GNU Linux-libre 6.5.10-gnu
[releases.git] / kernel / rcu / refscale.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <joel@joelfernandes.org>
9
10 #define pr_fmt(fmt) fmt
11
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/spinlock.h>
32 #include <linux/smp.h>
33 #include <linux/stat.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/torture.h>
37 #include <linux/types.h>
38
39 #include "rcu.h"
40
41 #define SCALE_FLAG "-ref-scale: "
42
43 #define SCALEOUT(s, x...) \
44         pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
45
46 #define VERBOSE_SCALEOUT(s, x...) \
47         do { \
48                 if (verbose) \
49                         pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
50         } while (0)
51
52 static atomic_t verbose_batch_ctr;
53
54 #define VERBOSE_SCALEOUT_BATCH(s, x...)                                                 \
55 do {                                                                                    \
56         if (verbose &&                                                                  \
57             (verbose_batched <= 0 ||                                                    \
58              !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {             \
59                 schedule_timeout_uninterruptible(1);                                    \
60                 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);                     \
61         }                                                                               \
62 } while (0)
63
64 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
65
66 MODULE_LICENSE("GPL");
67 MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
68
69 static char *scale_type = "rcu";
70 module_param(scale_type, charp, 0444);
71 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
72
73 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
74 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
75
76 // Wait until there are multiple CPUs before starting test.
77 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
78               "Holdoff time before test start (s)");
79 // Number of typesafe_lookup structures, that is, the degree of concurrency.
80 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
81 // Number of loops per experiment, all readers execute operations concurrently.
82 torture_param(long, loops, 10000, "Number of loops per experiment.");
83 // Number of readers, with -1 defaulting to about 75% of the CPUs.
84 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
85 // Number of runs.
86 torture_param(int, nruns, 30, "Number of experiments to run.");
87 // Reader delay in nanoseconds, 0 for no delay.
88 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
89
90 #ifdef MODULE
91 # define REFSCALE_SHUTDOWN 0
92 #else
93 # define REFSCALE_SHUTDOWN 1
94 #endif
95
96 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
97               "Shutdown at end of scalability tests.");
98
99 struct reader_task {
100         struct task_struct *task;
101         int start_reader;
102         wait_queue_head_t wq;
103         u64 last_duration_ns;
104 };
105
106 static struct task_struct *shutdown_task;
107 static wait_queue_head_t shutdown_wq;
108
109 static struct task_struct *main_task;
110 static wait_queue_head_t main_wq;
111 static int shutdown_start;
112
113 static struct reader_task *reader_tasks;
114
115 // Number of readers that are part of the current experiment.
116 static atomic_t nreaders_exp;
117
118 // Use to wait for all threads to start.
119 static atomic_t n_init;
120 static atomic_t n_started;
121 static atomic_t n_warmedup;
122 static atomic_t n_cooleddown;
123
124 // Track which experiment is currently running.
125 static int exp_idx;
126
127 // Operations vector for selecting different types of tests.
128 struct ref_scale_ops {
129         bool (*init)(void);
130         void (*cleanup)(void);
131         void (*readsection)(const int nloops);
132         void (*delaysection)(const int nloops, const int udl, const int ndl);
133         const char *name;
134 };
135
136 static struct ref_scale_ops *cur_ops;
137
138 static void un_delay(const int udl, const int ndl)
139 {
140         if (udl)
141                 udelay(udl);
142         if (ndl)
143                 ndelay(ndl);
144 }
145
146 static void ref_rcu_read_section(const int nloops)
147 {
148         int i;
149
150         for (i = nloops; i >= 0; i--) {
151                 rcu_read_lock();
152                 rcu_read_unlock();
153         }
154 }
155
156 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
157 {
158         int i;
159
160         for (i = nloops; i >= 0; i--) {
161                 rcu_read_lock();
162                 un_delay(udl, ndl);
163                 rcu_read_unlock();
164         }
165 }
166
167 static bool rcu_sync_scale_init(void)
168 {
169         return true;
170 }
171
172 static struct ref_scale_ops rcu_ops = {
173         .init           = rcu_sync_scale_init,
174         .readsection    = ref_rcu_read_section,
175         .delaysection   = ref_rcu_delay_section,
176         .name           = "rcu"
177 };
178
179 // Definitions for SRCU ref scale testing.
