GNU Linux-libre 5.4.200-gnu1
[releases.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59         raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63                                         unsigned int __unused)
64 {
65         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70         return &(kretprobe_table_locks[hash].lock);
71 }
72
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84         struct list_head list;
85         kprobe_opcode_t *insns;         /* Page of instruction slots */
86         struct kprobe_insn_cache *cache;
87         int nused;
88         int ngarbage;
89         char slot_used[];
90 };
91
92 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
93         (offsetof(struct kprobe_insn_page, slot_used) + \
94          (sizeof(char) * (slots)))
95
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100
101 enum kprobe_slot_state {
102         SLOT_CLEAN = 0,
103         SLOT_DIRTY = 1,
104         SLOT_USED = 2,
105 };
106
107 void __weak *alloc_insn_page(void)
108 {
109         return module_alloc(PAGE_SIZE);
110 }
111
112 void __weak free_insn_page(void *page)
113 {
114         module_memfree(page);
115 }
116
117 struct kprobe_insn_cache kprobe_insn_slots = {
118         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119         .alloc = alloc_insn_page,
120         .free = free_insn_page,
121         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122         .insn_size = MAX_INSN_SIZE,
123         .nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133         struct kprobe_insn_page *kip;
134         kprobe_opcode_t *slot = NULL;
135
136         /* Since the slot array is not protected by rcu, we need a mutex */
137         mutex_lock(&c->mutex);
138  retry:
139         rcu_read_lock();
140         list_for_each_entry_rcu(kip, &c->pages, list) {
141                 if (kip->nused < slots_per_page(c)) {
142                         int i;
143                         for (i = 0; i < slots_per_page(c); i++) {
144                                 if (kip->slot_used[i] == SLOT_CLEAN) {
145                                         kip->slot_used[i] = SLOT_USED;
146                                         kip->nused++;
147                                         slot = kip->insns + (i * c->insn_size);
148                                         rcu_read_unlock();
149                                         goto out;
150                                 }
151                         }
152                         /* kip->nused is broken. Fix it. */
153                         kip->nused = slots_per_page(c);
154                         WARN_ON(1);
155                 }
156         }
157         rcu_read_unlock();
158
159         /* If there are any garbage slots, collect it and try again. */
160         if (c->nr_garbage && collect_garbage_slots(c) == 0)
161                 goto retry;
162
163         /* All out of space.  Need to allocate a new page. */
164         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165         if (!kip)
166                 goto out;
167
168         /*
169          * Use module_alloc so this page is within +/- 2GB of where the
170          * kernel image and loaded module images reside. This is required
171          * so x86_64 can correctly handle the %rip-relative fixups.
172          */
173         kip->insns = c->alloc();
174         if (!kip->insns) {
175                 kfree(kip);
176                 goto out;
177         }
178         INIT_LIST_HEAD(&kip->list);
179         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180         kip->slot_used[0] = SLOT_USED;
181         kip->nused = 1;
182         kip->ngarbage = 0;
183         kip->cache = c;
184         list_add_rcu(&kip->list, &c->pages);
185         slot = kip->insns;
186 out:
187         mutex_unlock(&c->mutex);
188         return slot;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194         kip->slot_used[idx] = SLOT_CLEAN;
195         kip->nused--;
196         if (kip->nused == 0) {
197                 /*
198                  * Page is no longer in use.  Free it unless
199                  * it's the last one.  We keep the last one
200                  * so as not to have to set it up again the
201                  * next time somebody inserts a probe.
202                  */
203                 if (!list_is_singular(&kip->list)) {
204                         list_del_rcu(&kip->list);
205                         synchronize_rcu();
206                         kip->cache->free(kip->insns);
207                         kfree(kip);
208                 }
209                 return 1;
210         }
211         return 0;
212 }
213
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216         struct kprobe_insn_page *kip, *next;
217
218         /* Ensure no-one is interrupted on the garbages */
219         synchronize_rcu();
220
221         list_for_each_entry_safe(kip, next, &c->pages, list) {
222                 int i;
223                 if (kip->ngarbage == 0)
224                         continue;
225                 kip->ngarbage = 0;      /* we will collect all garbages */
226                 for (i = 0; i < slots_per_page(c); i++) {
227                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228                                 break;
229                 }
230         }
231         c->nr_garbage = 0;
232         return 0;
233 }
234
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236                       kprobe_opcode_t *slot, int dirty)
237 {
238         struct kprobe_insn_page *kip;
239         long idx;
240
241         mutex_lock(&c->mutex);
242         rcu_read_lock();
243         list_for_each_entry_rcu(kip, &c->pages, list) {
244                 idx = ((long)slot - (long)kip->insns) /
245                         (c->insn_size * sizeof(kprobe_opcode_t));
246                 if (idx >= 0 && idx < slots_per_page(c))
247                         goto out;
248         }
249         /* Could not find this slot. */
250         WARN_ON(1);
251         kip = NULL;
252 out:
253         rcu_read_unlock();
254         /* Mark and sweep: this may sleep */
255         if (kip) {
256                 /* Check double free */
257                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258                 if (dirty) {
259                         kip->slot_used[idx] = SLOT_DIRTY;
260                         kip->ngarbage++;
261                         if (++c->nr_garbage > slots_per_page(c))
262                                 collect_garbage_slots(c);
263                 } else {
264                         collect_one_slot(kip, idx);
265                 }
266         }
267         mutex_unlock(&c->mutex);
268 }
269
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277         struct kprobe_insn_page *kip;
278         bool ret = false;
279
280         rcu_read_lock();
281         list_for_each_entry_rcu(kip, &c->pages, list) {
282                 if (addr >= (unsigned long)kip->insns &&
283                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
284                         ret = true;
285                         break;
286                 }
287         }
288         rcu_read_unlock();
289
290         return ret;
291 }
292
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297         .alloc = alloc_insn_page,
298         .free = free_insn_page,
299         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300         /* .insn_size is initialized later */
301         .nr_garbage = 0,
302 };
303 #endif
304 #endif
305
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309         __this_cpu_write(kprobe_instance, kp);
310 }
311
312 static inline void reset_kprobe_instance(void)
313 {
314         __this_cpu_write(kprobe_instance, NULL);
315 }
316
317 /*
318  * This routine is called either:
319  *      - under the kprobe_mutex - during kprobe_[un]register()
320  *                              OR
321  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325         struct hlist_head *head;
326         struct kprobe *p;
327
328         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329         hlist_for_each_entry_rcu(p, head, hlist,
330                                  lockdep_is_held(&kprobe_mutex)) {
331                 if (p->addr == addr)
332                         return p;
333         }
334
335         return NULL;
336 }
337 NOKPROBE_SYMBOL(get_kprobe);
338
339 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
340
341 /* Return true if the kprobe is an aggregator */
342 static inline int kprobe_aggrprobe(struct kprobe *p)
343 {
344         return p->pre_handler == aggr_pre_handler;
345 }
346
347 /* Return true(!0) if the kprobe is unused */
348 static inline int kprobe_unused(struct kprobe *p)
349 {
350         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
351                list_empty(&p->list);
352 }
353
354 /*
355  * Keep all fields in the kprobe consistent
356  */
357 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
358 {
359         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
360         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
361 }
362
363 #ifdef CONFIG_OPTPROBES
364 /* NOTE: change this value only with kprobe_mutex held */
365 static bool kprobes_allow_optimization;
366
367 /*
368  * Call all pre_handler on the list, but ignores its return value.
369  * This must be called from arch-dep optimized caller.
370  */
371 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
372 {
373         struct kprobe *kp;
374
375         list_for_each_entry_rcu(kp, &p->list, list) {
376                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
377                         set_kprobe_instance(kp);
378                         kp->pre_handler(kp, regs);
379                 }
380                 reset_kprobe_instance();
381         }
382 }
383 NOKPROBE_SYMBOL(opt_pre_handler);
384
385 /* Free optimized instructions and optimized_kprobe */
386 static void free_aggr_kprobe(struct kprobe *p)
387 {
388         struct optimized_kprobe *op;
389
390         op = container_of(p, struct optimized_kprobe, kp);
391         arch_remove_optimized_kprobe(op);
392         arch_remove_kprobe(p);
393         kfree(op);
394 }
395
396 /* Return true(!0) if the kprobe is ready for optimization. */
397 static inline int kprobe_optready(struct kprobe *p)
398 {
399         struct optimized_kprobe *op;
400
401         if (kprobe_aggrprobe(p)) {
402                 op = container_of(p, struct optimized_kprobe, kp);
403                 return arch_prepared_optinsn(&op->optinsn);
404         }
405
406         return 0;
407 }
408
409 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
410 static inline int kprobe_disarmed(struct kprobe *p)
411 {
412         struct optimized_kprobe *op;
413
414         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
415         if (!kprobe_aggrprobe(p))
416                 return kprobe_disabled(p);
417
418         op = container_of(p, struct optimized_kprobe, kp);
419
420         return kprobe_disabled(p) && list_empty(&op->list);
421 }
422
423 /* Return true(!0) if the probe is queued on (un)optimizing lists */
424 static int kprobe_queued(struct kprobe *p)
425 {
426         struct optimized_kprobe *op;
427
428         if (kprobe_aggrprobe(p)) {
429                 op = container_of(p, struct optimized_kprobe, kp);
430                 if (!list_empty(&op->list))
431                         return 1;
432         }
433         return 0;
434 }
435
436 /*
437  * Return an optimized kprobe whose optimizing code replaces
438  * instructions including addr (exclude breakpoint).
439  */
440 static struct kprobe *get_optimized_kprobe(unsigned long addr)
441 {
442         int i;
443         struct kprobe *p = NULL;
444         struct optimized_kprobe *op;
445
446         /* Don't check i == 0, since that is a breakpoint case. */
447         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
448                 p = get_kprobe((void *)(addr - i));
449
450         if (p && kprobe_optready(p)) {
451                 op = container_of(p, struct optimized_kprobe, kp);
452                 if (arch_within_optimized_kprobe(op, addr))
453                         return p;
454         }
455
456         return NULL;
457 }
458
459 /* Optimization staging list, protected by kprobe_mutex */
460 static LIST_HEAD(optimizing_list);
461 static LIST_HEAD(unoptimizing_list);
462 static LIST_HEAD(freeing_list);
463
464 static void kprobe_optimizer(struct work_struct *work);
465 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
466 #define OPTIMIZE_DELAY 5
467
468 /*
469  * Optimize (replace a breakpoint with a jump) kprobes listed on
470  * optimizing_list.
