GNU Linux-libre 4.9.328-gnu1
[releases.git] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner        bit0
29  * NULL         0       lock is free (fast acquire possible)
30  * NULL         1       lock is free and has waiters and the top waiter
31  *                              is going to take the lock*
32  * taskpointer  0       lock is held (fast release possible)
33  * taskpointer  1       lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52         unsigned long val = (unsigned long)owner;
53
54         if (rt_mutex_has_waiters(lock))
55                 val |= RT_MUTEX_HAS_WAITERS;
56
57         lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62         lock->owner = (struct task_struct *)
63                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68         unsigned long owner, *p = (unsigned long *) &lock->owner;
69
70         if (rt_mutex_has_waiters(lock))
71                 return;
72
73         /*
74          * The rbtree has no waiters enqueued, now make sure that the
75          * lock->owner still has the waiters bit set, otherwise the
76          * following can happen:
77          *
78          * CPU 0        CPU 1           CPU2
79          * l->owner=T1
80          *              rt_mutex_lock(l)
81          *              lock(l->lock)
82          *              l->owner = T1 | HAS_WAITERS;
83          *              enqueue(T2)
84          *              boost()
85          *                unlock(l->lock)
86          *              block()
87          *
88          *                              rt_mutex_lock(l)
89          *                              lock(l->lock)
90          *                              l->owner = T1 | HAS_WAITERS;
91          *                              enqueue(T3)
92          *                              boost()
93          *                                unlock(l->lock)
94          *                              block()
95          *              signal(->T2)    signal(->T3)
96          *              lock(l->lock)
97          *              dequeue(T2)
98          *              deboost()
99          *                unlock(l->lock)
100          *                              lock(l->lock)
101          *                              dequeue(T3)
102          *                               ==> wait list is empty
103          *                              deboost()
104          *                               unlock(l->lock)
105          *              lock(l->lock)
106          *              fixup_rt_mutex_waiters()
107          *                if (wait_list_empty(l) {
108          *                  l->owner = owner
109          *                  owner = l->owner & ~HAS_WAITERS;
110          *                    ==> l->owner = T1
111          *                }
112          *                              lock(l->lock)
113          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
114          *                                if (wait_list_empty(l) {
115          *                                  owner = l->owner & ~HAS_WAITERS;
116          * cmpxchg(l->owner, T1, NULL)
117          *  ===> Success (l->owner = NULL)
118          *
119          *                                  l->owner = owner
120          *                                    ==> l->owner = T1
121          *                                }
122          *
123          * With the check for the waiter bit in place T3 on CPU2 will not
124          * overwrite. All tasks fiddling with the waiters bit are
125          * serialized by l->lock, so nothing else can modify the waiters
126          * bit. If the bit is set then nothing can change l->owner either
127          * so the simple RMW is safe. The cmpxchg() will simply fail if it
128          * happens in the middle of the RMW because the waiters bit is
129          * still set.
130          */
131         owner = READ_ONCE(*p);
132         if (owner & RT_MUTEX_HAS_WAITERS)
133                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
134 }
135
136 /*
137  * We can speed up the acquire/release, if there's no debugging state to be
138  * set up.
139  */
140 #ifndef CONFIG_DEBUG_RT_MUTEXES
141 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
142 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
143 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
144
145 /*
146  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
147  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
148  * relaxed semantics suffice.
149  */
150 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
151 {
152         unsigned long owner, *p = (unsigned long *) &lock->owner;
153
154         do {
155                 owner = *p;
156         } while (cmpxchg_relaxed(p, owner,
157                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
158 }
159
160 /*
161  * Safe fastpath aware unlock:
162  * 1) Clear the waiters bit
163  * 2) Drop lock->wait_lock
164  * 3) Try to unlock the lock with cmpxchg
165  */
166 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
167                                         unsigned long flags)
168         __releases(lock->wait_lock)
169 {
170         struct task_struct *owner = rt_mutex_owner(lock);
171
172         clear_rt_mutex_waiters(lock);
173         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
174         /*
175          * If a new waiter comes in between the unlock and the cmpxchg
176          * we have two situations:
177          *
178          * unlock(wait_lock);
179          *                                      lock(wait_lock);
180          * cmpxchg(p, owner, 0) == owner
181          *                                      mark_rt_mutex_waiters(lock);
182          *                                      acquire(lock);
183          * or:
184          *
185          * unlock(wait_lock);
186          *                                      lock(wait_lock);
187          *                                      mark_rt_mutex_waiters(lock);
188          *
189          * cmpxchg(p, owner, 0) != owner
190          *                                      enqueue_waiter();
191          *                                      unlock(wait_lock);
192          * lock(wait_lock);
193          * wake waiter();
194          * unlock(wait_lock);
195          *                                      lock(wait_lock);
196          *                                      acquire(lock);
197          */
198         return rt_mutex_cmpxchg_release(lock, owner, NULL);
199 }
200
201 #else
202 # define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
203 # define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
204 # define rt_mutex_cmpxchg_release(l,c,n)        (0)
205
206 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
207 {
208         lock->owner = (struct task_struct *)
209                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
210 }
211
212 /*
213  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
214  */
215 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
216                                         unsigned long flags)
217         __releases(lock->wait_lock)
218 {
219         lock->owner = NULL;
220         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
221         return true;
222 }
223 #endif
224
225 static inline int
226 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
227                      struct rt_mutex_waiter *right)
228 {
229         if (left->prio < right->prio)
230                 return 1;
231
232         /*
233          * If both waiters have dl_prio(), we check the deadlines of the
234          * associated tasks.
235          * If left waiter has a dl_prio(), and we didn't return 1 above,
236          * then right waiter has a dl_prio() too.
