GNU Linux-libre 5.4.274-gnu1
[releases.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (RCU_NUM_LVLS >= 4)
40                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41         if (RCU_FANOUT_LEAF != 16)
42                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43                         RCU_FANOUT_LEAF);
44         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46                         rcu_fanout_leaf);
47         if (nr_cpu_ids != NR_CPUS)
48                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53         if (blimit != DEFAULT_RCU_BLIMIT)
54                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55         if (qhimark != DEFAULT_RCU_QHIMARK)
56                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57         if (qlowmark != DEFAULT_RCU_QLOMARK)
58                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59         if (jiffies_till_first_fqs != ULONG_MAX)
60                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61         if (jiffies_till_next_fqs != ULONG_MAX)
62                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63         if (jiffies_till_sched_qs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65         if (rcu_kick_kthreads)
66                 pr_info("\tKick kthreads if too-long grace period.\n");
67         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69         if (gp_preinit_delay)
70                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71         if (gp_init_delay)
72                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73         if (gp_cleanup_delay)
74                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75         if (!use_softirq)
76                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78                 pr_info("\tRCU debug extended QS entry/exit.\n");
79         rcupdate_announce_bootup_oddness();
80 }
81
82 #ifdef CONFIG_PREEMPT_RCU
83
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86
87 /*
88  * Tell them what RCU they are running.
89  */
90 static void __init rcu_bootup_announce(void)
91 {
92         pr_info("Preemptible hierarchical RCU implementation.\n");
93         rcu_bootup_announce_oddness();
94 }
95
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS    0x8
98 #define RCU_EXP_TASKS   0x4
99 #define RCU_GP_BLKD     0x2
100 #define RCU_EXP_BLKD    0x1
101
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131         __releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137         struct task_struct *t = current;
138
139         raw_lockdep_assert_held_rcu_node(rnp);
140         WARN_ON_ONCE(rdp->mynode != rnp);
141         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142         /* RCU better not be waiting on newly onlined CPUs! */
143         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144                      rdp->grpmask);
145
146         /*
147          * Decide where to queue the newly blocked task.  In theory,
148          * this could be an if-statement.  In practice, when I tried
149          * that, it was quite messy.
150          */
151         switch (blkd_state) {
152         case 0:
153         case                RCU_EXP_TASKS:
154         case                RCU_EXP_TASKS + RCU_GP_BLKD:
155         case RCU_GP_TASKS:
156         case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158                 /*
159                  * Blocking neither GP, or first task blocking the normal
160                  * GP but not blocking the already-waiting expedited GP.
161                  * Queue at the head of the list to avoid unnecessarily
162                  * blocking the already-waiting GPs.
163                  */
164                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165                 break;
166
167         case                                              RCU_EXP_BLKD:
168         case                                RCU_GP_BLKD:
169         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174                 /*
175                  * First task arriving that blocks either GP, or first task
176                  * arriving that blocks the expedited GP (with the normal
177                  * GP already waiting), or a task arriving that blocks
178                  * both GPs with both GPs already waiting.  Queue at the
179                  * tail of the list to avoid any GP waiting on any of the
180                  * already queued tasks that are not blocking it.
181                  */
182                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183                 break;
184
185         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188
189                 /*
190                  * Second or subsequent task blocking the expedited GP.
191                  * The task either does not block the normal GP, or is the
192                  * first task blocking the normal GP.  Queue just after
193                  * the first task blocking the expedited GP.
194                  */
195                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196                 break;
197
198         case RCU_GP_TASKS +                 RCU_GP_BLKD:
199         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201                 /*
202                  * Second or subsequent task blocking the normal GP.
203                  * The task does not block the expedited GP. Queue just
204                  * after the first task blocking the normal GP.
205                  */
206                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207                 break;
208
209         default:
210
211                 /* Yet another exercise in excessive paranoia. */
212                 WARN_ON_ONCE(1);
213                 break;
214         }
215
216         /*
217          * We have now queued the task.  If it was the first one to
218          * block either grace period, update the ->gp_tasks and/or
219          * ->exp_tasks pointers, respectively, to reference the newly
220          * blocked tasks.
221          */
222         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
224                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225         }
226         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227                 rnp->exp_tasks = &t->rcu_node_entry;
228         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229                      !(rnp->qsmask & rdp->grpmask));
230         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231                      !(rnp->expmask & rdp->grpmask));
232         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233
234         /*
235          * Report the quiescent state for the expedited GP.  This expedited
236          * GP should not be able to end until we report, so there should be
237          * no need to check for a subsequent expedited GP.  (Though we are
238          * still in a quiescent state in any case.)
239          */
240         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241                 rcu_report_exp_rdp(rdp);
242         else
243                 WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
259 static void rcu_qs(void)
260 {
261         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263                 trace_rcu_grace_period(TPS("rcu_preempt"),
264                                        __this_cpu_read(rcu_data.gp_seq),
265                                        TPS("cpuqs"));
266                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269         }
270 }
271
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
285 void rcu_note_context_switch(bool preempt)
286 {
287         struct task_struct *t = current;
288         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289         struct rcu_node *rnp;
290
291         trace_rcu_utilization(TPS("Start context switch"));
292         lockdep_assert_irqs_disabled();
293         WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
294         if (t->rcu_read_lock_nesting > 0 &&
295             !t->rcu_read_unlock_special.b.blocked) {
296
297                 /* Possibly blocking in an RCU read-side critical section. */
298                 rnp = rdp->mynode;
299                 raw_spin_lock_rcu_node(rnp);
300                 t->rcu_read_unlock_special.b.blocked = true;
301                 t->rcu_blocked_node = rnp;
302
303                 /*
304                  * Verify the CPU's sanity, trace the preemption, and
305                  * then queue the task as required based on the states
306                  * of any ongoing and expedited grace periods.
307                  */
308                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310                 trace_rcu_preempt_task(rcu_state.name,
311                                        t->pid,
312                                        (rnp->qsmask & rdp->grpmask)
313                                        ? rnp->gp_seq
314                                        : rcu_seq_snap(&rnp->gp_seq));
315                 rcu_preempt_ctxt_queue(rnp, rdp);
316         } else {
317                 rcu_preempt_deferred_qs(t);
318         }
319
320         /*
321          * Either we were not in an RCU read-side critical section to
322          * begin with, or we have now recorded that critical section
323          * globally.  Either way, we can now note a quiescent state
324          * for this CPU.  Again, if we were in an RCU read-side critical
325          * section, and if that critical section was blocking the current
326          * grace period, then the fact that the task has been enqueued
327          * means that we continue to block the current grace period.
328          */
329         rcu_qs();
330         if (rdp->exp_deferred_qs)
331                 rcu_report_exp_rdp(rdp);
332         trace_rcu_utilization(TPS("End context switch"));
333 }
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
335
336 /*
337  * Check for preempted RCU readers blocking the current grace period
338  * for the specified rcu_node structure.  If the caller needs a reliable
339  * answer, it must hold the rcu_node's ->lock.
340  */
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
342 {
343         return READ_ONCE(rnp->gp_tasks) != NULL;
344 }
345
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
350
351 /*
352  * Preemptible RCU implementation for rcu_read_lock().
353  * Just increment ->rcu_read_lock_nesting, shared state will be updated
354  * if we block.
355  */
356 void __rcu_read_lock(void)
357 {
358         current->rcu_read_lock_nesting++;
359         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360                 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
361         barrier();  /* critical section after entry code. */
362 }
363 EXPORT_SYMBOL_GPL(__rcu_read_lock);
364
365 /*
366  * Preemptible RCU implementation for rcu_read_unlock().
367  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
368  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369  * invoke rcu_read_unlock_special() to clean up after a context switch
370  * in an RCU read-side critical section and other special cases.
371  */
372 void __rcu_read_unlock(void)
373 {
374         struct task_struct *t = current;
375
376         if (t->rcu_read_lock_nesting != 1) {
377                 --t->rcu_read_lock_nesting;
378         } else {
379                 barrier();  /* critical section before exit code. */
380                 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
381                 barrier();  /* assign before ->rcu_read_unlock_special load */
382                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383                         rcu_read_unlock_special(t);
384                 barrier();  /* ->rcu_read_unlock_special load before assign */
385                 t->rcu_read_lock_nesting = 0;
386         }
387         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388                 int rrln = t->rcu_read_lock_nesting;
389
390                 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
391         }
392 }
393 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394
395 /*
396  * Advance a ->blkd_tasks-list pointer to the next entry, instead
397  * returning NULL if at the end of the list.
398  */
399 static struct list_head *rcu_next_node_entry(struct task_struct *t,
400                                              struct rcu_node *rnp)
401 {
402         struct list_head *np;
403
404         np = t->rcu_node_entry.next;
405         if (np == &rnp->blkd_tasks)
406                 np = NULL;
407         return np;
408 }
409
410 /*
411  * Return true if the specified rcu_node structure has tasks that were
412  * preempted within an RCU read-side critical section.
413  */
414 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415 {
416         return !list_empty(&rnp->blkd_tasks);
417 }
418
419 /*
420  * Report deferred quiescent states.  The deferral time can
421  * be quite short, for example, in the case of the call from
422  * rcu_read_unlock_special().