471  */
472 static void do_optimize_kprobes(void)
473 {
474         lockdep_assert_held(&text_mutex);
475         /*
476          * The optimization/unoptimization refers online_cpus via
477          * stop_machine() and cpu-hotplug modifies online_cpus.
478          * And same time, text_mutex will be held in cpu-hotplug and here.
479          * This combination can cause a deadlock (cpu-hotplug try to lock
480          * text_mutex but stop_machine can not be done because online_cpus
481          * has been changed)
482          * To avoid this deadlock, caller must have locked cpu hotplug
483          * for preventing cpu-hotplug outside of text_mutex locking.
484          */
485         lockdep_assert_cpus_held();
486
487         /* Optimization never be done when disarmed */
488         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
489             list_empty(&optimizing_list))
490                 return;
491
492         arch_optimize_kprobes(&optimizing_list);
493 }
494
495 /*
496  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497  * if need) kprobes listed on unoptimizing_list.
498  */
499 static void do_unoptimize_kprobes(void)
500 {
501         struct optimized_kprobe *op, *tmp;
502
503         lockdep_assert_held(&text_mutex);
504         /* See comment in do_optimize_kprobes() */
505         lockdep_assert_cpus_held();
506
507         /* Unoptimization must be done anytime */
508         if (list_empty(&unoptimizing_list))
509                 return;
510
511         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512         /* Loop free_list for disarming */
513         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514                 /* Switching from detour code to origin */
515                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
516                 /* Disarm probes if marked disabled */
517                 if (kprobe_disabled(&op->kp))
518                         arch_disarm_kprobe(&op->kp);
519                 if (kprobe_unused(&op->kp)) {
520                         /*
521                          * Remove unused probes from hash list. After waiting
522                          * for synchronization, these probes are reclaimed.
523                          * (reclaiming is done by do_free_cleaned_kprobes.)
524                          */
525                         hlist_del_rcu(&op->kp.hlist);
526                 } else
527                         list_del_init(&op->list);
528         }
529 }
530
531 /* Reclaim all kprobes on the free_list */
532 static void do_free_cleaned_kprobes(void)
533 {
534         struct optimized_kprobe *op, *tmp;
535
536         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
537                 list_del_init(&op->list);
538                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
539                         /*
540                          * This must not happen, but if there is a kprobe
541                          * still in use, keep it on kprobes hash list.
542                          */
543                         continue;
544                 }
545                 free_aggr_kprobe(&op->kp);
546         }
547 }
548
549 /* Start optimizer after OPTIMIZE_DELAY passed */
550 static void kick_kprobe_optimizer(void)
551 {
552         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
553 }
554
555 /* Kprobe jump optimizer */
556 static void kprobe_optimizer(struct work_struct *work)
557 {
558         mutex_lock(&kprobe_mutex);
559         cpus_read_lock();
560         mutex_lock(&text_mutex);
561         /* Lock modules while optimizing kprobes */
562         mutex_lock(&module_mutex);
563
564         /*
565          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566          * kprobes before waiting for quiesence period.
567          */
568         do_unoptimize_kprobes();
569
570         /*
571          * Step 2: Wait for quiesence period to ensure all potentially
572          * preempted tasks to have normally scheduled. Because optprobe
573          * may modify multiple instructions, there is a chance that Nth
574          * instruction is preempted. In that case, such tasks can return
575          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
576          * Note that on non-preemptive kernel, this is transparently converted
577          * to synchronoze_sched() to wait for all interrupts to have completed.
578          */
579         synchronize_rcu_tasks();
580
581         /* Step 3: Optimize kprobes after quiesence period */
582         do_optimize_kprobes();
583
584         /* Step 4: Free cleaned kprobes after quiesence period */
585         do_free_cleaned_kprobes();
586
587         mutex_unlock(&module_mutex);
588         mutex_unlock(&text_mutex);
589         cpus_read_unlock();
590
591         /* Step 5: Kick optimizer again if needed */
592         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593                 kick_kprobe_optimizer();
594
595         mutex_unlock(&kprobe_mutex);
596 }
597
598 /* Wait for completing optimization and unoptimization */
599 void wait_for_kprobe_optimizer(void)
600 {
601         mutex_lock(&kprobe_mutex);
602
603         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
604                 mutex_unlock(&kprobe_mutex);
605
606                 /* this will also make optimizing_work execute immmediately */
607                 flush_delayed_work(&optimizing_work);
608                 /* @optimizing_work might not have been queued yet, relax */
609                 cpu_relax();
610
611                 mutex_lock(&kprobe_mutex);
612         }
613
614         mutex_unlock(&kprobe_mutex);
615 }
616
617 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
618 {
619         struct optimized_kprobe *_op;
620
621         list_for_each_entry(_op, &unoptimizing_list, list) {
622                 if (op == _op)
623                         return true;
624         }
625
626         return false;
627 }
628
629 /* Optimize kprobe if p is ready to be optimized */
630 static void optimize_kprobe(struct kprobe *p)
631 {
632         struct optimized_kprobe *op;
633
634         /* Check if the kprobe is disabled or not ready for optimization. */
635         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
636             (kprobe_disabled(p) || kprobes_all_disarmed))
637                 return;
638
639         /* kprobes with post_handler can not be optimized */
640         if (p->post_handler)
641                 return;
642
643         op = container_of(p, struct optimized_kprobe, kp);
644
645         /* Check there is no other kprobes at the optimized instructions */
646         if (arch_check_optimized_kprobe(op) < 0)
647                 return;
648
649         /* Check if it is already optimized. */
650         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
651                 if (optprobe_queued_unopt(op)) {
652                         /* This is under unoptimizing. Just dequeue the probe */
653                         list_del_init(&op->list);
654                 }
655                 return;
656         }
657         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
658
659         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
660         if (WARN_ON_ONCE(!list_empty(&op->list)))
661                 return;
662
663         list_add(&op->list, &optimizing_list);
664         kick_kprobe_optimizer();
665 }
666
667 /* Short cut to direct unoptimizing */
668 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
669 {
670         lockdep_assert_cpus_held();
671         arch_unoptimize_kprobe(op);
672         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
673         if (kprobe_disabled(&op->kp))
674                 arch_disarm_kprobe(&op->kp);
675 }
676
677 /* Unoptimize a kprobe if p is optimized */
678 static void unoptimize_kprobe(struct kprobe *p, bool force)
679 {
680         struct optimized_kprobe *op;
681
682         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
683                 return; /* This is not an optprobe nor optimized */
684
685         op = container_of(p, struct optimized_kprobe, kp);
686         if (!kprobe_optimized(p))
687                 return;
688
689         if (!list_empty(&op->list)) {
690                 if (optprobe_queued_unopt(op)) {
691                         /* Queued in unoptimizing queue */
692                         if (force) {
693                                 /*
694                                  * Forcibly unoptimize the kprobe here, and queue it
695                                  * in the freeing list for release afterwards.
696                                  */
697                                 force_unoptimize_kprobe(op);
698                                 list_move(&op->list, &freeing_list);
699                         }
700                 } else {
701                         /* Dequeue from the optimizing queue */
702                         list_del_init(&op->list);
703                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
704                 }
705                 return;
706         }
707
708         /* Optimized kprobe case */
709         if (force) {
710                 /* Forcibly update the code: this is a special case */
711                 force_unoptimize_kprobe(op);
712         } else {
713                 list_add(&op->list, &unoptimizing_list);
714                 kick_kprobe_optimizer();
715         }
716 }
717
718 /* Cancel unoptimizing for reusing */
719 static int reuse_unused_kprobe(struct kprobe *ap)
720 {
721         struct optimized_kprobe *op;
722
723         /*
724          * Unused kprobe MUST be on the way of delayed unoptimizing (means
725          * there is still a relative jump) and disabled.
726          */
727         op = container_of(ap, struct optimized_kprobe, kp);
728         WARN_ON_ONCE(list_empty(&op->list));
729         /* Enable the probe again */
730         ap->flags &= ~KPROBE_FLAG_DISABLED;
731         /* Optimize it again (remove from op->list) */
732         if (!kprobe_optready(ap))
733                 return -EINVAL;
734
735         optimize_kprobe(ap);
736         return 0;
737 }
738
739 /* Remove optimized instructions */
740 static void kill_optimized_kprobe(struct kprobe *p)
741 {
742         struct optimized_kprobe *op;
743
744         op = container_of(p, struct optimized_kprobe, kp);
745         if (!list_empty(&op->list))
746                 /* Dequeue from the (un)optimization queue */
747                 list_del_init(&op->list);
748         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
749
750         if (kprobe_unused(p)) {
751                 /* Enqueue if it is unused */
752                 list_add(&op->list, &freeing_list);
753                 /*
754                  * Remove unused probes from the hash list. After waiting
755                  * for synchronization, this probe is reclaimed.
756                  * (reclaiming is done by do_free_cleaned_kprobes().)
