GNU Linux-libre 5.15.72-gnu
[releases.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
83 static __always_inline bool lockdep_enabled(void)
84 {
85         if (!debug_locks)
86                 return false;
87
88         if (this_cpu_read(lockdep_recursion))
89                 return false;
90
91         if (current->lockdep_recursion)
92                 return false;
93
94         return true;
95 }
96
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
108 static inline void lockdep_lock(void)
109 {
110         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112         __this_cpu_inc(lockdep_recursion);
113         arch_spin_lock(&__lock);
114         __owner = current;
115 }
116
117 static inline void lockdep_unlock(void)
118 {
119         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122                 return;
123
124         __owner = NULL;
125         arch_spin_unlock(&__lock);
126         __this_cpu_dec(lockdep_recursion);
127 }
128
129 static inline bool lockdep_assert_locked(void)
130 {
131         return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
137 static int graph_lock(void)
138 {
139         lockdep_lock();
140         /*
141          * Make sure that if another CPU detected a bug while
142          * walking the graph we dont change it (while the other
143          * CPU is busy printing out stuff with the graph lock
144          * dropped already)
145          */
146         if (!debug_locks) {
147                 lockdep_unlock();
148                 return 0;
149         }
150         return 1;
151 }
152
153 static inline void graph_unlock(void)
154 {
155         lockdep_unlock();
156 }
157
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164         int ret = debug_locks_off();
165
166         lockdep_unlock();
167
168         return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 unsigned long max_lock_class_idx;
187 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
188 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
189
190 static inline struct lock_class *hlock_class(struct held_lock *hlock)
191 {
192         unsigned int class_idx = hlock->class_idx;
193
194         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
195         barrier();
196
197         if (!test_bit(class_idx, lock_classes_in_use)) {
198                 /*
199                  * Someone passed in garbage, we give up.
200                  */
201                 DEBUG_LOCKS_WARN_ON(1);
202                 return NULL;
203         }
204
205         /*
206          * At this point, if the passed hlock->class_idx is still garbage,
207          * we just have to live with it
208          */
209         return lock_classes + class_idx;
210 }
211
212 #ifdef CONFIG_LOCK_STAT
213 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
214
215 static inline u64 lockstat_clock(void)
216 {
217         return local_clock();
218 }
219
220 static int lock_point(unsigned long points[], unsigned long ip)
221 {
222         int i;
223
224         for (i = 0; i < LOCKSTAT_POINTS; i++) {
225                 if (points[i] == 0) {
226                         points[i] = ip;
227                         break;
228                 }
229                 if (points[i] == ip)
230                         break;
231         }
232
233         return i;
234 }
235
236 static void lock_time_inc(struct lock_time *lt, u64 time)
237 {
238         if (time > lt->max)
239                 lt->max = time;
240
241         if (time < lt->min || !lt->nr)
242                 lt->min = time;
243
244         lt->total += time;
245         lt->nr++;
246 }
247
248 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
249 {
250         if (!src->nr)
251                 return;
252
253         if (src->max > dst->max)
254                 dst->max = src->max;
255
256         if (src->min < dst->min || !dst->nr)
257                 dst->min = src->min;
258
259         dst->total += src->total;
260         dst->nr += src->nr;
261 }
262
263 struct lock_class_stats lock_stats(struct lock_class *class)
264 {
265         struct lock_class_stats stats;
266         int cpu, i;
267
268         memset(&stats, 0, sizeof(struct lock_class_stats));
269         for_each_possible_cpu(cpu) {
270                 struct lock_class_stats *pcs =
271                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
272
273                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
274                         stats.contention_point[i] += pcs->contention_point[i];
275
276                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
277                         stats.contending_point[i] += pcs->contending_point[i];
278
279                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
280                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
281
282                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
283                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
284
285                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
286                         stats.bounces[i] += pcs->bounces[i];
287         }
288
289         return stats;
290 }
291
292 void clear_lock_stats(struct lock_class *class)
293 {
294         int cpu;
295
296         for_each_possible_cpu(cpu) {
297                 struct lock_class_stats *cpu_stats =
298                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
299
300                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
301         }
302         memset(class->contention_point, 0, sizeof(class->contention_point));
303         memset(class->contending_point, 0, sizeof(class->contending_point));
304 }
305
306 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
307 {
308         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
309 }
310
311 static void lock_release_holdtime(struct held_lock *hlock)
312 {
313         struct lock_class_stats *stats;
314         u64 holdtime;
315
316         if (!lock_stat)
317                 return;
318
319         holdtime = lockstat_clock() - hlock->holdtime_stamp;
320
321         stats = get_lock_stats(hlock_class(hlock));
322         if (hlock->read)
323                 lock_time_inc(&stats->read_holdtime, holdtime);
324         else
325                 lock_time_inc(&stats->write_holdtime, holdtime);
326 }
327 #else
328 static inline void lock_release_holdtime(struct held_lock *hlock)
329 {
330 }
331 #endif
332
333 /*
334  * We keep a global list of all lock classes. The list is only accessed with
335  * the lockdep spinlock lock held. free_lock_classes is a list with free
336  * elements. These elements are linked together by the lock_entry member in
337  * struct lock_class.
338  */
339 static LIST_HEAD(all_lock_classes);
340 static LIST_HEAD(free_lock_classes);
341
342 /**
343  * struct pending_free - information about data structures about to be freed
344  * @zapped: Head of a list with struct lock_class elements.
345  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
346  *      are about to be freed.
347  */
348 struct pending_free {
349         struct list_head zapped;
350         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
351 };
352
353 /**
354  * struct delayed_free - data structures used for delayed freeing
355  *
356  * A data structure for delayed freeing of data structures that may be
357  * accessed by RCU readers at the time these were freed.
358  *
359  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
360  * @index:     Index of @pf to which freed data structures are added.
361  * @scheduled: Whether or not an RCU callback has been scheduled.
362  * @pf:        Array with information about data structures about to be freed.
363  */
364 static struct delayed_free {
365         struct rcu_head         rcu_head;
366         int                     index;
367         int                     scheduled;
368         struct pending_free     pf[2];
369 } delayed_free;
370
371 /*
372  * The lockdep classes are in a hash-table as well, for fast lookup:
373  */
374 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
375 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
376 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
377 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
378
379 static struct hlist_head classhash_table[CLASSHASH_SIZE];
380
381 /*
382  * We put the lock dependency chains into a hash-table as well, to cache
383  * their existence:
384  */
385 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
386 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
387 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
388 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
389
390 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
391
392 /*
393  * the id of held_lock
394  */
395 static inline u16 hlock_id(struct held_lock *hlock)
396 {
397         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
398
399         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
400 }
401
402 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
403 {
404         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
405 }
406
407 /*
408  * The hash key of the lock dependency chains is a hash itself too:
409  * it's a hash of all locks taken up to that lock, including that lock.
410  * It's a 64-bit hash, because it's important for the keys to be
411  * unique.
412  */
413 static inline u64 iterate_chain_key(u64 key, u32 idx)
414 {
415         u32 k0 = key, k1 = key >> 32;
416
417         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
418
419         return k0 | (u64)k1 << 32;
420 }
421
422 void lockdep_init_task(struct task_struct *task)
423 {
424         task->lockdep_depth = 0; /* no locks held yet */
425         task->curr_chain_key = INITIAL_CHAIN_KEY;
426         task->lockdep_recursion = 0;
427 }
428
429 static __always_inline void lockdep_recursion_inc(void)
430 {
431         __this_cpu_inc(lockdep_recursion);
432 }
433
434 static __always_inline void lockdep_recursion_finish(void)
435 {
436         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
437                 __this_cpu_write(lockdep_recursion, 0);
438 }
439
440 void lockdep_set_selftest_task(struct task_struct *task)
441 {
442         lockdep_selftest_task_struct = task;
443 }
444
445 /*
446  * Debugging switches:
447  */
448
449 #define VERBOSE                 0
450 #define VERY_VERBOSE            0
451
452 #if VERBOSE
453 # define HARDIRQ_VERBOSE        1
454 # define SOFTIRQ_VERBOSE        1
455 #else
456 # define HARDIRQ_VERBOSE        0
457 # define SOFTIRQ_VERBOSE        0
458 #endif
459
460 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
461 /*
462  * Quick filtering for interesting events:
463  */
464 static int class_filter(struct lock_class *class)
465 {
466 #if 0
467         /* Example */
468         if (class->name_version == 1 &&
469                         !strcmp(class->name, "lockname"))
470                 return 1;
471         if (class->name_version == 1 &&
472                         !strcmp(class->name, "&struct->lockfield"))
473                 return 1;
474 #endif
475         /* Filter everything else. 1 would be to allow everything else */
476         return 0;
477 }
478 #endif
479
480 static int verbose(struct lock_class *class)
481 {
482 #if VERBOSE
483         return class_filter(class);
484 #endif
485         return 0;
486 }
487
488 static void print_lockdep_off(const char *bug_msg)
489 {
490         printk(KERN_DEBUG "%s\n", bug_msg);
491         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
492 #ifdef CONFIG_LOCK_STAT
493         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
494 #endif
495 }
496
497 unsigned long nr_stack_trace_entries;
498
499 #ifdef CONFIG_PROVE_LOCKING
500 /**
501  * struct lock_trace - single stack backtrace
502  * @hash_entry: Entry in a stack_trace_hash[] list.
503  * @hash:       jhash() of @entries.
504  * @nr_entries: Number of entries in @entries.
505  * @entries:    Actual stack backtrace.
506  */
507 struct lock_trace {
508         struct hlist_node       hash_entry;
509         u32                     hash;
510         u32                     nr_entries;
511         unsigned long           entries[] __aligned(sizeof(unsigned long));
512 };
513 #define LOCK_TRACE_SIZE_IN_LONGS                                \
514         (sizeof(struct lock_trace) / sizeof(unsigned long))
515 /*
516  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
517  */
518 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
519 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
520
521 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
522 {
523         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
524                 memcmp(t1->entries, t2->entries,
525                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
526 }
527
528 static struct lock_trace *save_trace(void)
529 {
530         struct lock_trace *trace, *t2;
531         struct hlist_head *hash_head;
532         u32 hash;
533         int max_entries;
534
535         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
536         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
537
538         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
539         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
540                 LOCK_TRACE_SIZE_IN_LONGS;
541
542         if (max_entries <= 0) {
543                 if (!debug_locks_off_graph_unlock())
544                         return NULL;
545
546                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
547                 dump_stack();
548
549                 return NULL;
550         }
551         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
552
553         hash = jhash(trace->entries, trace->nr_entries *
554                      sizeof(trace->entries[0]), 0);
555         trace->hash = hash;
556         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
557         hlist_for_each_entry(t2, hash_head, hash_entry) {
558                 if (traces_identical(trace, t2))
559                         return t2;
560         }
561         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
562         hlist_add_head(&trace->hash_entry, hash_head);
563
564         return trace;
565 }
566
567 /* Return the number of stack traces in the stack_trace[] array. */
568 u64 lockdep_stack_trace_count(void)
569 {
570         struct lock_trace *trace;
571         u64 c = 0;
572         int i;
573
574         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
575                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
576                         c++;
577                 }
578         }
579
580         return c;
581 }
582
583 /* Return the number of stack hash chains that have at least one stack trace. */
584 u64 lockdep_stack_hash_count(void)
585 {
586         u64 c = 0;
587         int i;
588
589         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
590                 if (!hlist_empty(&stack_trace_hash[i]))
591                         c++;
592
593         return c;
594 }
595 #endif
596
597 unsigned int nr_hardirq_chains;
598 unsigned int nr_softirq_chains;
599 unsigned int nr_process_chains;
600 unsigned int max_lockdep_depth;
601
602 #ifdef CONFIG_DEBUG_LOCKDEP
603 /*
604  * Various lockdep statistics:
605  */
606 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
607 #endif
608
609 #ifdef CONFIG_PROVE_LOCKING
610 /*
611  * Locking printouts:
612  */
613
614 #define __USAGE(__STATE)                                                \
615         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
616         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
617         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
618         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
619
620 static const char *usage_str[] =
621 {
622 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
623 #include "lockdep_states.h"
624 #undef LOCKDEP_STATE
625         [LOCK_USED] = "INITIAL USE",
626         [LOCK_USED_READ] = "INITIAL READ USE",
627         /* abused as string storage for verify_lock_unused() */
628         [LOCK_USAGE_STATES] = "IN-NMI",
629 };
630 #endif
631
632 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
633 {
634         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
635 }
636
637 static inline unsigned long lock_flag(enum lock_usage_bit bit)
638 {
639         return 1UL << bit;
640 }
641
642 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
643 {
644         /*
645          * The usage character defaults to '.' (i.e., irqs disabled and not in
646          * irq context), which is the safest usage category.
647          */
648         char c = '.';
649
650         /*
651          * The order of the following usage checks matters, which will
652          * result in the outcome character as follows:
653          *
654          * - '+': irq is enabled and not in irq context
655          * - '-': in irq context and irq is disabled
656          * - '?': in irq context and irq is enabled
657          */
658         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
659                 c = '+';
660                 if (class->usage_mask & lock_flag(bit))
661                         c = '?';
662         } else if (class->usage_mask & lock_flag(bit))
663                 c = '-';
664
665         return c;
666 }
667
668 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
669 {
670         int i = 0;
671
672 #define LOCKDEP_STATE(__STATE)                                          \
673         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
674         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
675 #include "lockdep_states.h"
676 #undef LOCKDEP_STATE
677
678         usage[i] = '\0';
679 }
680
681 static void __print_lock_name(struct lock_class *class)
682 {
683         char str[KSYM_NAME_LEN];
684         const char *name;
685
686         name = class->name;
687         if (!name) {
688                 name = __get_key_name(class->key, str);
689                 printk(KERN_CONT "%s", name);
690         } else {
691                 printk(KERN_CONT "%s", name);
692                 if (class->name_version > 1)
693                         printk(KERN_CONT "#%d", class->name_version);
694                 if (class->subclass)
695                         printk(KERN_CONT "/%d", class->subclass);
696         }
697 }
698
699 static void print_lock_name(struct lock_class *class)
700 {
701         char usage[LOCK_USAGE_CHARS];
702
703         get_usage_chars(class, usage);
704
705         printk(KERN_CONT " (");
706         __print_lock_name(class);
707         printk(KERN_CONT "){%s}-{%d:%d}", usage,
708                         class->wait_type_outer ?: class->wait_type_inner,
709                         class->wait_type_inner);
710 }
711
712 static void print_lockdep_cache(struct lockdep_map *lock)
713 {
714         const char *name;
715         char str[KSYM_NAME_LEN];
716
717         name = lock->name;
718         if (!name)
719                 name = __get_key_name(lock->key->subkeys, str);
720
721         printk(KERN_CONT "%s", name);
722 }
723
724 static void print_lock(struct held_lock *hlock)
725 {
726         /*
727          * We can be called locklessly through debug_show_all_locks() so be
728          * extra careful, the hlock might have been released and cleared.
729          *
730          * If this indeed happens, lets pretend it does not hurt to continue
731          * to print the lock unless the hlock class_idx does not point to a
732          * registered class. The rationale here is: since we don't attempt
733          * to distinguish whether we are in this situation, if it just
734          * happened we can't count on class_idx to tell either.
735          */
736         struct lock_class *lock = hlock_class(hlock);
737
738         if (!lock) {
739                 printk(KERN_CONT "<RELEASED>\n");
740                 return;
741         }
742
743         printk(KERN_CONT "%px", hlock->instance);
744         print_lock_name(lock);
745         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
746 }
747
748 static void lockdep_print_held_locks(struct task_struct *p)
749 {
750         int i, depth = READ_ONCE(p->lockdep_depth);
751
752         if (!depth)
753                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
754         else
755                 printk("%d lock%s held by %s/%d:\n", depth,
756                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
757         /*
758          * It's not reliable to print a task's held locks if it's not sleeping
759          * and it's not the current task.
760          */
761         if (p != current && task_is_running(p))
762                 return;
763         for (i = 0; i < depth; i++) {
764                 printk(" #%d: ", i);
765                 print_lock(p->held_locks + i);
766         }
767 }
768
769 static void print_kernel_ident(void)
770 {
771         printk("%s %.*s %s\n", init_utsname()->release,
772                 (int)strcspn(init_utsname()->version, " "),
773                 init_utsname()->version,
774                 print_tainted());
775 }
776
777 static int very_verbose(struct lock_class *class)
778 {
779 #if VERY_VERBOSE
780         return class_filter(class);
781 #endif
782         return 0;
783 }
784
785 /*
786  * Is this the address of a static object:
787  */
788 #ifdef __KERNEL__
789 static int static_obj(const void *obj)
790 {
791         unsigned long start = (unsigned long) &_stext,
792                       end   = (unsigned long) &_end,
793                       addr  = (unsigned long) obj;
794
795         if (arch_is_kernel_initmem_freed(addr))
796                 return 0;
797
798         /*
799          * static variable?
800          */
801         if ((addr >= start) && (addr < end))
802                 return 1;
803
804         if (arch_is_kernel_data(addr))
805                 return 1;
806
807         /*
808          * in-kernel percpu var?
809          */
810         if (is_kernel_percpu_address(addr))
811                 return 1;
812
813         /*
814          * module static or percpu var?
815          */
816         return is_module_address(addr) || is_module_percpu_address(addr);
817 }
818 #endif
819
820 /*
821  * To make lock name printouts unique, we calculate a unique
822  * class->name_version generation counter. The caller must hold the graph
823  * lock.
824  */
825 static int count_matching_names(struct lock_class *new_class)
826 {
827         struct lock_class *class;
828         int count = 0;
829
830         if (!new_class->name)
831                 return 0;
832
833         list_for_each_entry(class, &all_lock_classes, lock_entry) {
834                 if (new_class->key - new_class->subclass == class->key)
835                         return class->name_version;
836                 if (class->name && !strcmp(class->name, new_class->name))
837                         count = max(count, class->name_version);
838         }
839
840         return count + 1;
841 }
842
843 /* used from NMI context -- must be lockless */
844 static noinstr struct lock_class *
845 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
846 {
847         struct lockdep_subclass_key *key;
848         struct hlist_head *hash_head;
849         struct lock_class *class;
850
851         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
852                 instrumentation_begin();
853                 debug_locks_off();
854                 printk(KERN_ERR
855                         "BUG: looking up invalid subclass: %u\n", subclass);
856                 printk(KERN_ERR
857                         "turning off the locking correctness validator.\n");
858                 dump_stack();
859                 instrumentation_end();
860                 return NULL;
861         }
862
863         /*
864          * If it is not initialised then it has never been locked,
865          * so it won't be present in the hash table.
866          */
867         if (unlikely(!lock->key))
868                 return NULL;
869
870         /*
871          * NOTE: the class-key must be unique. For dynamic locks, a static
872          * lock_class_key variable is passed in through the mutex_init()
873          * (or spin_lock_init()) call - which acts as the key. For static
874          * locks we use the lock object itself as the key.
875          */
876         BUILD_BUG_ON(sizeof(struct lock_class_key) >
877                         sizeof(struct lockdep_map));
878
879         key = lock->key->subkeys + subclass;
880
881         hash_head = classhashentry(key);
882
883         /*
884          * We do an RCU walk of the hash, see lockdep_free_key_range().
885          */
886         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
887                 return NULL;
888
889         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
890                 if (class->key == key) {
891                         /*
892                          * Huh! same key, different name? Did someone trample
893                          * on some memory? We're most confused.
894                          */
895                         WARN_ON_ONCE(class->name != lock->name &&
896                                      lock->key != &__lockdep_no_validate__);
897                         return class;
898                 }
899         }
900
901         return NULL;
902 }
903
904 /*
905  * Static locks do not have their class-keys yet - for them the key is
906  * the lock object itself. If the lock is in the per cpu area, the
907  * canonical address of the lock (per cpu offset removed) is used.
908  */
909 static bool assign_lock_key(struct lockdep_map *lock)
910 {
911         unsigned long can_addr, addr = (unsigned long)lock;
912
913 #ifdef __KERNEL__
914         /*
915          * lockdep_free_key_range() assumes that struct lock_class_key
916          * objects do not overlap. Since we use the address of lock
917          * objects as class key for static objects, check whether the
918          * size of lock_class_key objects does not exceed the size of
919          * the smallest lock object.
920          */
921         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
922 #endif
923
924         if (__is_kernel_percpu_address(addr, &can_addr))
925                 lock->key = (void *)can_addr;
926         else if (__is_module_percpu_address(addr, &can_addr))
927                 lock->key = (void *)can_addr;
928         else if (static_obj(lock))
929                 lock->key = (void *)lock;
930         else {
931                 /* Debug-check: all keys must be persistent! */
932                 debug_locks_off();
933                 pr_err("INFO: trying to register non-static key.\n");
934                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
935                 pr_err("you didn't initialize this object before use?\n");
936                 pr_err("turning off the locking correctness validator.\n");
937                 dump_stack();
938                 return false;
939         }
940
941         return true;
942 }
943
944 #ifdef CONFIG_DEBUG_LOCKDEP
945
946 /* Check whether element @e occurs in list @h */
947 static bool in_list(struct list_head *e, struct list_head *h)
948 {
949         struct list_head *f;
950
951         list_for_each(f, h) {
952                 if (e == f)
953                         return true;
954         }
955
956         return false;
957 }
958
959 /*
960  * Check whether entry @e occurs in any of the locks_after or locks_before
961  * lists.
962  */
963 static bool in_any_class_list(struct list_head *e)
964 {
965         struct lock_class *class;
966         int i;
967
968         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
969                 class = &lock_classes[i];
970                 if (in_list(e, &class->locks_after) ||
971                     in_list(e, &class->locks_before))
972                         return true;
973         }
974         return false;
975 }
976
977 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
978 {
979         struct lock_list *e;
980
981         list_for_each_entry(e, h, entry) {
982                 if (e->links_to != c) {
983                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
984                                c->name ? : "(?)",
985                                (unsigned long)(e - list_entries),
986                                e->links_to && e->links_to->name ?
987                                e->links_to->name : "(?)",
988                                e->class && e->class->name ? e->class->name :
989                                "(?)");
990                         return false;
991                 }
992         }
993         return true;
994 }
995
996 #ifdef CONFIG_PROVE_LOCKING
997 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
998 #endif
999
1000 static bool check_lock_chain_key(struct lock_chain *chain)
1001 {
1002 #ifdef CONFIG_PROVE_LOCKING
1003         u64 chain_key = INITIAL_CHAIN_KEY;
1004         int i;
1005
1006         for (i = chain->base; i < chain->base + chain->depth; i++)
1007                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1008         /*
1009          * The 'unsigned long long' casts avoid that a compiler warning
1010          * is reported when building tools/lib/lockdep.
