246         else
247                 WARN_ON_ONCE(rdp->exp_deferred_qs);
248 }
249
250 /*
251  * Record a preemptible-RCU quiescent state for the specified CPU.
252  * Note that this does not necessarily mean that the task currently running
253  * on the CPU is in a quiescent state:  Instead, it means that the current
254  * grace period need not wait on any RCU read-side critical section that
255  * starts later on this CPU.  It also means that if the current task is
256  * in an RCU read-side critical section, it has already added itself to
257  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
258  * current task, there might be any number of other tasks blocked while
259  * in an RCU read-side critical section.
260  *
261  * Callers to this function must disable preemption.
262  */
263 static void rcu_qs(void)
264 {
265         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
266         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
267                 trace_rcu_grace_period(TPS("rcu_preempt"),
268                                        __this_cpu_read(rcu_data.gp_seq),
269                                        TPS("cpuqs"));
270                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
271                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
272                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
273         }
274 }
275
276 /*
277  * We have entered the scheduler, and the current task might soon be
278  * context-switched away from.  If this task is in an RCU read-side
279  * critical section, we will no longer be able to rely on the CPU to
280  * record that fact, so we enqueue the task on the blkd_tasks list.
281  * The task will dequeue itself when it exits the outermost enclosing
282  * RCU read-side critical section.  Therefore, the current grace period
283  * cannot be permitted to complete until the blkd_tasks list entries
284  * predating the current grace period drain, in other words, until
285  * rnp->gp_tasks becomes NULL.
286  *
287  * Caller must disable interrupts.
288  */
289 void rcu_note_context_switch(bool preempt)
290 {
291         struct task_struct *t = current;
292         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
293         struct rcu_node *rnp;
294
295         trace_rcu_utilization(TPS("Start context switch"));
296         lockdep_assert_irqs_disabled();
297         WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
298         if (rcu_preempt_depth() > 0 &&
299             !t->rcu_read_unlock_special.b.blocked) {
300
301                 /* Possibly blocking in an RCU read-side critical section. */
302                 rnp = rdp->mynode;
303                 raw_spin_lock_rcu_node(rnp);
304                 t->rcu_read_unlock_special.b.blocked = true;
305                 t->rcu_blocked_node = rnp;
306
307                 /*
308                  * Verify the CPU's sanity, trace the preemption, and
309                  * then queue the task as required based on the states
310                  * of any ongoing and expedited grace periods.
311                  */
312                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
313                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
314                 trace_rcu_preempt_task(rcu_state.name,
315                                        t->pid,
316                                        (rnp->qsmask & rdp->grpmask)
317                                        ? rnp->gp_seq
318                                        : rcu_seq_snap(&rnp->gp_seq));
319                 rcu_preempt_ctxt_queue(rnp, rdp);
320         } else {
321                 rcu_preempt_deferred_qs(t);
322         }
323
324         /*
325          * Either we were not in an RCU read-side critical section to
326          * begin with, or we have now recorded that critical section
327          * globally.  Either way, we can now note a quiescent state
328          * for this CPU.  Again, if we were in an RCU read-side critical
329          * section, and if that critical section was blocking the current
330          * grace period, then the fact that the task has been enqueued
331          * means that we continue to block the current grace period.
332          */
333         rcu_qs();
334         if (rdp->exp_deferred_qs)
335                 rcu_report_exp_rdp(rdp);
336         rcu_tasks_qs(current, preempt);
337         trace_rcu_utilization(TPS("End context switch"));
338 }
339 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
340
341 /*
342  * Check for preempted RCU readers blocking the current grace period
343  * for the specified rcu_node structure.  If the caller needs a reliable
344  * answer, it must hold the rcu_node's ->lock.
345  */
346 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
347 {
348         return READ_ONCE(rnp->gp_tasks) != NULL;
349 }
350
351 /* limit value for ->rcu_read_lock_nesting. */
352 #define RCU_NEST_PMAX (INT_MAX / 2)
353
354 static void rcu_preempt_read_enter(void)
355 {
356         current->rcu_read_lock_nesting++;
357 }
358
359 static int rcu_preempt_read_exit(void)
360 {
361         return --current->rcu_read_lock_nesting;
362 }
363
364 static void rcu_preempt_depth_set(int val)
365 {
366         current->rcu_read_lock_nesting = val;
367 }
368
369 /*
370  * Preemptible RCU implementation for rcu_read_lock().
371  * Just increment ->rcu_read_lock_nesting, shared state will be updated
372  * if we block.
373  */
374 void __rcu_read_lock(void)
375 {
376         rcu_preempt_read_enter();
377         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
378                 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
379         if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
380                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
381         barrier();  /* critical section after entry code. */
382 }
383 EXPORT_SYMBOL_GPL(__rcu_read_lock);
384
385 /*
386  * Preemptible RCU implementation for rcu_read_unlock().
387  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
388  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
389  * invoke rcu_read_unlock_special() to clean up after a context switch
390  * in an RCU read-side critical section and other special cases.
391  */
392 void __rcu_read_unlock(void)
393 {
394         struct task_struct *t = current;
395
396         if (rcu_preempt_read_exit() == 0) {
397                 barrier();  /* critical section before exit code. */
398                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
399                         rcu_read_unlock_special(t);
400         }
401         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
402                 int rrln = rcu_preempt_depth();
403
404                 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
405         }
406 }
407 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
408
409 /*
410  * Advance a ->blkd_tasks-list pointer to the next entry, instead
411  * returning NULL if at the end of the list.
412  */
413 static struct list_head *rcu_next_node_entry(struct task_struct *t,
414                                              struct rcu_node *rnp)
415 {
416         struct list_head *np;
417
418         np = t->rcu_node_entry.next;
419         if (np == &rnp->blkd_tasks)
420                 np = NULL;
421         return np;
422 }
423
424 /*
425  * Return true if the specified rcu_node structure has tasks that were
426  * preempted within an RCU read-side critical section.
427  */
428 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
429 {
430         return !list_empty(&rnp->blkd_tasks);
431 }
432
433 /*
434  * Report deferred quiescent states.  The deferral time can
435  * be quite short, for example, in the case of the call from
436  * rcu_read_unlock_special().
437  */
438 static void
439 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
440 {
441         bool empty_exp;
442         bool empty_norm;
443         bool empty_exp_now;
444         struct list_head *np;
445         bool drop_boost_mutex = false;
446         struct rcu_data *rdp;
447         struct rcu_node *rnp;
448         union rcu_special special;
449
450         /*
451          * If RCU core is waiting for this CPU to exit its critical section,
452          * report the fact that it has exited.  Because irqs are disabled,
453          * t->rcu_read_unlock_special cannot change.
454          */
455         special = t->rcu_read_unlock_special;
456         rdp = this_cpu_ptr(&rcu_data);
457         if (!special.s && !rdp->exp_deferred_qs) {
458                 local_irq_restore(flags);
459                 return;
460         }
461         t->rcu_read_unlock_special.s = 0;
462         if (special.b.need_qs) {
463                 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
464                         rcu_report_qs_rdp(rdp);
465                         udelay(rcu_unlock_delay);
466                 } else {
467                         rcu_qs();
468                 }
469         }
470
471         /*
472          * Respond to a request by an expedited grace period for a
473          * quiescent state from this CPU.  Note that requests from
474          * tasks are handled when removing the task from the
475          * blocked-tasks list below.
476          */
477         if (rdp->exp_deferred_qs)
478                 rcu_report_exp_rdp(rdp);
479
480         /* Clean up if blocked during RCU read-side critical section. */
481         if (special.b.blocked) {
482
483                 /*
484                  * Remove this task from the list it blocked on.  The task
485                  * now remains queued on the rcu_node corresponding to the
486                  * CPU it first blocked on, so there is no longer any need
487                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
488                  */
489                 rnp = t->rcu_blocked_node;
490                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
491                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
492                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
493                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
494                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
495                              (!empty_norm || rnp->qsmask));
496                 empty_exp = sync_rcu_exp_done(rnp);
497                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
498                 np = rcu_next_node_entry(t, rnp);
499                 list_del_init(&t->rcu_node_entry);
500                 t->rcu_blocked_node = NULL;
501                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
502                                                 rnp->gp_seq, t->pid);
503                 if (&t->rcu_node_entry == rnp->gp_tasks)
504                         WRITE_ONCE(rnp->gp_tasks, np);
505                 if (&t->rcu_node_entry == rnp->exp_tasks)
506                         WRITE_ONCE(rnp->exp_tasks, np);
507                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
508                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
509                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
510                         if (&t->rcu_node_entry == rnp->boost_tasks)
511                                 WRITE_ONCE(rnp->boost_tasks, np);
512                 }
513
514                 /*
515                  * If this was the last task on the current list, and if
516                  * we aren't waiting on any CPUs, report the quiescent state.
