GNU Linux-libre 4.4.299-gnu1
[releases.git] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner        bit0
29  * NULL         0       lock is free (fast acquire possible)
30  * NULL         1       lock is free and has waiters and the top waiter
31  *                              is going to take the lock*
32  * taskpointer  0       lock is held (fast release possible)
33  * taskpointer  1       lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52         unsigned long val = (unsigned long)owner;
53
54         if (rt_mutex_has_waiters(lock))
55                 val |= RT_MUTEX_HAS_WAITERS;
56
57         lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62         lock->owner = (struct task_struct *)
63                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68         unsigned long owner, *p = (unsigned long *) &lock->owner;
69
70         if (rt_mutex_has_waiters(lock))
71                 return;
72
73         /*
74          * The rbtree has no waiters enqueued, now make sure that the
75          * lock->owner still has the waiters bit set, otherwise the
76          * following can happen:
77          *
78          * CPU 0        CPU 1           CPU2
79          * l->owner=T1
80          *              rt_mutex_lock(l)
81          *              lock(l->lock)
82          *              l->owner = T1 | HAS_WAITERS;
83          *              enqueue(T2)
84          *              boost()
85          *                unlock(l->lock)
86          *              block()
87          *
88          *                              rt_mutex_lock(l)
89          *                              lock(l->lock)
90          *                              l->owner = T1 | HAS_WAITERS;
91          *                              enqueue(T3)
92          *                              boost()
93          *                                unlock(l->lock)
94          *                              block()
95          *              signal(->T2)    signal(->T3)
96          *              lock(l->lock)
97          *              dequeue(T2)
98          *              deboost()
99          *                unlock(l->lock)
100          *                              lock(l->lock)
101          *                              dequeue(T3)
102          *                               ==> wait list is empty
103          *                              deboost()
104          *                               unlock(l->lock)
105          *              lock(l->lock)
106          *              fixup_rt_mutex_waiters()
107          *                if (wait_list_empty(l) {
108          *                  l->owner = owner
109          *                  owner = l->owner & ~HAS_WAITERS;
110          *                    ==> l->owner = T1
111          *                }
112          *                              lock(l->lock)
113          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
114          *                                if (wait_list_empty(l) {
115          *                                  owner = l->owner & ~HAS_WAITERS;
116          * cmpxchg(l->owner, T1, NULL)
117          *  ===> Success (l->owner = NULL)
118          *
119          *                                  l->owner = owner
120          *                                    ==> l->owner = T1
121          *                                }
122          *
123          * With the check for the waiter bit in place T3 on CPU2 will not
124          * overwrite. All tasks fiddling with the waiters bit are
125          * serialized by l->lock, so nothing else can modify the waiters
126          * bit. If the bit is set then nothing can change l->owner either
127          * so the simple RMW is safe. The cmpxchg() will simply fail if it
128          * happens in the middle of the RMW because the waiters bit is
129          * still set.
130          */
131         owner = READ_ONCE(*p);
132         if (owner & RT_MUTEX_HAS_WAITERS)
133                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
134 }
135
136 /*
137  * We can speed up the acquire/release, if there's no debugging state to be
138  * set up.
139  */
140 #ifndef CONFIG_DEBUG_RT_MUTEXES
141 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
142 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
143 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
144
145 /*
146  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
147  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
148  * relaxed semantics suffice.
149  */
150 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
151 {
152         unsigned long owner, *p = (unsigned long *) &lock->owner;
153
154         do {
155                 owner = *p;
156         } while (cmpxchg_relaxed(p, owner,
157                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
158 }
159
160 /*
161  * Safe fastpath aware unlock:
162  * 1) Clear the waiters bit
163  * 2) Drop lock->wait_lock
164  * 3) Try to unlock the lock with cmpxchg
165  */
166 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
167                                         unsigned long flags)
168         __releases(lock->wait_lock)
169 {
170         struct task_struct *owner = rt_mutex_owner(lock);
171
172         clear_rt_mutex_waiters(lock);
173         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
174         /*
175          * If a new waiter comes in between the unlock and the cmpxchg
176          * we have two situations:
177          *
178          * unlock(wait_lock);
179          *                                      lock(wait_lock);
180          * cmpxchg(p, owner, 0) == owner
181          *                                      mark_rt_mutex_waiters(lock);
182          *                                      acquire(lock);
183          * or:
184          *
185          * unlock(wait_lock);
186          *                                      lock(wait_lock);
187          *                                      mark_rt_mutex_waiters(lock);
188          *
189          * cmpxchg(p, owner, 0) != owner
190          *                                      enqueue_waiter();
191          *                                      unlock(wait_lock);
192          * lock(wait_lock);
193          * wake waiter();
194          * unlock(wait_lock);
195          *                                      lock(wait_lock);
196          *                                      acquire(lock);
197          */
198         return rt_mutex_cmpxchg_release(lock, owner, NULL);
199 }
200
201 #else
202 # define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
203 # define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
204 # define rt_mutex_cmpxchg_release(l,c,n)        (0)
205
206 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
207 {
208         lock->owner = (struct task_struct *)
209                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
210 }
211
212 /*
213  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
214  */
215 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
216                                         unsigned long flags)
217         __releases(lock->wait_lock)
218 {
219         lock->owner = NULL;
220         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
221         return true;
222 }
223 #endif
224
225 static inline int
226 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
227                      struct rt_mutex_waiter *right)
228 {
229         if (left->prio < right->prio)
230                 return 1;
231
232         /*
233          * If both waiters have dl_prio(), we check the deadlines of the
234          * associated tasks.
235          * If left waiter has a dl_prio(), and we didn't return 1 above,
236          * then right waiter has a dl_prio() too.
