GNU Linux-libre 4.9.318-gnu1
[releases.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67         addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81         raw_spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86         return &(kretprobe_table_locks[hash].lock);
87 }
88
89 /* Blacklist -- list of struct kprobe_blacklist_entry */
90 static LIST_HEAD(kprobe_blacklist);
91
92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93 /*
94  * kprobe->ainsn.insn points to the copy of the instruction to be
95  * single-stepped. x86_64, POWER4 and above have no-exec support and
96  * stepping on the instruction on a vmalloced/kmalloced/data page
97  * is a recipe for disaster
98  */
99 struct kprobe_insn_page {
100         struct list_head list;
101         kprobe_opcode_t *insns;         /* Page of instruction slots */
102         struct kprobe_insn_cache *cache;
103         int nused;
104         int ngarbage;
105         char slot_used[];
106 };
107
108 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
109         (offsetof(struct kprobe_insn_page, slot_used) + \
110          (sizeof(char) * (slots)))
111
112 static int slots_per_page(struct kprobe_insn_cache *c)
113 {
114         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115 }
116
117 enum kprobe_slot_state {
118         SLOT_CLEAN = 0,
119         SLOT_DIRTY = 1,
120         SLOT_USED = 2,
121 };
122
123 static void *alloc_insn_page(void)
124 {
125         return module_alloc(PAGE_SIZE);
126 }
127
128 void __weak free_insn_page(void *page)
129 {
130         module_memfree(page);
131 }
132
133 struct kprobe_insn_cache kprobe_insn_slots = {
134         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135         .alloc = alloc_insn_page,
136         .free = free_insn_page,
137         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138         .insn_size = MAX_INSN_SIZE,
139         .nr_garbage = 0,
140 };
141 static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143 /**
144  * __get_insn_slot() - Find a slot on an executable page for an instruction.
145  * We allocate an executable page if there's no room on existing ones.
146  */
147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148 {
149         struct kprobe_insn_page *kip;
150         kprobe_opcode_t *slot = NULL;
151
152         mutex_lock(&c->mutex);
153  retry:
154         list_for_each_entry(kip, &c->pages, list) {
155                 if (kip->nused < slots_per_page(c)) {
156                         int i;
157                         for (i = 0; i < slots_per_page(c); i++) {
158                                 if (kip->slot_used[i] == SLOT_CLEAN) {
159                                         kip->slot_used[i] = SLOT_USED;
160                                         kip->nused++;
161                                         slot = kip->insns + (i * c->insn_size);
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170
171         /* If there are any garbage slots, collect it and try again. */
172         if (c->nr_garbage && collect_garbage_slots(c) == 0)
173                 goto retry;
174
175         /* All out of space.  Need to allocate a new page. */
176         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177         if (!kip)
178                 goto out;
179
180         /*
181          * Use module_alloc so this page is within +/- 2GB of where the
182          * kernel image and loaded module images reside. This is required
183          * so x86_64 can correctly handle the %rip-relative fixups.
184          */
185         kip->insns = c->alloc();
186         if (!kip->insns) {
187                 kfree(kip);
188                 goto out;
189         }
190         INIT_LIST_HEAD(&kip->list);
191         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192         kip->slot_used[0] = SLOT_USED;
193         kip->nused = 1;
194         kip->ngarbage = 0;
195         kip->cache = c;
196         list_add(&kip->list, &c->pages);
197         slot = kip->insns;
198 out:
199         mutex_unlock(&c->mutex);
200         return slot;
201 }
202
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206         kip->slot_used[idx] = SLOT_CLEAN;
207         kip->nused--;
208         if (kip->nused == 0) {
209                 /*
210                  * Page is no longer in use.  Free it unless
211                  * it's the last one.  We keep the last one
212                  * so as not to have to set it up again the
213                  * next time somebody inserts a probe.
214                  */
215                 if (!list_is_singular(&kip->list)) {
216                         list_del(&kip->list);
217                         kip->cache->free(kip->insns);
218                         kfree(kip);
219                 }
220                 return 1;
221         }
222         return 0;
223 }
224
225 static int collect_garbage_slots(struct kprobe_insn_cache *c)
226 {
227         struct kprobe_insn_page *kip, *next;
228
229         /* Ensure no-one is interrupted on the garbages */
230         synchronize_sched();
231
232         list_for_each_entry_safe(kip, next, &c->pages, list) {
233                 int i;
234                 if (kip->ngarbage == 0)
235                         continue;
236                 kip->ngarbage = 0;      /* we will collect all garbages */
237                 for (i = 0; i < slots_per_page(c); i++) {
238                         if (kip->slot_used[i] == SLOT_DIRTY &&
239                             collect_one_slot(kip, i))
240                                 break;
241                 }
242         }
243         c->nr_garbage = 0;
244         return 0;
245 }
246
247 void __free_insn_slot(struct kprobe_insn_cache *c,
248                       kprobe_opcode_t *slot, int dirty)
249 {
250         struct kprobe_insn_page *kip;
251
252         mutex_lock(&c->mutex);
253         list_for_each_entry(kip, &c->pages, list) {
254                 long idx = ((long)slot - (long)kip->insns) /
255                                 (c->insn_size * sizeof(kprobe_opcode_t));
256                 if (idx >= 0 && idx < slots_per_page(c)) {
257                         WARN_ON(kip->slot_used[idx] != SLOT_USED);
258                         if (dirty) {
259                                 kip->slot_used[idx] = SLOT_DIRTY;
260                                 kip->ngarbage++;
261                                 if (++c->nr_garbage > slots_per_page(c))
262                                         collect_garbage_slots(c);
263                         } else
264                                 collect_one_slot(kip, idx);
265                         goto out;
266                 }
267         }
268         /* Could not free this slot. */
269         WARN_ON(1);
270 out:
271         mutex_unlock(&c->mutex);
272 }
273
274 #ifdef CONFIG_OPTPROBES
275 /* For optimized_kprobe buffer */
276 struct kprobe_insn_cache kprobe_optinsn_slots = {
277         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278         .alloc = alloc_insn_page,
279         .free = free_insn_page,
280         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281         /* .insn_size is initialized later */
282         .nr_garbage = 0,
283 };
284 #endif
285 #endif
286
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290         __this_cpu_write(kprobe_instance, kp);
291 }
292
293 static inline void reset_kprobe_instance(void)
294 {
295         __this_cpu_write(kprobe_instance, NULL);
296 }
297
298 /*
299  * This routine is called either:
300  *      - under the kprobe_mutex - during kprobe_[un]register()
301  *                              OR
302  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
303  */
304 struct kprobe *get_kprobe(void *addr)
305 {
306         struct hlist_head *head;
307         struct kprobe *p;
308
309         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310         hlist_for_each_entry_rcu(p, head, hlist) {
311                 if (p->addr == addr)
312                         return p;
313         }
314
315         return NULL;
316 }
317 NOKPROBE_SYMBOL(get_kprobe);
318
319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320
321 /* Return true if the kprobe is an aggregator */
322 static inline int kprobe_aggrprobe(struct kprobe *p)
323 {
324         return p->pre_handler == aggr_pre_handler;
325 }
326
327 /* Return true(!0) if the kprobe is unused */
328 static inline int kprobe_unused(struct kprobe *p)
329 {
330         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331                list_empty(&p->list);
332 }
333
334 /*
335  * Keep all fields in the kprobe consistent
336  */
337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338 {
339         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341 }
342
343 #ifdef CONFIG_OPTPROBES
344 /* NOTE: change this value only with kprobe_mutex held */
345 static bool kprobes_allow_optimization;
346
347 /*
348  * Call all pre_handler on the list, but ignores its return value.