423  */
424 static void
425 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
426 {
427         bool empty_exp;
428         bool empty_norm;
429         bool empty_exp_now;
430         struct list_head *np;
431         bool drop_boost_mutex = false;
432         struct rcu_data *rdp;
433         struct rcu_node *rnp;
434         union rcu_special special;
435
436         /*
437          * If RCU core is waiting for this CPU to exit its critical section,
438          * report the fact that it has exited.  Because irqs are disabled,
439          * t->rcu_read_unlock_special cannot change.
440          */
441         special = t->rcu_read_unlock_special;
442         rdp = this_cpu_ptr(&rcu_data);
443         if (!special.s && !rdp->exp_deferred_qs) {
444                 local_irq_restore(flags);
445                 return;
446         }
447         t->rcu_read_unlock_special.b.deferred_qs = false;
448         if (special.b.need_qs) {
449                 rcu_qs();
450                 t->rcu_read_unlock_special.b.need_qs = false;
451                 if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
452                         local_irq_restore(flags);
453                         return;
454                 }
455         }
456
457         /*
458          * Respond to a request by an expedited grace period for a
459          * quiescent state from this CPU.  Note that requests from
460          * tasks are handled when removing the task from the
461          * blocked-tasks list below.
462          */
463         if (rdp->exp_deferred_qs) {
464                 rcu_report_exp_rdp(rdp);
465                 if (!t->rcu_read_unlock_special.s) {
466                         local_irq_restore(flags);
467                         return;
468                 }
469         }
470
471         /* Clean up if blocked during RCU read-side critical section. */
472         if (special.b.blocked) {
473                 t->rcu_read_unlock_special.b.blocked = false;
474
475                 /*
476                  * Remove this task from the list it blocked on.  The task
477                  * now remains queued on the rcu_node corresponding to the
478                  * CPU it first blocked on, so there is no longer any need
479                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
480                  */
481                 rnp = t->rcu_blocked_node;
482                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
484                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
485                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
487                              (!empty_norm || rnp->qsmask));
488                 empty_exp = sync_rcu_preempt_exp_done(rnp);
489                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
490                 np = rcu_next_node_entry(t, rnp);
491                 list_del_init(&t->rcu_node_entry);
492                 t->rcu_blocked_node = NULL;
493                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
494                                                 rnp->gp_seq, t->pid);
495                 if (&t->rcu_node_entry == rnp->gp_tasks)
496                         WRITE_ONCE(rnp->gp_tasks, np);
497                 if (&t->rcu_node_entry == rnp->exp_tasks)
498                         rnp->exp_tasks = np;
499                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
500                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502                         if (&t->rcu_node_entry == rnp->boost_tasks)
503                                 rnp->boost_tasks = np;
504                 }
505
506                 /*
507                  * If this was the last task on the current list, and if
508                  * we aren't waiting on any CPUs, report the quiescent state.
509                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510                  * so we must take a snapshot of the expedited state.
511                  */
512                 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
513                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
514                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
515                                                          rnp->gp_seq,
516                                                          0, rnp->qsmask,
517                                                          rnp->level,
518                                                          rnp->grplo,
519                                                          rnp->grphi,
520                                                          !!rnp->gp_tasks);
521                         rcu_report_unblock_qs_rnp(rnp, flags);
522                 } else {
523                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
524                 }
525
526                 /*
527                  * If this was the last task on the expedited lists,
528                  * then we need to report up the rcu_node hierarchy.
529                  */
530                 if (!empty_exp && empty_exp_now)
531                         rcu_report_exp_rnp(rnp, true);
532
533                 /* Unboost if we were boosted. */
534                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
535                         rt_mutex_futex_unlock(&rnp->boost_mtx);
536
537         } else {
538                 local_irq_restore(flags);
539         }
540 }
541
542 /*
543  * Is a deferred quiescent-state pending, and are we also not in
544  * an RCU read-side critical section?  It is the caller's responsibility
545  * to ensure it is otherwise safe to report any deferred quiescent
546  * states.  The reason for this is that it is safe to report a
547  * quiescent state during context switch even though preemption
548  * is disabled.  This function cannot be expected to understand these
549  * nuances, so the caller must handle them.
550  */
551 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
552 {
553         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
554                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
555                t->rcu_read_lock_nesting <= 0;
556 }
557
558 /*
559  * Report a deferred quiescent state if needed and safe to do so.
560  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
561  * not being in an RCU read-side critical section.  The caller must
562  * evaluate safety in terms of interrupt, softirq, and preemption
563  * disabling.
564  */
565 static void rcu_preempt_deferred_qs(struct task_struct *t)
566 {
567         unsigned long flags;
568         bool couldrecurse = t->rcu_read_lock_nesting >= 0;
569
570         if (!rcu_preempt_need_deferred_qs(t))
571                 return;
572         if (couldrecurse)
573                 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
574         local_irq_save(flags);
575         rcu_preempt_deferred_qs_irqrestore(t, flags);
576         if (couldrecurse)
577                 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
578 }
579
580 /*
581  * Minimal handler to give the scheduler a chance to re-evaluate.
582  */
583 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
584 {
585         struct rcu_data *rdp;
586
587         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
588         rdp->defer_qs_iw_pending = false;
589 }
590
591 /*
592  * Handle special cases during rcu_read_unlock(), such as needing to
593  * notify RCU core processing or task having blocked during the RCU
594  * read-side critical section.
595  */
596 static void rcu_read_unlock_special(struct task_struct *t)
597 {
598         unsigned long flags;
599         bool preempt_bh_were_disabled =
600                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
601         bool irqs_were_disabled;
602
603         /* NMI handlers cannot block and cannot safely manipulate state. */
604         if (in_nmi())
605                 return;
606
607         local_irq_save(flags);
608         irqs_were_disabled = irqs_disabled_flags(flags);
609         if (preempt_bh_were_disabled || irqs_were_disabled) {
610                 bool exp;
611                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
612                 struct rcu_node *rnp = rdp->mynode;
613
614                 t->rcu_read_unlock_special.b.exp_hint = false;
615                 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
616                       (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
617                       tick_nohz_full_cpu(rdp->cpu);
618                 // Need to defer quiescent state until everything is enabled.
619                 if (irqs_were_disabled && use_softirq &&
620                     (in_interrupt() ||
621                      (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
622                         // Using softirq, safe to awaken, and we get
623                         // no help from enabling irqs, unlike bh/preempt.
624                         raise_softirq_irqoff(RCU_SOFTIRQ);
625                 } else {
626                         // Enabling BH or preempt does reschedule, so...
627                         // Also if no expediting or NO_HZ_FULL, slow is OK.
628                         set_tsk_need_resched(current);
629                         set_preempt_need_resched();
630                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
631                             !rdp->defer_qs_iw_pending && exp) {
632                                 // Get scheduler to re-evaluate and call hooks.
633                                 // If !IRQ_WORK, FQS scan will eventually IPI.
634                                 init_irq_work(&rdp->defer_qs_iw,
635                                               rcu_preempt_deferred_qs_handler);
636                                 rdp->defer_qs_iw_pending = true;
637                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
638                         }
639                 }
640                 t->rcu_read_unlock_special.b.deferred_qs = true;
641                 local_irq_restore(flags);
642                 return;
643         }
644         WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
645         rcu_preempt_deferred_qs_irqrestore(t, flags);
646 }
647
648 /*
649  * Check that the list of blocked tasks for the newly completed grace
650  * period is in fact empty.  It is a serious bug to complete a grace
651  * period that still has RCU readers blocked!  This function must be
652  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
653  * must be held by the caller.
654  *
655  * Also, if there are blocked tasks on the list, they automatically
656  * block the newly created grace period, so set up ->gp_tasks accordingly.
657  */
658 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
659 {
660         struct task_struct *t;
661
662         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
663         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
664                 dump_blkd_tasks(rnp, 10);
665         if (rcu_preempt_has_tasks(rnp) &&
666             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
667                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
668                 t = container_of(rnp->gp_tasks, struct task_struct,
669                                  rcu_node_entry);
670                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
671                                                 rnp->gp_seq, t->pid);
672         }
673         WARN_ON_ONCE(rnp->qsmask);
674 }
675
676 /*
677  * Check for a quiescent state from the current CPU, including voluntary
678  * context switches for Tasks RCU.  When a task blocks, the task is
679  * recorded in the corresponding CPU's rcu_node structure, which is checked
680  * elsewhere, hence this function need only check for quiescent states
681  * related to the current CPU, not to those related to tasks.