237          */
238         if (dl_prio(left->prio))
239                 return dl_time_before(left->deadline, right->deadline);
240
241         return 0;
242 }
243
244 static void
245 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
246 {
247         struct rb_node **link = &lock->waiters.rb_node;
248         struct rb_node *parent = NULL;
249         struct rt_mutex_waiter *entry;
250         int leftmost = 1;
251
252         while (*link) {
253                 parent = *link;
254                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
255                 if (rt_mutex_waiter_less(waiter, entry)) {
256                         link = &parent->rb_left;
257                 } else {
258                         link = &parent->rb_right;
259                         leftmost = 0;
260                 }
261         }
262
263         if (leftmost)
264                 lock->waiters_leftmost = &waiter->tree_entry;
265
266         rb_link_node(&waiter->tree_entry, parent, link);
267         rb_insert_color(&waiter->tree_entry, &lock->waiters);
268 }
269
270 static void
271 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
272 {
273         if (RB_EMPTY_NODE(&waiter->tree_entry))
274                 return;
275
276         if (lock->waiters_leftmost == &waiter->tree_entry)
277                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
278
279         rb_erase(&waiter->tree_entry, &lock->waiters);
280         RB_CLEAR_NODE(&waiter->tree_entry);
281 }
282
283 static void
284 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
285 {
286         struct rb_node **link = &task->pi_waiters.rb_node;
287         struct rb_node *parent = NULL;
288         struct rt_mutex_waiter *entry;
289         int leftmost = 1;
290
291         while (*link) {
292                 parent = *link;
293                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
294                 if (rt_mutex_waiter_less(waiter, entry)) {
295                         link = &parent->rb_left;
296                 } else {
297                         link = &parent->rb_right;
298                         leftmost = 0;
299                 }
300         }
301
302         if (leftmost)
303                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
304
305         rb_link_node(&waiter->pi_tree_entry, parent, link);
306         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
307 }
308
309 static void
310 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
311 {
312         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
313                 return;
314
315         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
316                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
317
318         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
319         RB_CLEAR_NODE(&waiter->pi_tree_entry);
320 }
321
322 /*
323  * Calculate task priority from the waiter tree priority
324  *
325  * Return task->normal_prio when the waiter tree is empty or when
326  * the waiter is not allowed to do priority boosting
327  */
328 int rt_mutex_getprio(struct task_struct *task)
329 {
330         if (likely(!task_has_pi_waiters(task)))
331                 return task->normal_prio;
332
333         return min(task_top_pi_waiter(task)->prio,
334                    task->normal_prio);
335 }
336
337 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
338 {
339         if (likely(!task_has_pi_waiters(task)))
340                 return NULL;
341
342         return task_top_pi_waiter(task)->task;
343 }
344
345 /*
346  * Called by sched_setscheduler() to get the priority which will be
347  * effective after the change.
348  */
349 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
350 {
351         if (!task_has_pi_waiters(task))
352                 return newprio;
353
354         if (task_top_pi_waiter(task)->task->prio <= newprio)
355                 return task_top_pi_waiter(task)->task->prio;
356         return newprio;
357 }
358
359 /*
360  * Adjust the priority of a task, after its pi_waiters got modified.
361  *
362  * This can be both boosting and unboosting. task->pi_lock must be held.
363  */
364 static void __rt_mutex_adjust_prio(struct task_struct *task)
365 {
366         int prio = rt_mutex_getprio(task);
367
368         if (task->prio != prio || dl_prio(prio))
369                 rt_mutex_setprio(task, prio);
370 }
371
372 /*
373  * Adjust task priority (undo boosting). Called from the exit path of
374  * rt_mutex_slowunlock() and rt_mutex_slowlock().
375  *
376  * (Note: We do this outside of the protection of lock->wait_lock to
377  * allow the lock to be taken while or before we readjust the priority
378  * of task. We do not use the spin_xx_mutex() variants here as we are
379  * outside of the debug path.)
380  */
381 void rt_mutex_adjust_prio(struct task_struct *task)
382 {
383         unsigned long flags;
384
385         raw_spin_lock_irqsave(&task->pi_lock, flags);
386         __rt_mutex_adjust_prio(task);
387         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
388 }
389
390 /*
391  * Deadlock detection is conditional:
392  *
393  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
394  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
395  *
396  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
397  * conducted independent of the detect argument.
398  *
399  * If the waiter argument is NULL this indicates the deboost path and
400  * deadlock detection is disabled independent of the detect argument
401  * and the config settings.
402  */
403 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
404                                           enum rtmutex_chainwalk chwalk)
405 {
406         /*
407          * This is just a wrapper function for the following call,
408          * because debug_rt_mutex_detect_deadlock() smells like a magic
409          * debug feature and I wanted to keep the cond function in the
410          * main source file along with the comments instead of having
411          * two of the same in the headers.
412          */
413         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
414 }
415
416 /*
417  * Max number of times we'll walk the boosting chain:
418  */
419 int max_lock_depth = 1024;
420
421 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
422 {
423         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
424 }
425
426 /*
427  * Adjust the priority chain. Also used for deadlock detection.
428  * Decreases task's usage by one - may thus free the task.
429  *
430  * @task:       the task owning the mutex (owner) for which a chain walk is
431  *              probably needed
432  * @chwalk:     do we have to carry out deadlock detection?
433  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
434  *              things for a task that has just got its priority adjusted, and
435  *              is waiting on a mutex)
436  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
437  *              we dropped its pi_lock. Is never dereferenced, only used for
438  *              comparison to detect lock chain changes.
439  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
440  *              its priority to the mutex owner (can be NULL in the case
441  *              depicted above or if the top waiter is gone away and we are
442  *              actually deboosting the owner)
443  * @top_task:   the current top waiter
444  *
445  * Returns 0 or -EDEADLK.
446  *
447  * Chain walk basics and protection scope
448  *
449  * [R] refcount on task
450  * [P] task->pi_lock held
451  * [L] rtmutex->wait_lock held
452  *
453  * Step Description                             Protected by
454  *      function arguments:
455  *      @task                                   [R]
456  *      @orig_lock if != NULL                   @top_task is blocked on it
457  *      @next_lock                              Unprotected. Cannot be
458  *                                              dereferenced. Only used for
459  *                                              comparison.
460  *      @orig_waiter if != NULL                 @top_task is blocked on it
461  *      @top_task                               current, or in case of proxy
462  *                                              locking protected by calling
463  *                                              code
464  *      again:
465  *        loop_sanity_check();
466  *      retry:
467  * [1]    lock(task->pi_lock);                  [R] acquire [P]
468  * [2]    waiter = task->pi_blocked_on;         [P]
469  * [3]    check_exit_conditions_1();            [P]
470  * [4]    lock = waiter->lock;                  [P]
471  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
472  *          unlock(task->pi_lock);              release [P]
473  *          goto retry;
474  *        }
475  * [6]    check_exit_conditions_2();            [P] + [L]
476  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
477  * [8]    unlock(task->pi_lock);                release [P]
478  *        put_task_struct(task);                release [R]
479  * [9]    check_exit_conditions_3();            [L]
480  * [10]   task = owner(lock);                   [L]
481  *        get_task_struct(task);                [L] acquire [R]
482  *        lock(task->pi_lock);                  [L] acquire [P]
483  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
484  * [12]   check_exit_conditions_4();            [P] + [L]
485  * [13]   unlock(task->pi_lock);                release [P]
486  *        unlock(lock->wait_lock);              release [L]
487  *        goto again;
488  */
489 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
490                                       enum rtmutex_chainwalk chwalk,
491                                       struct rt_mutex *orig_lock,
492                                       struct rt_mutex *next_lock,
493                                       struct rt_mutex_waiter *orig_waiter,
494                                       struct task_struct *top_task)
495 {
496         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
497         struct rt_mutex_waiter *prerequeue_top_waiter;
498         int ret = 0, depth = 0;
499         struct rt_mutex *lock;
500         bool detect_deadlock;
501         bool requeue = true;
502
503         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
504
505         /*
506          * The (de)boosting is a step by step approach with a lot of
507          * pitfalls. We want this to be preemptible and we want hold a
508          * maximum of two locks per step. So we have to check
509          * carefully whether things change under us.
510          */
511  again:
512         /*
513          * We limit the lock chain length for each invocation.