349  * This must be called from arch-dep optimized caller.
350  */
351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352 {
353         struct kprobe *kp;
354
355         list_for_each_entry_rcu(kp, &p->list, list) {
356                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357                         set_kprobe_instance(kp);
358                         kp->pre_handler(kp, regs);
359                 }
360                 reset_kprobe_instance();
361         }
362 }
363 NOKPROBE_SYMBOL(opt_pre_handler);
364
365 /* Free optimized instructions and optimized_kprobe */
366 static void free_aggr_kprobe(struct kprobe *p)
367 {
368         struct optimized_kprobe *op;
369
370         op = container_of(p, struct optimized_kprobe, kp);
371         arch_remove_optimized_kprobe(op);
372         arch_remove_kprobe(p);
373         kfree(op);
374 }
375
376 /* Return true(!0) if the kprobe is ready for optimization. */
377 static inline int kprobe_optready(struct kprobe *p)
378 {
379         struct optimized_kprobe *op;
380
381         if (kprobe_aggrprobe(p)) {
382                 op = container_of(p, struct optimized_kprobe, kp);
383                 return arch_prepared_optinsn(&op->optinsn);
384         }
385
386         return 0;
387 }
388
389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390 static inline int kprobe_disarmed(struct kprobe *p)
391 {
392         struct optimized_kprobe *op;
393
394         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395         if (!kprobe_aggrprobe(p))
396                 return kprobe_disabled(p);
397
398         op = container_of(p, struct optimized_kprobe, kp);
399
400         return kprobe_disabled(p) && list_empty(&op->list);
401 }
402
403 /* Return true(!0) if the probe is queued on (un)optimizing lists */
404 static int kprobe_queued(struct kprobe *p)
405 {
406         struct optimized_kprobe *op;
407
408         if (kprobe_aggrprobe(p)) {
409                 op = container_of(p, struct optimized_kprobe, kp);
410                 if (!list_empty(&op->list))
411                         return 1;
412         }
413         return 0;
414 }
415
416 /*
417  * Return an optimized kprobe whose optimizing code replaces
418  * instructions including addr (exclude breakpoint).
419  */
420 static struct kprobe *get_optimized_kprobe(unsigned long addr)
421 {
422         int i;
423         struct kprobe *p = NULL;
424         struct optimized_kprobe *op;
425
426         /* Don't check i == 0, since that is a breakpoint case. */
427         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428                 p = get_kprobe((void *)(addr - i));
429
430         if (p && kprobe_optready(p)) {
431                 op = container_of(p, struct optimized_kprobe, kp);
432                 if (arch_within_optimized_kprobe(op, addr))
433                         return p;
434         }
435
436         return NULL;
437 }
438
439 /* Optimization staging list, protected by kprobe_mutex */
440 static LIST_HEAD(optimizing_list);
441 static LIST_HEAD(unoptimizing_list);
442 static LIST_HEAD(freeing_list);
443
444 static void kprobe_optimizer(struct work_struct *work);
445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446 #define OPTIMIZE_DELAY 5
447
448 /*
449  * Optimize (replace a breakpoint with a jump) kprobes listed on
450  * optimizing_list.
451  */
452 static void do_optimize_kprobes(void)
453 {
454         /* Optimization never be done when disarmed */
455         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456             list_empty(&optimizing_list))
457                 return;
458
459         /*
460          * The optimization/unoptimization refers online_cpus via
461          * stop_machine() and cpu-hotplug modifies online_cpus.
462          * And same time, text_mutex will be held in cpu-hotplug and here.
463          * This combination can cause a deadlock (cpu-hotplug try to lock
464          * text_mutex but stop_machine can not be done because online_cpus
465          * has been changed)
466          * To avoid this deadlock, we need to call get_online_cpus()
467          * for preventing cpu-hotplug outside of text_mutex locking.
468          */
469         get_online_cpus();
470         mutex_lock(&text_mutex);
471         arch_optimize_kprobes(&optimizing_list);
472         mutex_unlock(&text_mutex);
473         put_online_cpus();
474 }
475
476 /*
477  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478  * if need) kprobes listed on unoptimizing_list.
479  */
480 static void do_unoptimize_kprobes(void)
481 {
482         struct optimized_kprobe *op, *tmp;
483
484         /* Unoptimization must be done anytime */
485         if (list_empty(&unoptimizing_list))
486                 return;
487
488         /* Ditto to do_optimize_kprobes */
489         get_online_cpus();
490         mutex_lock(&text_mutex);
491         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492         /* Loop free_list for disarming */
493         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494                 /* Disarm probes if marked disabled */
495                 if (kprobe_disabled(&op->kp))
496                         arch_disarm_kprobe(&op->kp);
497                 if (kprobe_unused(&op->kp)) {
498                         /*
499                          * Remove unused probes from hash list. After waiting
500                          * for synchronization, these probes are reclaimed.
501                          * (reclaiming is done by do_free_cleaned_kprobes.)
502                          */
503                         hlist_del_rcu(&op->kp.hlist);
504                 } else
505                         list_del_init(&op->list);
506         }
507         mutex_unlock(&text_mutex);
508         put_online_cpus();
509 }
510
511 /* Reclaim all kprobes on the free_list */
512 static void do_free_cleaned_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517                 list_del_init(&op->list);
518                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
519                         /*
520                          * This must not happen, but if there is a kprobe
521                          * still in use, keep it on kprobes hash list.
522                          */
523                         continue;
524                 }
525                 free_aggr_kprobe(&op->kp);
526         }
527 }
528
529 /* Start optimizer after OPTIMIZE_DELAY passed */
530 static void kick_kprobe_optimizer(void)
531 {
532         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
533 }
534
535 /* Kprobe jump optimizer */
536 static void kprobe_optimizer(struct work_struct *work)
537 {
538         mutex_lock(&kprobe_mutex);
539         /* Lock modules while optimizing kprobes */
540         mutex_lock(&module_mutex);
541
542         /*
543          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
544          * kprobes before waiting for quiesence period.
545          */
546         do_unoptimize_kprobes();
547
548         /*
549          * Step 2: Wait for quiesence period to ensure all running interrupts
550          * are done. Because optprobe may modify multiple instructions
551          * there is a chance that Nth instruction is interrupted. In that
552          * case, running interrupt can return to 2nd-Nth byte of jump
553          * instruction. This wait is for avoiding it.
