1 // SPDX-License-Identifier: GPL-2.0-only
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
5 * started by Ingo Molnar and Thomas Gleixner.
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
14 * Adaptive Spinlocks simplification:
15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
17 * See Documentation/locking/rt-mutex-design.rst for details.
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
27 #include <trace/events/lock.h>
29 #include "rtmutex_common.h"
32 # define build_ww_mutex() (false)
33 # define ww_container_of(rtm) NULL
35 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
36 struct rt_mutex *lock,
37 struct ww_acquire_ctx *ww_ctx)
42 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
43 struct ww_acquire_ctx *ww_ctx)
47 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
48 struct ww_acquire_ctx *ww_ctx)
52 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
53 struct rt_mutex_waiter *waiter,
54 struct ww_acquire_ctx *ww_ctx)
60 # define build_ww_mutex() (true)
61 # define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base)
62 # include "ww_mutex.h"
66 * lock->owner state tracking:
68 * lock->owner holds the task_struct pointer of the owner. Bit 0
69 * is used to keep track of the "lock has waiters" state.
72 * NULL 0 lock is free (fast acquire possible)
73 * NULL 1 lock is free and has waiters and the top waiter
74 * is going to take the lock*
75 * taskpointer 0 lock is held (fast release possible)
76 * taskpointer 1 lock is held and has waiters**
78 * The fast atomic compare exchange based acquire and release is only
79 * possible when bit 0 of lock->owner is 0.
81 * (*) It also can be a transitional state when grabbing the lock
82 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
83 * we need to set the bit0 before looking at the lock, and the owner may be
84 * NULL in this small time, hence this can be a transitional state.
86 * (**) There is a small time when bit 0 is set but there are no
87 * waiters. This can happen when grabbing the lock in the slow path.
88 * To prevent a cmpxchg of the owner releasing the lock, we need to
89 * set this bit before looking at the lock.
92 static __always_inline struct task_struct *
93 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
95 unsigned long val = (unsigned long)owner;
97 if (rt_mutex_has_waiters(lock))
98 val |= RT_MUTEX_HAS_WAITERS;
100 return (struct task_struct *)val;
103 static __always_inline void
104 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
107 * lock->wait_lock is held but explicit acquire semantics are needed
108 * for a new lock owner so WRITE_ONCE is insufficient.
110 xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
113 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
115 /* lock->wait_lock is held so the unlock provides release semantics. */
116 WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
119 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
121 lock->owner = (struct task_struct *)
122 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
125 static __always_inline void
126 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
128 unsigned long owner, *p = (unsigned long *) &lock->owner;
130 if (rt_mutex_has_waiters(lock))
134 * The rbtree has no waiters enqueued, now make sure that the
135 * lock->owner still has the waiters bit set, otherwise the
136 * following can happen:
142 * l->owner = T1 | HAS_WAITERS;
150 * l->owner = T1 | HAS_WAITERS;
155 * signal(->T2) signal(->T3)
162 * ==> wait list is empty
166 * fixup_rt_mutex_waiters()
167 * if (wait_list_empty(l) {
169 * owner = l->owner & ~HAS_WAITERS;
173 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
174 * if (wait_list_empty(l) {
175 * owner = l->owner & ~HAS_WAITERS;
176 * cmpxchg(l->owner, T1, NULL)
177 * ===> Success (l->owner = NULL)
183 * With the check for the waiter bit in place T3 on CPU2 will not
184 * overwrite. All tasks fiddling with the waiters bit are
185 * serialized by l->lock, so nothing else can modify the waiters
186 * bit. If the bit is set then nothing can change l->owner either
187 * so the simple RMW is safe. The cmpxchg() will simply fail if it
188 * happens in the middle of the RMW because the waiters bit is
191 owner = READ_ONCE(*p);
192 if (owner & RT_MUTEX_HAS_WAITERS) {
194 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
195 * why xchg_acquire() is used for updating owner for
196 * locking and WRITE_ONCE() for unlocking.
198 * WRITE_ONCE() would work for the acquire case too, but
199 * in case that the lock acquisition failed it might
200 * force other lockers into the slow path unnecessarily.
203 xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
205 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
210 * We can speed up the acquire/release, if there's no debugging state to be
213 #ifndef CONFIG_DEBUG_RT_MUTEXES
214 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
215 struct task_struct *old,
216 struct task_struct *new)
218 return try_cmpxchg_acquire(&lock->owner, &old, new);
221 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
223 return rt_mutex_cmpxchg_acquire(lock, NULL, current);
226 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
227 struct task_struct *old,
228 struct task_struct *new)
230 return try_cmpxchg_release(&lock->owner, &old, new);
234 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
235 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
236 * relaxed semantics suffice.
238 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
240 unsigned long owner, *p = (unsigned long *) &lock->owner;
244 } while (cmpxchg_relaxed(p, owner,
245 owner | RT_MUTEX_HAS_WAITERS) != owner);
248 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
249 * operations in the event of contention. Ensure the successful
250 * cmpxchg is visible.