514          */
515         if (++depth > max_lock_depth) {
516                 static int prev_max;
517
518                 /*
519                  * Print this only once. If the admin changes the limit,
520                  * print a new message when reaching the limit again.
521                  */
522                 if (prev_max != max_lock_depth) {
523                         prev_max = max_lock_depth;
524                         printk(KERN_WARNING "Maximum lock depth %d reached "
525                                "task: %s (%d)\n", max_lock_depth,
526                                top_task->comm, task_pid_nr(top_task));
527                 }
528                 put_task_struct(task);
529
530                 return -EDEADLK;
531         }
532
533         /*
534          * We are fully preemptible here and only hold the refcount on
535          * @task. So everything can have changed under us since the
536          * caller or our own code below (goto retry/again) dropped all
537          * locks.
538          */
539  retry:
540         /*
541          * [1] Task cannot go away as we did a get_task() before !
542          */
543         raw_spin_lock_irq(&task->pi_lock);
544
545         /*
546          * [2] Get the waiter on which @task is blocked on.
547          */
548         waiter = task->pi_blocked_on;
549
550         /*
551          * [3] check_exit_conditions_1() protected by task->pi_lock.
552          */
553
554         /*
555          * Check whether the end of the boosting chain has been
556          * reached or the state of the chain has changed while we
557          * dropped the locks.
558          */
559         if (!waiter)
560                 goto out_unlock_pi;
561
562         /*
563          * Check the orig_waiter state. After we dropped the locks,
564          * the previous owner of the lock might have released the lock.
565          */
566         if (orig_waiter && !rt_mutex_owner(orig_lock))
567                 goto out_unlock_pi;
568
569         /*
570          * We dropped all locks after taking a refcount on @task, so
571          * the task might have moved on in the lock chain or even left
572          * the chain completely and blocks now on an unrelated lock or
573          * on @orig_lock.
574          *
575          * We stored the lock on which @task was blocked in @next_lock,
576          * so we can detect the chain change.
577          */
578         if (next_lock != waiter->lock)
579                 goto out_unlock_pi;
580
581         /*
582          * Drop out, when the task has no waiters. Note,
583          * top_waiter can be NULL, when we are in the deboosting
584          * mode!
585          */
586         if (top_waiter) {
587                 if (!task_has_pi_waiters(task))
588                         goto out_unlock_pi;
589                 /*
590                  * If deadlock detection is off, we stop here if we
591                  * are not the top pi waiter of the task. If deadlock
592                  * detection is enabled we continue, but stop the
593                  * requeueing in the chain walk.
594                  */
595                 if (top_waiter != task_top_pi_waiter(task)) {
596                         if (!detect_deadlock)
597                                 goto out_unlock_pi;
598                         else
599                                 requeue = false;
600                 }
601         }
602
603         /*
604          * If the waiter priority is the same as the task priority
605          * then there is no further priority adjustment necessary.  If
606          * deadlock detection is off, we stop the chain walk. If its
607          * enabled we continue, but stop the requeueing in the chain
608          * walk.
609          */
610         if (waiter->prio == task->prio) {
611                 if (!detect_deadlock)
612                         goto out_unlock_pi;
613                 else
614                         requeue = false;
615         }
616
617         /*
618          * [4] Get the next lock
619          */
620         lock = waiter->lock;
621         /*
622          * [5] We need to trylock here as we are holding task->pi_lock,
623          * which is the reverse lock order versus the other rtmutex
624          * operations.
625          */
626         if (!raw_spin_trylock(&lock->wait_lock)) {
627                 raw_spin_unlock_irq(&task->pi_lock);
628                 cpu_relax();
629                 goto retry;
630         }
631
632         /*
633          * [6] check_exit_conditions_2() protected by task->pi_lock and
634          * lock->wait_lock.
635          *
636          * Deadlock detection. If the lock is the same as the original
637          * lock which caused us to walk the lock chain or if the
638          * current lock is owned by the task which initiated the chain
639          * walk, we detected a deadlock.
640          */
641         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
642                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
643                 raw_spin_unlock(&lock->wait_lock);
644                 ret = -EDEADLK;
645                 goto out_unlock_pi;
646         }
647
648         /*
649          * If we just follow the lock chain for deadlock detection, no
650          * need to do all the requeue operations. To avoid a truckload
651          * of conditionals around the various places below, just do the
652          * minimum chain walk checks.
653          */
654         if (!requeue) {
655                 /*
656                  * No requeue[7] here. Just release @task [8]
657                  */
658                 raw_spin_unlock(&task->pi_lock);
659                 put_task_struct(task);
660
661                 /*
662                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
663                  * If there is no owner of the lock, end of chain.
664                  */
665                 if (!rt_mutex_owner(lock)) {
666                         raw_spin_unlock_irq(&lock->wait_lock);
667                         return 0;
668                 }
669
670                 /* [10] Grab the next task, i.e. owner of @lock */
671                 task = rt_mutex_owner(lock);
672                 get_task_struct(task);
673                 raw_spin_lock(&task->pi_lock);
674
675                 /*
676                  * No requeue [11] here. We just do deadlock detection.
677                  *
678                  * [12] Store whether owner is blocked
679                  * itself. Decision is made after dropping the locks
680                  */
681                 next_lock = task_blocked_on_lock(task);
682                 /*
683                  * Get the top waiter for the next iteration
684                  */
685                 top_waiter = rt_mutex_top_waiter(lock);
686
687                 /* [13] Drop locks */
688                 raw_spin_unlock(&task->pi_lock);
689                 raw_spin_unlock_irq(&lock->wait_lock);
690
691                 /* If owner is not blocked, end of chain. */
692                 if (!next_lock)
693                         goto out_put_task;
694                 goto again;
695         }
696
697         /*
698          * Store the current top waiter before doing the requeue
699          * operation on @lock. We need it for the boost/deboost
700          * decision below.
701          */
702         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
703
704         /* [7] Requeue the waiter in the lock waiter tree. */
705         rt_mutex_dequeue(lock, waiter);
706
707         /*
708          * Update the waiter prio fields now that we're dequeued.
709          *
710          * These values can have changed through either:
711          *
712          *   sys_sched_set_scheduler() / sys_sched_setattr()
713          *
714          * or
715          *
716          *   DL CBS enforcement advancing the effective deadline.
717          *
718          * Even though pi_waiters also uses these fields, and that tree is only
719          * updated in [11], we can do this here, since we hold [L], which
720          * serializes all pi_waiters access and rb_erase() does not care about
721          * the values of the node being removed.
722          */
723         waiter->prio = task->prio;
724         waiter->deadline = task->dl.deadline;
725
726         rt_mutex_enqueue(lock, waiter);
727
728         /* [8] Release the task */
729         raw_spin_unlock(&task->pi_lock);
730         put_task_struct(task);
731
732         /*
733          * [9] check_exit_conditions_3 protected by lock->wait_lock.
734          *
735          * We must abort the chain walk if there is no lock owner even
736          * in the dead lock detection case, as we have nothing to
737          * follow here. This is the end of the chain we are walking.
