GNU Linux-libre 5.15.72-gnu
[releases.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30
31 #ifndef CONFIG_PREEMPT_RT
32 #include "lock_events.h"
33
34 /*
35  * The least significant 2 bits of the owner value has the following
36  * meanings when set.
37  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
39  *
40  * When the rwsem is reader-owned and a spinning writer has timed out,
41  * the nonspinnable bit will be set to disable optimistic spinning.
42
43  * When a writer acquires a rwsem, it puts its task_struct pointer
44  * into the owner field. It is cleared after an unlock.
45  *
46  * When a reader acquires a rwsem, it will also puts its task_struct
47  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
48  * On unlock, the owner field will largely be left untouched. So
49  * for a free or reader-owned rwsem, the owner value may contain
50  * information about the last reader that acquires the rwsem.
51  *
52  * That information may be helpful in debugging cases where the system
53  * seems to hang on a reader owned rwsem especially if only one reader
54  * is involved. Ideally we would like to track all the readers that own
55  * a rwsem, but the overhead is simply too big.
56  *
57  * A fast path reader optimistic lock stealing is supported when the rwsem
58  * is previously owned by a writer and the following conditions are met:
59  *  - OSQ is empty
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED      (1UL << 0)
64 #define RWSEM_NONSPINNABLE      (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
69         if (!debug_locks_silent &&                              \
70             WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71                 #c, atomic_long_read(&(sem)->count),            \
72                 (unsigned long) sem->magic,                     \
73                 atomic_long_read(&(sem)->owner), (long)current, \
74                 list_empty(&(sem)->wait_list) ? "" : "not "))   \
75                         debug_locks_off();                      \
76         } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers             -- set, clear
110  * 2) rwsem_try_write_lock() for writers        -- set, clear
111  * 3) rwsem_del_waiter()                        -- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED     (1UL << 0)
118 #define RWSEM_FLAG_WAITERS      (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF      (1UL << 2)
120 #define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT      8
123 #define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128                                  RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  */
137 static inline void rwsem_set_owner(struct rw_semaphore *sem)
138 {
139         atomic_long_set(&sem->owner, (long)current);
140 }
141
142 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
143 {
144         atomic_long_set(&sem->owner, 0);
145 }
146
147 /*
148  * Test the flags in the owner field.
149  */
150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
151 {
152         return atomic_long_read(&sem->owner) & flags;
153 }
154
155 /*
156  * The task_struct pointer of the last owning reader will be left in
157  * the owner field.
158  *
159  * Note that the owner value just indicates the task has owned the rwsem
160  * previously, it may not be the real owner or one of the real owners
161  * anymore when that field is examined, so take it with a grain of salt.
162  *
163  * The reader non-spinnable bit is preserved.
164  */
165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
166                                             struct task_struct *owner)
167 {
168         unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
169                 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
170
171         atomic_long_set(&sem->owner, val);
172 }
173
174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
175 {
176         __rwsem_set_reader_owned(sem, current);
177 }
178
179 /*
180  * Return true if the rwsem is owned by a reader.
181  */
182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
183 {
184 #ifdef CONFIG_DEBUG_RWSEMS
185         /*
186          * Check the count to see if it is write-locked.
187          */
188         long count = atomic_long_read(&sem->count);
189
190         if (count & RWSEM_WRITER_MASK)
191                 return false;
192 #endif
193         return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
194 }
195
196 #ifdef CONFIG_DEBUG_RWSEMS
197 /*
198  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
199  * is a task pointer in owner of a reader-owned rwsem, it will be the
200  * real owner or one of the real owners. The only exception is when the
201  * unlock is done by up_read_non_owner().
202  */
203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
204 {
205         unsigned long val = atomic_long_read(&sem->owner);
206
207         while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
208                 if (atomic_long_try_cmpxchg(&sem->owner, &val,
209                                             val & RWSEM_OWNER_FLAGS_MASK))
210                         return;
211         }
212 }
213 #else
214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
215 {
216 }
217 #endif
218
219 /*
220  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
221  * remains set. Otherwise, the operation will be aborted.
222  */
223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
224 {
225         unsigned long owner = atomic_long_read(&sem->owner);
226
227         do {
228                 if (!(owner & RWSEM_READER_OWNED))
229                         break;
230                 if (owner & RWSEM_NONSPINNABLE)
231                         break;
232         } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
233                                           owner | RWSEM_NONSPINNABLE));
234 }
235
236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
237 {
238         *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
239
240         if (WARN_ON_ONCE(*cntp < 0))
241                 rwsem_set_nonspinnable(sem);
242
243         if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
244                 rwsem_set_reader_owned(sem);
245                 return true;
246         }
247
248         return false;
249 }
250
251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
252 {
253         long tmp = RWSEM_UNLOCKED_VALUE;
254
255         if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
256                 rwsem_set_owner(sem);
257                 return true;
258         }
259
260         return false;
261 }
262
263 /*
264  * Return just the real task structure pointer of the owner
265  */
266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
267 {
268         return (struct task_struct *)
269                 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
270 }
271
272 /*
273  * Return the real task structure pointer of the owner and the embedded
274  * flags in the owner. pflags must be non-NULL.
275  */
276 static inline struct task_struct *
277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
278 {
279         unsigned long owner = atomic_long_read(&sem->owner);
280
281         *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
282         return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
283 }
284
285 /*
286  * Guide to the rw_semaphore's count field.
287  *
288  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
289  * by a writer.
290  *
291  * The lock is owned by readers when
292  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
293  * (2) some of the reader bits are set in count, and
294  * (3) the owner field has RWSEM_READ_OWNED bit set.
295  *
296  * Having some reader bits set is not enough to guarantee a readers owned
297  * lock as the readers may be in the process of backing out from the count
298  * and a writer has just released the lock. So another writer may steal
299  * the lock immediately after that.
