GNU Linux-libre 5.17.9-gnu
[releases.git] / kernel / power / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 u32 swsusp_hardware_signature;
40
41 /*
42  * When reading an {un,}compressed image, we may restore pages in place,
43  * in which case some architectures need these pages cleaning before they
44  * can be executed. We don't know which pages these may be, so clean the lot.
45  */
46 static bool clean_pages_on_read;
47 static bool clean_pages_on_decompress;
48
49 /*
50  *      The swap map is a data structure used for keeping track of each page
51  *      written to a swap partition.  It consists of many swap_map_page
52  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
53  *      These structures are stored on the swap and linked together with the
54  *      help of the .next_swap member.
55  *
56  *      The swap map is created during suspend.  The swap map pages are
57  *      allocated and populated one at a time, so we only need one memory
58  *      page to set up the entire structure.
59  *
60  *      During resume we pick up all swap_map_page structures into a list.
61  */
62
63 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
64
65 /*
66  * Number of free pages that are not high.
67  */
68 static inline unsigned long low_free_pages(void)
69 {
70         return nr_free_pages() - nr_free_highpages();
71 }
72
73 /*
74  * Number of pages required to be kept free while writing the image. Always
75  * half of all available low pages before the writing starts.
76  */
77 static inline unsigned long reqd_free_pages(void)
78 {
79         return low_free_pages() / 2;
80 }
81
82 struct swap_map_page {
83         sector_t entries[MAP_PAGE_ENTRIES];
84         sector_t next_swap;
85 };
86
87 struct swap_map_page_list {
88         struct swap_map_page *map;
89         struct swap_map_page_list *next;
90 };
91
92 /**
93  *      The swap_map_handle structure is used for handling swap in
94  *      a file-alike way
95  */
96
97 struct swap_map_handle {
98         struct swap_map_page *cur;
99         struct swap_map_page_list *maps;
100         sector_t cur_swap;
101         sector_t first_sector;
102         unsigned int k;
103         unsigned long reqd_free_pages;
104         u32 crc32;
105 };
106
107 struct swsusp_header {
108         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
109                       sizeof(u32) - sizeof(u32)];
110         u32     hw_sig;
111         u32     crc32;
112         sector_t image;
113         unsigned int flags;     /* Flags to pass to the "boot" kernel */
114         char    orig_sig[10];
115         char    sig[10];
116 } __packed;
117
118 static struct swsusp_header *swsusp_header;
119
120 /**
121  *      The following functions are used for tracing the allocated
122  *      swap pages, so that they can be freed in case of an error.
123  */
124
125 struct swsusp_extent {
126         struct rb_node node;
127         unsigned long start;
128         unsigned long end;
129 };
130
131 static struct rb_root swsusp_extents = RB_ROOT;
132
133 static int swsusp_extents_insert(unsigned long swap_offset)
134 {
135         struct rb_node **new = &(swsusp_extents.rb_node);
136         struct rb_node *parent = NULL;
137         struct swsusp_extent *ext;
138
139         /* Figure out where to put the new node */
140         while (*new) {
141                 ext = rb_entry(*new, struct swsusp_extent, node);
142                 parent = *new;
143                 if (swap_offset < ext->start) {
144                         /* Try to merge */
145                         if (swap_offset == ext->start - 1) {
146                                 ext->start--;
147                                 return 0;
148                         }
149                         new = &((*new)->rb_left);
150                 } else if (swap_offset > ext->end) {
151                         /* Try to merge */
152                         if (swap_offset == ext->end + 1) {
153                                 ext->end++;
154                                 return 0;
155                         }
156                         new = &((*new)->rb_right);
157                 } else {
158                         /* It already is in the tree */
159                         return -EINVAL;
160                 }
161         }
162         /* Add the new node and rebalance the tree. */
163         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
164         if (!ext)
165                 return -ENOMEM;
166
167         ext->start = swap_offset;
168         ext->end = swap_offset;
169         rb_link_node(&ext->node, parent, new);
170         rb_insert_color(&ext->node, &swsusp_extents);
171         return 0;
172 }
173
174 /**
175  *      alloc_swapdev_block - allocate a swap page and register that it has
176  *      been allocated, so that it can be freed in case of an error.
177  */
178
179 sector_t alloc_swapdev_block(int swap)
180 {
181         unsigned long offset;
182
183         offset = swp_offset(get_swap_page_of_type(swap));
184         if (offset) {
185                 if (swsusp_extents_insert(offset))
186                         swap_free(swp_entry(swap, offset));
187                 else
188                         return swapdev_block(swap, offset);
189         }
190         return 0;
191 }
192
193 /**
194  *      free_all_swap_pages - free swap pages allocated for saving image data.
195  *      It also frees the extents used to register which swap entries had been
196  *      allocated.