1011          */
1012         if (chain->chain_key != chain_key) {
1013                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1014                        (unsigned long long)(chain - lock_chains),
1015                        (unsigned long long)chain->chain_key,
1016                        (unsigned long long)chain_key);
1017                 return false;
1018         }
1019 #endif
1020         return true;
1021 }
1022
1023 static bool in_any_zapped_class_list(struct lock_class *class)
1024 {
1025         struct pending_free *pf;
1026         int i;
1027
1028         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1029                 if (in_list(&class->lock_entry, &pf->zapped))
1030                         return true;
1031         }
1032
1033         return false;
1034 }
1035
1036 static bool __check_data_structures(void)
1037 {
1038         struct lock_class *class;
1039         struct lock_chain *chain;
1040         struct hlist_head *head;
1041         struct lock_list *e;
1042         int i;
1043
1044         /* Check whether all classes occur in a lock list. */
1045         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1046                 class = &lock_classes[i];
1047                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1048                     !in_list(&class->lock_entry, &free_lock_classes) &&
1049                     !in_any_zapped_class_list(class)) {
1050                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1051                                class, class->name ? : "(?)");
1052                         return false;
1053                 }
1054         }
1055
1056         /* Check whether all classes have valid lock lists. */
1057         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1058                 class = &lock_classes[i];
1059                 if (!class_lock_list_valid(class, &class->locks_before))
1060                         return false;
1061                 if (!class_lock_list_valid(class, &class->locks_after))
1062                         return false;
1063         }
1064
1065         /* Check the chain_key of all lock chains. */
1066         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1067                 head = chainhash_table + i;
1068                 hlist_for_each_entry_rcu(chain, head, entry) {
1069                         if (!check_lock_chain_key(chain))
1070                                 return false;
1071                 }
1072         }
1073
1074         /*
1075          * Check whether all list entries that are in use occur in a class
1076          * lock list.
1077          */
1078         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1079                 e = list_entries + i;
1080                 if (!in_any_class_list(&e->entry)) {
1081                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1082                                (unsigned int)(e - list_entries),
1083                                e->class->name ? : "(?)",
1084                                e->links_to->name ? : "(?)");
1085                         return false;
1086                 }
1087         }
1088
1089         /*
1090          * Check whether all list entries that are not in use do not occur in
1091          * a class lock list.
1092          */
1093         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1094                 e = list_entries + i;
1095                 if (in_any_class_list(&e->entry)) {
1096                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1097                                (unsigned int)(e - list_entries),
1098                                e->class && e->class->name ? e->class->name :
1099                                "(?)",
1100                                e->links_to && e->links_to->name ?
1101                                e->links_to->name : "(?)");
1102                         return false;
1103                 }
1104         }
1105
1106         return true;
1107 }
1108
1109 int check_consistency = 0;
1110 module_param(check_consistency, int, 0644);
1111
1112 static void check_data_structures(void)
1113 {
1114         static bool once = false;
1115
1116         if (check_consistency && !once) {
1117                 if (!__check_data_structures()) {
1118                         once = true;
1119                         WARN_ON(once);
1120                 }
1121         }
1122 }
1123
1124 #else /* CONFIG_DEBUG_LOCKDEP */
1125
1126 static inline void check_data_structures(void) { }
1127
1128 #endif /* CONFIG_DEBUG_LOCKDEP */
1129
1130 static void init_chain_block_buckets(void);
1131
1132 /*
1133  * Initialize the lock_classes[] array elements, the free_lock_classes list
1134  * and also the delayed_free structure.
1135  */
1136 static void init_data_structures_once(void)
1137 {
1138         static bool __read_mostly ds_initialized, rcu_head_initialized;
1139         int i;
1140
1141         if (likely(rcu_head_initialized))
1142                 return;
1143
1144         if (system_state >= SYSTEM_SCHEDULING) {
1145                 init_rcu_head(&delayed_free.rcu_head);
1146                 rcu_head_initialized = true;
1147         }
1148
1149         if (ds_initialized)
1150                 return;
1151
1152         ds_initialized = true;
1153
1154         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1155         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1156
1157         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1158                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1159                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1160                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1161         }
1162         init_chain_block_buckets();
1163 }
1164
1165 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1166 {
1167         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1168
1169         return lock_keys_hash + hash;
1170 }
1171
1172 /* Register a dynamically allocated key. */
1173 void lockdep_register_key(struct lock_class_key *key)
1174 {
1175         struct hlist_head *hash_head;
1176         struct lock_class_key *k;
1177         unsigned long flags;
1178
1179         if (WARN_ON_ONCE(static_obj(key)))
1180                 return;
1181         hash_head = keyhashentry(key);
1182
1183         raw_local_irq_save(flags);
1184         if (!graph_lock())
1185                 goto restore_irqs;
1186         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1187                 if (WARN_ON_ONCE(k == key))
1188                         goto out_unlock;
1189         }
1190         hlist_add_head_rcu(&key->hash_entry, hash_head);
1191 out_unlock:
1192         graph_unlock();
1193 restore_irqs:
1194         raw_local_irq_restore(flags);
1195 }
1196 EXPORT_SYMBOL_GPL(lockdep_register_key);
1197
1198 /* Check whether a key has been registered as a dynamic key. */
1199 static bool is_dynamic_key(const struct lock_class_key *key)
1200 {
1201         struct hlist_head *hash_head;
1202         struct lock_class_key *k;
1203         bool found = false;
1204
1205         if (WARN_ON_ONCE(static_obj(key)))
1206                 return false;
1207
1208         /*
1209          * If lock debugging is disabled lock_keys_hash[] may contain
1210          * pointers to memory that has already been freed. Avoid triggering
1211          * a use-after-free in that case by returning early.
1212          */
1213         if (!debug_locks)
1214                 return true;
1215
1216         hash_head = keyhashentry(key);
1217
1218         rcu_read_lock();
1219         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1220                 if (k == key) {
1221                         found = true;
1222                         break;
1223                 }
1224         }
1225         rcu_read_unlock();
1226
1227         return found;
1228 }
1229
1230 /*
1231  * Register a lock's class in the hash-table, if the class is not present
1232  * yet. Otherwise we look it up. We cache the result in the lock object
1233  * itself, so actual lookup of the hash should be once per lock object.
1234  */
1235 static struct lock_class *
1236 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1237 {
1238         struct lockdep_subclass_key *key;
1239         struct hlist_head *hash_head;
1240         struct lock_class *class;
1241         int idx;
1242
1243         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1244
1245         class = look_up_lock_class(lock, subclass);
1246         if (likely(class))
1247                 goto out_set_class_cache;
1248
1249         if (!lock->key) {
1250                 if (!assign_lock_key(lock))
1251                         return NULL;
1252         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1253                 return NULL;
1254         }
1255
1256         key = lock->key->subkeys + subclass;
1257         hash_head = classhashentry(key);
1258
1259         if (!graph_lock()) {
1260                 return NULL;
1261         }
1262         /*
1263          * We have to do the hash-walk again, to avoid races
1264          * with another CPU:
1265          */
1266         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1267                 if (class->key == key)
1268                         goto out_unlock_set;
1269         }
1270
1271         init_data_structures_once();
1272
1273         /* Allocate a new lock class and add it to the hash. */
1274         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1275                                          lock_entry);
1276         if (!class) {
1277                 if (!debug_locks_off_graph_unlock()) {
1278                         return NULL;
1279                 }
1280
1281                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1282                 dump_stack();
1283                 return NULL;
1284         }
1285         nr_lock_classes++;
1286         __set_bit(class - lock_classes, lock_classes_in_use);
1287         debug_atomic_inc(nr_unused_locks);
1288         class->key = key;
1289         class->name = lock->name;
1290         class->subclass = subclass;
1291         WARN_ON_ONCE(!list_empty(&class->locks_before));
1292         WARN_ON_ONCE(!list_empty(&class->locks_after));
1293         class->name_version = count_matching_names(class);
1294         class->wait_type_inner = lock->wait_type_inner;
1295         class->wait_type_outer = lock->wait_type_outer;
1296         class->lock_type = lock->lock_type;
1297         /*
1298          * We use RCU's safe list-add method to make
1299          * parallel walking of the hash-list safe:
1300          */
1301         hlist_add_head_rcu(&class->hash_entry, hash_head);
1302         /*
1303          * Remove the class from the free list and add it to the global list
1304          * of classes.
1305          */
1306         list_move_tail(&class->lock_entry, &all_lock_classes);
1307         idx = class - lock_classes;
1308         if (idx > max_lock_class_idx)
1309                 max_lock_class_idx = idx;
1310
1311         if (verbose(class)) {
1312                 graph_unlock();
1313
1314                 printk("\nnew class %px: %s", class->key, class->name);
1315                 if (class->name_version > 1)
1316                         printk(KERN_CONT "#%d", class->name_version);
1317                 printk(KERN_CONT "\n");
1318                 dump_stack();
1319
1320                 if (!graph_lock()) {
1321                         return NULL;
1322                 }
1323         }
1324 out_unlock_set:
1325         graph_unlock();
1326
1327 out_set_class_cache:
1328         if (!subclass || force)
1329                 lock->class_cache[0] = class;
1330         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1331                 lock->class_cache[subclass] = class;
1332
1333         /*
1334          * Hash collision, did we smoke some? We found a class with a matching
1335          * hash but the subclass -- which is hashed in -- didn't match.
1336          */
1337         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1338                 return NULL;
1339
1340         return class;
1341 }
1342
1343 #ifdef CONFIG_PROVE_LOCKING
1344 /*
1345  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1346  * with NULL on failure)
1347  */
1348 static struct lock_list *alloc_list_entry(void)
1349 {
1350         int idx = find_first_zero_bit(list_entries_in_use,
1351                                       ARRAY_SIZE(list_entries));
1352
1353         if (idx >= ARRAY_SIZE(list_entries)) {
1354                 if (!debug_locks_off_graph_unlock())
1355                         return NULL;
1356
1357                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1358                 dump_stack();
1359                 return NULL;
1360         }
1361         nr_list_entries++;
1362         __set_bit(idx, list_entries_in_use);
1363         return list_entries + idx;
1364 }
1365
1366 /*
1367  * Add a new dependency to the head of the list:
1368  */
1369 static int add_lock_to_list(struct lock_class *this,
1370                             struct lock_class *links_to, struct list_head *head,
1371                             u16 distance, u8 dep,
1372                             const struct lock_trace *trace)
1373 {
1374         struct lock_list *entry;
1375         /*
1376          * Lock not present yet - get a new dependency struct and
1377          * add it to the list:
1378          */
1379         entry = alloc_list_entry();
1380         if (!entry)
1381                 return 0;
1382
1383         entry->class = this;
1384         entry->links_to = links_to;
1385         entry->dep = dep;
1386         entry->distance = distance;
1387         entry->trace = trace;
1388         /*
1389          * Both allocation and removal are done under the graph lock; but
1390          * iteration is under RCU-sched; see look_up_lock_class() and
1391          * lockdep_free_key_range().
1392          */
1393         list_add_tail_rcu(&entry->entry, head);
1394
1395         return 1;
1396 }
1397
1398 /*
1399  * For good efficiency of modular, we use power of 2
1400  */
1401 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1402 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1403
1404 /*
1405  * The circular_queue and helpers are used to implement graph
1406  * breadth-first search (BFS) algorithm, by which we can determine
1407  * whether there is a path from a lock to another. In deadlock checks,
1408  * a path from the next lock to be acquired to a previous held lock
1409  * indicates that adding the <prev> -> <next> lock dependency will
1410  * produce a circle in the graph. Breadth-first search instead of
1411  * depth-first search is used in order to find the shortest (circular)
1412  * path.
1413  */
1414 struct circular_queue {
1415         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1416         unsigned int  front, rear;
1417 };
1418
1419 static struct circular_queue lock_cq;
1420
1421 unsigned int max_bfs_queue_depth;
1422
1423 static unsigned int lockdep_dependency_gen_id;
1424
1425 static inline void __cq_init(struct circular_queue *cq)
1426 {
1427         cq->front = cq->rear = 0;
1428         lockdep_dependency_gen_id++;
1429 }
1430
1431 static inline int __cq_empty(struct circular_queue *cq)
1432 {
1433         return (cq->front == cq->rear);
1434 }
1435
1436 static inline int __cq_full(struct circular_queue *cq)
1437 {
1438         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1439 }
1440
1441 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1442 {
1443         if (__cq_full(cq))
1444                 return -1;
1445
1446         cq->element[cq->rear] = elem;
1447         cq->rear = (cq->rear + 1) & CQ_MASK;
1448         return 0;
1449 }
1450
1451 /*
1452  * Dequeue an element from the circular_queue, return a lock_list if
1453  * the queue is not empty, or NULL if otherwise.
1454  */
1455 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1456 {
1457         struct lock_list * lock;
1458
1459         if (__cq_empty(cq))
1460                 return NULL;
1461
1462         lock = cq->element[cq->front];
1463         cq->front = (cq->front + 1) & CQ_MASK;
1464
1465         return lock;
1466 }
1467
1468 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1469 {
1470         return (cq->rear - cq->front) & CQ_MASK;
1471 }
1472
1473 static inline void mark_lock_accessed(struct lock_list *lock)
1474 {
1475         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1476 }
1477
1478 static inline void visit_lock_entry(struct lock_list *lock,
1479                                     struct lock_list *parent)
1480 {
1481         lock->parent = parent;
1482 }
1483
1484 static inline unsigned long lock_accessed(struct lock_list *lock)
1485 {
1486         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1487 }
1488
1489 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1490 {
1491         return child->parent;
1492 }
1493
1494 static inline int get_lock_depth(struct lock_list *child)
1495 {
1496         int depth = 0;
1497         struct lock_list *parent;
1498
1499         while ((parent = get_lock_parent(child))) {
1500                 child = parent;
1501                 depth++;
1502         }
1503         return depth;
1504 }
1505
1506 /*
1507  * Return the forward or backward dependency list.
1508  *
1509  * @lock:   the lock_list to get its class's dependency list
1510  * @offset: the offset to struct lock_class to determine whether it is
1511  *          locks_after or locks_before
1512  */
1513 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1514 {
1515         void *lock_class = lock->class;
1516
1517         return lock_class + offset;
1518 }
1519 /*
1520  * Return values of a bfs search:
1521  *
1522  * BFS_E* indicates an error
1523  * BFS_R* indicates a result (match or not)
1524  *
1525  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1526  *
1527  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1528  *
1529  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1530  *             *@target_entry.
1531  *
1532  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1533  *               _unchanged_.
1534  */
1535 enum bfs_result {
1536         BFS_EINVALIDNODE = -2,
1537         BFS_EQUEUEFULL = -1,
1538         BFS_RMATCH = 0,
1539         BFS_RNOMATCH = 1,
1540 };
1541
1542 /*
1543  * bfs_result < 0 means error
1544  */
1545 static inline bool bfs_error(enum bfs_result res)
1546 {
1547         return res < 0;
1548 }
1549
1550 /*
1551  * DEP_*_BIT in lock_list::dep
1552  *
1553  * For dependency @prev -> @next:
1554  *
1555  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1556  *       (->read == 2)
1557  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1558  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1559  *   EN: @prev is exclusive locker and @next is non-recursive locker
1560  *
1561  * Note that we define the value of DEP_*_BITs so that:
1562  *   bit0 is prev->read == 0
1563  *   bit1 is next->read != 2
1564  */
1565 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1566 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1567 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1568 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1569
1570 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1571 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1572 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1573 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1574
1575 static inline unsigned int
1576 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1577 {
1578         return (prev->read == 0) + ((next->read != 2) << 1);
1579 }
1580
1581 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1582 {
1583         return 1U << __calc_dep_bit(prev, next);
1584 }
1585
1586 /*
1587  * calculate the dep_bit for backwards edges. We care about whether @prev is
1588  * shared and whether @next is recursive.
1589  */
1590 static inline unsigned int
1591 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1592 {
1593         return (next->read != 2) + ((prev->read == 0) << 1);
1594 }
1595
1596 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1597 {
1598         return 1U << __calc_dep_bitb(prev, next);
1599 }
1600
1601 /*
1602  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1603  * search.
1604  */
1605 static inline void __bfs_init_root(struct lock_list *lock,
1606                                    struct lock_class *class)
1607 {
1608         lock->class = class;
1609         lock->parent = NULL;
1610         lock->only_xr = 0;
1611 }
1612
1613 /*
1614  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1615  * root for a BFS search.
1616  *
1617  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1618  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1619  * and -(S*)->.
1620  */
1621 static inline void bfs_init_root(struct lock_list *lock,
1622                                  struct held_lock *hlock)
1623 {
1624         __bfs_init_root(lock, hlock_class(hlock));
1625         lock->only_xr = (hlock->read == 2);
1626 }
1627
1628 /*
1629  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1630  *
1631  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1632  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1633  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1634  */
1635 static inline void bfs_init_rootb(struct lock_list *lock,
1636                                   struct held_lock *hlock)
1637 {
1638         __bfs_init_root(lock, hlock_class(hlock));
1639         lock->only_xr = (hlock->read != 0);
1640 }
1641
1642 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1643 {
1644         if (!lock || !lock->parent)
1645                 return NULL;
1646
1647         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1648                                      &lock->entry, struct lock_list, entry);
1649 }
1650
1651 /*
1652  * Breadth-First Search to find a strong path in the dependency graph.
1653  *
1654  * @source_entry: the source of the path we are searching for.
1655  * @data: data used for the second parameter of @match function
1656  * @match: match function for the search
1657  * @target_entry: pointer to the target of a matched path
1658  * @offset: the offset to struct lock_class to determine whether it is
1659  *          locks_after or locks_before
1660  *
1661  * We may have multiple edges (considering different kinds of dependencies,
1662  * e.g. ER and SN) between two nodes in the dependency graph. But
1663  * only the strong dependency path in the graph is relevant to deadlocks. A
1664  * strong dependency path is a dependency path that doesn't have two adjacent
1665  * dependencies as -(*R)-> -(S*)->, please see:
1666  *
1667  *         Documentation/locking/lockdep-design.rst
1668  *
1669  * for more explanation of the definition of strong dependency paths
1670  *
1671  * In __bfs(), we only traverse in the strong dependency path:
1672  *
1673  *     In lock_list::only_xr, we record whether the previous dependency only
1674  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1675  *     filter out any -(S*)-> in the current dependency and after that, the
1676  *     ->only_xr is set according to whether we only have -(*R)-> left.
1677  */
1678 static enum bfs_result __bfs(struct lock_list *source_entry,
1679                              void *data,
1680                              bool (*match)(struct lock_list *entry, void *data),
1681                              bool (*skip)(struct lock_list *entry, void *data),
1682                              struct lock_list **target_entry,
1683                              int offset)
1684 {
1685         struct circular_queue *cq = &lock_cq;
1686         struct lock_list *lock = NULL;
1687         struct lock_list *entry;
1688         struct list_head *head;
1689         unsigned int cq_depth;
1690         bool first;
1691
1692         lockdep_assert_locked();
1693
1694         __cq_init(cq);
1695         __cq_enqueue(cq, source_entry);
1696
1697         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1698                 if (!lock->class)
1699                         return BFS_EINVALIDNODE;
1700
1701                 /*
1702                  * Step 1: check whether we already finish on this one.
1703                  *
1704                  * If we have visited all the dependencies from this @lock to
1705                  * others (iow, if we have visited all lock_list entries in
1706                  * @lock->class->locks_{after,before}) we skip, otherwise go
1707                  * and visit all the dependencies in the list and mark this
1708                  * list accessed.
1709                  */
1710                 if (lock_accessed(lock))
1711                         continue;
1712                 else
1713                         mark_lock_accessed(lock);
1714
1715                 /*
1716                  * Step 2: check whether prev dependency and this form a strong
1717                  *         dependency path.
1718                  */
1719                 if (lock->parent) { /* Parent exists, check prev dependency */
1720                         u8 dep = lock->dep;
1721                         bool prev_only_xr = lock->parent->only_xr;
1722
1723                         /*
1724                          * Mask out all -(S*)-> if we only have *R in previous
1725                          * step, because -(*R)-> -(S*)-> don't make up a strong
1726                          * dependency.
1727                          */
1728                         if (prev_only_xr)
1729                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1730
1731                         /* If nothing left, we skip */
1732                         if (!dep)
1733                                 continue;
1734
1735                         /* If there are only -(*R)-> left, set that for the next step */
1736                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1737                 }
1738
1739                 /*
1740                  * Step 3: we haven't visited this and there is a strong
1741                  *         dependency path to this, so check with @match.
1742                  *         If @skip is provide and returns true, we skip this
1743                  *         lock (and any path this lock is in).
1744                  */
1745                 if (skip && skip(lock, data))
1746                         continue;
1747
1748                 if (match(lock, data)) {
1749                         *target_entry = lock;
1750                         return BFS_RMATCH;
1751                 }
1752
1753                 /*
1754                  * Step 4: if not match, expand the path by adding the
1755                  *         forward or backwards dependencies in the search
1756                  *
1757                  */
1758                 first = true;
1759                 head = get_dep_list(lock, offset);
1760                 list_for_each_entry_rcu(entry, head, entry) {
1761                         visit_lock_entry(entry, lock);
1762
1763                         /*
1764                          * Note we only enqueue the first of the list into the
1765                          * queue, because we can always find a sibling
1766                          * dependency from one (see __bfs_next()), as a result
1767                          * the space of queue is saved.
1768                          */
1769                         if (!first)
1770                                 continue;
1771
1772                         first = false;
1773
1774                         if (__cq_enqueue(cq, entry))
1775                                 return BFS_EQUEUEFULL;
1776
1777                         cq_depth = __cq_get_elem_count(cq);
1778                         if (max_bfs_queue_depth < cq_depth)
1779                                 max_bfs_queue_depth = cq_depth;
1780                 }
1781         }
1782
1783         return BFS_RNOMATCH;
1784 }
1785
1786 static inline enum bfs_result
1787 __bfs_forwards(struct lock_list *src_entry,
1788                void *data,
1789                bool (*match)(struct lock_list *entry, void *data),
1790                bool (*skip)(struct lock_list *entry, void *data),
1791                struct lock_list **target_entry)
1792 {
1793         return __bfs(src_entry, data, match, skip, target_entry,
1794                      offsetof(struct lock_class, locks_after));
1795
1796 }
1797
1798 static inline enum bfs_result
1799 __bfs_backwards(struct lock_list *src_entry,
1800                 void *data,
1801                 bool (*match)(struct lock_list *entry, void *data),
1802                bool (*skip)(struct lock_list *entry, void *data),
1803                 struct lock_list **target_entry)
1804 {
1805         return __bfs(src_entry, data, match, skip, target_entry,
1806                      offsetof(struct lock_class, locks_before));
1807
1808 }
1809
1810 static void print_lock_trace(const struct lock_trace *trace,
1811                              unsigned int spaces)
1812 {
1813         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1814 }
1815
1816 /*
1817  * Print a dependency chain entry (this is only done when a deadlock
1818  * has been detected):
1819  */
1820 static noinline void
1821 print_circular_bug_entry(struct lock_list *target, int depth)
1822 {
1823         if (debug_locks_silent)
1824                 return;
1825         printk("\n-> #%u", depth);
1826         print_lock_name(target->class);
1827         printk(KERN_CONT ":\n");
1828         print_lock_trace(target->trace, 6);
1829 }
1830
1831 static void
1832 print_circular_lock_scenario(struct held_lock *src,
1833                              struct held_lock *tgt,
1834                              struct lock_list *prt)
1835 {
1836         struct lock_class *source = hlock_class(src);
1837         struct lock_class *target = hlock_class(tgt);
1838         struct lock_class *parent = prt->class;
1839
1840         /*
1841          * A direct locking problem where unsafe_class lock is taken
1842          * directly by safe_class lock, then all we need to show
1843          * is the deadlock scenario, as it is obvious that the
1844          * unsafe lock is taken under the safe lock.