252 smp_mb__after_atomic();
256 * Safe fastpath aware unlock:
257 * 1) Clear the waiters bit
258 * 2) Drop lock->wait_lock
259 * 3) Try to unlock the lock with cmpxchg
261 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
263 __releases(lock->wait_lock)
265 struct task_struct *owner = rt_mutex_owner(lock);
267 clear_rt_mutex_waiters(lock);
268 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
270 * If a new waiter comes in between the unlock and the cmpxchg
271 * we have two situations:
275 * cmpxchg(p, owner, 0) == owner
276 * mark_rt_mutex_waiters(lock);
282 * mark_rt_mutex_waiters(lock);
284 * cmpxchg(p, owner, 0) != owner
293 return rt_mutex_cmpxchg_release(lock, owner, NULL);
297 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
298 struct task_struct *old,
299 struct task_struct *new)
305 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock);
307 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
310 * With debug enabled rt_mutex_cmpxchg trylock() will always fail.
312 * Avoid unconditionally taking the slow path by using
313 * rt_mutex_slow_trylock() which is covered by the debug code and can
314 * acquire a non-contended rtmutex.
316 return rt_mutex_slowtrylock(lock);
319 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
320 struct task_struct *old,
321 struct task_struct *new)
326 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
328 lock->owner = (struct task_struct *)
329 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
333 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
335 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
337 __releases(lock->wait_lock)
340 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
345 static __always_inline int __waiter_prio(struct task_struct *task)
347 int prio = task->prio;
356 * Update the waiter->tree copy of the sort keys.
358 static __always_inline void
359 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
361 lockdep_assert_held(&waiter->lock->wait_lock);
362 lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
364 waiter->tree.prio = __waiter_prio(task);
365 waiter->tree.deadline = task->dl.deadline;
369 * Update the waiter->pi_tree copy of the sort keys (from the tree copy).
371 static __always_inline void
372 waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
374 lockdep_assert_held(&waiter->lock->wait_lock);
375 lockdep_assert_held(&task->pi_lock);
376 lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
378 waiter->pi_tree.prio = waiter->tree.prio;
379 waiter->pi_tree.deadline = waiter->tree.deadline;
383 * Only use with rt_waiter_node_{less,equal}()
385 #define task_to_waiter_node(p) \
386 &(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
387 #define task_to_waiter(p) \
388 &(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
390 static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
391 struct rt_waiter_node *right)
393 if (left->prio < right->prio)
397 * If both waiters have dl_prio(), we check the deadlines of the
399 * If left waiter has a dl_prio(), and we didn't return 1 above,
400 * then right waiter has a dl_prio() too.
402 if (dl_prio(left->prio))
403 return dl_time_before(left->deadline, right->deadline);
408 static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
409 struct rt_waiter_node *right)
411 if (left->prio != right->prio)
415 * If both waiters have dl_prio(), we check the deadlines of the
417 * If left waiter has a dl_prio(), and we didn't return 0 above,
418 * then right waiter has a dl_prio() too.
420 if (dl_prio(left->prio))
421 return left->deadline == right->deadline;
426 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
427 struct rt_mutex_waiter *top_waiter)
429 if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
432 #ifdef RT_MUTEX_BUILD_SPINLOCKS
434 * Note that RT tasks are excluded from same priority (lateral)
435 * steals to prevent the introduction of an unbounded latency.
437 if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
440 return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
446 #define __node_2_waiter(node) \
447 rb_entry((node), struct rt_mutex_waiter, tree.entry)
449 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
451 struct rt_mutex_waiter *aw = __node_2_waiter(a);
452 struct rt_mutex_waiter *bw = __node_2_waiter(b);
454 if (rt_waiter_node_less(&aw->tree, &bw->tree))
457 if (!build_ww_mutex())
460 if (rt_waiter_node_less(&bw->tree, &aw->tree))
463 /* NOTE: relies on waiter->ww_ctx being set before insertion */
468 return (signed long)(aw->ww_ctx->stamp -
469 bw->ww_ctx->stamp) < 0;
475 static __always_inline void
476 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
478 lockdep_assert_held(&lock->wait_lock);
480 rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
483 static __always_inline void
484 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
486 lockdep_assert_held(&lock->wait_lock);
488 if (RB_EMPTY_NODE(&waiter->tree.entry))
491 rb_erase_cached(&waiter->tree.entry, &lock->waiters);
492 RB_CLEAR_NODE(&waiter->tree.entry);
495 #define __node_2_rt_node(node) \
496 rb_entry((node), struct rt_waiter_node, entry)
498 static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
500 return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
503 static __always_inline void
504 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
506 lockdep_assert_held(&task->pi_lock);
508 rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
511 static __always_inline void
512 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
514 lockdep_assert_held(&task->pi_lock);
516 if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
519 rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
520 RB_CLEAR_NODE(&waiter->pi_tree.entry);
523 static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
524 struct task_struct *p)
526 struct task_struct *pi_task = NULL;
528 lockdep_assert_held(&lock->wait_lock);
529 lockdep_assert(rt_mutex_owner(lock) == p);
530 lockdep_assert_held(&p->pi_lock);
532 if (task_has_pi_waiters(p))
533 pi_task = task_top_pi_waiter(p)->task;
535 rt_mutex_setprio(p, pi_task);
538 /* RT mutex specific wake_q wrappers */
539 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
540 struct task_struct *task,
541 unsigned int wake_state)
543 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
544 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
545 WARN_ON_ONCE(wqh->rtlock_task);
546 get_task_struct(task);
547 wqh->rtlock_task = task;
549 wake_q_add(&wqh->head, task);
553 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
554 struct rt_mutex_waiter *w)
556 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
559 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
561 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
562 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
563 put_task_struct(wqh->rtlock_task);
564 wqh->rtlock_task = NULL;
567 if (!wake_q_empty(&wqh->head))
568 wake_up_q(&wqh->head);
570 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
575 * Deadlock detection is conditional:
577 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
578 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
580 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
581 * conducted independent of the detect argument.