554          */
555         synchronize_sched();
556
557         /* Step 3: Optimize kprobes after quiesence period */
558         do_optimize_kprobes();
559
560         /* Step 4: Free cleaned kprobes after quiesence period */
561         do_free_cleaned_kprobes();
562
563         mutex_unlock(&module_mutex);
564
565         /* Step 5: Kick optimizer again if needed */
566         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
567                 kick_kprobe_optimizer();
568
569         mutex_unlock(&kprobe_mutex);
570 }
571
572 /* Wait for completing optimization and unoptimization */
573 void wait_for_kprobe_optimizer(void)
574 {
575         mutex_lock(&kprobe_mutex);
576
577         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
578                 mutex_unlock(&kprobe_mutex);
579
580                 /* this will also make optimizing_work execute immmediately */
581                 flush_delayed_work(&optimizing_work);
582                 /* @optimizing_work might not have been queued yet, relax */
583                 cpu_relax();
584
585                 mutex_lock(&kprobe_mutex);
586         }
587
588         mutex_unlock(&kprobe_mutex);
589 }
590
591 /* Optimize kprobe if p is ready to be optimized */
592 static void optimize_kprobe(struct kprobe *p)
593 {
594         struct optimized_kprobe *op;
595
596         /* Check if the kprobe is disabled or not ready for optimization. */
597         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
598             (kprobe_disabled(p) || kprobes_all_disarmed))
599                 return;
600
601         /* Both of break_handler and post_handler are not supported. */
602         if (p->break_handler || p->post_handler)
603                 return;
604
605         op = container_of(p, struct optimized_kprobe, kp);
606
607         /* Check there is no other kprobes at the optimized instructions */
608         if (arch_check_optimized_kprobe(op) < 0)
609                 return;
610
611         /* Check if it is already optimized. */
612         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
613                 return;
614         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
615
616         if (!list_empty(&op->list))
617                 /* This is under unoptimizing. Just dequeue the probe */
618                 list_del_init(&op->list);
619         else {
620                 list_add(&op->list, &optimizing_list);
621                 kick_kprobe_optimizer();
622         }
623 }
624
625 /* Short cut to direct unoptimizing */
626 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
627 {
628         get_online_cpus();
629         arch_unoptimize_kprobe(op);
630         put_online_cpus();
631         if (kprobe_disabled(&op->kp))
632                 arch_disarm_kprobe(&op->kp);
633 }
634
635 /* Unoptimize a kprobe if p is optimized */
636 static void unoptimize_kprobe(struct kprobe *p, bool force)
637 {
638         struct optimized_kprobe *op;
639
640         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
641                 return; /* This is not an optprobe nor optimized */
642
643         op = container_of(p, struct optimized_kprobe, kp);
644         if (!kprobe_optimized(p)) {
645                 /* Unoptimized or unoptimizing case */
646                 if (force && !list_empty(&op->list)) {
647                         /*
648                          * Only if this is unoptimizing kprobe and forced,
649                          * forcibly unoptimize it. (No need to unoptimize
650                          * unoptimized kprobe again :)
651                          */
652                         list_del_init(&op->list);
653                         force_unoptimize_kprobe(op);
654                 }
655                 return;
656         }
657
658         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
659         if (!list_empty(&op->list)) {
660                 /* Dequeue from the optimization queue */
661                 list_del_init(&op->list);
662                 return;
663         }
664         /* Optimized kprobe case */
665         if (force)
666                 /* Forcibly update the code: this is a special case */
667                 force_unoptimize_kprobe(op);
668         else {
669                 list_add(&op->list, &unoptimizing_list);
670                 kick_kprobe_optimizer();
671         }
672 }
673
674 /* Cancel unoptimizing for reusing */
675 static int reuse_unused_kprobe(struct kprobe *ap)
676 {
677         struct optimized_kprobe *op;
678
679         BUG_ON(!kprobe_unused(ap));
680         /*
681          * Unused kprobe MUST be on the way of delayed unoptimizing (means
682          * there is still a relative jump) and disabled.
683          */
684         op = container_of(ap, struct optimized_kprobe, kp);
685         if (unlikely(list_empty(&op->list)))
686                 printk(KERN_WARNING "Warning: found a stray unused "
687                         "aggrprobe@%p\n", ap->addr);
688         /* Enable the probe again */
689         ap->flags &= ~KPROBE_FLAG_DISABLED;
690         /* Optimize it again (remove from op->list) */
691         if (!kprobe_optready(ap))
692                 return -EINVAL;
693
694         optimize_kprobe(ap);
695         return 0;
696 }
697
698 /* Remove optimized instructions */
699 static void kill_optimized_kprobe(struct kprobe *p)
700 {
701         struct optimized_kprobe *op;
702
703         op = container_of(p, struct optimized_kprobe, kp);
704         if (!list_empty(&op->list))
705                 /* Dequeue from the (un)optimization queue */
706                 list_del_init(&op->list);
707         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
708
709         if (kprobe_unused(p)) {
710                 /* Enqueue if it is unused */
711                 list_add(&op->list, &freeing_list);
712                 /*
713                  * Remove unused probes from the hash list. After waiting
714                  * for synchronization, this probe is reclaimed.
715                  * (reclaiming is done by do_free_cleaned_kprobes().)