682  */
683 static void rcu_flavor_sched_clock_irq(int user)
684 {
685         struct task_struct *t = current;
686
687         if (user || rcu_is_cpu_rrupt_from_idle()) {
688                 rcu_note_voluntary_context_switch(current);
689         }
690         if (t->rcu_read_lock_nesting > 0 ||
691             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692                 /* No QS, force context switch if deferred. */
693                 if (rcu_preempt_need_deferred_qs(t)) {
694                         set_tsk_need_resched(t);
695                         set_preempt_need_resched();
696                 }
697         } else if (rcu_preempt_need_deferred_qs(t)) {
698                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699                 return;
700         } else if (!t->rcu_read_lock_nesting) {
701                 rcu_qs(); /* Report immediate QS. */
702                 return;
703         }
704
705         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706         if (t->rcu_read_lock_nesting > 0 &&
707             __this_cpu_read(rcu_data.core_needs_qs) &&
708             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
709             !t->rcu_read_unlock_special.b.need_qs &&
710             time_after(jiffies, rcu_state.gp_start + HZ))
711                 t->rcu_read_unlock_special.b.need_qs = true;
712 }
713
714 /*
715  * Check for a task exiting while in a preemptible-RCU read-side
716  * critical section, clean up if so.  No need to issue warnings, as
717  * debug_check_no_locks_held() already does this if lockdep is enabled.
718  * Besides, if this function does anything other than just immediately
719  * return, there was a bug of some sort.  Spewing warnings from this
720  * function is like as not to simply obscure important prior warnings.
721  */
722 void exit_rcu(void)
723 {
724         struct task_struct *t = current;
725
726         if (unlikely(!list_empty(&current->rcu_node_entry))) {
727                 t->rcu_read_lock_nesting = 1;
728                 barrier();
729                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
730         } else if (unlikely(t->rcu_read_lock_nesting)) {
731                 t->rcu_read_lock_nesting = 1;
732         } else {
733                 return;
734         }
735         __rcu_read_unlock();
736         rcu_preempt_deferred_qs(current);
737 }
738
739 /*
740  * Dump the blocked-tasks state, but limit the list dump to the
741  * specified number of elements.
742  */
743 static void
744 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
745 {
746         int cpu;
747         int i;
748         struct list_head *lhp;
749         bool onl;
750         struct rcu_data *rdp;
751         struct rcu_node *rnp1;
752
753         raw_lockdep_assert_held_rcu_node(rnp);
754         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
755                 __func__, rnp->grplo, rnp->grphi, rnp->level,
756                 (long)rnp->gp_seq, (long)rnp->completedqs);
757         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
758                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
760         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
761                 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
762                 rnp->exp_tasks);
763         pr_info("%s: ->blkd_tasks", __func__);
764         i = 0;
765         list_for_each(lhp, &rnp->blkd_tasks) {
766                 pr_cont(" %p", lhp);
767                 if (++i >= ncheck)
768                         break;
769         }
770         pr_cont("\n");
771         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
772                 rdp = per_cpu_ptr(&rcu_data, cpu);
773                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
774                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
775                         cpu, ".o"[onl],
776                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
777                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
778         }
779 }
780
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
782
783 /*
784  * Tell them what RCU they are running.
785  */
786 static void __init rcu_bootup_announce(void)
787 {
788         pr_info("Hierarchical RCU implementation.\n");
789         rcu_bootup_announce_oddness();
790 }
791
792 /*
793  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
794  * how many quiescent states passed, just if there was at least one since
795  * the start of the grace period, this just sets a flag.  The caller must
796  * have disabled preemption.
797  */
798 static void rcu_qs(void)
799 {
800         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
801         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
802                 return;
803         trace_rcu_grace_period(TPS("rcu_sched"),
804                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
805         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
806         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
807                 return;
808         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
809         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
810 }
811
812 /*
813  * Register an urgently needed quiescent state.  If there is an
814  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
815  * dyntick-idle quiescent state visible to other CPUs, which will in
816  * some cases serve for expedited as well as normal grace periods.
817  * Either way, register a lightweight quiescent state.
818  */
819 void rcu_all_qs(void)
820 {
821         unsigned long flags;
822
823         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
824                 return;
825         preempt_disable();
826         /* Load rcu_urgent_qs before other flags. */
827         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
828                 preempt_enable();
829                 return;
830         }
831         this_cpu_write(rcu_data.rcu_urgent_qs, false);
832         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
833                 local_irq_save(flags);
834                 rcu_momentary_dyntick_idle();
835                 local_irq_restore(flags);
836         }
837         rcu_qs();
838         preempt_enable();
839 }
840 EXPORT_SYMBOL_GPL(rcu_all_qs);
841
842 /*
843  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
844  */
845 void rcu_note_context_switch(bool preempt)
846 {
847         trace_rcu_utilization(TPS("Start context switch"));
848         rcu_qs();
849         /* Load rcu_urgent_qs before other flags. */
850         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
851                 goto out;
852         this_cpu_write(rcu_data.rcu_urgent_qs, false);
853         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
854                 rcu_momentary_dyntick_idle();
855         if (!preempt)
856                 rcu_tasks_qs(current);
857 out:
858         trace_rcu_utilization(TPS("End context switch"));
859 }
860 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
861
862 /*
863  * Because preemptible RCU does not exist, there are never any preempted
864  * RCU readers.
865  */
866 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
867 {
868         return 0;
869 }
870
871 /*
872  * Because there is no preemptible RCU, there can be no readers blocked.
873  */
874 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
875 {
876         return false;
877 }
878
879 /*
880  * Because there is no preemptible RCU, there can be no deferred quiescent
881  * states.
882  */
883 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
884 {
885         return false;
886 }
887 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
888
889 /*
890  * Because there is no preemptible RCU, there can be no readers blocked,
891  * so there is no need to check for blocked tasks.  So check only for
892  * bogus qsmask values.
893  */
894 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
895 {
896         WARN_ON_ONCE(rnp->qsmask);
897 }
898
899 /*
900  * Check to see if this CPU is in a non-context-switch quiescent state,
901  * namely user mode and idle loop.
902  */
903 static void rcu_flavor_sched_clock_irq(int user)
904 {
905         if (user || rcu_is_cpu_rrupt_from_idle()) {
906
907                 /*
908                  * Get here if this CPU took its interrupt from user
909                  * mode or from the idle loop, and if this is not a
910                  * nested interrupt.  In this case, the CPU is in
911                  * a quiescent state, so note it.
912                  *
913                  * No memory barrier is required here because rcu_qs()
914                  * references only CPU-local variables that other CPUs
915                  * neither access nor modify, at least not while the
916                  * corresponding CPU is online.
917                  */
918
919                 rcu_qs();
920         }
921 }
922
923 /*
924  * Because preemptible RCU does not exist, tasks cannot possibly exit
925  * while in preemptible RCU read-side critical sections.
926  */
927 void exit_rcu(void)
928 {
929 }
930
931 /*
932  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
933  */
934 static void
935 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
936 {
937         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
938 }
939
940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
941
942 /*
943  * If boosting, set rcuc kthreads to realtime priority.
944  */
945 static void rcu_cpu_kthread_setup(unsigned int cpu)
946 {
947 #ifdef CONFIG_RCU_BOOST
948         struct sched_param sp;
949
950         sp.sched_priority = kthread_prio;
951         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
952 #endif /* #ifdef CONFIG_RCU_BOOST */
953 }
954
955 #ifdef CONFIG_RCU_BOOST
956
957 /*
958  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
959  * or ->boost_tasks, advancing the pointer to the next task in the
960  * ->blkd_tasks list.
961  *
962  * Note that irqs must be enabled: boosting the task can block.
963  * Returns 1 if there are more tasks needing to be boosted.
964  */
965 static int rcu_boost(struct rcu_node *rnp)
966 {
967         unsigned long flags;
968         struct task_struct *t;
969         struct list_head *tb;
970
971         if (READ_ONCE(rnp->exp_tasks) == NULL &&
972             READ_ONCE(rnp->boost_tasks) == NULL)
973                 return 0;  /* Nothing left to boost. */
974
975         raw_spin_lock_irqsave_rcu_node(rnp, flags);
976
977         /*
978          * Recheck under the lock: all tasks in need of boosting
979          * might exit their RCU read-side critical sections on their own.
980          */
981         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
982                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
983                 return 0;
984         }
985
986         /*
987          * Preferentially boost tasks blocking expedited grace periods.
988          * This cannot starve the normal grace periods because a second
989          * expedited grace period must boost all blocked tasks, including
990          * those blocking the pre-existing normal grace period.
991          */
992         if (rnp->exp_tasks != NULL)
993                 tb = rnp->exp_tasks;
994         else
995                 tb = rnp->boost_tasks;
996
997         /*
998          * We boost task t by manufacturing an rt_mutex that appears to
999          * be held by task t.  We leave a pointer to that rt_mutex where
1000          * task t can find it, and task t will release the mutex when it
1001          * exits its outermost RCU read-side critical section.  Then
1002          * simply acquiring this artificial rt_mutex will boost task
1003          * t's priority.  (Thanks to tglx for suggesting this approach!)
1004          *
1005          * Note that task t must acquire rnp->lock to remove itself from
1006          * the ->blkd_tasks list, which it will do from exit() if from
1007          * nowhere else.  We therefore are guaranteed that task t will
1008          * stay around at least until we drop rnp->lock.  Note that
1009          * rnp->lock also resolves races between our priority boosting
1010          * and task t's exiting its outermost RCU read-side critical
1011          * section.