757                  */
758                 hlist_del_rcu(&op->kp.hlist);
759         }
760
761         /* Don't touch the code, because it is already freed. */
762         arch_remove_optimized_kprobe(op);
763 }
764
765 static inline
766 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
767 {
768         if (!kprobe_ftrace(p))
769                 arch_prepare_optimized_kprobe(op, p);
770 }
771
772 /* Try to prepare optimized instructions */
773 static void prepare_optimized_kprobe(struct kprobe *p)
774 {
775         struct optimized_kprobe *op;
776
777         op = container_of(p, struct optimized_kprobe, kp);
778         __prepare_optimized_kprobe(op, p);
779 }
780
781 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
782 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
783 {
784         struct optimized_kprobe *op;
785
786         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
787         if (!op)
788                 return NULL;
789
790         INIT_LIST_HEAD(&op->list);
791         op->kp.addr = p->addr;
792         __prepare_optimized_kprobe(op, p);
793
794         return &op->kp;
795 }
796
797 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
798
799 /*
800  * Prepare an optimized_kprobe and optimize it
801  * NOTE: p must be a normal registered kprobe
802  */
803 static void try_to_optimize_kprobe(struct kprobe *p)
804 {
805         struct kprobe *ap;
806         struct optimized_kprobe *op;
807
808         /* Impossible to optimize ftrace-based kprobe */
809         if (kprobe_ftrace(p))
810                 return;
811
812         /* For preparing optimization, jump_label_text_reserved() is called */
813         cpus_read_lock();
814         jump_label_lock();
815         mutex_lock(&text_mutex);
816
817         ap = alloc_aggr_kprobe(p);
818         if (!ap)
819                 goto out;
820
821         op = container_of(ap, struct optimized_kprobe, kp);
822         if (!arch_prepared_optinsn(&op->optinsn)) {
823                 /* If failed to setup optimizing, fallback to kprobe */
824                 arch_remove_optimized_kprobe(op);
825                 kfree(op);
826                 goto out;
827         }
828
829         init_aggr_kprobe(ap, p);
830         optimize_kprobe(ap);    /* This just kicks optimizer thread */
831
832 out:
833         mutex_unlock(&text_mutex);
834         jump_label_unlock();
835         cpus_read_unlock();
836 }
837
838 #ifdef CONFIG_SYSCTL
839 static void optimize_all_kprobes(void)
840 {
841         struct hlist_head *head;
842         struct kprobe *p;
843         unsigned int i;
844
845         mutex_lock(&kprobe_mutex);
846         /* If optimization is already allowed, just return */
847         if (kprobes_allow_optimization)
848                 goto out;
849
850         cpus_read_lock();
851         kprobes_allow_optimization = true;
852         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
853                 head = &kprobe_table[i];
854                 hlist_for_each_entry_rcu(p, head, hlist)
855                         if (!kprobe_disabled(p))
856                                 optimize_kprobe(p);
857         }
858         cpus_read_unlock();
859         printk(KERN_INFO "Kprobes globally optimized\n");
860 out:
861         mutex_unlock(&kprobe_mutex);
862 }
863
864 static void unoptimize_all_kprobes(void)
865 {
866         struct hlist_head *head;
867         struct kprobe *p;
868         unsigned int i;
869
870         mutex_lock(&kprobe_mutex);
871         /* If optimization is already prohibited, just return */
872         if (!kprobes_allow_optimization) {
873                 mutex_unlock(&kprobe_mutex);
874                 return;
875         }
876
877         cpus_read_lock();
878         kprobes_allow_optimization = false;
879         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
880                 head = &kprobe_table[i];
881                 hlist_for_each_entry_rcu(p, head, hlist) {
882                         if (!kprobe_disabled(p))
883                                 unoptimize_kprobe(p, false);
884                 }
885         }
886         cpus_read_unlock();
887         mutex_unlock(&kprobe_mutex);
888
889         /* Wait for unoptimizing completion */
890         wait_for_kprobe_optimizer();
891         printk(KERN_INFO "Kprobes globally unoptimized\n");
892 }
893
894 static DEFINE_MUTEX(kprobe_sysctl_mutex);
895 int sysctl_kprobes_optimization;
896 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
897                                       void __user *buffer, size_t *length,
898                                       loff_t *ppos)
899 {
900         int ret;
901
902         mutex_lock(&kprobe_sysctl_mutex);
903         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
904         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
905
906         if (sysctl_kprobes_optimization)
907                 optimize_all_kprobes();
908         else
909                 unoptimize_all_kprobes();
910         mutex_unlock(&kprobe_sysctl_mutex);
911
912         return ret;
913 }
914 #endif /* CONFIG_SYSCTL */
915
916 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
917 static void __arm_kprobe(struct kprobe *p)
918 {
919         struct kprobe *_p;
920
921         /* Check collision with other optimized kprobes */
922         _p = get_optimized_kprobe((unsigned long)p->addr);
923         if (unlikely(_p))
924                 /* Fallback to unoptimized kprobe */
925                 unoptimize_kprobe(_p, true);
926
927         arch_arm_kprobe(p);
928         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
929 }
930
931 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
932 static void __disarm_kprobe(struct kprobe *p, bool reopt)
933 {
934         struct kprobe *_p;
935
936         /* Try to unoptimize */
937         unoptimize_kprobe(p, kprobes_all_disarmed);
938
939         if (!kprobe_queued(p)) {
940                 arch_disarm_kprobe(p);
941                 /* If another kprobe was blocked, optimize it. */
942                 _p = get_optimized_kprobe((unsigned long)p->addr);
943                 if (unlikely(_p) && reopt)
944                         optimize_kprobe(_p);
945         }
946         /* TODO: reoptimize others after unoptimized this probe */
947 }
948
949 #else /* !CONFIG_OPTPROBES */
950
951 #define optimize_kprobe(p)                      do {} while (0)
952 #define unoptimize_kprobe(p, f)                 do {} while (0)
953 #define kill_optimized_kprobe(p)                do {} while (0)
954 #define prepare_optimized_kprobe(p)             do {} while (0)
955 #define try_to_optimize_kprobe(p)               do {} while (0)
956 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
957 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
958 #define kprobe_disarmed(p)                      kprobe_disabled(p)
959 #define wait_for_kprobe_optimizer()             do {} while (0)
960
961 static int reuse_unused_kprobe(struct kprobe *ap)
962 {
963         /*
964          * If the optimized kprobe is NOT supported, the aggr kprobe is
965          * released at the same time that the last aggregated kprobe is
966          * unregistered.
967          * Thus there should be no chance to reuse unused kprobe.
968          */
969         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
970         return -EINVAL;
971 }
972
973 static void free_aggr_kprobe(struct kprobe *p)
974 {
975         arch_remove_kprobe(p);
976         kfree(p);
977 }
978
979 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
980 {
981         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
982 }
983 #endif /* CONFIG_OPTPROBES */
984
985 #ifdef CONFIG_KPROBES_ON_FTRACE
986 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
987         .func = kprobe_ftrace_handler,
988         .flags = FTRACE_OPS_FL_SAVE_REGS,
989 };
990
991 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
992         .func = kprobe_ftrace_handler,
993         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
994 };
995
996 static int kprobe_ipmodify_enabled;
997 static int kprobe_ftrace_enabled;
998
999 /* Must ensure p->addr is really on ftrace */
1000 static int prepare_kprobe(struct kprobe *p)
1001 {
1002         if (!kprobe_ftrace(p))
1003                 return arch_prepare_kprobe(p);
1004
1005         return arch_prepare_kprobe_ftrace(p);
1006 }
1007
1008 /* Caller must lock kprobe_mutex */
1009 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1010                                int *cnt)
1011 {
1012         int ret = 0;
1013
1014         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1015         if (ret) {
1016                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1017                          p->addr, ret);
1018                 return ret;
1019         }
1020
1021         if (*cnt == 0) {
1022                 ret = register_ftrace_function(ops);
1023                 if (ret) {
1024                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1025                         goto err_ftrace;
1026                 }
1027         }
1028
1029         (*cnt)++;
1030         return ret;
1031
1032 err_ftrace:
1033         /*
1034          * At this point, sinec ops is not registered, we should be sefe from
1035          * registering empty filter.