517                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
518                  * so we must take a snapshot of the expedited state.
519                  */
520                 empty_exp_now = sync_rcu_exp_done(rnp);
521                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
522                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
523                                                          rnp->gp_seq,
524                                                          0, rnp->qsmask,
525                                                          rnp->level,
526                                                          rnp->grplo,
527                                                          rnp->grphi,
528                                                          !!rnp->gp_tasks);
529                         rcu_report_unblock_qs_rnp(rnp, flags);
530                 } else {
531                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
532                 }
533
534                 /*
535                  * If this was the last task on the expedited lists,
536                  * then we need to report up the rcu_node hierarchy.
537                  */
538                 if (!empty_exp && empty_exp_now)
539                         rcu_report_exp_rnp(rnp, true);
540
541                 /* Unboost if we were boosted. */
542                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
543                         rt_mutex_futex_unlock(&rnp->boost_mtx);
544
545         } else {
546                 local_irq_restore(flags);
547         }
548 }
549
550 /*
551  * Is a deferred quiescent-state pending, and are we also not in
552  * an RCU read-side critical section?  It is the caller's responsibility
553  * to ensure it is otherwise safe to report any deferred quiescent
554  * states.  The reason for this is that it is safe to report a
555  * quiescent state during context switch even though preemption
556  * is disabled.  This function cannot be expected to understand these
557  * nuances, so the caller must handle them.
558  */
559 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
560 {
561         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
562                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
563                rcu_preempt_depth() == 0;
564 }
565
566 /*
567  * Report a deferred quiescent state if needed and safe to do so.
568  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
569  * not being in an RCU read-side critical section.  The caller must
570  * evaluate safety in terms of interrupt, softirq, and preemption
571  * disabling.
572  */
573 static void rcu_preempt_deferred_qs(struct task_struct *t)
574 {
575         unsigned long flags;
576
577         if (!rcu_preempt_need_deferred_qs(t))
578                 return;
579         local_irq_save(flags);
580         rcu_preempt_deferred_qs_irqrestore(t, flags);
581 }
582
583 /*
584  * Minimal handler to give the scheduler a chance to re-evaluate.
585  */
586 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
587 {
588         struct rcu_data *rdp;
589
590         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
591         rdp->defer_qs_iw_pending = false;
592 }
593
594 /*
595  * Handle special cases during rcu_read_unlock(), such as needing to
596  * notify RCU core processing or task having blocked during the RCU
597  * read-side critical section.
598  */
599 static void rcu_read_unlock_special(struct task_struct *t)
600 {
601         unsigned long flags;
602         bool preempt_bh_were_disabled =
603                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
604         bool irqs_were_disabled;
605
606         /* NMI handlers cannot block and cannot safely manipulate state. */
607         if (in_nmi())
608                 return;
609
610         local_irq_save(flags);
611         irqs_were_disabled = irqs_disabled_flags(flags);
612         if (preempt_bh_were_disabled || irqs_were_disabled) {
613                 bool exp;
614                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
615                 struct rcu_node *rnp = rdp->mynode;
616
617                 exp = (t->rcu_blocked_node &&
618                        READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
619                       (rdp->grpmask & READ_ONCE(rnp->expmask));
620                 // Need to defer quiescent state until everything is enabled.
621                 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
622                         // Using softirq, safe to awaken, and either the
623                         // wakeup is free or there is an expedited GP.
624                         raise_softirq_irqoff(RCU_SOFTIRQ);
625                 } else {
626                         // Enabling BH or preempt does reschedule, so...
627                         // Also if no expediting, slow is OK.
628                         // Plus nohz_full CPUs eventually get tick enabled.
629                         set_tsk_need_resched(current);
630                         set_preempt_need_resched();
631                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
632                             !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) {
633                                 // Get scheduler to re-evaluate and call hooks.
634                                 // If !IRQ_WORK, FQS scan will eventually IPI.
635                                 init_irq_work(&rdp->defer_qs_iw,
636                                               rcu_preempt_deferred_qs_handler);
637                                 rdp->defer_qs_iw_pending = true;
638                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
639                         }
640                 }
641                 local_irq_restore(flags);
642                 return;
643         }
644         rcu_preempt_deferred_qs_irqrestore(t, flags);
645 }
646
647 /*
648  * Check that the list of blocked tasks for the newly completed grace
649  * period is in fact empty.  It is a serious bug to complete a grace
650  * period that still has RCU readers blocked!  This function must be
651  * invoked -before- updating this rnp's ->gp_seq.
652  *
653  * Also, if there are blocked tasks on the list, they automatically
654  * block the newly created grace period, so set up ->gp_tasks accordingly.
655  */
656 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
657 {
658         struct task_struct *t;
659
660         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
661         raw_lockdep_assert_held_rcu_node(rnp);
662         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
663                 dump_blkd_tasks(rnp, 10);
664         if (rcu_preempt_has_tasks(rnp) &&
665             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
666                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
667                 t = container_of(rnp->gp_tasks, struct task_struct,
668                                  rcu_node_entry);
669                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
670                                                 rnp->gp_seq, t->pid);
671         }
672         WARN_ON_ONCE(rnp->qsmask);
673 }
674
675 /*
676  * Check for a quiescent state from the current CPU, including voluntary
677  * context switches for Tasks RCU.  When a task blocks, the task is
678  * recorded in the corresponding CPU's rcu_node structure, which is checked
679  * elsewhere, hence this function need only check for quiescent states
680  * related to the current CPU, not to those related to tasks.
681  */
682 static void rcu_flavor_sched_clock_irq(int user)
683 {
684         struct task_struct *t = current;
685
686         lockdep_assert_irqs_disabled();
687         if (user || rcu_is_cpu_rrupt_from_idle()) {
688                 rcu_note_voluntary_context_switch(current);
689         }
690         if (rcu_preempt_depth() > 0 ||
691             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692                 /* No QS, force context switch if deferred. */
693                 if (rcu_preempt_need_deferred_qs(t)) {
694                         set_tsk_need_resched(t);
695                         set_preempt_need_resched();
696                 }
697         } else if (rcu_preempt_need_deferred_qs(t)) {
698                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699                 return;
700         } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
701                 rcu_qs(); /* Report immediate QS. */
702                 return;
703         }
704
705         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706         if (rcu_preempt_depth() > 0 &&
707             __this_cpu_read(rcu_data.core_needs_qs) &&
708             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
709             !t->rcu_read_unlock_special.b.need_qs &&
710             time_after(jiffies, rcu_state.gp_start + HZ))
711                 t->rcu_read_unlock_special.b.need_qs = true;
712 }
713
714 /*
715  * Check for a task exiting while in a preemptible-RCU read-side
716  * critical section, clean up if so.  No need to issue warnings, as
717  * debug_check_no_locks_held() already does this if lockdep is enabled.
718  * Besides, if this function does anything other than just immediately
719  * return, there was a bug of some sort.  Spewing warnings from this
720  * function is like as not to simply obscure important prior warnings.
721  */
722 void exit_rcu(void)
723 {
724         struct task_struct *t = current;
725
726         if (unlikely(!list_empty(&current->rcu_node_entry))) {
727                 rcu_preempt_depth_set(1);
728                 barrier();
729                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
730         } else if (unlikely(rcu_preempt_depth())) {
731                 rcu_preempt_depth_set(1);
732         } else {
733                 return;
734         }
735         __rcu_read_unlock();
736         rcu_preempt_deferred_qs(current);
737 }
738
739 /*
740  * Dump the blocked-tasks state, but limit the list dump to the
741  * specified number of elements.
742  */
743 static void
744 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
745 {
746         int cpu;
747         int i;
748         struct list_head *lhp;
749         bool onl;
750         struct rcu_data *rdp;
751         struct rcu_node *rnp1;
752
753         raw_lockdep_assert_held_rcu_node(rnp);
754         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
755                 __func__, rnp->grplo, rnp->grphi, rnp->level,
756                 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
757         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
758                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
760         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
761                 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
762                 READ_ONCE(rnp->exp_tasks));
763         pr_info("%s: ->blkd_tasks", __func__);
764         i = 0;
765         list_for_each(lhp, &rnp->blkd_tasks) {
766                 pr_cont(" %p", lhp);
767                 if (++i >= ncheck)
768                         break;
769         }
770         pr_cont("\n");
771         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
772                 rdp = per_cpu_ptr(&rcu_data, cpu);
773                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
774                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
775                         cpu, ".o"[onl],
776                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
777                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
778         }
779 }
780
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
782
783 /*
784  * If strict grace periods are enabled, and if the calling
785  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
786  * report that quiescent state and, if requested, spin for a bit.