237          */
238         if (dl_prio(left->prio))
239                 return dl_time_before(left->task->dl.deadline,
240                                       right->task->dl.deadline);
241
242         return 0;
243 }
244
245 static void
246 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
247 {
248         struct rb_node **link = &lock->waiters.rb_node;
249         struct rb_node *parent = NULL;
250         struct rt_mutex_waiter *entry;
251         int leftmost = 1;
252
253         while (*link) {
254                 parent = *link;
255                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
256                 if (rt_mutex_waiter_less(waiter, entry)) {
257                         link = &parent->rb_left;
258                 } else {
259                         link = &parent->rb_right;
260                         leftmost = 0;
261                 }
262         }
263
264         if (leftmost)
265                 lock->waiters_leftmost = &waiter->tree_entry;
266
267         rb_link_node(&waiter->tree_entry, parent, link);
268         rb_insert_color(&waiter->tree_entry, &lock->waiters);
269 }
270
271 static void
272 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273 {
274         if (RB_EMPTY_NODE(&waiter->tree_entry))
275                 return;
276
277         if (lock->waiters_leftmost == &waiter->tree_entry)
278                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
279
280         rb_erase(&waiter->tree_entry, &lock->waiters);
281         RB_CLEAR_NODE(&waiter->tree_entry);
282 }
283
284 static void
285 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
286 {
287         struct rb_node **link = &task->pi_waiters.rb_node;
288         struct rb_node *parent = NULL;
289         struct rt_mutex_waiter *entry;
290         int leftmost = 1;
291
292         while (*link) {
293                 parent = *link;
294                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
295                 if (rt_mutex_waiter_less(waiter, entry)) {
296                         link = &parent->rb_left;
297                 } else {
298                         link = &parent->rb_right;
299                         leftmost = 0;
300                 }
301         }
302
303         if (leftmost)
304                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
305
306         rb_link_node(&waiter->pi_tree_entry, parent, link);
307         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
308 }
309
310 static void
311 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
312 {
313         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
314                 return;
315
316         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
317                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
318
319         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
320         RB_CLEAR_NODE(&waiter->pi_tree_entry);
321 }
322
323 /*
324  * Calculate task priority from the waiter tree priority
325  *
326  * Return task->normal_prio when the waiter tree is empty or when
327  * the waiter is not allowed to do priority boosting
328  */
329 int rt_mutex_getprio(struct task_struct *task)
330 {
331         if (likely(!task_has_pi_waiters(task)))
332                 return task->normal_prio;
333
334         return min(task_top_pi_waiter(task)->prio,
335                    task->normal_prio);
336 }
337
338 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
339 {
340         if (likely(!task_has_pi_waiters(task)))
341                 return NULL;
342
343         return task_top_pi_waiter(task)->task;
344 }
345
346 /*
347  * Called by sched_setscheduler() to get the priority which will be
348  * effective after the change.
349  */
350 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
351 {
352         if (!task_has_pi_waiters(task))
353                 return newprio;
354
355         if (task_top_pi_waiter(task)->task->prio <= newprio)
356                 return task_top_pi_waiter(task)->task->prio;
357         return newprio;
358 }
359
360 /*
361  * Adjust the priority of a task, after its pi_waiters got modified.
362  *
363  * This can be both boosting and unboosting. task->pi_lock must be held.
364  */
365 static void __rt_mutex_adjust_prio(struct task_struct *task)
366 {
367         int prio = rt_mutex_getprio(task);
368
369         if (task->prio != prio || dl_prio(prio))
370                 rt_mutex_setprio(task, prio);
371 }
372
373 /*
374  * Adjust task priority (undo boosting). Called from the exit path of
375  * rt_mutex_slowunlock() and rt_mutex_slowlock().
376  *
377  * (Note: We do this outside of the protection of lock->wait_lock to
378  * allow the lock to be taken while or before we readjust the priority
379  * of task. We do not use the spin_xx_mutex() variants here as we are
380  * outside of the debug path.)
381  */
382 void rt_mutex_adjust_prio(struct task_struct *task)
383 {
384         unsigned long flags;
385
386         raw_spin_lock_irqsave(&task->pi_lock, flags);
387         __rt_mutex_adjust_prio(task);
388         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
389 }
390
391 /*
392  * Deadlock detection is conditional:
393  *
394  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
395  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
396  *
397  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
398  * conducted independent of the detect argument.
399  *
400  * If the waiter argument is NULL this indicates the deboost path and
401  * deadlock detection is disabled independent of the detect argument
402  * and the config settings.
403  */
404 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
405                                           enum rtmutex_chainwalk chwalk)
406 {
407         /*
408          * This is just a wrapper function for the following call,
409          * because debug_rt_mutex_detect_deadlock() smells like a magic
410          * debug feature and I wanted to keep the cond function in the
411          * main source file along with the comments instead of having
412          * two of the same in the headers.
413          */
414         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
415 }
416
417 /*
418  * Max number of times we'll walk the boosting chain:
419  */
420 int max_lock_depth = 1024;
421
422 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
423 {
424         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
425 }
426
427 /*
428  * Adjust the priority chain. Also used for deadlock detection.
429  * Decreases task's usage by one - may thus free the task.
430  *
431  * @task:       the task owning the mutex (owner) for which a chain walk is
432  *              probably needed
433  * @chwalk:     do we have to carry out deadlock detection?
434  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
435  *              things for a task that has just got its priority adjusted, and
436  *              is waiting on a mutex)
437  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
438  *              we dropped its pi_lock. Is never dereferenced, only used for
439  *              comparison to detect lock chain changes.
440  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
441  *              its priority to the mutex owner (can be NULL in the case
442  *              depicted above or if the top waiter is gone away and we are
443  *              actually deboosting the owner)
444  * @top_task:   the current top waiter
445  *
446  * Returns 0 or -EDEADLK.
447  *
448  * Chain walk basics and protection scope
449  *
450  * [R] refcount on task
451  * [P] task->pi_lock held
452  * [L] rtmutex->wait_lock held
453  *
454  * Step Description                             Protected by
455  *      function arguments:
456  *      @task                                   [R]
457  *      @orig_lock if != NULL                   @top_task is blocked on it
458  *      @next_lock                              Unprotected. Cannot be
459  *                                              dereferenced. Only used for
460  *                                              comparison.
461  *      @orig_waiter if != NULL                 @top_task is blocked on it
462  *      @top_task                               current, or in case of proxy
463  *                                              locking protected by calling
464  *                                              code
465  *      again:
466  *        loop_sanity_check();
467  *      retry:
468  * [1]    lock(task->pi_lock);                  [R] acquire [P]
469  * [2]    waiter = task->pi_blocked_on;         [P]
470  * [3]    check_exit_conditions_1();            [P]
471  * [4]    lock = waiter->lock;                  [P]
472  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
473  *          unlock(task->pi_lock);              release [P]
474  *          goto retry;
475  *        }
476  * [6]    check_exit_conditions_2();            [P] + [L]
477  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
478  * [8]    unlock(task->pi_lock);                release [P]
479  *        put_task_struct(task);                release [R]
480  * [9]    check_exit_conditions_3();            [L]
481  * [10]   task = owner(lock);                   [L]
482  *        get_task_struct(task);                [L] acquire [R]
483  *        lock(task->pi_lock);                  [L] acquire [P]
484  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
485  * [12]   check_exit_conditions_4();            [P] + [L]
486  * [13]   unlock(task->pi_lock);                release [P]
487  *        unlock(lock->wait_lock);              release [L]
488  *        goto again;
489  */
490 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
491                                       enum rtmutex_chainwalk chwalk,
492                                       struct rt_mutex *orig_lock,
493                                       struct rt_mutex *next_lock,
494                                       struct rt_mutex_waiter *orig_waiter,
495                                       struct task_struct *top_task)
496 {
497         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
498         struct rt_mutex_waiter *prerequeue_top_waiter;
499         int ret = 0, depth = 0;
500         struct rt_mutex *lock;
501         bool detect_deadlock;
502         bool requeue = true;
503
504         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
505
506         /*
507          * The (de)boosting is a step by step approach with a lot of
508          * pitfalls. We want this to be preemptible and we want hold a
509          * maximum of two locks per step. So we have to check
510          * carefully whether things change under us.