300  */
301
302 /*
303  * Initialize an rwsem:
304  */
305 void __init_rwsem(struct rw_semaphore *sem, const char *name,
306                   struct lock_class_key *key)
307 {
308 #ifdef CONFIG_DEBUG_LOCK_ALLOC
309         /*
310          * Make sure we are not reinitializing a held semaphore:
311          */
312         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
313         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
314 #endif
315 #ifdef CONFIG_DEBUG_RWSEMS
316         sem->magic = sem;
317 #endif
318         atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
319         raw_spin_lock_init(&sem->wait_lock);
320         INIT_LIST_HEAD(&sem->wait_list);
321         atomic_long_set(&sem->owner, 0L);
322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
323         osq_lock_init(&sem->osq);
324 #endif
325 }
326 EXPORT_SYMBOL(__init_rwsem);
327
328 enum rwsem_waiter_type {
329         RWSEM_WAITING_FOR_WRITE,
330         RWSEM_WAITING_FOR_READ
331 };
332
333 struct rwsem_waiter {
334         struct list_head list;
335         struct task_struct *task;
336         enum rwsem_waiter_type type;
337         unsigned long timeout;
338         bool handoff_set;
339 };
340 #define rwsem_first_waiter(sem) \
341         list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
342
343 enum rwsem_wake_type {
344         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
345         RWSEM_WAKE_READERS,     /* Wake readers only */
346         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
347 };
348
349 /*
350  * The typical HZ value is either 250 or 1000. So set the minimum waiting
351  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
352  * queue before initiating the handoff protocol.
353  */
354 #define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
355
356 /*
357  * Magic number to batch-wakeup waiting readers, even when writers are
358  * also present in the queue. This both limits the amount of work the
359  * waking thread must do and also prevents any potential counter overflow,
360  * however unlikely.
361  */
362 #define MAX_READERS_WAKEUP      0x100
363
364 static inline void
365 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
366 {
367         lockdep_assert_held(&sem->wait_lock);
368         list_add_tail(&waiter->list, &sem->wait_list);
369         /* caller will set RWSEM_FLAG_WAITERS */
370 }
371
372 /*
373  * Remove a waiter from the wait_list and clear flags.
374  *
375  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
376  * this function. Modify with care.
377  */
378 static inline void
379 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
380 {
381         lockdep_assert_held(&sem->wait_lock);
382         list_del(&waiter->list);
383         if (likely(!list_empty(&sem->wait_list)))
384                 return;
385
386         atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
387 }
388
389 /*
390  * handle the lock release when processes blocked on it that can now run
391  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
392  *   have been set.
393  * - there must be someone on the queue
394  * - the wait_lock must be held by the caller
395  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
396  *   to actually wakeup the blocked task(s) and drop the reference count,
397  *   preferably when the wait_lock is released
398  * - woken process blocks are discarded from the list after having task zeroed
399  * - writers are only marked woken if downgrading is false
400  *
401  * Implies rwsem_del_waiter() for all woken readers.
402  */
403 static void rwsem_mark_wake(struct rw_semaphore *sem,
404                             enum rwsem_wake_type wake_type,
405                             struct wake_q_head *wake_q)
406 {
407         struct rwsem_waiter *waiter, *tmp;
408         long oldcount, woken = 0, adjustment = 0;
409         struct list_head wlist;
410
411         lockdep_assert_held(&sem->wait_lock);
412
413         /*
414          * Take a peek at the queue head waiter such that we can determine
415          * the wakeup(s) to perform.
416          */
417         waiter = rwsem_first_waiter(sem);
418
419         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
420                 if (wake_type == RWSEM_WAKE_ANY) {
421                         /*
422                          * Mark writer at the front of the queue for wakeup.
423                          * Until the task is actually later awoken later by
424                          * the caller, other writers are able to steal it.
425                          * Readers, on the other hand, will block as they
426                          * will notice the queued writer.
427                          */
428                         wake_q_add(wake_q, waiter->task);
429                         lockevent_inc(rwsem_wake_writer);
430                 }
431
432                 return;
433         }
434
435         /*
436          * No reader wakeup if there are too many of them already.
437          */
438         if (unlikely(atomic_long_read(&sem->count) < 0))
439                 return;
440
441         /*
442          * Writers might steal the lock before we grant it to the next reader.
443          * We prefer to do the first reader grant before counting readers
444          * so we can bail out early if a writer stole the lock.
445          */
446         if (wake_type != RWSEM_WAKE_READ_OWNED) {
447                 struct task_struct *owner;
448
449                 adjustment = RWSEM_READER_BIAS;
450                 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
451                 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
452                         /*
453                          * When we've been waiting "too" long (for writers
454                          * to give up the lock), request a HANDOFF to
455                          * force the issue.
456                          */
457                         if (time_after(jiffies, waiter->timeout)) {
458                                 if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
459                                         adjustment -= RWSEM_FLAG_HANDOFF;
460                                         lockevent_inc(rwsem_rlock_handoff);
461                                 }
462                                 waiter->handoff_set = true;
463                         }
464
465                         atomic_long_add(-adjustment, &sem->count);
466                         return;
467                 }
468                 /*
469                  * Set it to reader-owned to give spinners an early
470                  * indication that readers now have the lock.
471                  * The reader nonspinnable bit seen at slowpath entry of
472                  * the reader is copied over.
473                  */
474                 owner = waiter->task;
475                 __rwsem_set_reader_owned(sem, owner);
476         }
477
478         /*
479          * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
480          * queue. We know that the woken will be at least 1 as we accounted
481          * for above. Note we increment the 'active part' of the count by the
482          * number of readers before waking any processes up.
483          *
484          * This is an adaptation of the phase-fair R/W locks where at the
485          * reader phase (first waiter is a reader), all readers are eligible
486          * to acquire the lock at the same time irrespective of their order
487          * in the queue. The writers acquire the lock according to their
488          * order in the queue.