738          */
739         if (!rt_mutex_owner(lock)) {
740                 /*
741                  * If the requeue [7] above changed the top waiter,
742                  * then we need to wake the new top waiter up to try
743                  * to get the lock.
744                  */
745                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
746                         wake_up_process(rt_mutex_top_waiter(lock)->task);
747                 raw_spin_unlock_irq(&lock->wait_lock);
748                 return 0;
749         }
750
751         /* [10] Grab the next task, i.e. the owner of @lock */
752         task = rt_mutex_owner(lock);
753         get_task_struct(task);
754         raw_spin_lock(&task->pi_lock);
755
756         /* [11] requeue the pi waiters if necessary */
757         if (waiter == rt_mutex_top_waiter(lock)) {
758                 /*
759                  * The waiter became the new top (highest priority)
760                  * waiter on the lock. Replace the previous top waiter
761                  * in the owner tasks pi waiters tree with this waiter
762                  * and adjust the priority of the owner.
763                  */
764                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
765                 rt_mutex_enqueue_pi(task, waiter);
766                 __rt_mutex_adjust_prio(task);
767
768         } else if (prerequeue_top_waiter == waiter) {
769                 /*
770                  * The waiter was the top waiter on the lock, but is
771                  * no longer the top prority waiter. Replace waiter in
772                  * the owner tasks pi waiters tree with the new top
773                  * (highest priority) waiter and adjust the priority
774                  * of the owner.
775                  * The new top waiter is stored in @waiter so that
776                  * @waiter == @top_waiter evaluates to true below and
777                  * we continue to deboost the rest of the chain.
778                  */
779                 rt_mutex_dequeue_pi(task, waiter);
780                 waiter = rt_mutex_top_waiter(lock);
781                 rt_mutex_enqueue_pi(task, waiter);
782                 __rt_mutex_adjust_prio(task);
783         } else {
784                 /*
785                  * Nothing changed. No need to do any priority
786                  * adjustment.
787                  */
788         }
789
790         /*
791          * [12] check_exit_conditions_4() protected by task->pi_lock
792          * and lock->wait_lock. The actual decisions are made after we
793          * dropped the locks.
794          *
795          * Check whether the task which owns the current lock is pi
796          * blocked itself. If yes we store a pointer to the lock for
797          * the lock chain change detection above. After we dropped
798          * task->pi_lock next_lock cannot be dereferenced anymore.
799          */
800         next_lock = task_blocked_on_lock(task);
801         /*
802          * Store the top waiter of @lock for the end of chain walk
803          * decision below.
804          */
805         top_waiter = rt_mutex_top_waiter(lock);
806
807         /* [13] Drop the locks */
808         raw_spin_unlock(&task->pi_lock);
809         raw_spin_unlock_irq(&lock->wait_lock);
810
811         /*
812          * Make the actual exit decisions [12], based on the stored
813          * values.
814          *
815          * We reached the end of the lock chain. Stop right here. No
816          * point to go back just to figure that out.
817          */
818         if (!next_lock)
819                 goto out_put_task;
820
821         /*
822          * If the current waiter is not the top waiter on the lock,
823          * then we can stop the chain walk here if we are not in full
824          * deadlock detection mode.
825          */
826         if (!detect_deadlock && waiter != top_waiter)
827                 goto out_put_task;
828
829         goto again;
830
831  out_unlock_pi:
832         raw_spin_unlock_irq(&task->pi_lock);
833  out_put_task:
834         put_task_struct(task);
835
836         return ret;
837 }
838
839 /*
840  * Try to take an rt-mutex
841  *
842  * Must be called with lock->wait_lock held and interrupts disabled
843  *
844  * @lock:   The lock to be acquired.
845  * @task:   The task which wants to acquire the lock
846  * @waiter: The waiter that is queued to the lock's wait tree if the
847  *          callsite called task_blocked_on_lock(), otherwise NULL
848  */
849 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
850                                 struct rt_mutex_waiter *waiter)
851 {
852         lockdep_assert_held(&lock->wait_lock);
853
854         /*
855          * Before testing whether we can acquire @lock, we set the
856          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
857          * other tasks which try to modify @lock into the slow path
858          * and they serialize on @lock->wait_lock.
859          *
860          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
861          * as explained at the top of this file if and only if:
862          *
863          * - There is a lock owner. The caller must fixup the
864          *   transient state if it does a trylock or leaves the lock
865          *   function due to a signal or timeout.
866          *
867          * - @task acquires the lock and there are no other
868          *   waiters. This is undone in rt_mutex_set_owner(@task) at
869          *   the end of this function.
870          */
871         mark_rt_mutex_waiters(lock);
872
873         /*
874          * If @lock has an owner, give up.
875          */
876         if (rt_mutex_owner(lock))
877                 return 0;
878
879         /*
880          * If @waiter != NULL, @task has already enqueued the waiter
881          * into @lock waiter tree. If @waiter == NULL then this is a
882          * trylock attempt.
883          */
884         if (waiter) {
885                 /*
886                  * If waiter is not the highest priority waiter of
887                  * @lock, give up.
888                  */
889                 if (waiter != rt_mutex_top_waiter(lock))
890                         return 0;
891
892                 /*
893                  * We can acquire the lock. Remove the waiter from the
894                  * lock waiters tree.
895                  */
896                 rt_mutex_dequeue(lock, waiter);
897
898         } else {
899                 /*
900                  * If the lock has waiters already we check whether @task is
901                  * eligible to take over the lock.
902                  *
903                  * If there are no other waiters, @task can acquire
904                  * the lock.  @task->pi_blocked_on is NULL, so it does
905                  * not need to be dequeued.
906                  */
907                 if (rt_mutex_has_waiters(lock)) {
908                         /*
909                          * If @task->prio is greater than or equal to
910                          * the top waiter priority (kernel view),
911                          * @task lost.
912                          */
913                         if (task->prio >= rt_mutex_top_waiter(lock)->prio)
914                                 return 0;
915
916                         /*
917                          * The current top waiter stays enqueued. We
918                          * don't have to change anything in the lock
919                          * waiters order.
920                          */
921                 } else {
922                         /*
923                          * No waiters. Take the lock without the
924                          * pi_lock dance.@task->pi_blocked_on is NULL
925                          * and we have no waiters to enqueue in @task
926                          * pi waiters tree.
927                          */
928                         goto takeit;
929                 }
930         }
931
932         /*
933          * Clear @task->pi_blocked_on. Requires protection by
934          * @task->pi_lock. Redundant operation for the @waiter == NULL
935          * case, but conditionals are more expensive than a redundant
936          * store.
937          */
938         raw_spin_lock(&task->pi_lock);
939         task->pi_blocked_on = NULL;
940         /*
941          * Finish the lock acquisition. @task is the new owner. If
942          * other waiters exist we have to insert the highest priority
943          * waiter into @task->pi_waiters tree.