511          */
512  again:
513         /*
514          * We limit the lock chain length for each invocation.
515          */
516         if (++depth > max_lock_depth) {
517                 static int prev_max;
518
519                 /*
520                  * Print this only once. If the admin changes the limit,
521                  * print a new message when reaching the limit again.
522                  */
523                 if (prev_max != max_lock_depth) {
524                         prev_max = max_lock_depth;
525                         printk(KERN_WARNING "Maximum lock depth %d reached "
526                                "task: %s (%d)\n", max_lock_depth,
527                                top_task->comm, task_pid_nr(top_task));
528                 }
529                 put_task_struct(task);
530
531                 return -EDEADLK;
532         }
533
534         /*
535          * We are fully preemptible here and only hold the refcount on
536          * @task. So everything can have changed under us since the
537          * caller or our own code below (goto retry/again) dropped all
538          * locks.
539          */
540  retry:
541         /*
542          * [1] Task cannot go away as we did a get_task() before !
543          */
544         raw_spin_lock_irq(&task->pi_lock);
545
546         /*
547          * [2] Get the waiter on which @task is blocked on.
548          */
549         waiter = task->pi_blocked_on;
550
551         /*
552          * [3] check_exit_conditions_1() protected by task->pi_lock.
553          */
554
555         /*
556          * Check whether the end of the boosting chain has been
557          * reached or the state of the chain has changed while we
558          * dropped the locks.
559          */
560         if (!waiter)
561                 goto out_unlock_pi;
562
563         /*
564          * Check the orig_waiter state. After we dropped the locks,
565          * the previous owner of the lock might have released the lock.
566          */
567         if (orig_waiter && !rt_mutex_owner(orig_lock))
568                 goto out_unlock_pi;
569
570         /*
571          * We dropped all locks after taking a refcount on @task, so
572          * the task might have moved on in the lock chain or even left
573          * the chain completely and blocks now on an unrelated lock or
574          * on @orig_lock.
575          *
576          * We stored the lock on which @task was blocked in @next_lock,
577          * so we can detect the chain change.
578          */
579         if (next_lock != waiter->lock)
580                 goto out_unlock_pi;
581
582         /*
583          * Drop out, when the task has no waiters. Note,
584          * top_waiter can be NULL, when we are in the deboosting
585          * mode!
586          */
587         if (top_waiter) {
588                 if (!task_has_pi_waiters(task))
589                         goto out_unlock_pi;
590                 /*
591                  * If deadlock detection is off, we stop here if we
592                  * are not the top pi waiter of the task. If deadlock
593                  * detection is enabled we continue, but stop the
594                  * requeueing in the chain walk.
595                  */
596                 if (top_waiter != task_top_pi_waiter(task)) {
597                         if (!detect_deadlock)
598                                 goto out_unlock_pi;
599                         else
600                                 requeue = false;
601                 }
602         }
603
604         /*
605          * If the waiter priority is the same as the task priority
606          * then there is no further priority adjustment necessary.  If
607          * deadlock detection is off, we stop the chain walk. If its
608          * enabled we continue, but stop the requeueing in the chain
609          * walk.
610          */
611         if (waiter->prio == task->prio) {
612                 if (!detect_deadlock)
613                         goto out_unlock_pi;
614                 else
615                         requeue = false;
616         }
617
618         /*
619          * [4] Get the next lock
620          */
621         lock = waiter->lock;
622         /*
623          * [5] We need to trylock here as we are holding task->pi_lock,
624          * which is the reverse lock order versus the other rtmutex
625          * operations.
626          */
627         if (!raw_spin_trylock(&lock->wait_lock)) {
628                 raw_spin_unlock_irq(&task->pi_lock);
629                 cpu_relax();
630                 goto retry;
631         }
632
633         /*
634          * [6] check_exit_conditions_2() protected by task->pi_lock and
635          * lock->wait_lock.
636          *
637          * Deadlock detection. If the lock is the same as the original
638          * lock which caused us to walk the lock chain or if the
639          * current lock is owned by the task which initiated the chain
640          * walk, we detected a deadlock.
641          */
642         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
643                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
644                 raw_spin_unlock(&lock->wait_lock);
645                 ret = -EDEADLK;
646                 goto out_unlock_pi;
647         }
648
649         /*
650          * If we just follow the lock chain for deadlock detection, no
651          * need to do all the requeue operations. To avoid a truckload
652          * of conditionals around the various places below, just do the
653          * minimum chain walk checks.
654          */
655         if (!requeue) {
656                 /*
657                  * No requeue[7] here. Just release @task [8]
658                  */
659                 raw_spin_unlock(&task->pi_lock);
660                 put_task_struct(task);
661
662                 /*
663                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
664                  * If there is no owner of the lock, end of chain.
665                  */
666                 if (!rt_mutex_owner(lock)) {
667                         raw_spin_unlock_irq(&lock->wait_lock);
668                         return 0;
669                 }
670
671                 /* [10] Grab the next task, i.e. owner of @lock */
672                 task = rt_mutex_owner(lock);
673                 get_task_struct(task);
674                 raw_spin_lock(&task->pi_lock);
675
676                 /*
677                  * No requeue [11] here. We just do deadlock detection.
678                  *
679                  * [12] Store whether owner is blocked
680                  * itself. Decision is made after dropping the locks
681                  */
682                 next_lock = task_blocked_on_lock(task);
683                 /*
684                  * Get the top waiter for the next iteration
685                  */
686                 top_waiter = rt_mutex_top_waiter(lock);
687
688                 /* [13] Drop locks */
689                 raw_spin_unlock(&task->pi_lock);
690                 raw_spin_unlock_irq(&lock->wait_lock);
691
692                 /* If owner is not blocked, end of chain. */
693                 if (!next_lock)
694                         goto out_put_task;
695                 goto again;
696         }
697
698         /*
699          * Store the current top waiter before doing the requeue
700          * operation on @lock. We need it for the boost/deboost
701          * decision below.
702          */
703         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
704
705         /* [7] Requeue the waiter in the lock waiter tree. */
706         rt_mutex_dequeue(lock, waiter);
707         waiter->prio = task->prio;
708         rt_mutex_enqueue(lock, waiter);
709
710         /* [8] Release the task */
711         raw_spin_unlock(&task->pi_lock);
712         put_task_struct(task);
713
714         /*
715          * [9] check_exit_conditions_3 protected by lock->wait_lock.