716                  */
717                 hlist_del_rcu(&op->kp.hlist);
718         }
719
720         /* Don't touch the code, because it is already freed. */
721         arch_remove_optimized_kprobe(op);
722 }
723
724 /* Try to prepare optimized instructions */
725 static void prepare_optimized_kprobe(struct kprobe *p)
726 {
727         struct optimized_kprobe *op;
728
729         op = container_of(p, struct optimized_kprobe, kp);
730         arch_prepare_optimized_kprobe(op, p);
731 }
732
733 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
734 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
735 {
736         struct optimized_kprobe *op;
737
738         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
739         if (!op)
740                 return NULL;
741
742         INIT_LIST_HEAD(&op->list);
743         op->kp.addr = p->addr;
744         arch_prepare_optimized_kprobe(op, p);
745
746         return &op->kp;
747 }
748
749 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
750
751 /*
752  * Prepare an optimized_kprobe and optimize it
753  * NOTE: p must be a normal registered kprobe
754  */
755 static void try_to_optimize_kprobe(struct kprobe *p)
756 {
757         struct kprobe *ap;
758         struct optimized_kprobe *op;
759
760         /* Impossible to optimize ftrace-based kprobe */
761         if (kprobe_ftrace(p))
762                 return;
763
764         /* For preparing optimization, jump_label_text_reserved() is called */
765         jump_label_lock();
766         mutex_lock(&text_mutex);
767
768         ap = alloc_aggr_kprobe(p);
769         if (!ap)
770                 goto out;
771
772         op = container_of(ap, struct optimized_kprobe, kp);
773         if (!arch_prepared_optinsn(&op->optinsn)) {
774                 /* If failed to setup optimizing, fallback to kprobe */
775                 arch_remove_optimized_kprobe(op);
776                 kfree(op);
777                 goto out;
778         }
779
780         init_aggr_kprobe(ap, p);
781         optimize_kprobe(ap);    /* This just kicks optimizer thread */
782
783 out:
784         mutex_unlock(&text_mutex);
785         jump_label_unlock();
786 }
787
788 #ifdef CONFIG_SYSCTL
789 static void optimize_all_kprobes(void)
790 {
791         struct hlist_head *head;
792         struct kprobe *p;
793         unsigned int i;
794
795         mutex_lock(&kprobe_mutex);
796         /* If optimization is already allowed, just return */
797         if (kprobes_allow_optimization)
798                 goto out;
799
800         kprobes_allow_optimization = true;
801         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
802                 head = &kprobe_table[i];
803                 hlist_for_each_entry_rcu(p, head, hlist)
804                         if (!kprobe_disabled(p))
805                                 optimize_kprobe(p);
806         }
807         printk(KERN_INFO "Kprobes globally optimized\n");
808 out:
809         mutex_unlock(&kprobe_mutex);
810 }
811
812 static void unoptimize_all_kprobes(void)
813 {
814         struct hlist_head *head;
815         struct kprobe *p;
816         unsigned int i;
817
818         mutex_lock(&kprobe_mutex);
819         /* If optimization is already prohibited, just return */
820         if (!kprobes_allow_optimization) {
821                 mutex_unlock(&kprobe_mutex);
822                 return;
823         }
824
825         kprobes_allow_optimization = false;
826         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
827                 head = &kprobe_table[i];
828                 hlist_for_each_entry_rcu(p, head, hlist) {
829                         if (!kprobe_disabled(p))
830                                 unoptimize_kprobe(p, false);
831                 }
832         }
833         mutex_unlock(&kprobe_mutex);
834
835         /* Wait for unoptimizing completion */
836         wait_for_kprobe_optimizer();
837         printk(KERN_INFO "Kprobes globally unoptimized\n");
838 }
839
840 static DEFINE_MUTEX(kprobe_sysctl_mutex);
841 int sysctl_kprobes_optimization;
842 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
843                                       void __user *buffer, size_t *length,
844                                       loff_t *ppos)
845 {
846         int ret;
847
848         mutex_lock(&kprobe_sysctl_mutex);
849         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
850         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
851
852         if (sysctl_kprobes_optimization)
853                 optimize_all_kprobes();
854         else
855                 unoptimize_all_kprobes();
856         mutex_unlock(&kprobe_sysctl_mutex);
857
858         return ret;
859 }
860 #endif /* CONFIG_SYSCTL */
861
862 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
863 static void __arm_kprobe(struct kprobe *p)
864 {
865         struct kprobe *_p;
866
867         /* Check collision with other optimized kprobes */
868         _p = get_optimized_kprobe((unsigned long)p->addr);
869         if (unlikely(_p))
870                 /* Fallback to unoptimized kprobe */
871                 unoptimize_kprobe(_p, true);
872
873         arch_arm_kprobe(p);
874         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
875 }
876
877 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
878 static void __disarm_kprobe(struct kprobe *p, bool reopt)
879 {
880         struct kprobe *_p;
881
882         /* Try to unoptimize */
883         unoptimize_kprobe(p, kprobes_all_disarmed);
884
885         if (!kprobe_queued(p)) {
886                 arch_disarm_kprobe(p);
887                 /* If another kprobe was blocked, optimize it. */
888                 _p = get_optimized_kprobe((unsigned long)p->addr);
889                 if (unlikely(_p) && reopt)
890                         optimize_kprobe(_p);
891         }
892         /* TODO: reoptimize others after unoptimized this probe */
893 }
894
895 #else /* !CONFIG_OPTPROBES */
896
897 #define optimize_kprobe(p)                      do {} while (0)
898 #define unoptimize_kprobe(p, f)                 do {} while (0)
899 #define kill_optimized_kprobe(p)                do {} while (0)
900 #define prepare_optimized_kprobe(p)             do {} while (0)
901 #define try_to_optimize_kprobe(p)               do {} while (0)
902 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
903 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
904 #define kprobe_disarmed(p)                      kprobe_disabled(p)
905 #define wait_for_kprobe_optimizer()             do {} while (0)
906
907 static int reuse_unused_kprobe(struct kprobe *ap)
908 {
909         /*
910          * If the optimized kprobe is NOT supported, the aggr kprobe is
911          * released at the same time that the last aggregated kprobe is
912          * unregistered.
913          * Thus there should be no chance to reuse unused kprobe.
914          */
915         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
916         return -EINVAL;
917 }
918
919 static void free_aggr_kprobe(struct kprobe *p)
920 {
921         arch_remove_kprobe(p);
922         kfree(p);
923 }
924
925 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
926 {
927         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
928 }
929 #endif /* CONFIG_OPTPROBES */
930
931 #ifdef CONFIG_KPROBES_ON_FTRACE
932 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
933         .func = kprobe_ftrace_handler,
934         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
935 };
936 static int kprobe_ftrace_enabled;
937
938 /* Must ensure p->addr is really on ftrace */
939 static int prepare_kprobe(struct kprobe *p)
940 {
941         if (!kprobe_ftrace(p))
942                 return arch_prepare_kprobe(p);
943
944         return arch_prepare_kprobe_ftrace(p);
945 }
946
947 /* Caller must lock kprobe_mutex */
948 static void arm_kprobe_ftrace(struct kprobe *p)
949 {
950         int ret;
951
952         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
953                                    (unsigned long)p->addr, 0, 0);
954         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
955         kprobe_ftrace_enabled++;
956         if (kprobe_ftrace_enabled == 1) {
957                 ret = register_ftrace_function(&kprobe_ftrace_ops);
958                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
959         }
960 }
961
962 /* Caller must lock kprobe_mutex */
963 static void disarm_kprobe_ftrace(struct kprobe *p)
964 {
965         int ret;
966
967         kprobe_ftrace_enabled--;
968         if (kprobe_ftrace_enabled == 0) {
969                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
970                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
971         }
972         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
973                            (unsigned long)p->addr, 1, 0);
974         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
975 }
976 #else   /* !CONFIG_KPROBES_ON_FTRACE */
977 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
978 #define arm_kprobe_ftrace(p)    do {} while (0)
979 #define disarm_kprobe_ftrace(p) do {} while (0)
980 #endif
981
982 /* Arm a kprobe with text_mutex */
983 static void arm_kprobe(struct kprobe *kp)
984 {
985         if (unlikely(kprobe_ftrace(kp))) {
986                 arm_kprobe_ftrace(kp);
987                 return;
988         }
989         /*
990          * Here, since __arm_kprobe() doesn't use stop_machine(),
991          * this doesn't cause deadlock on text_mutex. So, we don't
992          * need get_online_cpus().