1012          */
1013         t = container_of(tb, struct task_struct, rcu_node_entry);
1014         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1015         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1016         /* Lock only for side effect: boosts task t's priority. */
1017         rt_mutex_lock(&rnp->boost_mtx);
1018         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1019
1020         return READ_ONCE(rnp->exp_tasks) != NULL ||
1021                READ_ONCE(rnp->boost_tasks) != NULL;
1022 }
1023
1024 /*
1025  * Priority-boosting kthread, one per leaf rcu_node.
1026  */
1027 static int rcu_boost_kthread(void *arg)
1028 {
1029         struct rcu_node *rnp = (struct rcu_node *)arg;
1030         int spincnt = 0;
1031         int more2boost;
1032
1033         trace_rcu_utilization(TPS("Start boost kthread@init"));
1034         for (;;) {
1035                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1036                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1037                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1038                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1039                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1040                 more2boost = rcu_boost(rnp);
1041                 if (more2boost)
1042                         spincnt++;
1043                 else
1044                         spincnt = 0;
1045                 if (spincnt > 10) {
1046                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1047                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1048                         schedule_timeout_interruptible(2);
1049                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1050                         spincnt = 0;
1051                 }
1052         }
1053         /* NOTREACHED */
1054         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1055         return 0;
1056 }
1057
1058 /*
1059  * Check to see if it is time to start boosting RCU readers that are
1060  * blocking the current grace period, and, if so, tell the per-rcu_node
1061  * kthread to start boosting them.  If there is an expedited grace
1062  * period in progress, it is always time to boost.
1063  *
1064  * The caller must hold rnp->lock, which this function releases.
1065  * The ->boost_kthread_task is immortal, so we don't need to worry
1066  * about it going away.
1067  */
1068 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1069         __releases(rnp->lock)
1070 {
1071         raw_lockdep_assert_held_rcu_node(rnp);
1072         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1073                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1074                 return;
1075         }
1076         if (rnp->exp_tasks != NULL ||
1077             (rnp->gp_tasks != NULL &&
1078              rnp->boost_tasks == NULL &&
1079              rnp->qsmask == 0 &&
1080              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1081                 if (rnp->exp_tasks == NULL)
1082                         rnp->boost_tasks = rnp->gp_tasks;
1083                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1084                 rcu_wake_cond(rnp->boost_kthread_task,
1085                               rnp->boost_kthread_status);
1086         } else {
1087                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1088         }
1089 }
1090
1091 /*
1092  * Is the current CPU running the RCU-callbacks kthread?
1093  * Caller must have preemption disabled.
1094  */
1095 static bool rcu_is_callbacks_kthread(void)
1096 {
1097         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1098 }
1099
1100 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1101
1102 /*
1103  * Do priority-boost accounting for the start of a new grace period.
1104  */
1105 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1106 {
1107         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1108 }
1109
1110 /*
1111  * Create an RCU-boost kthread for the specified node if one does not
1112  * already exist.  We only create this kthread for preemptible RCU.
1113  * Returns zero if all is well, a negated errno otherwise.
1114  */
1115 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1116 {
1117         int rnp_index = rnp - rcu_get_root();
1118         unsigned long flags;
1119         struct sched_param sp;
1120         struct task_struct *t;
1121
1122         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1123                 return;
1124
1125         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1126                 return;
1127
1128         rcu_state.boost = 1;
1129
1130         if (rnp->boost_kthread_task != NULL)
1131                 return;
1132
1133         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1134                            "rcub/%d", rnp_index);
1135         if (WARN_ON_ONCE(IS_ERR(t)))
1136                 return;
1137
1138         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1139         rnp->boost_kthread_task = t;
1140         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1141         sp.sched_priority = kthread_prio;
1142         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1143         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1144 }
1145
1146 /*
1147  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1148  * served by the rcu_node in question.  The CPU hotplug lock is still
1149  * held, so the value of rnp->qsmaskinit will be stable.
1150  *
1151  * We don't include outgoingcpu in the affinity set, use -1 if there is
1152  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1153  * this function allows the kthread to execute on any CPU.
1154  */
1155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1156 {
1157         struct task_struct *t = rnp->boost_kthread_task;
1158         unsigned long mask = rcu_rnp_online_cpus(rnp);
1159         cpumask_var_t cm;
1160         int cpu;
1161
1162         if (!t)
1163                 return;
1164         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1165                 return;
1166         for_each_leaf_node_possible_cpu(rnp, cpu)
1167                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1168                     cpu != outgoingcpu)
1169                         cpumask_set_cpu(cpu, cm);
1170         if (cpumask_weight(cm) == 0)
1171                 cpumask_setall(cm);
1172         set_cpus_allowed_ptr(t, cm);
1173         free_cpumask_var(cm);
1174 }
1175
1176 /*
1177  * Spawn boost kthreads -- called as soon as the scheduler is running.
1178  */
1179 static void __init rcu_spawn_boost_kthreads(void)
1180 {
1181         struct rcu_node *rnp;
1182
1183         rcu_for_each_leaf_node(rnp)
1184                 rcu_spawn_one_boost_kthread(rnp);
1185 }
1186
1187 static void rcu_prepare_kthreads(int cpu)
1188 {
1189         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1190         struct rcu_node *rnp = rdp->mynode;
1191
1192         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1193         if (rcu_scheduler_fully_active)
1194                 rcu_spawn_one_boost_kthread(rnp);
1195 }
1196
1197 #else /* #ifdef CONFIG_RCU_BOOST */
1198
1199 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1200         __releases(rnp->lock)
1201 {
1202         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1203 }
1204
1205 static bool rcu_is_callbacks_kthread(void)
1206 {
1207         return false;
1208 }
1209
1210 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1211 {
1212 }
1213
1214 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1215 {
1216 }
1217
1218 static void __init rcu_spawn_boost_kthreads(void)
1219 {
1220 }
1221
1222 static void rcu_prepare_kthreads(int cpu)
1223 {
1224 }
1225
1226 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1227
1228 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1229
1230 /*
1231  * Check to see if any future non-offloaded RCU-related work will need
1232  * to be done by the current CPU, even if none need be done immediately,
1233  * returning 1 if so.  This function is part of the RCU implementation;
1234  * it is -not- an exported member of the RCU API.
1235  *
1236  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1237  * CPU has RCU callbacks queued.
1238  */
1239 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1240 {
1241         *nextevt = KTIME_MAX;
1242         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1243                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1244 }
1245
1246 /*
1247  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1248  * after it.
1249  */
1250 static void rcu_cleanup_after_idle(void)
1251 {
1252 }
1253
1254 /*
1255  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1256  * is nothing.
1257  */
1258 static void rcu_prepare_for_idle(void)
1259 {
1260 }
1261
1262 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1263
1264 /*
1265  * This code is invoked when a CPU goes idle, at which point we want
1266  * to have the CPU do everything required for RCU so that it can enter
1267  * the energy-efficient dyntick-idle mode.  This is handled by a
1268  * state machine implemented by rcu_prepare_for_idle() below.
1269  *
1270  * The following three proprocessor symbols control this state machine:
1271  *
1272  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1273  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1274  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1275  *      benchmarkers who might otherwise be tempted to set this to a large
1276  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1277  *      system.  And if you are -that- concerned about energy efficiency,
1278  *      just power the system down and be done with it!
1279  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1280  *      permitted to sleep in dyntick-idle mode with only lazy RCU
1281  *      callbacks pending.  Setting this too high can OOM your system.
1282  *
1283  * The values below work well in practice.  If future workloads require
1284  * adjustment, they can be converted into kernel config parameters, though
1285  * making the state machine smarter might be a better option.
1286  */
1287 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1288 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1289
1290 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1291 module_param(rcu_idle_gp_delay, int, 0644);
1292 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1293 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1294
1295 /*
1296  * Try to advance callbacks on the current CPU, but only if it has been
1297  * awhile since the last time we did so.  Afterwards, if there are any
1298  * callbacks ready for immediate invocation, return true.
1299  */
1300 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1301 {
1302         bool cbs_ready = false;
1303         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1304         struct rcu_node *rnp;
1305
1306         /* Exit early if we advanced recently. */
1307         if (jiffies == rdp->last_advance_all)
1308                 return false;
1309         rdp->last_advance_all = jiffies;
1310
1311         rnp = rdp->mynode;
1312
1313         /*
1314          * Don't bother checking unless a grace period has
1315          * completed since we last checked and there are
1316          * callbacks not yet ready to invoke.
1317          */
1318         if ((rcu_seq_completed_gp(rdp->gp_seq,
1319                                   rcu_seq_current(&rnp->gp_seq)) ||
1320              unlikely(READ_ONCE(rdp->gpwrap))) &&
1321             rcu_segcblist_pend_cbs(&rdp->cblist))
1322                 note_gp_changes(rdp);
1323
1324         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1325                 cbs_ready = true;
1326         return cbs_ready;
1327 }
1328
1329 /*
1330  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1331  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1332  * caller to set the timeout based on whether or not there are non-lazy
1333  * callbacks.
1334  *
1335  * The caller must have disabled interrupts.