716          *
717          * We must abort the chain walk if there is no lock owner even
718          * in the dead lock detection case, as we have nothing to
719          * follow here. This is the end of the chain we are walking.
720          */
721         if (!rt_mutex_owner(lock)) {
722                 /*
723                  * If the requeue [7] above changed the top waiter,
724                  * then we need to wake the new top waiter up to try
725                  * to get the lock.
726                  */
727                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
728                         wake_up_process(rt_mutex_top_waiter(lock)->task);
729                 raw_spin_unlock_irq(&lock->wait_lock);
730                 return 0;
731         }
732
733         /* [10] Grab the next task, i.e. the owner of @lock */
734         task = rt_mutex_owner(lock);
735         get_task_struct(task);
736         raw_spin_lock(&task->pi_lock);
737
738         /* [11] requeue the pi waiters if necessary */
739         if (waiter == rt_mutex_top_waiter(lock)) {
740                 /*
741                  * The waiter became the new top (highest priority)
742                  * waiter on the lock. Replace the previous top waiter
743                  * in the owner tasks pi waiters tree with this waiter
744                  * and adjust the priority of the owner.
745                  */
746                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
747                 rt_mutex_enqueue_pi(task, waiter);
748                 __rt_mutex_adjust_prio(task);
749
750         } else if (prerequeue_top_waiter == waiter) {
751                 /*
752                  * The waiter was the top waiter on the lock, but is
753                  * no longer the top prority waiter. Replace waiter in
754                  * the owner tasks pi waiters tree with the new top
755                  * (highest priority) waiter and adjust the priority
756                  * of the owner.
757                  * The new top waiter is stored in @waiter so that
758                  * @waiter == @top_waiter evaluates to true below and
759                  * we continue to deboost the rest of the chain.
760                  */
761                 rt_mutex_dequeue_pi(task, waiter);
762                 waiter = rt_mutex_top_waiter(lock);
763                 rt_mutex_enqueue_pi(task, waiter);
764                 __rt_mutex_adjust_prio(task);
765         } else {
766                 /*
767                  * Nothing changed. No need to do any priority
768                  * adjustment.
769                  */
770         }
771
772         /*
773          * [12] check_exit_conditions_4() protected by task->pi_lock
774          * and lock->wait_lock. The actual decisions are made after we
775          * dropped the locks.
776          *
777          * Check whether the task which owns the current lock is pi
778          * blocked itself. If yes we store a pointer to the lock for
779          * the lock chain change detection above. After we dropped
780          * task->pi_lock next_lock cannot be dereferenced anymore.
781          */
782         next_lock = task_blocked_on_lock(task);
783         /*
784          * Store the top waiter of @lock for the end of chain walk
785          * decision below.
786          */
787         top_waiter = rt_mutex_top_waiter(lock);
788
789         /* [13] Drop the locks */
790         raw_spin_unlock(&task->pi_lock);
791         raw_spin_unlock_irq(&lock->wait_lock);
792
793         /*
794          * Make the actual exit decisions [12], based on the stored
795          * values.
796          *
797          * We reached the end of the lock chain. Stop right here. No
798          * point to go back just to figure that out.
799          */
800         if (!next_lock)
801                 goto out_put_task;
802
803         /*
804          * If the current waiter is not the top waiter on the lock,
805          * then we can stop the chain walk here if we are not in full
806          * deadlock detection mode.
807          */
808         if (!detect_deadlock && waiter != top_waiter)
809                 goto out_put_task;
810
811         goto again;
812
813  out_unlock_pi:
814         raw_spin_unlock_irq(&task->pi_lock);
815  out_put_task:
816         put_task_struct(task);
817
818         return ret;
819 }
820
821 /*
822  * Try to take an rt-mutex
823  *
824  * Must be called with lock->wait_lock held and interrupts disabled
825  *
826  * @lock:   The lock to be acquired.
827  * @task:   The task which wants to acquire the lock
828  * @waiter: The waiter that is queued to the lock's wait tree if the
829  *          callsite called task_blocked_on_lock(), otherwise NULL
830  */
831 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
832                                 struct rt_mutex_waiter *waiter)
833 {
834         /*
835          * Before testing whether we can acquire @lock, we set the
836          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
837          * other tasks which try to modify @lock into the slow path
838          * and they serialize on @lock->wait_lock.
839          *
840          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
841          * as explained at the top of this file if and only if:
842          *
843          * - There is a lock owner. The caller must fixup the
844          *   transient state if it does a trylock or leaves the lock
845          *   function due to a signal or timeout.
846          *
847          * - @task acquires the lock and there are no other
848          *   waiters. This is undone in rt_mutex_set_owner(@task) at
849          *   the end of this function.
850          */
851         mark_rt_mutex_waiters(lock);
852
853         /*
854          * If @lock has an owner, give up.
855          */
856         if (rt_mutex_owner(lock))
857                 return 0;
858
859         /*
860          * If @waiter != NULL, @task has already enqueued the waiter
861          * into @lock waiter tree. If @waiter == NULL then this is a
862          * trylock attempt.
863          */
864         if (waiter) {
865                 /*
866                  * If waiter is not the highest priority waiter of
867                  * @lock, give up.
868                  */
869                 if (waiter != rt_mutex_top_waiter(lock))
870                         return 0;
871
872                 /*
873                  * We can acquire the lock. Remove the waiter from the
874                  * lock waiters tree.
875                  */
876                 rt_mutex_dequeue(lock, waiter);
877
878         } else {
879                 /*
880                  * If the lock has waiters already we check whether @task is
881                  * eligible to take over the lock.
882                  *
883                  * If there are no other waiters, @task can acquire
884                  * the lock.  @task->pi_blocked_on is NULL, so it does
885                  * not need to be dequeued.
886                  */
887                 if (rt_mutex_has_waiters(lock)) {
888                         /*
889                          * If @task->prio is greater than or equal to
890                          * the top waiter priority (kernel view),
891                          * @task lost.
892                          */
893                         if (task->prio >= rt_mutex_top_waiter(lock)->prio)
894                                 return 0;
895
896                         /*
897                          * The current top waiter stays enqueued. We
898                          * don't have to change anything in the lock
899                          * waiters order.
900                          */
901                 } else {
902                         /*
903                          * No waiters. Take the lock without the
904                          * pi_lock dance.@task->pi_blocked_on is NULL
905                          * and we have no waiters to enqueue in @task
906                          * pi waiters tree.
907                          */
908                         goto takeit;
909                 }
910         }
911
912         /*
913          * Clear @task->pi_blocked_on. Requires protection by
914          * @task->pi_lock. Redundant operation for the @waiter == NULL
915          * case, but conditionals are more expensive than a redundant
916          * store.
917          */
918         raw_spin_lock(&task->pi_lock);
919         task->pi_blocked_on = NULL;
920         /*
921          * Finish the lock acquisition. @task is the new owner. If
922          * other waiters exist we have to insert the highest priority
923          * waiter into @task->pi_waiters tree.