583 * If the waiter argument is NULL this indicates the deboost path and
584 * deadlock detection is disabled independent of the detect argument
585 * and the config settings.
587 static __always_inline bool
588 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
589 enum rtmutex_chainwalk chwalk)
591 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
592 return waiter != NULL;
593 return chwalk == RT_MUTEX_FULL_CHAINWALK;
596 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
598 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
602 * Adjust the priority chain. Also used for deadlock detection.
603 * Decreases task's usage by one - may thus free the task.
605 * @task: the task owning the mutex (owner) for which a chain walk is
607 * @chwalk: do we have to carry out deadlock detection?
608 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
609 * things for a task that has just got its priority adjusted, and
610 * is waiting on a mutex)
611 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
612 * we dropped its pi_lock. Is never dereferenced, only used for
613 * comparison to detect lock chain changes.
614 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
615 * its priority to the mutex owner (can be NULL in the case
616 * depicted above or if the top waiter is gone away and we are
617 * actually deboosting the owner)
618 * @top_task: the current top waiter
620 * Returns 0 or -EDEADLK.
622 * Chain walk basics and protection scope
624 * [R] refcount on task
625 * [Pn] task->pi_lock held
626 * [L] rtmutex->wait_lock held
628 * Normal locking order:
633 * Step Description Protected by
634 * function arguments:
636 * @orig_lock if != NULL @top_task is blocked on it
637 * @next_lock Unprotected. Cannot be
638 * dereferenced. Only used for
640 * @orig_waiter if != NULL @top_task is blocked on it
641 * @top_task current, or in case of proxy
642 * locking protected by calling
645 * loop_sanity_check();
647 * [1] lock(task->pi_lock); [R] acquire [P1]
648 * [2] waiter = task->pi_blocked_on; [P1]
649 * [3] check_exit_conditions_1(); [P1]
650 * [4] lock = waiter->lock; [P1]
651 * [5] if (!try_lock(lock->wait_lock)) { [P1] try to acquire [L]
652 * unlock(task->pi_lock); release [P1]
655 * [6] check_exit_conditions_2(); [P1] + [L]
656 * [7] requeue_lock_waiter(lock, waiter); [P1] + [L]
657 * [8] unlock(task->pi_lock); release [P1]
658 * put_task_struct(task); release [R]
659 * [9] check_exit_conditions_3(); [L]
660 * [10] task = owner(lock); [L]
661 * get_task_struct(task); [L] acquire [R]
662 * lock(task->pi_lock); [L] acquire [P2]
663 * [11] requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
664 * [12] check_exit_conditions_4(); [P2] + [L]
665 * [13] unlock(task->pi_lock); release [P2]
666 * unlock(lock->wait_lock); release [L]
669 * Where P1 is the blocking task and P2 is the lock owner; going up one step
670 * the owner becomes the next blocked task etc..
674 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
675 enum rtmutex_chainwalk chwalk,
676 struct rt_mutex_base *orig_lock,
677 struct rt_mutex_base *next_lock,
678 struct rt_mutex_waiter *orig_waiter,
679 struct task_struct *top_task)
681 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
682 struct rt_mutex_waiter *prerequeue_top_waiter;
683 int ret = 0, depth = 0;
684 struct rt_mutex_base *lock;
685 bool detect_deadlock;
688 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
691 * The (de)boosting is a step by step approach with a lot of
692 * pitfalls. We want this to be preemptible and we want hold a
693 * maximum of two locks per step. So we have to check
694 * carefully whether things change under us.
698 * We limit the lock chain length for each invocation.
700 if (++depth > max_lock_depth) {
704 * Print this only once. If the admin changes the limit,
705 * print a new message when reaching the limit again.
707 if (prev_max != max_lock_depth) {
708 prev_max = max_lock_depth;
709 printk(KERN_WARNING "Maximum lock depth %d reached "
710 "task: %s (%d)\n", max_lock_depth,
711 top_task->comm, task_pid_nr(top_task));
713 put_task_struct(task);
719 * We are fully preemptible here and only hold the refcount on
720 * @task. So everything can have changed under us since the
721 * caller or our own code below (goto retry/again) dropped all
726 * [1] Task cannot go away as we did a get_task() before !
728 raw_spin_lock_irq(&task->pi_lock);
731 * [2] Get the waiter on which @task is blocked on.
733 waiter = task->pi_blocked_on;
736 * [3] check_exit_conditions_1() protected by task->pi_lock.
740 * Check whether the end of the boosting chain has been
741 * reached or the state of the chain has changed while we
748 * Check the orig_waiter state. After we dropped the locks,
749 * the previous owner of the lock might have released the lock.
751 if (orig_waiter && !rt_mutex_owner(orig_lock))
755 * We dropped all locks after taking a refcount on @task, so
756 * the task might have moved on in the lock chain or even left
757 * the chain completely and blocks now on an unrelated lock or
760 * We stored the lock on which @task was blocked in @next_lock,
761 * so we can detect the chain change.
763 if (next_lock != waiter->lock)
767 * There could be 'spurious' loops in the lock graph due to ww_mutex,
774 * P3 should not return -EDEADLK because it gets trapped in the cycle
775 * created by P1 and P2 (which will resolve -- and runs into
776 * max_lock_depth above). Therefore disable detect_deadlock such that
777 * the below termination condition can trigger once all relevant tasks
780 * Even when we start with ww_mutex we can disable deadlock detection,
781 * since we would supress a ww_mutex induced deadlock at [6] anyway.