1845          *
1846          * But if there is a chain instead, where the safe lock takes
1847          * an intermediate lock (middle_class) where this lock is
1848          * not the same as the safe lock, then the lock chain is
1849          * used to describe the problem. Otherwise we would need
1850          * to show a different CPU case for each link in the chain
1851          * from the safe_class lock to the unsafe_class lock.
1852          */
1853         if (parent != source) {
1854                 printk("Chain exists of:\n  ");
1855                 __print_lock_name(source);
1856                 printk(KERN_CONT " --> ");
1857                 __print_lock_name(parent);
1858                 printk(KERN_CONT " --> ");
1859                 __print_lock_name(target);
1860                 printk(KERN_CONT "\n\n");
1861         }
1862
1863         printk(" Possible unsafe locking scenario:\n\n");
1864         printk("       CPU0                    CPU1\n");
1865         printk("       ----                    ----\n");
1866         printk("  lock(");
1867         __print_lock_name(target);
1868         printk(KERN_CONT ");\n");
1869         printk("                               lock(");
1870         __print_lock_name(parent);
1871         printk(KERN_CONT ");\n");
1872         printk("                               lock(");
1873         __print_lock_name(target);
1874         printk(KERN_CONT ");\n");
1875         printk("  lock(");
1876         __print_lock_name(source);
1877         printk(KERN_CONT ");\n");
1878         printk("\n *** DEADLOCK ***\n\n");
1879 }
1880
1881 /*
1882  * When a circular dependency is detected, print the
1883  * header first:
1884  */
1885 static noinline void
1886 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1887                         struct held_lock *check_src,
1888                         struct held_lock *check_tgt)
1889 {
1890         struct task_struct *curr = current;
1891
1892         if (debug_locks_silent)
1893                 return;
1894
1895         pr_warn("\n");
1896         pr_warn("======================================================\n");
1897         pr_warn("WARNING: possible circular locking dependency detected\n");
1898         print_kernel_ident();
1899         pr_warn("------------------------------------------------------\n");
1900         pr_warn("%s/%d is trying to acquire lock:\n",
1901                 curr->comm, task_pid_nr(curr));
1902         print_lock(check_src);
1903
1904         pr_warn("\nbut task is already holding lock:\n");
1905
1906         print_lock(check_tgt);
1907         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1908         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1909
1910         print_circular_bug_entry(entry, depth);
1911 }
1912
1913 /*
1914  * We are about to add A -> B into the dependency graph, and in __bfs() a
1915  * strong dependency path A -> .. -> B is found: hlock_class equals
1916  * entry->class.
1917  *
1918  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1919  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1920  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1921  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1922  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1923  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1924  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1925  *
1926  * We need to make sure both the start and the end of A -> .. -> B is not
1927  * weaker than A -> B. For the start part, please see the comment in
1928  * check_redundant(). For the end part, we need:
1929  *
1930  * Either
1931  *
1932  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1933  *
1934  * or
1935  *
1936  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1937  *
1938  */
1939 static inline bool hlock_equal(struct lock_list *entry, void *data)
1940 {
1941         struct held_lock *hlock = (struct held_lock *)data;
1942
1943         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1944                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1945                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1946 }
1947
1948 /*
1949  * We are about to add B -> A into the dependency graph, and in __bfs() a
1950  * strong dependency path A -> .. -> B is found: hlock_class equals
1951  * entry->class.
1952  *
1953  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1954  * dependency cycle, that means:
1955  *
1956  * Either
1957  *
1958  *     a) B -> A is -(E*)->
1959  *
1960  * or
1961  *
1962  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1963  *
1964  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1965  */
1966 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1967 {
1968         struct held_lock *hlock = (struct held_lock *)data;
1969
1970         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1971                (hlock->read == 0 || /* B -> A is -(E*)-> */
1972                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1973 }
1974
1975 static noinline void print_circular_bug(struct lock_list *this,
1976                                 struct lock_list *target,
1977                                 struct held_lock *check_src,
1978                                 struct held_lock *check_tgt)
1979 {
1980         struct task_struct *curr = current;
1981         struct lock_list *parent;
1982         struct lock_list *first_parent;
1983         int depth;
1984
1985         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1986                 return;
1987
1988         this->trace = save_trace();
1989         if (!this->trace)
1990                 return;
1991
1992         depth = get_lock_depth(target);
1993
1994         print_circular_bug_header(target, depth, check_src, check_tgt);
1995
1996         parent = get_lock_parent(target);
1997         first_parent = parent;
1998
1999         while (parent) {
2000                 print_circular_bug_entry(parent, --depth);
2001                 parent = get_lock_parent(parent);
2002         }
2003
2004         printk("\nother info that might help us debug this:\n\n");
2005         print_circular_lock_scenario(check_src, check_tgt,
2006                                      first_parent);
2007
2008         lockdep_print_held_locks(curr);
2009
2010         printk("\nstack backtrace:\n");
2011         dump_stack();
2012 }
2013
2014 static noinline void print_bfs_bug(int ret)
2015 {
2016         if (!debug_locks_off_graph_unlock())
2017                 return;
2018
2019         /*
2020          * Breadth-first-search failed, graph got corrupted?
2021          */
2022         WARN(1, "lockdep bfs error:%d\n", ret);
2023 }
2024
2025 static bool noop_count(struct lock_list *entry, void *data)
2026 {
2027         (*(unsigned long *)data)++;
2028         return false;
2029 }
2030
2031 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2032 {
2033         unsigned long  count = 0;
2034         struct lock_list *target_entry;
2035
2036         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2037
2038         return count;
2039 }
2040 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2041 {
2042         unsigned long ret, flags;
2043         struct lock_list this;
2044
2045         __bfs_init_root(&this, class);
2046
2047         raw_local_irq_save(flags);
2048         lockdep_lock();
2049         ret = __lockdep_count_forward_deps(&this);
2050         lockdep_unlock();
2051         raw_local_irq_restore(flags);
2052
2053         return ret;
2054 }
2055
2056 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2057 {
2058         unsigned long  count = 0;
2059         struct lock_list *target_entry;
2060
2061         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2062
2063         return count;
2064 }
2065
2066 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2067 {
2068         unsigned long ret, flags;
2069         struct lock_list this;
2070
2071         __bfs_init_root(&this, class);
2072
2073         raw_local_irq_save(flags);
2074         lockdep_lock();
2075         ret = __lockdep_count_backward_deps(&this);
2076         lockdep_unlock();
2077         raw_local_irq_restore(flags);
2078
2079         return ret;
2080 }
2081
2082 /*
2083  * Check that the dependency graph starting at <src> can lead to
2084  * <target> or not.
2085  */
2086 static noinline enum bfs_result
2087 check_path(struct held_lock *target, struct lock_list *src_entry,
2088            bool (*match)(struct lock_list *entry, void *data),
2089            bool (*skip)(struct lock_list *entry, void *data),
2090            struct lock_list **target_entry)
2091 {
2092         enum bfs_result ret;
2093
2094         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2095
2096         if (unlikely(bfs_error(ret)))
2097                 print_bfs_bug(ret);
2098
2099         return ret;
2100 }
2101
2102 /*
2103  * Prove that the dependency graph starting at <src> can not
2104  * lead to <target>. If it can, there is a circle when adding
2105  * <target> -> <src> dependency.
2106  *
2107  * Print an error and return BFS_RMATCH if it does.
2108  */
2109 static noinline enum bfs_result
2110 check_noncircular(struct held_lock *src, struct held_lock *target,
2111                   struct lock_trace **const trace)
2112 {
2113         enum bfs_result ret;
2114         struct lock_list *target_entry;
2115         struct lock_list src_entry;
2116
2117         bfs_init_root(&src_entry, src);
2118
2119         debug_atomic_inc(nr_cyclic_checks);
2120
2121         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2122
2123         if (unlikely(ret == BFS_RMATCH)) {
2124                 if (!*trace) {
2125                         /*
2126                          * If save_trace fails here, the printing might
2127                          * trigger a WARN but because of the !nr_entries it
2128                          * should not do bad things.
2129                          */
2130                         *trace = save_trace();
2131                 }
2132
2133                 print_circular_bug(&src_entry, target_entry, src, target);
2134         }
2135
2136         return ret;
2137 }
2138
2139 #ifdef CONFIG_TRACE_IRQFLAGS
2140
2141 /*
2142  * Forwards and backwards subgraph searching, for the purposes of
2143  * proving that two subgraphs can be connected by a new dependency
2144  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2145  *
2146  * A irq safe->unsafe deadlock happens with the following conditions:
2147  *
2148  * 1) We have a strong dependency path A -> ... -> B
2149  *
2150  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2151  *    irq can create a new dependency B -> A (consider the case that a holder
2152  *    of B gets interrupted by an irq whose handler will try to acquire A).
2153  *
2154  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2155  *    strong circle:
2156  *
2157  *      For the usage bits of B:
2158  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2159  *           ENABLED_IRQ usage suffices.
2160  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2161  *           ENABLED_IRQ_*_READ usage suffices.
2162  *
2163  *      For the usage bits of A:
2164  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2165  *           USED_IN_IRQ usage suffices.
2166  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2167  *           USED_IN_IRQ_*_READ usage suffices.
2168  */
2169
2170 /*
2171  * There is a strong dependency path in the dependency graph: A -> B, and now
2172  * we need to decide which usage bit of A should be accumulated to detect
2173  * safe->unsafe bugs.
2174  *
2175  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2176  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2177  *
2178  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2179  * path, any usage of A should be considered. Otherwise, we should only
2180  * consider _READ usage.
2181  */
2182 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2183 {
2184         if (!entry->only_xr)
2185                 *(unsigned long *)mask |= entry->class->usage_mask;
2186         else /* Mask out _READ usage bits */
2187                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2188
2189         return false;
2190 }
2191
2192 /*
2193  * There is a strong dependency path in the dependency graph: A -> B, and now
2194  * we need to decide which usage bit of B conflicts with the usage bits of A,
2195  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2196  *
2197  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2198  * path, any usage of B should be considered. Otherwise, we should only
2199  * consider _READ usage.
2200  */
2201 static inline bool usage_match(struct lock_list *entry, void *mask)
2202 {
2203         if (!entry->only_xr)
2204                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2205         else /* Mask out _READ usage bits */
2206                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2207 }
2208
2209 static inline bool usage_skip(struct lock_list *entry, void *mask)
2210 {
2211         /*
2212          * Skip local_lock() for irq inversion detection.
2213          *
2214          * For !RT, local_lock() is not a real lock, so it won't carry any
2215          * dependency.
2216          *
2217          * For RT, an irq inversion happens when we have lock A and B, and on
2218          * some CPU we can have:
2219          *
2220          *      lock(A);
2221          *      <interrupted>
2222          *        lock(B);
2223          *
2224          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2225          *
2226          * Now we prove local_lock() cannot exist in that dependency. First we
2227          * have the observation for any lock chain L1 -> ... -> Ln, for any
2228          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2229          * wait context check will complain. And since B is not a sleep lock,
2230          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2231          * local_lock() is 3, which is greater than 2, therefore there is no
2232          * way the local_lock() exists in the dependency B -> ... -> A.
2233          *
2234          * As a result, we will skip local_lock(), when we search for irq
2235          * inversion bugs.
2236          */
2237         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2238                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2239                         return false;
2240
2241                 return true;
2242         }
2243
2244         return false;
2245 }
2246
2247 /*
2248  * Find a node in the forwards-direction dependency sub-graph starting
2249  * at @root->class that matches @bit.
2250  *
2251  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2252  * into *@target_entry.
2253  */
2254 static enum bfs_result
2255 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2256                         struct lock_list **target_entry)
2257 {
2258         enum bfs_result result;
2259
2260         debug_atomic_inc(nr_find_usage_forwards_checks);
2261
2262         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2263
2264         return result;
2265 }
2266
2267 /*
2268  * Find a node in the backwards-direction dependency sub-graph starting
2269  * at @root->class that matches @bit.
2270  */
2271 static enum bfs_result
2272 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2273                         struct lock_list **target_entry)
2274 {
2275         enum bfs_result result;
2276
2277         debug_atomic_inc(nr_find_usage_backwards_checks);
2278
2279         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2280
2281         return result;
2282 }
2283
2284 static void print_lock_class_header(struct lock_class *class, int depth)
2285 {
2286         int bit;
2287
2288         printk("%*s->", depth, "");
2289         print_lock_name(class);
2290 #ifdef CONFIG_DEBUG_LOCKDEP
2291         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2292 #endif
2293         printk(KERN_CONT " {\n");
2294
2295         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2296                 if (class->usage_mask & (1 << bit)) {
2297                         int len = depth;
2298
2299                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2300                         len += printk(KERN_CONT " at:\n");
2301                         print_lock_trace(class->usage_traces[bit], len);
2302                 }
2303         }
2304         printk("%*s }\n", depth, "");
2305
2306         printk("%*s ... key      at: [<%px>] %pS\n",
2307                 depth, "", class->key, class->key);
2308 }
2309
2310 /*
2311  * Dependency path printing:
2312  *
2313  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2314  * printing out each lock in the dependency path will help on understanding how
2315  * the deadlock could happen. Here are some details about dependency path
2316  * printing:
2317  *
2318  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2319  *      for a lock dependency A -> B, there are two lock_lists:
2320  *
2321  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2322  *              ->links_to is A. In this case, we can say the lock_list is
2323  *              "A -> B" (forwards case).
2324  *
2325  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2326  *              and ->links_to is B. In this case, we can say the lock_list is
2327  *              "B <- A" (bacwards case).
2328  *
2329  *      The ->trace of both a) and b) point to the call trace where B was
2330  *      acquired with A held.
2331  *
2332  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2333  *      represent a certain lock dependency, it only provides an initial entry
2334  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2335  *      ->class is A, as a result BFS will search all dependencies starting with
2336  *      A, e.g. A -> B or A -> C.
2337  *
2338  *      The notation of a forwards helper lock_list is like "-> A", which means
2339  *      we should search the forwards dependencies starting with "A", e.g A -> B
2340  *      or A -> C.
2341  *
2342  *      The notation of a bacwards helper lock_list is like "<- B", which means
2343  *      we should search the backwards dependencies ending with "B", e.g.
2344  *      B <- A or B <- C.
2345  */
2346
2347 /*
2348  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2349  *
2350  * We have a lock dependency path as follow:
2351  *
2352  *    @root                                                                 @leaf
2353  *      |                                                                     |
2354  *      V                                                                     V
2355  *                ->parent                                   ->parent
2356  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2357  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2358  *
2359  * , so it's natural that we start from @leaf and print every ->class and
2360  * ->trace until we reach the @root.
2361  */
2362 static void __used
2363 print_shortest_lock_dependencies(struct lock_list *leaf,
2364                                  struct lock_list *root)
2365 {
2366         struct lock_list *entry = leaf;
2367         int depth;
2368
2369         /*compute depth from generated tree by BFS*/
2370         depth = get_lock_depth(leaf);
2371
2372         do {
2373                 print_lock_class_header(entry->class, depth);
2374                 printk("%*s ... acquired at:\n", depth, "");
2375                 print_lock_trace(entry->trace, 2);
2376                 printk("\n");
2377
2378                 if (depth == 0 && (entry != root)) {
2379                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2380                         break;
2381                 }
2382
2383                 entry = get_lock_parent(entry);
2384                 depth--;
2385         } while (entry && (depth >= 0));
2386 }
2387
2388 /*
2389  * printk the shortest lock dependencies from @leaf to @root.
2390  *
2391  * We have a lock dependency path (from a backwards search) as follow:
2392  *
2393  *    @leaf                                                                 @root
2394  *      |                                                                     |
2395  *      V                                                                     V
2396  *                ->parent                                   ->parent
2397  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2398  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2399  *
2400  * , so when we iterate from @leaf to @root, we actually print the lock
2401  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2402  *
2403  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2404  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2405  * trace of L1 in the dependency path, which is alright, because most of the
2406  * time we can figure out where L1 is held from the call trace of L2.
2407  */
2408 static void __used
2409 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2410                                            struct lock_list *root)
2411 {
2412         struct lock_list *entry = leaf;
2413         const struct lock_trace *trace = NULL;
2414         int depth;
2415
2416         /*compute depth from generated tree by BFS*/
2417         depth = get_lock_depth(leaf);
2418
2419         do {
2420                 print_lock_class_header(entry->class, depth);
2421                 if (trace) {
2422                         printk("%*s ... acquired at:\n", depth, "");
2423                         print_lock_trace(trace, 2);
2424                         printk("\n");
2425                 }
2426
2427                 /*
2428                  * Record the pointer to the trace for the next lock_list
2429                  * entry, see the comments for the function.
2430                  */
2431                 trace = entry->trace;
2432
2433                 if (depth == 0 && (entry != root)) {
2434                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2435                         break;
2436                 }
2437
2438                 entry = get_lock_parent(entry);
2439                 depth--;
2440         } while (entry && (depth >= 0));
2441 }
2442
2443 static void
2444 print_irq_lock_scenario(struct lock_list *safe_entry,
2445                         struct lock_list *unsafe_entry,
2446                         struct lock_class *prev_class,
2447                         struct lock_class *next_class)
2448 {
2449         struct lock_class *safe_class = safe_entry->class;
2450         struct lock_class *unsafe_class = unsafe_entry->class;
2451         struct lock_class *middle_class = prev_class;
2452
2453         if (middle_class == safe_class)
2454                 middle_class = next_class;
2455
2456         /*
2457          * A direct locking problem where unsafe_class lock is taken
2458          * directly by safe_class lock, then all we need to show
2459          * is the deadlock scenario, as it is obvious that the
2460          * unsafe lock is taken under the safe lock.
2461          *
2462          * But if there is a chain instead, where the safe lock takes
2463          * an intermediate lock (middle_class) where this lock is
2464          * not the same as the safe lock, then the lock chain is
2465          * used to describe the problem. Otherwise we would need
2466          * to show a different CPU case for each link in the chain
2467          * from the safe_class lock to the unsafe_class lock.
2468          */
2469         if (middle_class != unsafe_class) {
2470                 printk("Chain exists of:\n  ");
2471                 __print_lock_name(safe_class);
2472                 printk(KERN_CONT " --> ");
2473                 __print_lock_name(middle_class);
2474                 printk(KERN_CONT " --> ");
2475                 __print_lock_name(unsafe_class);
2476                 printk(KERN_CONT "\n\n");
2477         }
2478
2479         printk(" Possible interrupt unsafe locking scenario:\n\n");
2480         printk("       CPU0                    CPU1\n");
2481         printk("       ----                    ----\n");
2482         printk("  lock(");
2483         __print_lock_name(unsafe_class);
2484         printk(KERN_CONT ");\n");
2485         printk("                               local_irq_disable();\n");
2486         printk("                               lock(");
2487         __print_lock_name(safe_class);
2488         printk(KERN_CONT ");\n");
2489         printk("                               lock(");
2490         __print_lock_name(middle_class);
2491         printk(KERN_CONT ");\n");
2492         printk("  <Interrupt>\n");
2493         printk("    lock(");
2494         __print_lock_name(safe_class);
2495         printk(KERN_CONT ");\n");
2496         printk("\n *** DEADLOCK ***\n\n");
2497 }
2498
2499 static void
2500 print_bad_irq_dependency(struct task_struct *curr,
2501                          struct lock_list *prev_root,
2502                          struct lock_list *next_root,
2503                          struct lock_list *backwards_entry,
2504                          struct lock_list *forwards_entry,
2505                          struct held_lock *prev,
2506                          struct held_lock *next,
2507                          enum lock_usage_bit bit1,
2508                          enum lock_usage_bit bit2,
2509                          const char *irqclass)
2510 {
2511         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2512                 return;
2513
2514         pr_warn("\n");
2515         pr_warn("=====================================================\n");
2516         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2517                 irqclass, irqclass);
2518         print_kernel_ident();
2519         pr_warn("-----------------------------------------------------\n");
2520         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2521                 curr->comm, task_pid_nr(curr),
2522                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2523                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2524                 lockdep_hardirqs_enabled(),
2525                 curr->softirqs_enabled);
2526         print_lock(next);
2527
2528         pr_warn("\nand this task is already holding:\n");
2529         print_lock(prev);
2530         pr_warn("which would create a new lock dependency:\n");
2531         print_lock_name(hlock_class(prev));
2532         pr_cont(" ->");
2533         print_lock_name(hlock_class(next));
2534         pr_cont("\n");
2535
2536         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2537                 irqclass);
2538         print_lock_name(backwards_entry->class);
2539         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2540
2541         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2542
2543         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2544         print_lock_name(forwards_entry->class);
2545         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2546         pr_warn("...");
2547
2548         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2549
2550         pr_warn("\nother info that might help us debug this:\n\n");
2551         print_irq_lock_scenario(backwards_entry, forwards_entry,
2552                                 hlock_class(prev), hlock_class(next));
2553
2554         lockdep_print_held_locks(curr);
2555
2556         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2557         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2558
2559         pr_warn("\nthe dependencies between the lock to be acquired");
2560         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2561         next_root->trace = save_trace();
2562         if (!next_root->trace)
2563                 return;
2564         print_shortest_lock_dependencies(forwards_entry, next_root);
2565
2566         pr_warn("\nstack backtrace:\n");
2567         dump_stack();
2568 }
2569
2570 static const char *state_names[] = {
2571 #define LOCKDEP_STATE(__STATE) \
2572         __stringify(__STATE),
2573 #include "lockdep_states.h"
2574 #undef LOCKDEP_STATE
2575 };
2576
2577 static const char *state_rnames[] = {
2578 #define LOCKDEP_STATE(__STATE) \
2579         __stringify(__STATE)"-READ",
2580 #include "lockdep_states.h"
2581 #undef LOCKDEP_STATE
2582 };
2583
2584 static inline const char *state_name(enum lock_usage_bit bit)
2585 {
2586         if (bit & LOCK_USAGE_READ_MASK)
2587                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2588         else
2589                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2590 }
2591
2592 /*
2593  * The bit number is encoded like:
2594  *
2595  *  bit0: 0 exclusive, 1 read lock
2596  *  bit1: 0 used in irq, 1 irq enabled
2597  *  bit2-n: state
2598  */
2599 static int exclusive_bit(int new_bit)
2600 {
2601         int state = new_bit & LOCK_USAGE_STATE_MASK;
2602         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2603
2604         /*
2605          * keep state, bit flip the direction and strip read.
2606          */
2607         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2608 }
2609
2610 /*
2611  * Observe that when given a bitmask where each bitnr is encoded as above, a
2612  * right shift of the mask transforms the individual bitnrs as -1 and
2613  * conversely, a left shift transforms into +1 for the individual bitnrs.
2614  *
2615  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2616  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2617  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2618  *
2619  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2620  *
2621  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2622  * all bits set) and recompose with bitnr1 flipped.