197  */
198
199 void free_all_swap_pages(int swap)
200 {
201         struct rb_node *node;
202
203         while ((node = swsusp_extents.rb_node)) {
204                 struct swsusp_extent *ext;
205                 unsigned long offset;
206
207                 ext = rb_entry(node, struct swsusp_extent, node);
208                 rb_erase(node, &swsusp_extents);
209                 for (offset = ext->start; offset <= ext->end; offset++)
210                         swap_free(swp_entry(swap, offset));
211
212                 kfree(ext);
213         }
214 }
215
216 int swsusp_swap_in_use(void)
217 {
218         return (swsusp_extents.rb_node != NULL);
219 }
220
221 /*
222  * General things
223  */
224
225 static unsigned short root_swap = 0xffff;
226 static struct block_device *hib_resume_bdev;
227
228 struct hib_bio_batch {
229         atomic_t                count;
230         wait_queue_head_t       wait;
231         blk_status_t            error;
232         struct blk_plug         plug;
233 };
234
235 static void hib_init_batch(struct hib_bio_batch *hb)
236 {
237         atomic_set(&hb->count, 0);
238         init_waitqueue_head(&hb->wait);
239         hb->error = BLK_STS_OK;
240         blk_start_plug(&hb->plug);
241 }
242
243 static void hib_finish_batch(struct hib_bio_batch *hb)
244 {
245         blk_finish_plug(&hb->plug);
246 }
247
248 static void hib_end_io(struct bio *bio)
249 {
250         struct hib_bio_batch *hb = bio->bi_private;
251         struct page *page = bio_first_page_all(bio);
252
253         if (bio->bi_status) {
254                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
255                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
256                          (unsigned long long)bio->bi_iter.bi_sector);
257         }
258
259         if (bio_data_dir(bio) == WRITE)
260                 put_page(page);
261         else if (clean_pages_on_read)
262                 flush_icache_range((unsigned long)page_address(page),
263                                    (unsigned long)page_address(page) + PAGE_SIZE);
264
265         if (bio->bi_status && !hb->error)
266                 hb->error = bio->bi_status;
267         if (atomic_dec_and_test(&hb->count))
268                 wake_up(&hb->wait);
269
270         bio_put(bio);
271 }
272
273 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
274                 struct hib_bio_batch *hb)
275 {
276         struct page *page = virt_to_page(addr);
277         struct bio *bio;
278         int error = 0;
279
280         bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
281         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
282         bio_set_dev(bio, hib_resume_bdev);
283         bio_set_op_attrs(bio, op, op_flags);
284
285         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
286                 pr_err("Adding page to bio failed at %llu\n",
287                        (unsigned long long)bio->bi_iter.bi_sector);
288                 bio_put(bio);
289                 return -EFAULT;
290         }
291
292         if (hb) {
293                 bio->bi_end_io = hib_end_io;
294                 bio->bi_private = hb;
295                 atomic_inc(&hb->count);
296                 submit_bio(bio);
297         } else {
298                 error = submit_bio_wait(bio);
299                 bio_put(bio);
300         }
301
302         return error;
303 }
304
305 static int hib_wait_io(struct hib_bio_batch *hb)
306 {
307         /*
308          * We are relying on the behavior of blk_plug that a thread with
309          * a plug will flush the plug list before sleeping.
310          */
311         wait_event(hb->wait, atomic_read(&hb->count) == 0);
312         return blk_status_to_errno(hb->error);
313 }
314
315 /*
316  * Saving part
317  */
318 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
319 {
320         int error;
321
322         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
323                       swsusp_header, NULL);
324         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
325             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
326                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
327                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
328                 swsusp_header->image = handle->first_sector;
329                 if (swsusp_hardware_signature) {
330                         swsusp_header->hw_sig = swsusp_hardware_signature;
331                         flags |= SF_HW_SIG;
332                 }
333                 swsusp_header->flags = flags;
334                 if (flags & SF_CRC32_MODE)
335                         swsusp_header->crc32 = handle->crc32;
336                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
337                                       swsusp_resume_block, swsusp_header, NULL);
338         } else {
339                 pr_err("Swap header not found!\n");
340                 error = -ENODEV;
341         }
342         return error;
343 }
344
345 /**
346  *      swsusp_swap_check - check if the resume device is a swap device
347  *      and get its index (if so)
348  *
349  *      This is called before saving image
350  */
351 static int swsusp_swap_check(void)
352 {
353         int res;
354
355         if (swsusp_resume_device)
356                 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
357         else
358                 res = find_first_swap(&swsusp_resume_device);
359         if (res < 0)
360                 return res;
361         root_swap = res;
362
363         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
364                         NULL);
365         if (IS_ERR(hib_resume_bdev))
366                 return PTR_ERR(hib_resume_bdev);
367
368         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
369         if (res < 0)
370                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
371
372         return res;
373 }
374
375 /**
376  *      write_page - Write one page to given swap location.
377  *      @buf:           Address we're writing.
378  *      @offset:        Offset of the swap page we're writing to.
379  *      @hb:            bio completion batch
380  */
381
382 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
383 {
384         void *src;
385         int ret;
386
387         if (!offset)
388                 return -ENOSPC;
389
390         if (hb) {
391                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
392                                               __GFP_NORETRY);
393                 if (src) {
394                         copy_page(src, buf);
395                 } else {
396                         ret = hib_wait_io(hb); /* Free pages */
397                         if (ret)
398                                 return ret;
399                         src = (void *)__get_free_page(GFP_NOIO |
400                                                       __GFP_NOWARN |
401                                                       __GFP_NORETRY);
402                         if (src) {
403                                 copy_page(src, buf);
404                         } else {
405                                 WARN_ON_ONCE(1);
406                                 hb = NULL;      /* Go synchronous */
407                                 src = buf;
408                         }
409                 }
410         } else {
411                 src = buf;
412         }
413         return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
414 }
415
416 static void release_swap_writer(struct swap_map_handle *handle)
417 {
418         if (handle->cur)
419                 free_page((unsigned long)handle->cur);
420         handle->cur = NULL;
421 }
422
423 static int get_swap_writer(struct swap_map_handle *handle)
424 {
425         int ret;
426
427         ret = swsusp_swap_check();
428         if (ret) {
429                 if (ret != -ENOSPC)
430                         pr_err("Cannot find swap device, try swapon -a\n");
431                 return ret;
432         }
433         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
434         if (!handle->cur) {
435                 ret = -ENOMEM;
436                 goto err_close;
437         }
438         handle->cur_swap = alloc_swapdev_block(root_swap);
439         if (!handle->cur_swap) {
440                 ret = -ENOSPC;
441                 goto err_rel;
442         }
443         handle->k = 0;
444         handle->reqd_free_pages = reqd_free_pages();
445         handle->first_sector = handle->cur_swap;
446         return 0;
447 err_rel:
448         release_swap_writer(handle);
449 err_close:
450         swsusp_close(FMODE_WRITE);
451         return ret;
452 }
453
454 static int swap_write_page(struct swap_map_handle *handle, void *buf,
455                 struct hib_bio_batch *hb)
456 {
457         int error = 0;
458         sector_t offset;
459
460         if (!handle->cur)
461                 return -EINVAL;
462         offset = alloc_swapdev_block(root_swap);
463         error = write_page(buf, offset, hb);
464         if (error)
465                 return error;
466         handle->cur->entries[handle->k++] = offset;
467         if (handle->k >= MAP_PAGE_ENTRIES) {
468                 offset = alloc_swapdev_block(root_swap);
469                 if (!offset)
470                         return -ENOSPC;
471                 handle->cur->next_swap = offset;
472                 error = write_page(handle->cur, handle->cur_swap, hb);
473                 if (error)
474                         goto out;
475                 clear_page(handle->cur);
476                 handle->cur_swap = offset;
477                 handle->k = 0;
478
479                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
480                         error = hib_wait_io(hb);
481                         if (error)
482                                 goto out;
483                         /*
484                          * Recalculate the number of required free pages, to
485                          * make sure we never take more than half.