489          *
490          * We have to do wakeup in 2 passes to prevent the possibility that
491          * the reader count may be decremented before it is incremented. It
492          * is because the to-be-woken waiter may not have slept yet. So it
493          * may see waiter->task got cleared, finish its critical section and
494          * do an unlock before the reader count increment.
495          *
496          * 1) Collect the read-waiters in a separate list, count them and
497          *    fully increment the reader count in rwsem.
498          * 2) For each waiters in the new list, clear waiter->task and
499          *    put them into wake_q to be woken up later.
500          */
501         INIT_LIST_HEAD(&wlist);
502         list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
503                 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
504                         continue;
505
506                 woken++;
507                 list_move_tail(&waiter->list, &wlist);
508
509                 /*
510                  * Limit # of readers that can be woken up per wakeup call.
511                  */
512                 if (woken >= MAX_READERS_WAKEUP)
513                         break;
514         }
515
516         adjustment = woken * RWSEM_READER_BIAS - adjustment;
517         lockevent_cond_inc(rwsem_wake_reader, woken);
518
519         oldcount = atomic_long_read(&sem->count);
520         if (list_empty(&sem->wait_list)) {
521                 /*
522                  * Combined with list_move_tail() above, this implies
523                  * rwsem_del_waiter().
524                  */
525                 adjustment -= RWSEM_FLAG_WAITERS;
526                 if (oldcount & RWSEM_FLAG_HANDOFF)
527                         adjustment -= RWSEM_FLAG_HANDOFF;
528         } else if (woken) {
529                 /*
530                  * When we've woken a reader, we no longer need to force
531                  * writers to give up the lock and we can clear HANDOFF.
532                  */
533                 if (oldcount & RWSEM_FLAG_HANDOFF)
534                         adjustment -= RWSEM_FLAG_HANDOFF;
535         }
536
537         if (adjustment)
538                 atomic_long_add(adjustment, &sem->count);
539
540         /* 2nd pass */
541         list_for_each_entry_safe(waiter, tmp, &wlist, list) {
542                 struct task_struct *tsk;
543
544                 tsk = waiter->task;
545                 get_task_struct(tsk);
546
547                 /*
548                  * Ensure calling get_task_struct() before setting the reader
549                  * waiter to nil such that rwsem_down_read_slowpath() cannot
550                  * race with do_exit() by always holding a reference count
551                  * to the task to wakeup.
552                  */
553                 smp_store_release(&waiter->task, NULL);
554                 /*
555                  * Ensure issuing the wakeup (either by us or someone else)
556                  * after setting the reader waiter to nil.
557                  */
558                 wake_q_add_safe(wake_q, tsk);
559         }
560 }
561
562 /*
563  * This function must be called with the sem->wait_lock held to prevent
564  * race conditions between checking the rwsem wait list and setting the
565  * sem->count accordingly.
566  *
567  * Implies rwsem_del_waiter() on success.
568  */
569 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
570                                         struct rwsem_waiter *waiter)
571 {
572         struct rwsem_waiter *first = rwsem_first_waiter(sem);
573         long count, new;
574
575         lockdep_assert_held(&sem->wait_lock);
576
577         count = atomic_long_read(&sem->count);
578         do {
579                 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
580
581                 if (has_handoff) {
582                         /*
583                          * Honor handoff bit and yield only when the first
584                          * waiter is the one that set it. Otherwisee, we
585                          * still try to acquire the rwsem.
586                          */
587                         if (first->handoff_set && (waiter != first))
588                                 return false;
589
590                         /*
591                          * First waiter can inherit a previously set handoff
592                          * bit and spin on rwsem if lock acquisition fails.
593                          */
594                         if (waiter == first)
595                                 waiter->handoff_set = true;
596                 }
597
598                 new = count;
599
600                 if (count & RWSEM_LOCK_MASK) {
601                         if (has_handoff || (!rt_task(waiter->task) &&
602                                             !time_after(jiffies, waiter->timeout)))
603                                 return false;
604
605                         new |= RWSEM_FLAG_HANDOFF;
606                 } else {
607                         new |= RWSEM_WRITER_LOCKED;
608                         new &= ~RWSEM_FLAG_HANDOFF;
609
610                         if (list_is_singular(&sem->wait_list))
611                                 new &= ~RWSEM_FLAG_WAITERS;
612                 }
613         } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
614
615         /*
616          * We have either acquired the lock with handoff bit cleared or
617          * set the handoff bit.
618          */
619         if (new & RWSEM_FLAG_HANDOFF) {
620                 waiter->handoff_set = true;
621                 lockevent_inc(rwsem_wlock_handoff);
622                 return false;
623         }
624
625         /*
626          * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
627          * success.
628          */
629         list_del(&waiter->list);
630         rwsem_set_owner(sem);
631         return true;
632 }
633
634 /*
635  * The rwsem_spin_on_owner() function returns the following 4 values
636  * depending on the lock owner state.
637  *   OWNER_NULL  : owner is currently NULL
638  *   OWNER_WRITER: when owner changes and is a writer
639  *   OWNER_READER: when owner changes and the new owner may be a reader.
640  *   OWNER_NONSPINNABLE:
641  *                 when optimistic spinning has to stop because either the
642  *                 owner stops running, is unknown, or its timeslice has
643  *                 been used up.
644  */
645 enum owner_state {
646         OWNER_NULL              = 1 << 0,
647         OWNER_WRITER            = 1 << 1,
648         OWNER_READER            = 1 << 2,
649         OWNER_NONSPINNABLE      = 1 << 3,
650 };
651
652 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
653 /*
654  * Try to acquire write lock before the writer has been put on wait queue.