924          */
925         if (rt_mutex_has_waiters(lock))
926                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
927         raw_spin_unlock(&task->pi_lock);
928
929 takeit:
930         /* We got the lock. */
931         debug_rt_mutex_lock(lock);
932
933         /*
934          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
935          * are still waiters or clears it.
936          */
937         rt_mutex_set_owner(lock, task);
938
939         return 1;
940 }
941
942 /*
943  * Task blocks on lock.
944  *
945  * Prepare waiter and propagate pi chain
946  *
947  * This must be called with lock->wait_lock held and interrupts disabled
948  */
949 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
950                                    struct rt_mutex_waiter *waiter,
951                                    struct task_struct *task,
952                                    enum rtmutex_chainwalk chwalk)
953 {
954         struct task_struct *owner = rt_mutex_owner(lock);
955         struct rt_mutex_waiter *top_waiter = waiter;
956         struct rt_mutex *next_lock;
957         int chain_walk = 0, res;
958
959         /*
960          * Early deadlock detection. We really don't want the task to
961          * enqueue on itself just to untangle the mess later. It's not
962          * only an optimization. We drop the locks, so another waiter
963          * can come in before the chain walk detects the deadlock. So
964          * the other will detect the deadlock and return -EDEADLOCK,
965          * which is wrong, as the other waiter is not in a deadlock
966          * situation.
967          */
968         if (owner == task)
969                 return -EDEADLK;
970
971         raw_spin_lock(&task->pi_lock);
972         __rt_mutex_adjust_prio(task);
973         waiter->task = task;
974         waiter->lock = lock;
975         waiter->prio = task->prio;
976
977         /* Get the top priority waiter on the lock */
978         if (rt_mutex_has_waiters(lock))
979                 top_waiter = rt_mutex_top_waiter(lock);
980         rt_mutex_enqueue(lock, waiter);
981
982         task->pi_blocked_on = waiter;
983
984         raw_spin_unlock(&task->pi_lock);
985
986         if (!owner)
987                 return 0;
988
989         raw_spin_lock(&owner->pi_lock);
990         if (waiter == rt_mutex_top_waiter(lock)) {
991                 rt_mutex_dequeue_pi(owner, top_waiter);
992                 rt_mutex_enqueue_pi(owner, waiter);
993
994                 __rt_mutex_adjust_prio(owner);
995                 if (owner->pi_blocked_on)
996                         chain_walk = 1;
997         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
998                 chain_walk = 1;
999         }
1000
1001         /* Store the lock on which owner is blocked or NULL */
1002         next_lock = task_blocked_on_lock(owner);
1003
1004         raw_spin_unlock(&owner->pi_lock);
1005         /*
1006          * Even if full deadlock detection is on, if the owner is not
1007          * blocked itself, we can avoid finding this out in the chain
1008          * walk.
1009          */
1010         if (!chain_walk || !next_lock)
1011                 return 0;
1012
1013         /*
1014          * The owner can't disappear while holding a lock,
1015          * so the owner struct is protected by wait_lock.
1016          * Gets dropped in rt_mutex_adjust_prio_chain()!
1017          */
1018         get_task_struct(owner);
1019
1020         raw_spin_unlock_irq(&lock->wait_lock);
1021
1022         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1023                                          next_lock, waiter, task);
1024
1025         raw_spin_lock_irq(&lock->wait_lock);
1026
1027         return res;
1028 }
1029
1030 /*
1031  * Remove the top waiter from the current tasks pi waiter tree and
1032  * queue it up.
1033  *
1034  * Called with lock->wait_lock held and interrupts disabled.
1035  */
1036 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1037                                     struct rt_mutex *lock)
1038 {
1039         struct rt_mutex_waiter *waiter;
1040
1041         raw_spin_lock(&current->pi_lock);
1042
1043         waiter = rt_mutex_top_waiter(lock);
1044
1045         /*
1046          * Remove it from current->pi_waiters. We do not adjust a
1047          * possible priority boost right now. We execute wakeup in the
1048          * boosted mode and go back to normal after releasing
1049          * lock->wait_lock.
1050          */
1051         rt_mutex_dequeue_pi(current, waiter);
1052
1053         /*
1054          * As we are waking up the top waiter, and the waiter stays
1055          * queued on the lock until it gets the lock, this lock
1056          * obviously has waiters. Just set the bit here and this has
1057          * the added benefit of forcing all new tasks into the
1058          * slow path making sure no task of lower priority than
1059          * the top waiter can steal this lock.
1060          */
1061         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1062
1063         raw_spin_unlock(&current->pi_lock);
1064
1065         wake_q_add(wake_q, waiter->task);
1066 }
1067
1068 /*
1069  * Remove a waiter from a lock and give up
1070  *
1071  * Must be called with lock->wait_lock held and interrupts disabled. I must
1072  * have just failed to try_to_take_rt_mutex().
1073  */
1074 static void remove_waiter(struct rt_mutex *lock,
1075                           struct rt_mutex_waiter *waiter)
1076 {
1077         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1078         struct task_struct *owner = rt_mutex_owner(lock);
1079         struct rt_mutex *next_lock;
1080
1081         raw_spin_lock(&current->pi_lock);
1082         rt_mutex_dequeue(lock, waiter);
1083         current->pi_blocked_on = NULL;
1084         raw_spin_unlock(&current->pi_lock);
1085
1086         /*
1087          * Only update priority if the waiter was the highest priority
1088          * waiter of the lock and there is an owner to update.
1089          */
1090         if (!owner || !is_top_waiter)
1091                 return;
1092
1093         raw_spin_lock(&owner->pi_lock);
1094
1095         rt_mutex_dequeue_pi(owner, waiter);
1096
1097         if (rt_mutex_has_waiters(lock))
1098                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1099
1100         __rt_mutex_adjust_prio(owner);
1101
1102         /* Store the lock on which owner is blocked or NULL */
1103         next_lock = task_blocked_on_lock(owner);
1104
1105         raw_spin_unlock(&owner->pi_lock);
1106
1107         /*
1108          * Don't walk the chain, if the owner task is not blocked
1109          * itself.