180 DEFINE_STATIC_SRCU(srcu_refctl_scale);
181 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
182
183 static void srcu_ref_scale_read_section(const int nloops)
184 {
185         int i;
186         int idx;
187
188         for (i = nloops; i >= 0; i--) {
189                 idx = srcu_read_lock(srcu_ctlp);
190                 srcu_read_unlock(srcu_ctlp, idx);
191         }
192 }
193
194 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
195 {
196         int i;
197         int idx;
198
199         for (i = nloops; i >= 0; i--) {
200                 idx = srcu_read_lock(srcu_ctlp);
201                 un_delay(udl, ndl);
202                 srcu_read_unlock(srcu_ctlp, idx);
203         }
204 }
205
206 static struct ref_scale_ops srcu_ops = {
207         .init           = rcu_sync_scale_init,
208         .readsection    = srcu_ref_scale_read_section,
209         .delaysection   = srcu_ref_scale_delay_section,
210         .name           = "srcu"
211 };
212
213 #ifdef CONFIG_TASKS_RCU
214
215 // Definitions for RCU Tasks ref scale testing: Empty read markers.
216 // These definitions also work for RCU Rude readers.
217 static void rcu_tasks_ref_scale_read_section(const int nloops)
218 {
219         int i;
220
221         for (i = nloops; i >= 0; i--)
222                 continue;
223 }
224
225 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
226 {
227         int i;
228
229         for (i = nloops; i >= 0; i--)
230                 un_delay(udl, ndl);
231 }
232
233 static struct ref_scale_ops rcu_tasks_ops = {
234         .init           = rcu_sync_scale_init,
235         .readsection    = rcu_tasks_ref_scale_read_section,
236         .delaysection   = rcu_tasks_ref_scale_delay_section,
237         .name           = "rcu-tasks"
238 };
239
240 #define RCU_TASKS_OPS &rcu_tasks_ops,
241
242 #else // #ifdef CONFIG_TASKS_RCU
243
244 #define RCU_TASKS_OPS
245
246 #endif // #else // #ifdef CONFIG_TASKS_RCU
247
248 #ifdef CONFIG_TASKS_TRACE_RCU
249
250 // Definitions for RCU Tasks Trace ref scale testing.
251 static void rcu_trace_ref_scale_read_section(const int nloops)
252 {
253         int i;
254
255         for (i = nloops; i >= 0; i--) {
256                 rcu_read_lock_trace();
257                 rcu_read_unlock_trace();
258         }
259 }
260
261 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
262 {
263         int i;
264
265         for (i = nloops; i >= 0; i--) {
266                 rcu_read_lock_trace();
267                 un_delay(udl, ndl);
268                 rcu_read_unlock_trace();
269         }
270 }
271
272 static struct ref_scale_ops rcu_trace_ops = {
273         .init           = rcu_sync_scale_init,
274         .readsection    = rcu_trace_ref_scale_read_section,
275         .delaysection   = rcu_trace_ref_scale_delay_section,
276         .name           = "rcu-trace"
277 };
278
279 #define RCU_TRACE_OPS &rcu_trace_ops,
280
281 #else // #ifdef CONFIG_TASKS_TRACE_RCU
282
283 #define RCU_TRACE_OPS
284
285 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
286
287 // Definitions for reference count
288 static atomic_t refcnt;
289
290 static void ref_refcnt_section(const int nloops)
291 {
292         int i;
293
294         for (i = nloops; i >= 0; i--) {
295                 atomic_inc(&refcnt);
296                 atomic_dec(&refcnt);
297         }
298 }
299
300 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
301 {
302         int i;
303
304         for (i = nloops; i >= 0; i--) {
305                 atomic_inc(&refcnt);
306                 un_delay(udl, ndl);
307                 atomic_dec(&refcnt);
308         }
309 }
310
311 static struct ref_scale_ops refcnt_ops = {
312         .init           = rcu_sync_scale_init,
313         .readsection    = ref_refcnt_section,
314         .delaysection   = ref_refcnt_delay_section,
315         .name           = "refcnt"
316 };
317
318 // Definitions for rwlock