1036          */
1037         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1038         return ret;
1039 }
1040
1041 static int arm_kprobe_ftrace(struct kprobe *p)
1042 {
1043         bool ipmodify = (p->post_handler != NULL);
1044
1045         return __arm_kprobe_ftrace(p,
1046                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1047                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1048 }
1049
1050 /* Caller must lock kprobe_mutex */
1051 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1052                                   int *cnt)
1053 {
1054         int ret = 0;
1055
1056         if (*cnt == 1) {
1057                 ret = unregister_ftrace_function(ops);
1058                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1059                         return ret;
1060         }
1061
1062         (*cnt)--;
1063
1064         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1065         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1066                   p->addr, ret);
1067         return ret;
1068 }
1069
1070 static int disarm_kprobe_ftrace(struct kprobe *p)
1071 {
1072         bool ipmodify = (p->post_handler != NULL);
1073
1074         return __disarm_kprobe_ftrace(p,
1075                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1076                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1077 }
1078 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1079 static inline int prepare_kprobe(struct kprobe *p)
1080 {
1081         return arch_prepare_kprobe(p);
1082 }
1083
1084 static inline int arm_kprobe_ftrace(struct kprobe *p)
1085 {
1086         return -ENODEV;
1087 }
1088
1089 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1090 {
1091         return -ENODEV;
1092 }
1093 #endif
1094
1095 /* Arm a kprobe with text_mutex */
1096 static int arm_kprobe(struct kprobe *kp)
1097 {
1098         if (unlikely(kprobe_ftrace(kp)))
1099                 return arm_kprobe_ftrace(kp);
1100
1101         cpus_read_lock();
1102         mutex_lock(&text_mutex);
1103         __arm_kprobe(kp);
1104         mutex_unlock(&text_mutex);
1105         cpus_read_unlock();
1106
1107         return 0;
1108 }
1109
1110 /* Disarm a kprobe with text_mutex */
1111 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1112 {
1113         if (unlikely(kprobe_ftrace(kp)))
1114                 return disarm_kprobe_ftrace(kp);
1115
1116         cpus_read_lock();
1117         mutex_lock(&text_mutex);
1118         __disarm_kprobe(kp, reopt);
1119         mutex_unlock(&text_mutex);
1120         cpus_read_unlock();
1121
1122         return 0;
1123 }
1124
1125 /*
1126  * Aggregate handlers for multiple kprobes support - these handlers
1127  * take care of invoking the individual kprobe handlers on p->list
1128  */
1129 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1130 {
1131         struct kprobe *kp;
1132
1133         list_for_each_entry_rcu(kp, &p->list, list) {
1134                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1135                         set_kprobe_instance(kp);
1136                         if (kp->pre_handler(kp, regs))
1137                                 return 1;
1138                 }
1139                 reset_kprobe_instance();
1140         }
1141         return 0;
1142 }
1143 NOKPROBE_SYMBOL(aggr_pre_handler);
1144
1145 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1146                               unsigned long flags)
1147 {
1148         struct kprobe *kp;
1149
1150         list_for_each_entry_rcu(kp, &p->list, list) {
1151                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1152                         set_kprobe_instance(kp);
1153                         kp->post_handler(kp, regs, flags);
1154                         reset_kprobe_instance();
1155                 }
1156         }
1157 }
1158 NOKPROBE_SYMBOL(aggr_post_handler);
1159
1160 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1161                               int trapnr)
1162 {
1163         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1164
1165         /*
1166          * if we faulted "during" the execution of a user specified
1167          * probe handler, invoke just that probe's fault handler
1168          */
1169         if (cur && cur->fault_handler) {
1170                 if (cur->fault_handler(cur, regs, trapnr))
1171                         return 1;
1172         }
1173         return 0;
1174 }
1175 NOKPROBE_SYMBOL(aggr_fault_handler);
1176
1177 /* Walks the list and increments nmissed count for multiprobe case */
1178 void kprobes_inc_nmissed_count(struct kprobe *p)
1179 {
1180         struct kprobe *kp;
1181         if (!kprobe_aggrprobe(p)) {
1182                 p->nmissed++;
1183         } else {
1184                 list_for_each_entry_rcu(kp, &p->list, list)
1185                         kp->nmissed++;
1186         }
1187         return;
1188 }
1189 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1190
1191 void recycle_rp_inst(struct kretprobe_instance *ri,
1192                      struct hlist_head *head)
1193 {
1194         struct kretprobe *rp = ri->rp;
1195
1196         /* remove rp inst off the rprobe_inst_table */
1197         hlist_del(&ri->hlist);
1198         INIT_HLIST_NODE(&ri->hlist);
1199         if (likely(rp)) {
1200                 raw_spin_lock(&rp->lock);
1201                 hlist_add_head(&ri->hlist, &rp->free_instances);
1202                 raw_spin_unlock(&rp->lock);
1203         } else
1204                 /* Unregistering */
1205                 hlist_add_head(&ri->hlist, head);
1206 }
1207 NOKPROBE_SYMBOL(recycle_rp_inst);
1208
1209 void kretprobe_hash_lock(struct task_struct *tsk,
1210                          struct hlist_head **head, unsigned long *flags)
1211 __acquires(hlist_lock)
1212 {
1213         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1214         raw_spinlock_t *hlist_lock;
1215
1216         *head = &kretprobe_inst_table[hash];
1217         hlist_lock = kretprobe_table_lock_ptr(hash);
1218         raw_spin_lock_irqsave(hlist_lock, *flags);
1219 }
1220 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1221
1222 static void kretprobe_table_lock(unsigned long hash,
1223                                  unsigned long *flags)
1224 __acquires(hlist_lock)
1225 {
1226         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1227         raw_spin_lock_irqsave(hlist_lock, *flags);
1228 }
1229 NOKPROBE_SYMBOL(kretprobe_table_lock);
1230
1231 void kretprobe_hash_unlock(struct task_struct *tsk,
1232                            unsigned long *flags)
1233 __releases(hlist_lock)
1234 {
1235         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1236         raw_spinlock_t *hlist_lock;
1237
1238         hlist_lock = kretprobe_table_lock_ptr(hash);
1239         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1240 }
1241 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1242
1243 static void kretprobe_table_unlock(unsigned long hash,
1244                                    unsigned long *flags)
1245 __releases(hlist_lock)
1246 {
1247         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1248         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1249 }
1250 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1251
1252 struct kprobe kprobe_busy = {
1253         .addr = (void *) get_kprobe,
1254 };
1255
1256 void kprobe_busy_begin(void)
1257 {
1258         struct kprobe_ctlblk *kcb;
1259
1260         preempt_disable();
1261         __this_cpu_write(current_kprobe, &kprobe_busy);
1262         kcb = get_kprobe_ctlblk();
1263         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1264 }
1265
1266 void kprobe_busy_end(void)
1267 {
1268         __this_cpu_write(current_kprobe, NULL);
1269         preempt_enable();
1270 }
1271
1272 /*
1273  * This function is called from finish_task_switch when task tk becomes dead,
1274  * so that we can recycle any function-return probe instances associated
1275  * with this task. These left over instances represent probed functions
1276  * that have been called but will never return.
1277  */
1278 void kprobe_flush_task(struct task_struct *tk)
1279 {
1280         struct kretprobe_instance *ri;
1281         struct hlist_head *head, empty_rp;
1282         struct hlist_node *tmp;
1283         unsigned long hash, flags = 0;
1284
1285         if (unlikely(!kprobes_initialized))
1286                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1287                 return;
1288
1289         kprobe_busy_begin();
1290
1291         INIT_HLIST_HEAD(&empty_rp);
1292         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1293         head = &kretprobe_inst_table[hash];
1294         kretprobe_table_lock(hash, &flags);
1295         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1296                 if (ri->task == tk)
1297                         recycle_rp_inst(ri, &empty_rp);
1298         }
1299         kretprobe_table_unlock(hash, &flags);
1300         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1301                 hlist_del(&ri->hlist);
1302                 kfree(ri);
1303         }
1304
1305         kprobe_busy_end();
1306 }
1307 NOKPROBE_SYMBOL(kprobe_flush_task);
1308
1309 static inline void free_rp_inst(struct kretprobe *rp)
1310 {
1311         struct kretprobe_instance *ri;
1312         struct hlist_node *next;
1313
1314         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1315                 hlist_del(&ri->hlist);
1316                 kfree(ri);
1317         }
1318 }
1319
1320 static void cleanup_rp_inst(struct kretprobe *rp)
1321 {
1322         unsigned long flags, hash;
1323         struct kretprobe_instance *ri;
1324         struct hlist_node *next;
1325         struct hlist_head *head;
1326
1327         /* No race here */
1328         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1329                 kretprobe_table_lock(hash, &flags);
1330                 head = &kretprobe_inst_table[hash];
1331                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1332                         if (ri->rp == rp)
1333                                 ri->rp = NULL;
1334                 }
1335                 kretprobe_table_unlock(hash, &flags);
1336         }
1337         free_rp_inst(rp);
1338 }
1339 NOKPROBE_SYMBOL(cleanup_rp_inst);
1340
1341 /* Add the new probe to ap->list */
1342 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1343 {
1344         if (p->post_handler)
1345                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1346
1347         list_add_rcu(&p->list, &ap->list);
1348         if (p->post_handler && !ap->post_handler)
1349                 ap->post_handler = aggr_post_handler;
1350
1351         return 0;
1352 }
1353
1354 /*
1355  * Fill in the required fields of the "manager kprobe". Replace the
1356  * earlier kprobe in the hlist with the manager kprobe
1357  */
1358 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1359 {
1360         /* Copy p's insn slot to ap */
1361         copy_kprobe(p, ap);
1362         flush_insn_slot(ap);
1363         ap->addr = p->addr;
1364         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1365         ap->pre_handler = aggr_pre_handler;
1366         ap->fault_handler = aggr_fault_handler;
1367         /* We don't care the kprobe which has gone. */
1368         if (p->post_handler && !kprobe_gone(p))
1369                 ap->post_handler = aggr_post_handler;
1370
1371         INIT_LIST_HEAD(&ap->list);
1372         INIT_HLIST_NODE(&ap->hlist);
1373
1374         list_add_rcu(&p->list, &ap->list);
1375         hlist_replace_rcu(&p->hlist, &ap->hlist);
1376 }
1377
1378 /*
1379  * This is the second or subsequent kprobe at the address - handle
1380  * the intricacies
1381  */
1382 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1383 {
1384         int ret = 0;
1385         struct kprobe *ap = orig_p;
1386
1387         cpus_read_lock();
1388
1389         /* For preparing optimization, jump_label_text_reserved() is called */
1390         jump_label_lock();
1391         mutex_lock(&text_mutex);
1392
1393         if (!kprobe_aggrprobe(orig_p)) {
1394                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1395                 ap = alloc_aggr_kprobe(orig_p);
1396                 if (!ap) {
1397                         ret = -ENOMEM;
1398                         goto out;
1399                 }
1400                 init_aggr_kprobe(ap, orig_p);
1401         } else if (kprobe_unused(ap)) {
1402                 /* This probe is going to die. Rescue it */
1403                 ret = reuse_unused_kprobe(ap);
1404                 if (ret)
1405                         goto out;
1406         }
1407
1408         if (kprobe_gone(ap)) {
1409                 /*
1410                  * Attempting to insert new probe at the same location that
1411                  * had a probe in the module vaddr area which already
1412                  * freed. So, the instruction slot has already been
1413                  * released. We need a new slot for the new probe.
1414                  */
1415                 ret = arch_prepare_kprobe(ap);
1416                 if (ret)
1417                         /*
1418                          * Even if fail to allocate new slot, don't need to
1419                          * free aggr_probe. It will be used next time, or
1420                          * freed by unregister_kprobe.
1421                          */
1422                         goto out;
1423
1424                 /* Prepare optimized instructions if possible. */
1425                 prepare_optimized_kprobe(ap);
1426
1427                 /*
1428                  * Clear gone flag to prevent allocating new slot again, and
1429                  * set disabled flag because it is not armed yet.