782 * Supressing it here however is not sufficient since we might still
783 * hit [6] due to adjustment driven iteration.
785 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
786 * utterly fail to report it; lockdep should.
788 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
789 detect_deadlock = false;
792 * Drop out, when the task has no waiters. Note,
793 * top_waiter can be NULL, when we are in the deboosting
797 if (!task_has_pi_waiters(task))
800 * If deadlock detection is off, we stop here if we
801 * are not the top pi waiter of the task. If deadlock
802 * detection is enabled we continue, but stop the
803 * requeueing in the chain walk.
805 if (top_waiter != task_top_pi_waiter(task)) {
806 if (!detect_deadlock)
814 * If the waiter priority is the same as the task priority
815 * then there is no further priority adjustment necessary. If
816 * deadlock detection is off, we stop the chain walk. If its
817 * enabled we continue, but stop the requeueing in the chain
820 if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
821 if (!detect_deadlock)
828 * [4] Get the next lock; per holding task->pi_lock we can't unblock
829 * and guarantee @lock's existence.
833 * [5] We need to trylock here as we are holding task->pi_lock,
834 * which is the reverse lock order versus the other rtmutex
837 * Per the above, holding task->pi_lock guarantees lock exists, so
838 * inverting this lock order is infeasible from a life-time
841 if (!raw_spin_trylock(&lock->wait_lock)) {
842 raw_spin_unlock_irq(&task->pi_lock);
848 * [6] check_exit_conditions_2() protected by task->pi_lock and
851 * Deadlock detection. If the lock is the same as the original
852 * lock which caused us to walk the lock chain or if the
853 * current lock is owned by the task which initiated the chain
854 * walk, we detected a deadlock.
856 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
860 * When the deadlock is due to ww_mutex; also see above. Don't
861 * report the deadlock and instead let the ww_mutex wound/die
862 * logic pick which of the contending threads gets -EDEADLK.
864 * NOTE: assumes the cycle only contains a single ww_class; any
865 * other configuration and we fail to report; also, see
868 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
871 raw_spin_unlock(&lock->wait_lock);
876 * If we just follow the lock chain for deadlock detection, no
877 * need to do all the requeue operations. To avoid a truckload
878 * of conditionals around the various places below, just do the
879 * minimum chain walk checks.
883 * No requeue[7] here. Just release @task [8]
885 raw_spin_unlock(&task->pi_lock);
886 put_task_struct(task);
889 * [9] check_exit_conditions_3 protected by lock->wait_lock.
890 * If there is no owner of the lock, end of chain.
892 if (!rt_mutex_owner(lock)) {
893 raw_spin_unlock_irq(&lock->wait_lock);
897 /* [10] Grab the next task, i.e. owner of @lock */
898 task = get_task_struct(rt_mutex_owner(lock));
899 raw_spin_lock(&task->pi_lock);
902 * No requeue [11] here. We just do deadlock detection.
904 * [12] Store whether owner is blocked
905 * itself. Decision is made after dropping the locks
907 next_lock = task_blocked_on_lock(task);
909 * Get the top waiter for the next iteration
911 top_waiter = rt_mutex_top_waiter(lock);
913 /* [13] Drop locks */
914 raw_spin_unlock(&task->pi_lock);
915 raw_spin_unlock_irq(&lock->wait_lock);
917 /* If owner is not blocked, end of chain. */
924 * Store the current top waiter before doing the requeue
925 * operation on @lock. We need it for the boost/deboost
928 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
930 /* [7] Requeue the waiter in the lock waiter tree. */
931 rt_mutex_dequeue(lock, waiter);
934 * Update the waiter prio fields now that we're dequeued.
936 * These values can have changed through either:
938 * sys_sched_set_scheduler() / sys_sched_setattr()
942 * DL CBS enforcement advancing the effective deadline.
944 waiter_update_prio(waiter, task);
946 rt_mutex_enqueue(lock, waiter);
949 * [8] Release the (blocking) task in preparation for
950 * taking the owner task in [10].
952 * Since we hold lock->waiter_lock, task cannot unblock, even if we
953 * release task->pi_lock.
955 raw_spin_unlock(&task->pi_lock);
956 put_task_struct(task);
959 * [9] check_exit_conditions_3 protected by lock->wait_lock.
961 * We must abort the chain walk if there is no lock owner even
962 * in the dead lock detection case, as we have nothing to
963 * follow here. This is the end of the chain we are walking.
965 if (!rt_mutex_owner(lock)) {
967 * If the requeue [7] above changed the top waiter,
968 * then we need to wake the new top waiter up to try
971 top_waiter = rt_mutex_top_waiter(lock);
972 if (prerequeue_top_waiter != top_waiter)
973 wake_up_state(top_waiter->task, top_waiter->wake_state);
974 raw_spin_unlock_irq(&lock->wait_lock);
979 * [10] Grab the next task, i.e. the owner of @lock
981 * Per holding lock->wait_lock and checking for !owner above, there
982 * must be an owner and it cannot go away.
984 task = get_task_struct(rt_mutex_owner(lock));
985 raw_spin_lock(&task->pi_lock);
987 /* [11] requeue the pi waiters if necessary */
988 if (waiter == rt_mutex_top_waiter(lock)) {
990 * The waiter became the new top (highest priority)
991 * waiter on the lock. Replace the previous top waiter
992 * in the owner tasks pi waiters tree with this waiter
993 * and adjust the priority of the owner.