319 static rwlock_t test_rwlock;
320
321 static bool ref_rwlock_init(void)
322 {
323         rwlock_init(&test_rwlock);
324         return true;
325 }
326
327 static void ref_rwlock_section(const int nloops)
328 {
329         int i;
330
331         for (i = nloops; i >= 0; i--) {
332                 read_lock(&test_rwlock);
333                 read_unlock(&test_rwlock);
334         }
335 }
336
337 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
338 {
339         int i;
340
341         for (i = nloops; i >= 0; i--) {
342                 read_lock(&test_rwlock);
343                 un_delay(udl, ndl);
344                 read_unlock(&test_rwlock);
345         }
346 }
347
348 static struct ref_scale_ops rwlock_ops = {
349         .init           = ref_rwlock_init,
350         .readsection    = ref_rwlock_section,
351         .delaysection   = ref_rwlock_delay_section,
352         .name           = "rwlock"
353 };
354
355 // Definitions for rwsem
356 static struct rw_semaphore test_rwsem;
357
358 static bool ref_rwsem_init(void)
359 {
360         init_rwsem(&test_rwsem);
361         return true;
362 }
363
364 static void ref_rwsem_section(const int nloops)
365 {
366         int i;
367
368         for (i = nloops; i >= 0; i--) {
369                 down_read(&test_rwsem);
370                 up_read(&test_rwsem);
371         }
372 }
373
374 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
375 {
376         int i;
377
378         for (i = nloops; i >= 0; i--) {
379                 down_read(&test_rwsem);
380                 un_delay(udl, ndl);
381                 up_read(&test_rwsem);
382         }
383 }
384
385 static struct ref_scale_ops rwsem_ops = {
386         .init           = ref_rwsem_init,
387         .readsection    = ref_rwsem_section,
388         .delaysection   = ref_rwsem_delay_section,
389         .name           = "rwsem"
390 };
391
392 // Definitions for global spinlock
393 static DEFINE_RAW_SPINLOCK(test_lock);
394
395 static void ref_lock_section(const int nloops)
396 {
397         int i;
398
399         preempt_disable();
400         for (i = nloops; i >= 0; i--) {
401                 raw_spin_lock(&test_lock);
402                 raw_spin_unlock(&test_lock);
403         }
404         preempt_enable();
405 }
406
407 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
408 {
409         int i;
410
411         preempt_disable();
412         for (i = nloops; i >= 0; i--) {
413                 raw_spin_lock(&test_lock);
414                 un_delay(udl, ndl);
415                 raw_spin_unlock(&test_lock);
416         }
417         preempt_enable();
418 }
419
420 static struct ref_scale_ops lock_ops = {
421         .readsection    = ref_lock_section,
422         .delaysection   = ref_lock_delay_section,
423         .name           = "lock"
424 };
425
426 // Definitions for global irq-save spinlock
427
428 static void ref_lock_irq_section(const int nloops)
429 {
430         unsigned long flags;
431         int i;
432
433         preempt_disable();
434         for (i = nloops; i >= 0; i--) {
435                 raw_spin_lock_irqsave(&test_lock, flags);
436                 raw_spin_unlock_irqrestore(&test_lock, flags);
437         }
438         preempt_enable();
439 }
440
441 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
442 {
443         unsigned long flags;
444         int i;
445
446         preempt_disable();
447         for (i = nloops; i >= 0; i--) {
448                 raw_spin_lock_irqsave(&test_lock, flags);
449                 un_delay(udl, ndl);
450                 raw_spin_unlock_irqrestore(&test_lock, flags);
451         }
452         preempt_enable();
453 }
454
455 static struct ref_scale_ops lock_irq_ops = {
456         .readsection    = ref_lock_irq_section,
457         .delaysection   = ref_lock_irq_delay_section,
458         .name           = "lock-irq"
459 };
460
461 // Definitions acquire-release.