787  */
788 void rcu_read_unlock_strict(void)
789 {
790         struct rcu_data *rdp;
791
792         if (!IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ||
793            irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
794                 return;
795         rdp = this_cpu_ptr(&rcu_data);
796         rcu_report_qs_rdp(rdp);
797         udelay(rcu_unlock_delay);
798 }
799 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
800
801 /*
802  * Tell them what RCU they are running.
803  */
804 static void __init rcu_bootup_announce(void)
805 {
806         pr_info("Hierarchical RCU implementation.\n");
807         rcu_bootup_announce_oddness();
808 }
809
810 /*
811  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
812  * how many quiescent states passed, just if there was at least one since
813  * the start of the grace period, this just sets a flag.  The caller must
814  * have disabled preemption.
815  */
816 static void rcu_qs(void)
817 {
818         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
819         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
820                 return;
821         trace_rcu_grace_period(TPS("rcu_sched"),
822                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
823         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
824         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
825                 return;
826         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
827         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
828 }
829
830 /*
831  * Register an urgently needed quiescent state.  If there is an
832  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
833  * dyntick-idle quiescent state visible to other CPUs, which will in
834  * some cases serve for expedited as well as normal grace periods.
835  * Either way, register a lightweight quiescent state.
836  */
837 void rcu_all_qs(void)
838 {
839         unsigned long flags;
840
841         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
842                 return;
843         preempt_disable();
844         /* Load rcu_urgent_qs before other flags. */
845         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
846                 preempt_enable();
847                 return;
848         }
849         this_cpu_write(rcu_data.rcu_urgent_qs, false);
850         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
851                 local_irq_save(flags);
852                 rcu_momentary_dyntick_idle();
853                 local_irq_restore(flags);
854         }
855         rcu_qs();
856         preempt_enable();
857 }
858 EXPORT_SYMBOL_GPL(rcu_all_qs);
859
860 /*
861  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
862  */
863 void rcu_note_context_switch(bool preempt)
864 {
865         trace_rcu_utilization(TPS("Start context switch"));
866         rcu_qs();
867         /* Load rcu_urgent_qs before other flags. */
868         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
869                 goto out;
870         this_cpu_write(rcu_data.rcu_urgent_qs, false);
871         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
872                 rcu_momentary_dyntick_idle();
873         rcu_tasks_qs(current, preempt);
874 out:
875         trace_rcu_utilization(TPS("End context switch"));
876 }
877 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
878
879 /*
880  * Because preemptible RCU does not exist, there are never any preempted
881  * RCU readers.
882  */
883 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
884 {
885         return 0;
886 }
887
888 /*
889  * Because there is no preemptible RCU, there can be no readers blocked.
890  */
891 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
892 {
893         return false;
894 }
895
896 /*
897  * Because there is no preemptible RCU, there can be no deferred quiescent
898  * states.
899  */
900 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
901 {
902         return false;
903 }
904 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
905
906 /*
907  * Because there is no preemptible RCU, there can be no readers blocked,
908  * so there is no need to check for blocked tasks.  So check only for
909  * bogus qsmask values.
910  */
911 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
912 {
913         WARN_ON_ONCE(rnp->qsmask);
914 }
915
916 /*
917  * Check to see if this CPU is in a non-context-switch quiescent state,
918  * namely user mode and idle loop.
919  */
920 static void rcu_flavor_sched_clock_irq(int user)
921 {
922         if (user || rcu_is_cpu_rrupt_from_idle()) {
923
924                 /*
925                  * Get here if this CPU took its interrupt from user
926                  * mode or from the idle loop, and if this is not a
927                  * nested interrupt.  In this case, the CPU is in
928                  * a quiescent state, so note it.
929                  *
930                  * No memory barrier is required here because rcu_qs()
931                  * references only CPU-local variables that other CPUs
932                  * neither access nor modify, at least not while the
933                  * corresponding CPU is online.
934                  */
935
936                 rcu_qs();
937         }
938 }
939
940 /*
941  * Because preemptible RCU does not exist, tasks cannot possibly exit
942  * while in preemptible RCU read-side critical sections.
943  */
944 void exit_rcu(void)
945 {
946 }
947
948 /*
949  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
950  */
951 static void
952 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
953 {
954         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
955 }
956
957 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
958
959 /*
960  * If boosting, set rcuc kthreads to realtime priority.
961  */
962 static void rcu_cpu_kthread_setup(unsigned int cpu)
963 {
964 #ifdef CONFIG_RCU_BOOST
965         struct sched_param sp;
966
967         sp.sched_priority = kthread_prio;
968         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
969 #endif /* #ifdef CONFIG_RCU_BOOST */
970 }
971
972 #ifdef CONFIG_RCU_BOOST
973
974 /*
975  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
976  * or ->boost_tasks, advancing the pointer to the next task in the
977  * ->blkd_tasks list.
978  *
979  * Note that irqs must be enabled: boosting the task can block.
980  * Returns 1 if there are more tasks needing to be boosted.
981  */
982 static int rcu_boost(struct rcu_node *rnp)
983 {
984         unsigned long flags;
985         struct task_struct *t;
986         struct list_head *tb;
987
988         if (READ_ONCE(rnp->exp_tasks) == NULL &&
989             READ_ONCE(rnp->boost_tasks) == NULL)
990                 return 0;  /* Nothing left to boost. */
991
992         raw_spin_lock_irqsave_rcu_node(rnp, flags);
993
994         /*
995          * Recheck under the lock: all tasks in need of boosting
996          * might exit their RCU read-side critical sections on their own.
997          */
998         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
999                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1000                 return 0;
1001         }
1002
1003         /*
1004          * Preferentially boost tasks blocking expedited grace periods.
1005          * This cannot starve the normal grace periods because a second
1006          * expedited grace period must boost all blocked tasks, including
1007          * those blocking the pre-existing normal grace period.
1008          */
1009         if (rnp->exp_tasks != NULL)
1010                 tb = rnp->exp_tasks;
1011         else
1012                 tb = rnp->boost_tasks;
1013
1014         /*
1015          * We boost task t by manufacturing an rt_mutex that appears to
1016          * be held by task t.  We leave a pointer to that rt_mutex where
1017          * task t can find it, and task t will release the mutex when it
1018          * exits its outermost RCU read-side critical section.  Then
1019          * simply acquiring this artificial rt_mutex will boost task
1020          * t's priority.  (Thanks to tglx for suggesting this approach!)
1021          *
1022          * Note that task t must acquire rnp->lock to remove itself from
1023          * the ->blkd_tasks list, which it will do from exit() if from
1024          * nowhere else.  We therefore are guaranteed that task t will
1025          * stay around at least until we drop rnp->lock.  Note that
1026          * rnp->lock also resolves races between our priority boosting
1027          * and task t's exiting its outermost RCU read-side critical
1028          * section.
1029          */
1030         t = container_of(tb, struct task_struct, rcu_node_entry);
1031         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1032         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1033         /* Lock only for side effect: boosts task t's priority. */
1034         rt_mutex_lock(&rnp->boost_mtx);
1035         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1036
1037         return READ_ONCE(rnp->exp_tasks) != NULL ||
1038                READ_ONCE(rnp->boost_tasks) != NULL;
1039 }
1040
1041 /*
1042  * Priority-boosting kthread, one per leaf rcu_node.
1043  */
1044 static int rcu_boost_kthread(void *arg)
1045 {
1046         struct rcu_node *rnp = (struct rcu_node *)arg;
1047         int spincnt = 0;
1048         int more2boost;
1049
1050         trace_rcu_utilization(TPS("Start boost kthread@init"));
1051         for (;;) {
1052                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1053                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1054                 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1055                          READ_ONCE(rnp->exp_tasks));
1056                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1057                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1058                 more2boost = rcu_boost(rnp);
1059                 if (more2boost)
1060                         spincnt++;
1061                 else
1062                         spincnt = 0;
1063                 if (spincnt > 10) {
1064                         WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1065                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1066                         schedule_timeout_idle(2);
1067                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1068                         spincnt = 0;
1069                 }
1070         }
1071         /* NOTREACHED */
1072         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1073         return 0;
1074 }
1075
1076 /*
1077  * Check to see if it is time to start boosting RCU readers that are
1078  * blocking the current grace period, and, if so, tell the per-rcu_node
1079  * kthread to start boosting them.  If there is an expedited grace
1080  * period in progress, it is always time to boost.
1081  *
1082  * The caller must hold rnp->lock, which this function releases.
1083  * The ->boost_kthread_task is immortal, so we don't need to worry
1084  * about it going away.