995 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
996 waiter_clone_prio(waiter, task);
997 rt_mutex_enqueue_pi(task, waiter);
998 rt_mutex_adjust_prio(lock, task);
1000 } else if (prerequeue_top_waiter == waiter) {
1002 * The waiter was the top waiter on the lock, but is
1003 * no longer the top priority waiter. Replace waiter in
1004 * the owner tasks pi waiters tree with the new top
1005 * (highest priority) waiter and adjust the priority
1007 * The new top waiter is stored in @waiter so that
1008 * @waiter == @top_waiter evaluates to true below and
1009 * we continue to deboost the rest of the chain.
1011 rt_mutex_dequeue_pi(task, waiter);
1012 waiter = rt_mutex_top_waiter(lock);
1013 waiter_clone_prio(waiter, task);
1014 rt_mutex_enqueue_pi(task, waiter);
1015 rt_mutex_adjust_prio(lock, task);
1018 * Nothing changed. No need to do any priority
1024 * [12] check_exit_conditions_4() protected by task->pi_lock
1025 * and lock->wait_lock. The actual decisions are made after we
1026 * dropped the locks.
1028 * Check whether the task which owns the current lock is pi
1029 * blocked itself. If yes we store a pointer to the lock for
1030 * the lock chain change detection above. After we dropped
1031 * task->pi_lock next_lock cannot be dereferenced anymore.
1033 next_lock = task_blocked_on_lock(task);
1035 * Store the top waiter of @lock for the end of chain walk
1038 top_waiter = rt_mutex_top_waiter(lock);
1040 /* [13] Drop the locks */
1041 raw_spin_unlock(&task->pi_lock);
1042 raw_spin_unlock_irq(&lock->wait_lock);
1045 * Make the actual exit decisions [12], based on the stored
1048 * We reached the end of the lock chain. Stop right here. No
1049 * point to go back just to figure that out.
1055 * If the current waiter is not the top waiter on the lock,
1056 * then we can stop the chain walk here if we are not in full
1057 * deadlock detection mode.
1059 if (!detect_deadlock && waiter != top_waiter)
1065 raw_spin_unlock_irq(&task->pi_lock);
1067 put_task_struct(task);
1073 * Try to take an rt-mutex
1075 * Must be called with lock->wait_lock held and interrupts disabled
1077 * @lock: The lock to be acquired.
1078 * @task: The task which wants to acquire the lock
1079 * @waiter: The waiter that is queued to the lock's wait tree if the
1080 * callsite called task_blocked_on_lock(), otherwise NULL
1083 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1084 struct rt_mutex_waiter *waiter)
1086 lockdep_assert_held(&lock->wait_lock);
1089 * Before testing whether we can acquire @lock, we set the
1090 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1091 * other tasks which try to modify @lock into the slow path
1092 * and they serialize on @lock->wait_lock.
1094 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1095 * as explained at the top of this file if and only if:
1097 * - There is a lock owner. The caller must fixup the
1098 * transient state if it does a trylock or leaves the lock
1099 * function due to a signal or timeout.
1101 * - @task acquires the lock and there are no other
1102 * waiters. This is undone in rt_mutex_set_owner(@task) at
1103 * the end of this function.
1105 mark_rt_mutex_waiters(lock);
1108 * If @lock has an owner, give up.
1110 if (rt_mutex_owner(lock))
1114 * If @waiter != NULL, @task has already enqueued the waiter
1115 * into @lock waiter tree. If @waiter == NULL then this is a
1119 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1122 * If waiter is the highest priority waiter of @lock,
1123 * or allowed to steal it, take it over.
1125 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1127 * We can acquire the lock. Remove the waiter from the
1128 * lock waiters tree.
1130 rt_mutex_dequeue(lock, waiter);
1136 * If the lock has waiters already we check whether @task is
1137 * eligible to take over the lock.
1139 * If there are no other waiters, @task can acquire
1140 * the lock. @task->pi_blocked_on is NULL, so it does
1141 * not need to be dequeued.
1143 if (rt_mutex_has_waiters(lock)) {
1144 /* Check whether the trylock can steal it. */
1145 if (!rt_mutex_steal(task_to_waiter(task),
1146 rt_mutex_top_waiter(lock)))
1150 * The current top waiter stays enqueued. We
1151 * don't have to change anything in the lock
1156 * No waiters. Take the lock without the
1157 * pi_lock dance.@task->pi_blocked_on is NULL
1158 * and we have no waiters to enqueue in @task
1166 * Clear @task->pi_blocked_on. Requires protection by
1167 * @task->pi_lock. Redundant operation for the @waiter == NULL
1168 * case, but conditionals are more expensive than a redundant
1171 raw_spin_lock(&task->pi_lock);
1172 task->pi_blocked_on = NULL;
1174 * Finish the lock acquisition. @task is the new owner. If
1175 * other waiters exist we have to insert the highest priority
1176 * waiter into @task->pi_waiters tree.
1178 if (rt_mutex_has_waiters(lock))
1179 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1180 raw_spin_unlock(&task->pi_lock);
1184 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1185 * are still waiters or clears it.
1187 rt_mutex_set_owner(lock, task);
1193 * Task blocks on lock.