944          */
945         if (rt_mutex_has_waiters(lock))
946                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
947         raw_spin_unlock(&task->pi_lock);
948
949 takeit:
950         /* We got the lock. */
951         debug_rt_mutex_lock(lock);
952
953         /*
954          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
955          * are still waiters or clears it.
956          */
957         rt_mutex_set_owner(lock, task);
958
959         return 1;
960 }
961
962 /*
963  * Task blocks on lock.
964  *
965  * Prepare waiter and propagate pi chain
966  *
967  * This must be called with lock->wait_lock held and interrupts disabled
968  */
969 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
970                                    struct rt_mutex_waiter *waiter,
971                                    struct task_struct *task,
972                                    enum rtmutex_chainwalk chwalk)
973 {
974         struct task_struct *owner = rt_mutex_owner(lock);
975         struct rt_mutex_waiter *top_waiter = waiter;
976         struct rt_mutex *next_lock;
977         int chain_walk = 0, res;
978
979         lockdep_assert_held(&lock->wait_lock);
980
981         /*
982          * Early deadlock detection. We really don't want the task to
983          * enqueue on itself just to untangle the mess later. It's not
984          * only an optimization. We drop the locks, so another waiter
985          * can come in before the chain walk detects the deadlock. So
986          * the other will detect the deadlock and return -EDEADLOCK,
987          * which is wrong, as the other waiter is not in a deadlock
988          * situation.
989          */
990         if (owner == task)
991                 return -EDEADLK;
992
993         raw_spin_lock(&task->pi_lock);
994         __rt_mutex_adjust_prio(task);
995         waiter->task = task;
996         waiter->lock = lock;
997         waiter->prio = task->prio;
998         waiter->deadline = task->dl.deadline;
999
1000         /* Get the top priority waiter on the lock */
1001         if (rt_mutex_has_waiters(lock))
1002                 top_waiter = rt_mutex_top_waiter(lock);
1003         rt_mutex_enqueue(lock, waiter);
1004
1005         task->pi_blocked_on = waiter;
1006
1007         raw_spin_unlock(&task->pi_lock);
1008
1009         if (!owner)
1010                 return 0;
1011
1012         raw_spin_lock(&owner->pi_lock);
1013         if (waiter == rt_mutex_top_waiter(lock)) {
1014                 rt_mutex_dequeue_pi(owner, top_waiter);
1015                 rt_mutex_enqueue_pi(owner, waiter);
1016
1017                 __rt_mutex_adjust_prio(owner);
1018                 if (owner->pi_blocked_on)
1019                         chain_walk = 1;
1020         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1021                 chain_walk = 1;
1022         }
1023
1024         /* Store the lock on which owner is blocked or NULL */
1025         next_lock = task_blocked_on_lock(owner);
1026
1027         raw_spin_unlock(&owner->pi_lock);
1028         /*
1029          * Even if full deadlock detection is on, if the owner is not
1030          * blocked itself, we can avoid finding this out in the chain
1031          * walk.
1032          */
1033         if (!chain_walk || !next_lock)
1034                 return 0;
1035
1036         /*
1037          * The owner can't disappear while holding a lock,
1038          * so the owner struct is protected by wait_lock.
1039          * Gets dropped in rt_mutex_adjust_prio_chain()!
1040          */
1041         get_task_struct(owner);
1042
1043         raw_spin_unlock_irq(&lock->wait_lock);
1044
1045         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1046                                          next_lock, waiter, task);
1047
1048         raw_spin_lock_irq(&lock->wait_lock);
1049
1050         return res;
1051 }
1052
1053 /*
1054  * Remove the top waiter from the current tasks pi waiter tree and
1055  * queue it up.
1056  *
1057  * Called with lock->wait_lock held and interrupts disabled.
1058  */
1059 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1060                                     struct rt_mutex *lock)
1061 {
1062         struct rt_mutex_waiter *waiter;
1063
1064         raw_spin_lock(&current->pi_lock);
1065
1066         waiter = rt_mutex_top_waiter(lock);
1067
1068         /*
1069          * Remove it from current->pi_waiters. We do not adjust a
1070          * possible priority boost right now. We execute wakeup in the
1071          * boosted mode and go back to normal after releasing
1072          * lock->wait_lock.
1073          */
1074         rt_mutex_dequeue_pi(current, waiter);
1075
1076         /*
1077          * As we are waking up the top waiter, and the waiter stays
1078          * queued on the lock until it gets the lock, this lock
1079          * obviously has waiters. Just set the bit here and this has
1080          * the added benefit of forcing all new tasks into the
1081          * slow path making sure no task of lower priority than
1082          * the top waiter can steal this lock.
1083          */
1084         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1085
1086         raw_spin_unlock(&current->pi_lock);
1087
1088         wake_q_add(wake_q, waiter->task);
1089 }
1090
1091 /*
1092  * Remove a waiter from a lock and give up
1093  *
1094  * Must be called with lock->wait_lock held and interrupts disabled. I must
1095  * have just failed to try_to_take_rt_mutex().
1096  */
1097 static void remove_waiter(struct rt_mutex *lock,
1098                           struct rt_mutex_waiter *waiter)
1099 {
1100         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1101         struct task_struct *owner = rt_mutex_owner(lock);
1102         struct rt_mutex *next_lock;
1103
1104         lockdep_assert_held(&lock->wait_lock);
1105
1106         raw_spin_lock(&current->pi_lock);
1107         rt_mutex_dequeue(lock, waiter);
1108         current->pi_blocked_on = NULL;
1109         raw_spin_unlock(&current->pi_lock);
1110
1111         /*
1112          * Only update priority if the waiter was the highest priority
1113          * waiter of the lock and there is an owner to update.
1114          */
1115         if (!owner || !is_top_waiter)
1116                 return;
1117
1118         raw_spin_lock(&owner->pi_lock);
1119
1120         rt_mutex_dequeue_pi(owner, waiter);
1121
1122         if (rt_mutex_has_waiters(lock))
1123                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1124
1125         __rt_mutex_adjust_prio(owner);
1126
1127         /* Store the lock on which owner is blocked or NULL */
1128         next_lock = task_blocked_on_lock(owner);
1129
1130         raw_spin_unlock(&owner->pi_lock);
1131
1132         /*
1133          * Don't walk the chain, if the owner task is not blocked
1134          * itself.