2623  */
2624 static unsigned long invert_dir_mask(unsigned long mask)
2625 {
2626         unsigned long excl = 0;
2627
2628         /* Invert dir */
2629         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2630         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2631
2632         return excl;
2633 }
2634
2635 /*
2636  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2637  * usage may cause deadlock too, for example:
2638  *
2639  * P1                           P2
2640  * <irq disabled>
2641  * write_lock(l1);              <irq enabled>
2642  *                              read_lock(l2);
2643  * write_lock(l2);
2644  *                              <in irq>
2645  *                              read_lock(l1);
2646  *
2647  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2648  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2649  * deadlock.
2650  *
2651  * In fact, all of the following cases may cause deadlocks:
2652  *
2653  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2654  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2655  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2656  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2657  *
2658  * As a result, to calculate the "exclusive mask", first we invert the
2659  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2660  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2661  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2662  */
2663 static unsigned long exclusive_mask(unsigned long mask)
2664 {
2665         unsigned long excl = invert_dir_mask(mask);
2666
2667         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2668         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2669
2670         return excl;
2671 }
2672
2673 /*
2674  * Retrieve the _possible_ original mask to which @mask is
2675  * exclusive. Ie: this is the opposite of exclusive_mask().
2676  * Note that 2 possible original bits can match an exclusive
2677  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2678  * cleared. So both are returned for each exclusive bit.
2679  */
2680 static unsigned long original_mask(unsigned long mask)
2681 {
2682         unsigned long excl = invert_dir_mask(mask);
2683
2684         /* Include read in existing usages */
2685         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2686         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2687
2688         return excl;
2689 }
2690
2691 /*
2692  * Find the first pair of bit match between an original
2693  * usage mask and an exclusive usage mask.
2694  */
2695 static int find_exclusive_match(unsigned long mask,
2696                                 unsigned long excl_mask,
2697                                 enum lock_usage_bit *bitp,
2698                                 enum lock_usage_bit *excl_bitp)
2699 {
2700         int bit, excl, excl_read;
2701
2702         for_each_set_bit(bit, &mask, LOCK_USED) {
2703                 /*
2704                  * exclusive_bit() strips the read bit, however,
2705                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2706                  * to search excl | LOCK_USAGE_READ_MASK as well.
2707                  */
2708                 excl = exclusive_bit(bit);
2709                 excl_read = excl | LOCK_USAGE_READ_MASK;
2710                 if (excl_mask & lock_flag(excl)) {
2711                         *bitp = bit;
2712                         *excl_bitp = excl;
2713                         return 0;
2714                 } else if (excl_mask & lock_flag(excl_read)) {
2715                         *bitp = bit;
2716                         *excl_bitp = excl_read;
2717                         return 0;
2718                 }
2719         }
2720         return -1;
2721 }
2722
2723 /*
2724  * Prove that the new dependency does not connect a hardirq-safe(-read)
2725  * lock with a hardirq-unsafe lock - to achieve this we search
2726  * the backwards-subgraph starting at <prev>, and the
2727  * forwards-subgraph starting at <next>:
2728  */
2729 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2730                            struct held_lock *next)
2731 {
2732         unsigned long usage_mask = 0, forward_mask, backward_mask;
2733         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2734         struct lock_list *target_entry1;
2735         struct lock_list *target_entry;
2736         struct lock_list this, that;
2737         enum bfs_result ret;
2738
2739         /*
2740          * Step 1: gather all hard/soft IRQs usages backward in an
2741          * accumulated usage mask.
2742          */
2743         bfs_init_rootb(&this, prev);
2744
2745         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2746         if (bfs_error(ret)) {
2747                 print_bfs_bug(ret);
2748                 return 0;
2749         }
2750
2751         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2752         if (!usage_mask)
2753                 return 1;
2754
2755         /*
2756          * Step 2: find exclusive uses forward that match the previous
2757          * backward accumulated mask.
2758          */
2759         forward_mask = exclusive_mask(usage_mask);
2760
2761         bfs_init_root(&that, next);
2762
2763         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2764         if (bfs_error(ret)) {
2765                 print_bfs_bug(ret);
2766                 return 0;
2767         }
2768         if (ret == BFS_RNOMATCH)
2769                 return 1;
2770
2771         /*
2772          * Step 3: we found a bad match! Now retrieve a lock from the backward
2773          * list whose usage mask matches the exclusive usage mask from the
2774          * lock found on the forward list.
2775          *
2776          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2777          * the follow case:
2778          *
2779          * When trying to add A -> B to the graph, we find that there is a
2780          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2781          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2782          * invert bits of M's usage_mask, we will find another lock N that is
2783          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2784          * cause a inversion deadlock.
2785          */
2786         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2787
2788         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2789         if (bfs_error(ret)) {
2790                 print_bfs_bug(ret);
2791                 return 0;
2792         }
2793         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2794                 return 1;
2795
2796         /*
2797          * Step 4: narrow down to a pair of incompatible usage bits
2798          * and report it.
2799          */
2800         ret = find_exclusive_match(target_entry->class->usage_mask,
2801                                    target_entry1->class->usage_mask,
2802                                    &backward_bit, &forward_bit);
2803         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2804                 return 1;
2805
2806         print_bad_irq_dependency(curr, &this, &that,
2807                                  target_entry, target_entry1,
2808                                  prev, next,
2809                                  backward_bit, forward_bit,
2810                                  state_name(backward_bit));
2811
2812         return 0;
2813 }
2814
2815 #else
2816
2817 static inline int check_irq_usage(struct task_struct *curr,
2818                                   struct held_lock *prev, struct held_lock *next)
2819 {
2820         return 1;
2821 }
2822
2823 static inline bool usage_skip(struct lock_list *entry, void *mask)
2824 {
2825         return false;
2826 }
2827
2828 #endif /* CONFIG_TRACE_IRQFLAGS */
2829
2830 #ifdef CONFIG_LOCKDEP_SMALL
2831 /*
2832  * Check that the dependency graph starting at <src> can lead to
2833  * <target> or not. If it can, <src> -> <target> dependency is already
2834  * in the graph.
2835  *
2836  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2837  * any error appears in the bfs search.
2838  */
2839 static noinline enum bfs_result
2840 check_redundant(struct held_lock *src, struct held_lock *target)
2841 {
2842         enum bfs_result ret;
2843         struct lock_list *target_entry;
2844         struct lock_list src_entry;
2845
2846         bfs_init_root(&src_entry, src);
2847         /*
2848          * Special setup for check_redundant().
2849          *
2850          * To report redundant, we need to find a strong dependency path that
2851          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2852          * we need to let __bfs() only search for a path starting at a -(E*)->,
2853          * we achieve this by setting the initial node's ->only_xr to true in
2854          * that case. And if <prev> is S, we set initial ->only_xr to false
2855          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2856          */
2857         src_entry.only_xr = src->read == 0;
2858
2859         debug_atomic_inc(nr_redundant_checks);
2860
2861         /*
2862          * Note: we skip local_lock() for redundant check, because as the
2863          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2864          * the same.
2865          */
2866         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2867
2868         if (ret == BFS_RMATCH)
2869                 debug_atomic_inc(nr_redundant);
2870
2871         return ret;
2872 }
2873
2874 #else
2875
2876 static inline enum bfs_result
2877 check_redundant(struct held_lock *src, struct held_lock *target)
2878 {
2879         return BFS_RNOMATCH;
2880 }
2881
2882 #endif
2883
2884 static void inc_chains(int irq_context)
2885 {
2886         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2887                 nr_hardirq_chains++;
2888         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2889                 nr_softirq_chains++;
2890         else
2891                 nr_process_chains++;
2892 }
2893
2894 static void dec_chains(int irq_context)
2895 {
2896         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2897                 nr_hardirq_chains--;
2898         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2899                 nr_softirq_chains--;
2900         else
2901                 nr_process_chains--;
2902 }
2903
2904 static void
2905 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2906 {
2907         struct lock_class *next = hlock_class(nxt);
2908         struct lock_class *prev = hlock_class(prv);
2909
2910         printk(" Possible unsafe locking scenario:\n\n");
2911         printk("       CPU0\n");
2912         printk("       ----\n");
2913         printk("  lock(");
2914         __print_lock_name(prev);
2915         printk(KERN_CONT ");\n");
2916         printk("  lock(");
2917         __print_lock_name(next);
2918         printk(KERN_CONT ");\n");
2919         printk("\n *** DEADLOCK ***\n\n");
2920         printk(" May be due to missing lock nesting notation\n\n");
2921 }
2922
2923 static void
2924 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2925                    struct held_lock *next)
2926 {
2927         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2928                 return;
2929
2930         pr_warn("\n");
2931         pr_warn("============================================\n");
2932         pr_warn("WARNING: possible recursive locking detected\n");
2933         print_kernel_ident();
2934         pr_warn("--------------------------------------------\n");
2935         pr_warn("%s/%d is trying to acquire lock:\n",
2936                 curr->comm, task_pid_nr(curr));
2937         print_lock(next);
2938         pr_warn("\nbut task is already holding lock:\n");
2939         print_lock(prev);
2940
2941         pr_warn("\nother info that might help us debug this:\n");
2942         print_deadlock_scenario(next, prev);
2943         lockdep_print_held_locks(curr);
2944
2945         pr_warn("\nstack backtrace:\n");
2946         dump_stack();
2947 }
2948
2949 /*
2950  * Check whether we are holding such a class already.
2951  *
2952  * (Note that this has to be done separately, because the graph cannot
2953  * detect such classes of deadlocks.)
2954  *
2955  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2956  * lock class is held but nest_lock is also held, i.e. we rely on the
2957  * nest_lock to avoid the deadlock.
2958  */
2959 static int
2960 check_deadlock(struct task_struct *curr, struct held_lock *next)
2961 {
2962         struct held_lock *prev;
2963         struct held_lock *nest = NULL;
2964         int i;
2965
2966         for (i = 0; i < curr->lockdep_depth; i++) {
2967                 prev = curr->held_locks + i;
2968
2969                 if (prev->instance == next->nest_lock)
2970                         nest = prev;
2971
2972                 if (hlock_class(prev) != hlock_class(next))
2973                         continue;
2974
2975                 /*
2976                  * Allow read-after-read recursion of the same
2977                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2978                  */
2979                 if ((next->read == 2) && prev->read)
2980                         continue;
2981
2982                 /*
2983                  * We're holding the nest_lock, which serializes this lock's
2984                  * nesting behaviour.
2985                  */
2986                 if (nest)
2987                         return 2;
2988
2989                 print_deadlock_bug(curr, prev, next);
2990                 return 0;
2991         }
2992         return 1;
2993 }
2994
2995 /*
2996  * There was a chain-cache miss, and we are about to add a new dependency
2997  * to a previous lock. We validate the following rules:
2998  *
2999  *  - would the adding of the <prev> -> <next> dependency create a
3000  *    circular dependency in the graph? [== circular deadlock]
3001  *
3002  *  - does the new prev->next dependency connect any hardirq-safe lock
3003  *    (in the full backwards-subgraph starting at <prev>) with any
3004  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3005  *    <next>)? [== illegal lock inversion with hardirq contexts]
3006  *
3007  *  - does the new prev->next dependency connect any softirq-safe lock
3008  *    (in the full backwards-subgraph starting at <prev>) with any
3009  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3010  *    <next>)? [== illegal lock inversion with softirq contexts]
3011  *
3012  * any of these scenarios could lead to a deadlock.
3013  *
3014  * Then if all the validations pass, we add the forwards and backwards
3015  * dependency.
3016  */
3017 static int
3018 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3019                struct held_lock *next, u16 distance,
3020                struct lock_trace **const trace)
3021 {
3022         struct lock_list *entry;
3023         enum bfs_result ret;
3024
3025         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3026                 /*
3027                  * The warning statements below may trigger a use-after-free
3028                  * of the class name. It is better to trigger a use-after free
3029                  * and to have the class name most of the time instead of not
3030                  * having the class name available.
3031                  */
3032                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3033                           "Detected use-after-free of lock class %px/%s\n",
3034                           hlock_class(prev),
3035                           hlock_class(prev)->name);
3036                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3037                           "Detected use-after-free of lock class %px/%s\n",
3038                           hlock_class(next),
3039                           hlock_class(next)->name);
3040                 return 2;
3041         }
3042
3043         /*
3044          * Prove that the new <prev> -> <next> dependency would not
3045          * create a circular dependency in the graph. (We do this by
3046          * a breadth-first search into the graph starting at <next>,
3047          * and check whether we can reach <prev>.)
3048          *
3049          * The search is limited by the size of the circular queue (i.e.,
3050          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3051          * in the graph whose neighbours are to be checked.
3052          */
3053         ret = check_noncircular(next, prev, trace);
3054         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3055                 return 0;
3056
3057         if (!check_irq_usage(curr, prev, next))
3058                 return 0;
3059
3060         /*
3061          * Is the <prev> -> <next> dependency already present?
3062          *
3063          * (this may occur even though this is a new chain: consider
3064          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3065          *  chains - the second one will be new, but L1 already has
3066          *  L2 added to its dependency list, due to the first chain.)
3067          */
3068         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3069                 if (entry->class == hlock_class(next)) {
3070                         if (distance == 1)
3071                                 entry->distance = 1;
3072                         entry->dep |= calc_dep(prev, next);
3073
3074                         /*
3075                          * Also, update the reverse dependency in @next's
3076                          * ->locks_before list.
3077                          *
3078                          *  Here we reuse @entry as the cursor, which is fine
3079                          *  because we won't go to the next iteration of the
3080                          *  outer loop:
3081                          *
3082                          *  For normal cases, we return in the inner loop.
3083                          *
3084                          *  If we fail to return, we have inconsistency, i.e.
3085                          *  <prev>::locks_after contains <next> while
3086                          *  <next>::locks_before doesn't contain <prev>. In
3087                          *  that case, we return after the inner and indicate
3088                          *  something is wrong.
3089                          */
3090                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3091                                 if (entry->class == hlock_class(prev)) {
3092                                         if (distance == 1)
3093                                                 entry->distance = 1;
3094                                         entry->dep |= calc_depb(prev, next);
3095                                         return 1;
3096                                 }
3097                         }
3098
3099                         /* <prev> is not found in <next>::locks_before */
3100                         return 0;
3101                 }
3102         }
3103
3104         /*
3105          * Is the <prev> -> <next> link redundant?
3106          */
3107         ret = check_redundant(prev, next);
3108         if (bfs_error(ret))
3109                 return 0;
3110         else if (ret == BFS_RMATCH)
3111                 return 2;
3112
3113         if (!*trace) {
3114                 *trace = save_trace();
3115                 if (!*trace)
3116                         return 0;
3117         }
3118
3119         /*
3120          * Ok, all validations passed, add the new lock
3121          * to the previous lock's dependency list:
3122          */
3123         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3124                                &hlock_class(prev)->locks_after, distance,
3125                                calc_dep(prev, next), *trace);
3126
3127         if (!ret)
3128                 return 0;
3129
3130         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131                                &hlock_class(next)->locks_before, distance,
3132                                calc_depb(prev, next), *trace);
3133         if (!ret)
3134                 return 0;
3135
3136         return 2;
3137 }
3138
3139 /*
3140  * Add the dependency to all directly-previous locks that are 'relevant'.
3141  * The ones that are relevant are (in increasing distance from curr):
3142  * all consecutive trylock entries and the final non-trylock entry - or
3143  * the end of this context's lock-chain - whichever comes first.
3144  */
3145 static int
3146 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3147 {
3148         struct lock_trace *trace = NULL;
3149         int depth = curr->lockdep_depth;
3150         struct held_lock *hlock;
3151
3152         /*
3153          * Debugging checks.
3154          *
3155          * Depth must not be zero for a non-head lock:
3156          */
3157         if (!depth)
3158                 goto out_bug;
3159         /*
3160          * At least two relevant locks must exist for this
3161          * to be a head:
3162          */
3163         if (curr->held_locks[depth].irq_context !=
3164                         curr->held_locks[depth-1].irq_context)
3165                 goto out_bug;
3166
3167         for (;;) {
3168                 u16 distance = curr->lockdep_depth - depth + 1;
3169                 hlock = curr->held_locks + depth - 1;
3170
3171                 if (hlock->check) {
3172                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3173                         if (!ret)
3174                                 return 0;
3175
3176                         /*
3177                          * Stop after the first non-trylock entry,
3178                          * as non-trylock entries have added their
3179                          * own direct dependencies already, so this
3180                          * lock is connected to them indirectly:
3181                          */
3182                         if (!hlock->trylock)
3183                                 break;
3184                 }
3185
3186                 depth--;
3187                 /*
3188                  * End of lock-stack?
3189                  */
3190                 if (!depth)
3191                         break;
3192                 /*
3193                  * Stop the search if we cross into another context:
3194                  */
3195                 if (curr->held_locks[depth].irq_context !=
3196                                 curr->held_locks[depth-1].irq_context)
3197                         break;
3198         }
3199         return 1;
3200 out_bug:
3201         if (!debug_locks_off_graph_unlock())
3202                 return 0;
3203
3204         /*
3205          * Clearly we all shouldn't be here, but since we made it we
3206          * can reliable say we messed up our state. See the above two
3207          * gotos for reasons why we could possibly end up here.
3208          */
3209         WARN_ON(1);
3210
3211         return 0;
3212 }
3213
3214 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3215 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3216 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3217 unsigned long nr_zapped_lock_chains;
3218 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3219 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3220 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3221
3222 /*
3223  * The first 2 chain_hlocks entries in the chain block in the bucket
3224  * list contains the following meta data:
3225  *
3226  *   entry[0]:
3227  *     Bit    15 - always set to 1 (it is not a class index)
3228  *     Bits 0-14 - upper 15 bits of the next block index
3229  *   entry[1]    - lower 16 bits of next block index
3230  *
3231  * A next block index of all 1 bits means it is the end of the list.
3232  *
3233  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3234  * the chain block size:
3235  *
3236  *   entry[2] - upper 16 bits of the chain block size
3237  *   entry[3] - lower 16 bits of the chain block size
3238  */
3239 #define MAX_CHAIN_BUCKETS       16
3240 #define CHAIN_BLK_FLAG          (1U << 15)
3241 #define CHAIN_BLK_LIST_END      0xFFFFU
3242
3243 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3244
3245 static inline int size_to_bucket(int size)
3246 {
3247         if (size > MAX_CHAIN_BUCKETS)
3248                 return 0;
3249
3250         return size - 1;
3251 }
3252
3253 /*
3254  * Iterate all the chain blocks in a bucket.
3255  */
3256 #define for_each_chain_block(bucket, prev, curr)                \
3257         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3258              (curr) >= 0;                                       \
3259              (prev) = (curr), (curr) = chain_block_next(curr))
3260
3261 /*
3262  * next block or -1
3263  */
3264 static inline int chain_block_next(int offset)
3265 {
3266         int next = chain_hlocks[offset];
3267
3268         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3269
3270         if (next == CHAIN_BLK_LIST_END)
3271                 return -1;
3272
3273         next &= ~CHAIN_BLK_FLAG;
3274         next <<= 16;
3275         next |= chain_hlocks[offset + 1];
3276
3277         return next;
3278 }
3279
3280 /*
3281  * bucket-0 only
3282  */
3283 static inline int chain_block_size(int offset)
3284 {
3285         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3286 }
3287
3288 static inline void init_chain_block(int offset, int next, int bucket, int size)
3289 {
3290         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3291         chain_hlocks[offset + 1] = (u16)next;
3292
3293         if (size && !bucket) {
3294                 chain_hlocks[offset + 2] = size >> 16;
3295                 chain_hlocks[offset + 3] = (u16)size;
3296         }
3297 }
3298
3299 static inline void add_chain_block(int offset, int size)
3300 {
3301         int bucket = size_to_bucket(size);
3302         int next = chain_block_buckets[bucket];
3303         int prev, curr;
3304
3305         if (unlikely(size < 2)) {
3306                 /*
3307                  * We can't store single entries on the freelist. Leak them.
3308                  *
3309                  * One possible way out would be to uniquely mark them, other
3310                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3311                  * the block before it is re-added.
3312                  */
3313                 if (size)
3314                         nr_lost_chain_hlocks++;
3315                 return;
3316         }
3317
3318         nr_free_chain_hlocks += size;
3319         if (!bucket) {
3320                 nr_large_chain_blocks++;
3321
3322                 /*
3323                  * Variable sized, sort large to small.
3324                  */
3325                 for_each_chain_block(0, prev, curr) {
3326                         if (size >= chain_block_size(curr))
3327                                 break;
3328                 }
3329                 init_chain_block(offset, curr, 0, size);
3330                 if (prev < 0)
3331                         chain_block_buckets[0] = offset;
3332                 else
3333                         init_chain_block(prev, offset, 0, 0);
3334                 return;
3335         }
3336         /*
3337          * Fixed size, add to head.
3338          */
3339         init_chain_block(offset, next, bucket, size);
3340         chain_block_buckets[bucket] = offset;
3341 }
3342
3343 /*
3344  * Only the first block in the list can be deleted.
3345  *
3346  * For the variable size bucket[0], the first block (the largest one) is
3347  * returned, broken up and put back into the pool. So if a chain block of
3348  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3349  * queued up after the primordial chain block and never be used until the
3350  * hlock entries in the primordial chain block is almost used up. That
3351  * causes fragmentation and reduce allocation efficiency. That can be
3352  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3353  */
3354 static inline void del_chain_block(int bucket, int size, int next)
3355 {
3356         nr_free_chain_hlocks -= size;
3357         chain_block_buckets[bucket] = next;
3358
3359         if (!bucket)
3360                 nr_large_chain_blocks--;
3361 }
3362
3363 static void init_chain_block_buckets(void)
3364 {
3365         int i;
3366
3367         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3368                 chain_block_buckets[i] = -1;
3369
3370         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3371 }
3372
3373 /*
3374  * Return offset of a chain block of the right size or -1 if not found.
3375  *
3376  * Fairly simple worst-fit allocator with the addition of a number of size
3377  * specific free lists.
3378  */
3379 static int alloc_chain_hlocks(int req)
3380 {
3381         int bucket, curr, size;
3382
3383         /*
3384          * We rely on the MSB to act as an escape bit to denote freelist
3385          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3386          */
3387         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3388
3389         init_data_structures_once();
3390
3391         if (nr_free_chain_hlocks < req)
3392                 return -1;
3393
3394         /*
3395          * We require a minimum of 2 (u16) entries to encode a freelist
3396          * 'pointer'.
3397          */
3398         req = max(req, 2);
3399         bucket = size_to_bucket(req);
3400         curr = chain_block_buckets[bucket];
3401
3402         if (bucket) {
3403                 if (curr >= 0) {
3404                         del_chain_block(bucket, req, chain_block_next(curr));
3405                         return curr;
3406                 }
3407                 /* Try bucket 0 */
3408                 curr = chain_block_buckets[0];
3409         }
3410
3411         /*
3412          * The variable sized freelist is sorted by size; the first entry is
3413          * the largest. Use it if it fits.
3414          */
3415         if (curr >= 0) {
3416                 size = chain_block_size(curr);
3417                 if (likely(size >= req)) {
3418                         del_chain_block(0, size, chain_block_next(curr));
3419                         add_chain_block(curr + req, size - req);
3420                         return curr;
3421                 }
3422         }
3423
3424         /*
3425          * Last resort, split a block in a larger sized bucket.