1430                  */
1431                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1432                             | KPROBE_FLAG_DISABLED;
1433         }
1434
1435         /* Copy ap's insn slot to p */
1436         copy_kprobe(ap, p);
1437         ret = add_new_kprobe(ap, p);
1438
1439 out:
1440         mutex_unlock(&text_mutex);
1441         jump_label_unlock();
1442         cpus_read_unlock();
1443
1444         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1445                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1446                 if (!kprobes_all_disarmed) {
1447                         /* Arm the breakpoint again. */
1448                         ret = arm_kprobe(ap);
1449                         if (ret) {
1450                                 ap->flags |= KPROBE_FLAG_DISABLED;
1451                                 list_del_rcu(&p->list);
1452                                 synchronize_rcu();
1453                         }
1454                 }
1455         }
1456         return ret;
1457 }
1458
1459 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1460 {
1461         /* The __kprobes marked functions and entry code must not be probed */
1462         return addr >= (unsigned long)__kprobes_text_start &&
1463                addr < (unsigned long)__kprobes_text_end;
1464 }
1465
1466 static bool __within_kprobe_blacklist(unsigned long addr)
1467 {
1468         struct kprobe_blacklist_entry *ent;
1469
1470         if (arch_within_kprobe_blacklist(addr))
1471                 return true;
1472         /*
1473          * If there exists a kprobe_blacklist, verify and
1474          * fail any probe registration in the prohibited area
1475          */
1476         list_for_each_entry(ent, &kprobe_blacklist, list) {
1477                 if (addr >= ent->start_addr && addr < ent->end_addr)
1478                         return true;
1479         }
1480         return false;
1481 }
1482
1483 bool within_kprobe_blacklist(unsigned long addr)
1484 {
1485         char symname[KSYM_NAME_LEN], *p;
1486
1487         if (__within_kprobe_blacklist(addr))
1488                 return true;
1489
1490         /* Check if the address is on a suffixed-symbol */
1491         if (!lookup_symbol_name(addr, symname)) {
1492                 p = strchr(symname, '.');
1493                 if (!p)
1494                         return false;
1495                 *p = '\0';
1496                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1497                 if (addr)
1498                         return __within_kprobe_blacklist(addr);
1499         }
1500         return false;
1501 }
1502
1503 /*
1504  * If we have a symbol_name argument, look it up and add the offset field
1505  * to it. This way, we can specify a relative address to a symbol.
1506  * This returns encoded errors if it fails to look up symbol or invalid
1507  * combination of parameters.
1508  */
1509 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1510                         const char *symbol_name, unsigned int offset)
1511 {
1512         if ((symbol_name && addr) || (!symbol_name && !addr))
1513                 goto invalid;
1514
1515         if (symbol_name) {
1516                 addr = kprobe_lookup_name(symbol_name, offset);
1517                 if (!addr)
1518                         return ERR_PTR(-ENOENT);
1519         }
1520
1521         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1522         if (addr)
1523                 return addr;
1524
1525 invalid:
1526         return ERR_PTR(-EINVAL);
1527 }
1528
1529 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1530 {
1531         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1532 }
1533
1534 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1535 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1536 {
1537         struct kprobe *ap, *list_p;
1538
1539         ap = get_kprobe(p->addr);
1540         if (unlikely(!ap))
1541                 return NULL;
1542
1543         if (p != ap) {
1544                 list_for_each_entry_rcu(list_p, &ap->list, list)
1545                         if (list_p == p)
1546                         /* kprobe p is a valid probe */
1547                                 goto valid;
1548                 return NULL;
1549         }
1550 valid:
1551         return ap;
1552 }
1553
1554 /* Return error if the kprobe is being re-registered */
1555 static inline int check_kprobe_rereg(struct kprobe *p)
1556 {
1557         int ret = 0;
1558
1559         mutex_lock(&kprobe_mutex);
1560         if (__get_valid_kprobe(p))
1561                 ret = -EINVAL;
1562         mutex_unlock(&kprobe_mutex);
1563
1564         return ret;
1565 }
1566
1567 int __weak arch_check_ftrace_location(struct kprobe *p)
1568 {
1569         unsigned long ftrace_addr;
1570
1571         ftrace_addr = ftrace_location((unsigned long)p->addr);
1572         if (ftrace_addr) {
1573 #ifdef CONFIG_KPROBES_ON_FTRACE
1574                 /* Given address is not on the instruction boundary */
1575                 if ((unsigned long)p->addr != ftrace_addr)
1576                         return -EILSEQ;
1577                 p->flags |= KPROBE_FLAG_FTRACE;
1578 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1579                 return -EINVAL;
1580 #endif
1581         }
1582         return 0;
1583 }
1584
1585 static int check_kprobe_address_safe(struct kprobe *p,
1586                                      struct module **probed_mod)
1587 {
1588         int ret;
1589
1590         ret = arch_check_ftrace_location(p);
1591         if (ret)
1592                 return ret;
1593         jump_label_lock();
1594         preempt_disable();
1595
1596         /* Ensure it is not in reserved area nor out of text */
1597         if (!kernel_text_address((unsigned long) p->addr) ||
1598             within_kprobe_blacklist((unsigned long) p->addr) ||
1599             jump_label_text_reserved(p->addr, p->addr) ||
1600             find_bug((unsigned long)p->addr)) {
1601                 ret = -EINVAL;
1602                 goto out;
1603         }
1604
1605         /* Check if are we probing a module */
1606         *probed_mod = __module_text_address((unsigned long) p->addr);
1607         if (*probed_mod) {
1608                 /*
1609                  * We must hold a refcount of the probed module while updating
1610                  * its code to prohibit unexpected unloading.
1611                  */
1612                 if (unlikely(!try_module_get(*probed_mod))) {
1613                         ret = -ENOENT;
1614                         goto out;
1615                 }
1616
1617                 /*
1618                  * If the module freed .init.text, we couldn't insert
1619                  * kprobes in there.
1620                  */
1621                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1622                     (*probed_mod)->state != MODULE_STATE_COMING) {
1623                         module_put(*probed_mod);
1624                         *probed_mod = NULL;
1625                         ret = -ENOENT;
1626                 }
1627         }
1628 out:
1629         preempt_enable();
1630         jump_label_unlock();
1631
1632         return ret;
1633 }
1634
1635 int register_kprobe(struct kprobe *p)
1636 {
1637         int ret;
1638         struct kprobe *old_p;
1639         struct module *probed_mod;
1640         kprobe_opcode_t *addr;
1641
1642         /* Adjust probe address from symbol */
1643         addr = kprobe_addr(p);
1644         if (IS_ERR(addr))
1645                 return PTR_ERR(addr);
1646         p->addr = addr;
1647
1648         ret = check_kprobe_rereg(p);
1649         if (ret)
1650                 return ret;
1651
1652         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1653         p->flags &= KPROBE_FLAG_DISABLED;
1654         p->nmissed = 0;
1655         INIT_LIST_HEAD(&p->list);
1656
1657         ret = check_kprobe_address_safe(p, &probed_mod);
1658         if (ret)
1659                 return ret;
1660
1661         mutex_lock(&kprobe_mutex);
1662
1663         old_p = get_kprobe(p->addr);
1664         if (old_p) {
1665                 /* Since this may unoptimize old_p, locking text_mutex. */
1666                 ret = register_aggr_kprobe(old_p, p);
1667                 goto out;
1668         }
1669
1670         cpus_read_lock();
1671         /* Prevent text modification */
1672         mutex_lock(&text_mutex);
1673         ret = prepare_kprobe(p);
1674         mutex_unlock(&text_mutex);
1675         cpus_read_unlock();
1676         if (ret)
1677                 goto out;
1678
1679         INIT_HLIST_NODE(&p->hlist);
1680         hlist_add_head_rcu(&p->hlist,
1681                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1682
1683         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1684                 ret = arm_kprobe(p);
1685                 if (ret) {
1686                         hlist_del_rcu(&p->hlist);
1687                         synchronize_rcu();
1688                         goto out;
1689                 }
1690         }
1691
1692         /* Try to optimize kprobe */
1693         try_to_optimize_kprobe(p);
1694 out:
1695         mutex_unlock(&kprobe_mutex);
1696
1697         if (probed_mod)
1698                 module_put(probed_mod);
1699
1700         return ret;
1701 }
1702 EXPORT_SYMBOL_GPL(register_kprobe);
1703
1704 /* Check if all probes on the aggrprobe are disabled */
1705 static int aggr_kprobe_disabled(struct kprobe *ap)
1706 {
1707         struct kprobe *kp;
1708
1709         list_for_each_entry_rcu(kp, &ap->list, list)
1710                 if (!kprobe_disabled(kp))
1711                         /*
1712                          * There is an active probe on the list.
1713                          * We can't disable this ap.
1714                          */
1715                         return 0;
1716
1717         return 1;
1718 }
1719
1720 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1721 static struct kprobe *__disable_kprobe(struct kprobe *p)
1722 {
1723         struct kprobe *orig_p;
1724         int ret;
1725
1726         /* Get an original kprobe for return */
1727         orig_p = __get_valid_kprobe(p);
1728         if (unlikely(orig_p == NULL))
1729                 return ERR_PTR(-EINVAL);
1730
1731         if (!kprobe_disabled(p)) {
1732                 /* Disable probe if it is a child probe */
1733                 if (p != orig_p)
1734                         p->flags |= KPROBE_FLAG_DISABLED;
1735
1736                 /* Try to disarm and disable this/parent probe */
1737                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1738                         /*
1739                          * If kprobes_all_disarmed is set, orig_p
1740                          * should have already been disarmed, so
1741                          * skip unneed disarming process.
1742                          */
1743                         if (!kprobes_all_disarmed) {
1744                                 ret = disarm_kprobe(orig_p, true);
1745                                 if (ret) {
1746                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1747                                         return ERR_PTR(ret);
1748                                 }
1749                         }
1750                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1751                 }
1752         }
1753
1754         return orig_p;
1755 }
1756
1757 /*
1758  * Unregister a kprobe without a scheduler synchronization.
1759  */
1760 static int __unregister_kprobe_top(struct kprobe *p)
1761 {
1762         struct kprobe *ap, *list_p;
1763
1764         /* Disable kprobe. This will disarm it if needed. */
1765         ap = __disable_kprobe(p);
1766         if (IS_ERR(ap))
1767                 return PTR_ERR(ap);
1768
1769         if (ap == p)
1770                 /*
1771                  * This probe is an independent(and non-optimized) kprobe
1772                  * (not an aggrprobe). Remove from the hash list.