462 static DEFINE_PER_CPU(unsigned long, test_acqrel);
463
464 static void ref_acqrel_section(const int nloops)
465 {
466         unsigned long x;
467         int i;
468
469         preempt_disable();
470         for (i = nloops; i >= 0; i--) {
471                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
472                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
473         }
474         preempt_enable();
475 }
476
477 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
478 {
479         unsigned long x;
480         int i;
481
482         preempt_disable();
483         for (i = nloops; i >= 0; i--) {
484                 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
485                 un_delay(udl, ndl);
486                 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
487         }
488         preempt_enable();
489 }
490
491 static struct ref_scale_ops acqrel_ops = {
492         .readsection    = ref_acqrel_section,
493         .delaysection   = ref_acqrel_delay_section,
494         .name           = "acqrel"
495 };
496
497 static volatile u64 stopopts;
498
499 static void ref_clock_section(const int nloops)
500 {
501         u64 x = 0;
502         int i;
503
504         preempt_disable();
505         for (i = nloops; i >= 0; i--)
506                 x += ktime_get_real_fast_ns();
507         preempt_enable();
508         stopopts = x;
509 }
510
511 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
512 {
513         u64 x = 0;
514         int i;
515
516         preempt_disable();
517         for (i = nloops; i >= 0; i--) {
518                 x += ktime_get_real_fast_ns();
519                 un_delay(udl, ndl);
520         }
521         preempt_enable();
522         stopopts = x;
523 }
524
525 static struct ref_scale_ops clock_ops = {
526         .readsection    = ref_clock_section,
527         .delaysection   = ref_clock_delay_section,
528         .name           = "clock"
529 };
530
531 ////////////////////////////////////////////////////////////////////////
532 //
533 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
534 //
535
536 // Item to look up in a typesafe manner.  Array of pointers to these.
537 struct refscale_typesafe {
538         atomic_t rts_refctr;  // Used by all flavors
539         spinlock_t rts_lock;
540         seqlock_t rts_seqlock;
541         unsigned int a;
542         unsigned int b;
543 };
544
545 static struct kmem_cache *typesafe_kmem_cachep;
546 static struct refscale_typesafe **rtsarray;
547 static long rtsarray_size;
548 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
549 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
550 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
551
552 // Conditionally acquire an explicit in-structure reference count.
553 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
554 {
555         return atomic_inc_not_zero(&rtsp->rts_refctr);
556 }
557
558 // Unconditionally release an explicit in-structure reference count.
559 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
560 {
561         if (!atomic_dec_return(&rtsp->rts_refctr)) {
562                 WRITE_ONCE(rtsp->a, rtsp->a + 1);
563                 kmem_cache_free(typesafe_kmem_cachep, rtsp);
564         }
565         return true;
566 }
567
568 // Unconditionally acquire an explicit in-structure spinlock.
569 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
570 {
571         spin_lock(&rtsp->rts_lock);
572         return true;
573 }
574
575 // Unconditionally release an explicit in-structure spinlock.
576 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
577 {
578         spin_unlock(&rtsp->rts_lock);
579         return true;
580 }
581
582 // Unconditionally acquire an explicit in-structure sequence lock.
583 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
584 {
585         *start = read_seqbegin(&rtsp->rts_seqlock);
586         return true;
587 }
588
589 // Conditionally release an explicit in-structure sequence lock.  Return
590 // true if this release was successful, that is, if no retry is required.
591 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
592 {
593         return !read_seqretry(&rtsp->rts_seqlock, start);
594 }
595
596 // Do a read-side critical section with the specified delay in
597 // microseconds and nanoseconds inserted so as to increase probability
598 // of failure.
599 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
600 {
601         unsigned int a;
602         unsigned int b;
603         int i;
604         long idx;
605         struct refscale_typesafe *rtsp;
606         unsigned int start;
607
608         for (i = nloops; i >= 0; i--) {
609                 preempt_disable();
610                 idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
611                 preempt_enable();
612 retry:
613                 rcu_read_lock();
614                 rtsp = rcu_dereference(rtsarray[idx]);
615                 a = READ_ONCE(rtsp->a);
616                 if (!rts_acquire(rtsp, &start)) {
617                         rcu_read_unlock();
618                         goto retry;
619                 }
620                 if (a != READ_ONCE(rtsp->a)) {
621                         (void)rts_release(rtsp, start);
622                         rcu_read_unlock();
623                         goto retry;
624                 }
625                 un_delay(udl, ndl);
626                 // Remember, seqlock read-side release can fail.