486                          */
487                         handle->reqd_free_pages = reqd_free_pages();
488                 }
489         }
490  out:
491         return error;
492 }
493
494 static int flush_swap_writer(struct swap_map_handle *handle)
495 {
496         if (handle->cur && handle->cur_swap)
497                 return write_page(handle->cur, handle->cur_swap, NULL);
498         else
499                 return -EINVAL;
500 }
501
502 static int swap_writer_finish(struct swap_map_handle *handle,
503                 unsigned int flags, int error)
504 {
505         if (!error) {
506                 pr_info("S");
507                 error = mark_swapfiles(handle, flags);
508                 pr_cont("|\n");
509                 flush_swap_writer(handle);
510         }
511
512         if (error)
513                 free_all_swap_pages(root_swap);
514         release_swap_writer(handle);
515         swsusp_close(FMODE_WRITE);
516
517         return error;
518 }
519
520 /* We need to remember how much compressed data we need to read. */
521 #define LZO_HEADER      sizeof(size_t)
522
523 /* Number of pages/bytes we'll compress at one time. */
524 #define LZO_UNC_PAGES   32
525 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
526
527 /* Number of pages/bytes we need for compressed data (worst case). */
528 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
529                                      LZO_HEADER, PAGE_SIZE)
530 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
531
532 /* Maximum number of threads for compression/decompression. */
533 #define LZO_THREADS     3
534
535 /* Minimum/maximum number of pages for read buffering. */
536 #define LZO_MIN_RD_PAGES        1024
537 #define LZO_MAX_RD_PAGES        8192
538
539
540 /**
541  *      save_image - save the suspend image data
542  */
543
544 static int save_image(struct swap_map_handle *handle,
545                       struct snapshot_handle *snapshot,
546                       unsigned int nr_to_write)
547 {
548         unsigned int m;
549         int ret;
550         int nr_pages;
551         int err2;
552         struct hib_bio_batch hb;
553         ktime_t start;
554         ktime_t stop;
555
556         hib_init_batch(&hb);
557
558         pr_info("Saving image data pages (%u pages)...\n",
559                 nr_to_write);
560         m = nr_to_write / 10;
561         if (!m)
562                 m = 1;
563         nr_pages = 0;
564         start = ktime_get();
565         while (1) {
566                 ret = snapshot_read_next(snapshot);
567                 if (ret <= 0)
568                         break;
569                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
570                 if (ret)
571                         break;
572                 if (!(nr_pages % m))
573                         pr_info("Image saving progress: %3d%%\n",
574                                 nr_pages / m * 10);
575                 nr_pages++;
576         }
577         err2 = hib_wait_io(&hb);
578         hib_finish_batch(&hb);
579         stop = ktime_get();
580         if (!ret)
581                 ret = err2;
582         if (!ret)
583                 pr_info("Image saving done\n");
584         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
585         return ret;
586 }
587
588 /**
589  * Structure used for CRC32.
590  */
591 struct crc_data {
592         struct task_struct *thr;                  /* thread */
593         atomic_t ready;                           /* ready to start flag */
594         atomic_t stop;                            /* ready to stop flag */
595         unsigned run_threads;                     /* nr current threads */
596         wait_queue_head_t go;                     /* start crc update */
597         wait_queue_head_t done;                   /* crc update done */
598         u32 *crc32;                               /* points to handle's crc32 */
599         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
600         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
601 };
602
603 /**
604  * CRC32 update function that runs in its own thread.
605  */
606 static int crc32_threadfn(void *data)
607 {
608         struct crc_data *d = data;
609         unsigned i;
610
611         while (1) {
612                 wait_event(d->go, atomic_read(&d->ready) ||
613                                   kthread_should_stop());
614                 if (kthread_should_stop()) {
615                         d->thr = NULL;
616                         atomic_set(&d->stop, 1);
617                         wake_up(&d->done);
618                         break;
619                 }
620                 atomic_set(&d->ready, 0);
621
622                 for (i = 0; i < d->run_threads; i++)
623                         *d->crc32 = crc32_le(*d->crc32,
624                                              d->unc[i], *d->unc_len[i]);
625                 atomic_set(&d->stop, 1);
626                 wake_up(&d->done);
627         }
628         return 0;
629 }
630 /**
631  * Structure used for LZO data compression.
632  */
633 struct cmp_data {
634         struct task_struct *thr;                  /* thread */
635         atomic_t ready;                           /* ready to start flag */
636         atomic_t stop;                            /* ready to stop flag */
637         int ret;                                  /* return code */
638         wait_queue_head_t go;                     /* start compression */
639         wait_queue_head_t done;                   /* compression done */
640         size_t unc_len;                           /* uncompressed length */
641         size_t cmp_len;                           /* compressed length */
642         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
643         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
644         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
645 };
646
647 /**
648  * Compression function that runs in its own thread.
649  */
650 static int lzo_compress_threadfn(void *data)
651 {
652         struct cmp_data *d = data;
653
654         while (1) {
655                 wait_event(d->go, atomic_read(&d->ready) ||
656                                   kthread_should_stop());
657                 if (kthread_should_stop()) {
658                         d->thr = NULL;
659                         d->ret = -1;
660                         atomic_set(&d->stop, 1);
661                         wake_up(&d->done);
662                         break;
663                 }
664                 atomic_set(&d->ready, 0);
665
666                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
667                                           d->cmp + LZO_HEADER, &d->cmp_len,
668                                           d->wrk);
669                 atomic_set(&d->stop, 1);
670                 wake_up(&d->done);
671         }
672         return 0;
673 }
674
675 /**
676  * save_image_lzo - Save the suspend image data compressed with LZO.
