arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / kernel / locking / rwbase_rt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /*
4  * RT-specific reader/writer semaphores and reader/writer locks
5  *
6  * down_write/write_lock()
7  *  1) Lock rtmutex
8  *  2) Remove the reader BIAS to force readers into the slow path
9  *  3) Wait until all readers have left the critical section
10  *  4) Mark it write locked
11  *
12  * up_write/write_unlock()
13  *  1) Remove the write locked marker
14  *  2) Set the reader BIAS, so readers can use the fast path again
15  *  3) Unlock rtmutex, to release blocked readers
16  *
17  * down_read/read_lock()
18  *  1) Try fast path acquisition (reader BIAS is set)
19  *  2) Take tmutex::wait_lock, which protects the writelocked flag
20  *  3) If !writelocked, acquire it for read
21  *  4) If writelocked, block on tmutex
22  *  5) unlock rtmutex, goto 1)
23  *
24  * up_read/read_unlock()
25  *  1) Try fast path release (reader count != 1)
26  *  2) Wake the writer waiting in down_write()/write_lock() #3
27  *
28  * down_read/read_lock()#3 has the consequence, that rw semaphores and rw
29  * locks on RT are not writer fair, but writers, which should be avoided in
30  * RT tasks (think mmap_sem), are subject to the rtmutex priority/DL
31  * inheritance mechanism.
32  *
33  * It's possible to make the rw primitives writer fair by keeping a list of
34  * active readers. A blocked writer would force all newly incoming readers
35  * to block on the rtmutex, but the rtmutex would have to be proxy locked
36  * for one reader after the other. We can't use multi-reader inheritance
37  * because there is no way to support that with SCHED_DEADLINE.
38  * Implementing the one by one reader boosting/handover mechanism is a
39  * major surgery for a very dubious value.
40  *
41  * The risk of writer starvation is there, but the pathological use cases
42  * which trigger it are not necessarily the typical RT workloads.
43  *
44  * Fast-path orderings:
45  * The lock/unlock of readers can run in fast paths: lock and unlock are only
46  * atomic ops, and there is no inner lock to provide ACQUIRE and RELEASE
47  * semantics of rwbase_rt. Atomic ops should thus provide _acquire()
48  * and _release() (or stronger).
49  *
50  * Common code shared between RT rw_semaphore and rwlock
51  */
52
53 static __always_inline int rwbase_read_trylock(struct rwbase_rt *rwb)
54 {
55         int r;
56
57         /*
58          * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
59          * set.
60          */
61         for (r = atomic_read(&rwb->readers); r < 0;) {
62                 if (likely(atomic_try_cmpxchg_acquire(&rwb->readers, &r, r + 1)))
63                         return 1;
64         }
65         return 0;
66 }
67
68 static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
69                                       unsigned int state)
70 {
71         struct rt_mutex_base *rtm = &rwb->rtmutex;
72         int ret;
73
74         rwbase_pre_schedule();
75         raw_spin_lock_irq(&rtm->wait_lock);
76
77         /*
78          * Call into the slow lock path with the rtmutex->wait_lock
79          * held, so this can't result in the following race:
80          *
81          * Reader1              Reader2         Writer
82          *                      down_read()
83          *                                      down_write()
84          *                                      rtmutex_lock(m)
85          *                                      wait()
86          * down_read()
87          * unlock(m->wait_lock)
88          *                      up_read()
89          *                      wake(Writer)
90          *                                      lock(m->wait_lock)
91          *                                      sem->writelocked=true
92          *                                      unlock(m->wait_lock)
93          *
94          *                                      up_write()
95          *                                      sem->writelocked=false
96          *                                      rtmutex_unlock(m)
97          *                      down_read()
98          *                                      down_write()
99          *                                      rtmutex_lock(m)
100          *                                      wait()
101          * rtmutex_lock(m)
102          *
103          * That would put Reader1 behind the writer waiting on
104          * Reader2 to call up_read(), which might be unbound.
105          */
106
107         trace_contention_begin(rwb, LCB_F_RT | LCB_F_READ);
108
109         /*
110          * For rwlocks this returns 0 unconditionally, so the below
111          * !ret conditionals are optimized out.
112          */
113         ret = rwbase_rtmutex_slowlock_locked(rtm, state);
114
115         /*
116          * On success the rtmutex is held, so there can't be a writer
117          * active. Increment the reader count and immediately drop the
118          * rtmutex again.
119          *
120          * rtmutex->wait_lock has to be unlocked in any case of course.
121          */
122         if (!ret)
123                 atomic_inc(&rwb->readers);
124         raw_spin_unlock_irq(&rtm->wait_lock);
125         if (!ret)
126                 rwbase_rtmutex_unlock(rtm);
127
128         trace_contention_end(rwb, ret);
129         rwbase_post_schedule();
130         return ret;
131 }
132
133 static __always_inline int rwbase_read_lock(struct rwbase_rt *rwb,
134                                             unsigned int state)
135 {
136         lockdep_assert(!current->pi_blocked_on);
137
138         if (rwbase_read_trylock(rwb))
139                 return 0;
140
141         return __rwbase_read_lock(rwb, state);
142 }
143
144 static void __sched __rwbase_read_unlock(struct rwbase_rt *rwb,
145                                          unsigned int state)
146 {
147         struct rt_mutex_base *rtm = &rwb->rtmutex;
148         struct task_struct *owner;
149         DEFINE_RT_WAKE_Q(wqh);
150
151         raw_spin_lock_irq(&rtm->wait_lock);
152         /*
153          * Wake the writer, i.e. the rtmutex owner. It might release the
154          * rtmutex concurrently in the fast path (due to a signal), but to
155          * clean up rwb->readers it needs to acquire rtm->wait_lock. The
156          * worst case which can happen is a spurious wakeup.