1110          */
1111         if (!next_lock)
1112                 return;
1113
1114         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1115         get_task_struct(owner);
1116
1117         raw_spin_unlock_irq(&lock->wait_lock);
1118
1119         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1120                                    next_lock, NULL, current);
1121
1122         raw_spin_lock_irq(&lock->wait_lock);
1123 }
1124
1125 /*
1126  * Recheck the pi chain, in case we got a priority setting
1127  *
1128  * Called from sched_setscheduler
1129  */
1130 void rt_mutex_adjust_pi(struct task_struct *task)
1131 {
1132         struct rt_mutex_waiter *waiter;
1133         struct rt_mutex *next_lock;
1134         unsigned long flags;
1135
1136         raw_spin_lock_irqsave(&task->pi_lock, flags);
1137
1138         waiter = task->pi_blocked_on;
1139         if (!waiter || (waiter->prio == task->prio &&
1140                         !dl_prio(task->prio))) {
1141                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1142                 return;
1143         }
1144         next_lock = waiter->lock;
1145         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1146
1147         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1148         get_task_struct(task);
1149
1150         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1151                                    next_lock, NULL, task);
1152 }
1153
1154 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1155 {
1156         debug_rt_mutex_init_waiter(waiter);
1157         RB_CLEAR_NODE(&waiter->pi_tree_entry);
1158         RB_CLEAR_NODE(&waiter->tree_entry);
1159         waiter->task = NULL;
1160 }
1161
1162 /**
1163  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1164  * @lock:                the rt_mutex to take
1165  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1166  *                       or TASK_UNINTERRUPTIBLE)
1167  * @timeout:             the pre-initialized and started timer, or NULL for none
1168  * @waiter:              the pre-initialized rt_mutex_waiter
1169  *
1170  * Must be called with lock->wait_lock held and interrupts disabled
1171  */
1172 static int __sched
1173 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1174                     struct hrtimer_sleeper *timeout,
1175                     struct rt_mutex_waiter *waiter)
1176 {
1177         int ret = 0;
1178
1179         for (;;) {
1180                 /* Try to acquire the lock: */
1181                 if (try_to_take_rt_mutex(lock, current, waiter))
1182                         break;
1183
1184                 /*
1185                  * TASK_INTERRUPTIBLE checks for signals and
1186                  * timeout. Ignored otherwise.
1187                  */
1188                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1189                         /* Signal pending? */
1190                         if (signal_pending(current))
1191                                 ret = -EINTR;
1192                         if (timeout && !timeout->task)
1193                                 ret = -ETIMEDOUT;
1194                         if (ret)
1195                                 break;
1196                 }
1197
1198                 raw_spin_unlock_irq(&lock->wait_lock);
1199
1200                 debug_rt_mutex_print_deadlock(waiter);
1201
1202                 schedule();
1203
1204                 raw_spin_lock_irq(&lock->wait_lock);
1205                 set_current_state(state);
1206         }
1207
1208         __set_current_state(TASK_RUNNING);
1209         return ret;
1210 }
1211
1212 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1213                                      struct rt_mutex_waiter *w)
1214 {
1215         /*
1216          * If the result is not -EDEADLOCK or the caller requested
1217          * deadlock detection, nothing to do here.
1218          */
1219         if (res != -EDEADLOCK || detect_deadlock)
1220                 return;
1221
1222         /*
1223          * Yell lowdly and stop the task right here.
1224          */
1225         rt_mutex_print_deadlock(w);
1226         while (1) {
1227                 set_current_state(TASK_INTERRUPTIBLE);
1228                 schedule();
1229         }
1230 }
1231
1232 /*
1233  * Slow path lock function:
1234  */
1235 static int __sched
1236 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1237                   struct hrtimer_sleeper *timeout,
1238                   enum rtmutex_chainwalk chwalk)
1239 {
1240         struct rt_mutex_waiter waiter;
1241         unsigned long flags;
1242         int ret = 0;
1243
1244         rt_mutex_init_waiter(&waiter);
1245
1246         /*
1247          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1248          * be called in early boot if the cmpxchg() fast path is disabled
1249          * (debug, no architecture support). In this case we will acquire the
1250          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1251          * enable interrupts in that early boot case. So we need to use the
1252          * irqsave/restore variants.
1253          */
1254         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1255
1256         /* Try to acquire the lock again: */
1257         if (try_to_take_rt_mutex(lock, current, NULL)) {
1258                 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1259                 return 0;
1260         }
1261
1262         set_current_state(state);
1263
1264         /* Setup the timer, when timeout != NULL */
1265         if (unlikely(timeout))
1266                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1267
1268         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1269
1270         if (likely(!ret))
1271                 /* sleep on the mutex */
1272                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1273
1274         if (unlikely(ret)) {
1275                 __set_current_state(TASK_RUNNING);
1276                 if (rt_mutex_has_waiters(lock))
1277                         remove_waiter(lock, &waiter);
1278                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1279         }
1280
1281         /*
1282          * try_to_take_rt_mutex() sets the waiter bit
1283          * unconditionally. We might have to fix that up.
1284          */
1285         fixup_rt_mutex_waiters(lock);
1286
1287         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1288
1289         /* Remove pending timer: */
1290         if (unlikely(timeout))
1291                 hrtimer_cancel(&timeout->timer);
1292
1293         debug_rt_mutex_free_waiter(&waiter);
1294
1295         return ret;
1296 }
1297
1298 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1299 {
1300         int ret = try_to_take_rt_mutex(lock, current, NULL);
1301
1302         /*
1303          * try_to_take_rt_mutex() sets the lock waiters bit
1304          * unconditionally. Clean this up.
1305          */
1306         fixup_rt_mutex_waiters(lock);
1307
1308         return ret;
1309 }
1310
1311 /*
1312  * Slow path try-lock function:
1313  */
1314 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1315 {
1316         unsigned long flags;
1317         int ret;
1318
1319         /*
1320          * If the lock already has an owner we fail to get the lock.
1321          * This can be done without taking the @lock->wait_lock as
1322          * it is only being read, and this is a trylock anyway.
1323          */
1324         if (rt_mutex_owner(lock))
1325                 return 0;
1326
1327         /*
1328          * The mutex has currently no owner. Lock the wait lock and try to
1329          * acquire the lock. We use irqsave here to support early boot calls.
1330          */
1331         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1332
1333         ret = __rt_mutex_slowtrylock(lock);
1334
1335         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1336
1337         return ret;
1338 }
1339
1340 /*
1341  * Slow path to release a rt-mutex.
1342  * Return whether the current task needs to undo a potential priority boosting.