655  */
656 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
657 {
658         long count = atomic_long_read(&sem->count);
659
660         while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
661                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
662                                         count | RWSEM_WRITER_LOCKED)) {
663                         rwsem_set_owner(sem);
664                         lockevent_inc(rwsem_opt_lock);
665                         return true;
666                 }
667         }
668         return false;
669 }
670
671 static inline bool owner_on_cpu(struct task_struct *owner)
672 {
673         /*
674          * As lock holder preemption issue, we both skip spinning if
675          * task is not on cpu or its cpu is preempted
676          */
677         return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
678 }
679
680 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
681 {
682         struct task_struct *owner;
683         unsigned long flags;
684         bool ret = true;
685
686         if (need_resched()) {
687                 lockevent_inc(rwsem_opt_fail);
688                 return false;
689         }
690
691         preempt_disable();
692         rcu_read_lock();
693         owner = rwsem_owner_flags(sem, &flags);
694         /*
695          * Don't check the read-owner as the entry may be stale.
696          */
697         if ((flags & RWSEM_NONSPINNABLE) ||
698             (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
699                 ret = false;
700         rcu_read_unlock();
701         preempt_enable();
702
703         lockevent_cond_inc(rwsem_opt_fail, !ret);
704         return ret;
705 }
706
707 #define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
708
709 static inline enum owner_state
710 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
711 {
712         if (flags & RWSEM_NONSPINNABLE)
713                 return OWNER_NONSPINNABLE;
714
715         if (flags & RWSEM_READER_OWNED)
716                 return OWNER_READER;
717
718         return owner ? OWNER_WRITER : OWNER_NULL;
719 }
720
721 static noinline enum owner_state
722 rwsem_spin_on_owner(struct rw_semaphore *sem)
723 {
724         struct task_struct *new, *owner;
725         unsigned long flags, new_flags;
726         enum owner_state state;
727
728         owner = rwsem_owner_flags(sem, &flags);
729         state = rwsem_owner_state(owner, flags);
730         if (state != OWNER_WRITER)
731                 return state;
732
733         rcu_read_lock();
734         for (;;) {
735                 /*
736                  * When a waiting writer set the handoff flag, it may spin
737                  * on the owner as well. Once that writer acquires the lock,
738                  * we can spin on it. So we don't need to quit even when the
739                  * handoff bit is set.
740                  */
741                 new = rwsem_owner_flags(sem, &new_flags);
742                 if ((new != owner) || (new_flags != flags)) {
743                         state = rwsem_owner_state(new, new_flags);
744                         break;
745                 }
746
747                 /*
748                  * Ensure we emit the owner->on_cpu, dereference _after_
749                  * checking sem->owner still matches owner, if that fails,
750                  * owner might point to free()d memory, if it still matches,
751                  * the rcu_read_lock() ensures the memory stays valid.
752                  */
753                 barrier();
754
755                 if (need_resched() || !owner_on_cpu(owner)) {
756                         state = OWNER_NONSPINNABLE;
757                         break;
758                 }
759
760                 cpu_relax();
761         }
762         rcu_read_unlock();
763
764         return state;
765 }
766
767 /*
768  * Calculate reader-owned rwsem spinning threshold for writer
769  *
770  * The more readers own the rwsem, the longer it will take for them to
771  * wind down and free the rwsem. So the empirical formula used to
772  * determine the actual spinning time limit here is:
773  *
774  *   Spinning threshold = (10 + nr_readers/2)us
775  *
776  * The limit is capped to a maximum of 25us (30 readers). This is just
777  * a heuristic and is subjected to change in the future.
778  */
779 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
780 {
781         long count = atomic_long_read(&sem->count);
782         int readers = count >> RWSEM_READER_SHIFT;
783         u64 delta;
784
785         if (readers > 30)
786                 readers = 30;
787         delta = (20 + readers) * NSEC_PER_USEC / 2;
788
789         return sched_clock() + delta;
790 }
791
792 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
793 {
794         bool taken = false;
795         int prev_owner_state = OWNER_NULL;
796         int loop = 0;
797         u64 rspin_threshold = 0;
798
799         preempt_disable();
800
801         /* sem->wait_lock should not be held when doing optimistic spinning */
802         if (!osq_lock(&sem->osq))
803                 goto done;
804
805         /*
806          * Optimistically spin on the owner field and attempt to acquire the
807          * lock whenever the owner changes. Spinning will be stopped when:
808          *  1) the owning writer isn't running; or
809          *  2) readers own the lock and spinning time has exceeded limit.
810          */
811         for (;;) {
812                 enum owner_state owner_state;
813
814                 owner_state = rwsem_spin_on_owner(sem);
815                 if (!(owner_state & OWNER_SPINNABLE))
816                         break;
817
818                 /*
819                  * Try to acquire the lock
820                  */
821                 taken = rwsem_try_write_lock_unqueued(sem);
822
823                 if (taken)
824                         break;
825
826                 /*
827                  * Time-based reader-owned rwsem optimistic spinning
828                  */
829                 if (owner_state == OWNER_READER) {
830                         /*
831                          * Re-initialize rspin_threshold every time when
832                          * the owner state changes from non-reader to reader.
833                          * This allows a writer to steal the lock in between
834                          * 2 reader phases and have the threshold reset at
835                          * the beginning of the 2nd reader phase.
836                          */
837                         if (prev_owner_state != OWNER_READER) {
838                                 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
839                                         break;
840                                 rspin_threshold = rwsem_rspin_threshold(sem);
841                                 loop = 0;
842                         }
843
844                         /*
845                          * Check time threshold once every 16 iterations to
846                          * avoid calling sched_clock() too frequently so
847                          * as to reduce the average latency between the times
848                          * when the lock becomes free and when the spinner
849                          * is ready to do a trylock.
850                          */
851                         else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
852                                 rwsem_set_nonspinnable(sem);
853                                 lockevent_inc(rwsem_opt_nospin);
854                                 break;
855                         }
856                 }
857
858                 /*
859                  * An RT task cannot do optimistic spinning if it cannot
860                  * be sure the lock holder is running or live-lock may
861                  * happen if the current task and the lock holder happen
862                  * to run in the same CPU. However, aborting optimistic
863                  * spinning while a NULL owner is detected may miss some
864                  * opportunity where spinning can continue without causing
865                  * problem.