3426          */
3427         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3428                 bucket = size_to_bucket(size);
3429                 curr = chain_block_buckets[bucket];
3430                 if (curr < 0)
3431                         continue;
3432
3433                 del_chain_block(bucket, size, chain_block_next(curr));
3434                 add_chain_block(curr + req, size - req);
3435                 return curr;
3436         }
3437
3438         return -1;
3439 }
3440
3441 static inline void free_chain_hlocks(int base, int size)
3442 {
3443         add_chain_block(base, max(size, 2));
3444 }
3445
3446 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3447 {
3448         u16 chain_hlock = chain_hlocks[chain->base + i];
3449         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3450
3451         return lock_classes + class_idx;
3452 }
3453
3454 /*
3455  * Returns the index of the first held_lock of the current chain
3456  */
3457 static inline int get_first_held_lock(struct task_struct *curr,
3458                                         struct held_lock *hlock)
3459 {
3460         int i;
3461         struct held_lock *hlock_curr;
3462
3463         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3464                 hlock_curr = curr->held_locks + i;
3465                 if (hlock_curr->irq_context != hlock->irq_context)
3466                         break;
3467
3468         }
3469
3470         return ++i;
3471 }
3472
3473 #ifdef CONFIG_DEBUG_LOCKDEP
3474 /*
3475  * Returns the next chain_key iteration
3476  */
3477 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3478 {
3479         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3480
3481         printk(" hlock_id:%d -> chain_key:%016Lx",
3482                 (unsigned int)hlock_id,
3483                 (unsigned long long)new_chain_key);
3484         return new_chain_key;
3485 }
3486
3487 static void
3488 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3489 {
3490         struct held_lock *hlock;
3491         u64 chain_key = INITIAL_CHAIN_KEY;
3492         int depth = curr->lockdep_depth;
3493         int i = get_first_held_lock(curr, hlock_next);
3494
3495         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3496                 hlock_next->irq_context);
3497         for (; i < depth; i++) {
3498                 hlock = curr->held_locks + i;
3499                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3500
3501                 print_lock(hlock);
3502         }
3503
3504         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3505         print_lock(hlock_next);
3506 }
3507
3508 static void print_chain_keys_chain(struct lock_chain *chain)
3509 {
3510         int i;
3511         u64 chain_key = INITIAL_CHAIN_KEY;
3512         u16 hlock_id;
3513
3514         printk("depth: %u\n", chain->depth);
3515         for (i = 0; i < chain->depth; i++) {
3516                 hlock_id = chain_hlocks[chain->base + i];
3517                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3518
3519                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3520                 printk("\n");
3521         }
3522 }
3523
3524 static void print_collision(struct task_struct *curr,
3525                         struct held_lock *hlock_next,
3526                         struct lock_chain *chain)
3527 {
3528         pr_warn("\n");
3529         pr_warn("============================\n");
3530         pr_warn("WARNING: chain_key collision\n");
3531         print_kernel_ident();
3532         pr_warn("----------------------------\n");
3533         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3534         pr_warn("Hash chain already cached but the contents don't match!\n");
3535
3536         pr_warn("Held locks:");
3537         print_chain_keys_held_locks(curr, hlock_next);
3538
3539         pr_warn("Locks in cached chain:");
3540         print_chain_keys_chain(chain);
3541
3542         pr_warn("\nstack backtrace:\n");
3543         dump_stack();
3544 }
3545 #endif
3546
3547 /*
3548  * Checks whether the chain and the current held locks are consistent
3549  * in depth and also in content. If they are not it most likely means
3550  * that there was a collision during the calculation of the chain_key.
3551  * Returns: 0 not passed, 1 passed
3552  */
3553 static int check_no_collision(struct task_struct *curr,
3554                         struct held_lock *hlock,
3555                         struct lock_chain *chain)
3556 {
3557 #ifdef CONFIG_DEBUG_LOCKDEP
3558         int i, j, id;
3559
3560         i = get_first_held_lock(curr, hlock);
3561
3562         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3563                 print_collision(curr, hlock, chain);
3564                 return 0;
3565         }
3566
3567         for (j = 0; j < chain->depth - 1; j++, i++) {
3568                 id = hlock_id(&curr->held_locks[i]);
3569
3570                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3571                         print_collision(curr, hlock, chain);
3572                         return 0;
3573                 }
3574         }
3575 #endif
3576         return 1;
3577 }
3578
3579 /*
3580  * Given an index that is >= -1, return the index of the next lock chain.
3581  * Return -2 if there is no next lock chain.
3582  */
3583 long lockdep_next_lockchain(long i)
3584 {
3585         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3586         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3587 }
3588
3589 unsigned long lock_chain_count(void)
3590 {
3591         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3592 }
3593
3594 /* Must be called with the graph lock held. */
3595 static struct lock_chain *alloc_lock_chain(void)
3596 {
3597         int idx = find_first_zero_bit(lock_chains_in_use,
3598                                       ARRAY_SIZE(lock_chains));
3599
3600         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3601                 return NULL;
3602         __set_bit(idx, lock_chains_in_use);
3603         return lock_chains + idx;
3604 }
3605
3606 /*
3607  * Adds a dependency chain into chain hashtable. And must be called with
3608  * graph_lock held.
3609  *
3610  * Return 0 if fail, and graph_lock is released.
3611  * Return 1 if succeed, with graph_lock held.
3612  */
3613 static inline int add_chain_cache(struct task_struct *curr,
3614                                   struct held_lock *hlock,
3615                                   u64 chain_key)
3616 {
3617         struct hlist_head *hash_head = chainhashentry(chain_key);
3618         struct lock_chain *chain;
3619         int i, j;
3620
3621         /*
3622          * The caller must hold the graph lock, ensure we've got IRQs
3623          * disabled to make this an IRQ-safe lock.. for recursion reasons
3624          * lockdep won't complain about its own locking errors.
3625          */
3626         if (lockdep_assert_locked())
3627                 return 0;
3628
3629         chain = alloc_lock_chain();
3630         if (!chain) {
3631                 if (!debug_locks_off_graph_unlock())
3632                         return 0;
3633
3634                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3635                 dump_stack();
3636                 return 0;
3637         }
3638         chain->chain_key = chain_key;
3639         chain->irq_context = hlock->irq_context;
3640         i = get_first_held_lock(curr, hlock);
3641         chain->depth = curr->lockdep_depth + 1 - i;
3642
3643         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3644         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3645         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3646
3647         j = alloc_chain_hlocks(chain->depth);
3648         if (j < 0) {
3649                 if (!debug_locks_off_graph_unlock())
3650                         return 0;
3651
3652                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3653                 dump_stack();
3654                 return 0;
3655         }
3656
3657         chain->base = j;
3658         for (j = 0; j < chain->depth - 1; j++, i++) {
3659                 int lock_id = hlock_id(curr->held_locks + i);
3660
3661                 chain_hlocks[chain->base + j] = lock_id;
3662         }
3663         chain_hlocks[chain->base + j] = hlock_id(hlock);
3664         hlist_add_head_rcu(&chain->entry, hash_head);
3665         debug_atomic_inc(chain_lookup_misses);
3666         inc_chains(chain->irq_context);
3667
3668         return 1;
3669 }
3670
3671 /*
3672  * Look up a dependency chain. Must be called with either the graph lock or
3673  * the RCU read lock held.
3674  */
3675 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3676 {
3677         struct hlist_head *hash_head = chainhashentry(chain_key);
3678         struct lock_chain *chain;
3679
3680         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3681                 if (READ_ONCE(chain->chain_key) == chain_key) {
3682                         debug_atomic_inc(chain_lookup_hits);
3683                         return chain;
3684                 }
3685         }
3686         return NULL;
3687 }
3688
3689 /*
3690  * If the key is not present yet in dependency chain cache then
3691  * add it and return 1 - in this case the new dependency chain is
3692  * validated. If the key is already hashed, return 0.
3693  * (On return with 1 graph_lock is held.)
3694  */
3695 static inline int lookup_chain_cache_add(struct task_struct *curr,
3696                                          struct held_lock *hlock,
3697                                          u64 chain_key)
3698 {
3699         struct lock_class *class = hlock_class(hlock);
3700         struct lock_chain *chain = lookup_chain_cache(chain_key);
3701
3702         if (chain) {
3703 cache_hit:
3704                 if (!check_no_collision(curr, hlock, chain))
3705                         return 0;
3706
3707                 if (very_verbose(class)) {
3708                         printk("\nhash chain already cached, key: "
3709                                         "%016Lx tail class: [%px] %s\n",
3710                                         (unsigned long long)chain_key,
3711                                         class->key, class->name);
3712                 }
3713
3714                 return 0;
3715         }
3716
3717         if (very_verbose(class)) {
3718                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3719                         (unsigned long long)chain_key, class->key, class->name);
3720         }
3721
3722         if (!graph_lock())
3723                 return 0;
3724
3725         /*
3726          * We have to walk the chain again locked - to avoid duplicates:
3727          */
3728         chain = lookup_chain_cache(chain_key);
3729         if (chain) {
3730                 graph_unlock();
3731                 goto cache_hit;
3732         }
3733
3734         if (!add_chain_cache(curr, hlock, chain_key))
3735                 return 0;
3736
3737         return 1;
3738 }
3739
3740 static int validate_chain(struct task_struct *curr,
3741                           struct held_lock *hlock,
3742                           int chain_head, u64 chain_key)
3743 {
3744         /*
3745          * Trylock needs to maintain the stack of held locks, but it
3746          * does not add new dependencies, because trylock can be done
3747          * in any order.
3748          *
3749          * We look up the chain_key and do the O(N^2) check and update of
3750          * the dependencies only if this is a new dependency chain.
3751          * (If lookup_chain_cache_add() return with 1 it acquires
3752          * graph_lock for us)
3753          */
3754         if (!hlock->trylock && hlock->check &&
3755             lookup_chain_cache_add(curr, hlock, chain_key)) {
3756                 /*
3757                  * Check whether last held lock:
3758                  *
3759                  * - is irq-safe, if this lock is irq-unsafe
3760                  * - is softirq-safe, if this lock is hardirq-unsafe
3761                  *
3762                  * And check whether the new lock's dependency graph
3763                  * could lead back to the previous lock:
3764                  *
3765                  * - within the current held-lock stack
3766                  * - across our accumulated lock dependency records
3767                  *
3768                  * any of these scenarios could lead to a deadlock.
3769                  */
3770                 /*
3771                  * The simple case: does the current hold the same lock
3772                  * already?
3773                  */
3774                 int ret = check_deadlock(curr, hlock);
3775
3776                 if (!ret)
3777                         return 0;
3778                 /*
3779                  * Add dependency only if this lock is not the head
3780                  * of the chain, and if the new lock introduces no more
3781                  * lock dependency (because we already hold a lock with the
3782                  * same lock class) nor deadlock (because the nest_lock
3783                  * serializes nesting locks), see the comments for
3784                  * check_deadlock().
3785                  */
3786                 if (!chain_head && ret != 2) {
3787                         if (!check_prevs_add(curr, hlock))
3788                                 return 0;
3789                 }
3790
3791                 graph_unlock();
3792         } else {
3793                 /* after lookup_chain_cache_add(): */
3794                 if (unlikely(!debug_locks))
3795                         return 0;
3796         }
3797
3798         return 1;
3799 }
3800 #else
3801 static inline int validate_chain(struct task_struct *curr,
3802                                  struct held_lock *hlock,
3803                                  int chain_head, u64 chain_key)
3804 {
3805         return 1;
3806 }
3807
3808 static void init_chain_block_buckets(void)      { }
3809 #endif /* CONFIG_PROVE_LOCKING */
3810
3811 /*
3812  * We are building curr_chain_key incrementally, so double-check
3813  * it from scratch, to make sure that it's done correctly:
3814  */
3815 static void check_chain_key(struct task_struct *curr)
3816 {
3817 #ifdef CONFIG_DEBUG_LOCKDEP
3818         struct held_lock *hlock, *prev_hlock = NULL;
3819         unsigned int i;
3820         u64 chain_key = INITIAL_CHAIN_KEY;
3821
3822         for (i = 0; i < curr->lockdep_depth; i++) {
3823                 hlock = curr->held_locks + i;
3824                 if (chain_key != hlock->prev_chain_key) {
3825                         debug_locks_off();
3826                         /*
3827                          * We got mighty confused, our chain keys don't match
3828                          * with what we expect, someone trample on our task state?
3829                          */
3830                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3831                                 curr->lockdep_depth, i,
3832                                 (unsigned long long)chain_key,
3833                                 (unsigned long long)hlock->prev_chain_key);
3834                         return;
3835                 }
3836
3837                 /*
3838                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3839                  * it registered lock class index?
3840                  */
3841                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3842                         return;
3843
3844                 if (prev_hlock && (prev_hlock->irq_context !=
3845                                                         hlock->irq_context))
3846                         chain_key = INITIAL_CHAIN_KEY;
3847                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3848                 prev_hlock = hlock;
3849         }
3850         if (chain_key != curr->curr_chain_key) {
3851                 debug_locks_off();
3852                 /*
3853                  * More smoking hash instead of calculating it, damn see these
3854                  * numbers float.. I bet that a pink elephant stepped on my memory.
3855                  */
3856                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3857                         curr->lockdep_depth, i,
3858                         (unsigned long long)chain_key,
3859                         (unsigned long long)curr->curr_chain_key);
3860         }
3861 #endif
3862 }
3863
3864 #ifdef CONFIG_PROVE_LOCKING
3865 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3866                      enum lock_usage_bit new_bit);
3867
3868 static void print_usage_bug_scenario(struct held_lock *lock)
3869 {
3870         struct lock_class *class = hlock_class(lock);
3871
3872         printk(" Possible unsafe locking scenario:\n\n");
3873         printk("       CPU0\n");
3874         printk("       ----\n");
3875         printk("  lock(");
3876         __print_lock_name(class);
3877         printk(KERN_CONT ");\n");
3878         printk("  <Interrupt>\n");
3879         printk("    lock(");
3880         __print_lock_name(class);
3881         printk(KERN_CONT ");\n");
3882         printk("\n *** DEADLOCK ***\n\n");
3883 }
3884
3885 static void
3886 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3887                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3888 {
3889         if (!debug_locks_off() || debug_locks_silent)
3890                 return;
3891
3892         pr_warn("\n");
3893         pr_warn("================================\n");
3894         pr_warn("WARNING: inconsistent lock state\n");
3895         print_kernel_ident();
3896         pr_warn("--------------------------------\n");
3897
3898         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3899                 usage_str[prev_bit], usage_str[new_bit]);
3900
3901         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3902                 curr->comm, task_pid_nr(curr),
3903                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3904                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3905                 lockdep_hardirqs_enabled(),
3906                 lockdep_softirqs_enabled(curr));
3907         print_lock(this);
3908
3909         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3910         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3911
3912         print_irqtrace_events(curr);
3913         pr_warn("\nother info that might help us debug this:\n");
3914         print_usage_bug_scenario(this);
3915
3916         lockdep_print_held_locks(curr);
3917
3918         pr_warn("\nstack backtrace:\n");
3919         dump_stack();
3920 }
3921
3922 /*
3923  * Print out an error if an invalid bit is set:
3924  */
3925 static inline int
3926 valid_state(struct task_struct *curr, struct held_lock *this,
3927             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3928 {
3929         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3930                 graph_unlock();
3931                 print_usage_bug(curr, this, bad_bit, new_bit);
3932                 return 0;
3933         }
3934         return 1;
3935 }
3936
3937
3938 /*
3939  * print irq inversion bug:
3940  */
3941 static void
3942 print_irq_inversion_bug(struct task_struct *curr,
3943                         struct lock_list *root, struct lock_list *other,
3944                         struct held_lock *this, int forwards,
3945                         const char *irqclass)
3946 {
3947         struct lock_list *entry = other;
3948         struct lock_list *middle = NULL;
3949         int depth;
3950
3951         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3952                 return;
3953
3954         pr_warn("\n");
3955         pr_warn("========================================================\n");
3956         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3957         print_kernel_ident();
3958         pr_warn("--------------------------------------------------------\n");
3959         pr_warn("%s/%d just changed the state of lock:\n",
3960                 curr->comm, task_pid_nr(curr));
3961         print_lock(this);
3962         if (forwards)
3963                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3964         else
3965                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3966         print_lock_name(other->class);
3967         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3968
3969         pr_warn("\nother info that might help us debug this:\n");
3970
3971         /* Find a middle lock (if one exists) */
3972         depth = get_lock_depth(other);
3973         do {
3974                 if (depth == 0 && (entry != root)) {
3975                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3976                         break;
3977                 }
3978                 middle = entry;
3979                 entry = get_lock_parent(entry);
3980                 depth--;
3981         } while (entry && entry != root && (depth >= 0));
3982         if (forwards)
3983                 print_irq_lock_scenario(root, other,
3984                         middle ? middle->class : root->class, other->class);
3985         else
3986                 print_irq_lock_scenario(other, root,
3987                         middle ? middle->class : other->class, root->class);
3988
3989         lockdep_print_held_locks(curr);
3990
3991         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3992         root->trace = save_trace();
3993         if (!root->trace)
3994                 return;
3995         print_shortest_lock_dependencies(other, root);
3996
3997         pr_warn("\nstack backtrace:\n");
3998         dump_stack();
3999 }
4000
4001 /*
4002  * Prove that in the forwards-direction subgraph starting at <this>
4003  * there is no lock matching <mask>:
4004  */
4005 static int
4006 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4007                      enum lock_usage_bit bit)
4008 {
4009         enum bfs_result ret;
4010         struct lock_list root;
4011         struct lock_list *target_entry;
4012         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4013         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4014
4015         bfs_init_root(&root, this);
4016         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4017         if (bfs_error(ret)) {
4018                 print_bfs_bug(ret);
4019                 return 0;
4020         }
4021         if (ret == BFS_RNOMATCH)
4022                 return 1;
4023
4024         /* Check whether write or read usage is the match */
4025         if (target_entry->class->usage_mask & lock_flag(bit)) {
4026                 print_irq_inversion_bug(curr, &root, target_entry,
4027                                         this, 1, state_name(bit));
4028         } else {
4029                 print_irq_inversion_bug(curr, &root, target_entry,
4030                                         this, 1, state_name(read_bit));
4031         }
4032
4033         return 0;
4034 }
4035
4036 /*
4037  * Prove that in the backwards-direction subgraph starting at <this>
4038  * there is no lock matching <mask>:
4039  */
4040 static int
4041 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4042                       enum lock_usage_bit bit)
4043 {
4044         enum bfs_result ret;
4045         struct lock_list root;
4046         struct lock_list *target_entry;
4047         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4048         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4049
4050         bfs_init_rootb(&root, this);
4051         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4052         if (bfs_error(ret)) {
4053                 print_bfs_bug(ret);
4054                 return 0;
4055         }
4056         if (ret == BFS_RNOMATCH)
4057                 return 1;
4058
4059         /* Check whether write or read usage is the match */
4060         if (target_entry->class->usage_mask & lock_flag(bit)) {
4061                 print_irq_inversion_bug(curr, &root, target_entry,
4062                                         this, 0, state_name(bit));
4063         } else {
4064                 print_irq_inversion_bug(curr, &root, target_entry,
4065                                         this, 0, state_name(read_bit));
4066         }
4067
4068         return 0;
4069 }
4070
4071 void print_irqtrace_events(struct task_struct *curr)
4072 {
4073         const struct irqtrace_events *trace = &curr->irqtrace;
4074
4075         printk("irq event stamp: %u\n", trace->irq_events);
4076         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4077                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4078                 (void *)trace->hardirq_enable_ip);
4079         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4080                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4081                 (void *)trace->hardirq_disable_ip);
4082         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4083                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4084                 (void *)trace->softirq_enable_ip);
4085         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4086                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4087                 (void *)trace->softirq_disable_ip);
4088 }
4089
4090 static int HARDIRQ_verbose(struct lock_class *class)
4091 {
4092 #if HARDIRQ_VERBOSE
4093         return class_filter(class);
4094 #endif
4095         return 0;
4096 }
4097
4098 static int SOFTIRQ_verbose(struct lock_class *class)
4099 {
4100 #if SOFTIRQ_VERBOSE
4101         return class_filter(class);
4102 #endif
4103         return 0;
4104 }
4105
4106 static int (*state_verbose_f[])(struct lock_class *class) = {
4107 #define LOCKDEP_STATE(__STATE) \
4108         __STATE##_verbose,
4109 #include "lockdep_states.h"
4110 #undef LOCKDEP_STATE
4111 };
4112
4113 static inline int state_verbose(enum lock_usage_bit bit,
4114                                 struct lock_class *class)
4115 {
4116         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4117 }
4118
4119 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4120                              enum lock_usage_bit bit, const char *name);
4121
4122 static int
4123 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4124                 enum lock_usage_bit new_bit)
4125 {
4126         int excl_bit = exclusive_bit(new_bit);
4127         int read = new_bit & LOCK_USAGE_READ_MASK;
4128         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4129
4130         /*
4131          * Validate that this particular lock does not have conflicting
4132          * usage states.
4133          */
4134         if (!valid_state(curr, this, new_bit, excl_bit))
4135                 return 0;
4136
4137         /*
4138          * Check for read in write conflicts
4139          */
4140         if (!read && !valid_state(curr, this, new_bit,
4141                                   excl_bit + LOCK_USAGE_READ_MASK))
4142                 return 0;
4143
4144
4145         /*
4146          * Validate that the lock dependencies don't have conflicting usage
4147          * states.
4148          */
4149         if (dir) {
4150                 /*
4151                  * mark ENABLED has to look backwards -- to ensure no dependee
4152                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4153                  */
4154                 if (!check_usage_backwards(curr, this, excl_bit))
4155                         return 0;
4156         } else {
4157                 /*
4158                  * mark USED_IN has to look forwards -- to ensure no dependency
4159                  * has ENABLED state, which would allow recursion deadlocks.
4160                  */
4161                 if (!check_usage_forwards(curr, this, excl_bit))
4162                         return 0;
4163         }
4164
4165         if (state_verbose(new_bit, hlock_class(this)))
4166                 return 2;
4167
4168         return 1;
4169 }
4170
4171 /*
4172  * Mark all held locks with a usage bit:
4173  */
4174 static int
4175 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4176 {
4177         struct held_lock *hlock;
4178         int i;
4179
4180         for (i = 0; i < curr->lockdep_depth; i++) {
4181                 enum lock_usage_bit hlock_bit = base_bit;
4182                 hlock = curr->held_locks + i;
4183
4184                 if (hlock->read)
4185                         hlock_bit += LOCK_USAGE_READ_MASK;
4186
4187                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4188
4189                 if (!hlock->check)
4190                         continue;
4191
4192                 if (!mark_lock(curr, hlock, hlock_bit))
4193                         return 0;
4194         }
4195
4196         return 1;
4197 }
4198
4199 /*
4200  * Hardirqs will be enabled:
4201  */
4202 static void __trace_hardirqs_on_caller(void)
4203 {
4204         struct task_struct *curr = current;
4205
4206         /*
4207          * We are going to turn hardirqs on, so set the
4208          * usage bit for all held locks:
4209          */
4210         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4211                 return;
4212         /*
4213          * If we have softirqs enabled, then set the usage
4214          * bit for all held locks. (disabled hardirqs prevented
4215          * this bit from being set before)
4216          */
4217         if (curr->softirqs_enabled)
4218                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4219 }
4220
4221 /**
4222  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4223  *
4224  * Invoked before a possible transition to RCU idle from exit to user or
4225  * guest mode. This ensures that all RCU operations are done before RCU
4226  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4227  * invoked to set the final state.