677  * @handle: Swap map handle to use for saving the image.
678  * @snapshot: Image to read data from.
679  * @nr_to_write: Number of pages to save.
680  */
681 static int save_image_lzo(struct swap_map_handle *handle,
682                           struct snapshot_handle *snapshot,
683                           unsigned int nr_to_write)
684 {
685         unsigned int m;
686         int ret = 0;
687         int nr_pages;
688         int err2;
689         struct hib_bio_batch hb;
690         ktime_t start;
691         ktime_t stop;
692         size_t off;
693         unsigned thr, run_threads, nr_threads;
694         unsigned char *page = NULL;
695         struct cmp_data *data = NULL;
696         struct crc_data *crc = NULL;
697
698         hib_init_batch(&hb);
699
700         /*
701          * We'll limit the number of threads for compression to limit memory
702          * footprint.
703          */
704         nr_threads = num_online_cpus() - 1;
705         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
706
707         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
708         if (!page) {
709                 pr_err("Failed to allocate LZO page\n");
710                 ret = -ENOMEM;
711                 goto out_clean;
712         }
713
714         data = vzalloc(array_size(nr_threads, sizeof(*data)));
715         if (!data) {
716                 pr_err("Failed to allocate LZO data\n");
717                 ret = -ENOMEM;
718                 goto out_clean;
719         }
720
721         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
722         if (!crc) {
723                 pr_err("Failed to allocate crc\n");
724                 ret = -ENOMEM;
725                 goto out_clean;
726         }
727
728         /*
729          * Start the compression threads.
730          */
731         for (thr = 0; thr < nr_threads; thr++) {
732                 init_waitqueue_head(&data[thr].go);
733                 init_waitqueue_head(&data[thr].done);
734
735                 data[thr].thr = kthread_run(lzo_compress_threadfn,
736                                             &data[thr],
737                                             "image_compress/%u", thr);
738                 if (IS_ERR(data[thr].thr)) {
739                         data[thr].thr = NULL;
740                         pr_err("Cannot start compression threads\n");
741                         ret = -ENOMEM;
742                         goto out_clean;
743                 }
744         }
745
746         /*
747          * Start the CRC32 thread.
748          */
749         init_waitqueue_head(&crc->go);
750         init_waitqueue_head(&crc->done);
751
752         handle->crc32 = 0;
753         crc->crc32 = &handle->crc32;
754         for (thr = 0; thr < nr_threads; thr++) {
755                 crc->unc[thr] = data[thr].unc;
756                 crc->unc_len[thr] = &data[thr].unc_len;
757         }
758
759         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
760         if (IS_ERR(crc->thr)) {
761                 crc->thr = NULL;
762                 pr_err("Cannot start CRC32 thread\n");
763                 ret = -ENOMEM;
764                 goto out_clean;
765         }
766
767         /*
768          * Adjust the number of required free pages after all allocations have
769          * been done. We don't want to run out of pages when writing.
770          */
771         handle->reqd_free_pages = reqd_free_pages();
772
773         pr_info("Using %u thread(s) for compression\n", nr_threads);
774         pr_info("Compressing and saving image data (%u pages)...\n",
775                 nr_to_write);
776         m = nr_to_write / 10;
777         if (!m)
778                 m = 1;
779         nr_pages = 0;
780         start = ktime_get();
781         for (;;) {
782                 for (thr = 0; thr < nr_threads; thr++) {
783                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
784                                 ret = snapshot_read_next(snapshot);
785                                 if (ret < 0)
786                                         goto out_finish;
787
788                                 if (!ret)
789                                         break;
790
791                                 memcpy(data[thr].unc + off,
792                                        data_of(*snapshot), PAGE_SIZE);
793
794                                 if (!(nr_pages % m))
795                                         pr_info("Image saving progress: %3d%%\n",
796                                                 nr_pages / m * 10);
797                                 nr_pages++;
798                         }
799                         if (!off)
800                                 break;
801
802                         data[thr].unc_len = off;
803
804                         atomic_set(&data[thr].ready, 1);
805                         wake_up(&data[thr].go);
806                 }
807
808                 if (!thr)
809                         break;
810
811                 crc->run_threads = thr;
812                 atomic_set(&crc->ready, 1);
813                 wake_up(&crc->go);
814
815                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
816                         wait_event(data[thr].done,
817                                    atomic_read(&data[thr].stop));
818                         atomic_set(&data[thr].stop, 0);
819
820                         ret = data[thr].ret;
821
822                         if (ret < 0) {
823                                 pr_err("LZO compression failed\n");
824                                 goto out_finish;
825                         }
826
827                         if (unlikely(!data[thr].cmp_len ||
828                                      data[thr].cmp_len >
829                                      lzo1x_worst_compress(data[thr].unc_len))) {
830                                 pr_err("Invalid LZO compressed length\n");
831                                 ret = -1;
832                                 goto out_finish;
833                         }
834
835                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
836
837                         /*
838                          * Given we are writing one page at a time to disk, we
839                          * copy that much from the buffer, although the last
840                          * bit will likely be smaller than full page. This is
841                          * OK - we saved the length of the compressed data, so
842                          * any garbage at the end will be discarded when we
843                          * read it.