1085  */
1086 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1087         __releases(rnp->lock)
1088 {
1089         raw_lockdep_assert_held_rcu_node(rnp);
1090         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1091                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1092                 return;
1093         }
1094         if (rnp->exp_tasks != NULL ||
1095             (rnp->gp_tasks != NULL &&
1096              rnp->boost_tasks == NULL &&
1097              rnp->qsmask == 0 &&
1098              (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1099                 if (rnp->exp_tasks == NULL)
1100                         WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1101                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1102                 rcu_wake_cond(rnp->boost_kthread_task,
1103                               READ_ONCE(rnp->boost_kthread_status));
1104         } else {
1105                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1106         }
1107 }
1108
1109 /*
1110  * Is the current CPU running the RCU-callbacks kthread?
1111  * Caller must have preemption disabled.
1112  */
1113 static bool rcu_is_callbacks_kthread(void)
1114 {
1115         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1116 }
1117
1118 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1119
1120 /*
1121  * Do priority-boost accounting for the start of a new grace period.
1122  */
1123 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1124 {
1125         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1126 }
1127
1128 /*
1129  * Create an RCU-boost kthread for the specified node if one does not
1130  * already exist.  We only create this kthread for preemptible RCU.
1131  * Returns zero if all is well, a negated errno otherwise.
1132  */
1133 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1134 {
1135         int rnp_index = rnp - rcu_get_root();
1136         unsigned long flags;
1137         struct sched_param sp;
1138         struct task_struct *t;
1139
1140         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1141                 return;
1142
1143         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1144                 return;
1145
1146         rcu_state.boost = 1;
1147
1148         if (rnp->boost_kthread_task != NULL)
1149                 return;
1150
1151         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1152                            "rcub/%d", rnp_index);
1153         if (WARN_ON_ONCE(IS_ERR(t)))
1154                 return;
1155
1156         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1157         rnp->boost_kthread_task = t;
1158         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1159         sp.sched_priority = kthread_prio;
1160         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1161         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1162 }
1163
1164 /*
1165  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1166  * served by the rcu_node in question.  The CPU hotplug lock is still
1167  * held, so the value of rnp->qsmaskinit will be stable.
1168  *
1169  * We don't include outgoingcpu in the affinity set, use -1 if there is
1170  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1171  * this function allows the kthread to execute on any CPU.
1172  */
1173 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1174 {
1175         struct task_struct *t = rnp->boost_kthread_task;
1176         unsigned long mask = rcu_rnp_online_cpus(rnp);
1177         cpumask_var_t cm;
1178         int cpu;
1179
1180         if (!t)
1181                 return;
1182         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1183                 return;
1184         for_each_leaf_node_possible_cpu(rnp, cpu)
1185                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1186                     cpu != outgoingcpu)
1187                         cpumask_set_cpu(cpu, cm);
1188         if (cpumask_weight(cm) == 0)
1189                 cpumask_setall(cm);
1190         set_cpus_allowed_ptr(t, cm);
1191         free_cpumask_var(cm);
1192 }
1193
1194 /*
1195  * Spawn boost kthreads -- called as soon as the scheduler is running.
1196  */
1197 static void __init rcu_spawn_boost_kthreads(void)
1198 {
1199         struct rcu_node *rnp;
1200
1201         rcu_for_each_leaf_node(rnp)
1202                 rcu_spawn_one_boost_kthread(rnp);
1203 }
1204
1205 static void rcu_prepare_kthreads(int cpu)
1206 {
1207         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1208         struct rcu_node *rnp = rdp->mynode;
1209
1210         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1211         if (rcu_scheduler_fully_active)
1212                 rcu_spawn_one_boost_kthread(rnp);
1213 }
1214
1215 #else /* #ifdef CONFIG_RCU_BOOST */
1216
1217 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1218         __releases(rnp->lock)
1219 {
1220         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1221 }
1222
1223 static bool rcu_is_callbacks_kthread(void)
1224 {
1225         return false;
1226 }
1227
1228 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1229 {
1230 }
1231
1232 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1233 {
1234 }
1235
1236 static void __init rcu_spawn_boost_kthreads(void)
1237 {
1238 }
1239
1240 static void rcu_prepare_kthreads(int cpu)
1241 {
1242 }
1243
1244 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1245
1246 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1247
1248 /*
1249  * Check to see if any future non-offloaded RCU-related work will need
1250  * to be done by the current CPU, even if none need be done immediately,
1251  * returning 1 if so.  This function is part of the RCU implementation;
1252  * it is -not- an exported member of the RCU API.
1253  *
1254  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1255  * CPU has RCU callbacks queued.
1256  */
1257 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1258 {
1259         *nextevt = KTIME_MAX;
1260         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1261                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1262 }
1263
1264 /*
1265  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1266  * after it.
1267  */
1268 static void rcu_cleanup_after_idle(void)
1269 {
1270 }
1271
1272 /*
1273  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1274  * is nothing.
1275  */
1276 static void rcu_prepare_for_idle(void)
1277 {
1278 }
1279
1280 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1281
1282 /*
1283  * This code is invoked when a CPU goes idle, at which point we want
1284  * to have the CPU do everything required for RCU so that it can enter
1285  * the energy-efficient dyntick-idle mode.
1286  *
1287  * The following preprocessor symbol controls this:
1288  *
1289  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1290  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1291  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1292  *      benchmarkers who might otherwise be tempted to set this to a large
1293  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1294  *      system.  And if you are -that- concerned about energy efficiency,
1295  *      just power the system down and be done with it!
1296  *
1297  * The value below works well in practice.  If future workloads require
1298  * adjustment, they can be converted into kernel config parameters, though
1299  * making the state machine smarter might be a better option.
1300  */
1301 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1302
1303 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1304 module_param(rcu_idle_gp_delay, int, 0644);
1305
1306 /*
1307  * Try to advance callbacks on the current CPU, but only if it has been
1308  * awhile since the last time we did so.  Afterwards, if there are any
1309  * callbacks ready for immediate invocation, return true.
1310  */
1311 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1312 {
1313         bool cbs_ready = false;
1314         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1315         struct rcu_node *rnp;
1316
1317         /* Exit early if we advanced recently. */
1318         if (jiffies == rdp->last_advance_all)
1319                 return false;
1320         rdp->last_advance_all = jiffies;
1321
1322         rnp = rdp->mynode;
1323
1324         /*
1325          * Don't bother checking unless a grace period has
1326          * completed since we last checked and there are
1327          * callbacks not yet ready to invoke.
1328          */
1329         if ((rcu_seq_completed_gp(rdp->gp_seq,
1330                                   rcu_seq_current(&rnp->gp_seq)) ||
1331              unlikely(READ_ONCE(rdp->gpwrap))) &&
1332             rcu_segcblist_pend_cbs(&rdp->cblist))
1333                 note_gp_changes(rdp);
1334
1335         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1336                 cbs_ready = true;
1337         return cbs_ready;
1338 }
1339
1340 /*
1341  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1342  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1343  * caller about what to set the timeout.
1344  *
1345  * The caller must have disabled interrupts.
1346  */
1347 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1348 {
1349         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1350         unsigned long dj;
1351
1352         lockdep_assert_irqs_disabled();
1353
1354         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1355         if (rcu_segcblist_empty(&rdp->cblist) ||
1356             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1357                 *nextevt = KTIME_MAX;
1358                 return 0;
1359         }
1360
1361         /* Attempt to advance callbacks. */
1362         if (rcu_try_advance_all_cbs()) {
1363                 /* Some ready to invoke, so initiate later invocation. */
1364                 invoke_rcu_core();
1365                 return 1;
1366         }
1367         rdp->last_accelerate = jiffies;
1368
1369         /* Request timer and round. */
1370         dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1371
1372         *nextevt = basemono + dj * TICK_NSEC;
1373         return 0;
1374 }
1375
1376 /*
1377  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1378  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1379  * major task is to accelerate (that is, assign grace-period numbers to) any
1380  * recently arrived callbacks.
1381  *
1382  * The caller must have disabled interrupts.
1383  */
1384 static void rcu_prepare_for_idle(void)
1385 {
1386         bool needwake;
1387         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1388         struct rcu_node *rnp;
1389         int tne;
1390
1391         lockdep_assert_irqs_disabled();
1392         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1393                 return;
1394
1395         /* Handle nohz enablement switches conservatively. */
1396         tne = READ_ONCE(tick_nohz_active);
1397         if (tne != rdp->tick_nohz_enabled_snap) {
1398                 if (!rcu_segcblist_empty(&rdp->cblist))
1399                         invoke_rcu_core(); /* force nohz to see update. */
1400                 rdp->tick_nohz_enabled_snap = tne;
1401                 return;
1402         }
1403         if (!tne)
1404                 return;
1405
1406         /*
1407          * If we have not yet accelerated this jiffy, accelerate all
1408          * callbacks on this CPU.