1195 * Prepare waiter and propagate pi chain
1197 * This must be called with lock->wait_lock held and interrupts disabled
1199 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1200 struct rt_mutex_waiter *waiter,
1201 struct task_struct *task,
1202 struct ww_acquire_ctx *ww_ctx,
1203 enum rtmutex_chainwalk chwalk)
1205 struct task_struct *owner = rt_mutex_owner(lock);
1206 struct rt_mutex_waiter *top_waiter = waiter;
1207 struct rt_mutex_base *next_lock;
1208 int chain_walk = 0, res;
1210 lockdep_assert_held(&lock->wait_lock);
1213 * Early deadlock detection. We really don't want the task to
1214 * enqueue on itself just to untangle the mess later. It's not
1215 * only an optimization. We drop the locks, so another waiter
1216 * can come in before the chain walk detects the deadlock. So
1217 * the other will detect the deadlock and return -EDEADLOCK,
1218 * which is wrong, as the other waiter is not in a deadlock
1221 * Except for ww_mutex, in that case the chain walk must already deal
1222 * with spurious cycles, see the comments at [3] and [6].
1224 if (owner == task && !(build_ww_mutex() && ww_ctx))
1227 raw_spin_lock(&task->pi_lock);
1228 waiter->task = task;
1229 waiter->lock = lock;
1230 waiter_update_prio(waiter, task);
1231 waiter_clone_prio(waiter, task);
1233 /* Get the top priority waiter on the lock */
1234 if (rt_mutex_has_waiters(lock))
1235 top_waiter = rt_mutex_top_waiter(lock);
1236 rt_mutex_enqueue(lock, waiter);
1238 task->pi_blocked_on = waiter;
1240 raw_spin_unlock(&task->pi_lock);
1242 if (build_ww_mutex() && ww_ctx) {
1243 struct rt_mutex *rtm;
1245 /* Check whether the waiter should back out immediately */
1246 rtm = container_of(lock, struct rt_mutex, rtmutex);
1247 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1249 raw_spin_lock(&task->pi_lock);
1250 rt_mutex_dequeue(lock, waiter);
1251 task->pi_blocked_on = NULL;
1252 raw_spin_unlock(&task->pi_lock);
1260 raw_spin_lock(&owner->pi_lock);
1261 if (waiter == rt_mutex_top_waiter(lock)) {
1262 rt_mutex_dequeue_pi(owner, top_waiter);
1263 rt_mutex_enqueue_pi(owner, waiter);
1265 rt_mutex_adjust_prio(lock, owner);
1266 if (owner->pi_blocked_on)
1268 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1272 /* Store the lock on which owner is blocked or NULL */
1273 next_lock = task_blocked_on_lock(owner);
1275 raw_spin_unlock(&owner->pi_lock);
1277 * Even if full deadlock detection is on, if the owner is not
1278 * blocked itself, we can avoid finding this out in the chain
1281 if (!chain_walk || !next_lock)
1285 * The owner can't disappear while holding a lock,
1286 * so the owner struct is protected by wait_lock.
1287 * Gets dropped in rt_mutex_adjust_prio_chain()!
1289 get_task_struct(owner);
1291 raw_spin_unlock_irq(&lock->wait_lock);
1293 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1294 next_lock, waiter, task);
1296 raw_spin_lock_irq(&lock->wait_lock);
1302 * Remove the top waiter from the current tasks pi waiter tree and
1305 * Called with lock->wait_lock held and interrupts disabled.
1307 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1308 struct rt_mutex_base *lock)
1310 struct rt_mutex_waiter *waiter;
1312 lockdep_assert_held(&lock->wait_lock);
1314 raw_spin_lock(¤t->pi_lock);
1316 waiter = rt_mutex_top_waiter(lock);
1319 * Remove it from current->pi_waiters and deboost.
1321 * We must in fact deboost here in order to ensure we call
1322 * rt_mutex_setprio() to update p->pi_top_task before the
1325 rt_mutex_dequeue_pi(current, waiter);
1326 rt_mutex_adjust_prio(lock, current);
1329 * As we are waking up the top waiter, and the waiter stays
1330 * queued on the lock until it gets the lock, this lock
1331 * obviously has waiters. Just set the bit here and this has
1332 * the added benefit of forcing all new tasks into the
1333 * slow path making sure no task of lower priority than
1334 * the top waiter can steal this lock.
1336 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1339 * We deboosted before waking the top waiter task such that we don't
1340 * run two tasks with the 'same' priority (and ensure the
1341 * p->pi_top_task pointer points to a blocked task). This however can
1342 * lead to priority inversion if we would get preempted after the
1343 * deboost but before waking our donor task, hence the preempt_disable()
1346 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1349 rt_mutex_wake_q_add(wqh, waiter);
1350 raw_spin_unlock(¤t->pi_lock);
1353 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1355 int ret = try_to_take_rt_mutex(lock, current, NULL);
1358 * try_to_take_rt_mutex() sets the lock waiters bit
1359 * unconditionally. Clean this up.
1361 fixup_rt_mutex_waiters(lock, true);
1367 * Slow path try-lock function:
1369 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1371 unsigned long flags;
1375 * If the lock already has an owner we fail to get the lock.
1376 * This can be done without taking the @lock->wait_lock as
1377 * it is only being read, and this is a trylock anyway.
1379 if (rt_mutex_owner(lock))
1383 * The mutex has currently no owner. Lock the wait lock and try to
1384 * acquire the lock. We use irqsave here to support early boot calls.
1386 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1388 ret = __rt_mutex_slowtrylock(lock);
1390 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1395 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1397 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1400 return rt_mutex_slowtrylock(lock);
1404 * Slow path to release a rt-mutex.