993          */
994         mutex_lock(&text_mutex);
995         __arm_kprobe(kp);
996         mutex_unlock(&text_mutex);
997 }
998
999 /* Disarm a kprobe with text_mutex */
1000 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1001 {
1002         if (unlikely(kprobe_ftrace(kp))) {
1003                 disarm_kprobe_ftrace(kp);
1004                 return;
1005         }
1006         /* Ditto */
1007         mutex_lock(&text_mutex);
1008         __disarm_kprobe(kp, reopt);
1009         mutex_unlock(&text_mutex);
1010 }
1011
1012 /*
1013  * Aggregate handlers for multiple kprobes support - these handlers
1014  * take care of invoking the individual kprobe handlers on p->list
1015  */
1016 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1017 {
1018         struct kprobe *kp;
1019
1020         list_for_each_entry_rcu(kp, &p->list, list) {
1021                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1022                         set_kprobe_instance(kp);
1023                         if (kp->pre_handler(kp, regs))
1024                                 return 1;
1025                 }
1026                 reset_kprobe_instance();
1027         }
1028         return 0;
1029 }
1030 NOKPROBE_SYMBOL(aggr_pre_handler);
1031
1032 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1033                               unsigned long flags)
1034 {
1035         struct kprobe *kp;
1036
1037         list_for_each_entry_rcu(kp, &p->list, list) {
1038                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1039                         set_kprobe_instance(kp);
1040                         kp->post_handler(kp, regs, flags);
1041                         reset_kprobe_instance();
1042                 }
1043         }
1044 }
1045 NOKPROBE_SYMBOL(aggr_post_handler);
1046
1047 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1048                               int trapnr)
1049 {
1050         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1051
1052         /*
1053          * if we faulted "during" the execution of a user specified
1054          * probe handler, invoke just that probe's fault handler
1055          */
1056         if (cur && cur->fault_handler) {
1057                 if (cur->fault_handler(cur, regs, trapnr))
1058                         return 1;
1059         }
1060         return 0;
1061 }
1062 NOKPROBE_SYMBOL(aggr_fault_handler);
1063
1064 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1065 {
1066         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1067         int ret = 0;
1068
1069         if (cur && cur->break_handler) {
1070                 if (cur->break_handler(cur, regs))
1071                         ret = 1;
1072         }
1073         reset_kprobe_instance();
1074         return ret;
1075 }
1076 NOKPROBE_SYMBOL(aggr_break_handler);
1077
1078 /* Walks the list and increments nmissed count for multiprobe case */
1079 void kprobes_inc_nmissed_count(struct kprobe *p)
1080 {
1081         struct kprobe *kp;
1082         if (!kprobe_aggrprobe(p)) {
1083                 p->nmissed++;
1084         } else {
1085                 list_for_each_entry_rcu(kp, &p->list, list)
1086                         kp->nmissed++;
1087         }
1088         return;
1089 }
1090 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1091
1092 void recycle_rp_inst(struct kretprobe_instance *ri,
1093                      struct hlist_head *head)
1094 {
1095         struct kretprobe *rp = ri->rp;
1096
1097         /* remove rp inst off the rprobe_inst_table */
1098         hlist_del(&ri->hlist);
1099         INIT_HLIST_NODE(&ri->hlist);
1100         if (likely(rp)) {
1101                 raw_spin_lock(&rp->lock);
1102                 hlist_add_head(&ri->hlist, &rp->free_instances);
1103                 raw_spin_unlock(&rp->lock);
1104         } else
1105                 /* Unregistering */
1106                 hlist_add_head(&ri->hlist, head);
1107 }
1108 NOKPROBE_SYMBOL(recycle_rp_inst);
1109
1110 void kretprobe_hash_lock(struct task_struct *tsk,
1111                          struct hlist_head **head, unsigned long *flags)
1112 __acquires(hlist_lock)
1113 {
1114         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1115         raw_spinlock_t *hlist_lock;
1116
1117         *head = &kretprobe_inst_table[hash];
1118         hlist_lock = kretprobe_table_lock_ptr(hash);
1119         raw_spin_lock_irqsave(hlist_lock, *flags);
1120 }
1121 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1122
1123 static void kretprobe_table_lock(unsigned long hash,
1124                                  unsigned long *flags)
1125 __acquires(hlist_lock)
1126 {
1127         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1128         raw_spin_lock_irqsave(hlist_lock, *flags);
1129 }
1130 NOKPROBE_SYMBOL(kretprobe_table_lock);
1131
1132 void kretprobe_hash_unlock(struct task_struct *tsk,
1133                            unsigned long *flags)
1134 __releases(hlist_lock)
1135 {
1136         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1137         raw_spinlock_t *hlist_lock;
1138
1139         hlist_lock = kretprobe_table_lock_ptr(hash);
1140         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1141 }
1142 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1143
1144 static void kretprobe_table_unlock(unsigned long hash,
1145                                    unsigned long *flags)
1146 __releases(hlist_lock)
1147 {
1148         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1149         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1150 }
1151 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1152
1153 struct kprobe kprobe_busy = {
1154         .addr = (void *) get_kprobe,
1155 };
1156
1157 void kprobe_busy_begin(void)
1158 {
1159         struct kprobe_ctlblk *kcb;
1160
1161         preempt_disable();
1162         __this_cpu_write(current_kprobe, &kprobe_busy);
1163         kcb = get_kprobe_ctlblk();
1164         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1165 }
1166
1167 void kprobe_busy_end(void)
1168 {
1169         __this_cpu_write(current_kprobe, NULL);
1170         preempt_enable();
1171 }
1172
1173 /*
1174  * This function is called from finish_task_switch when task tk becomes dead,
1175  * so that we can recycle any function-return probe instances associated
1176  * with this task. These left over instances represent probed functions
1177  * that have been called but will never return.