627                 if (!rts_release(rtsp, start)) {
628                         rcu_read_unlock();
629                         goto retry;
630                 }
631                 b = READ_ONCE(rtsp->a);
632                 WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
633                 b = rtsp->b;
634                 rcu_read_unlock();
635                 WARN_ON_ONCE(a * a != b);
636         }
637 }
638
639 // Because the acquisition and release methods are expensive, there
640 // is no point in optimizing away the un_delay() function's two checks.
641 // Thus simply define typesafe_read_section() as a simple wrapper around
642 // typesafe_delay_section().
643 static void typesafe_read_section(const int nloops)
644 {
645         typesafe_delay_section(nloops, 0, 0);
646 }
647
648 // Allocate and initialize one refscale_typesafe structure.
649 static struct refscale_typesafe *typesafe_alloc_one(void)
650 {
651         struct refscale_typesafe *rtsp;
652
653         rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
654         if (!rtsp)
655                 return NULL;
656         atomic_set(&rtsp->rts_refctr, 1);
657         WRITE_ONCE(rtsp->a, rtsp->a + 1);
658         WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
659         return rtsp;
660 }
661
662 // Slab-allocator constructor for refscale_typesafe structures created
663 // out of a new slab of system memory.
664 static void refscale_typesafe_ctor(void *rtsp_in)
665 {
666         struct refscale_typesafe *rtsp = rtsp_in;
667
668         spin_lock_init(&rtsp->rts_lock);
669         seqlock_init(&rtsp->rts_seqlock);
670         preempt_disable();
671         rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
672         preempt_enable();
673 }
674
675 static struct ref_scale_ops typesafe_ref_ops;
676 static struct ref_scale_ops typesafe_lock_ops;
677 static struct ref_scale_ops typesafe_seqlock_ops;
678
679 // Initialize for a typesafe test.
680 static bool typesafe_init(void)
681 {
682         long idx;
683         long si = lookup_instances;
684
685         typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
686                                                  sizeof(struct refscale_typesafe), sizeof(void *),
687                                                  SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
688         if (!typesafe_kmem_cachep)
689                 return false;
690         if (si < 0)
691                 si = -si * nr_cpu_ids;
692         else if (si == 0)
693                 si = nr_cpu_ids;
694         rtsarray_size = si;
695         rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
696         if (!rtsarray)
697                 return false;
698         for (idx = 0; idx < rtsarray_size; idx++) {
699                 rtsarray[idx] = typesafe_alloc_one();
700                 if (!rtsarray[idx])
701                         return false;
702         }
703         if (cur_ops == &typesafe_ref_ops) {
704                 rts_acquire = typesafe_ref_acquire;
705                 rts_release = typesafe_ref_release;
706         } else if (cur_ops == &typesafe_lock_ops) {
707                 rts_acquire = typesafe_lock_acquire;
708                 rts_release = typesafe_lock_release;
709         } else if (cur_ops == &typesafe_seqlock_ops) {
710                 rts_acquire = typesafe_seqlock_acquire;
711                 rts_release = typesafe_seqlock_release;
712         } else {
713                 WARN_ON_ONCE(1);
714                 return false;
715         }
716         return true;
717 }
718
719 // Clean up after a typesafe test.
720 static void typesafe_cleanup(void)
721 {
722         long idx;
723
724         if (rtsarray) {
725                 for (idx = 0; idx < rtsarray_size; idx++)
726                         kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
727                 kfree(rtsarray);
728                 rtsarray = NULL;
729                 rtsarray_size = 0;
730         }
731         kmem_cache_destroy(typesafe_kmem_cachep);
732         typesafe_kmem_cachep = NULL;
733         rts_acquire = NULL;
734         rts_release = NULL;
735 }
736
737 // The typesafe_init() function distinguishes these structures by address.