866                  *
867                  * There are 2 possible cases where an RT task may be able
868                  * to continue spinning.
869                  *
870                  * 1) The lock owner is in the process of releasing the
871                  *    lock, sem->owner is cleared but the lock has not
872                  *    been released yet.
873                  * 2) The lock was free and owner cleared, but another
874                  *    task just comes in and acquire the lock before
875                  *    we try to get it. The new owner may be a spinnable
876                  *    writer.
877                  *
878                  * To take advantage of two scenarios listed above, the RT
879                  * task is made to retry one more time to see if it can
880                  * acquire the lock or continue spinning on the new owning
881                  * writer. Of course, if the time lag is long enough or the
882                  * new owner is not a writer or spinnable, the RT task will
883                  * quit spinning.
884                  *
885                  * If the owner is a writer, the need_resched() check is
886                  * done inside rwsem_spin_on_owner(). If the owner is not
887                  * a writer, need_resched() check needs to be done here.
888                  */
889                 if (owner_state != OWNER_WRITER) {
890                         if (need_resched())
891                                 break;
892                         if (rt_task(current) &&
893                            (prev_owner_state != OWNER_WRITER))
894                                 break;
895                 }
896                 prev_owner_state = owner_state;
897
898                 /*
899                  * The cpu_relax() call is a compiler barrier which forces
900                  * everything in this loop to be re-loaded. We don't need
901                  * memory barriers as we'll eventually observe the right
902                  * values at the cost of a few extra spins.
903                  */
904                 cpu_relax();
905         }
906         osq_unlock(&sem->osq);
907 done:
908         preempt_enable();
909         lockevent_cond_inc(rwsem_opt_fail, !taken);
910         return taken;
911 }
912
913 /*
914  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
915  * only be called when the reader count reaches 0.
916  */
917 static inline void clear_nonspinnable(struct rw_semaphore *sem)
918 {
919         if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
920                 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
921 }
922
923 #else
924 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
925 {
926         return false;
927 }
928
929 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
930 {
931         return false;
932 }
933
934 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
935
936 static inline enum owner_state
937 rwsem_spin_on_owner(struct rw_semaphore *sem)
938 {
939         return OWNER_NONSPINNABLE;
940 }
941 #endif
942
943 /*
944  * Wait for the read lock to be granted
945  */
946 static struct rw_semaphore __sched *
947 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
948 {
949         long adjustment = -RWSEM_READER_BIAS;
950         long rcnt = (count >> RWSEM_READER_SHIFT);
951         struct rwsem_waiter waiter;
952         DEFINE_WAKE_Q(wake_q);
953         bool wake = false;
954
955         /*
956          * To prevent a constant stream of readers from starving a sleeping
957          * waiter, don't attempt optimistic lock stealing if the lock is
958          * currently owned by readers.
959          */
960         if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
961             (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
962                 goto queue;
963
964         /*
965          * Reader optimistic lock stealing.
966          */
967         if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
968                 rwsem_set_reader_owned(sem);
969                 lockevent_inc(rwsem_rlock_steal);
970
971                 /*
972                  * Wake up other readers in the wait queue if it is
973                  * the first reader.
974                  */
975                 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
976                         raw_spin_lock_irq(&sem->wait_lock);
977                         if (!list_empty(&sem->wait_list))
978                                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
979                                                 &wake_q);
980                         raw_spin_unlock_irq(&sem->wait_lock);
981                         wake_up_q(&wake_q);
982                 }
983                 return sem;
984         }
985
986 queue:
987         waiter.task = current;
988         waiter.type = RWSEM_WAITING_FOR_READ;
989         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
990         waiter.handoff_set = false;
991
992         raw_spin_lock_irq(&sem->wait_lock);
993         if (list_empty(&sem->wait_list)) {
994                 /*
995                  * In case the wait queue is empty and the lock isn't owned
996                  * by a writer or has the handoff bit set, this reader can
997                  * exit the slowpath and return immediately as its
998                  * RWSEM_READER_BIAS has already been set in the count.
999                  */
1000                 if (!(atomic_long_read(&sem->count) &
1001                      (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
1002                         /* Provide lock ACQUIRE */
1003                         smp_acquire__after_ctrl_dep();
1004                         raw_spin_unlock_irq(&sem->wait_lock);
1005                         rwsem_set_reader_owned(sem);
1006                         lockevent_inc(rwsem_rlock_fast);
1007                         return sem;
1008                 }
1009                 adjustment += RWSEM_FLAG_WAITERS;
1010         }
1011         rwsem_add_waiter(sem, &waiter);
1012
1013         /* we're now waiting on the lock, but no longer actively locking */
1014         count = atomic_long_add_return(adjustment, &sem->count);
1015
1016         /*
1017          * If there are no active locks, wake the front queued process(es).
1018          *
1019          * If there are no writers and we are first in the queue,
1020          * wake our own waiter to join the existing active readers !