1406 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1408 DEFINE_RT_WAKE_Q(wqh);
1409 unsigned long flags;
1411 /* irqsave required to support early boot calls */
1412 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1414 debug_rt_mutex_unlock(lock);
1417 * We must be careful here if the fast path is enabled. If we
1418 * have no waiters queued we cannot set owner to NULL here
1421 * foo->lock->owner = NULL;
1422 * rtmutex_lock(foo->lock); <- fast path
1423 * free = atomic_dec_and_test(foo->refcnt);
1424 * rtmutex_unlock(foo->lock); <- fast path
1427 * raw_spin_unlock(foo->lock->wait_lock);
1429 * So for the fastpath enabled kernel:
1431 * Nothing can set the waiters bit as long as we hold
1432 * lock->wait_lock. So we do the following sequence:
1434 * owner = rt_mutex_owner(lock);
1435 * clear_rt_mutex_waiters(lock);
1436 * raw_spin_unlock(&lock->wait_lock);
1437 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1441 * The fastpath disabled variant is simple as all access to
1442 * lock->owner is serialized by lock->wait_lock:
1444 * lock->owner = NULL;
1445 * raw_spin_unlock(&lock->wait_lock);
1447 while (!rt_mutex_has_waiters(lock)) {
1448 /* Drops lock->wait_lock ! */
1449 if (unlock_rt_mutex_safe(lock, flags) == true)
1451 /* Relock the rtmutex and try again */
1452 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1456 * The wakeup next waiter path does not suffer from the above
1457 * race. See the comments there.
1459 * Queue the next waiter for wakeup once we release the wait_lock.
1461 mark_wakeup_next_waiter(&wqh, lock);
1462 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1464 rt_mutex_wake_up_q(&wqh);
1467 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1469 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1472 rt_mutex_slowunlock(lock);
1476 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1477 struct rt_mutex_waiter *waiter,
1478 struct task_struct *owner)
1484 /* If owner changed, trylock again. */
1485 if (owner != rt_mutex_owner(lock))
1488 * Ensure that @owner is dereferenced after checking that
1489 * the lock owner still matches @owner. If that fails,
1490 * @owner might point to freed memory. If it still matches,
1491 * the rcu_read_lock() ensures the memory stays valid.
1495 * Stop spinning when:
1496 * - the lock owner has been scheduled out
1497 * - current is not longer the top waiter
1498 * - current is requested to reschedule (redundant
1499 * for CONFIG_PREEMPT_RCU=y)
1500 * - the VCPU on which owner runs is preempted
1502 if (!owner_on_cpu(owner) || need_resched() ||
1503 !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1513 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1514 struct rt_mutex_waiter *waiter,
1515 struct task_struct *owner)
1521 #ifdef RT_MUTEX_BUILD_MUTEX
1523 * Functions required for:
1524 * - rtmutex, futex on all kernels
1525 * - mutex and rwsem substitutions on RT kernels
1529 * Remove a waiter from a lock and give up
1531 * Must be called with lock->wait_lock held and interrupts disabled. It must
1532 * have just failed to try_to_take_rt_mutex().
1534 static void __sched remove_waiter(struct rt_mutex_base *lock,
1535 struct rt_mutex_waiter *waiter)
1537 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1538 struct task_struct *owner = rt_mutex_owner(lock);
1539 struct rt_mutex_base *next_lock;
1541 lockdep_assert_held(&lock->wait_lock);
1543 raw_spin_lock(¤t->pi_lock);
1544 rt_mutex_dequeue(lock, waiter);
1545 current->pi_blocked_on = NULL;
1546 raw_spin_unlock(¤t->pi_lock);
1549 * Only update priority if the waiter was the highest priority
1550 * waiter of the lock and there is an owner to update.
1552 if (!owner || !is_top_waiter)
1555 raw_spin_lock(&owner->pi_lock);
1557 rt_mutex_dequeue_pi(owner, waiter);
1559 if (rt_mutex_has_waiters(lock))
1560 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1562 rt_mutex_adjust_prio(lock, owner);
1564 /* Store the lock on which owner is blocked or NULL */
1565 next_lock = task_blocked_on_lock(owner);
1567 raw_spin_unlock(&owner->pi_lock);
1570 * Don't walk the chain, if the owner task is not blocked
1576 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1577 get_task_struct(owner);
1579 raw_spin_unlock_irq(&lock->wait_lock);
1581 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1582 next_lock, NULL, current);
1584 raw_spin_lock_irq(&lock->wait_lock);
1588 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1589 * @lock: the rt_mutex to take
1590 * @ww_ctx: WW mutex context pointer
1591 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1592 * or TASK_UNINTERRUPTIBLE)
1593 * @timeout: the pre-initialized and started timer, or NULL for none
1594 * @waiter: the pre-initialized rt_mutex_waiter
1596 * Must be called with lock->wait_lock held and interrupts disabled
1598 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1599 struct ww_acquire_ctx *ww_ctx,
1601 struct hrtimer_sleeper *timeout,
1602 struct rt_mutex_waiter *waiter)
1604 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1605 struct task_struct *owner;
1609 /* Try to acquire the lock: */
1610 if (try_to_take_rt_mutex(lock, current, waiter))
1613 if (timeout && !timeout->task) {
1617 if (signal_pending_state(state, current)) {
1622 if (build_ww_mutex() && ww_ctx) {
1623 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1628 if (waiter == rt_mutex_top_waiter(lock))
1629 owner = rt_mutex_owner(lock);
1632 raw_spin_unlock_irq(&lock->wait_lock);
1634 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1635 rt_mutex_schedule();
1637 raw_spin_lock_irq(&lock->wait_lock);
1638 set_current_state(state);
1641 __set_current_state(TASK_RUNNING);
1645 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1646 struct rt_mutex_waiter *w)
1649 * If the result is not -EDEADLOCK or the caller requested
1650 * deadlock detection, nothing to do here.