844                          */
845                         for (off = 0;
846                              off < LZO_HEADER + data[thr].cmp_len;
847                              off += PAGE_SIZE) {
848                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
849
850                                 ret = swap_write_page(handle, page, &hb);
851                                 if (ret)
852                                         goto out_finish;
853                         }
854                 }
855
856                 wait_event(crc->done, atomic_read(&crc->stop));
857                 atomic_set(&crc->stop, 0);
858         }
859
860 out_finish:
861         err2 = hib_wait_io(&hb);
862         stop = ktime_get();
863         if (!ret)
864                 ret = err2;
865         if (!ret)
866                 pr_info("Image saving done\n");
867         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
868 out_clean:
869         hib_finish_batch(&hb);
870         if (crc) {
871                 if (crc->thr)
872                         kthread_stop(crc->thr);
873                 kfree(crc);
874         }
875         if (data) {
876                 for (thr = 0; thr < nr_threads; thr++)
877                         if (data[thr].thr)
878                                 kthread_stop(data[thr].thr);
879                 vfree(data);
880         }
881         if (page) free_page((unsigned long)page);
882
883         return ret;
884 }
885
886 /**
887  *      enough_swap - Make sure we have enough swap to save the image.
888  *
889  *      Returns TRUE or FALSE after checking the total amount of swap
890  *      space available from the resume partition.
891  */
892
893 static int enough_swap(unsigned int nr_pages)
894 {
895         unsigned int free_swap = count_swap_pages(root_swap, 1);
896         unsigned int required;
897
898         pr_debug("Free swap pages: %u\n", free_swap);
899
900         required = PAGES_FOR_IO + nr_pages;
901         return free_swap > required;
902 }
903
904 /**
905  *      swsusp_write - Write entire image and metadata.
906  *      @flags: flags to pass to the "boot" kernel in the image header
907  *
908  *      It is important _NOT_ to umount filesystems at this point. We want
909  *      them synced (in case something goes wrong) but we DO not want to mark
910  *      filesystem clean: it is not. (And it does not matter, if we resume
911  *      correctly, we'll mark system clean, anyway.)
912  */
913
914 int swsusp_write(unsigned int flags)
915 {
916         struct swap_map_handle handle;
917         struct snapshot_handle snapshot;
918         struct swsusp_info *header;
919         unsigned long pages;
920         int error;
921
922         pages = snapshot_get_image_size();
923         error = get_swap_writer(&handle);
924         if (error) {
925                 pr_err("Cannot get swap writer\n");
926                 return error;
927         }
928         if (flags & SF_NOCOMPRESS_MODE) {
929                 if (!enough_swap(pages)) {
930                         pr_err("Not enough free swap\n");
931                         error = -ENOSPC;
932                         goto out_finish;
933                 }
934         }
935         memset(&snapshot, 0, sizeof(struct snapshot_handle));
936         error = snapshot_read_next(&snapshot);
937         if (error < (int)PAGE_SIZE) {
938                 if (error >= 0)
939                         error = -EFAULT;
940
941                 goto out_finish;
942         }
943         header = (struct swsusp_info *)data_of(snapshot);
944         error = swap_write_page(&handle, header, NULL);
945         if (!error) {
946                 error = (flags & SF_NOCOMPRESS_MODE) ?
947                         save_image(&handle, &snapshot, pages - 1) :
948                         save_image_lzo(&handle, &snapshot, pages - 1);
949         }
950 out_finish:
951         error = swap_writer_finish(&handle, flags, error);
952         return error;
953 }
954
955 /**
956  *      The following functions allow us to read data using a swap map
957  *      in a file-alike way
958  */
959
960 static void release_swap_reader(struct swap_map_handle *handle)
961 {
962         struct swap_map_page_list *tmp;
963
964         while (handle->maps) {
965                 if (handle->maps->map)
966                         free_page((unsigned long)handle->maps->map);
967                 tmp = handle->maps;
968                 handle->maps = handle->maps->next;
969                 kfree(tmp);
970         }
971         handle->cur = NULL;
972 }
973
974 static int get_swap_reader(struct swap_map_handle *handle,
975                 unsigned int *flags_p)
976 {
977         int error;
978         struct swap_map_page_list *tmp, *last;
979         sector_t offset;
980
981         *flags_p = swsusp_header->flags;
982
983         if (!swsusp_header->image) /* how can this happen? */
984                 return -EINVAL;
985
986         handle->cur = NULL;
987         last = handle->maps = NULL;
988         offset = swsusp_header->image;
989         while (offset) {
990                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
991                 if (!tmp) {
992                         release_swap_reader(handle);
993                         return -ENOMEM;
994                 }
995                 if (!handle->maps)
996                         handle->maps = tmp;
997                 if (last)
998                         last->next = tmp;
999                 last = tmp;
1000
1001                 tmp->map = (struct swap_map_page *)
1002                            __get_free_page(GFP_NOIO | __GFP_HIGH);
1003                 if (!tmp->map) {
1004                         release_swap_reader(handle);
1005                         return -ENOMEM;
1006                 }
1007
1008                 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1009                 if (error) {
1010                         release_swap_reader(handle);
1011                         return error;
1012                 }
1013                 offset = tmp->map->next_swap;
1014         }
1015         handle->k = 0;
1016         handle->cur = handle->maps->map;
1017         return 0;
1018 }
1019
1020 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1021                 struct hib_bio_batch *hb)
1022 {
1023         sector_t offset;
1024         int error;
1025         struct swap_map_page_list *tmp;
1026
1027         if (!handle->cur)
1028                 return -EINVAL;
1029         offset = handle->cur->entries[handle->k];
1030         if (!offset)
1031                 return -EFAULT;
1032         error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1033         if (error)
1034                 return error;
1035         if (++handle->k >= MAP_PAGE_ENTRIES) {
1036                 handle->k = 0;
1037                 free_page((unsigned long)handle->maps->map);
1038                 tmp = handle->maps;
1039                 handle->maps = handle->maps->next;
1040                 kfree(tmp);
1041                 if (!handle->maps)
1042                         release_swap_reader(handle);
1043                 else
1044                         handle->cur = handle->maps->map;
1045         }
1046         return error;
1047 }