4228  */
4229 void lockdep_hardirqs_on_prepare(void)
4230 {
4231         if (unlikely(!debug_locks))
4232                 return;
4233
4234         /*
4235          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4236          */
4237         if (unlikely(in_nmi()))
4238                 return;
4239
4240         if (unlikely(this_cpu_read(lockdep_recursion)))
4241                 return;
4242
4243         if (unlikely(lockdep_hardirqs_enabled())) {
4244                 /*
4245                  * Neither irq nor preemption are disabled here
4246                  * so this is racy by nature but losing one hit
4247                  * in a stat is not a big deal.
4248                  */
4249                 __debug_atomic_inc(redundant_hardirqs_on);
4250                 return;
4251         }
4252
4253         /*
4254          * We're enabling irqs and according to our state above irqs weren't
4255          * already enabled, yet we find the hardware thinks they are in fact
4256          * enabled.. someone messed up their IRQ state tracing.
4257          */
4258         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4259                 return;
4260
4261         /*
4262          * See the fine text that goes along with this variable definition.
4263          */
4264         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4265                 return;
4266
4267         /*
4268          * Can't allow enabling interrupts while in an interrupt handler,
4269          * that's general bad form and such. Recursion, limited stack etc..
4270          */
4271         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4272                 return;
4273
4274         current->hardirq_chain_key = current->curr_chain_key;
4275
4276         lockdep_recursion_inc();
4277         __trace_hardirqs_on_caller();
4278         lockdep_recursion_finish();
4279 }
4280 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4281
4282 void noinstr lockdep_hardirqs_on(unsigned long ip)
4283 {
4284         struct irqtrace_events *trace = &current->irqtrace;
4285
4286         if (unlikely(!debug_locks))
4287                 return;
4288
4289         /*
4290          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4291          * tracking state and hardware state are out of sync.
4292          *
4293          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4294          * and not rely on hardware state like normal interrupts.
4295          */
4296         if (unlikely(in_nmi())) {
4297                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4298                         return;
4299
4300                 /*
4301                  * Skip:
4302                  *  - recursion check, because NMI can hit lockdep;
4303                  *  - hardware state check, because above;
4304                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4305                  */
4306                 goto skip_checks;
4307         }
4308
4309         if (unlikely(this_cpu_read(lockdep_recursion)))
4310                 return;
4311
4312         if (lockdep_hardirqs_enabled()) {
4313                 /*
4314                  * Neither irq nor preemption are disabled here
4315                  * so this is racy by nature but losing one hit
4316                  * in a stat is not a big deal.
4317                  */
4318                 __debug_atomic_inc(redundant_hardirqs_on);
4319                 return;
4320         }
4321
4322         /*
4323          * We're enabling irqs and according to our state above irqs weren't
4324          * already enabled, yet we find the hardware thinks they are in fact
4325          * enabled.. someone messed up their IRQ state tracing.
4326          */
4327         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4328                 return;
4329
4330         /*
4331          * Ensure the lock stack remained unchanged between
4332          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4333          */
4334         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4335                             current->curr_chain_key);
4336
4337 skip_checks:
4338         /* we'll do an OFF -> ON transition: */
4339         __this_cpu_write(hardirqs_enabled, 1);
4340         trace->hardirq_enable_ip = ip;
4341         trace->hardirq_enable_event = ++trace->irq_events;
4342         debug_atomic_inc(hardirqs_on_events);
4343 }
4344 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4345
4346 /*
4347  * Hardirqs were disabled:
4348  */
4349 void noinstr lockdep_hardirqs_off(unsigned long ip)
4350 {
4351         if (unlikely(!debug_locks))
4352                 return;
4353
4354         /*
4355          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4356          * they will restore the software state. This ensures the software
4357          * state is consistent inside NMIs as well.
4358          */
4359         if (in_nmi()) {
4360                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4361                         return;
4362         } else if (__this_cpu_read(lockdep_recursion))
4363                 return;
4364
4365         /*
4366          * So we're supposed to get called after you mask local IRQs, but for
4367          * some reason the hardware doesn't quite think you did a proper job.
4368          */
4369         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4370                 return;
4371
4372         if (lockdep_hardirqs_enabled()) {
4373                 struct irqtrace_events *trace = &current->irqtrace;
4374
4375                 /*
4376                  * We have done an ON -> OFF transition:
4377                  */
4378                 __this_cpu_write(hardirqs_enabled, 0);
4379                 trace->hardirq_disable_ip = ip;
4380                 trace->hardirq_disable_event = ++trace->irq_events;
4381                 debug_atomic_inc(hardirqs_off_events);
4382         } else {
4383                 debug_atomic_inc(redundant_hardirqs_off);
4384         }
4385 }
4386 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4387
4388 /*
4389  * Softirqs will be enabled:
4390  */
4391 void lockdep_softirqs_on(unsigned long ip)
4392 {
4393         struct irqtrace_events *trace = &current->irqtrace;
4394
4395         if (unlikely(!lockdep_enabled()))
4396                 return;
4397
4398         /*
4399          * We fancy IRQs being disabled here, see softirq.c, avoids
4400          * funny state and nesting things.
4401          */
4402         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4403                 return;
4404
4405         if (current->softirqs_enabled) {
4406                 debug_atomic_inc(redundant_softirqs_on);
4407                 return;
4408         }
4409
4410         lockdep_recursion_inc();
4411         /*
4412          * We'll do an OFF -> ON transition:
4413          */
4414         current->softirqs_enabled = 1;
4415         trace->softirq_enable_ip = ip;
4416         trace->softirq_enable_event = ++trace->irq_events;
4417         debug_atomic_inc(softirqs_on_events);
4418         /*
4419          * We are going to turn softirqs on, so set the
4420          * usage bit for all held locks, if hardirqs are
4421          * enabled too:
4422          */
4423         if (lockdep_hardirqs_enabled())
4424                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4425         lockdep_recursion_finish();
4426 }
4427
4428 /*
4429  * Softirqs were disabled:
4430  */
4431 void lockdep_softirqs_off(unsigned long ip)
4432 {
4433         if (unlikely(!lockdep_enabled()))
4434                 return;
4435
4436         /*
4437          * We fancy IRQs being disabled here, see softirq.c
4438          */
4439         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4440                 return;
4441
4442         if (current->softirqs_enabled) {
4443                 struct irqtrace_events *trace = &current->irqtrace;
4444
4445                 /*
4446                  * We have done an ON -> OFF transition:
4447                  */
4448                 current->softirqs_enabled = 0;
4449                 trace->softirq_disable_ip = ip;
4450                 trace->softirq_disable_event = ++trace->irq_events;
4451                 debug_atomic_inc(softirqs_off_events);
4452                 /*
4453                  * Whoops, we wanted softirqs off, so why aren't they?
4454                  */
4455                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4456         } else
4457                 debug_atomic_inc(redundant_softirqs_off);
4458 }
4459
4460 static int
4461 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4462 {
4463         if (!check)
4464                 goto lock_used;
4465
4466         /*
4467          * If non-trylock use in a hardirq or softirq context, then
4468          * mark the lock as used in these contexts:
4469          */
4470         if (!hlock->trylock) {
4471                 if (hlock->read) {
4472                         if (lockdep_hardirq_context())
4473                                 if (!mark_lock(curr, hlock,
4474                                                 LOCK_USED_IN_HARDIRQ_READ))
4475                                         return 0;
4476                         if (curr->softirq_context)
4477                                 if (!mark_lock(curr, hlock,
4478                                                 LOCK_USED_IN_SOFTIRQ_READ))
4479                                         return 0;
4480                 } else {
4481                         if (lockdep_hardirq_context())
4482                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4483                                         return 0;
4484                         if (curr->softirq_context)
4485                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4486                                         return 0;
4487                 }
4488         }
4489         if (!hlock->hardirqs_off) {
4490                 if (hlock->read) {
4491                         if (!mark_lock(curr, hlock,
4492                                         LOCK_ENABLED_HARDIRQ_READ))
4493                                 return 0;
4494                         if (curr->softirqs_enabled)
4495                                 if (!mark_lock(curr, hlock,
4496                                                 LOCK_ENABLED_SOFTIRQ_READ))
4497                                         return 0;
4498                 } else {
4499                         if (!mark_lock(curr, hlock,
4500                                         LOCK_ENABLED_HARDIRQ))
4501                                 return 0;
4502                         if (curr->softirqs_enabled)
4503                                 if (!mark_lock(curr, hlock,
4504                                                 LOCK_ENABLED_SOFTIRQ))
4505                                         return 0;
4506                 }
4507         }
4508
4509 lock_used:
4510         /* mark it as used: */
4511         if (!mark_lock(curr, hlock, LOCK_USED))
4512                 return 0;
4513
4514         return 1;
4515 }
4516
4517 static inline unsigned int task_irq_context(struct task_struct *task)
4518 {
4519         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4520                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4521 }
4522
4523 static int separate_irq_context(struct task_struct *curr,
4524                 struct held_lock *hlock)
4525 {
4526         unsigned int depth = curr->lockdep_depth;
4527
4528         /*
4529          * Keep track of points where we cross into an interrupt context:
4530          */
4531         if (depth) {
4532                 struct held_lock *prev_hlock;
4533
4534                 prev_hlock = curr->held_locks + depth-1;
4535                 /*
4536                  * If we cross into another context, reset the
4537                  * hash key (this also prevents the checking and the
4538                  * adding of the dependency to 'prev'):
4539                  */
4540                 if (prev_hlock->irq_context != hlock->irq_context)
4541                         return 1;
4542         }
4543         return 0;
4544 }
4545
4546 /*
4547  * Mark a lock with a usage bit, and validate the state transition:
4548  */
4549 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4550                              enum lock_usage_bit new_bit)
4551 {
4552         unsigned int new_mask, ret = 1;
4553
4554         if (new_bit >= LOCK_USAGE_STATES) {
4555                 DEBUG_LOCKS_WARN_ON(1);
4556                 return 0;
4557         }
4558
4559         if (new_bit == LOCK_USED && this->read)
4560                 new_bit = LOCK_USED_READ;
4561
4562         new_mask = 1 << new_bit;
4563
4564         /*
4565          * If already set then do not dirty the cacheline,
4566          * nor do any checks:
4567          */
4568         if (likely(hlock_class(this)->usage_mask & new_mask))
4569                 return 1;
4570
4571         if (!graph_lock())
4572                 return 0;
4573         /*
4574          * Make sure we didn't race:
4575          */
4576         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4577                 goto unlock;
4578
4579         if (!hlock_class(this)->usage_mask)
4580                 debug_atomic_dec(nr_unused_locks);
4581
4582         hlock_class(this)->usage_mask |= new_mask;
4583
4584         if (new_bit < LOCK_TRACE_STATES) {
4585                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4586                         return 0;
4587         }
4588
4589         if (new_bit < LOCK_USED) {
4590                 ret = mark_lock_irq(curr, this, new_bit);
4591                 if (!ret)
4592                         return 0;
4593         }
4594
4595 unlock:
4596         graph_unlock();
4597
4598         /*
4599          * We must printk outside of the graph_lock:
4600          */
4601         if (ret == 2) {
4602                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4603                 print_lock(this);
4604                 print_irqtrace_events(curr);
4605                 dump_stack();
4606         }
4607
4608         return ret;
4609 }
4610
4611 static inline short task_wait_context(struct task_struct *curr)
4612 {
4613         /*
4614          * Set appropriate wait type for the context; for IRQs we have to take
4615          * into account force_irqthread as that is implied by PREEMPT_RT.
4616          */
4617         if (lockdep_hardirq_context()) {
4618                 /*
4619                  * Check if force_irqthreads will run us threaded.
4620                  */
4621                 if (curr->hardirq_threaded || curr->irq_config)
4622                         return LD_WAIT_CONFIG;
4623
4624                 return LD_WAIT_SPIN;
4625         } else if (curr->softirq_context) {
4626                 /*
4627                  * Softirqs are always threaded.
4628                  */
4629                 return LD_WAIT_CONFIG;
4630         }
4631
4632         return LD_WAIT_MAX;
4633 }
4634
4635 static int
4636 print_lock_invalid_wait_context(struct task_struct *curr,
4637                                 struct held_lock *hlock)
4638 {
4639         short curr_inner;
4640
4641         if (!debug_locks_off())
4642                 return 0;
4643         if (debug_locks_silent)
4644                 return 0;
4645
4646         pr_warn("\n");
4647         pr_warn("=============================\n");
4648         pr_warn("[ BUG: Invalid wait context ]\n");
4649         print_kernel_ident();
4650         pr_warn("-----------------------------\n");
4651
4652         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4653         print_lock(hlock);
4654
4655         pr_warn("other info that might help us debug this:\n");
4656
4657         curr_inner = task_wait_context(curr);
4658         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4659
4660         lockdep_print_held_locks(curr);
4661
4662         pr_warn("stack backtrace:\n");
4663         dump_stack();
4664
4665         return 0;
4666 }
4667
4668 /*
4669  * Verify the wait_type context.
4670  *
4671  * This check validates we takes locks in the right wait-type order; that is it
4672  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4673  * acquire spinlocks inside raw_spinlocks and the sort.
4674  *
4675  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4676  * can be taken from (pretty much) any context but also has constraints.
4677  * However when taken in a stricter environment the RCU lock does not loosen
4678  * the constraints.
4679  *
4680  * Therefore we must look for the strictest environment in the lock stack and
4681  * compare that to the lock we're trying to acquire.
4682  */
4683 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4684 {
4685         u8 next_inner = hlock_class(next)->wait_type_inner;
4686         u8 next_outer = hlock_class(next)->wait_type_outer;
4687         u8 curr_inner;
4688         int depth;
4689
4690         if (!next_inner || next->trylock)
4691                 return 0;
4692
4693         if (!next_outer)
4694                 next_outer = next_inner;
4695
4696         /*
4697          * Find start of current irq_context..
4698          */
4699         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4700                 struct held_lock *prev = curr->held_locks + depth;
4701                 if (prev->irq_context != next->irq_context)
4702                         break;
4703         }
4704         depth++;
4705
4706         curr_inner = task_wait_context(curr);
4707
4708         for (; depth < curr->lockdep_depth; depth++) {
4709                 struct held_lock *prev = curr->held_locks + depth;
4710                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4711
4712                 if (prev_inner) {
4713                         /*
4714                          * We can have a bigger inner than a previous one
4715                          * when outer is smaller than inner, as with RCU.
4716                          *
4717                          * Also due to trylocks.
4718                          */
4719                         curr_inner = min(curr_inner, prev_inner);
4720                 }
4721         }
4722
4723         if (next_outer > curr_inner)
4724                 return print_lock_invalid_wait_context(curr, next);
4725
4726         return 0;
4727 }
4728
4729 #else /* CONFIG_PROVE_LOCKING */
4730
4731 static inline int
4732 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4733 {
4734         return 1;
4735 }
4736
4737 static inline unsigned int task_irq_context(struct task_struct *task)
4738 {
4739         return 0;
4740 }
4741
4742 static inline int separate_irq_context(struct task_struct *curr,
4743                 struct held_lock *hlock)
4744 {
4745         return 0;
4746 }
4747
4748 static inline int check_wait_context(struct task_struct *curr,
4749                                      struct held_lock *next)
4750 {
4751         return 0;
4752 }
4753
4754 #endif /* CONFIG_PROVE_LOCKING */
4755
4756 /*
4757  * Initialize a lock instance's lock-class mapping info:
4758  */
4759 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4760                             struct lock_class_key *key, int subclass,
4761                             u8 inner, u8 outer, u8 lock_type)
4762 {
4763         int i;
4764
4765         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4766                 lock->class_cache[i] = NULL;
4767
4768 #ifdef CONFIG_LOCK_STAT
4769         lock->cpu = raw_smp_processor_id();
4770 #endif
4771
4772         /*
4773          * Can't be having no nameless bastards around this place!
4774          */
4775         if (DEBUG_LOCKS_WARN_ON(!name)) {
4776                 lock->name = "NULL";
4777                 return;
4778         }
4779
4780         lock->name = name;
4781
4782         lock->wait_type_outer = outer;
4783         lock->wait_type_inner = inner;
4784         lock->lock_type = lock_type;
4785
4786         /*
4787          * No key, no joy, we need to hash something.
4788          */
4789         if (DEBUG_LOCKS_WARN_ON(!key))
4790                 return;
4791         /*
4792          * Sanity check, the lock-class key must either have been allocated
4793          * statically or must have been registered as a dynamic key.
4794          */
4795         if (!static_obj(key) && !is_dynamic_key(key)) {
4796                 if (debug_locks)
4797                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4798                 DEBUG_LOCKS_WARN_ON(1);
4799                 return;
4800         }
4801         lock->key = key;
4802
4803         if (unlikely(!debug_locks))
4804                 return;
4805
4806         if (subclass) {
4807                 unsigned long flags;
4808
4809                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4810                         return;
4811
4812                 raw_local_irq_save(flags);
4813                 lockdep_recursion_inc();
4814                 register_lock_class(lock, subclass, 1);
4815                 lockdep_recursion_finish();
4816                 raw_local_irq_restore(flags);
4817         }
4818 }
4819 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4820
4821 struct lock_class_key __lockdep_no_validate__;
4822 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4823
4824 static void
4825 print_lock_nested_lock_not_held(struct task_struct *curr,
4826                                 struct held_lock *hlock)
4827 {
4828         if (!debug_locks_off())
4829                 return;
4830         if (debug_locks_silent)
4831                 return;
4832
4833         pr_warn("\n");
4834         pr_warn("==================================\n");
4835         pr_warn("WARNING: Nested lock was not taken\n");
4836         print_kernel_ident();
4837         pr_warn("----------------------------------\n");
4838
4839         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4840         print_lock(hlock);
4841
4842         pr_warn("\nbut this task is not holding:\n");
4843         pr_warn("%s\n", hlock->nest_lock->name);
4844
4845         pr_warn("\nstack backtrace:\n");
4846         dump_stack();
4847
4848         pr_warn("\nother info that might help us debug this:\n");
4849         lockdep_print_held_locks(curr);
4850
4851         pr_warn("\nstack backtrace:\n");
4852         dump_stack();
4853 }
4854
4855 static int __lock_is_held(const struct lockdep_map *lock, int read);
4856
4857 /*
4858  * This gets called for every mutex_lock*()/spin_lock*() operation.
4859  * We maintain the dependency maps and validate the locking attempt:
4860  *
4861  * The callers must make sure that IRQs are disabled before calling it,
4862  * otherwise we could get an interrupt which would want to take locks,
4863  * which would end up in lockdep again.
4864  */
4865 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4866                           int trylock, int read, int check, int hardirqs_off,
4867                           struct lockdep_map *nest_lock, unsigned long ip,
4868                           int references, int pin_count)
4869 {
4870         struct task_struct *curr = current;
4871         struct lock_class *class = NULL;
4872         struct held_lock *hlock;
4873         unsigned int depth;
4874         int chain_head = 0;
4875         int class_idx;
4876         u64 chain_key;
4877
4878         if (unlikely(!debug_locks))
4879                 return 0;
4880
4881         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4882                 check = 0;
4883
4884         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4885                 class = lock->class_cache[subclass];
4886         /*
4887          * Not cached?
4888          */
4889         if (unlikely(!class)) {
4890                 class = register_lock_class(lock, subclass, 0);
4891                 if (!class)
4892                         return 0;
4893         }
4894
4895         debug_class_ops_inc(class);
4896
4897         if (very_verbose(class)) {
4898                 printk("\nacquire class [%px] %s", class->key, class->name);
4899                 if (class->name_version > 1)
4900                         printk(KERN_CONT "#%d", class->name_version);
4901                 printk(KERN_CONT "\n");
4902                 dump_stack();
4903         }
4904
4905         /*
4906          * Add the lock to the list of currently held locks.
4907          * (we dont increase the depth just yet, up until the
4908          * dependency checks are done)
4909          */
4910         depth = curr->lockdep_depth;
4911         /*
4912          * Ran out of static storage for our per-task lock stack again have we?
4913          */
4914         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4915                 return 0;
4916
4917         class_idx = class - lock_classes;
4918
4919         if (depth) { /* we're holding locks */
4920                 hlock = curr->held_locks + depth - 1;
4921                 if (hlock->class_idx == class_idx && nest_lock) {
4922                         if (!references)
4923                                 references++;
4924
4925                         if (!hlock->references)
4926                                 hlock->references++;
4927
4928                         hlock->references += references;
4929
4930                         /* Overflow */
4931                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4932                                 return 0;
4933
4934                         return 2;
4935                 }
4936         }
4937
4938         hlock = curr->held_locks + depth;
4939         /*
4940          * Plain impossible, we just registered it and checked it weren't no
4941          * NULL like.. I bet this mushroom I ate was good!
4942          */
4943         if (DEBUG_LOCKS_WARN_ON(!class))
4944                 return 0;
4945         hlock->class_idx = class_idx;
4946         hlock->acquire_ip = ip;
4947         hlock->instance = lock;
4948         hlock->nest_lock = nest_lock;
4949         hlock->irq_context = task_irq_context(curr);
4950         hlock->trylock = trylock;
4951         hlock->read = read;
4952         hlock->check = check;
4953         hlock->hardirqs_off = !!hardirqs_off;
4954         hlock->references = references;
4955 #ifdef CONFIG_LOCK_STAT
4956         hlock->waittime_stamp = 0;
4957         hlock->holdtime_stamp = lockstat_clock();
4958 #endif
4959         hlock->pin_count = pin_count;
4960
4961         if (check_wait_context(curr, hlock))
4962                 return 0;
4963
4964         /* Initialize the lock usage bit */
4965         if (!mark_usage(curr, hlock, check))
4966                 return 0;
4967
4968         /*
4969          * Calculate the chain hash: it's the combined hash of all the
4970          * lock keys along the dependency chain. We save the hash value
4971          * at every step so that we can get the current hash easily
4972          * after unlock. The chain hash is then used to cache dependency
4973          * results.
4974          *
4975          * The 'key ID' is what is the most compact key value to drive
4976          * the hash, not class->key.
4977          */
4978         /*
4979          * Whoops, we did it again.. class_idx is invalid.
4980          */
4981         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4982                 return 0;
4983
4984         chain_key = curr->curr_chain_key;
4985         if (!depth) {
4986                 /*
4987                  * How can we have a chain hash when we ain't got no keys?!