1652 if (res != -EDEADLOCK || detect_deadlock)
1655 if (build_ww_mutex() && w->ww_ctx)
1659 * Yell loudly and stop the task right here.
1661 WARN(1, "rtmutex deadlock detected\n");
1663 set_current_state(TASK_INTERRUPTIBLE);
1664 rt_mutex_schedule();
1669 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1670 * @lock: The rtmutex to block lock
1671 * @ww_ctx: WW mutex context pointer
1672 * @state: The task state for sleeping
1673 * @chwalk: Indicator whether full or partial chainwalk is requested
1674 * @waiter: Initializer waiter for blocking
1676 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1677 struct ww_acquire_ctx *ww_ctx,
1679 enum rtmutex_chainwalk chwalk,
1680 struct rt_mutex_waiter *waiter)
1682 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1683 struct ww_mutex *ww = ww_container_of(rtm);
1686 lockdep_assert_held(&lock->wait_lock);
1688 /* Try to acquire the lock again: */
1689 if (try_to_take_rt_mutex(lock, current, NULL)) {
1690 if (build_ww_mutex() && ww_ctx) {
1691 __ww_mutex_check_waiters(rtm, ww_ctx);
1692 ww_mutex_lock_acquired(ww, ww_ctx);
1697 set_current_state(state);
1699 trace_contention_begin(lock, LCB_F_RT);
1701 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1703 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1706 /* acquired the lock */
1707 if (build_ww_mutex() && ww_ctx) {
1708 if (!ww_ctx->is_wait_die)
1709 __ww_mutex_check_waiters(rtm, ww_ctx);
1710 ww_mutex_lock_acquired(ww, ww_ctx);
1713 __set_current_state(TASK_RUNNING);
1714 remove_waiter(lock, waiter);
1715 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1719 * try_to_take_rt_mutex() sets the waiter bit
1720 * unconditionally. We might have to fix that up.
1722 fixup_rt_mutex_waiters(lock, true);
1724 trace_contention_end(lock, ret);
1729 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1730 struct ww_acquire_ctx *ww_ctx,
1733 struct rt_mutex_waiter waiter;
1736 rt_mutex_init_waiter(&waiter);
1737 waiter.ww_ctx = ww_ctx;
1739 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1742 debug_rt_mutex_free_waiter(&waiter);
1747 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1748 * @lock: The rtmutex to block lock
1749 * @ww_ctx: WW mutex context pointer
1750 * @state: The task state for sleeping
1752 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1753 struct ww_acquire_ctx *ww_ctx,
1756 unsigned long flags;
1760 * Do all pre-schedule work here, before we queue a waiter and invoke
1761 * PI -- any such work that trips on rtlock (PREEMPT_RT spinlock) would
1762 * otherwise recurse back into task_blocks_on_rt_mutex() through
1763 * rtlock_slowlock() and will then enqueue a second waiter for this
1764 * same task and things get really confusing real fast.
1766 rt_mutex_pre_schedule();
1769 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1770 * be called in early boot if the cmpxchg() fast path is disabled
1771 * (debug, no architecture support). In this case we will acquire the
1772 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1773 * enable interrupts in that early boot case. So we need to use the
1774 * irqsave/restore variants.
1776 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1777 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1778 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1779 rt_mutex_post_schedule();
1784 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1787 lockdep_assert(!current->pi_blocked_on);
1789 if (likely(rt_mutex_try_acquire(lock)))
1792 return rt_mutex_slowlock(lock, NULL, state);
1794 #endif /* RT_MUTEX_BUILD_MUTEX */
1796 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1798 * Functions required for spin/rw_lock substitution on RT kernels
1802 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1803 * @lock: The underlying RT mutex
1805 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1807 struct rt_mutex_waiter waiter;
1808 struct task_struct *owner;
1810 lockdep_assert_held(&lock->wait_lock);
1812 if (try_to_take_rt_mutex(lock, current, NULL))
1815 rt_mutex_init_rtlock_waiter(&waiter);
1817 /* Save current state and set state to TASK_RTLOCK_WAIT */
1818 current_save_and_set_rtlock_wait_state();
1820 trace_contention_begin(lock, LCB_F_RT);
1822 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1825 /* Try to acquire the lock again */
1826 if (try_to_take_rt_mutex(lock, current, &waiter))
1829 if (&waiter == rt_mutex_top_waiter(lock))
1830 owner = rt_mutex_owner(lock);
1833 raw_spin_unlock_irq(&lock->wait_lock);
1835 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1838 raw_spin_lock_irq(&lock->wait_lock);
1839 set_current_state(TASK_RTLOCK_WAIT);
1842 /* Restore the task state */
1843 current_restore_rtlock_saved_state();
1846 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1847 * We might have to fix that up:
1849 fixup_rt_mutex_waiters(lock, true);
1850 debug_rt_mutex_free_waiter(&waiter);
1852 trace_contention_end(lock, 0);
1855 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1857 unsigned long flags;
1859 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1860 rtlock_slowlock_locked(lock);
1861 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1864 #endif /* RT_MUTEX_BUILD_SPINLOCKS */