1135          */
1136         if (!next_lock)
1137                 return;
1138
1139         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1140         get_task_struct(owner);
1141
1142         raw_spin_unlock_irq(&lock->wait_lock);
1143
1144         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1145                                    next_lock, NULL, current);
1146
1147         raw_spin_lock_irq(&lock->wait_lock);
1148 }
1149
1150 /*
1151  * Recheck the pi chain, in case we got a priority setting
1152  *
1153  * Called from sched_setscheduler
1154  */
1155 void rt_mutex_adjust_pi(struct task_struct *task)
1156 {
1157         struct rt_mutex_waiter *waiter;
1158         struct rt_mutex *next_lock;
1159         unsigned long flags;
1160
1161         raw_spin_lock_irqsave(&task->pi_lock, flags);
1162
1163         waiter = task->pi_blocked_on;
1164         if (!waiter || (waiter->prio == task->prio &&
1165                         !dl_prio(task->prio))) {
1166                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1167                 return;
1168         }
1169         next_lock = waiter->lock;
1170         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1171
1172         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1173         get_task_struct(task);
1174
1175         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1176                                    next_lock, NULL, task);
1177 }
1178
1179 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1180 {
1181         debug_rt_mutex_init_waiter(waiter);
1182         RB_CLEAR_NODE(&waiter->pi_tree_entry);
1183         RB_CLEAR_NODE(&waiter->tree_entry);
1184         waiter->task = NULL;
1185 }
1186
1187 /**
1188  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1189  * @lock:                the rt_mutex to take
1190  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1191  *                       or TASK_UNINTERRUPTIBLE)
1192  * @timeout:             the pre-initialized and started timer, or NULL for none
1193  * @waiter:              the pre-initialized rt_mutex_waiter
1194  *
1195  * Must be called with lock->wait_lock held and interrupts disabled
1196  */
1197 static int __sched
1198 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1199                     struct hrtimer_sleeper *timeout,
1200                     struct rt_mutex_waiter *waiter)
1201 {
1202         int ret = 0;
1203
1204         for (;;) {
1205                 /* Try to acquire the lock: */
1206                 if (try_to_take_rt_mutex(lock, current, waiter))
1207                         break;
1208
1209                 /*
1210                  * TASK_INTERRUPTIBLE checks for signals and
1211                  * timeout. Ignored otherwise.
1212                  */
1213                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1214                         /* Signal pending? */
1215                         if (signal_pending(current))
1216                                 ret = -EINTR;
1217                         if (timeout && !timeout->task)
1218                                 ret = -ETIMEDOUT;
1219                         if (ret)
1220                                 break;
1221                 }
1222
1223                 raw_spin_unlock_irq(&lock->wait_lock);
1224
1225                 debug_rt_mutex_print_deadlock(waiter);
1226
1227                 schedule();
1228
1229                 raw_spin_lock_irq(&lock->wait_lock);
1230                 set_current_state(state);
1231         }
1232
1233         __set_current_state(TASK_RUNNING);
1234         return ret;
1235 }
1236
1237 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1238                                      struct rt_mutex_waiter *w)
1239 {
1240         /*
1241          * If the result is not -EDEADLOCK or the caller requested
1242          * deadlock detection, nothing to do here.
1243          */
1244         if (res != -EDEADLOCK || detect_deadlock)
1245                 return;
1246
1247         /*
1248          * Yell lowdly and stop the task right here.
1249          */
1250         rt_mutex_print_deadlock(w);
1251         while (1) {
1252                 set_current_state(TASK_INTERRUPTIBLE);
1253                 schedule();
1254         }
1255 }
1256
1257 /*
1258  * Slow path lock function:
1259  */
1260 static int __sched
1261 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1262                   struct hrtimer_sleeper *timeout,
1263                   enum rtmutex_chainwalk chwalk)
1264 {
1265         struct rt_mutex_waiter waiter;
1266         unsigned long flags;
1267         int ret = 0;
1268
1269         rt_mutex_init_waiter(&waiter);
1270
1271         /*
1272          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1273          * be called in early boot if the cmpxchg() fast path is disabled
1274          * (debug, no architecture support). In this case we will acquire the
1275          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1276          * enable interrupts in that early boot case. So we need to use the
1277          * irqsave/restore variants.
1278          */
1279         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1280
1281         /* Try to acquire the lock again: */
1282         if (try_to_take_rt_mutex(lock, current, NULL)) {
1283                 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1284                 return 0;
1285         }
1286
1287         set_current_state(state);
1288
1289         /* Setup the timer, when timeout != NULL */
1290         if (unlikely(timeout))
1291                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1292
1293         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1294
1295         if (likely(!ret))
1296                 /* sleep on the mutex */
1297                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1298
1299         if (unlikely(ret)) {
1300                 __set_current_state(TASK_RUNNING);
1301                 if (rt_mutex_has_waiters(lock))
1302                         remove_waiter(lock, &waiter);
1303                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1304         }
1305
1306         /*
1307          * try_to_take_rt_mutex() sets the waiter bit
1308          * unconditionally. We might have to fix that up.
1309          */
1310         fixup_rt_mutex_waiters(lock);
1311
1312         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1313
1314         /* Remove pending timer: */
1315         if (unlikely(timeout))
1316                 hrtimer_cancel(&timeout->timer);
1317
1318         debug_rt_mutex_free_waiter(&waiter);
1319
1320         return ret;
1321 }
1322
1323 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1324 {
1325         int ret = try_to_take_rt_mutex(lock, current, NULL);
1326
1327         /*
1328          * try_to_take_rt_mutex() sets the lock waiters bit
1329          * unconditionally. Clean this up.
1330          */
1331         fixup_rt_mutex_waiters(lock);
1332
1333         return ret;
1334 }
1335
1336 /*
1337  * Slow path try-lock function:
1338  */
1339 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1340 {
1341         unsigned long flags;
1342         int ret;
1343
1344         /*
1345          * If the lock already has an owner we fail to get the lock.
1346          * This can be done without taking the @lock->wait_lock as
1347          * it is only being read, and this is a trylock anyway.
1348          */
1349         if (rt_mutex_owner(lock))
1350                 return 0;
1351
1352         /*
1353          * The mutex has currently no owner. Lock the wait lock and try to
1354          * acquire the lock. We use irqsave here to support early boot calls.
1355          */
1356         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1357
1358         ret = __rt_mutex_slowtrylock(lock);
1359
1360         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1361
1362         return ret;
1363 }
1364
1365 /*
1366  * Slow path to release a rt-mutex.
1367  * Return whether the current task needs to undo a potential priority boosting.
1368  */
1369 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1370                                         struct wake_q_head *wake_q)
1371 {
1372         unsigned long flags;
1373
1374         /* irqsave required to support early boot calls */
1375         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1376
1377         debug_rt_mutex_unlock(lock);
1378
1379         /*
1380          * We must be careful here if the fast path is enabled. If we
1381          * have no waiters queued we cannot set owner to NULL here
1382          * because of:
1383          *
1384          * foo->lock->owner = NULL;
1385          *                      rtmutex_lock(foo->lock);   <- fast path
1386          *                      free = atomic_dec_and_test(foo->refcnt);
1387          *                      rtmutex_unlock(foo->lock); <- fast path
1388          *                      if (free)
1389          *                              kfree(foo);
1390          * raw_spin_unlock(foo->lock->wait_lock);
1391          *
1392          * So for the fastpath enabled kernel:
1393          *
1394          * Nothing can set the waiters bit as long as we hold
1395          * lock->wait_lock. So we do the following sequence:
1396          *
1397          *      owner = rt_mutex_owner(lock);
1398          *      clear_rt_mutex_waiters(lock);
1399          *      raw_spin_unlock(&lock->wait_lock);
1400          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1401          *              return;
1402          *      goto retry;
1403          *
1404          * The fastpath disabled variant is simple as all access to
1405          * lock->owner is serialized by lock->wait_lock:
1406          *
1407          *      lock->owner = NULL;
1408          *      raw_spin_unlock(&lock->wait_lock);
1409          */
1410         while (!rt_mutex_has_waiters(lock)) {
1411                 /* Drops lock->wait_lock ! */
1412                 if (unlock_rt_mutex_safe(lock, flags) == true)
1413                         return false;
1414                 /* Relock the rtmutex and try again */
1415                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1416         }
1417
1418         /*
1419          * The wakeup next waiter path does not suffer from the above
1420          * race. See the comments there.