1773                  */
1774                 goto disarmed;
1775
1776         /* Following process expects this probe is an aggrprobe */
1777         WARN_ON(!kprobe_aggrprobe(ap));
1778
1779         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1780                 /*
1781                  * !disarmed could be happen if the probe is under delayed
1782                  * unoptimizing.
1783                  */
1784                 goto disarmed;
1785         else {
1786                 /* If disabling probe has special handlers, update aggrprobe */
1787                 if (p->post_handler && !kprobe_gone(p)) {
1788                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1789                                 if ((list_p != p) && (list_p->post_handler))
1790                                         goto noclean;
1791                         }
1792                         ap->post_handler = NULL;
1793                 }
1794 noclean:
1795                 /*
1796                  * Remove from the aggrprobe: this path will do nothing in
1797                  * __unregister_kprobe_bottom().
1798                  */
1799                 list_del_rcu(&p->list);
1800                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1801                         /*
1802                          * Try to optimize this probe again, because post
1803                          * handler may have been changed.
1804                          */
1805                         optimize_kprobe(ap);
1806         }
1807         return 0;
1808
1809 disarmed:
1810         hlist_del_rcu(&ap->hlist);
1811         return 0;
1812 }
1813
1814 static void __unregister_kprobe_bottom(struct kprobe *p)
1815 {
1816         struct kprobe *ap;
1817
1818         if (list_empty(&p->list))
1819                 /* This is an independent kprobe */
1820                 arch_remove_kprobe(p);
1821         else if (list_is_singular(&p->list)) {
1822                 /* This is the last child of an aggrprobe */
1823                 ap = list_entry(p->list.next, struct kprobe, list);
1824                 list_del(&p->list);
1825                 free_aggr_kprobe(ap);
1826         }
1827         /* Otherwise, do nothing. */
1828 }
1829
1830 int register_kprobes(struct kprobe **kps, int num)
1831 {
1832         int i, ret = 0;
1833
1834         if (num <= 0)
1835                 return -EINVAL;
1836         for (i = 0; i < num; i++) {
1837                 ret = register_kprobe(kps[i]);
1838                 if (ret < 0) {
1839                         if (i > 0)
1840                                 unregister_kprobes(kps, i);
1841                         break;
1842                 }
1843         }
1844         return ret;
1845 }
1846 EXPORT_SYMBOL_GPL(register_kprobes);
1847
1848 void unregister_kprobe(struct kprobe *p)
1849 {
1850         unregister_kprobes(&p, 1);
1851 }
1852 EXPORT_SYMBOL_GPL(unregister_kprobe);
1853
1854 void unregister_kprobes(struct kprobe **kps, int num)
1855 {
1856         int i;
1857
1858         if (num <= 0)
1859                 return;
1860         mutex_lock(&kprobe_mutex);
1861         for (i = 0; i < num; i++)
1862                 if (__unregister_kprobe_top(kps[i]) < 0)
1863                         kps[i]->addr = NULL;
1864         mutex_unlock(&kprobe_mutex);
1865
1866         synchronize_rcu();
1867         for (i = 0; i < num; i++)
1868                 if (kps[i]->addr)
1869                         __unregister_kprobe_bottom(kps[i]);
1870 }
1871 EXPORT_SYMBOL_GPL(unregister_kprobes);
1872
1873 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1874                                         unsigned long val, void *data)
1875 {
1876         return NOTIFY_DONE;
1877 }
1878 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1879
1880 static struct notifier_block kprobe_exceptions_nb = {
1881         .notifier_call = kprobe_exceptions_notify,
1882         .priority = 0x7fffffff /* we need to be notified first */
1883 };
1884
1885 unsigned long __weak arch_deref_entry_point(void *entry)
1886 {
1887         return (unsigned long)entry;
1888 }
1889
1890 #ifdef CONFIG_KRETPROBES
1891 /*
1892  * This kprobe pre_handler is registered with every kretprobe. When probe
1893  * hits it will set up the return probe.
1894  */
1895 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1896 {
1897         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1898         unsigned long hash, flags = 0;
1899         struct kretprobe_instance *ri;
1900
1901         /*
1902          * To avoid deadlocks, prohibit return probing in NMI contexts,
1903          * just skip the probe and increase the (inexact) 'nmissed'
1904          * statistical counter, so that the user is informed that
1905          * something happened:
1906          */
1907         if (unlikely(in_nmi())) {
1908                 rp->nmissed++;
1909                 return 0;
1910         }
1911
1912         /* TODO: consider to only swap the RA after the last pre_handler fired */
1913         hash = hash_ptr(current, KPROBE_HASH_BITS);
1914         raw_spin_lock_irqsave(&rp->lock, flags);
1915         if (!hlist_empty(&rp->free_instances)) {
1916                 ri = hlist_entry(rp->free_instances.first,
1917                                 struct kretprobe_instance, hlist);
1918                 hlist_del(&ri->hlist);
1919                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1920
1921                 ri->rp = rp;
1922                 ri->task = current;
1923
1924                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1925                         raw_spin_lock_irqsave(&rp->lock, flags);
1926                         hlist_add_head(&ri->hlist, &rp->free_instances);
1927                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1928                         return 0;
1929                 }
1930
1931                 arch_prepare_kretprobe(ri, regs);
1932
1933                 /* XXX(hch): why is there no hlist_move_head? */
1934                 INIT_HLIST_NODE(&ri->hlist);
1935                 kretprobe_table_lock(hash, &flags);
1936                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1937                 kretprobe_table_unlock(hash, &flags);
1938         } else {
1939                 rp->nmissed++;
1940                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1941         }
1942         return 0;
1943 }
1944 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1945
1946 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1947 {
1948         return !offset;
1949 }
1950
1951 /**
1952  * kprobe_on_func_entry() -- check whether given address is function entry
1953  * @addr: Target address
1954  * @sym:  Target symbol name
1955  * @offset: The offset from the symbol or the address
1956  *
1957  * This checks whether the given @addr+@offset or @sym+@offset is on the
1958  * function entry address or not.
1959  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1960  * And also it returns -ENOENT if it fails the symbol or address lookup.
1961  * Caller must pass @addr or @sym (either one must be NULL), or this
1962  * returns -EINVAL.
1963  */
1964 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1965 {
1966         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1967
1968         if (IS_ERR(kp_addr))
1969                 return PTR_ERR(kp_addr);
1970
1971         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1972                 return -ENOENT;
1973
1974         if (!arch_kprobe_on_func_entry(offset))
1975                 return -EINVAL;
1976
1977         return 0;
1978 }
1979
1980 int register_kretprobe(struct kretprobe *rp)
1981 {
1982         int ret;
1983         struct kretprobe_instance *inst;
1984         int i;
1985         void *addr;
1986
1987         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1988         if (ret)
1989                 return ret;
1990
1991         /* If only rp->kp.addr is specified, check reregistering kprobes */
1992         if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1993                 return -EINVAL;
1994
1995         if (kretprobe_blacklist_size) {
1996                 addr = kprobe_addr(&rp->kp);
1997                 if (IS_ERR(addr))
1998                         return PTR_ERR(addr);
1999
2000                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2001                         if (kretprobe_blacklist[i].addr == addr)
2002                                 return -EINVAL;
2003                 }
2004         }
2005
2006         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2007                 return -E2BIG;
2008
2009         rp->kp.pre_handler = pre_handler_kretprobe;
2010         rp->kp.post_handler = NULL;
2011         rp->kp.fault_handler = NULL;
2012
2013         /* Pre-allocate memory for max kretprobe instances */
2014         if (rp->maxactive <= 0) {
2015 #ifdef CONFIG_PREEMPTION
2016                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2017 #else
2018                 rp->maxactive = num_possible_cpus();
2019 #endif
2020         }
2021         raw_spin_lock_init(&rp->lock);
2022         INIT_HLIST_HEAD(&rp->free_instances);
2023         for (i = 0; i < rp->maxactive; i++) {
2024                 inst = kmalloc(sizeof(struct kretprobe_instance) +
2025                                rp->data_size, GFP_KERNEL);
2026                 if (inst == NULL) {
2027                         free_rp_inst(rp);
2028                         return -ENOMEM;
2029                 }
2030                 INIT_HLIST_NODE(&inst->hlist);
2031                 hlist_add_head(&inst->hlist, &rp->free_instances);
2032         }
2033
2034         rp->nmissed = 0;
2035         /* Establish function entry probe point */
2036         ret = register_kprobe(&rp->kp);
2037         if (ret != 0)
2038                 free_rp_inst(rp);
2039         return ret;
2040 }
2041 EXPORT_SYMBOL_GPL(register_kretprobe);
2042
2043 int register_kretprobes(struct kretprobe **rps, int num)
2044 {
2045         int ret = 0, i;
2046
2047         if (num <= 0)
2048                 return -EINVAL;
2049         for (i = 0; i < num; i++) {
2050                 ret = register_kretprobe(rps[i]);
2051                 if (ret < 0) {
2052                         if (i > 0)
2053                                 unregister_kretprobes(rps, i);
2054                         break;
2055                 }
2056         }
2057         return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(register_kretprobes);
2060
2061 void unregister_kretprobe(struct kretprobe *rp)
2062 {
2063         unregister_kretprobes(&rp, 1);
2064 }
2065 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2066
2067 void unregister_kretprobes(struct kretprobe **rps, int num)
2068 {
2069         int i;
2070
2071         if (num <= 0)
2072                 return;
2073         mutex_lock(&kprobe_mutex);
2074         for (i = 0; i < num; i++)
2075                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2076                         rps[i]->kp.addr = NULL;
2077         mutex_unlock(&kprobe_mutex);
2078
2079         synchronize_rcu();
2080         for (i = 0; i < num; i++) {
2081                 if (rps[i]->kp.addr) {
2082                         __unregister_kprobe_bottom(&rps[i]->kp);
2083                         cleanup_rp_inst(rps[i]);
2084                 }
2085         }
2086 }
2087 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2088
2089 #else /* CONFIG_KRETPROBES */
2090 int register_kretprobe(struct kretprobe *rp)
2091 {
2092         return -ENOSYS;
2093 }
2094 EXPORT_SYMBOL_GPL(register_kretprobe);
2095
2096 int register_kretprobes(struct kretprobe **rps, int num)
2097 {
2098         return -ENOSYS;
2099 }
2100 EXPORT_SYMBOL_GPL(register_kretprobes);
2101
2102 void unregister_kretprobe(struct kretprobe *rp)
2103 {
2104 }
2105 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2106
2107 void unregister_kretprobes(struct kretprobe **rps, int num)
2108 {
2109 }
2110 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2111
2112 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2113 {
2114         return 0;
2115 }
2116 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2117
2118 #endif /* CONFIG_KRETPROBES */
2119
2120 /* Set the kprobe gone and remove its instruction buffer. */
2121 static void kill_kprobe(struct kprobe *p)
2122 {
2123         struct kprobe *kp;
2124
2125         if (WARN_ON_ONCE(kprobe_gone(p)))
2126                 return;
2127
2128         p->flags |= KPROBE_FLAG_GONE;
2129         if (kprobe_aggrprobe(p)) {
2130                 /*
2131                  * If this is an aggr_kprobe, we have to list all the
2132                  * chained probes and mark them GONE.