1048
1049 static int swap_reader_finish(struct swap_map_handle *handle)
1050 {
1051         release_swap_reader(handle);
1052
1053         return 0;
1054 }
1055
1056 /**
1057  *      load_image - load the image using the swap map handle
1058  *      @handle and the snapshot handle @snapshot
1059  *      (assume there are @nr_pages pages to load)
1060  */
1061
1062 static int load_image(struct swap_map_handle *handle,
1063                       struct snapshot_handle *snapshot,
1064                       unsigned int nr_to_read)
1065 {
1066         unsigned int m;
1067         int ret = 0;
1068         ktime_t start;
1069         ktime_t stop;
1070         struct hib_bio_batch hb;
1071         int err2;
1072         unsigned nr_pages;
1073
1074         hib_init_batch(&hb);
1075
1076         clean_pages_on_read = true;
1077         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1078         m = nr_to_read / 10;
1079         if (!m)
1080                 m = 1;
1081         nr_pages = 0;
1082         start = ktime_get();
1083         for ( ; ; ) {
1084                 ret = snapshot_write_next(snapshot);
1085                 if (ret <= 0)
1086                         break;
1087                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1088                 if (ret)
1089                         break;
1090                 if (snapshot->sync_read)
1091                         ret = hib_wait_io(&hb);
1092                 if (ret)
1093                         break;
1094                 if (!(nr_pages % m))
1095                         pr_info("Image loading progress: %3d%%\n",
1096                                 nr_pages / m * 10);
1097                 nr_pages++;
1098         }
1099         err2 = hib_wait_io(&hb);
1100         hib_finish_batch(&hb);
1101         stop = ktime_get();
1102         if (!ret)
1103                 ret = err2;
1104         if (!ret) {
1105                 pr_info("Image loading done\n");
1106                 snapshot_write_finalize(snapshot);
1107                 if (!snapshot_image_loaded(snapshot))
1108                         ret = -ENODATA;
1109         }
1110         swsusp_show_speed(start, stop, nr_to_read, "Read");
1111         return ret;
1112 }
1113
1114 /**
1115  * Structure used for LZO data decompression.
1116  */
1117 struct dec_data {
1118         struct task_struct *thr;                  /* thread */
1119         atomic_t ready;                           /* ready to start flag */
1120         atomic_t stop;                            /* ready to stop flag */
1121         int ret;                                  /* return code */
1122         wait_queue_head_t go;                     /* start decompression */
1123         wait_queue_head_t done;                   /* decompression done */
1124         size_t unc_len;                           /* uncompressed length */
1125         size_t cmp_len;                           /* compressed length */
1126         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1127         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1128 };
1129
1130 /**
1131  * Decompression function that runs in its own thread.
1132  */
1133 static int lzo_decompress_threadfn(void *data)
1134 {
1135         struct dec_data *d = data;
1136
1137         while (1) {
1138                 wait_event(d->go, atomic_read(&d->ready) ||
1139                                   kthread_should_stop());
1140                 if (kthread_should_stop()) {
1141                         d->thr = NULL;
1142                         d->ret = -1;
1143                         atomic_set(&d->stop, 1);
1144                         wake_up(&d->done);
1145                         break;
1146                 }
1147                 atomic_set(&d->ready, 0);
1148
1149                 d->unc_len = LZO_UNC_SIZE;
1150                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1151                                                d->unc, &d->unc_len);
1152                 if (clean_pages_on_decompress)
1153                         flush_icache_range((unsigned long)d->unc,
1154                                            (unsigned long)d->unc + d->unc_len);
1155
1156                 atomic_set(&d->stop, 1);
1157                 wake_up(&d->done);
1158         }
1159         return 0;
1160 }
1161
1162 /**
1163  * load_image_lzo - Load compressed image data and decompress them with LZO.
1164  * @handle: Swap map handle to use for loading data.
1165  * @snapshot: Image to copy uncompressed data into.
1166  * @nr_to_read: Number of pages to load.
1167  */
1168 static int load_image_lzo(struct swap_map_handle *handle,
1169                           struct snapshot_handle *snapshot,
1170                           unsigned int nr_to_read)
1171 {
1172         unsigned int m;
1173         int ret = 0;
1174         int eof = 0;
1175         struct hib_bio_batch hb;
1176         ktime_t start;
1177         ktime_t stop;
1178         unsigned nr_pages;
1179         size_t off;
1180         unsigned i, thr, run_threads, nr_threads;
1181         unsigned ring = 0, pg = 0, ring_size = 0,
1182                  have = 0, want, need, asked = 0;
1183         unsigned long read_pages = 0;
1184         unsigned char **page = NULL;
1185         struct dec_data *data = NULL;
1186         struct crc_data *crc = NULL;
1187
1188         hib_init_batch(&hb);
1189
1190         /*
1191          * We'll limit the number of threads for decompression to limit memory
1192          * footprint.
1193          */
1194         nr_threads = num_online_cpus() - 1;
1195         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1196
1197         page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1198         if (!page) {
1199                 pr_err("Failed to allocate LZO page\n");
1200                 ret = -ENOMEM;
1201                 goto out_clean;
1202         }
1203
1204         data = vzalloc(array_size(nr_threads, sizeof(*data)));
1205         if (!data) {
1206                 pr_err("Failed to allocate LZO data\n");
1207                 ret = -ENOMEM;
1208                 goto out_clean;
1209         }
1210
1211         crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1212         if (!crc) {
1213                 pr_err("Failed to allocate crc\n");
1214                 ret = -ENOMEM;
1215                 goto out_clean;
1216         }
1217
1218         clean_pages_on_decompress = true;
1219
1220         /*
1221          * Start the decompression threads.
1222          */
1223         for (thr = 0; thr < nr_threads; thr++) {
1224                 init_waitqueue_head(&data[thr].go);
1225                 init_waitqueue_head(&data[thr].done);
1226
1227                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1228                                             &data[thr],
1229                                             "image_decompress/%u", thr);
1230                 if (IS_ERR(data[thr].thr)) {
1231                         data[thr].thr = NULL;
1232                         pr_err("Cannot start decompression threads\n");
1233                         ret = -ENOMEM;
1234                         goto out_clean;
1235                 }
1236         }
1237
1238         /*
1239          * Start the CRC32 thread.