1343  */
1344 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1345                                         struct wake_q_head *wake_q)
1346 {
1347         unsigned long flags;
1348
1349         /* irqsave required to support early boot calls */
1350         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1351
1352         debug_rt_mutex_unlock(lock);
1353
1354         /*
1355          * We must be careful here if the fast path is enabled. If we
1356          * have no waiters queued we cannot set owner to NULL here
1357          * because of:
1358          *
1359          * foo->lock->owner = NULL;
1360          *                      rtmutex_lock(foo->lock);   <- fast path
1361          *                      free = atomic_dec_and_test(foo->refcnt);
1362          *                      rtmutex_unlock(foo->lock); <- fast path
1363          *                      if (free)
1364          *                              kfree(foo);
1365          * raw_spin_unlock(foo->lock->wait_lock);
1366          *
1367          * So for the fastpath enabled kernel:
1368          *
1369          * Nothing can set the waiters bit as long as we hold
1370          * lock->wait_lock. So we do the following sequence:
1371          *
1372          *      owner = rt_mutex_owner(lock);
1373          *      clear_rt_mutex_waiters(lock);
1374          *      raw_spin_unlock(&lock->wait_lock);
1375          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1376          *              return;
1377          *      goto retry;
1378          *
1379          * The fastpath disabled variant is simple as all access to
1380          * lock->owner is serialized by lock->wait_lock:
1381          *
1382          *      lock->owner = NULL;
1383          *      raw_spin_unlock(&lock->wait_lock);
1384          */
1385         while (!rt_mutex_has_waiters(lock)) {
1386                 /* Drops lock->wait_lock ! */
1387                 if (unlock_rt_mutex_safe(lock, flags) == true)
1388                         return false;
1389                 /* Relock the rtmutex and try again */
1390                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1391         }
1392
1393         /*
1394          * The wakeup next waiter path does not suffer from the above
1395          * race. See the comments there.
1396          *
1397          * Queue the next waiter for wakeup once we release the wait_lock.
1398          */
1399         mark_wakeup_next_waiter(wake_q, lock);
1400
1401         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1402
1403         /* check PI boosting */
1404         return true;
1405 }
1406
1407 /*
1408  * debug aware fast / slowpath lock,trylock,unlock
1409  *
1410  * The atomic acquire/release ops are compiled away, when either the
1411  * architecture does not support cmpxchg or when debugging is enabled.
1412  */
1413 static inline int
1414 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1415                   int (*slowfn)(struct rt_mutex *lock, int state,
1416                                 struct hrtimer_sleeper *timeout,
1417                                 enum rtmutex_chainwalk chwalk))
1418 {
1419         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1420                 return 0;
1421
1422         return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1423 }
1424
1425 static inline int
1426 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1427                         struct hrtimer_sleeper *timeout,
1428                         enum rtmutex_chainwalk chwalk,
1429                         int (*slowfn)(struct rt_mutex *lock, int state,
1430                                       struct hrtimer_sleeper *timeout,
1431                                       enum rtmutex_chainwalk chwalk))
1432 {
1433         if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1434             likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1435                 return 0;
1436
1437         return slowfn(lock, state, timeout, chwalk);
1438 }
1439
1440 static inline int
1441 rt_mutex_fasttrylock(struct rt_mutex *lock,
1442                      int (*slowfn)(struct rt_mutex *lock))
1443 {
1444         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1445                 return 1;
1446
1447         return slowfn(lock);
1448 }
1449
1450 static inline void
1451 rt_mutex_fastunlock(struct rt_mutex *lock,
1452                     bool (*slowfn)(struct rt_mutex *lock,
1453                                    struct wake_q_head *wqh))
1454 {
1455         WAKE_Q(wake_q);
1456         bool deboost;
1457
1458         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1459                 return;
1460
1461         deboost = slowfn(lock, &wake_q);
1462
1463         wake_up_q(&wake_q);
1464
1465         /* Undo pi boosting if necessary: */
1466         if (deboost)
1467                 rt_mutex_adjust_prio(current);
1468 }
1469
1470 /**
1471  * rt_mutex_lock - lock a rt_mutex
1472  *
1473  * @lock: the rt_mutex to be locked
1474  */
1475 void __sched rt_mutex_lock(struct rt_mutex *lock)
1476 {
1477         might_sleep();
1478
1479         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1480 }
1481 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1482
1483 /**
1484  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1485  *
1486  * @lock:               the rt_mutex to be locked
1487  *
1488  * Returns:
1489  *  0           on success
1490  * -EINTR       when interrupted by a signal
1491  */
1492 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1493 {
1494         might_sleep();
1495
1496         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1497 }
1498 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1499
1500 /*
1501  * Futex variant, must not use fastpath.
1502  */
1503 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1504 {
1505         return rt_mutex_slowtrylock(lock);
1506 }
1507
1508 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1509 {
1510         return __rt_mutex_slowtrylock(lock);
1511 }
1512
1513 /**
1514  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1515  *                      the timeout structure is provided
1516  *                      by the caller
1517  *
1518  * @lock:               the rt_mutex to be locked
1519  * @timeout:            timeout structure or NULL (no timeout)
1520  *
1521  * Returns:
1522  *  0           on success
1523  * -EINTR       when interrupted by a signal
1524  * -ETIMEDOUT   when the timeout expired
1525  */
1526 int
1527 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1528 {
1529         might_sleep();
1530
1531         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1532                                        RT_MUTEX_MIN_CHAINWALK,
1533                                        rt_mutex_slowlock);
1534 }
1535 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1536
1537 /**
1538  * rt_mutex_trylock - try to lock a rt_mutex
1539  *
1540  * @lock:       the rt_mutex to be locked
1541  *
1542  * This function can only be called in thread context. It's safe to
1543  * call it from atomic regions, but not from hard interrupt or soft
1544  * interrupt context.
1545  *
1546  * Returns 1 on success and 0 on contention
1547  */
1548 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1549 {
1550         if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1551                 return 0;
1552
1553         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1554 }
1555 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1556
1557 /**
1558  * rt_mutex_unlock - unlock a rt_mutex
1559  *
1560  * @lock: the rt_mutex to be unlocked
1561  */
1562 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1563 {
1564         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1565 }
1566 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1567
1568 /**
1569  * Futex variant, that since futex variants do not use the fast-path, can be
1570  * simple and will not need to retry.
1571  */
1572 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1573                                     struct wake_q_head *wake_q)
1574 {
1575         lockdep_assert_held(&lock->wait_lock);
1576
1577         debug_rt_mutex_unlock(lock);
1578
1579         if (!rt_mutex_has_waiters(lock)) {
1580                 lock->owner = NULL;
1581                 return false; /* done */
1582         }
1583
1584         mark_wakeup_next_waiter(wake_q, lock);
1585         return true; /* deboost and wakeups */
1586 }
1587
1588 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1589 {
1590         WAKE_Q(wake_q);
1591         bool deboost;
1592
1593         raw_spin_lock_irq(&lock->wait_lock);
1594         deboost = __rt_mutex_futex_unlock(lock, &wake_q);
1595         raw_spin_unlock_irq(&lock->wait_lock);
1596
1597         if (deboost) {
1598                 wake_up_q(&wake_q);
1599                 rt_mutex_adjust_prio(current);
1600         }
1601 }
1602
1603 /**
1604  * rt_mutex_destroy - mark a mutex unusable
1605  * @lock: the mutex to be destroyed
1606  *
1607  * This function marks the mutex uninitialized, and any subsequent
1608  * use of the mutex is forbidden. The mutex must not be locked when
1609  * this function is called.