1409          */
1410         if (rdp->last_accelerate == jiffies)
1411                 return;
1412         rdp->last_accelerate = jiffies;
1413         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1414                 rnp = rdp->mynode;
1415                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1416                 needwake = rcu_accelerate_cbs(rnp, rdp);
1417                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1418                 if (needwake)
1419                         rcu_gp_kthread_wake();
1420         }
1421 }
1422
1423 /*
1424  * Clean up for exit from idle.  Attempt to advance callbacks based on
1425  * any grace periods that elapsed while the CPU was idle, and if any
1426  * callbacks are now ready to invoke, initiate invocation.
1427  */
1428 static void rcu_cleanup_after_idle(void)
1429 {
1430         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1431
1432         lockdep_assert_irqs_disabled();
1433         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1434                 return;
1435         if (rcu_try_advance_all_cbs())
1436                 invoke_rcu_core();
1437 }
1438
1439 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1440
1441 #ifdef CONFIG_RCU_NOCB_CPU
1442
1443 /*
1444  * Offload callback processing from the boot-time-specified set of CPUs
1445  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1446  * created that pull the callbacks from the corresponding CPU, wait for
1447  * a grace period to elapse, and invoke the callbacks.  These kthreads
1448  * are organized into GP kthreads, which manage incoming callbacks, wait for
1449  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1450  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1451  * do a wake_up() on their GP kthread when they insert a callback into any
1452  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1453  * in which case each kthread actively polls its CPU.  (Which isn't so great
1454  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1455  *
1456  * This is intended to be used in conjunction with Frederic Weisbecker's
1457  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1458  * running CPU-bound user-mode computations.
1459  *
1460  * Offloading of callbacks can also be used as an energy-efficiency
1461  * measure because CPUs with no RCU callbacks queued are more aggressive
1462  * about entering dyntick-idle mode.
1463  */
1464
1465
1466 /*
1467  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1468  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1469  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1470  * given, a warning is emitted and all CPUs are offloaded.
1471  */
1472 static int __init rcu_nocb_setup(char *str)
1473 {
1474         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1475         if (!strcasecmp(str, "all"))
1476                 cpumask_setall(rcu_nocb_mask);
1477         else
1478                 if (cpulist_parse(str, rcu_nocb_mask)) {
1479                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1480                         cpumask_setall(rcu_nocb_mask);
1481                 }
1482         return 1;
1483 }
1484 __setup("rcu_nocbs=", rcu_nocb_setup);
1485
1486 static int __init parse_rcu_nocb_poll(char *arg)
1487 {
1488         rcu_nocb_poll = true;
1489         return 0;
1490 }
1491 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1492
1493 /*
1494  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1495  * After all, the main point of bypassing is to avoid lock contention
1496  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1497  */
1498 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1499 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1500
1501 /*
1502  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1503  * lock isn't immediately available, increment ->nocb_lock_contended to
1504  * flag the contention.
1505  */
1506 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1507         __acquires(&rdp->nocb_bypass_lock)
1508 {
1509         lockdep_assert_irqs_disabled();
1510         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1511                 return;
1512         atomic_inc(&rdp->nocb_lock_contended);
1513         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1514         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1515         raw_spin_lock(&rdp->nocb_bypass_lock);
1516         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1517         atomic_dec(&rdp->nocb_lock_contended);
1518 }
1519
1520 /*
1521  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1522  * not contended.  Please note that this is extremely special-purpose,
1523  * relying on the fact that at most two kthreads and one CPU contend for
1524  * this lock, and also that the two kthreads are guaranteed to have frequent
1525  * grace-period-duration time intervals between successive acquisitions
1526  * of the lock.  This allows us to use an extremely simple throttling
1527  * mechanism, and further to apply it only to the CPU doing floods of
1528  * call_rcu() invocations.  Don't try this at home!
1529  */
1530 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1531 {
1532         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1533         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1534                 cpu_relax();
1535 }
1536
1537 /*
1538  * Conditionally acquire the specified rcu_data structure's
1539  * ->nocb_bypass_lock.
1540  */
1541 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1542 {
1543         lockdep_assert_irqs_disabled();
1544         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1545 }
1546
1547 /*
1548  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1549  */
1550 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1551         __releases(&rdp->nocb_bypass_lock)
1552 {
1553         lockdep_assert_irqs_disabled();
1554         raw_spin_unlock(&rdp->nocb_bypass_lock);
1555 }
1556
1557 /*
1558  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1559  * if it corresponds to a no-CBs CPU.
1560  */
1561 static void rcu_nocb_lock(struct rcu_data *rdp)
1562 {
1563         lockdep_assert_irqs_disabled();
1564         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1565                 return;
1566         raw_spin_lock(&rdp->nocb_lock);
1567 }
1568
1569 /*
1570  * Release the specified rcu_data structure's ->nocb_lock, but only
1571  * if it corresponds to a no-CBs CPU.
1572  */
1573 static void rcu_nocb_unlock(struct rcu_data *rdp)
1574 {
1575         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1576                 lockdep_assert_irqs_disabled();
1577                 raw_spin_unlock(&rdp->nocb_lock);
1578         }
1579 }
1580
1581 /*
1582  * Release the specified rcu_data structure's ->nocb_lock and restore
1583  * interrupts, but only if it corresponds to a no-CBs CPU.
1584  */
1585 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1586                                        unsigned long flags)
1587 {
1588         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1589                 lockdep_assert_irqs_disabled();
1590                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1591         } else {
1592                 local_irq_restore(flags);
1593         }
1594 }
1595
1596 /* Lockdep check that ->cblist may be safely accessed. */
1597 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1598 {
1599         lockdep_assert_irqs_disabled();
1600         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1601                 lockdep_assert_held(&rdp->nocb_lock);
1602 }
1603
1604 /*
1605  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1606  * grace period.
1607  */
1608 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1609 {
1610         swake_up_all(sq);
1611 }
1612
1613 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1614 {
1615         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1616 }
1617
1618 static void rcu_init_one_nocb(struct rcu_node *rnp)
1619 {
1620         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1621         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1622 }
1623
1624 /* Is the specified CPU a no-CBs CPU? */
1625 bool rcu_is_nocb_cpu(int cpu)
1626 {
1627         if (cpumask_available(rcu_nocb_mask))
1628                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1629         return false;
1630 }
1631
1632 /*
1633  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1634  * and this function releases it.
1635  */
1636 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1637                            unsigned long flags)
1638         __releases(rdp->nocb_lock)
1639 {
1640         bool needwake = false;
1641         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1642
1643         lockdep_assert_held(&rdp->nocb_lock);
1644         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1645                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1646                                     TPS("AlreadyAwake"));
1647                 rcu_nocb_unlock_irqrestore(rdp, flags);
1648                 return;
1649         }
1650
1651         if (READ_ONCE(rdp->nocb_defer_wakeup) > RCU_NOCB_WAKE_NOT) {
1652                 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
1653                 del_timer(&rdp->nocb_timer);
1654         }
1655         rcu_nocb_unlock_irqrestore(rdp, flags);
1656         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1657         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1658                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1659                 needwake = true;
1660                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1661         }
1662         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1663         if (needwake)
1664                 wake_up_process(rdp_gp->nocb_gp_kthread);
1665 }
1666
1667 /*
1668  * Arrange to wake the GP kthread for this NOCB group at some future
1669  * time when it is safe to do so.
1670  */
1671 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1672                                const char *reason)
1673 {
1674         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1675                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1676         if (rdp->nocb_defer_wakeup < waketype)
1677                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1678         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1679 }
1680
1681 /*
1682  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1683  * However, if there is a callback to be enqueued and if ->nocb_bypass
1684  * proves to be initially empty, just return false because the no-CB GP
1685  * kthread may need to be awakened in this case.
1686  *
1687  * Note that this function always returns true if rhp is NULL.
1688  */
1689 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1690                                      unsigned long j)
1691 {
1692         struct rcu_cblist rcl;
1693
1694         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1695         rcu_lockdep_assert_cblist_protected(rdp);
1696         lockdep_assert_held(&rdp->nocb_bypass_lock);
1697         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1698                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1699                 return false;
1700         }
1701         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1702         if (rhp)
1703                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1704         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1705         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1706         WRITE_ONCE(rdp->nocb_bypass_first, j);
1707         rcu_nocb_bypass_unlock(rdp);
1708         return true;
1709 }
1710
1711 /*
1712  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1713  * However, if there is a callback to be enqueued and if ->nocb_bypass
1714  * proves to be initially empty, just return false because the no-CB GP
1715  * kthread may need to be awakened in this case.
1716  *
1717  * Note that this function always returns true if rhp is NULL.
1718  */
1719 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1720                                   unsigned long j)
1721 {
1722         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1723                 return true;
1724         rcu_lockdep_assert_cblist_protected(rdp);
1725         rcu_nocb_bypass_lock(rdp);
1726         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1727 }
1728
1729 /*
1730  * If the ->nocb_bypass_lock is immediately available, flush the
1731  * ->nocb_bypass queue into ->cblist.