1240          */
1241         init_waitqueue_head(&crc->go);
1242         init_waitqueue_head(&crc->done);
1243
1244         handle->crc32 = 0;
1245         crc->crc32 = &handle->crc32;
1246         for (thr = 0; thr < nr_threads; thr++) {
1247                 crc->unc[thr] = data[thr].unc;
1248                 crc->unc_len[thr] = &data[thr].unc_len;
1249         }
1250
1251         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1252         if (IS_ERR(crc->thr)) {
1253                 crc->thr = NULL;
1254                 pr_err("Cannot start CRC32 thread\n");
1255                 ret = -ENOMEM;
1256                 goto out_clean;
1257         }
1258
1259         /*
1260          * Set the number of pages for read buffering.
1261          * This is complete guesswork, because we'll only know the real
1262          * picture once prepare_image() is called, which is much later on
1263          * during the image load phase. We'll assume the worst case and
1264          * say that none of the image pages are from high memory.
1265          */
1266         if (low_free_pages() > snapshot_get_image_size())
1267                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1268         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1269
1270         for (i = 0; i < read_pages; i++) {
1271                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1272                                                   GFP_NOIO | __GFP_HIGH :
1273                                                   GFP_NOIO | __GFP_NOWARN |
1274                                                   __GFP_NORETRY);
1275
1276                 if (!page[i]) {
1277                         if (i < LZO_CMP_PAGES) {
1278                                 ring_size = i;
1279                                 pr_err("Failed to allocate LZO pages\n");
1280                                 ret = -ENOMEM;
1281                                 goto out_clean;
1282                         } else {
1283                                 break;
1284                         }
1285                 }
1286         }
1287         want = ring_size = i;
1288
1289         pr_info("Using %u thread(s) for decompression\n", nr_threads);
1290         pr_info("Loading and decompressing image data (%u pages)...\n",
1291                 nr_to_read);
1292         m = nr_to_read / 10;
1293         if (!m)
1294                 m = 1;
1295         nr_pages = 0;
1296         start = ktime_get();
1297
1298         ret = snapshot_write_next(snapshot);
1299         if (ret <= 0)
1300                 goto out_finish;
1301
1302         for(;;) {
1303                 for (i = 0; !eof && i < want; i++) {
1304                         ret = swap_read_page(handle, page[ring], &hb);
1305                         if (ret) {
1306                                 /*
1307                                  * On real read error, finish. On end of data,
1308                                  * set EOF flag and just exit the read loop.
1309                                  */
1310                                 if (handle->cur &&
1311                                     handle->cur->entries[handle->k]) {
1312                                         goto out_finish;
1313                                 } else {
1314                                         eof = 1;
1315                                         break;
1316                                 }
1317                         }
1318                         if (++ring >= ring_size)
1319                                 ring = 0;
1320                 }
1321                 asked += i;
1322                 want -= i;
1323
1324                 /*
1325                  * We are out of data, wait for some more.
1326                  */
1327                 if (!have) {
1328                         if (!asked)
1329                                 break;
1330
1331                         ret = hib_wait_io(&hb);
1332                         if (ret)
1333                                 goto out_finish;
1334                         have += asked;
1335                         asked = 0;
1336                         if (eof)
1337                                 eof = 2;
1338                 }
1339
1340                 if (crc->run_threads) {
1341                         wait_event(crc->done, atomic_read(&crc->stop));
1342                         atomic_set(&crc->stop, 0);
1343                         crc->run_threads = 0;
1344                 }
1345
1346                 for (thr = 0; have && thr < nr_threads; thr++) {
1347                         data[thr].cmp_len = *(size_t *)page[pg];
1348                         if (unlikely(!data[thr].cmp_len ||
1349                                      data[thr].cmp_len >
1350                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1351                                 pr_err("Invalid LZO compressed length\n");
1352                                 ret = -1;
1353                                 goto out_finish;
1354                         }
1355
1356                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1357                                             PAGE_SIZE);
1358                         if (need > have) {
1359                                 if (eof > 1) {
1360                                         ret = -1;
1361                                         goto out_finish;
1362                                 }
1363                                 break;
1364                         }
1365
1366                         for (off = 0;
1367                              off < LZO_HEADER + data[thr].cmp_len;
1368                              off += PAGE_SIZE) {
1369                                 memcpy(data[thr].cmp + off,
1370                                        page[pg], PAGE_SIZE);
1371                                 have--;
1372                                 want++;
1373                                 if (++pg >= ring_size)
1374                                         pg = 0;
1375                         }
1376
1377                         atomic_set(&data[thr].ready, 1);
1378                         wake_up(&data[thr].go);
1379                 }
1380
1381                 /*
1382                  * Wait for more data while we are decompressing.