1421          *
1422          * Queue the next waiter for wakeup once we release the wait_lock.
1423          */
1424         mark_wakeup_next_waiter(wake_q, lock);
1425
1426         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1427
1428         /* check PI boosting */
1429         return true;
1430 }
1431
1432 /*
1433  * debug aware fast / slowpath lock,trylock,unlock
1434  *
1435  * The atomic acquire/release ops are compiled away, when either the
1436  * architecture does not support cmpxchg or when debugging is enabled.
1437  */
1438 static inline int
1439 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1440                   int (*slowfn)(struct rt_mutex *lock, int state,
1441                                 struct hrtimer_sleeper *timeout,
1442                                 enum rtmutex_chainwalk chwalk))
1443 {
1444         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1445                 return 0;
1446
1447         return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1448 }
1449
1450 static inline int
1451 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1452                         struct hrtimer_sleeper *timeout,
1453                         enum rtmutex_chainwalk chwalk,
1454                         int (*slowfn)(struct rt_mutex *lock, int state,
1455                                       struct hrtimer_sleeper *timeout,
1456                                       enum rtmutex_chainwalk chwalk))
1457 {
1458         if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1459             likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1460                 return 0;
1461
1462         return slowfn(lock, state, timeout, chwalk);
1463 }
1464
1465 static inline int
1466 rt_mutex_fasttrylock(struct rt_mutex *lock,
1467                      int (*slowfn)(struct rt_mutex *lock))
1468 {
1469         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1470                 return 1;
1471
1472         return slowfn(lock);
1473 }
1474
1475 static inline void
1476 rt_mutex_fastunlock(struct rt_mutex *lock,
1477                     bool (*slowfn)(struct rt_mutex *lock,
1478                                    struct wake_q_head *wqh))
1479 {
1480         WAKE_Q(wake_q);
1481         bool deboost;
1482
1483         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1484                 return;
1485
1486         deboost = slowfn(lock, &wake_q);
1487
1488         wake_up_q(&wake_q);
1489
1490         /* Undo pi boosting if necessary: */
1491         if (deboost)
1492                 rt_mutex_adjust_prio(current);
1493 }
1494
1495 /**
1496  * rt_mutex_lock - lock a rt_mutex
1497  *
1498  * @lock: the rt_mutex to be locked
1499  */
1500 void __sched rt_mutex_lock(struct rt_mutex *lock)
1501 {
1502         might_sleep();
1503
1504         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1505 }
1506 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1507
1508 /**
1509  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1510  *
1511  * @lock:               the rt_mutex to be locked
1512  *
1513  * Returns:
1514  *  0           on success
1515  * -EINTR       when interrupted by a signal
1516  */
1517 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1518 {
1519         might_sleep();
1520
1521         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1522 }
1523 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1524
1525 /*
1526  * Futex variant, must not use fastpath.
1527  */
1528 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1529 {
1530         return rt_mutex_slowtrylock(lock);
1531 }
1532
1533 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1534 {
1535         return __rt_mutex_slowtrylock(lock);
1536 }
1537
1538 /**
1539  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1540  *                      the timeout structure is provided
1541  *                      by the caller
1542  *
1543  * @lock:               the rt_mutex to be locked
1544  * @timeout:            timeout structure or NULL (no timeout)
1545  *
1546  * Returns:
1547  *  0           on success
1548  * -EINTR       when interrupted by a signal
1549  * -ETIMEDOUT   when the timeout expired
1550  */
1551 int
1552 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1553 {
1554         might_sleep();
1555
1556         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1557                                        RT_MUTEX_MIN_CHAINWALK,
1558                                        rt_mutex_slowlock);
1559 }
1560 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1561
1562 /**
1563  * rt_mutex_trylock - try to lock a rt_mutex
1564  *
1565  * @lock:       the rt_mutex to be locked
1566  *
1567  * This function can only be called in thread context. It's safe to
1568  * call it from atomic regions, but not from hard interrupt or soft
1569  * interrupt context.
1570  *
1571  * Returns 1 on success and 0 on contention
1572  */
1573 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1574 {
1575         if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1576                 return 0;
1577
1578         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1579 }
1580 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1581
1582 /**
1583  * rt_mutex_unlock - unlock a rt_mutex
1584  *
1585  * @lock: the rt_mutex to be unlocked
1586  */
1587 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1588 {
1589         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1590 }
1591 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1592
1593 /**
1594  * Futex variant, that since futex variants do not use the fast-path, can be
1595  * simple and will not need to retry.
1596  */
1597 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1598                                     struct wake_q_head *wake_q)
1599 {
1600         lockdep_assert_held(&lock->wait_lock);
1601
1602         debug_rt_mutex_unlock(lock);
1603
1604         if (!rt_mutex_has_waiters(lock)) {
1605                 lock->owner = NULL;
1606                 return false; /* done */
1607         }
1608
1609         mark_wakeup_next_waiter(wake_q, lock);
1610         return true; /* deboost and wakeups */
1611 }
1612
1613 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1614 {
1615         WAKE_Q(wake_q);
1616         bool deboost;
1617
1618         raw_spin_lock_irq(&lock->wait_lock);
1619         deboost = __rt_mutex_futex_unlock(lock, &wake_q);
1620         raw_spin_unlock_irq(&lock->wait_lock);
1621
1622         if (deboost) {
1623                 wake_up_q(&wake_q);
1624                 rt_mutex_adjust_prio(current);
1625         }
1626 }
1627
1628 /**
1629  * rt_mutex_destroy - mark a mutex unusable
1630  * @lock: the mutex to be destroyed
1631  *
1632  * This function marks the mutex uninitialized, and any subsequent
1633  * use of the mutex is forbidden. The mutex must not be locked when
1634  * this function is called.
1635  */
1636 void rt_mutex_destroy(struct rt_mutex *lock)
1637 {
1638         WARN_ON(rt_mutex_is_locked(lock));
1639 #ifdef CONFIG_DEBUG_RT_MUTEXES
1640         lock->magic = NULL;
1641 #endif
1642 }
1643
1644 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1645
1646 /**
1647  * __rt_mutex_init - initialize the rt lock
1648  *
1649  * @lock: the rt lock to be initialized
1650  *
1651  * Initialize the rt lock to unlocked state.