1732  */
1733 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1734 {
1735         rcu_lockdep_assert_cblist_protected(rdp);
1736         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1737             !rcu_nocb_bypass_trylock(rdp))
1738                 return;
1739         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1740 }
1741
1742 /*
1743  * See whether it is appropriate to use the ->nocb_bypass list in order
1744  * to control contention on ->nocb_lock.  A limited number of direct
1745  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1746  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1747  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1748  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1749  * used if ->cblist is empty, because otherwise callbacks can be stranded
1750  * on ->nocb_bypass because we cannot count on the current CPU ever again
1751  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1752  * non-empty, the corresponding no-CBs grace-period kthread must not be
1753  * in an indefinite sleep state.
1754  *
1755  * Finally, it is not permitted to use the bypass during early boot,
1756  * as doing so would confuse the auto-initialization code.  Besides
1757  * which, there is no point in worrying about lock contention while
1758  * there is only one CPU in operation.
1759  */
1760 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1761                                 bool *was_alldone, unsigned long flags)
1762 {
1763         unsigned long c;
1764         unsigned long cur_gp_seq;
1765         unsigned long j = jiffies;
1766         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1767
1768         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1769                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1770                 return false; /* Not offloaded, no bypassing. */
1771         }
1772         lockdep_assert_irqs_disabled();
1773
1774         // Don't use ->nocb_bypass during early boot.
1775         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1776                 rcu_nocb_lock(rdp);
1777                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1778                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1779                 return false;
1780         }
1781
1782         // If we have advanced to a new jiffy, reset counts to allow
1783         // moving back from ->nocb_bypass to ->cblist.
1784         if (j == rdp->nocb_nobypass_last) {
1785                 c = rdp->nocb_nobypass_count + 1;
1786         } else {
1787                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1788                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1789                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1790                                  nocb_nobypass_lim_per_jiffy))
1791                         c = 0;
1792                 else if (c > nocb_nobypass_lim_per_jiffy)
1793                         c = nocb_nobypass_lim_per_jiffy;
1794         }
1795         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1796
1797         // If there hasn't yet been all that many ->cblist enqueues
1798         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1799         // ->nocb_bypass first.
1800         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1801                 rcu_nocb_lock(rdp);
1802                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1803                 if (*was_alldone)
1804                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1805                                             TPS("FirstQ"));
1806                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1807                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1808                 return false; // Caller must enqueue the callback.
1809         }
1810
1811         // If ->nocb_bypass has been used too long or is too full,
1812         // flush ->nocb_bypass to ->cblist.
1813         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1814             ncbs >= qhimark) {
1815                 rcu_nocb_lock(rdp);
1816                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1817                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1818                         if (*was_alldone)
1819                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1820                                                     TPS("FirstQ"));
1821                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1822                         return false; // Caller must enqueue the callback.
1823                 }
1824                 if (j != rdp->nocb_gp_adv_time &&
1825                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1826                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1827                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1828                         rdp->nocb_gp_adv_time = j;
1829                 }
1830                 rcu_nocb_unlock_irqrestore(rdp, flags);
1831                 return true; // Callback already enqueued.
1832         }
1833
1834         // We need to use the bypass.
1835         rcu_nocb_wait_contended(rdp);
1836         rcu_nocb_bypass_lock(rdp);
1837         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1838         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1839         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1840         if (!ncbs) {
1841                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1842                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1843         }
1844         rcu_nocb_bypass_unlock(rdp);
1845         smp_mb(); /* Order enqueue before wake. */
1846         if (ncbs) {
1847                 local_irq_restore(flags);
1848         } else {
1849                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1850                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1851                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1852                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1853                                             TPS("FirstBQwake"));
1854                         __call_rcu_nocb_wake(rdp, true, flags);
1855                 } else {
1856                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1857                                             TPS("FirstBQnoWake"));
1858                         rcu_nocb_unlock_irqrestore(rdp, flags);
1859                 }
1860         }
1861         return true; // Callback already enqueued.
1862 }
1863
1864 /*
1865  * Awaken the no-CBs grace-period kthead if needed, either due to it
1866  * legitimately being asleep or due to overload conditions.
1867  *
1868  * If warranted, also wake up the kthread servicing this CPUs queues.
1869  */
1870 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1871                                  unsigned long flags)
1872                                  __releases(rdp->nocb_lock)
1873 {
1874         unsigned long cur_gp_seq;
1875         unsigned long j;
1876         long len;
1877         struct task_struct *t;
1878
1879         // If we are being polled or there is no kthread, just leave.
1880         t = READ_ONCE(rdp->nocb_gp_kthread);
1881         if (rcu_nocb_poll || !t) {
1882                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1883                                     TPS("WakeNotPoll"));
1884                 rcu_nocb_unlock_irqrestore(rdp, flags);
1885                 return;
1886         }
1887         // Need to actually to a wakeup.
1888         len = rcu_segcblist_n_cbs(&rdp->cblist);
1889         if (was_alldone) {
1890                 rdp->qlen_last_fqs_check = len;
1891                 if (!irqs_disabled_flags(flags)) {
1892                         /* ... if queue was empty ... */
1893                         wake_nocb_gp(rdp, false, flags);
1894                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1895                                             TPS("WakeEmpty"));
1896                 } else {
1897                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1898                                            TPS("WakeEmptyIsDeferred"));
1899                         rcu_nocb_unlock_irqrestore(rdp, flags);
1900                 }
1901         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1902                 /* ... or if many callbacks queued. */
1903                 rdp->qlen_last_fqs_check = len;
1904                 j = jiffies;
1905                 if (j != rdp->nocb_gp_adv_time &&
1906                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1907                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1908                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1909                         rdp->nocb_gp_adv_time = j;
1910                 }
1911                 smp_mb(); /* Enqueue before timer_pending(). */
1912                 if ((rdp->nocb_cb_sleep ||
1913                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1914                     !timer_pending(&rdp->nocb_bypass_timer))
1915                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1916                                            TPS("WakeOvfIsDeferred"));
1917                 rcu_nocb_unlock_irqrestore(rdp, flags);
1918         } else {
1919                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1920                 rcu_nocb_unlock_irqrestore(rdp, flags);
1921         }
1922         return;
1923 }
1924
1925 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1926 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1927 {
1928         unsigned long flags;
1929         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1930
1931         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1932         rcu_nocb_lock_irqsave(rdp, flags);
1933         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1934         __call_rcu_nocb_wake(rdp, true, flags);
1935 }
1936
1937 /*
1938  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1939  * or for grace periods to end.
1940  */
1941 static void nocb_gp_wait(struct rcu_data *my_rdp)
1942 {
1943         bool bypass = false;
1944         long bypass_ncbs;
1945         int __maybe_unused cpu = my_rdp->cpu;
1946         unsigned long cur_gp_seq;
1947         unsigned long flags;
1948         bool gotcbs = false;
1949         unsigned long j = jiffies;
1950         bool needwait_gp = false; // This prevents actual uninitialized use.
1951         bool needwake;
1952         bool needwake_gp;
1953         struct rcu_data *rdp;
1954         struct rcu_node *rnp;
1955         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1956         bool wasempty = false;
1957
1958         /*
1959          * Each pass through the following loop checks for CBs and for the
1960          * nearest grace period (if any) to wait for next.  The CB kthreads
1961          * and the global grace-period kthread are awakened if needed.
1962          */
1963         WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
1964         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1965                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1966                 rcu_nocb_lock_irqsave(rdp, flags);
1967                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1968                 if (bypass_ncbs &&
1969                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1970                      bypass_ncbs > 2 * qhimark)) {
1971                         // Bypass full or old, so flush it.
1972                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1973                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1974                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1975                         rcu_nocb_unlock_irqrestore(rdp, flags);
1976                         continue; /* No callbacks here, try next. */
1977                 }
1978                 if (bypass_ncbs) {
1979                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1980                                             TPS("Bypass"));
1981                         bypass = true;
1982                 }
1983                 rnp = rdp->mynode;
1984                 if (bypass) {  // Avoid race with first bypass CB.
1985                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1986                                    RCU_NOCB_WAKE_NOT);
1987                         del_timer(&my_rdp->nocb_timer);
1988                 }
1989                 // Advance callbacks if helpful and low contention.
1990                 needwake_gp = false;
1991                 if (!rcu_segcblist_restempty(&rdp->cblist,
1992                                              RCU_NEXT_READY_TAIL) ||
1993                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1994                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1995                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1996                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1997                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
1998                                                            RCU_NEXT_READY_TAIL);
1999                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
2000                 }
2001                 // Need to wait on some grace period?