1336  */
1337 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1338 {
1339         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1340         unsigned long dj;
1341
1342         lockdep_assert_irqs_disabled();
1343
1344         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1345         if (rcu_segcblist_empty(&rdp->cblist) ||
1346             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1347                 *nextevt = KTIME_MAX;
1348                 return 0;
1349         }
1350
1351         /* Attempt to advance callbacks. */
1352         if (rcu_try_advance_all_cbs()) {
1353                 /* Some ready to invoke, so initiate later invocation. */
1354                 invoke_rcu_core();
1355                 return 1;
1356         }
1357         rdp->last_accelerate = jiffies;
1358
1359         /* Request timer delay depending on laziness, and round. */
1360         rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1361         if (rdp->all_lazy) {
1362                 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1363         } else {
1364                 dj = round_up(rcu_idle_gp_delay + jiffies,
1365                                rcu_idle_gp_delay) - jiffies;
1366         }
1367         *nextevt = basemono + dj * TICK_NSEC;
1368         return 0;
1369 }
1370
1371 /*
1372  * Prepare a CPU for idle from an RCU perspective.  The first major task
1373  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1374  * The second major task is to check to see if a non-lazy callback has
1375  * arrived at a CPU that previously had only lazy callbacks.  The third
1376  * major task is to accelerate (that is, assign grace-period numbers to)
1377  * any recently arrived callbacks.
1378  *
1379  * The caller must have disabled interrupts.
1380  */
1381 static void rcu_prepare_for_idle(void)
1382 {
1383         bool needwake;
1384         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1385         struct rcu_node *rnp;
1386         int tne;
1387
1388         lockdep_assert_irqs_disabled();
1389         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1390                 return;
1391
1392         /* Handle nohz enablement switches conservatively. */
1393         tne = READ_ONCE(tick_nohz_active);
1394         if (tne != rdp->tick_nohz_enabled_snap) {
1395                 if (!rcu_segcblist_empty(&rdp->cblist))
1396                         invoke_rcu_core(); /* force nohz to see update. */
1397                 rdp->tick_nohz_enabled_snap = tne;
1398                 return;
1399         }
1400         if (!tne)
1401                 return;
1402
1403         /*
1404          * If a non-lazy callback arrived at a CPU having only lazy
1405          * callbacks, invoke RCU core for the side-effect of recalculating
1406          * idle duration on re-entry to idle.
1407          */
1408         if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1409                 rdp->all_lazy = false;
1410                 invoke_rcu_core();
1411                 return;
1412         }
1413
1414         /*
1415          * If we have not yet accelerated this jiffy, accelerate all
1416          * callbacks on this CPU.
1417          */
1418         if (rdp->last_accelerate == jiffies)
1419                 return;
1420         rdp->last_accelerate = jiffies;
1421         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1422                 rnp = rdp->mynode;
1423                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1424                 needwake = rcu_accelerate_cbs(rnp, rdp);
1425                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1426                 if (needwake)
1427                         rcu_gp_kthread_wake();
1428         }
1429 }
1430
1431 /*
1432  * Clean up for exit from idle.  Attempt to advance callbacks based on
1433  * any grace periods that elapsed while the CPU was idle, and if any
1434  * callbacks are now ready to invoke, initiate invocation.
1435  */
1436 static void rcu_cleanup_after_idle(void)
1437 {
1438         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1439
1440         lockdep_assert_irqs_disabled();
1441         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1442                 return;
1443         if (rcu_try_advance_all_cbs())
1444                 invoke_rcu_core();
1445 }
1446
1447 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1448
1449 #ifdef CONFIG_RCU_NOCB_CPU
1450
1451 /*
1452  * Offload callback processing from the boot-time-specified set of CPUs
1453  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1454  * created that pull the callbacks from the corresponding CPU, wait for
1455  * a grace period to elapse, and invoke the callbacks.  These kthreads
1456  * are organized into GP kthreads, which manage incoming callbacks, wait for
1457  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1458  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1459  * do a wake_up() on their GP kthread when they insert a callback into any
1460  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1461  * in which case each kthread actively polls its CPU.  (Which isn't so great
1462  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1463  *
1464  * This is intended to be used in conjunction with Frederic Weisbecker's
1465  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1466  * running CPU-bound user-mode computations.
1467  *
1468  * Offloading of callbacks can also be used as an energy-efficiency
1469  * measure because CPUs with no RCU callbacks queued are more aggressive
1470  * about entering dyntick-idle mode.
1471  */
1472
1473
1474 /*
1475  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1476  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1477  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1478  * given, a warning is emitted and all CPUs are offloaded.
1479  */
1480 static int __init rcu_nocb_setup(char *str)
1481 {
1482         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1483         if (!strcasecmp(str, "all"))
1484                 cpumask_setall(rcu_nocb_mask);
1485         else
1486                 if (cpulist_parse(str, rcu_nocb_mask)) {
1487                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1488                         cpumask_setall(rcu_nocb_mask);
1489                 }
1490         return 1;
1491 }
1492 __setup("rcu_nocbs=", rcu_nocb_setup);
1493
1494 static int __init parse_rcu_nocb_poll(char *arg)
1495 {
1496         rcu_nocb_poll = true;
1497         return 0;
1498 }
1499 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1500
1501 /*
1502  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1503  * After all, the main point of bypassing is to avoid lock contention
1504  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1505  */
1506 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1507 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1508
1509 /*
1510  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1511  * lock isn't immediately available, increment ->nocb_lock_contended to
1512  * flag the contention.
1513  */
1514 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1515 {
1516         lockdep_assert_irqs_disabled();
1517         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1518                 return;
1519         atomic_inc(&rdp->nocb_lock_contended);
1520         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1521         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1522         raw_spin_lock(&rdp->nocb_bypass_lock);
1523         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1524         atomic_dec(&rdp->nocb_lock_contended);
1525 }
1526
1527 /*
1528  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1529  * not contended.  Please note that this is extremely special-purpose,
1530  * relying on the fact that at most two kthreads and one CPU contend for
1531  * this lock, and also that the two kthreads are guaranteed to have frequent
1532  * grace-period-duration time intervals between successive acquisitions
1533  * of the lock.  This allows us to use an extremely simple throttling
1534  * mechanism, and further to apply it only to the CPU doing floods of
1535  * call_rcu() invocations.  Don't try this at home!
1536  */
1537 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1538 {
1539         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1540         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1541                 cpu_relax();
1542 }
1543
1544 /*
1545  * Conditionally acquire the specified rcu_data structure's
1546  * ->nocb_bypass_lock.
1547  */
1548 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1549 {
1550         lockdep_assert_irqs_disabled();
1551         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1552 }
1553
1554 /*
1555  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1556  */
1557 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1558 {
1559         lockdep_assert_irqs_disabled();
1560         raw_spin_unlock(&rdp->nocb_bypass_lock);
1561 }
1562
1563 /*
1564  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1565  * if it corresponds to a no-CBs CPU.
1566  */
1567 static void rcu_nocb_lock(struct rcu_data *rdp)
1568 {
1569         lockdep_assert_irqs_disabled();
1570         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1571                 return;
1572         raw_spin_lock(&rdp->nocb_lock);
1573 }
1574
1575 /*
1576  * Release the specified rcu_data structure's ->nocb_lock, but only
1577  * if it corresponds to a no-CBs CPU.
1578  */
1579 static void rcu_nocb_unlock(struct rcu_data *rdp)
1580 {
1581         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1582                 lockdep_assert_irqs_disabled();
1583                 raw_spin_unlock(&rdp->nocb_lock);
1584         }
1585 }
1586
1587 /*
1588  * Release the specified rcu_data structure's ->nocb_lock and restore
1589  * interrupts, but only if it corresponds to a no-CBs CPU.
1590  */
1591 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1592                                        unsigned long flags)
1593 {
1594         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1595                 lockdep_assert_irqs_disabled();
1596                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1597         } else {
1598                 local_irq_restore(flags);
1599         }
1600 }
1601
1602 /* Lockdep check that ->cblist may be safely accessed. */
1603 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1604 {
1605         lockdep_assert_irqs_disabled();
1606         if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1607             cpu_online(rdp->cpu))
1608                 lockdep_assert_held(&rdp->nocb_lock);
1609 }
1610
1611 /*
1612  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1613  * grace period.
1614  */
1615 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1616 {
1617         swake_up_all(sq);
1618 }
1619
1620 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1621 {
1622         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1623 }
1624
1625 static void rcu_init_one_nocb(struct rcu_node *rnp)
1626 {
1627         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1628         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1629 }
1630
1631 /* Is the specified CPU a no-CBs CPU? */
1632 bool rcu_is_nocb_cpu(int cpu)
1633 {
1634         if (cpumask_available(rcu_nocb_mask))
1635                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1636         return false;
1637 }
1638
1639 /*
1640  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1641  * and this function releases it.
1642  */
1643 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1644                            unsigned long flags)
1645         __releases(rdp->nocb_lock)
1646 {
1647         bool needwake = false;
1648         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1649
1650         lockdep_assert_held(&rdp->nocb_lock);
1651         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1652                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1653                                     TPS("AlreadyAwake"));
1654                 rcu_nocb_unlock_irqrestore(rdp, flags);
1655                 return;
1656         }
1657         del_timer(&rdp->nocb_timer);
1658         rcu_nocb_unlock_irqrestore(rdp, flags);
1659         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1660         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1661                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1662                 needwake = true;
1663                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1664         }
1665         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1666         if (needwake)
1667                 wake_up_process(rdp_gp->nocb_gp_kthread);
1668 }
1669
1670 /*
1671  * Arrange to wake the GP kthread for this NOCB group at some future
1672  * time when it is safe to do so.