2133                  */
2134                 list_for_each_entry_rcu(kp, &p->list, list)
2135                         kp->flags |= KPROBE_FLAG_GONE;
2136                 p->post_handler = NULL;
2137                 kill_optimized_kprobe(p);
2138         }
2139         /*
2140          * Here, we can remove insn_slot safely, because no thread calls
2141          * the original probed function (which will be freed soon) any more.
2142          */
2143         arch_remove_kprobe(p);
2144
2145         /*
2146          * The module is going away. We should disarm the kprobe which
2147          * is using ftrace, because ftrace framework is still available at
2148          * MODULE_STATE_GOING notification.
2149          */
2150         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2151                 disarm_kprobe_ftrace(p);
2152 }
2153
2154 /* Disable one kprobe */
2155 int disable_kprobe(struct kprobe *kp)
2156 {
2157         int ret = 0;
2158         struct kprobe *p;
2159
2160         mutex_lock(&kprobe_mutex);
2161
2162         /* Disable this kprobe */
2163         p = __disable_kprobe(kp);
2164         if (IS_ERR(p))
2165                 ret = PTR_ERR(p);
2166
2167         mutex_unlock(&kprobe_mutex);
2168         return ret;
2169 }
2170 EXPORT_SYMBOL_GPL(disable_kprobe);
2171
2172 /* Enable one kprobe */
2173 int enable_kprobe(struct kprobe *kp)
2174 {
2175         int ret = 0;
2176         struct kprobe *p;
2177
2178         mutex_lock(&kprobe_mutex);
2179
2180         /* Check whether specified probe is valid. */
2181         p = __get_valid_kprobe(kp);
2182         if (unlikely(p == NULL)) {
2183                 ret = -EINVAL;
2184                 goto out;
2185         }
2186
2187         if (kprobe_gone(kp)) {
2188                 /* This kprobe has gone, we couldn't enable it. */
2189                 ret = -EINVAL;
2190                 goto out;
2191         }
2192
2193         if (p != kp)
2194                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2195
2196         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2197                 p->flags &= ~KPROBE_FLAG_DISABLED;
2198                 ret = arm_kprobe(p);
2199                 if (ret)
2200                         p->flags |= KPROBE_FLAG_DISABLED;
2201         }
2202 out:
2203         mutex_unlock(&kprobe_mutex);
2204         return ret;
2205 }
2206 EXPORT_SYMBOL_GPL(enable_kprobe);
2207
2208 /* Caller must NOT call this in usual path. This is only for critical case */
2209 void dump_kprobe(struct kprobe *kp)
2210 {
2211         pr_err("Dumping kprobe:\n");
2212         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2213                kp->symbol_name, kp->offset, kp->addr);
2214 }
2215 NOKPROBE_SYMBOL(dump_kprobe);
2216
2217 int kprobe_add_ksym_blacklist(unsigned long entry)
2218 {
2219         struct kprobe_blacklist_entry *ent;
2220         unsigned long offset = 0, size = 0;
2221
2222         if (!kernel_text_address(entry) ||
2223             !kallsyms_lookup_size_offset(entry, &size, &offset))
2224                 return -EINVAL;
2225
2226         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2227         if (!ent)
2228                 return -ENOMEM;
2229         ent->start_addr = entry;
2230         ent->end_addr = entry + size;
2231         INIT_LIST_HEAD(&ent->list);
2232         list_add_tail(&ent->list, &kprobe_blacklist);
2233
2234         return (int)size;
2235 }
2236
2237 /* Add all symbols in given area into kprobe blacklist */
2238 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2239 {
2240         unsigned long entry;
2241         int ret = 0;
2242
2243         for (entry = start; entry < end; entry += ret) {
2244                 ret = kprobe_add_ksym_blacklist(entry);
2245                 if (ret < 0)
2246                         return ret;
2247                 if (ret == 0)   /* In case of alias symbol */
2248                         ret = 1;
2249         }
2250         return 0;
2251 }
2252
2253 int __init __weak arch_populate_kprobe_blacklist(void)
2254 {
2255         return 0;
2256 }
2257
2258 /*
2259  * Lookup and populate the kprobe_blacklist.
2260  *
2261  * Unlike the kretprobe blacklist, we'll need to determine
2262  * the range of addresses that belong to the said functions,
2263  * since a kprobe need not necessarily be at the beginning
2264  * of a function.
2265  */
2266 static int __init populate_kprobe_blacklist(unsigned long *start,
2267                                              unsigned long *end)
2268 {
2269         unsigned long entry;
2270         unsigned long *iter;
2271         int ret;
2272
2273         for (iter = start; iter < end; iter++) {
2274                 entry = arch_deref_entry_point((void *)*iter);
2275                 ret = kprobe_add_ksym_blacklist(entry);
2276                 if (ret == -EINVAL)
2277                         continue;
2278                 if (ret < 0)
2279                         return ret;
2280         }
2281
2282         /* Symbols in __kprobes_text are blacklisted */
2283         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2284                                         (unsigned long)__kprobes_text_end);
2285
2286         return ret ? : arch_populate_kprobe_blacklist();
2287 }
2288
2289 /* Module notifier call back, checking kprobes on the module */
2290 static int kprobes_module_callback(struct notifier_block *nb,
2291                                    unsigned long val, void *data)
2292 {
2293         struct module *mod = data;
2294         struct hlist_head *head;
2295         struct kprobe *p;
2296         unsigned int i;
2297         int checkcore = (val == MODULE_STATE_GOING);
2298
2299         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2300                 return NOTIFY_DONE;
2301
2302         /*
2303          * When MODULE_STATE_GOING was notified, both of module .text and
2304          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2305          * notified, only .init.text section would be freed. We need to
2306          * disable kprobes which have been inserted in the sections.
2307          */
2308         mutex_lock(&kprobe_mutex);
2309         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2310                 head = &kprobe_table[i];
2311                 hlist_for_each_entry_rcu(p, head, hlist) {
2312                         if (kprobe_gone(p))
2313                                 continue;
2314
2315                         if (within_module_init((unsigned long)p->addr, mod) ||
2316                             (checkcore &&
2317                              within_module_core((unsigned long)p->addr, mod))) {
2318                                 /*
2319                                  * The vaddr this probe is installed will soon
2320                                  * be vfreed buy not synced to disk. Hence,
2321                                  * disarming the breakpoint isn't needed.
2322                                  *
2323                                  * Note, this will also move any optimized probes
2324                                  * that are pending to be removed from their
2325                                  * corresponding lists to the freeing_list and
2326                                  * will not be touched by the delayed
2327                                  * kprobe_optimizer work handler.