4988                  */
4989                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4990                         return 0;
4991                 chain_head = 1;
4992         }
4993
4994         hlock->prev_chain_key = chain_key;
4995         if (separate_irq_context(curr, hlock)) {
4996                 chain_key = INITIAL_CHAIN_KEY;
4997                 chain_head = 1;
4998         }
4999         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5000
5001         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5002                 print_lock_nested_lock_not_held(curr, hlock);
5003                 return 0;
5004         }
5005
5006         if (!debug_locks_silent) {
5007                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5008                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5009         }
5010
5011         if (!validate_chain(curr, hlock, chain_head, chain_key))
5012                 return 0;
5013
5014         curr->curr_chain_key = chain_key;
5015         curr->lockdep_depth++;
5016         check_chain_key(curr);
5017 #ifdef CONFIG_DEBUG_LOCKDEP
5018         if (unlikely(!debug_locks))
5019                 return 0;
5020 #endif
5021         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5022                 debug_locks_off();
5023                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5024                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5025                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5026
5027                 lockdep_print_held_locks(current);
5028                 debug_show_all_locks();
5029                 dump_stack();
5030
5031                 return 0;
5032         }
5033
5034         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5035                 max_lockdep_depth = curr->lockdep_depth;
5036
5037         return 1;
5038 }
5039
5040 static void print_unlock_imbalance_bug(struct task_struct *curr,
5041                                        struct lockdep_map *lock,
5042                                        unsigned long ip)
5043 {
5044         if (!debug_locks_off())
5045                 return;
5046         if (debug_locks_silent)
5047                 return;
5048
5049         pr_warn("\n");
5050         pr_warn("=====================================\n");
5051         pr_warn("WARNING: bad unlock balance detected!\n");
5052         print_kernel_ident();
5053         pr_warn("-------------------------------------\n");
5054         pr_warn("%s/%d is trying to release lock (",
5055                 curr->comm, task_pid_nr(curr));
5056         print_lockdep_cache(lock);
5057         pr_cont(") at:\n");
5058         print_ip_sym(KERN_WARNING, ip);
5059         pr_warn("but there are no more locks to release!\n");
5060         pr_warn("\nother info that might help us debug this:\n");
5061         lockdep_print_held_locks(curr);
5062
5063         pr_warn("\nstack backtrace:\n");
5064         dump_stack();
5065 }
5066
5067 static noinstr int match_held_lock(const struct held_lock *hlock,
5068                                    const struct lockdep_map *lock)
5069 {
5070         if (hlock->instance == lock)
5071                 return 1;
5072
5073         if (hlock->references) {
5074                 const struct lock_class *class = lock->class_cache[0];
5075
5076                 if (!class)
5077                         class = look_up_lock_class(lock, 0);
5078
5079                 /*
5080                  * If look_up_lock_class() failed to find a class, we're trying
5081                  * to test if we hold a lock that has never yet been acquired.
5082                  * Clearly if the lock hasn't been acquired _ever_, we're not
5083                  * holding it either, so report failure.
5084                  */
5085                 if (!class)
5086                         return 0;
5087
5088                 /*
5089                  * References, but not a lock we're actually ref-counting?
5090                  * State got messed up, follow the sites that change ->references
5091                  * and try to make sense of it.
5092                  */
5093                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5094                         return 0;
5095
5096                 if (hlock->class_idx == class - lock_classes)
5097                         return 1;
5098         }
5099
5100         return 0;
5101 }
5102
5103 /* @depth must not be zero */
5104 static struct held_lock *find_held_lock(struct task_struct *curr,
5105                                         struct lockdep_map *lock,
5106                                         unsigned int depth, int *idx)
5107 {
5108         struct held_lock *ret, *hlock, *prev_hlock;
5109         int i;
5110
5111         i = depth - 1;
5112         hlock = curr->held_locks + i;
5113         ret = hlock;
5114         if (match_held_lock(hlock, lock))
5115                 goto out;
5116
5117         ret = NULL;
5118         for (i--, prev_hlock = hlock--;
5119              i >= 0;
5120              i--, prev_hlock = hlock--) {
5121                 /*
5122                  * We must not cross into another context:
5123                  */
5124                 if (prev_hlock->irq_context != hlock->irq_context) {
5125                         ret = NULL;
5126                         break;
5127                 }
5128                 if (match_held_lock(hlock, lock)) {
5129                         ret = hlock;
5130                         break;
5131                 }
5132         }
5133
5134 out:
5135         *idx = i;
5136         return ret;
5137 }
5138
5139 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5140                                 int idx, unsigned int *merged)
5141 {
5142         struct held_lock *hlock;
5143         int first_idx = idx;
5144
5145         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5146                 return 0;
5147
5148         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5149                 switch (__lock_acquire(hlock->instance,
5150                                     hlock_class(hlock)->subclass,
5151                                     hlock->trylock,
5152                                     hlock->read, hlock->check,
5153                                     hlock->hardirqs_off,
5154                                     hlock->nest_lock, hlock->acquire_ip,
5155                                     hlock->references, hlock->pin_count)) {
5156                 case 0:
5157                         return 1;
5158                 case 1:
5159                         break;
5160                 case 2:
5161                         *merged += (idx == first_idx);
5162                         break;
5163                 default:
5164                         WARN_ON(1);
5165                         return 0;
5166                 }
5167         }
5168         return 0;
5169 }
5170
5171 static int
5172 __lock_set_class(struct lockdep_map *lock, const char *name,
5173                  struct lock_class_key *key, unsigned int subclass,
5174                  unsigned long ip)
5175 {
5176         struct task_struct *curr = current;
5177         unsigned int depth, merged = 0;
5178         struct held_lock *hlock;
5179         struct lock_class *class;
5180         int i;
5181
5182         if (unlikely(!debug_locks))
5183                 return 0;
5184
5185         depth = curr->lockdep_depth;
5186         /*
5187          * This function is about (re)setting the class of a held lock,
5188          * yet we're not actually holding any locks. Naughty user!
5189          */
5190         if (DEBUG_LOCKS_WARN_ON(!depth))
5191                 return 0;
5192
5193         hlock = find_held_lock(curr, lock, depth, &i);
5194         if (!hlock) {
5195                 print_unlock_imbalance_bug(curr, lock, ip);
5196                 return 0;
5197         }
5198
5199         lockdep_init_map_type(lock, name, key, 0,
5200                               lock->wait_type_inner,
5201                               lock->wait_type_outer,
5202                               lock->lock_type);
5203         class = register_lock_class(lock, subclass, 0);
5204         hlock->class_idx = class - lock_classes;
5205
5206         curr->lockdep_depth = i;
5207         curr->curr_chain_key = hlock->prev_chain_key;
5208
5209         if (reacquire_held_locks(curr, depth, i, &merged))
5210                 return 0;
5211
5212         /*
5213          * I took it apart and put it back together again, except now I have
5214          * these 'spare' parts.. where shall I put them.
5215          */
5216         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5217                 return 0;
5218         return 1;
5219 }
5220
5221 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5222 {
5223         struct task_struct *curr = current;
5224         unsigned int depth, merged = 0;
5225         struct held_lock *hlock;
5226         int i;
5227
5228         if (unlikely(!debug_locks))
5229                 return 0;
5230
5231         depth = curr->lockdep_depth;
5232         /*
5233          * This function is about (re)setting the class of a held lock,
5234          * yet we're not actually holding any locks. Naughty user!
5235          */
5236         if (DEBUG_LOCKS_WARN_ON(!depth))
5237                 return 0;
5238
5239         hlock = find_held_lock(curr, lock, depth, &i);
5240         if (!hlock) {
5241                 print_unlock_imbalance_bug(curr, lock, ip);
5242                 return 0;
5243         }
5244
5245         curr->lockdep_depth = i;
5246         curr->curr_chain_key = hlock->prev_chain_key;
5247
5248         WARN(hlock->read, "downgrading a read lock");
5249         hlock->read = 1;
5250         hlock->acquire_ip = ip;
5251
5252         if (reacquire_held_locks(curr, depth, i, &merged))
5253                 return 0;
5254
5255         /* Merging can't happen with unchanged classes.. */
5256         if (DEBUG_LOCKS_WARN_ON(merged))
5257                 return 0;
5258
5259         /*
5260          * I took it apart and put it back together again, except now I have
5261          * these 'spare' parts.. where shall I put them.
5262          */
5263         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5264                 return 0;
5265
5266         return 1;
5267 }
5268
5269 /*
5270  * Remove the lock from the list of currently held locks - this gets
5271  * called on mutex_unlock()/spin_unlock*() (or on a failed
5272  * mutex_lock_interruptible()).
5273  */
5274 static int
5275 __lock_release(struct lockdep_map *lock, unsigned long ip)
5276 {
5277         struct task_struct *curr = current;
5278         unsigned int depth, merged = 1;
5279         struct held_lock *hlock;
5280         int i;
5281
5282         if (unlikely(!debug_locks))
5283                 return 0;
5284
5285         depth = curr->lockdep_depth;
5286         /*
5287          * So we're all set to release this lock.. wait what lock? We don't
5288          * own any locks, you've been drinking again?
5289          */
5290         if (depth <= 0) {
5291                 print_unlock_imbalance_bug(curr, lock, ip);
5292                 return 0;
5293         }
5294
5295         /*
5296          * Check whether the lock exists in the current stack
5297          * of held locks:
5298          */
5299         hlock = find_held_lock(curr, lock, depth, &i);
5300         if (!hlock) {
5301                 print_unlock_imbalance_bug(curr, lock, ip);
5302                 return 0;
5303         }
5304
5305         if (hlock->instance == lock)
5306                 lock_release_holdtime(hlock);
5307
5308         WARN(hlock->pin_count, "releasing a pinned lock\n");
5309
5310         if (hlock->references) {
5311                 hlock->references--;
5312                 if (hlock->references) {
5313                         /*
5314                          * We had, and after removing one, still have
5315                          * references, the current lock stack is still
5316                          * valid. We're done!
5317                          */
5318                         return 1;
5319                 }
5320         }
5321
5322         /*
5323          * We have the right lock to unlock, 'hlock' points to it.
5324          * Now we remove it from the stack, and add back the other
5325          * entries (if any), recalculating the hash along the way:
5326          */
5327
5328         curr->lockdep_depth = i;
5329         curr->curr_chain_key = hlock->prev_chain_key;
5330
5331         /*
5332          * The most likely case is when the unlock is on the innermost
5333          * lock. In this case, we are done!
5334          */
5335         if (i == depth-1)
5336                 return 1;
5337
5338         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5339                 return 0;
5340
5341         /*
5342          * We had N bottles of beer on the wall, we drank one, but now
5343          * there's not N-1 bottles of beer left on the wall...
5344          * Pouring two of the bottles together is acceptable.
5345          */
5346         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5347
5348         /*
5349          * Since reacquire_held_locks() would have called check_chain_key()
5350          * indirectly via __lock_acquire(), we don't need to do it again
5351          * on return.
5352          */
5353         return 0;
5354 }
5355
5356 static __always_inline
5357 int __lock_is_held(const struct lockdep_map *lock, int read)
5358 {
5359         struct task_struct *curr = current;
5360         int i;
5361
5362         for (i = 0; i < curr->lockdep_depth; i++) {
5363                 struct held_lock *hlock = curr->held_locks + i;
5364
5365                 if (match_held_lock(hlock, lock)) {
5366                         if (read == -1 || !!hlock->read == read)
5367                                 return LOCK_STATE_HELD;
5368
5369                         return LOCK_STATE_NOT_HELD;
5370                 }
5371         }
5372
5373         return LOCK_STATE_NOT_HELD;
5374 }
5375
5376 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5377 {
5378         struct pin_cookie cookie = NIL_COOKIE;
5379         struct task_struct *curr = current;
5380         int i;
5381
5382         if (unlikely(!debug_locks))
5383                 return cookie;
5384
5385         for (i = 0; i < curr->lockdep_depth; i++) {
5386                 struct held_lock *hlock = curr->held_locks + i;
5387
5388                 if (match_held_lock(hlock, lock)) {
5389                         /*
5390                          * Grab 16bits of randomness; this is sufficient to not
5391                          * be guessable and still allows some pin nesting in
5392                          * our u32 pin_count.
5393                          */
5394                         cookie.val = 1 + (prandom_u32() >> 16);
5395                         hlock->pin_count += cookie.val;
5396                         return cookie;
5397                 }
5398         }
5399
5400         WARN(1, "pinning an unheld lock\n");
5401         return cookie;
5402 }
5403
5404 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5405 {
5406         struct task_struct *curr = current;
5407         int i;
5408
5409         if (unlikely(!debug_locks))
5410                 return;
5411
5412         for (i = 0; i < curr->lockdep_depth; i++) {
5413                 struct held_lock *hlock = curr->held_locks + i;
5414
5415                 if (match_held_lock(hlock, lock)) {
5416                         hlock->pin_count += cookie.val;
5417                         return;
5418                 }
5419         }
5420
5421         WARN(1, "pinning an unheld lock\n");
5422 }
5423
5424 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5425 {
5426         struct task_struct *curr = current;
5427         int i;
5428
5429         if (unlikely(!debug_locks))
5430                 return;
5431
5432         for (i = 0; i < curr->lockdep_depth; i++) {
5433                 struct held_lock *hlock = curr->held_locks + i;
5434
5435                 if (match_held_lock(hlock, lock)) {
5436                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5437                                 return;
5438
5439                         hlock->pin_count -= cookie.val;
5440
5441                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5442                                 hlock->pin_count = 0;
5443
5444                         return;
5445                 }
5446         }
5447
5448         WARN(1, "unpinning an unheld lock\n");
5449 }
5450
5451 /*
5452  * Check whether we follow the irq-flags state precisely:
5453  */
5454 static noinstr void check_flags(unsigned long flags)
5455 {
5456 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5457         if (!debug_locks)
5458                 return;
5459
5460         /* Get the warning out..  */
5461         instrumentation_begin();
5462
5463         if (irqs_disabled_flags(flags)) {
5464                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5465                         printk("possible reason: unannotated irqs-off.\n");
5466                 }
5467         } else {
5468                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5469                         printk("possible reason: unannotated irqs-on.\n");
5470                 }
5471         }
5472
5473         /*
5474          * We dont accurately track softirq state in e.g.
5475          * hardirq contexts (such as on 4KSTACKS), so only
5476          * check if not in hardirq contexts:
5477          */
5478         if (!hardirq_count()) {
5479                 if (softirq_count()) {
5480                         /* like the above, but with softirqs */
5481                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5482                 } else {
5483                         /* lick the above, does it taste good? */
5484                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5485                 }
5486         }
5487
5488         if (!debug_locks)
5489                 print_irqtrace_events(current);
5490
5491         instrumentation_end();
5492 #endif
5493 }
5494
5495 void lock_set_class(struct lockdep_map *lock, const char *name,
5496                     struct lock_class_key *key, unsigned int subclass,
5497                     unsigned long ip)
5498 {
5499         unsigned long flags;
5500
5501         if (unlikely(!lockdep_enabled()))
5502                 return;
5503
5504         raw_local_irq_save(flags);
5505         lockdep_recursion_inc();
5506         check_flags(flags);
5507         if (__lock_set_class(lock, name, key, subclass, ip))
5508                 check_chain_key(current);
5509         lockdep_recursion_finish();
5510         raw_local_irq_restore(flags);
5511 }
5512 EXPORT_SYMBOL_GPL(lock_set_class);
5513
5514 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5515 {
5516         unsigned long flags;
5517
5518         if (unlikely(!lockdep_enabled()))
5519                 return;
5520
5521         raw_local_irq_save(flags);
5522         lockdep_recursion_inc();
5523         check_flags(flags);
5524         if (__lock_downgrade(lock, ip))
5525                 check_chain_key(current);
5526         lockdep_recursion_finish();
5527         raw_local_irq_restore(flags);
5528 }
5529 EXPORT_SYMBOL_GPL(lock_downgrade);
5530
5531 /* NMI context !!! */
5532 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5533 {
5534 #ifdef CONFIG_PROVE_LOCKING
5535         struct lock_class *class = look_up_lock_class(lock, subclass);
5536         unsigned long mask = LOCKF_USED;
5537
5538         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5539         if (!class)
5540                 return;
5541
5542         /*
5543          * READ locks only conflict with USED, such that if we only ever use
5544          * READ locks, there is no deadlock possible -- RCU.
5545          */
5546         if (!hlock->read)
5547                 mask |= LOCKF_USED_READ;
5548
5549         if (!(class->usage_mask & mask))
5550                 return;
5551
5552         hlock->class_idx = class - lock_classes;
5553
5554         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5555 #endif
5556 }
5557
5558 static bool lockdep_nmi(void)
5559 {
5560         if (raw_cpu_read(lockdep_recursion))
5561                 return false;
5562
5563         if (!in_nmi())
5564                 return false;
5565
5566         return true;
5567 }
5568
5569 /*
5570  * read_lock() is recursive if:
5571  * 1. We force lockdep think this way in selftests or
5572  * 2. The implementation is not queued read/write lock or
5573  * 3. The locker is at an in_interrupt() context.
5574  */
5575 bool read_lock_is_recursive(void)
5576 {
5577         return force_read_lock_recursive ||
5578                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5579                in_interrupt();
5580 }
5581 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5582
5583 /*
5584  * We are not always called with irqs disabled - do that here,
5585  * and also avoid lockdep recursion:
5586  */
5587 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5588                           int trylock, int read, int check,
5589                           struct lockdep_map *nest_lock, unsigned long ip)
5590 {
5591         unsigned long flags;
5592
5593         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5594
5595         if (!debug_locks)
5596                 return;
5597
5598         if (unlikely(!lockdep_enabled())) {
5599                 /* XXX allow trylock from NMI ?!? */
5600                 if (lockdep_nmi() && !trylock) {
5601                         struct held_lock hlock;
5602
5603                         hlock.acquire_ip = ip;
5604                         hlock.instance = lock;
5605                         hlock.nest_lock = nest_lock;
5606                         hlock.irq_context = 2; // XXX
5607                         hlock.trylock = trylock;
5608                         hlock.read = read;
5609                         hlock.check = check;
5610                         hlock.hardirqs_off = true;
5611                         hlock.references = 0;
5612
5613                         verify_lock_unused(lock, &hlock, subclass);
5614                 }
5615                 return;
5616         }
5617
5618         raw_local_irq_save(flags);
5619         check_flags(flags);
5620
5621         lockdep_recursion_inc();
5622         __lock_acquire(lock, subclass, trylock, read, check,
5623                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5624         lockdep_recursion_finish();
5625         raw_local_irq_restore(flags);
5626 }
5627 EXPORT_SYMBOL_GPL(lock_acquire);
5628
5629 void lock_release(struct lockdep_map *lock, unsigned long ip)
5630 {
5631         unsigned long flags;
5632
5633         trace_lock_release(lock, ip);
5634
5635         if (unlikely(!lockdep_enabled()))
5636                 return;
5637
5638         raw_local_irq_save(flags);
5639         check_flags(flags);
5640
5641         lockdep_recursion_inc();
5642         if (__lock_release(lock, ip))
5643                 check_chain_key(current);
5644         lockdep_recursion_finish();
5645         raw_local_irq_restore(flags);
5646 }
5647 EXPORT_SYMBOL_GPL(lock_release);
5648
5649 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5650 {
5651         unsigned long flags;
5652         int ret = LOCK_STATE_NOT_HELD;
5653
5654         /*
5655          * Avoid false negative lockdep_assert_held() and
5656          * lockdep_assert_not_held().
5657          */
5658         if (unlikely(!lockdep_enabled()))
5659                 return LOCK_STATE_UNKNOWN;
5660
5661         raw_local_irq_save(flags);
5662         check_flags(flags);
5663
5664         lockdep_recursion_inc();
5665         ret = __lock_is_held(lock, read);
5666         lockdep_recursion_finish();
5667         raw_local_irq_restore(flags);
5668
5669         return ret;
5670 }
5671 EXPORT_SYMBOL_GPL(lock_is_held_type);
5672 NOKPROBE_SYMBOL(lock_is_held_type);
5673
5674 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5675 {
5676         struct pin_cookie cookie = NIL_COOKIE;
5677         unsigned long flags;
5678
5679         if (unlikely(!lockdep_enabled()))
5680                 return cookie;
5681
5682         raw_local_irq_save(flags);
5683         check_flags(flags);
5684
5685         lockdep_recursion_inc();
5686         cookie = __lock_pin_lock(lock);
5687         lockdep_recursion_finish();
5688         raw_local_irq_restore(flags);
5689
5690         return cookie;
5691 }
5692 EXPORT_SYMBOL_GPL(lock_pin_lock);
5693
5694 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5695 {
5696         unsigned long flags;
5697
5698         if (unlikely(!lockdep_enabled()))
5699                 return;
5700
5701         raw_local_irq_save(flags);
5702         check_flags(flags);
5703
5704         lockdep_recursion_inc();
5705         __lock_repin_lock(lock, cookie);
5706         lockdep_recursion_finish();
5707         raw_local_irq_restore(flags);
5708 }
5709 EXPORT_SYMBOL_GPL(lock_repin_lock);
5710
5711 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5712 {
5713         unsigned long flags;
5714
5715         if (unlikely(!lockdep_enabled()))
5716                 return;
5717
5718         raw_local_irq_save(flags);
5719         check_flags(flags);
5720
5721         lockdep_recursion_inc();
5722         __lock_unpin_lock(lock, cookie);
5723         lockdep_recursion_finish();
5724         raw_local_irq_restore(flags);
5725 }
5726 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5727
5728 #ifdef CONFIG_LOCK_STAT
5729 static void print_lock_contention_bug(struct task_struct *curr,
5730                                       struct lockdep_map *lock,
5731                                       unsigned long ip)
5732 {
5733         if (!debug_locks_off())
5734                 return;
5735         if (debug_locks_silent)
5736                 return;
5737
5738         pr_warn("\n");
5739         pr_warn("=================================\n");
5740         pr_warn("WARNING: bad contention detected!\n");
5741         print_kernel_ident();
5742         pr_warn("---------------------------------\n");
5743         pr_warn("%s/%d is trying to contend lock (",
5744                 curr->comm, task_pid_nr(curr));
5745         print_lockdep_cache(lock);
5746         pr_cont(") at:\n");
5747         print_ip_sym(KERN_WARNING, ip);
5748         pr_warn("but there are no locks held!\n");
5749         pr_warn("\nother info that might help us debug this:\n");
5750         lockdep_print_held_locks(curr);
5751
5752         pr_warn("\nstack backtrace:\n");
5753         dump_stack();
5754 }
5755
5756 static void
5757 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5758 {
5759         struct task_struct *curr = current;
5760         struct held_lock *hlock;
5761         struct lock_class_stats *stats;
5762         unsigned int depth;
5763         int i, contention_point, contending_point;
5764
5765         depth = curr->lockdep_depth;
5766         /*
5767          * Whee, we contended on this lock, except it seems we're not
5768          * actually trying to acquire anything much at all..