1178  */
1179 void kprobe_flush_task(struct task_struct *tk)
1180 {
1181         struct kretprobe_instance *ri;
1182         struct hlist_head *head, empty_rp;
1183         struct hlist_node *tmp;
1184         unsigned long hash, flags = 0;
1185
1186         if (unlikely(!kprobes_initialized))
1187                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1188                 return;
1189
1190         kprobe_busy_begin();
1191
1192         INIT_HLIST_HEAD(&empty_rp);
1193         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1194         head = &kretprobe_inst_table[hash];
1195         kretprobe_table_lock(hash, &flags);
1196         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1197                 if (ri->task == tk)
1198                         recycle_rp_inst(ri, &empty_rp);
1199         }
1200         kretprobe_table_unlock(hash, &flags);
1201         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1202                 hlist_del(&ri->hlist);
1203                 kfree(ri);
1204         }
1205
1206         kprobe_busy_end();
1207 }
1208 NOKPROBE_SYMBOL(kprobe_flush_task);
1209
1210 static inline void free_rp_inst(struct kretprobe *rp)
1211 {
1212         struct kretprobe_instance *ri;
1213         struct hlist_node *next;
1214
1215         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1216                 hlist_del(&ri->hlist);
1217                 kfree(ri);
1218         }
1219 }
1220
1221 static void cleanup_rp_inst(struct kretprobe *rp)
1222 {
1223         unsigned long flags, hash;
1224         struct kretprobe_instance *ri;
1225         struct hlist_node *next;
1226         struct hlist_head *head;
1227
1228         /* No race here */
1229         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1230                 kretprobe_table_lock(hash, &flags);
1231                 head = &kretprobe_inst_table[hash];
1232                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1233                         if (ri->rp == rp)
1234                                 ri->rp = NULL;
1235                 }
1236                 kretprobe_table_unlock(hash, &flags);
1237         }
1238         free_rp_inst(rp);
1239 }
1240 NOKPROBE_SYMBOL(cleanup_rp_inst);
1241
1242 /*
1243 * Add the new probe to ap->list. Fail if this is the
1244 * second jprobe at the address - two jprobes can't coexist
1245 */
1246 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1247 {
1248         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1249
1250         if (p->break_handler || p->post_handler)
1251                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1252
1253         if (p->break_handler) {
1254                 if (ap->break_handler)
1255                         return -EEXIST;
1256                 list_add_tail_rcu(&p->list, &ap->list);
1257                 ap->break_handler = aggr_break_handler;
1258         } else
1259                 list_add_rcu(&p->list, &ap->list);
1260         if (p->post_handler && !ap->post_handler)
1261                 ap->post_handler = aggr_post_handler;
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * Fill in the required fields of the "manager kprobe". Replace the
1268  * earlier kprobe in the hlist with the manager kprobe
1269  */
1270 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1271 {
1272         /* Copy p's insn slot to ap */
1273         copy_kprobe(p, ap);
1274         flush_insn_slot(ap);
1275         ap->addr = p->addr;
1276         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1277         ap->pre_handler = aggr_pre_handler;
1278         ap->fault_handler = aggr_fault_handler;
1279         /* We don't care the kprobe which has gone. */
1280         if (p->post_handler && !kprobe_gone(p))
1281                 ap->post_handler = aggr_post_handler;
1282         if (p->break_handler && !kprobe_gone(p))
1283                 ap->break_handler = aggr_break_handler;
1284
1285         INIT_LIST_HEAD(&ap->list);
1286         INIT_HLIST_NODE(&ap->hlist);
1287
1288         list_add_rcu(&p->list, &ap->list);
1289         hlist_replace_rcu(&p->hlist, &ap->hlist);
1290 }
1291
1292 /*
1293  * This is the second or subsequent kprobe at the address - handle
1294  * the intricacies
1295  */
1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298         int ret = 0;
1299         struct kprobe *ap = orig_p;
1300
1301         /* For preparing optimization, jump_label_text_reserved() is called */
1302         jump_label_lock();
1303         /*
1304          * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1305          * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1306          */
1307         get_online_cpus();
1308         mutex_lock(&text_mutex);
1309
1310         if (!kprobe_aggrprobe(orig_p)) {
1311                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1312                 ap = alloc_aggr_kprobe(orig_p);
1313                 if (!ap) {
1314                         ret = -ENOMEM;
1315                         goto out;
1316                 }
1317                 init_aggr_kprobe(ap, orig_p);
1318         } else if (kprobe_unused(ap)) {
1319                 /* This probe is going to die. Rescue it */
1320                 ret = reuse_unused_kprobe(ap);
1321                 if (ret)
1322                         goto out;
1323         }
1324
1325         if (kprobe_gone(ap)) {
1326                 /*
1327                  * Attempting to insert new probe at the same location that
1328                  * had a probe in the module vaddr area which already
1329                  * freed. So, the instruction slot has already been
1330                  * released. We need a new slot for the new probe.
1331                  */
1332                 ret = arch_prepare_kprobe(ap);
1333                 if (ret)
1334                         /*
1335                          * Even if fail to allocate new slot, don't need to
1336                          * free aggr_probe. It will be used next time, or
1337                          * freed by unregister_kprobe.
1338                          */
1339                         goto out;
1340
1341                 /* Prepare optimized instructions if possible. */
1342                 prepare_optimized_kprobe(ap);
1343
1344                 /*
1345                  * Clear gone flag to prevent allocating new slot again, and
1346                  * set disabled flag because it is not armed yet.
1347                  */
1348                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349                             | KPROBE_FLAG_DISABLED;
1350         }
1351
1352         /* Copy ap's insn slot to p */
1353         copy_kprobe(ap, p);
1354         ret = add_new_kprobe(ap, p);
1355
1356 out:
1357         mutex_unlock(&text_mutex);
1358         put_online_cpus();
1359         jump_label_unlock();
1360
1361         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363                 if (!kprobes_all_disarmed)
1364                         /* Arm the breakpoint again. */
1365                         arm_kprobe(ap);
1366         }
1367         return ret;
1368 }
1369
1370 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1371 {
1372         /* The __kprobes marked functions and entry code must not be probed */
1373         return addr >= (unsigned long)__kprobes_text_start &&
1374                addr < (unsigned long)__kprobes_text_end;
1375 }
1376
1377 bool within_kprobe_blacklist(unsigned long addr)
1378 {
1379         struct kprobe_blacklist_entry *ent;
1380
1381         if (arch_within_kprobe_blacklist(addr))
1382                 return true;
1383         /*
1384          * If there exists a kprobe_blacklist, verify and
1385          * fail any probe registration in the prohibited area
1386          */
1387         list_for_each_entry(ent, &kprobe_blacklist, list) {
1388                 if (addr >= ent->start_addr && addr < ent->end_addr)
1389                         return true;
1390         }
1391
1392         return false;
1393 }
1394
1395 /*
1396  * If we have a symbol_name argument, look it up and add the offset field
1397  * to it. This way, we can specify a relative address to a symbol.
1398  * This returns encoded errors if it fails to look up symbol or invalid
1399  * combination of parameters.