1021          */
1022         if (!(count & RWSEM_LOCK_MASK)) {
1023                 clear_nonspinnable(sem);
1024                 wake = true;
1025         }
1026         if (wake || (!(count & RWSEM_WRITER_MASK) &&
1027                     (adjustment & RWSEM_FLAG_WAITERS)))
1028                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1029
1030         raw_spin_unlock_irq(&sem->wait_lock);
1031         wake_up_q(&wake_q);
1032
1033         /* wait to be given the lock */
1034         for (;;) {
1035                 set_current_state(state);
1036                 if (!smp_load_acquire(&waiter.task)) {
1037                         /* Matches rwsem_mark_wake()'s smp_store_release(). */
1038                         break;
1039                 }
1040                 if (signal_pending_state(state, current)) {
1041                         raw_spin_lock_irq(&sem->wait_lock);
1042                         if (waiter.task)
1043                                 goto out_nolock;
1044                         raw_spin_unlock_irq(&sem->wait_lock);
1045                         /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1046                         break;
1047                 }
1048                 schedule();
1049                 lockevent_inc(rwsem_sleep_reader);
1050         }
1051
1052         __set_current_state(TASK_RUNNING);
1053         lockevent_inc(rwsem_rlock);
1054         return sem;
1055
1056 out_nolock:
1057         rwsem_del_waiter(sem, &waiter);
1058         raw_spin_unlock_irq(&sem->wait_lock);
1059         __set_current_state(TASK_RUNNING);
1060         lockevent_inc(rwsem_rlock_fail);
1061         return ERR_PTR(-EINTR);
1062 }
1063
1064 /*
1065  * Wait until we successfully acquire the write lock
1066  */
1067 static struct rw_semaphore *
1068 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1069 {
1070         long count;
1071         struct rwsem_waiter waiter;
1072         DEFINE_WAKE_Q(wake_q);
1073
1074         /* do optimistic spinning and steal lock if possible */
1075         if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1076                 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1077                 return sem;
1078         }
1079
1080         /*
1081          * Optimistic spinning failed, proceed to the slowpath
1082          * and block until we can acquire the sem.
1083          */
1084         waiter.task = current;
1085         waiter.type = RWSEM_WAITING_FOR_WRITE;
1086         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1087         waiter.handoff_set = false;
1088
1089         raw_spin_lock_irq(&sem->wait_lock);
1090         rwsem_add_waiter(sem, &waiter);
1091
1092         /* we're now waiting on the lock */
1093         if (rwsem_first_waiter(sem) != &waiter) {
1094                 count = atomic_long_read(&sem->count);
1095
1096                 /*
1097                  * If there were already threads queued before us and:
1098                  *  1) there are no active locks, wake the front
1099                  *     queued process(es) as the handoff bit might be set.
1100                  *  2) there are no active writers and some readers, the lock
1101                  *     must be read owned; so we try to wake any read lock
1102                  *     waiters that were queued ahead of us.
1103                  */
1104                 if (count & RWSEM_WRITER_MASK)
1105                         goto wait;
1106
1107                 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1108                                         ? RWSEM_WAKE_READERS
1109                                         : RWSEM_WAKE_ANY, &wake_q);
1110
1111                 if (!wake_q_empty(&wake_q)) {
1112                         /*
1113                          * We want to minimize wait_lock hold time especially
1114                          * when a large number of readers are to be woken up.
1115                          */
1116                         raw_spin_unlock_irq(&sem->wait_lock);
1117                         wake_up_q(&wake_q);
1118                         wake_q_init(&wake_q);   /* Used again, reinit */
1119                         raw_spin_lock_irq(&sem->wait_lock);
1120                 }
1121         } else {
1122                 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1123         }
1124
1125 wait:
1126         /* wait until we successfully acquire the lock */
1127         set_current_state(state);
1128         for (;;) {
1129                 if (rwsem_try_write_lock(sem, &waiter)) {
1130                         /* rwsem_try_write_lock() implies ACQUIRE on success */
1131                         break;
1132                 }
1133
1134                 raw_spin_unlock_irq(&sem->wait_lock);
1135
1136                 if (signal_pending_state(state, current))
1137                         goto out_nolock;
1138
1139                 /*
1140                  * After setting the handoff bit and failing to acquire
1141                  * the lock, attempt to spin on owner to accelerate lock
1142                  * transfer. If the previous owner is a on-cpu writer and it
1143                  * has just released the lock, OWNER_NULL will be returned.
1144                  * In this case, we attempt to acquire the lock again
1145                  * without sleeping.
1146                  */
1147                 if (waiter.handoff_set) {
1148                         enum owner_state owner_state;
1149
1150                         preempt_disable();
1151                         owner_state = rwsem_spin_on_owner(sem);
1152                         preempt_enable();
1153
1154                         if (owner_state == OWNER_NULL)
1155                                 goto trylock_again;
1156                 }
1157
1158                 schedule();
1159                 lockevent_inc(rwsem_sleep_writer);
1160                 set_current_state(state);
1161 trylock_again:
1162                 raw_spin_lock_irq(&sem->wait_lock);
1163         }
1164         __set_current_state(TASK_RUNNING);
1165         raw_spin_unlock_irq(&sem->wait_lock);
1166         lockevent_inc(rwsem_wlock);
1167         return sem;
1168
1169 out_nolock:
1170         __set_current_state(TASK_RUNNING);
1171         raw_spin_lock_irq(&sem->wait_lock);
1172         rwsem_del_waiter(sem, &waiter);
1173         if (!list_empty(&sem->wait_list))
1174                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1175         raw_spin_unlock_irq(&sem->wait_lock);
1176         wake_up_q(&wake_q);
1177         lockevent_inc(rwsem_wlock_fail);
1178         return ERR_PTR(-EINTR);
1179 }
1180
1181 /*
1182  * handle waking up a waiter on the semaphore
1183  * - up_read/up_write has decremented the active part of count if we come here
1184  */
1185 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1186 {
1187         unsigned long flags;
1188         DEFINE_WAKE_Q(wake_q);
1189
1190         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1191
1192         if (!list_empty(&sem->wait_list))
1193                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1194
1195         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1196         wake_up_q(&wake_q);
1197
1198         return sem;
1199 }
1200
1201 /*
1202  * downgrade a write lock into a read lock
1203  * - caller incremented waiting part of count and discovered it still negative
1204  * - just wake up any readers at the front of the queue
1205  */
1206 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1207 {
1208         unsigned long flags;
1209         DEFINE_WAKE_Q(wake_q);
1210
1211         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1212
1213         if (!list_empty(&sem->wait_list))
1214                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1215
1216         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1217         wake_up_q(&wake_q);
1218
1219         return sem;
1220 }
1221
1222 /*
1223  * lock for reading
1224  */
1225 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1226 {
1227         long count;
1228
1229         if (!rwsem_read_trylock(sem, &count)) {
1230                 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1231                         return -EINTR;
1232                 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1233         }
1234         return 0;
1235 }
1236
1237 static inline void __down_read(struct rw_semaphore *sem)
1238 {
1239         __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1240 }
1241
1242 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1243 {
1244         return __down_read_common(sem, TASK_INTERRUPTIBLE);
1245 }
1246
1247 static inline int __down_read_killable(struct rw_semaphore *sem)
1248 {
1249         return __down_read_common(sem, TASK_KILLABLE);
1250 }
1251
1252 static inline int __down_read_trylock(struct rw_semaphore *sem)
1253 {
1254         long tmp;
1255
1256         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1257
1258         /*
1259          * Optimize for the case when the rwsem is not locked at all.