1383                  */
1384                 if (have < LZO_CMP_PAGES && asked) {
1385                         ret = hib_wait_io(&hb);
1386                         if (ret)
1387                                 goto out_finish;
1388                         have += asked;
1389                         asked = 0;
1390                         if (eof)
1391                                 eof = 2;
1392                 }
1393
1394                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1395                         wait_event(data[thr].done,
1396                                    atomic_read(&data[thr].stop));
1397                         atomic_set(&data[thr].stop, 0);
1398
1399                         ret = data[thr].ret;
1400
1401                         if (ret < 0) {
1402                                 pr_err("LZO decompression failed\n");
1403                                 goto out_finish;
1404                         }
1405
1406                         if (unlikely(!data[thr].unc_len ||
1407                                      data[thr].unc_len > LZO_UNC_SIZE ||
1408                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1409                                 pr_err("Invalid LZO uncompressed length\n");
1410                                 ret = -1;
1411                                 goto out_finish;
1412                         }
1413
1414                         for (off = 0;
1415                              off < data[thr].unc_len; off += PAGE_SIZE) {
1416                                 memcpy(data_of(*snapshot),
1417                                        data[thr].unc + off, PAGE_SIZE);
1418
1419                                 if (!(nr_pages % m))
1420                                         pr_info("Image loading progress: %3d%%\n",
1421                                                 nr_pages / m * 10);
1422                                 nr_pages++;
1423
1424                                 ret = snapshot_write_next(snapshot);
1425                                 if (ret <= 0) {
1426                                         crc->run_threads = thr + 1;
1427                                         atomic_set(&crc->ready, 1);
1428                                         wake_up(&crc->go);
1429                                         goto out_finish;
1430                                 }
1431                         }
1432                 }
1433
1434                 crc->run_threads = thr;
1435                 atomic_set(&crc->ready, 1);
1436                 wake_up(&crc->go);
1437         }
1438
1439 out_finish:
1440         if (crc->run_threads) {
1441                 wait_event(crc->done, atomic_read(&crc->stop));
1442                 atomic_set(&crc->stop, 0);
1443         }
1444         stop = ktime_get();
1445         if (!ret) {
1446                 pr_info("Image loading done\n");
1447                 snapshot_write_finalize(snapshot);
1448                 if (!snapshot_image_loaded(snapshot))
1449                         ret = -ENODATA;
1450                 if (!ret) {
1451                         if (swsusp_header->flags & SF_CRC32_MODE) {
1452                                 if(handle->crc32 != swsusp_header->crc32) {
1453                                         pr_err("Invalid image CRC32!\n");
1454                                         ret = -ENODATA;
1455                                 }
1456                         }
1457                 }
1458         }
1459         swsusp_show_speed(start, stop, nr_to_read, "Read");
1460 out_clean:
1461         hib_finish_batch(&hb);
1462         for (i = 0; i < ring_size; i++)
1463                 free_page((unsigned long)page[i]);
1464         if (crc) {
1465                 if (crc->thr)
1466                         kthread_stop(crc->thr);
1467                 kfree(crc);
1468         }
1469         if (data) {
1470                 for (thr = 0; thr < nr_threads; thr++)
1471                         if (data[thr].thr)
1472                                 kthread_stop(data[thr].thr);
1473                 vfree(data);
1474         }
1475         vfree(page);
1476
1477         return ret;
1478 }
1479
1480 /**
1481  *      swsusp_read - read the hibernation image.
1482  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1483  *                be written into this memory location
1484  */
1485
1486 int swsusp_read(unsigned int *flags_p)
1487 {
1488         int error;
1489         struct swap_map_handle handle;
1490         struct snapshot_handle snapshot;
1491         struct swsusp_info *header;
1492
1493         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1494         error = snapshot_write_next(&snapshot);
1495         if (error < (int)PAGE_SIZE)
1496                 return error < 0 ? error : -EFAULT;
1497         header = (struct swsusp_info *)data_of(snapshot);
1498         error = get_swap_reader(&handle, flags_p);
1499         if (error)
1500                 goto end;
1501         if (!error)
1502                 error = swap_read_page(&handle, header, NULL);
1503         if (!error) {
1504                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1505                         load_image(&handle, &snapshot, header->pages - 1) :
1506                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1507         }
1508         swap_reader_finish(&handle);
1509 end:
1510         if (!error)
1511                 pr_debug("Image successfully loaded\n");
1512         else
1513                 pr_debug("Error %d resuming\n", error);
1514         return error;
1515 }
1516
1517 /**
1518  *      swsusp_check - Check for swsusp signature in the resume device
1519  */
1520
1521 int swsusp_check(void)
1522 {
1523         int error;
1524         void *holder;
1525
1526         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1527                                             FMODE_READ | FMODE_EXCL, &holder);
1528         if (!IS_ERR(hib_resume_bdev)) {
1529                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1530                 clear_page(swsusp_header);
1531                 error = hib_submit_io(REQ_OP_READ, 0,
1532                                         swsusp_resume_block,
1533                                         swsusp_header, NULL);
1534                 if (error)
1535                         goto put;
1536
1537                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1538                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1539                         /* Reset swap signature now */
1540                         error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1541                                                 swsusp_resume_block,
1542                                                 swsusp_header, NULL);
1543                 } else {
1544                         error = -EINVAL;
1545                 }
1546                 if (!error && swsusp_header->flags & SF_HW_SIG &&
1547                     swsusp_header->hw_sig != swsusp_hardware_signature) {
1548                         pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1549                                 swsusp_header->hw_sig, swsusp_hardware_signature);
1550                         error = -EINVAL;
1551                 }
1552
1553 put:
1554                 if (error)
1555                         blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1556                 else
1557                         pr_debug("Image signature found, resuming\n");
1558         } else {
1559                 error = PTR_ERR(hib_resume_bdev);
1560         }
1561
1562         if (error)
1563                 pr_debug("Image not found (code %d)\n", error);
1564
1565         return error;
1566 }
1567
1568 /**
1569  *      swsusp_close - close swap device.
1570  */
1571
1572 void swsusp_close(fmode_t mode)
1573 {
1574         if (IS_ERR(hib_resume_bdev)) {
1575                 pr_debug("Image device not initialised\n");
1576                 return;
1577         }
1578
1579         blkdev_put(hib_resume_bdev, mode);
1580 }
1581
1582 /**
1583  *      swsusp_unmark - Unmark swsusp signature in the resume device
1584  */
1585
1586 #ifdef CONFIG_SUSPEND
1587 int swsusp_unmark(void)
1588 {
1589         int error;
1590
1591         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1592                       swsusp_header, NULL);
1593         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1594                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1595                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1596                                         swsusp_resume_block,
1597                                         swsusp_header, NULL);
1598         } else {
1599                 pr_err("Cannot find swsusp signature!\n");
1600                 error = -ENODEV;
1601         }
1602
1603         /*
1604          * We just returned from suspend, we don't need the image any more.
1605          */
1606         free_all_swap_pages(root_swap);
1607
1608         return error;
1609 }
1610 #endif
1611
1612 static int __init swsusp_header_init(void)
1613 {
1614         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1615         if (!swsusp_header)
1616                 panic("Could not allocate memory for swsusp_header\n");
1617         return 0;
1618 }
1619
1620 core_initcall(swsusp_header_init);