2002                 WARN_ON_ONCE(wasempty &&
2003                              !rcu_segcblist_restempty(&rdp->cblist,
2004                                                       RCU_NEXT_READY_TAIL));
2005                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2006                         if (!needwait_gp ||
2007                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2008                                 wait_gp_seq = cur_gp_seq;
2009                         needwait_gp = true;
2010                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2011                                             TPS("NeedWaitGP"));
2012                 }
2013                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2014                         needwake = rdp->nocb_cb_sleep;
2015                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
2016                         smp_mb(); /* CB invocation -after- GP end. */
2017                 } else {
2018                         needwake = false;
2019                 }
2020                 rcu_nocb_unlock_irqrestore(rdp, flags);
2021                 if (needwake) {
2022                         swake_up_one(&rdp->nocb_cb_wq);
2023                         gotcbs = true;
2024                 }
2025                 if (needwake_gp)
2026                         rcu_gp_kthread_wake();
2027         }
2028
2029         my_rdp->nocb_gp_bypass = bypass;
2030         my_rdp->nocb_gp_gp = needwait_gp;
2031         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2032         if (bypass && !rcu_nocb_poll) {
2033                 // At least one child with non-empty ->nocb_bypass, so set
2034                 // timer in order to avoid stranding its callbacks.
2035                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2036                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2037                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2038         }
2039         if (rcu_nocb_poll) {
2040                 /* Polling, so trace if first poll in the series. */
2041                 if (gotcbs)
2042                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2043                 schedule_timeout_idle(1);
2044         } else if (!needwait_gp) {
2045                 /* Wait for callbacks to appear. */
2046                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2047                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2048                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2049                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2050         } else {
2051                 rnp = my_rdp->mynode;
2052                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2053                 swait_event_interruptible_exclusive(
2054                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2055                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2056                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2057                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2058         }
2059         if (!rcu_nocb_poll) {
2060                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2061                 if (bypass)
2062                         del_timer(&my_rdp->nocb_bypass_timer);
2063                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2064                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2065         }
2066         my_rdp->nocb_gp_seq = -1;
2067         WARN_ON(signal_pending(current));
2068 }
2069
2070 /*
2071  * No-CBs grace-period-wait kthread.  There is one of these per group
2072  * of CPUs, but only once at least one CPU in that group has come online
2073  * at least once since boot.  This kthread checks for newly posted
2074  * callbacks from any of the CPUs it is responsible for, waits for a
2075  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2076  * that then have callback-invocation work to do.
2077  */
2078 static int rcu_nocb_gp_kthread(void *arg)
2079 {
2080         struct rcu_data *rdp = arg;
2081
2082         for (;;) {
2083                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2084                 nocb_gp_wait(rdp);
2085                 cond_resched_tasks_rcu_qs();
2086         }
2087         return 0;
2088 }
2089
2090 /*
2091  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2092  * then, if there are no more, wait for more to appear.
2093  */
2094 static void nocb_cb_wait(struct rcu_data *rdp)
2095 {
2096         unsigned long cur_gp_seq;
2097         unsigned long flags;
2098         bool needwake_gp = false;
2099         struct rcu_node *rnp = rdp->mynode;
2100
2101         local_irq_save(flags);
2102         rcu_momentary_dyntick_idle();
2103         local_irq_restore(flags);
2104         local_bh_disable();
2105         rcu_do_batch(rdp);
2106         local_bh_enable();
2107         lockdep_assert_irqs_enabled();
2108         rcu_nocb_lock_irqsave(rdp, flags);
2109         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2110             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2111             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2112                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2113                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2114         }
2115         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2116                 rcu_nocb_unlock_irqrestore(rdp, flags);
2117                 if (needwake_gp)
2118                         rcu_gp_kthread_wake();
2119                 return;
2120         }
2121
2122         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2123         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2124         rcu_nocb_unlock_irqrestore(rdp, flags);
2125         if (needwake_gp)
2126                 rcu_gp_kthread_wake();
2127         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2128                                  !READ_ONCE(rdp->nocb_cb_sleep));
2129         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2130                 /* ^^^ Ensure CB invocation follows _sleep test. */
2131                 return;
2132         }
2133         WARN_ON(signal_pending(current));
2134         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2135 }
2136
2137 /*
2138  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2139  * nocb_cb_wait() to do the dirty work.
2140  */
2141 static int rcu_nocb_cb_kthread(void *arg)
2142 {
2143         struct rcu_data *rdp = arg;
2144
2145         // Each pass through this loop does one callback batch, and,
2146         // if there are no more ready callbacks, waits for them.
2147         for (;;) {
2148                 nocb_cb_wait(rdp);
2149                 cond_resched_tasks_rcu_qs();
2150         }
2151         return 0;
2152 }
2153
2154 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2155 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2156 {
2157         return READ_ONCE(rdp->nocb_defer_wakeup);
2158 }
2159
2160 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2161 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2162 {
2163         unsigned long flags;
2164         int ndw;
2165
2166         rcu_nocb_lock_irqsave(rdp, flags);
2167         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2168                 rcu_nocb_unlock_irqrestore(rdp, flags);
2169                 return;
2170         }
2171         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2172         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2173         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2174 }
2175
2176 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2177 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2178 {
2179         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2180
2181         do_nocb_deferred_wakeup_common(rdp);
2182 }
2183
2184 /*
2185  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2186  * This means we do an inexact common-case check.  Note that if
2187  * we miss, ->nocb_timer will eventually clean things up.
2188  */
2189 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2190 {
2191         if (rcu_nocb_need_deferred_wakeup(rdp))
2192                 do_nocb_deferred_wakeup_common(rdp);
2193 }
2194
2195 void rcu_nocb_flush_deferred_wakeup(void)
2196 {
2197         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
2198 }
2199
2200 void __init rcu_init_nohz(void)
2201 {
2202         int cpu;
2203         bool need_rcu_nocb_mask = false;
2204         struct rcu_data *rdp;
2205
2206 #if defined(CONFIG_NO_HZ_FULL)
2207         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2208                 need_rcu_nocb_mask = true;
2209 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2210
2211         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2212                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2213                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2214                         return;
2215                 }
2216         }
2217         if (!cpumask_available(rcu_nocb_mask))
2218                 return;
2219
2220 #if defined(CONFIG_NO_HZ_FULL)
2221         if (tick_nohz_full_running)
2222                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2223 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2224
2225         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2226                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2227                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2228                             rcu_nocb_mask);
2229         }
2230         if (cpumask_empty(rcu_nocb_mask))
2231                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2232         else
2233                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2234                         cpumask_pr_args(rcu_nocb_mask));
2235         if (rcu_nocb_poll)
2236                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2237
2238         for_each_cpu(cpu, rcu_nocb_mask) {
2239                 rdp = per_cpu_ptr(&rcu_data, cpu);
2240                 if (rcu_segcblist_empty(&rdp->cblist))
2241                         rcu_segcblist_init(&rdp->cblist);
2242                 rcu_segcblist_offload(&rdp->cblist);
2243         }
2244         rcu_organize_nocb_kthreads();
2245 }
2246
2247 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2248 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2249 {
2250         init_swait_queue_head(&rdp->nocb_cb_wq);
2251         init_swait_queue_head(&rdp->nocb_gp_wq);
2252         raw_spin_lock_init(&rdp->nocb_lock);
2253         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2254         raw_spin_lock_init(&rdp->nocb_gp_lock);
2255         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2256         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2257         rcu_cblist_init(&rdp->nocb_bypass);
2258 }
2259
2260 /*
2261  * If the specified CPU is a no-CBs CPU that does not already have its
2262  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2263  * for this CPU's group has not yet been created, spawn it as well.
2264  */
2265 static void rcu_spawn_one_nocb_kthread(int cpu)
2266 {
2267         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2268         struct rcu_data *rdp_gp;
2269         struct task_struct *t;
2270
2271         /*
2272          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2273          * then nothing to do.
2274          */
2275         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2276                 return;
2277
2278         /* If we didn't spawn the GP kthread first, reorganize! */
2279         rdp_gp = rdp->nocb_gp_rdp;
2280         if (!rdp_gp->nocb_gp_kthread) {
2281                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2282                                 "rcuog/%d", rdp_gp->cpu);
2283                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2284                         return;
2285                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2286         }
2287
2288         /* Spawn the kthread for this CPU. */
2289         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2290                         "rcuo%c/%d", rcu_state.abbr, cpu);
2291         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2292                 return;
2293         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2294         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2295 }
2296
2297 /*
2298  * If the specified CPU is a no-CBs CPU that does not already have its
2299  * rcuo kthread, spawn it.
2300  */
2301 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2302 {
2303         if (rcu_scheduler_fully_active)
2304                 rcu_spawn_one_nocb_kthread(cpu);
2305 }
2306
2307 /*
2308  * Once the scheduler is running, spawn rcuo kthreads for all online
2309  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2310  * non-boot CPUs come online -- if this changes, we will need to add
2311  * some mutual exclusion.