1400  */
1401 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1402 {
1403         kprobe_opcode_t *addr = p->addr;
1404
1405         if ((p->symbol_name && p->addr) ||
1406             (!p->symbol_name && !p->addr))
1407                 goto invalid;
1408
1409         if (p->symbol_name) {
1410                 kprobe_lookup_name(p->symbol_name, addr);
1411                 if (!addr)
1412                         return ERR_PTR(-ENOENT);
1413         }
1414
1415         addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1416         if (addr)
1417                 return addr;
1418
1419 invalid:
1420         return ERR_PTR(-EINVAL);
1421 }
1422
1423 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1424 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1425 {
1426         struct kprobe *ap, *list_p;
1427
1428         ap = get_kprobe(p->addr);
1429         if (unlikely(!ap))
1430                 return NULL;
1431
1432         if (p != ap) {
1433                 list_for_each_entry_rcu(list_p, &ap->list, list)
1434                         if (list_p == p)
1435                         /* kprobe p is a valid probe */
1436                                 goto valid;
1437                 return NULL;
1438         }
1439 valid:
1440         return ap;
1441 }
1442
1443 /* Return error if the kprobe is being re-registered */
1444 static inline int check_kprobe_rereg(struct kprobe *p)
1445 {
1446         int ret = 0;
1447
1448         mutex_lock(&kprobe_mutex);
1449         if (__get_valid_kprobe(p))
1450                 ret = -EINVAL;
1451         mutex_unlock(&kprobe_mutex);
1452
1453         return ret;
1454 }
1455
1456 int __weak arch_check_ftrace_location(struct kprobe *p)
1457 {
1458         unsigned long ftrace_addr;
1459
1460         ftrace_addr = ftrace_location((unsigned long)p->addr);
1461         if (ftrace_addr) {
1462 #ifdef CONFIG_KPROBES_ON_FTRACE
1463                 /* Given address is not on the instruction boundary */
1464                 if ((unsigned long)p->addr != ftrace_addr)
1465                         return -EILSEQ;
1466                 p->flags |= KPROBE_FLAG_FTRACE;
1467 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1468                 return -EINVAL;
1469 #endif
1470         }
1471         return 0;
1472 }
1473
1474 static int check_kprobe_address_safe(struct kprobe *p,
1475                                      struct module **probed_mod)
1476 {
1477         int ret;
1478
1479         ret = arch_check_ftrace_location(p);
1480         if (ret)
1481                 return ret;
1482         jump_label_lock();
1483         preempt_disable();
1484
1485         /* Ensure it is not in reserved area nor out of text */
1486         if (!kernel_text_address((unsigned long) p->addr) ||
1487             within_kprobe_blacklist((unsigned long) p->addr) ||
1488             jump_label_text_reserved(p->addr, p->addr) ||
1489             find_bug((unsigned long)p->addr)) {
1490                 ret = -EINVAL;
1491                 goto out;
1492         }
1493
1494         /* Check if are we probing a module */
1495         *probed_mod = __module_text_address((unsigned long) p->addr);
1496         if (*probed_mod) {
1497                 /*
1498                  * We must hold a refcount of the probed module while updating
1499                  * its code to prohibit unexpected unloading.
1500                  */
1501                 if (unlikely(!try_module_get(*probed_mod))) {
1502                         ret = -ENOENT;
1503                         goto out;
1504                 }
1505
1506                 /*
1507                  * If the module freed .init.text, we couldn't insert
1508                  * kprobes in there.
1509                  */
1510                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1511                     (*probed_mod)->state != MODULE_STATE_COMING) {
1512                         module_put(*probed_mod);
1513                         *probed_mod = NULL;
1514                         ret = -ENOENT;
1515                 }
1516         }
1517 out:
1518         preempt_enable();
1519         jump_label_unlock();
1520
1521         return ret;
1522 }
1523
1524 int register_kprobe(struct kprobe *p)
1525 {
1526         int ret;
1527         struct kprobe *old_p;
1528         struct module *probed_mod;
1529         kprobe_opcode_t *addr;
1530
1531         /* Adjust probe address from symbol */
1532         addr = kprobe_addr(p);
1533         if (IS_ERR(addr))
1534                 return PTR_ERR(addr);
1535         p->addr = addr;
1536
1537         ret = check_kprobe_rereg(p);
1538         if (ret)
1539                 return ret;
1540
1541         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1542         p->flags &= KPROBE_FLAG_DISABLED;
1543         p->nmissed = 0;
1544         INIT_LIST_HEAD(&p->list);
1545
1546         ret = check_kprobe_address_safe(p, &probed_mod);
1547         if (ret)
1548                 return ret;
1549
1550         mutex_lock(&kprobe_mutex);
1551
1552         old_p = get_kprobe(p->addr);
1553         if (old_p) {
1554                 /* Since this may unoptimize old_p, locking text_mutex. */
1555                 ret = register_aggr_kprobe(old_p, p);
1556                 goto out;
1557         }
1558
1559         mutex_lock(&text_mutex);        /* Avoiding text modification */
1560         ret = prepare_kprobe(p);
1561         mutex_unlock(&text_mutex);
1562         if (ret)
1563                 goto out;
1564
1565         INIT_HLIST_NODE(&p->hlist);
1566         hlist_add_head_rcu(&p->hlist,
1567                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1568
1569         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1570                 arm_kprobe(p);
1571
1572         /* Try to optimize kprobe */
1573         try_to_optimize_kprobe(p);
1574
1575 out:
1576         mutex_unlock(&kprobe_mutex);
1577
1578         if (probed_mod)
1579                 module_put(probed_mod);
1580
1581         return ret;
1582 }
1583 EXPORT_SYMBOL_GPL(register_kprobe);
1584
1585 /* Check if all probes on the aggrprobe are disabled */
1586 static int aggr_kprobe_disabled(struct kprobe *ap)
1587 {
1588         struct kprobe *kp;
1589
1590         list_for_each_entry_rcu(kp, &ap->list, list)
1591                 if (!kprobe_disabled(kp))
1592                         /*
1593                          * There is an active probe on the list.
1594                          * We can't disable this ap.
1595                          */
1596                         return 0;
1597
1598         return 1;
1599 }
1600
1601 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1602 static struct kprobe *__disable_kprobe(struct kprobe *p)
1603 {
1604         struct kprobe *orig_p;
1605
1606         /* Get an original kprobe for return */
1607         orig_p = __get_valid_kprobe(p);
1608         if (unlikely(orig_p == NULL))
1609                 return NULL;
1610
1611         if (!kprobe_disabled(p)) {
1612                 /* Disable probe if it is a child probe */
1613                 if (p != orig_p)
1614                         p->flags |= KPROBE_FLAG_DISABLED;
1615
1616                 /* Try to disarm and disable this/parent probe */
1617                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1618                         /*
1619                          * If kprobes_all_disarmed is set, orig_p
1620                          * should have already been disarmed, so
1621                          * skip unneed disarming process.
1622                          */
1623                         if (!kprobes_all_disarmed)
1624                                 disarm_kprobe(orig_p, true);
1625                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1626                 }
1627         }
1628
1629         return orig_p;
1630 }
1631
1632 /*
1633  * Unregister a kprobe without a scheduler synchronization.
1634  */
1635 static int __unregister_kprobe_top(struct kprobe *p)
1636 {
1637         struct kprobe *ap, *list_p;
1638
1639         /* Disable kprobe. This will disarm it if needed. */
1640         ap = __disable_kprobe(p);
1641         if (ap == NULL)
1642                 return -EINVAL;
1643
1644         if (ap == p)
1645                 /*
1646                  * This probe is an independent(and non-optimized) kprobe
1647                  * (not an aggrprobe). Remove from the hash list.
1648                  */
1649                 goto disarmed;
1650
1651         /* Following process expects this probe is an aggrprobe */
1652         WARN_ON(!kprobe_aggrprobe(ap));
1653
1654         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1655                 /*
1656                  * !disarmed could be happen if the probe is under delayed
1657                  * unoptimizing.
1658                  */
1659                 goto disarmed;
1660         else {
1661                 /* If disabling probe has special handlers, update aggrprobe */
1662                 if (p->break_handler && !kprobe_gone(p))
1663                         ap->break_handler = NULL;
1664                 if (p->post_handler && !kprobe_gone(p)) {
1665                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1666                                 if ((list_p != p) && (list_p->post_handler))
1667                                         goto noclean;
1668                         }
1669                         ap->post_handler = NULL;
1670                 }
1671 noclean:
1672                 /*
1673                  * Remove from the aggrprobe: this path will do nothing in
1674                  * __unregister_kprobe_bottom().