5769          */
5770         if (DEBUG_LOCKS_WARN_ON(!depth))
5771                 return;
5772
5773         hlock = find_held_lock(curr, lock, depth, &i);
5774         if (!hlock) {
5775                 print_lock_contention_bug(curr, lock, ip);
5776                 return;
5777         }
5778
5779         if (hlock->instance != lock)
5780                 return;
5781
5782         hlock->waittime_stamp = lockstat_clock();
5783
5784         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5785         contending_point = lock_point(hlock_class(hlock)->contending_point,
5786                                       lock->ip);
5787
5788         stats = get_lock_stats(hlock_class(hlock));
5789         if (contention_point < LOCKSTAT_POINTS)
5790                 stats->contention_point[contention_point]++;
5791         if (contending_point < LOCKSTAT_POINTS)
5792                 stats->contending_point[contending_point]++;
5793         if (lock->cpu != smp_processor_id())
5794                 stats->bounces[bounce_contended + !!hlock->read]++;
5795 }
5796
5797 static void
5798 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5799 {
5800         struct task_struct *curr = current;
5801         struct held_lock *hlock;
5802         struct lock_class_stats *stats;
5803         unsigned int depth;
5804         u64 now, waittime = 0;
5805         int i, cpu;
5806
5807         depth = curr->lockdep_depth;
5808         /*
5809          * Yay, we acquired ownership of this lock we didn't try to
5810          * acquire, how the heck did that happen?
5811          */
5812         if (DEBUG_LOCKS_WARN_ON(!depth))
5813                 return;
5814
5815         hlock = find_held_lock(curr, lock, depth, &i);
5816         if (!hlock) {
5817                 print_lock_contention_bug(curr, lock, _RET_IP_);
5818                 return;
5819         }
5820
5821         if (hlock->instance != lock)
5822                 return;
5823
5824         cpu = smp_processor_id();
5825         if (hlock->waittime_stamp) {
5826                 now = lockstat_clock();
5827                 waittime = now - hlock->waittime_stamp;
5828                 hlock->holdtime_stamp = now;
5829         }
5830
5831         stats = get_lock_stats(hlock_class(hlock));
5832         if (waittime) {
5833                 if (hlock->read)
5834                         lock_time_inc(&stats->read_waittime, waittime);
5835                 else
5836                         lock_time_inc(&stats->write_waittime, waittime);
5837         }
5838         if (lock->cpu != cpu)
5839                 stats->bounces[bounce_acquired + !!hlock->read]++;
5840
5841         lock->cpu = cpu;
5842         lock->ip = ip;
5843 }
5844
5845 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5846 {
5847         unsigned long flags;
5848
5849         trace_lock_contended(lock, ip);
5850
5851         if (unlikely(!lock_stat || !lockdep_enabled()))
5852                 return;
5853
5854         raw_local_irq_save(flags);
5855         check_flags(flags);
5856         lockdep_recursion_inc();
5857         __lock_contended(lock, ip);
5858         lockdep_recursion_finish();
5859         raw_local_irq_restore(flags);
5860 }
5861 EXPORT_SYMBOL_GPL(lock_contended);
5862
5863 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5864 {
5865         unsigned long flags;
5866
5867         trace_lock_acquired(lock, ip);
5868
5869         if (unlikely(!lock_stat || !lockdep_enabled()))
5870                 return;
5871
5872         raw_local_irq_save(flags);
5873         check_flags(flags);
5874         lockdep_recursion_inc();
5875         __lock_acquired(lock, ip);
5876         lockdep_recursion_finish();
5877         raw_local_irq_restore(flags);
5878 }
5879 EXPORT_SYMBOL_GPL(lock_acquired);
5880 #endif
5881
5882 /*
5883  * Used by the testsuite, sanitize the validator state
5884  * after a simulated failure:
5885  */
5886
5887 void lockdep_reset(void)
5888 {
5889         unsigned long flags;
5890         int i;
5891
5892         raw_local_irq_save(flags);
5893         lockdep_init_task(current);
5894         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5895         nr_hardirq_chains = 0;
5896         nr_softirq_chains = 0;
5897         nr_process_chains = 0;
5898         debug_locks = 1;
5899         for (i = 0; i < CHAINHASH_SIZE; i++)
5900                 INIT_HLIST_HEAD(chainhash_table + i);
5901         raw_local_irq_restore(flags);
5902 }
5903
5904 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5905 static void remove_class_from_lock_chain(struct pending_free *pf,
5906                                          struct lock_chain *chain,
5907                                          struct lock_class *class)
5908 {
5909 #ifdef CONFIG_PROVE_LOCKING
5910         int i;
5911
5912         for (i = chain->base; i < chain->base + chain->depth; i++) {
5913                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5914                         continue;
5915                 /*
5916                  * Each lock class occurs at most once in a lock chain so once
5917                  * we found a match we can break out of this loop.
5918                  */
5919                 goto free_lock_chain;
5920         }
5921         /* Since the chain has not been modified, return. */
5922         return;
5923
5924 free_lock_chain:
5925         free_chain_hlocks(chain->base, chain->depth);
5926         /* Overwrite the chain key for concurrent RCU readers. */
5927         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5928         dec_chains(chain->irq_context);
5929
5930         /*
5931          * Note: calling hlist_del_rcu() from inside a
5932          * hlist_for_each_entry_rcu() loop is safe.
5933          */
5934         hlist_del_rcu(&chain->entry);
5935         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5936         nr_zapped_lock_chains++;
5937 #endif
5938 }
5939
5940 /* Must be called with the graph lock held. */
5941 static void remove_class_from_lock_chains(struct pending_free *pf,
5942                                           struct lock_class *class)
5943 {
5944         struct lock_chain *chain;
5945         struct hlist_head *head;
5946         int i;
5947
5948         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5949                 head = chainhash_table + i;
5950                 hlist_for_each_entry_rcu(chain, head, entry) {
5951                         remove_class_from_lock_chain(pf, chain, class);
5952                 }
5953         }
5954 }
5955
5956 /*
5957  * Remove all references to a lock class. The caller must hold the graph lock.
5958  */
5959 static void zap_class(struct pending_free *pf, struct lock_class *class)
5960 {
5961         struct lock_list *entry;
5962         int i;
5963
5964         WARN_ON_ONCE(!class->key);
5965
5966         /*
5967          * Remove all dependencies this lock is
5968          * involved in:
5969          */
5970         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5971                 entry = list_entries + i;
5972                 if (entry->class != class && entry->links_to != class)
5973                         continue;
5974                 __clear_bit(i, list_entries_in_use);
5975                 nr_list_entries--;
5976                 list_del_rcu(&entry->entry);
5977         }
5978         if (list_empty(&class->locks_after) &&
5979             list_empty(&class->locks_before)) {
5980                 list_move_tail(&class->lock_entry, &pf->zapped);
5981                 hlist_del_rcu(&class->hash_entry);
5982                 WRITE_ONCE(class->key, NULL);
5983                 WRITE_ONCE(class->name, NULL);
5984                 nr_lock_classes--;
5985                 __clear_bit(class - lock_classes, lock_classes_in_use);
5986                 if (class - lock_classes == max_lock_class_idx)
5987                         max_lock_class_idx--;
5988         } else {
5989                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5990                           class->name);
5991         }
5992
5993         remove_class_from_lock_chains(pf, class);
5994         nr_zapped_classes++;
5995 }
5996
5997 static void reinit_class(struct lock_class *class)
5998 {
5999         void *const p = class;
6000         const unsigned int offset = offsetof(struct lock_class, key);
6001
6002         WARN_ON_ONCE(!class->lock_entry.next);
6003         WARN_ON_ONCE(!list_empty(&class->locks_after));
6004         WARN_ON_ONCE(!list_empty(&class->locks_before));
6005         memset(p + offset, 0, sizeof(*class) - offset);
6006         WARN_ON_ONCE(!class->lock_entry.next);
6007         WARN_ON_ONCE(!list_empty(&class->locks_after));
6008         WARN_ON_ONCE(!list_empty(&class->locks_before));
6009 }
6010
6011 static inline int within(const void *addr, void *start, unsigned long size)
6012 {
6013         return addr >= start && addr < start + size;
6014 }
6015
6016 static bool inside_selftest(void)
6017 {
6018         return current == lockdep_selftest_task_struct;
6019 }
6020
6021 /* The caller must hold the graph lock. */
6022 static struct pending_free *get_pending_free(void)
6023 {
6024         return delayed_free.pf + delayed_free.index;
6025 }
6026
6027 static void free_zapped_rcu(struct rcu_head *cb);
6028
6029 /*
6030  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6031  * the graph lock held.
6032  */
6033 static void call_rcu_zapped(struct pending_free *pf)
6034 {
6035         WARN_ON_ONCE(inside_selftest());
6036
6037         if (list_empty(&pf->zapped))
6038                 return;
6039
6040         if (delayed_free.scheduled)
6041                 return;
6042
6043         delayed_free.scheduled = true;
6044
6045         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6046         delayed_free.index ^= 1;
6047
6048         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6049 }
6050
6051 /* The caller must hold the graph lock. May be called from RCU context. */
6052 static void __free_zapped_classes(struct pending_free *pf)
6053 {
6054         struct lock_class *class;
6055
6056         check_data_structures();
6057
6058         list_for_each_entry(class, &pf->zapped, lock_entry)
6059                 reinit_class(class);
6060
6061         list_splice_init(&pf->zapped, &free_lock_classes);
6062
6063 #ifdef CONFIG_PROVE_LOCKING
6064         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6065                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6066         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6067 #endif
6068 }
6069
6070 static void free_zapped_rcu(struct rcu_head *ch)
6071 {
6072         struct pending_free *pf;
6073         unsigned long flags;
6074
6075         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6076                 return;
6077
6078         raw_local_irq_save(flags);
6079         lockdep_lock();
6080
6081         /* closed head */
6082         pf = delayed_free.pf + (delayed_free.index ^ 1);
6083         __free_zapped_classes(pf);
6084         delayed_free.scheduled = false;
6085
6086         /*
6087          * If there's anything on the open list, close and start a new callback.
6088          */
6089         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6090
6091         lockdep_unlock();
6092         raw_local_irq_restore(flags);
6093 }
6094
6095 /*
6096  * Remove all lock classes from the class hash table and from the
6097  * all_lock_classes list whose key or name is in the address range [start,
6098  * start + size). Move these lock classes to the zapped_classes list. Must
6099  * be called with the graph lock held.
6100  */
6101 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6102                                      unsigned long size)
6103 {
6104         struct lock_class *class;
6105         struct hlist_head *head;
6106         int i;
6107
6108         /* Unhash all classes that were created by a module. */
6109         for (i = 0; i < CLASSHASH_SIZE; i++) {
6110                 head = classhash_table + i;
6111                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6112                         if (!within(class->key, start, size) &&
6113                             !within(class->name, start, size))
6114                                 continue;
6115                         zap_class(pf, class);
6116                 }
6117         }
6118 }
6119
6120 /*
6121  * Used in module.c to remove lock classes from memory that is going to be
6122  * freed; and possibly re-used by other modules.
6123  *
6124  * We will have had one synchronize_rcu() before getting here, so we're
6125  * guaranteed nobody will look up these exact classes -- they're properly dead
6126  * but still allocated.
6127  */
6128 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6129 {
6130         struct pending_free *pf;
6131         unsigned long flags;
6132
6133         init_data_structures_once();
6134
6135         raw_local_irq_save(flags);
6136         lockdep_lock();
6137         pf = get_pending_free();
6138         __lockdep_free_key_range(pf, start, size);
6139         call_rcu_zapped(pf);
6140         lockdep_unlock();
6141         raw_local_irq_restore(flags);
6142
6143         /*
6144          * Wait for any possible iterators from look_up_lock_class() to pass
6145          * before continuing to free the memory they refer to.
6146          */
6147         synchronize_rcu();
6148 }
6149
6150 /*
6151  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6152  * Ignores debug_locks. Must only be used by the lockdep selftests.
6153  */
6154 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6155 {
6156         struct pending_free *pf = delayed_free.pf;
6157         unsigned long flags;
6158
6159         init_data_structures_once();
6160
6161         raw_local_irq_save(flags);
6162         lockdep_lock();
6163         __lockdep_free_key_range(pf, start, size);
6164         __free_zapped_classes(pf);
6165         lockdep_unlock();
6166         raw_local_irq_restore(flags);
6167 }
6168
6169 void lockdep_free_key_range(void *start, unsigned long size)
6170 {
6171         init_data_structures_once();
6172
6173         if (inside_selftest())
6174                 lockdep_free_key_range_imm(start, size);
6175         else
6176                 lockdep_free_key_range_reg(start, size);
6177 }
6178
6179 /*
6180  * Check whether any element of the @lock->class_cache[] array refers to a
6181  * registered lock class. The caller must hold either the graph lock or the
6182  * RCU read lock.
6183  */
6184 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6185 {
6186         struct lock_class *class;
6187         struct hlist_head *head;
6188         int i, j;
6189
6190         for (i = 0; i < CLASSHASH_SIZE; i++) {
6191                 head = classhash_table + i;
6192                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6193                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6194                                 if (lock->class_cache[j] == class)
6195                                         return true;
6196                 }
6197         }
6198         return false;
6199 }
6200
6201 /* The caller must hold the graph lock. Does not sleep. */
6202 static void __lockdep_reset_lock(struct pending_free *pf,
6203                                  struct lockdep_map *lock)
6204 {
6205         struct lock_class *class;
6206         int j;
6207
6208         /*
6209          * Remove all classes this lock might have:
6210          */
6211         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6212                 /*
6213                  * If the class exists we look it up and zap it:
6214                  */
6215                 class = look_up_lock_class(lock, j);
6216                 if (class)
6217                         zap_class(pf, class);
6218         }
6219         /*
6220          * Debug check: in the end all mapped classes should
6221          * be gone.
6222          */
6223         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6224                 debug_locks_off();
6225 }
6226
6227 /*
6228  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6229  * released data structures from RCU context.
6230  */
6231 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6232 {
6233         struct pending_free *pf;
6234         unsigned long flags;
6235         int locked;
6236
6237         raw_local_irq_save(flags);
6238         locked = graph_lock();
6239         if (!locked)
6240                 goto out_irq;
6241
6242         pf = get_pending_free();
6243         __lockdep_reset_lock(pf, lock);
6244         call_rcu_zapped(pf);
6245
6246         graph_unlock();
6247 out_irq:
6248         raw_local_irq_restore(flags);
6249 }
6250
6251 /*
6252  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6253  * lockdep selftests.
6254  */
6255 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6256 {
6257         struct pending_free *pf = delayed_free.pf;
6258         unsigned long flags;
6259
6260         raw_local_irq_save(flags);
6261         lockdep_lock();
6262         __lockdep_reset_lock(pf, lock);
6263         __free_zapped_classes(pf);
6264         lockdep_unlock();
6265         raw_local_irq_restore(flags);
6266 }
6267
6268 void lockdep_reset_lock(struct lockdep_map *lock)
6269 {
6270         init_data_structures_once();
6271
6272         if (inside_selftest())
6273                 lockdep_reset_lock_imm(lock);
6274         else
6275                 lockdep_reset_lock_reg(lock);
6276 }
6277
6278 /*
6279  * Unregister a dynamically allocated key.
6280  *
6281  * Unlike lockdep_register_key(), a search is always done to find a matching
6282  * key irrespective of debug_locks to avoid potential invalid access to freed
6283  * memory in lock_class entry.
6284  */
6285 void lockdep_unregister_key(struct lock_class_key *key)
6286 {
6287         struct hlist_head *hash_head = keyhashentry(key);
6288         struct lock_class_key *k;
6289         struct pending_free *pf;
6290         unsigned long flags;
6291         bool found = false;
6292
6293         might_sleep();
6294
6295         if (WARN_ON_ONCE(static_obj(key)))
6296                 return;
6297
6298         raw_local_irq_save(flags);
6299         lockdep_lock();
6300
6301         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6302                 if (k == key) {
6303                         hlist_del_rcu(&k->hash_entry);
6304                         found = true;
6305                         break;
6306                 }
6307         }
6308         WARN_ON_ONCE(!found && debug_locks);
6309         if (found) {
6310                 pf = get_pending_free();
6311                 __lockdep_free_key_range(pf, key, 1);
6312                 call_rcu_zapped(pf);
6313         }
6314         lockdep_unlock();
6315         raw_local_irq_restore(flags);
6316
6317         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6318         synchronize_rcu();
6319 }
6320 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6321
6322 void __init lockdep_init(void)
6323 {
6324         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6325
6326         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6327         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6328         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6329         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6330         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6331         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6332         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6333
6334         printk(" memory used by lock dependency info: %zu kB\n",
6335                (sizeof(lock_classes) +
6336                 sizeof(lock_classes_in_use) +
6337                 sizeof(classhash_table) +
6338                 sizeof(list_entries) +
6339                 sizeof(list_entries_in_use) +
6340                 sizeof(chainhash_table) +
6341                 sizeof(delayed_free)
6342 #ifdef CONFIG_PROVE_LOCKING
6343                 + sizeof(lock_cq)
6344                 + sizeof(lock_chains)
6345                 + sizeof(lock_chains_in_use)
6346                 + sizeof(chain_hlocks)
6347 #endif
6348                 ) / 1024
6349                 );
6350
6351 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6352         printk(" memory used for stack traces: %zu kB\n",
6353                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6354                );
6355 #endif
6356
6357         printk(" per task-struct memory footprint: %zu bytes\n",
6358                sizeof(((struct task_struct *)NULL)->held_locks));
6359 }
6360
6361 static void
6362 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6363                      const void *mem_to, struct held_lock *hlock)
6364 {
6365         if (!debug_locks_off())
6366                 return;
6367         if (debug_locks_silent)
6368                 return;
6369
6370         pr_warn("\n");
6371         pr_warn("=========================\n");
6372         pr_warn("WARNING: held lock freed!\n");
6373         print_kernel_ident();
6374         pr_warn("-------------------------\n");
6375         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6376                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6377         print_lock(hlock);
6378         lockdep_print_held_locks(curr);
6379
6380         pr_warn("\nstack backtrace:\n");
6381         dump_stack();
6382 }
6383
6384 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6385                                 const void* lock_from, unsigned long lock_len)
6386 {
6387         return lock_from + lock_len <= mem_from ||
6388                 mem_from + mem_len <= lock_from;
6389 }
6390
6391 /*
6392  * Called when kernel memory is freed (or unmapped), or if a lock
6393  * is destroyed or reinitialized - this code checks whether there is
6394  * any held lock in the memory range of <from> to <to>:
6395  */
6396 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6397 {
6398         struct task_struct *curr = current;
6399         struct held_lock *hlock;
6400         unsigned long flags;
6401         int i;
6402
6403         if (unlikely(!debug_locks))
6404                 return;
6405
6406         raw_local_irq_save(flags);
6407         for (i = 0; i < curr->lockdep_depth; i++) {
6408                 hlock = curr->held_locks + i;
6409
6410                 if (not_in_range(mem_from, mem_len, hlock->instance,
6411                                         sizeof(*hlock->instance)))
6412                         continue;
6413
6414                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6415                 break;
6416         }
6417         raw_local_irq_restore(flags);
6418 }
6419 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6420
6421 static void print_held_locks_bug(void)
6422 {
6423         if (!debug_locks_off())
6424                 return;
6425         if (debug_locks_silent)
6426                 return;
6427
6428         pr_warn("\n");
6429         pr_warn("====================================\n");
6430         pr_warn("WARNING: %s/%d still has locks held!\n",
6431                current->comm, task_pid_nr(current));
6432         print_kernel_ident();
6433         pr_warn("------------------------------------\n");
6434         lockdep_print_held_locks(current);
6435         pr_warn("\nstack backtrace:\n");
6436         dump_stack();
6437 }
6438
6439 void debug_check_no_locks_held(void)
6440 {
6441         if (unlikely(current->lockdep_depth > 0))
6442                 print_held_locks_bug();
6443 }
6444 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6445
6446 #ifdef __KERNEL__
6447 void debug_show_all_locks(void)
6448 {
6449         struct task_struct *g, *p;
6450
6451         if (unlikely(!debug_locks)) {
6452                 pr_warn("INFO: lockdep is turned off.\n");
6453                 return;
6454         }
6455         pr_warn("\nShowing all locks held in the system:\n");
6456
6457         rcu_read_lock();
6458         for_each_process_thread(g, p) {
6459                 if (!p->lockdep_depth)
6460                         continue;
6461                 lockdep_print_held_locks(p);
6462                 touch_nmi_watchdog();
6463                 touch_all_softlockup_watchdogs();
6464         }
6465         rcu_read_unlock();
6466
6467         pr_warn("\n");
6468         pr_warn("=============================================\n\n");
6469 }
6470 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6471 #endif
6472
6473 /*
6474  * Careful: only use this function if you are sure that
6475  * the task cannot run in parallel!
6476  */
6477 void debug_show_held_locks(struct task_struct *task)
6478 {
6479         if (unlikely(!debug_locks)) {
6480                 printk("INFO: lockdep is turned off.\n");
6481                 return;
6482         }
6483         lockdep_print_held_locks(task);
6484 }
6485 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6486
6487 asmlinkage __visible void lockdep_sys_exit(void)
6488 {
6489         struct task_struct *curr = current;
6490
6491         if (unlikely(curr->lockdep_depth)) {
6492                 if (!debug_locks_off())
6493                         return;
6494                 pr_warn("\n");
6495                 pr_warn("================================================\n");
6496                 pr_warn("WARNING: lock held when returning to user space!\n");
6497                 print_kernel_ident();
6498                 pr_warn("------------------------------------------------\n");
6499                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6500                                 curr->comm, curr->pid);
6501                 lockdep_print_held_locks(curr);
6502         }
6503
6504         /*
6505          * The lock history for each syscall should be independent. So wipe the
6506          * slate clean on return to userspace.
6507          */
6508         lockdep_invariant_state(false);
6509 }
6510
6511 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6512 {
6513         struct task_struct *curr = current;
6514         int dl = READ_ONCE(debug_locks);
6515
6516         /* Note: the following can be executed concurrently, so be careful. */
6517         pr_warn("\n");
6518         pr_warn("=============================\n");
6519         pr_warn("WARNING: suspicious RCU usage\n");
6520         print_kernel_ident();
6521         pr_warn("-----------------------------\n");
6522         pr_warn("%s:%d %s!\n", file, line, s);
6523         pr_warn("\nother info that might help us debug this:\n\n");
6524         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6525                !rcu_lockdep_current_cpu_online()
6526                         ? "RCU used illegally from offline CPU!\n"
6527                         : "",
6528                rcu_scheduler_active, dl,
6529                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6530
6531         /*
6532          * If a CPU is in the RCU-free window in idle (ie: in the section
6533          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6534          * considers that CPU to be in an "extended quiescent state",
6535          * which means that RCU will be completely ignoring that CPU.
6536          * Therefore, rcu_read_lock() and friends have absolutely no
6537          * effect on a CPU running in that state. In other words, even if
6538          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6539          * delete data structures out from under it.  RCU really has no
6540          * choice here: we need to keep an RCU-free window in idle where
6541          * the CPU may possibly enter into low power mode. This way we can
6542          * notice an extended quiescent state to other CPUs that started a grace
6543          * period. Otherwise we would delay any grace period as long as we run
6544          * in the idle task.
6545          *
6546          * So complain bitterly if someone does call rcu_read_lock(),
6547          * rcu_read_lock_bh() and so on from extended quiescent states.
6548          */
6549         if (!rcu_is_watching())
6550                 pr_warn("RCU used illegally from extended quiescent state!\n");
6551
6552         lockdep_print_held_locks(curr);
6553         pr_warn("\nstack backtrace:\n");
6554         dump_stack();
6555 }
6556 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);