157          */
158         owner = rt_mutex_owner(rtm);
159         if (owner)
160                 rt_mutex_wake_q_add_task(&wqh, owner, state);
161
162         /* Pairs with the preempt_enable in rt_mutex_wake_up_q() */
163         preempt_disable();
164         raw_spin_unlock_irq(&rtm->wait_lock);
165         rt_mutex_wake_up_q(&wqh);
166 }
167
168 static __always_inline void rwbase_read_unlock(struct rwbase_rt *rwb,
169                                                unsigned int state)
170 {
171         /*
172          * rwb->readers can only hit 0 when a writer is waiting for the
173          * active readers to leave the critical section.
174          *
175          * dec_and_test() is fully ordered, provides RELEASE.
176          */
177         if (unlikely(atomic_dec_and_test(&rwb->readers)))
178                 __rwbase_read_unlock(rwb, state);
179 }
180
181 static inline void __rwbase_write_unlock(struct rwbase_rt *rwb, int bias,
182                                          unsigned long flags)
183 {
184         struct rt_mutex_base *rtm = &rwb->rtmutex;
185
186         /*
187          * _release() is needed in case that reader is in fast path, pairing
188          * with atomic_try_cmpxchg_acquire() in rwbase_read_trylock().
189          */
190         (void)atomic_add_return_release(READER_BIAS - bias, &rwb->readers);
191         raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
192         rwbase_rtmutex_unlock(rtm);
193 }
194
195 static inline void rwbase_write_unlock(struct rwbase_rt *rwb)
196 {
197         struct rt_mutex_base *rtm = &rwb->rtmutex;
198         unsigned long flags;
199
200         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
201         __rwbase_write_unlock(rwb, WRITER_BIAS, flags);
202 }
203
204 static inline void rwbase_write_downgrade(struct rwbase_rt *rwb)
205 {
206         struct rt_mutex_base *rtm = &rwb->rtmutex;
207         unsigned long flags;
208
209         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
210         /* Release it and account current as reader */
211         __rwbase_write_unlock(rwb, WRITER_BIAS - 1, flags);
212 }
213
214 static inline bool __rwbase_write_trylock(struct rwbase_rt *rwb)
215 {
216         /* Can do without CAS because we're serialized by wait_lock. */
217         lockdep_assert_held(&rwb->rtmutex.wait_lock);
218
219         /*
220          * _acquire is needed in case the reader is in the fast path, pairing
221          * with rwbase_read_unlock(), provides ACQUIRE.
222          */
223         if (!atomic_read_acquire(&rwb->readers)) {
224                 atomic_set(&rwb->readers, WRITER_BIAS);
225                 return 1;
226         }
227
228         return 0;
229 }
230
231 static int __sched rwbase_write_lock(struct rwbase_rt *rwb,
232                                      unsigned int state)
233 {
234         struct rt_mutex_base *rtm = &rwb->rtmutex;
235         unsigned long flags;
236
237         /* Take the rtmutex as a first step */
238         if (rwbase_rtmutex_lock_state(rtm, state))
239                 return -EINTR;
240
241         /* Force readers into slow path */
242         atomic_sub(READER_BIAS, &rwb->readers);
243
244         rwbase_pre_schedule();
245
246         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
247         if (__rwbase_write_trylock(rwb))
248                 goto out_unlock;
249
250         rwbase_set_and_save_current_state(state);
251         trace_contention_begin(rwb, LCB_F_RT | LCB_F_WRITE);
252         for (;;) {
253                 /* Optimized out for rwlocks */
254                 if (rwbase_signal_pending_state(state, current)) {
255                         rwbase_restore_current_state();
256                         __rwbase_write_unlock(rwb, 0, flags);
257                         rwbase_post_schedule();
258                         trace_contention_end(rwb, -EINTR);
259                         return -EINTR;
260                 }
261
262                 if (__rwbase_write_trylock(rwb))
263                         break;
264
265                 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
266                 rwbase_schedule();
267                 raw_spin_lock_irqsave(&rtm->wait_lock, flags);
268
269                 set_current_state(state);
270         }
271         rwbase_restore_current_state();
272         trace_contention_end(rwb, 0);
273
274 out_unlock:
275         raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
276         rwbase_post_schedule();
277         return 0;
278 }
279
280 static inline int rwbase_write_trylock(struct rwbase_rt *rwb)
281 {
282         struct rt_mutex_base *rtm = &rwb->rtmutex;
283         unsigned long flags;
284
285         if (!rwbase_rtmutex_trylock(rtm))
286                 return 0;
287
288         atomic_sub(READER_BIAS, &rwb->readers);
289
290         raw_spin_lock_irqsave(&rtm->wait_lock, flags);
291         if (__rwbase_write_trylock(rwb)) {
292                 raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
293                 return 1;
294         }
295         __rwbase_write_unlock(rwb, 0, flags);
296         return 0;
297 }