1673  */
1674 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1675                                const char *reason)
1676 {
1677         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1678                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1679         if (rdp->nocb_defer_wakeup < waketype)
1680                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1681         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1682 }
1683
1684 /*
1685  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1686  * However, if there is a callback to be enqueued and if ->nocb_bypass
1687  * proves to be initially empty, just return false because the no-CB GP
1688  * kthread may need to be awakened in this case.
1689  *
1690  * Note that this function always returns true if rhp is NULL.
1691  */
1692 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1693                                      unsigned long j)
1694 {
1695         struct rcu_cblist rcl;
1696
1697         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1698         rcu_lockdep_assert_cblist_protected(rdp);
1699         lockdep_assert_held(&rdp->nocb_bypass_lock);
1700         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1701                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1702                 return false;
1703         }
1704         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1705         if (rhp)
1706                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1707         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1708         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1709         WRITE_ONCE(rdp->nocb_bypass_first, j);
1710         rcu_nocb_bypass_unlock(rdp);
1711         return true;
1712 }
1713
1714 /*
1715  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1716  * However, if there is a callback to be enqueued and if ->nocb_bypass
1717  * proves to be initially empty, just return false because the no-CB GP
1718  * kthread may need to be awakened in this case.
1719  *
1720  * Note that this function always returns true if rhp is NULL.
1721  */
1722 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1723                                   unsigned long j)
1724 {
1725         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1726                 return true;
1727         rcu_lockdep_assert_cblist_protected(rdp);
1728         rcu_nocb_bypass_lock(rdp);
1729         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1730 }
1731
1732 /*
1733  * If the ->nocb_bypass_lock is immediately available, flush the
1734  * ->nocb_bypass queue into ->cblist.
1735  */
1736 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1737 {
1738         rcu_lockdep_assert_cblist_protected(rdp);
1739         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1740             !rcu_nocb_bypass_trylock(rdp))
1741                 return;
1742         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1743 }
1744
1745 /*
1746  * See whether it is appropriate to use the ->nocb_bypass list in order
1747  * to control contention on ->nocb_lock.  A limited number of direct
1748  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1749  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1750  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1751  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1752  * used if ->cblist is empty, because otherwise callbacks can be stranded
1753  * on ->nocb_bypass because we cannot count on the current CPU ever again
1754  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1755  * non-empty, the corresponding no-CBs grace-period kthread must not be
1756  * in an indefinite sleep state.
1757  *
1758  * Finally, it is not permitted to use the bypass during early boot,
1759  * as doing so would confuse the auto-initialization code.  Besides
1760  * which, there is no point in worrying about lock contention while
1761  * there is only one CPU in operation.
1762  */
1763 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1764                                 bool *was_alldone, unsigned long flags)
1765 {
1766         unsigned long c;
1767         unsigned long cur_gp_seq;
1768         unsigned long j = jiffies;
1769         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1770
1771         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1772                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1773                 return false; /* Not offloaded, no bypassing. */
1774         }
1775         lockdep_assert_irqs_disabled();
1776
1777         // Don't use ->nocb_bypass during early boot.
1778         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1779                 rcu_nocb_lock(rdp);
1780                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1781                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1782                 return false;
1783         }
1784
1785         // If we have advanced to a new jiffy, reset counts to allow
1786         // moving back from ->nocb_bypass to ->cblist.
1787         if (j == rdp->nocb_nobypass_last) {
1788                 c = rdp->nocb_nobypass_count + 1;
1789         } else {
1790                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1791                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1792                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1793                                  nocb_nobypass_lim_per_jiffy))
1794                         c = 0;
1795                 else if (c > nocb_nobypass_lim_per_jiffy)
1796                         c = nocb_nobypass_lim_per_jiffy;
1797         }
1798         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1799
1800         // If there hasn't yet been all that many ->cblist enqueues
1801         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1802         // ->nocb_bypass first.
1803         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1804                 rcu_nocb_lock(rdp);
1805                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1806                 if (*was_alldone)
1807                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1808                                             TPS("FirstQ"));
1809                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1810                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1811                 return false; // Caller must enqueue the callback.
1812         }
1813
1814         // If ->nocb_bypass has been used too long or is too full,
1815         // flush ->nocb_bypass to ->cblist.
1816         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1817             ncbs >= qhimark) {
1818                 rcu_nocb_lock(rdp);
1819                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1820                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1821                         if (*was_alldone)
1822                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823                                                     TPS("FirstQ"));
1824                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1825                         return false; // Caller must enqueue the callback.
1826                 }
1827                 if (j != rdp->nocb_gp_adv_time &&
1828                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1829                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1830                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1831                         rdp->nocb_gp_adv_time = j;
1832                 }
1833                 rcu_nocb_unlock_irqrestore(rdp, flags);
1834                 return true; // Callback already enqueued.
1835         }
1836
1837         // We need to use the bypass.
1838         rcu_nocb_wait_contended(rdp);
1839         rcu_nocb_bypass_lock(rdp);
1840         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1841         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1842         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1843         if (!ncbs) {
1844                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1845                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1846         }
1847         rcu_nocb_bypass_unlock(rdp);
1848         smp_mb(); /* Order enqueue before wake. */
1849         if (ncbs) {
1850                 local_irq_restore(flags);
1851         } else {
1852                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1853                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1854                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1855                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1856                                             TPS("FirstBQwake"));
1857                         __call_rcu_nocb_wake(rdp, true, flags);
1858                 } else {
1859                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1860                                             TPS("FirstBQnoWake"));
1861                         rcu_nocb_unlock_irqrestore(rdp, flags);
1862                 }
1863         }
1864         return true; // Callback already enqueued.
1865 }
1866
1867 /*
1868  * Awaken the no-CBs grace-period kthead if needed, either due to it
1869  * legitimately being asleep or due to overload conditions.
1870  *
1871  * If warranted, also wake up the kthread servicing this CPUs queues.
1872  */
1873 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1874                                  unsigned long flags)
1875                                  __releases(rdp->nocb_lock)
1876 {
1877         unsigned long cur_gp_seq;
1878         unsigned long j;
1879         long len;
1880         struct task_struct *t;
1881
1882         // If we are being polled or there is no kthread, just leave.
1883         t = READ_ONCE(rdp->nocb_gp_kthread);
1884         if (rcu_nocb_poll || !t) {
1885                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1886                                     TPS("WakeNotPoll"));
1887                 rcu_nocb_unlock_irqrestore(rdp, flags);
1888                 return;
1889         }
1890         // Need to actually to a wakeup.
1891         len = rcu_segcblist_n_cbs(&rdp->cblist);
1892         if (was_alldone) {
1893                 rdp->qlen_last_fqs_check = len;
1894                 if (!irqs_disabled_flags(flags)) {
1895                         /* ... if queue was empty ... */
1896                         wake_nocb_gp(rdp, false, flags);
1897                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1898                                             TPS("WakeEmpty"));
1899                 } else {
1900                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1901                                            TPS("WakeEmptyIsDeferred"));
1902                         rcu_nocb_unlock_irqrestore(rdp, flags);
1903                 }
1904         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1905                 /* ... or if many callbacks queued. */
1906                 rdp->qlen_last_fqs_check = len;
1907                 j = jiffies;
1908                 if (j != rdp->nocb_gp_adv_time &&
1909                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1910                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1911                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1912                         rdp->nocb_gp_adv_time = j;
1913                 }
1914                 smp_mb(); /* Enqueue before timer_pending(). */
1915                 if ((rdp->nocb_cb_sleep ||
1916                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1917                     !timer_pending(&rdp->nocb_bypass_timer))
1918                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1919                                            TPS("WakeOvfIsDeferred"));
1920                 rcu_nocb_unlock_irqrestore(rdp, flags);
1921         } else {
1922                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1923                 rcu_nocb_unlock_irqrestore(rdp, flags);
1924         }
1925         return;
1926 }
1927
1928 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1929 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1930 {
1931         unsigned long flags;
1932         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1933
1934         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1935         rcu_nocb_lock_irqsave(rdp, flags);
1936         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1937         __call_rcu_nocb_wake(rdp, true, flags);
1938 }
1939
1940 /*
1941  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1942  * or for grace periods to end.
1943  */
1944 static void nocb_gp_wait(struct rcu_data *my_rdp)
1945 {
1946         bool bypass = false;
1947         long bypass_ncbs;
1948         int __maybe_unused cpu = my_rdp->cpu;
1949         unsigned long cur_gp_seq;
1950         unsigned long flags;
1951         bool gotcbs = false;
1952         unsigned long j = jiffies;
1953         bool needwait_gp = false; // This prevents actual uninitialized use.