738 static struct ref_scale_ops typesafe_ref_ops = {
739         .init           = typesafe_init,
740         .cleanup        = typesafe_cleanup,
741         .readsection    = typesafe_read_section,
742         .delaysection   = typesafe_delay_section,
743         .name           = "typesafe_ref"
744 };
745
746 static struct ref_scale_ops typesafe_lock_ops = {
747         .init           = typesafe_init,
748         .cleanup        = typesafe_cleanup,
749         .readsection    = typesafe_read_section,
750         .delaysection   = typesafe_delay_section,
751         .name           = "typesafe_lock"
752 };
753
754 static struct ref_scale_ops typesafe_seqlock_ops = {
755         .init           = typesafe_init,
756         .cleanup        = typesafe_cleanup,
757         .readsection    = typesafe_read_section,
758         .delaysection   = typesafe_delay_section,
759         .name           = "typesafe_seqlock"
760 };
761
762 static void rcu_scale_one_reader(void)
763 {
764         if (readdelay <= 0)
765                 cur_ops->readsection(loops);
766         else
767                 cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
768 }
769
770 // Reader kthread.  Repeatedly does empty RCU read-side
771 // critical section, minimizing update-side interference.
772 static int
773 ref_scale_reader(void *arg)
774 {
775         unsigned long flags;
776         long me = (long)arg;
777         struct reader_task *rt = &(reader_tasks[me]);
778         u64 start;
779         s64 duration;
780
781         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
782         WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
783         set_user_nice(current, MAX_NICE);
784         atomic_inc(&n_init);
785         if (holdoff)
786                 schedule_timeout_interruptible(holdoff * HZ);
787 repeat:
788         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
789
790         // Wait for signal that this reader can start.
791         wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
792                            torture_must_stop());
793
794         if (torture_must_stop())
795                 goto end;
796
797         // Make sure that the CPU is affinitized appropriately during testing.
798         WARN_ON_ONCE(raw_smp_processor_id() != me);
799
800         WRITE_ONCE(rt->start_reader, 0);
801         if (!atomic_dec_return(&n_started))
802                 while (atomic_read_acquire(&n_started))
803                         cpu_relax();
804
805         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
806
807
808         // To reduce noise, do an initial cache-warming invocation, check
809         // in, and then keep warming until everyone has checked in.
810         rcu_scale_one_reader();
811         if (!atomic_dec_return(&n_warmedup))
812                 while (atomic_read_acquire(&n_warmedup))
813                         rcu_scale_one_reader();
814         // Also keep interrupts disabled.  This also has the effect
815         // of preventing entries into slow path for rcu_read_unlock().
816         local_irq_save(flags);
817         start = ktime_get_mono_fast_ns();
818
819         rcu_scale_one_reader();
820
821         duration = ktime_get_mono_fast_ns() - start;
822         local_irq_restore(flags);
823
824         rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
825         // To reduce runtime-skew noise, do maintain-load invocations until
826         // everyone is done.
827         if (!atomic_dec_return(&n_cooleddown))
828                 while (atomic_read_acquire(&n_cooleddown))
829                         rcu_scale_one_reader();
830
831         if (atomic_dec_and_test(&nreaders_exp))
832                 wake_up(&main_wq);
833
834         VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
835                                 me, exp_idx, atomic_read(&nreaders_exp));
836
837         if (!torture_must_stop())
838                 goto repeat;
839 end:
840         torture_kthread_stopping("ref_scale_reader");
841         return 0;
842 }
843
844 static void reset_readers(void)
845 {
846         int i;
847         struct reader_task *rt;
848
849         for (i = 0; i < nreaders; i++) {
850                 rt = &(reader_tasks[i]);
851
852                 rt->last_duration_ns = 0;
853         }
854 }
855
856 // Print the results of each reader and return the sum of all their durations.