2312  */
2313 static void __init rcu_spawn_nocb_kthreads(void)
2314 {
2315         int cpu;
2316
2317         for_each_online_cpu(cpu)
2318                 rcu_spawn_cpu_nocb_kthread(cpu);
2319 }
2320
2321 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2322 static int rcu_nocb_gp_stride = -1;
2323 module_param(rcu_nocb_gp_stride, int, 0444);
2324
2325 /*
2326  * Initialize GP-CB relationships for all no-CBs CPU.
2327  */
2328 static void __init rcu_organize_nocb_kthreads(void)
2329 {
2330         int cpu;
2331         bool firsttime = true;
2332         bool gotnocbs = false;
2333         bool gotnocbscbs = true;
2334         int ls = rcu_nocb_gp_stride;
2335         int nl = 0;  /* Next GP kthread. */
2336         struct rcu_data *rdp;
2337         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2338         struct rcu_data *rdp_prev = NULL;
2339
2340         if (!cpumask_available(rcu_nocb_mask))
2341                 return;
2342         if (ls == -1) {
2343                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2344                 rcu_nocb_gp_stride = ls;
2345         }
2346
2347         /*
2348          * Each pass through this loop sets up one rcu_data structure.
2349          * Should the corresponding CPU come online in the future, then
2350          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2351          */
2352         for_each_cpu(cpu, rcu_nocb_mask) {
2353                 rdp = per_cpu_ptr(&rcu_data, cpu);
2354                 if (rdp->cpu >= nl) {
2355                         /* New GP kthread, set up for CBs & next GP. */
2356                         gotnocbs = true;
2357                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2358                         rdp->nocb_gp_rdp = rdp;
2359                         rdp_gp = rdp;
2360                         if (dump_tree) {
2361                                 if (!firsttime)
2362                                         pr_cont("%s\n", gotnocbscbs
2363                                                         ? "" : " (self only)");
2364                                 gotnocbscbs = false;
2365                                 firsttime = false;
2366                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2367                                          __func__, cpu);
2368                         }
2369                 } else {
2370                         /* Another CB kthread, link to previous GP kthread. */
2371                         gotnocbscbs = true;
2372                         rdp->nocb_gp_rdp = rdp_gp;
2373                         rdp_prev->nocb_next_cb_rdp = rdp;
2374                         if (dump_tree)
2375                                 pr_cont(" %d", cpu);
2376                 }
2377                 rdp_prev = rdp;
2378         }
2379         if (gotnocbs && dump_tree)
2380                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2381 }
2382
2383 /*
2384  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2385  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2386  */
2387 void rcu_bind_current_to_nocb(void)
2388 {
2389         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2390                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2391 }
2392 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2393
2394 /*
2395  * Dump out nocb grace-period kthread state for the specified rcu_data
2396  * structure.
2397  */
2398 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2399 {
2400         struct rcu_node *rnp = rdp->mynode;
2401
2402         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2403                 rdp->cpu,
2404                 "kK"[!!rdp->nocb_gp_kthread],
2405                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2406                 "dD"[!!rdp->nocb_defer_wakeup],
2407                 "tT"[timer_pending(&rdp->nocb_timer)],
2408                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2409                 "sS"[!!rdp->nocb_gp_sleep],
2410                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2411                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2412                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2413                 ".B"[!!rdp->nocb_gp_bypass],
2414                 ".G"[!!rdp->nocb_gp_gp],
2415                 (long)rdp->nocb_gp_seq,
2416                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2417 }
2418
2419 /* Dump out nocb kthread state for the specified rcu_data structure. */
2420 static void show_rcu_nocb_state(struct rcu_data *rdp)
2421 {
2422         struct rcu_segcblist *rsclp = &rdp->cblist;
2423         bool waslocked;
2424         bool wastimer;
2425         bool wassleep;
2426
2427         if (rdp->nocb_gp_rdp == rdp)
2428                 show_rcu_nocb_gp_state(rdp);
2429
2430         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2431                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2432                 "kK"[!!rdp->nocb_cb_kthread],
2433                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2434                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2435                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2436                 "sS"[!!rdp->nocb_cb_sleep],
2437                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2438                 jiffies - rdp->nocb_bypass_first,
2439                 jiffies - rdp->nocb_nobypass_last,
2440                 rdp->nocb_nobypass_count,
2441                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2442                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2443                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2444                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2445                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2446                 rcu_segcblist_n_cbs(&rdp->cblist));
2447
2448         /* It is OK for GP kthreads to have GP state. */
2449         if (rdp->nocb_gp_rdp == rdp)
2450                 return;
2451
2452         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2453         wastimer = timer_pending(&rdp->nocb_bypass_timer);
2454         wassleep = swait_active(&rdp->nocb_gp_wq);
2455         if (!rdp->nocb_gp_sleep && !waslocked && !wastimer && !wassleep)
2456                 return;  /* Nothing untowards. */
2457
2458         pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c%c %c\n",
2459                 "lL"[waslocked],
2460                 "dD"[!!rdp->nocb_defer_wakeup],
2461                 "tT"[wastimer],
2462                 "sS"[!!rdp->nocb_gp_sleep],
2463                 ".W"[wassleep]);
2464 }
2465
2466 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2467
2468 /* No ->nocb_lock to acquire.  */
2469 static void rcu_nocb_lock(struct rcu_data *rdp)
2470 {
2471 }
2472
2473 /* No ->nocb_lock to release.  */
2474 static void rcu_nocb_unlock(struct rcu_data *rdp)
2475 {
2476 }
2477
2478 /* No ->nocb_lock to release.  */
2479 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2480                                        unsigned long flags)
2481 {
2482         local_irq_restore(flags);
2483 }
2484
2485 /* Lockdep check that ->cblist may be safely accessed. */
2486 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2487 {
2488         lockdep_assert_irqs_disabled();
2489 }
2490
2491 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2492 {
2493 }
2494
2495 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2496 {
2497         return NULL;
2498 }
2499
2500 static void rcu_init_one_nocb(struct rcu_node *rnp)
2501 {
2502 }
2503
2504 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2505                                   unsigned long j)
2506 {
2507         return true;
2508 }
2509
2510 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2511                                 bool *was_alldone, unsigned long flags)
2512 {
2513         return false;
2514 }
2515
2516 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2517                                  unsigned long flags)
2518 {
2519         WARN_ON_ONCE(1);  /* Should be dead code! */
2520 }
2521
2522 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2523 {
2524 }
2525
2526 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2527 {
2528         return false;
2529 }
2530
2531 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2532 {
2533 }
2534
2535 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2536 {
2537 }
2538
2539 static void __init rcu_spawn_nocb_kthreads(void)
2540 {
2541 }
2542
2543 static void show_rcu_nocb_state(struct rcu_data *rdp)
2544 {
2545 }
2546
2547 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2548
2549 /*
2550  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2551  * grace-period kthread will do force_quiescent_state() processing?
2552  * The idea is to avoid waking up RCU core processing on such a
2553  * CPU unless the grace period has extended for too long.
2554  *
2555  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2556  * CONFIG_RCU_NOCB_CPU CPUs.
2557  */
2558 static bool rcu_nohz_full_cpu(void)
2559 {
2560 #ifdef CONFIG_NO_HZ_FULL
2561         if (tick_nohz_full_cpu(smp_processor_id()) &&
2562             (!rcu_gp_in_progress() ||
2563              time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2564                 return true;
2565 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2566         return false;
2567 }
2568
2569 /*
2570  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2571  */
2572 static void rcu_bind_gp_kthread(void)
2573 {
2574         if (!tick_nohz_full_enabled())
2575                 return;
2576         housekeeping_affine(current, HK_FLAG_RCU);
2577 }
2578
2579 /* Record the current task on dyntick-idle entry. */
2580 static __always_inline void rcu_dynticks_task_enter(void)
2581 {
2582 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2583         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2584 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2585 }
2586
2587 /* Record no current task on dyntick-idle exit. */
2588 static __always_inline void rcu_dynticks_task_exit(void)
2589 {
2590 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2591         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2592 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2593 }
2594
2595 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2596 static __always_inline void rcu_dynticks_task_trace_enter(void)
2597 {
2598 #ifdef CONFIG_TASKS_TRACE_RCU
2599         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2600                 current->trc_reader_special.b.need_mb = true;
2601 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2602 }
2603
2604 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2605 static __always_inline void rcu_dynticks_task_trace_exit(void)
2606 {
2607 #ifdef CONFIG_TASKS_TRACE_RCU
2608         if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2609                 current->trc_reader_special.b.need_mb = false;
2610 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2611 }