1954         bool needwake;
1955         bool needwake_gp;
1956         struct rcu_data *rdp;
1957         struct rcu_node *rnp;
1958         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1959
1960         /*
1961          * Each pass through the following loop checks for CBs and for the
1962          * nearest grace period (if any) to wait for next.  The CB kthreads
1963          * and the global grace-period kthread are awakened if needed.
1964          */
1965         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1966                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1967                 rcu_nocb_lock_irqsave(rdp, flags);
1968                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1969                 if (bypass_ncbs &&
1970                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1971                      bypass_ncbs > 2 * qhimark)) {
1972                         // Bypass full or old, so flush it.
1973                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1974                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1975                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1976                         rcu_nocb_unlock_irqrestore(rdp, flags);
1977                         continue; /* No callbacks here, try next. */
1978                 }
1979                 if (bypass_ncbs) {
1980                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1981                                             TPS("Bypass"));
1982                         bypass = true;
1983                 }
1984                 rnp = rdp->mynode;
1985                 if (bypass) {  // Avoid race with first bypass CB.
1986                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1987                                    RCU_NOCB_WAKE_NOT);
1988                         del_timer(&my_rdp->nocb_timer);
1989                 }
1990                 // Advance callbacks if helpful and low contention.
1991                 needwake_gp = false;
1992                 if (!rcu_segcblist_restempty(&rdp->cblist,
1993                                              RCU_NEXT_READY_TAIL) ||
1994                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1995                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1996                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1997                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1998                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1999                 }
2000                 // Need to wait on some grace period?
2001                 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2002                                                       RCU_NEXT_READY_TAIL));
2003                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2004                         if (!needwait_gp ||
2005                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2006                                 wait_gp_seq = cur_gp_seq;
2007                         needwait_gp = true;
2008                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2009                                             TPS("NeedWaitGP"));
2010                 }
2011                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2012                         needwake = rdp->nocb_cb_sleep;
2013                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
2014                         smp_mb(); /* CB invocation -after- GP end. */
2015                 } else {
2016                         needwake = false;
2017                 }
2018                 rcu_nocb_unlock_irqrestore(rdp, flags);
2019                 if (needwake) {
2020                         swake_up_one(&rdp->nocb_cb_wq);
2021                         gotcbs = true;
2022                 }
2023                 if (needwake_gp)
2024                         rcu_gp_kthread_wake();
2025         }
2026
2027         my_rdp->nocb_gp_bypass = bypass;
2028         my_rdp->nocb_gp_gp = needwait_gp;
2029         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2030         if (bypass && !rcu_nocb_poll) {
2031                 // At least one child with non-empty ->nocb_bypass, so set
2032                 // timer in order to avoid stranding its callbacks.
2033                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2034                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2035                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2036         }
2037         if (rcu_nocb_poll) {
2038                 /* Polling, so trace if first poll in the series. */
2039                 if (gotcbs)
2040                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2041                 schedule_timeout_interruptible(1);
2042         } else if (!needwait_gp) {
2043                 /* Wait for callbacks to appear. */
2044                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2045                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2046                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2047                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2048         } else {
2049                 rnp = my_rdp->mynode;
2050                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2051                 swait_event_interruptible_exclusive(
2052                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2053                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2054                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2055                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2056         }
2057         if (!rcu_nocb_poll) {
2058                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2059                 if (bypass)
2060                         del_timer(&my_rdp->nocb_bypass_timer);
2061                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2062                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2063         }
2064         my_rdp->nocb_gp_seq = -1;
2065         WARN_ON(signal_pending(current));
2066 }
2067
2068 /*
2069  * No-CBs grace-period-wait kthread.  There is one of these per group
2070  * of CPUs, but only once at least one CPU in that group has come online
2071  * at least once since boot.  This kthread checks for newly posted
2072  * callbacks from any of the CPUs it is responsible for, waits for a
2073  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2074  * that then have callback-invocation work to do.
2075  */
2076 static int rcu_nocb_gp_kthread(void *arg)
2077 {
2078         struct rcu_data *rdp = arg;
2079
2080         for (;;) {
2081                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2082                 nocb_gp_wait(rdp);
2083                 cond_resched_tasks_rcu_qs();
2084         }
2085         return 0;
2086 }
2087
2088 /*
2089  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2090  * then, if there are no more, wait for more to appear.
2091  */
2092 static void nocb_cb_wait(struct rcu_data *rdp)
2093 {
2094         unsigned long cur_gp_seq;
2095         unsigned long flags;
2096         bool needwake_gp = false;
2097         struct rcu_node *rnp = rdp->mynode;
2098
2099         local_irq_save(flags);
2100         rcu_momentary_dyntick_idle();
2101         local_irq_restore(flags);
2102         local_bh_disable();
2103         rcu_do_batch(rdp);
2104         local_bh_enable();
2105         lockdep_assert_irqs_enabled();
2106         rcu_nocb_lock_irqsave(rdp, flags);
2107         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2108             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2109             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2110                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2111                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2112         }
2113         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2114                 rcu_nocb_unlock_irqrestore(rdp, flags);
2115                 if (needwake_gp)
2116                         rcu_gp_kthread_wake();
2117                 return;
2118         }
2119
2120         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2121         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2122         rcu_nocb_unlock_irqrestore(rdp, flags);
2123         if (needwake_gp)
2124                 rcu_gp_kthread_wake();
2125         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2126                                  !READ_ONCE(rdp->nocb_cb_sleep));
2127         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2128                 /* ^^^ Ensure CB invocation follows _sleep test. */
2129                 return;
2130         }
2131         WARN_ON(signal_pending(current));
2132         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2133 }
2134
2135 /*
2136  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2137  * nocb_cb_wait() to do the dirty work.
2138  */
2139 static int rcu_nocb_cb_kthread(void *arg)
2140 {
2141         struct rcu_data *rdp = arg;
2142
2143         // Each pass through this loop does one callback batch, and,
2144         // if there are no more ready callbacks, waits for them.
2145         for (;;) {
2146                 nocb_cb_wait(rdp);
2147                 cond_resched_tasks_rcu_qs();
2148         }
2149         return 0;
2150 }
2151
2152 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2153 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2154 {
2155         return READ_ONCE(rdp->nocb_defer_wakeup);
2156 }
2157
2158 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2159 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2160 {
2161         unsigned long flags;
2162         int ndw;
2163
2164         rcu_nocb_lock_irqsave(rdp, flags);
2165         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2166                 rcu_nocb_unlock_irqrestore(rdp, flags);
2167                 return;
2168         }
2169         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2170         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2171         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2172         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2173 }
2174
2175 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2176 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2177 {
2178         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2179
2180         do_nocb_deferred_wakeup_common(rdp);
2181 }
2182
2183 /*
2184  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2185  * This means we do an inexact common-case check.  Note that if
2186  * we miss, ->nocb_timer will eventually clean things up.
2187  */
2188 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2189 {
2190         if (rcu_nocb_need_deferred_wakeup(rdp))
2191                 do_nocb_deferred_wakeup_common(rdp);
2192 }
2193
2194 void rcu_nocb_flush_deferred_wakeup(void)
2195 {
2196         do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
2197 }
2198
2199 void __init rcu_init_nohz(void)
2200 {
2201         int cpu;
2202         bool need_rcu_nocb_mask = false;
2203         struct rcu_data *rdp;
2204
2205 #if defined(CONFIG_NO_HZ_FULL)
2206         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2207                 need_rcu_nocb_mask = true;
2208 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2209
2210         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2211                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2212                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2213                         return;
2214                 }
2215         }
2216         if (!cpumask_available(rcu_nocb_mask))
2217                 return;
2218
2219 #if defined(CONFIG_NO_HZ_FULL)
2220         if (tick_nohz_full_running)
2221                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2222 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2223
2224         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2225                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2226                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2227                             rcu_nocb_mask);
2228         }
2229         if (cpumask_empty(rcu_nocb_mask))
2230                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2231         else
2232                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2233                         cpumask_pr_args(rcu_nocb_mask));
2234         if (rcu_nocb_poll)
2235                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2236
2237         for_each_cpu(cpu, rcu_nocb_mask) {
2238                 rdp = per_cpu_ptr(&rcu_data, cpu);
2239                 if (rcu_segcblist_empty(&rdp->cblist))
2240                         rcu_segcblist_init(&rdp->cblist);
2241                 rcu_segcblist_offload(&rdp->cblist);
2242         }
2243         rcu_organize_nocb_kthreads();
2244 }
2245
2246 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2247 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2248 {
2249         init_swait_queue_head(&rdp->nocb_cb_wq);
2250         init_swait_queue_head(&rdp->nocb_gp_wq);
2251         raw_spin_lock_init(&rdp->nocb_lock);
2252         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2253         raw_spin_lock_init(&rdp->nocb_gp_lock);
2254         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2255         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2256         rcu_cblist_init(&rdp->nocb_bypass);
2257 }
2258
2259 /*
2260  * If the specified CPU is a no-CBs CPU that does not already have its
2261  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2262  * for this CPU's group has not yet been created, spawn it as well.
2263  */
2264 static void rcu_spawn_one_nocb_kthread(int cpu)
2265 {
2266         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2267         struct rcu_data *rdp_gp;
2268         struct task_struct *t;
2269
2270         /*
2271          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2272          * then nothing to do.