1260          */
1261         tmp = RWSEM_UNLOCKED_VALUE;
1262         do {
1263                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1264                                         tmp + RWSEM_READER_BIAS)) {
1265                         rwsem_set_reader_owned(sem);
1266                         return 1;
1267                 }
1268         } while (!(tmp & RWSEM_READ_FAILED_MASK));
1269         return 0;
1270 }
1271
1272 /*
1273  * lock for writing
1274  */
1275 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1276 {
1277         if (unlikely(!rwsem_write_trylock(sem))) {
1278                 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1279                         return -EINTR;
1280         }
1281
1282         return 0;
1283 }
1284
1285 static inline void __down_write(struct rw_semaphore *sem)
1286 {
1287         __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1288 }
1289
1290 static inline int __down_write_killable(struct rw_semaphore *sem)
1291 {
1292         return __down_write_common(sem, TASK_KILLABLE);
1293 }
1294
1295 static inline int __down_write_trylock(struct rw_semaphore *sem)
1296 {
1297         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1298         return rwsem_write_trylock(sem);
1299 }
1300
1301 /*
1302  * unlock after reading
1303  */
1304 static inline void __up_read(struct rw_semaphore *sem)
1305 {
1306         long tmp;
1307
1308         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1309         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1310
1311         rwsem_clear_reader_owned(sem);
1312         tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1313         DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1314         if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1315                       RWSEM_FLAG_WAITERS)) {
1316                 clear_nonspinnable(sem);
1317                 rwsem_wake(sem);
1318         }
1319 }
1320
1321 /*
1322  * unlock after writing
1323  */
1324 static inline void __up_write(struct rw_semaphore *sem)
1325 {
1326         long tmp;
1327
1328         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1329         /*
1330          * sem->owner may differ from current if the ownership is transferred
1331          * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1332          */
1333         DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1334                             !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1335
1336         rwsem_clear_owner(sem);
1337         tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1338         if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1339                 rwsem_wake(sem);
1340 }
1341
1342 /*
1343  * downgrade write lock to read lock
1344  */
1345 static inline void __downgrade_write(struct rw_semaphore *sem)
1346 {
1347         long tmp;
1348
1349         /*
1350          * When downgrading from exclusive to shared ownership,
1351          * anything inside the write-locked region cannot leak
1352          * into the read side. In contrast, anything in the
1353          * read-locked region is ok to be re-ordered into the
1354          * write side. As such, rely on RELEASE semantics.
1355          */
1356         DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1357         tmp = atomic_long_fetch_add_release(
1358                 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1359         rwsem_set_reader_owned(sem);
1360         if (tmp & RWSEM_FLAG_WAITERS)
1361                 rwsem_downgrade_wake(sem);
1362 }
1363
1364 #else /* !CONFIG_PREEMPT_RT */
1365
1366 #define RT_MUTEX_BUILD_MUTEX
1367 #include "rtmutex.c"
1368
1369 #define rwbase_set_and_save_current_state(state)        \
1370         set_current_state(state)
1371
1372 #define rwbase_restore_current_state()                  \
1373         __set_current_state(TASK_RUNNING)
1374
1375 #define rwbase_rtmutex_lock_state(rtm, state)           \
1376         __rt_mutex_lock(rtm, state)
1377
1378 #define rwbase_rtmutex_slowlock_locked(rtm, state)      \
1379         __rt_mutex_slowlock_locked(rtm, NULL, state)
1380
1381 #define rwbase_rtmutex_unlock(rtm)                      \
1382         __rt_mutex_unlock(rtm)
1383
1384 #define rwbase_rtmutex_trylock(rtm)                     \
1385         __rt_mutex_trylock(rtm)
1386
1387 #define rwbase_signal_pending_state(state, current)     \
1388         signal_pending_state(state, current)
1389
1390 #define rwbase_schedule()                               \
1391         schedule()
1392
1393 #include "rwbase_rt.c"
1394
1395 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1396                   struct lock_class_key *key)
1397 {
1398         init_rwbase_rt(&(sem)->rwbase);
1399
1400 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1401         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1402         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1403 #endif
1404 }
1405 EXPORT_SYMBOL(__init_rwsem);
1406
1407 static inline void __down_read(struct rw_semaphore *sem)
1408 {
1409         rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1410 }
1411
1412 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1413 {
1414         return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1415 }
1416
1417 static inline int __down_read_killable(struct rw_semaphore *sem)
1418 {
1419         return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1420 }
1421
1422 static inline int __down_read_trylock(struct rw_semaphore *sem)
1423 {
1424         return rwbase_read_trylock(&sem->rwbase);
1425 }
1426
1427 static inline void __up_read(struct rw_semaphore *sem)
1428 {
1429         rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1430 }
1431
1432 static inline void __sched __down_write(struct rw_semaphore *sem)
1433 {
1434         rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1435 }
1436
1437 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1438 {
1439         return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1440 }
1441
1442 static inline int __down_write_trylock(struct rw_semaphore *sem)
1443 {
1444         return rwbase_write_trylock(&sem->rwbase);
1445 }
1446
1447 static inline void __up_write(struct rw_semaphore *sem)
1448 {
1449         rwbase_write_unlock(&sem->rwbase);
1450 }
1451