1652  *
1653  * Initializing of a locked rt lock is not allowed
1654  */
1655 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1656 {
1657         lock->owner = NULL;
1658         raw_spin_lock_init(&lock->wait_lock);
1659         lock->waiters = RB_ROOT;
1660         lock->waiters_leftmost = NULL;
1661
1662         debug_rt_mutex_init(lock, name);
1663 }
1664 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1665
1666 /**
1667  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1668  *                              proxy owner
1669  *
1670  * @lock:       the rt_mutex to be locked
1671  * @proxy_owner:the task to set as owner
1672  *
1673  * No locking. Caller has to do serializing itself
1674  * Special API call for PI-futex support
1675  */
1676 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1677                                 struct task_struct *proxy_owner)
1678 {
1679         __rt_mutex_init(lock, NULL);
1680         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1681         rt_mutex_set_owner(lock, proxy_owner);
1682 }
1683
1684 /**
1685  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1686  *
1687  * @lock:       the rt_mutex to be locked
1688  *
1689  * No locking. Caller has to do serializing itself
1690  * Special API call for PI-futex support
1691  */
1692 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1693 {
1694         debug_rt_mutex_proxy_unlock(lock);
1695         rt_mutex_set_owner(lock, NULL);
1696 }
1697
1698 /**
1699  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1700  * @lock:               the rt_mutex to take
1701  * @waiter:             the pre-initialized rt_mutex_waiter
1702  * @task:               the task to prepare
1703  *
1704  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1705  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1706  *
1707  * NOTE: does _NOT_ remove the @waiter on failure; must either call
1708  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1709  *
1710  * Returns:
1711  *  0 - task blocked on lock
1712  *  1 - acquired the lock for task, caller should wake it up
1713  * <0 - error
1714  *
1715  * Special API call for PI-futex support.
1716  */
1717 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1718                               struct rt_mutex_waiter *waiter,
1719                               struct task_struct *task)
1720 {
1721         int ret;
1722
1723         lockdep_assert_held(&lock->wait_lock);
1724
1725         if (try_to_take_rt_mutex(lock, task, NULL))
1726                 return 1;
1727
1728         /* We enforce deadlock detection for futexes */
1729         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1730                                       RT_MUTEX_FULL_CHAINWALK);
1731
1732         if (ret && !rt_mutex_owner(lock)) {
1733                 /*
1734                  * Reset the return value. We might have
1735                  * returned with -EDEADLK and the owner
1736                  * released the lock while we were walking the
1737                  * pi chain.  Let the waiter sort it out.
1738                  */
1739                 ret = 0;
1740         }
1741
1742         debug_rt_mutex_print_deadlock(waiter);
1743
1744         return ret;
1745 }
1746
1747 /**
1748  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1749  * @lock:               the rt_mutex to take
1750  * @waiter:             the pre-initialized rt_mutex_waiter
1751  * @task:               the task to prepare
1752  *
1753  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1754  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1755  *
1756  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1757  * on failure.
1758  *
1759  * Returns:
1760  *  0 - task blocked on lock
1761  *  1 - acquired the lock for task, caller should wake it up
1762  * <0 - error
1763  *
1764  * Special API call for PI-futex support.
1765  */
1766 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1767                               struct rt_mutex_waiter *waiter,
1768                               struct task_struct *task)
1769 {
1770         int ret;
1771
1772         raw_spin_lock_irq(&lock->wait_lock);
1773         ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1774         if (unlikely(ret))
1775                 remove_waiter(lock, waiter);
1776         raw_spin_unlock_irq(&lock->wait_lock);
1777
1778         return ret;
1779 }
1780
1781 /**
1782  * rt_mutex_next_owner - return the next owner of the lock
1783  *
1784  * @lock: the rt lock query
1785  *
1786  * Returns the next owner of the lock or NULL
1787  *
1788  * Caller has to serialize against other accessors to the lock
1789  * itself.
1790  *
1791  * Special API call for PI-futex support
1792  */
1793 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1794 {
1795         if (!rt_mutex_has_waiters(lock))
1796                 return NULL;
1797
1798         return rt_mutex_top_waiter(lock)->task;
1799 }
1800
1801 /**
1802  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1803  * @lock:               the rt_mutex we were woken on
1804  * @to:                 the timeout, null if none. hrtimer should already have
1805  *                      been started.
1806  * @waiter:             the pre-initialized rt_mutex_waiter
1807  *
1808  * Wait for the the lock acquisition started on our behalf by
1809  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1810  * rt_mutex_cleanup_proxy_lock().
1811  *
1812  * Returns:
1813  *  0 - success
1814  * <0 - error, one of -EINTR, -ETIMEDOUT
1815  *
1816  * Special API call for PI-futex support
1817  */
1818 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1819                                struct hrtimer_sleeper *to,
1820                                struct rt_mutex_waiter *waiter)
1821 {
1822         int ret;
1823
1824         raw_spin_lock_irq(&lock->wait_lock);
1825         /* sleep on the mutex */
1826         set_current_state(TASK_INTERRUPTIBLE);
1827         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1828         /*
1829          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1830          * have to fix that up.
1831          */
1832         fixup_rt_mutex_waiters(lock);
1833         raw_spin_unlock_irq(&lock->wait_lock);
1834
1835         return ret;
1836 }
1837
1838 /**
1839  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1840  * @lock:               the rt_mutex we were woken on
1841  * @waiter:             the pre-initialized rt_mutex_waiter
1842  *
1843  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1844  * rt_mutex_wait_proxy_lock().
1845  *
1846  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1847  * in fact still be granted ownership until we're removed. Therefore we can
1848  * find we are in fact the owner and must disregard the
1849  * rt_mutex_wait_proxy_lock() failure.
1850  *
1851  * Returns:
1852  *  true  - did the cleanup, we done.
1853  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1854  *          caller should disregards its return value.
1855  *
1856  * Special API call for PI-futex support
1857  */
1858 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1859                                  struct rt_mutex_waiter *waiter)
1860 {
1861         bool cleanup = false;
1862
1863         raw_spin_lock_irq(&lock->wait_lock);
1864         /*
1865          * Do an unconditional try-lock, this deals with the lock stealing
1866          * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1867          * sets a NULL owner.
1868          *
1869          * We're not interested in the return value, because the subsequent
1870          * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1871          * we will own the lock and it will have removed the waiter. If we
1872          * failed the trylock, we're still not owner and we need to remove
1873          * ourselves.
1874          */
1875         try_to_take_rt_mutex(lock, current, waiter);
1876         /*
1877          * Unless we're the owner; we're still enqueued on the wait_list.
1878          * So check if we became owner, if not, take us off the wait_list.
1879          */
1880         if (rt_mutex_owner(lock) != current) {
1881                 remove_waiter(lock, waiter);
1882                 cleanup = true;
1883         }
1884         /*
1885          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1886          * have to fix that up.
1887          */
1888         fixup_rt_mutex_waiters(lock);
1889
1890         raw_spin_unlock_irq(&lock->wait_lock);
1891
1892         return cleanup;
1893 }