857 static u64 process_durations(int n)
858 {
859         int i;
860         struct reader_task *rt;
861         char buf1[64];
862         char *buf;
863         u64 sum = 0;
864
865         buf = kmalloc(800 + 64, GFP_KERNEL);
866         if (!buf)
867                 return 0;
868         buf[0] = 0;
869         sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
870                 exp_idx);
871
872         for (i = 0; i < n && !torture_must_stop(); i++) {
873                 rt = &(reader_tasks[i]);
874                 sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
875
876                 if (i % 5 == 0)
877                         strcat(buf, "\n");
878                 if (strlen(buf) >= 800) {
879                         pr_alert("%s", buf);
880                         buf[0] = 0;
881                 }
882                 strcat(buf, buf1);
883
884                 sum += rt->last_duration_ns;
885         }
886         pr_alert("%s\n", buf);
887
888         kfree(buf);
889         return sum;
890 }
891
892 // The main_func is the main orchestrator, it performs a bunch of
893 // experiments.  For every experiment, it orders all the readers
894 // involved to start and waits for them to finish the experiment. It
895 // then reads their timestamps and starts the next experiment. Each
896 // experiment progresses from 1 concurrent reader to N of them at which
897 // point all the timestamps are printed.
898 static int main_func(void *arg)
899 {
900         int exp, r;
901         char buf1[64];
902         char *buf;
903         u64 *result_avg;
904
905         set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
906         set_user_nice(current, MAX_NICE);
907
908         VERBOSE_SCALEOUT("main_func task started");
909         result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
910         buf = kzalloc(800 + 64, GFP_KERNEL);
911         if (!result_avg || !buf) {
912                 SCALEOUT_ERRSTRING("out of memory");
913                 goto oom_exit;
914         }
915         if (holdoff)
916                 schedule_timeout_interruptible(holdoff * HZ);
917
918         // Wait for all threads to start.
919         atomic_inc(&n_init);
920         while (atomic_read(&n_init) < nreaders + 1)
921                 schedule_timeout_uninterruptible(1);
922
923         // Start exp readers up per experiment
924         for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
925                 if (torture_must_stop())
926                         goto end;
927
928                 reset_readers();
929                 atomic_set(&nreaders_exp, nreaders);
930                 atomic_set(&n_started, nreaders);
931                 atomic_set(&n_warmedup, nreaders);
932                 atomic_set(&n_cooleddown, nreaders);
933
934                 exp_idx = exp;
935
936                 for (r = 0; r < nreaders; r++) {
937                         smp_store_release(&reader_tasks[r].start_reader, 1);
938                         wake_up(&reader_tasks[r].wq);
939                 }
940
941                 VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
942                                 nreaders);
943
944                 wait_event(main_wq,
945                            !atomic_read(&nreaders_exp) || torture_must_stop());
946
947                 VERBOSE_SCALEOUT("main_func: experiment ended");
948
949                 if (torture_must_stop())
950                         goto end;
951
952                 result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
953         }
954
955         // Print the average of all experiments
956         SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
957
958         pr_alert("Runs\tTime(ns)\n");
959         for (exp = 0; exp < nruns; exp++) {
960                 u64 avg;
961                 u32 rem;
962
963                 avg = div_u64_rem(result_avg[exp], 1000, &rem);
964                 sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
965                 strcat(buf, buf1);
966                 if (strlen(buf) >= 800) {
967                         pr_alert("%s", buf);
968                         buf[0] = 0;
969                 }
970         }
971
972         pr_alert("%s", buf);
973
974 oom_exit:
975         // This will shutdown everything including us.