2328                                  */
2329                                 kill_kprobe(p);
2330                         }
2331                 }
2332         }
2333         mutex_unlock(&kprobe_mutex);
2334         return NOTIFY_DONE;
2335 }
2336
2337 static struct notifier_block kprobe_module_nb = {
2338         .notifier_call = kprobes_module_callback,
2339         .priority = 0
2340 };
2341
2342 /* Markers of _kprobe_blacklist section */
2343 extern unsigned long __start_kprobe_blacklist[];
2344 extern unsigned long __stop_kprobe_blacklist[];
2345
2346 void kprobe_free_init_mem(void)
2347 {
2348         void *start = (void *)(&__init_begin);
2349         void *end = (void *)(&__init_end);
2350         struct hlist_head *head;
2351         struct kprobe *p;
2352         int i;
2353
2354         mutex_lock(&kprobe_mutex);
2355
2356         /* Kill all kprobes on initmem */
2357         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2358                 head = &kprobe_table[i];
2359                 hlist_for_each_entry(p, head, hlist) {
2360                         if (start <= (void *)p->addr && (void *)p->addr < end)
2361                                 kill_kprobe(p);
2362                 }
2363         }
2364
2365         mutex_unlock(&kprobe_mutex);
2366 }
2367
2368 static int __init init_kprobes(void)
2369 {
2370         int i, err = 0;
2371
2372         /* FIXME allocate the probe table, currently defined statically */
2373         /* initialize all list heads */
2374         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2375                 INIT_HLIST_HEAD(&kprobe_table[i]);
2376                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2377                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2378         }
2379
2380         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2381                                         __stop_kprobe_blacklist);
2382         if (err) {
2383                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2384                 pr_err("Please take care of using kprobes.\n");
2385         }
2386
2387         if (kretprobe_blacklist_size) {
2388                 /* lookup the function address from its name */
2389                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2390                         kretprobe_blacklist[i].addr =
2391                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2392                         if (!kretprobe_blacklist[i].addr)
2393                                 printk("kretprobe: lookup failed: %s\n",
2394                                        kretprobe_blacklist[i].name);
2395                 }
2396         }
2397
2398 #if defined(CONFIG_OPTPROBES)
2399 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2400         /* Init kprobe_optinsn_slots */
2401         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2402 #endif
2403         /* By default, kprobes can be optimized */
2404         kprobes_allow_optimization = true;
2405 #endif
2406
2407         /* By default, kprobes are armed */
2408         kprobes_all_disarmed = false;
2409
2410         err = arch_init_kprobes();
2411         if (!err)
2412                 err = register_die_notifier(&kprobe_exceptions_nb);
2413         if (!err)
2414                 err = register_module_notifier(&kprobe_module_nb);
2415
2416         kprobes_initialized = (err == 0);
2417
2418         if (!err)
2419                 init_test_probes();
2420         return err;
2421 }
2422 subsys_initcall(init_kprobes);
2423
2424 #ifdef CONFIG_DEBUG_FS
2425 static void report_probe(struct seq_file *pi, struct kprobe *p,
2426                 const char *sym, int offset, char *modname, struct kprobe *pp)
2427 {
2428         char *kprobe_type;
2429         void *addr = p->addr;
2430
2431         if (p->pre_handler == pre_handler_kretprobe)
2432                 kprobe_type = "r";
2433         else
2434                 kprobe_type = "k";
2435
2436         if (!kallsyms_show_value(pi->file->f_cred))
2437                 addr = NULL;
2438
2439         if (sym)
2440                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2441                         addr, kprobe_type, sym, offset,
2442                         (modname ? modname : " "));
2443         else    /* try to use %pS */
2444                 seq_printf(pi, "%px  %s  %pS ",
2445                         addr, kprobe_type, p->addr);
2446
2447         if (!pp)
2448                 pp = p;
2449         seq_printf(pi, "%s%s%s%s\n",
2450                 (kprobe_gone(p) ? "[GONE]" : ""),
2451                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2452                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2453                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2454 }
2455
2456 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2457 {
2458         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2459 }
2460
2461 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2462 {
2463         (*pos)++;
2464         if (*pos >= KPROBE_TABLE_SIZE)
2465                 return NULL;
2466         return pos;
2467 }
2468
2469 static void kprobe_seq_stop(struct seq_file *f, void *v)
2470 {
2471         /* Nothing to do */
2472 }
2473
2474 static int show_kprobe_addr(struct seq_file *pi, void *v)
2475 {
2476         struct hlist_head *head;
2477         struct kprobe *p, *kp;
2478         const char *sym = NULL;
2479         unsigned int i = *(loff_t *) v;
2480         unsigned long offset = 0;
2481         char *modname, namebuf[KSYM_NAME_LEN];
2482
2483         head = &kprobe_table[i];
2484         preempt_disable();
2485         hlist_for_each_entry_rcu(p, head, hlist) {
2486                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2487                                         &offset, &modname, namebuf);
2488                 if (kprobe_aggrprobe(p)) {
2489                         list_for_each_entry_rcu(kp, &p->list, list)
2490                                 report_probe(pi, kp, sym, offset, modname, p);
2491                 } else
2492                         report_probe(pi, p, sym, offset, modname, NULL);
2493         }
2494         preempt_enable();
2495         return 0;
2496 }
2497
2498 static const struct seq_operations kprobes_seq_ops = {
2499         .start = kprobe_seq_start,
2500         .next  = kprobe_seq_next,
2501         .stop  = kprobe_seq_stop,
2502         .show  = show_kprobe_addr
2503 };
2504
2505 static int kprobes_open(struct inode *inode, struct file *filp)
2506 {
2507         return seq_open(filp, &kprobes_seq_ops);
2508 }
2509
2510 static const struct file_operations debugfs_kprobes_operations = {
2511         .open           = kprobes_open,
2512         .read           = seq_read,
2513         .llseek         = seq_lseek,
2514         .release        = seq_release,
2515 };
2516
2517 /* kprobes/blacklist -- shows which functions can not be probed */
2518 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2519 {
2520         return seq_list_start(&kprobe_blacklist, *pos);
2521 }
2522
2523 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2524 {
2525         return seq_list_next(v, &kprobe_blacklist, pos);
2526 }
2527
2528 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2529 {
2530         struct kprobe_blacklist_entry *ent =
2531                 list_entry(v, struct kprobe_blacklist_entry, list);
2532
2533         /*
2534          * If /proc/kallsyms is not showing kernel address, we won't
2535          * show them here either.
2536          */
2537         if (!kallsyms_show_value(m->file->f_cred))
2538                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2539                            (void *)ent->start_addr);
2540         else
2541                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2542                            (void *)ent->end_addr, (void *)ent->start_addr);
2543         return 0;
2544 }
2545
2546 static const struct seq_operations kprobe_blacklist_seq_ops = {
2547         .start = kprobe_blacklist_seq_start,
2548         .next  = kprobe_blacklist_seq_next,
2549         .stop  = kprobe_seq_stop,       /* Reuse void function */
2550         .show  = kprobe_blacklist_seq_show,
2551 };
2552
2553 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2554 {
2555         return seq_open(filp, &kprobe_blacklist_seq_ops);
2556 }
2557
2558 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2559         .open           = kprobe_blacklist_open,
2560         .read           = seq_read,
2561         .llseek         = seq_lseek,
2562         .release        = seq_release,
2563 };
2564
2565 static int arm_all_kprobes(void)
2566 {
2567         struct hlist_head *head;
2568         struct kprobe *p;
2569         unsigned int i, total = 0, errors = 0;
2570         int err, ret = 0;
2571
2572         mutex_lock(&kprobe_mutex);
2573
2574         /* If kprobes are armed, just return */
2575         if (!kprobes_all_disarmed)
2576                 goto already_enabled;
2577
2578         /*
2579          * optimize_kprobe() called by arm_kprobe() checks
2580          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2581          * arm_kprobe.
2582          */
2583         kprobes_all_disarmed = false;
2584         /* Arming kprobes doesn't optimize kprobe itself */
2585         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2586                 head = &kprobe_table[i];
2587                 /* Arm all kprobes on a best-effort basis */
2588                 hlist_for_each_entry_rcu(p, head, hlist) {
2589                         if (!kprobe_disabled(p)) {
2590                                 err = arm_kprobe(p);
2591                                 if (err)  {
2592                                         errors++;
2593                                         ret = err;
2594                                 }
2595                                 total++;
2596                         }
2597                 }
2598         }
2599
2600         if (errors)
2601                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2602                         errors, total);
2603         else
2604                 pr_info("Kprobes globally enabled\n");
2605
2606 already_enabled:
2607         mutex_unlock(&kprobe_mutex);
2608         return ret;
2609 }
2610
2611 static int disarm_all_kprobes(void)
2612 {
2613         struct hlist_head *head;
2614         struct kprobe *p;
2615         unsigned int i, total = 0, errors = 0;
2616         int err, ret = 0;
2617
2618         mutex_lock(&kprobe_mutex);
2619
2620         /* If kprobes are already disarmed, just return */
2621         if (kprobes_all_disarmed) {
2622                 mutex_unlock(&kprobe_mutex);
2623                 return 0;
2624         }
2625
2626         kprobes_all_disarmed = true;
2627
2628         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2629                 head = &kprobe_table[i];
2630                 /* Disarm all kprobes on a best-effort basis */
2631                 hlist_for_each_entry_rcu(p, head, hlist) {
2632                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2633                                 err = disarm_kprobe(p, false);
2634                                 if (err) {
2635                                         errors++;
2636                                         ret = err;
2637                                 }
2638                                 total++;
2639                         }
2640                 }
2641         }
2642
2643         if (errors)
2644                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2645                         errors, total);
2646         else
2647                 pr_info("Kprobes globally disabled\n");
2648
2649         mutex_unlock(&kprobe_mutex);
2650
2651         /* Wait for disarming all kprobes by optimizer */
2652         wait_for_kprobe_optimizer();
2653
2654         return ret;
2655 }
2656
2657 /*
2658  * XXX: The debugfs bool file interface doesn't allow for callbacks
2659  * when the bool state is switched. We can reuse that facility when
2660  * available
2661  */
2662 static ssize_t read_enabled_file_bool(struct file *file,
2663                char __user *user_buf, size_t count, loff_t *ppos)
2664 {
2665         char buf[3];
2666
2667         if (!kprobes_all_disarmed)
2668                 buf[0] = '1';
2669         else
2670                 buf[0] = '0';
2671         buf[1] = '\n';
2672         buf[2] = 0x00;
2673         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2674 }
2675
2676 static ssize_t write_enabled_file_bool(struct file *file,
2677                const char __user *user_buf, size_t count, loff_t *ppos)
2678 {
2679         char buf[32];
2680         size_t buf_size;
2681         int ret = 0;
2682
2683         buf_size = min(count, (sizeof(buf)-1));
2684         if (copy_from_user(buf, user_buf, buf_size))
2685                 return -EFAULT;
2686
2687         buf[buf_size] = '\0';
2688         switch (buf[0]) {
2689         case 'y':
2690         case 'Y':
2691         case '1':
2692                 ret = arm_all_kprobes();
2693                 break;
2694         case 'n':
2695         case 'N':
2696         case '0':
2697                 ret = disarm_all_kprobes();
2698                 break;
2699         default:
2700                 return -EINVAL;
2701         }
2702
2703         if (ret)
2704                 return ret;
2705
2706         return count;
2707 }
2708
2709 static const struct file_operations fops_kp = {
2710         .read =         read_enabled_file_bool,
2711         .write =        write_enabled_file_bool,
2712         .llseek =       default_llseek,
2713 };
2714
2715 static int __init debugfs_kprobe_init(void)
2716 {
2717         struct dentry *dir;
2718
2719         dir = debugfs_create_dir("kprobes", NULL);
2720
2721         debugfs_create_file("list", 0400, dir, NULL,
2722                             &debugfs_kprobes_operations);
2723
2724         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2725
2726         debugfs_create_file("blacklist", 0400, dir, NULL,
2727                             &debugfs_kprobe_blacklist_ops);
2728
2729         return 0;
2730 }
2731
2732 late_initcall(debugfs_kprobe_init);
2733 #endif /* CONFIG_DEBUG_FS */