2273          */
2274         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2275                 return;
2276
2277         /* If we didn't spawn the GP kthread first, reorganize! */
2278         rdp_gp = rdp->nocb_gp_rdp;
2279         if (!rdp_gp->nocb_gp_kthread) {
2280                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2281                                 "rcuog/%d", rdp_gp->cpu);
2282                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2283                         return;
2284                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2285         }
2286
2287         /* Spawn the kthread for this CPU. */
2288         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2289                         "rcuo%c/%d", rcu_state.abbr, cpu);
2290         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2291                 return;
2292         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2293         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2294 }
2295
2296 /*
2297  * If the specified CPU is a no-CBs CPU that does not already have its
2298  * rcuo kthread, spawn it.
2299  */
2300 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2301 {
2302         if (rcu_scheduler_fully_active)
2303                 rcu_spawn_one_nocb_kthread(cpu);
2304 }
2305
2306 /*
2307  * Once the scheduler is running, spawn rcuo kthreads for all online
2308  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2309  * non-boot CPUs come online -- if this changes, we will need to add
2310  * some mutual exclusion.
2311  */
2312 static void __init rcu_spawn_nocb_kthreads(void)
2313 {
2314         int cpu;
2315
2316         for_each_online_cpu(cpu)
2317                 rcu_spawn_cpu_nocb_kthread(cpu);
2318 }
2319
2320 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2321 static int rcu_nocb_gp_stride = -1;
2322 module_param(rcu_nocb_gp_stride, int, 0444);
2323
2324 /*
2325  * Initialize GP-CB relationships for all no-CBs CPU.
2326  */
2327 static void __init rcu_organize_nocb_kthreads(void)
2328 {
2329         int cpu;
2330         bool firsttime = true;
2331         bool gotnocbs = false;
2332         bool gotnocbscbs = true;
2333         int ls = rcu_nocb_gp_stride;
2334         int nl = 0;  /* Next GP kthread. */
2335         struct rcu_data *rdp;
2336         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2337         struct rcu_data *rdp_prev = NULL;
2338
2339         if (!cpumask_available(rcu_nocb_mask))
2340                 return;
2341         if (ls == -1) {
2342                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2343                 rcu_nocb_gp_stride = ls;
2344         }
2345
2346         /*
2347          * Each pass through this loop sets up one rcu_data structure.
2348          * Should the corresponding CPU come online in the future, then
2349          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2350          */
2351         for_each_cpu(cpu, rcu_nocb_mask) {
2352                 rdp = per_cpu_ptr(&rcu_data, cpu);
2353                 if (rdp->cpu >= nl) {
2354                         /* New GP kthread, set up for CBs & next GP. */
2355                         gotnocbs = true;
2356                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2357                         rdp->nocb_gp_rdp = rdp;
2358                         rdp_gp = rdp;
2359                         if (dump_tree) {
2360                                 if (!firsttime)
2361                                         pr_cont("%s\n", gotnocbscbs
2362                                                         ? "" : " (self only)");
2363                                 gotnocbscbs = false;
2364                                 firsttime = false;
2365                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2366                                          __func__, cpu);
2367                         }
2368                 } else {
2369                         /* Another CB kthread, link to previous GP kthread. */
2370                         gotnocbscbs = true;
2371                         rdp->nocb_gp_rdp = rdp_gp;
2372                         rdp_prev->nocb_next_cb_rdp = rdp;
2373                         if (dump_tree)
2374                                 pr_cont(" %d", cpu);
2375                 }
2376                 rdp_prev = rdp;
2377         }
2378         if (gotnocbs && dump_tree)
2379                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2380 }
2381
2382 /*
2383  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2384  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2385  */
2386 void rcu_bind_current_to_nocb(void)
2387 {
2388         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2389                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2390 }
2391 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2392
2393 /*
2394  * Dump out nocb grace-period kthread state for the specified rcu_data
2395  * structure.
2396  */
2397 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2398 {
2399         struct rcu_node *rnp = rdp->mynode;
2400
2401         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2402                 rdp->cpu,
2403                 "kK"[!!rdp->nocb_gp_kthread],
2404                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2405                 "dD"[!!rdp->nocb_defer_wakeup],
2406                 "tT"[timer_pending(&rdp->nocb_timer)],
2407                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2408                 "sS"[!!rdp->nocb_gp_sleep],
2409                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2410                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2411                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2412                 ".B"[!!rdp->nocb_gp_bypass],
2413                 ".G"[!!rdp->nocb_gp_gp],
2414                 (long)rdp->nocb_gp_seq,
2415                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2416 }
2417
2418 /* Dump out nocb kthread state for the specified rcu_data structure. */
2419 static void show_rcu_nocb_state(struct rcu_data *rdp)
2420 {
2421         struct rcu_segcblist *rsclp = &rdp->cblist;
2422         bool waslocked;
2423         bool wastimer;
2424         bool wassleep;
2425
2426         if (rdp->nocb_gp_rdp == rdp)
2427                 show_rcu_nocb_gp_state(rdp);
2428
2429         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2430                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2431                 "kK"[!!rdp->nocb_cb_kthread],
2432                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2433                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2434                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2435                 "sS"[!!rdp->nocb_cb_sleep],
2436                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2437                 jiffies - rdp->nocb_bypass_first,
2438                 jiffies - rdp->nocb_nobypass_last,
2439                 rdp->nocb_nobypass_count,
2440                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2441                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2442                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2443                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2444                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2445                 rcu_segcblist_n_cbs(&rdp->cblist));
2446
2447         /* It is OK for GP kthreads to have GP state. */
2448         if (rdp->nocb_gp_rdp == rdp)
2449                 return;
2450
2451         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2452         wastimer = timer_pending(&rdp->nocb_timer);
2453         wassleep = swait_active(&rdp->nocb_gp_wq);
2454         if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2455             !waslocked && !wastimer && !wassleep)
2456                 return;  /* Nothing untowards. */
2457
2458         pr_info("   !!! %c%c%c%c %c\n",
2459                 "lL"[waslocked],
2460                 "dD"[!!rdp->nocb_defer_wakeup],
2461                 "tT"[wastimer],
2462                 "sS"[!!rdp->nocb_gp_sleep],
2463                 ".W"[wassleep]);
2464 }
2465
2466 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2467
2468 /* No ->nocb_lock to acquire.  */
2469 static void rcu_nocb_lock(struct rcu_data *rdp)
2470 {
2471 }
2472
2473 /* No ->nocb_lock to release.  */
2474 static void rcu_nocb_unlock(struct rcu_data *rdp)
2475 {
2476 }
2477
2478 /* No ->nocb_lock to release.  */
2479 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2480                                        unsigned long flags)
2481 {
2482         local_irq_restore(flags);
2483 }
2484
2485 /* Lockdep check that ->cblist may be safely accessed. */
2486 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2487 {
2488         lockdep_assert_irqs_disabled();
2489 }
2490
2491 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2492 {
2493 }
2494
2495 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2496 {
2497         return NULL;
2498 }
2499
2500 static void rcu_init_one_nocb(struct rcu_node *rnp)
2501 {
2502 }
2503
2504 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2505                                   unsigned long j)
2506 {
2507         return true;
2508 }
2509
2510 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2511                                 bool *was_alldone, unsigned long flags)
2512 {
2513         return false;
2514 }
2515
2516 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2517                                  unsigned long flags)
2518 {
2519         WARN_ON_ONCE(1);  /* Should be dead code! */
2520 }
2521
2522 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2523 {
2524 }
2525
2526 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2527 {
2528         return false;
2529 }
2530
2531 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2532 {
2533 }
2534
2535 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2536 {
2537 }
2538
2539 static void __init rcu_spawn_nocb_kthreads(void)
2540 {
2541 }
2542
2543 static void show_rcu_nocb_state(struct rcu_data *rdp)
2544 {
2545 }
2546
2547 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2548
2549 /*
2550  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2551  * grace-period kthread will do force_quiescent_state() processing?
2552  * The idea is to avoid waking up RCU core processing on such a
2553  * CPU unless the grace period has extended for too long.
2554  *
2555  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2556  * CONFIG_RCU_NOCB_CPU CPUs.
2557  */
2558 static bool rcu_nohz_full_cpu(void)
2559 {
2560 #ifdef CONFIG_NO_HZ_FULL
2561         if (tick_nohz_full_cpu(smp_processor_id()) &&
2562             (!rcu_gp_in_progress() ||
2563              ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2564                 return true;
2565 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2566         return false;
2567 }
2568
2569 /*
2570  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2571  */
2572 static void rcu_bind_gp_kthread(void)
2573 {
2574         if (!tick_nohz_full_enabled())
2575                 return;
2576         housekeeping_affine(current, HK_FLAG_RCU);
2577 }
2578
2579 /* Record the current task on dyntick-idle entry. */
2580 static void rcu_dynticks_task_enter(void)
2581 {
2582 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2583         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2584 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2585 }
2586
2587 /* Record no current task on dyntick-idle exit. */
2588 static void rcu_dynticks_task_exit(void)
2589 {
2590 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2591         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2592 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2593 }