1452 static inline void __downgrade_write(struct rw_semaphore *sem)
1453 {
1454         rwbase_write_downgrade(&sem->rwbase);
1455 }
1456
1457 /* Debug stubs for the common API */
1458 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1459
1460 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1461                                             struct task_struct *owner)
1462 {
1463 }
1464
1465 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1466 {
1467         int count = atomic_read(&sem->rwbase.readers);
1468
1469         return count < 0 && count != READER_BIAS;
1470 }
1471
1472 #endif /* CONFIG_PREEMPT_RT */
1473
1474 /*
1475  * lock for reading
1476  */
1477 void __sched down_read(struct rw_semaphore *sem)
1478 {
1479         might_sleep();
1480         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1481
1482         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1483 }
1484 EXPORT_SYMBOL(down_read);
1485
1486 int __sched down_read_interruptible(struct rw_semaphore *sem)
1487 {
1488         might_sleep();
1489         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1490
1491         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1492                 rwsem_release(&sem->dep_map, _RET_IP_);
1493                 return -EINTR;
1494         }
1495
1496         return 0;
1497 }
1498 EXPORT_SYMBOL(down_read_interruptible);
1499
1500 int __sched down_read_killable(struct rw_semaphore *sem)
1501 {
1502         might_sleep();
1503         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1504
1505         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1506                 rwsem_release(&sem->dep_map, _RET_IP_);
1507                 return -EINTR;
1508         }
1509
1510         return 0;
1511 }
1512 EXPORT_SYMBOL(down_read_killable);
1513
1514 /*
1515  * trylock for reading -- returns 1 if successful, 0 if contention
1516  */
1517 int down_read_trylock(struct rw_semaphore *sem)
1518 {
1519         int ret = __down_read_trylock(sem);
1520
1521         if (ret == 1)
1522                 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1523         return ret;
1524 }
1525 EXPORT_SYMBOL(down_read_trylock);
1526
1527 /*
1528  * lock for writing
1529  */
1530 void __sched down_write(struct rw_semaphore *sem)
1531 {
1532         might_sleep();
1533         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1534         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1535 }
1536 EXPORT_SYMBOL(down_write);
1537
1538 /*
1539  * lock for writing
1540  */
1541 int __sched down_write_killable(struct rw_semaphore *sem)
1542 {
1543         might_sleep();
1544         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1545
1546         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1547                                   __down_write_killable)) {
1548                 rwsem_release(&sem->dep_map, _RET_IP_);
1549                 return -EINTR;
1550         }
1551
1552         return 0;
1553 }
1554 EXPORT_SYMBOL(down_write_killable);
1555
1556 /*
1557  * trylock for writing -- returns 1 if successful, 0 if contention
1558  */
1559 int down_write_trylock(struct rw_semaphore *sem)
1560 {
1561         int ret = __down_write_trylock(sem);
1562
1563         if (ret == 1)
1564                 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1565
1566         return ret;
1567 }
1568 EXPORT_SYMBOL(down_write_trylock);
1569
1570 /*
1571  * release a read lock
1572  */
1573 void up_read(struct rw_semaphore *sem)
1574 {
1575         rwsem_release(&sem->dep_map, _RET_IP_);
1576         __up_read(sem);
1577 }
1578 EXPORT_SYMBOL(up_read);
1579
1580 /*
1581  * release a write lock
1582  */
1583 void up_write(struct rw_semaphore *sem)
1584 {
1585         rwsem_release(&sem->dep_map, _RET_IP_);
1586         __up_write(sem);
1587 }
1588 EXPORT_SYMBOL(up_write);
1589
1590 /*
1591  * downgrade write lock to read lock
1592  */
1593 void downgrade_write(struct rw_semaphore *sem)
1594 {
1595         lock_downgrade(&sem->dep_map, _RET_IP_);
1596         __downgrade_write(sem);
1597 }
1598 EXPORT_SYMBOL(downgrade_write);
1599
1600 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1601
1602 void down_read_nested(struct rw_semaphore *sem, int subclass)
1603 {
1604         might_sleep();
1605         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1606         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1607 }
1608 EXPORT_SYMBOL(down_read_nested);
1609
1610 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1611 {
1612         might_sleep();
1613         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1614
1615         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1616                 rwsem_release(&sem->dep_map, _RET_IP_);
1617                 return -EINTR;
1618         }
1619
1620         return 0;
1621 }
1622 EXPORT_SYMBOL(down_read_killable_nested);
1623
1624 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1625 {
1626         might_sleep();
1627         rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1628         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1629 }
1630 EXPORT_SYMBOL(_down_write_nest_lock);
1631
1632 void down_read_non_owner(struct rw_semaphore *sem)
1633 {
1634         might_sleep();
1635         __down_read(sem);
1636         __rwsem_set_reader_owned(sem, NULL);
1637 }
1638 EXPORT_SYMBOL(down_read_non_owner);
1639
1640 void down_write_nested(struct rw_semaphore *sem, int subclass)
1641 {
1642         might_sleep();
1643         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1644         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1645 }
1646 EXPORT_SYMBOL(down_write_nested);
1647
1648 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1649 {
1650         might_sleep();
1651         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1652
1653         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1654                                   __down_write_killable)) {
1655                 rwsem_release(&sem->dep_map, _RET_IP_);
1656                 return -EINTR;
1657         }
1658
1659         return 0;
1660 }
1661 EXPORT_SYMBOL(down_write_killable_nested);
1662
1663 void up_read_non_owner(struct rw_semaphore *sem)
1664 {
1665         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1666         __up_read(sem);
1667 }
1668 EXPORT_SYMBOL(up_read_non_owner);
1669
1670 #endif