1610  */
1611 void rt_mutex_destroy(struct rt_mutex *lock)
1612 {
1613         WARN_ON(rt_mutex_is_locked(lock));
1614 #ifdef CONFIG_DEBUG_RT_MUTEXES
1615         lock->magic = NULL;
1616 #endif
1617 }
1618
1619 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1620
1621 /**
1622  * __rt_mutex_init - initialize the rt lock
1623  *
1624  * @lock: the rt lock to be initialized
1625  *
1626  * Initialize the rt lock to unlocked state.
1627  *
1628  * Initializing of a locked rt lock is not allowed
1629  */
1630 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1631 {
1632         lock->owner = NULL;
1633         raw_spin_lock_init(&lock->wait_lock);
1634         lock->waiters = RB_ROOT;
1635         lock->waiters_leftmost = NULL;
1636
1637         debug_rt_mutex_init(lock, name);
1638 }
1639 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1640
1641 /**
1642  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1643  *                              proxy owner
1644  *
1645  * @lock:       the rt_mutex to be locked
1646  * @proxy_owner:the task to set as owner
1647  *
1648  * No locking. Caller has to do serializing itself
1649  * Special API call for PI-futex support
1650  */
1651 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1652                                 struct task_struct *proxy_owner)
1653 {
1654         __rt_mutex_init(lock, NULL);
1655         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1656         rt_mutex_set_owner(lock, proxy_owner);
1657 }
1658
1659 /**
1660  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1661  *
1662  * @lock:       the rt_mutex to be locked
1663  *
1664  * No locking. Caller has to do serializing itself
1665  * Special API call for PI-futex support
1666  */
1667 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1668 {
1669         debug_rt_mutex_proxy_unlock(lock);
1670         rt_mutex_set_owner(lock, NULL);
1671 }
1672
1673 /**
1674  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1675  * @lock:               the rt_mutex to take
1676  * @waiter:             the pre-initialized rt_mutex_waiter
1677  * @task:               the task to prepare
1678  *
1679  * Returns:
1680  *  0 - task blocked on lock
1681  *  1 - acquired the lock for task, caller should wake it up
1682  * <0 - error
1683  *
1684  * Special API call for FUTEX_REQUEUE_PI support.
1685  */
1686 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1687                               struct rt_mutex_waiter *waiter,
1688                               struct task_struct *task)
1689 {
1690         int ret;
1691
1692         raw_spin_lock_irq(&lock->wait_lock);
1693
1694         if (try_to_take_rt_mutex(lock, task, NULL)) {
1695                 raw_spin_unlock_irq(&lock->wait_lock);
1696                 return 1;
1697         }
1698
1699         /* We enforce deadlock detection for futexes */
1700         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1701                                       RT_MUTEX_FULL_CHAINWALK);
1702
1703         if (ret && !rt_mutex_owner(lock)) {
1704                 /*
1705                  * Reset the return value. We might have
1706                  * returned with -EDEADLK and the owner
1707                  * released the lock while we were walking the
1708                  * pi chain.  Let the waiter sort it out.
1709                  */
1710                 ret = 0;
1711         }
1712
1713         if (unlikely(ret))
1714                 remove_waiter(lock, waiter);
1715
1716         raw_spin_unlock_irq(&lock->wait_lock);
1717
1718         debug_rt_mutex_print_deadlock(waiter);
1719
1720         return ret;
1721 }
1722
1723 /**
1724  * rt_mutex_next_owner - return the next owner of the lock
1725  *
1726  * @lock: the rt lock query
1727  *
1728  * Returns the next owner of the lock or NULL
1729  *
1730  * Caller has to serialize against other accessors to the lock
1731  * itself.
1732  *
1733  * Special API call for PI-futex support
1734  */
1735 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1736 {
1737         if (!rt_mutex_has_waiters(lock))
1738                 return NULL;
1739
1740         return rt_mutex_top_waiter(lock)->task;
1741 }
1742
1743 /**
1744  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1745  * @lock:               the rt_mutex we were woken on
1746  * @to:                 the timeout, null if none. hrtimer should already have
1747  *                      been started.
1748  * @waiter:             the pre-initialized rt_mutex_waiter
1749  *
1750  * Wait for the the lock acquisition started on our behalf by
1751  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1752  * rt_mutex_cleanup_proxy_lock().
1753  *
1754  * Returns:
1755  *  0 - success
1756  * <0 - error, one of -EINTR, -ETIMEDOUT
1757  *
1758  * Special API call for PI-futex support
1759  */
1760 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1761                                struct hrtimer_sleeper *to,
1762                                struct rt_mutex_waiter *waiter)
1763 {
1764         int ret;
1765
1766         raw_spin_lock_irq(&lock->wait_lock);
1767         /* sleep on the mutex */
1768         set_current_state(TASK_INTERRUPTIBLE);
1769         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1770         /*
1771          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1772          * have to fix that up.
1773          */
1774         fixup_rt_mutex_waiters(lock);
1775         raw_spin_unlock_irq(&lock->wait_lock);
1776
1777         return ret;
1778 }
1779
1780 /**
1781  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1782  * @lock:               the rt_mutex we were woken on
1783  * @waiter:             the pre-initialized rt_mutex_waiter
1784  *
1785  * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1786  *
1787  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1788  * in fact still be granted ownership until we're removed. Therefore we can
1789  * find we are in fact the owner and must disregard the
1790  * rt_mutex_wait_proxy_lock() failure.
1791  *
1792  * Returns:
1793  *  true  - did the cleanup, we done.
1794  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1795  *          caller should disregards its return value.
1796  *
1797  * Special API call for PI-futex support
1798  */
1799 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1800                                  struct rt_mutex_waiter *waiter)
1801 {
1802         bool cleanup = false;
1803
1804         raw_spin_lock_irq(&lock->wait_lock);
1805         /*
1806          * Do an unconditional try-lock, this deals with the lock stealing
1807          * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1808          * sets a NULL owner.
1809          *
1810          * We're not interested in the return value, because the subsequent
1811          * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1812          * we will own the lock and it will have removed the waiter. If we
1813          * failed the trylock, we're still not owner and we need to remove
1814          * ourselves.
1815          */
1816         try_to_take_rt_mutex(lock, current, waiter);
1817         /*
1818          * Unless we're the owner; we're still enqueued on the wait_list.
1819          * So check if we became owner, if not, take us off the wait_list.
1820          */
1821         if (rt_mutex_owner(lock) != current) {
1822                 remove_waiter(lock, waiter);
1823                 cleanup = true;
1824         }
1825         /*
1826          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1827          * have to fix that up.
1828          */
1829         fixup_rt_mutex_waiters(lock);
1830
1831         raw_spin_unlock_irq(&lock->wait_lock);
1832
1833         return cleanup;
1834 }