976         if (shutdown) {
977                 shutdown_start = 1;
978                 wake_up(&shutdown_wq);
979         }
980
981         // Wait for torture to stop us
982         while (!torture_must_stop())
983                 schedule_timeout_uninterruptible(1);
984
985 end:
986         torture_kthread_stopping("main_func");
987         kfree(result_avg);
988         kfree(buf);
989         return 0;
990 }
991
992 static void
993 ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
994 {
995         pr_alert("%s" SCALE_FLAG
996                  "--- %s:  verbose=%d shutdown=%d holdoff=%d loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
997                  verbose, shutdown, holdoff, loops, nreaders, nruns, readdelay);
998 }
999
1000 static void
1001 ref_scale_cleanup(void)
1002 {
1003         int i;
1004
1005         if (torture_cleanup_begin())
1006                 return;
1007
1008         if (!cur_ops) {
1009                 torture_cleanup_end();
1010                 return;
1011         }
1012
1013         if (reader_tasks) {
1014                 for (i = 0; i < nreaders; i++)
1015                         torture_stop_kthread("ref_scale_reader",
1016                                              reader_tasks[i].task);
1017         }
1018         kfree(reader_tasks);
1019
1020         torture_stop_kthread("main_task", main_task);
1021         kfree(main_task);
1022
1023         // Do scale-type-specific cleanup operations.
1024         if (cur_ops->cleanup != NULL)
1025                 cur_ops->cleanup();
1026
1027         torture_cleanup_end();
1028 }
1029
1030 // Shutdown kthread.  Just waits to be awakened, then shuts down system.
1031 static int
1032 ref_scale_shutdown(void *arg)
1033 {
1034         wait_event_idle(shutdown_wq, shutdown_start);
1035
1036         smp_mb(); // Wake before output.
1037         ref_scale_cleanup();
1038         kernel_power_off();
1039
1040         return -EINVAL;
1041 }
1042
1043 static int __init
1044 ref_scale_init(void)
1045 {
1046         long i;
1047         int firsterr = 0;
1048         static struct ref_scale_ops *scale_ops[] = {
1049                 &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1050                 &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops,
1051                 &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1052         };
1053
1054         if (!torture_init_begin(scale_type, verbose))
1055                 return -EBUSY;
1056
1057         for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1058                 cur_ops = scale_ops[i];
1059                 if (strcmp(scale_type, cur_ops->name) == 0)
1060                         break;
1061         }
1062         if (i == ARRAY_SIZE(scale_ops)) {
1063                 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1064                 pr_alert("rcu-scale types:");
1065                 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1066                         pr_cont(" %s", scale_ops[i]->name);
1067                 pr_cont("\n");
1068                 firsterr = -EINVAL;
1069                 cur_ops = NULL;
1070                 goto unwind;
1071         }
1072         if (cur_ops->init)
1073                 if (!cur_ops->init()) {
1074                         firsterr = -EUCLEAN;
1075                         goto unwind;
1076                 }
1077
1078         ref_scale_print_module_parms(cur_ops, "Start of test");
1079
1080         // Shutdown task
1081         if (shutdown) {
1082                 init_waitqueue_head(&shutdown_wq);
1083                 firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1084                                                   shutdown_task);
1085                 if (torture_init_error(firsterr))
1086                         goto unwind;
1087                 schedule_timeout_uninterruptible(1);
1088         }
1089
1090         // Reader tasks (default to ~75% of online CPUs).
1091         if (nreaders < 0)
1092                 nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1093         if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1094                 loops = 1;
1095         if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1096                 nreaders = 1;
1097         if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1098                 nruns = 1;
1099         reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1100                                GFP_KERNEL);
1101         if (!reader_tasks) {
1102                 SCALEOUT_ERRSTRING("out of memory");
1103                 firsterr = -ENOMEM;
1104                 goto unwind;
1105         }
1106
1107         VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1108
1109         for (i = 0; i < nreaders; i++) {
1110                 init_waitqueue_head(&reader_tasks[i].wq);
1111                 firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1112                                                   reader_tasks[i].task);
1113                 if (torture_init_error(firsterr))
1114                         goto unwind;
1115         }
1116
1117         // Main Task
1118         init_waitqueue_head(&main_wq);
1119         firsterr = torture_create_kthread(main_func, NULL, main_task);
1120         if (torture_init_error(firsterr))
1121                 goto unwind;
1122
1123         torture_init_end();
1124         return 0;
1125
1126 unwind:
1127         torture_init_end();
1128         ref_scale_cleanup();
1129         if (shutdown) {
1130                 WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1131                 kernel_power_off();
1132         }
1133         return firsterr;
1134 }
1135
1136 module_init(ref_scale_init);
1137 module_exit(ref_scale_cleanup);