1675                  */
1676                 list_del_rcu(&p->list);
1677                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1678                         /*
1679                          * Try to optimize this probe again, because post
1680                          * handler may have been changed.
1681                          */
1682                         optimize_kprobe(ap);
1683         }
1684         return 0;
1685
1686 disarmed:
1687         BUG_ON(!kprobe_disarmed(ap));
1688         hlist_del_rcu(&ap->hlist);
1689         return 0;
1690 }
1691
1692 static void __unregister_kprobe_bottom(struct kprobe *p)
1693 {
1694         struct kprobe *ap;
1695
1696         if (list_empty(&p->list))
1697                 /* This is an independent kprobe */
1698                 arch_remove_kprobe(p);
1699         else if (list_is_singular(&p->list)) {
1700                 /* This is the last child of an aggrprobe */
1701                 ap = list_entry(p->list.next, struct kprobe, list);
1702                 list_del(&p->list);
1703                 free_aggr_kprobe(ap);
1704         }
1705         /* Otherwise, do nothing. */
1706 }
1707
1708 int register_kprobes(struct kprobe **kps, int num)
1709 {
1710         int i, ret = 0;
1711
1712         if (num <= 0)
1713                 return -EINVAL;
1714         for (i = 0; i < num; i++) {
1715                 ret = register_kprobe(kps[i]);
1716                 if (ret < 0) {
1717                         if (i > 0)
1718                                 unregister_kprobes(kps, i);
1719                         break;
1720                 }
1721         }
1722         return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(register_kprobes);
1725
1726 void unregister_kprobe(struct kprobe *p)
1727 {
1728         unregister_kprobes(&p, 1);
1729 }
1730 EXPORT_SYMBOL_GPL(unregister_kprobe);
1731
1732 void unregister_kprobes(struct kprobe **kps, int num)
1733 {
1734         int i;
1735
1736         if (num <= 0)
1737                 return;
1738         mutex_lock(&kprobe_mutex);
1739         for (i = 0; i < num; i++)
1740                 if (__unregister_kprobe_top(kps[i]) < 0)
1741                         kps[i]->addr = NULL;
1742         mutex_unlock(&kprobe_mutex);
1743
1744         synchronize_sched();
1745         for (i = 0; i < num; i++)
1746                 if (kps[i]->addr)
1747                         __unregister_kprobe_bottom(kps[i]);
1748 }
1749 EXPORT_SYMBOL_GPL(unregister_kprobes);
1750
1751 static struct notifier_block kprobe_exceptions_nb = {
1752         .notifier_call = kprobe_exceptions_notify,
1753         .priority = 0x7fffffff /* we need to be notified first */
1754 };
1755
1756 unsigned long __weak arch_deref_entry_point(void *entry)
1757 {
1758         return (unsigned long)entry;
1759 }
1760
1761 int register_jprobes(struct jprobe **jps, int num)
1762 {
1763         struct jprobe *jp;
1764         int ret = 0, i;
1765
1766         if (num <= 0)
1767                 return -EINVAL;
1768         for (i = 0; i < num; i++) {
1769                 unsigned long addr, offset;
1770                 jp = jps[i];
1771                 addr = arch_deref_entry_point(jp->entry);
1772
1773                 /* Verify probepoint is a function entry point */
1774                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1775                     offset == 0) {
1776                         jp->kp.pre_handler = setjmp_pre_handler;
1777                         jp->kp.break_handler = longjmp_break_handler;
1778                         ret = register_kprobe(&jp->kp);
1779                 } else
1780                         ret = -EINVAL;
1781
1782                 if (ret < 0) {
1783                         if (i > 0)
1784                                 unregister_jprobes(jps, i);
1785                         break;
1786                 }
1787         }
1788         return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(register_jprobes);
1791
1792 int register_jprobe(struct jprobe *jp)
1793 {
1794         return register_jprobes(&jp, 1);
1795 }
1796 EXPORT_SYMBOL_GPL(register_jprobe);
1797
1798 void unregister_jprobe(struct jprobe *jp)
1799 {
1800         unregister_jprobes(&jp, 1);
1801 }
1802 EXPORT_SYMBOL_GPL(unregister_jprobe);
1803
1804 void unregister_jprobes(struct jprobe **jps, int num)
1805 {
1806         int i;
1807
1808         if (num <= 0)
1809                 return;
1810         mutex_lock(&kprobe_mutex);
1811         for (i = 0; i < num; i++)
1812                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1813                         jps[i]->kp.addr = NULL;
1814         mutex_unlock(&kprobe_mutex);
1815
1816         synchronize_sched();
1817         for (i = 0; i < num; i++) {
1818                 if (jps[i]->kp.addr)
1819                         __unregister_kprobe_bottom(&jps[i]->kp);
1820         }
1821 }
1822 EXPORT_SYMBOL_GPL(unregister_jprobes);
1823
1824 #ifdef CONFIG_KRETPROBES
1825 /*
1826  * This kprobe pre_handler is registered with every kretprobe. When probe
1827  * hits it will set up the return probe.
1828  */
1829 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1830 {
1831         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1832         unsigned long hash, flags = 0;
1833         struct kretprobe_instance *ri;
1834
1835         /*
1836          * To avoid deadlocks, prohibit return probing in NMI contexts,
1837          * just skip the probe and increase the (inexact) 'nmissed'
1838          * statistical counter, so that the user is informed that
1839          * something happened:
1840          */
1841         if (unlikely(in_nmi())) {
1842                 rp->nmissed++;
1843                 return 0;
1844         }
1845
1846         /* TODO: consider to only swap the RA after the last pre_handler fired */
1847         hash = hash_ptr(current, KPROBE_HASH_BITS);
1848         raw_spin_lock_irqsave(&rp->lock, flags);
1849         if (!hlist_empty(&rp->free_instances)) {
1850                 ri = hlist_entry(rp->free_instances.first,
1851                                 struct kretprobe_instance, hlist);
1852                 hlist_del(&ri->hlist);
1853                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1854
1855                 ri->rp = rp;
1856                 ri->task = current;
1857
1858                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1859                         raw_spin_lock_irqsave(&rp->lock, flags);
1860                         hlist_add_head(&ri->hlist, &rp->free_instances);
1861                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1862                         return 0;
1863                 }
1864
1865                 arch_prepare_kretprobe(ri, regs);
1866
1867                 /* XXX(hch): why is there no hlist_move_head? */
1868                 INIT_HLIST_NODE(&ri->hlist);
1869                 kretprobe_table_lock(hash, &flags);
1870                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1871                 kretprobe_table_unlock(hash, &flags);
1872         } else {
1873                 rp->nmissed++;
1874                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1875         }
1876         return 0;
1877 }
1878 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1879
1880 int register_kretprobe(struct kretprobe *rp)
1881 {
1882         int ret = 0;
1883         struct kretprobe_instance *inst;
1884         int i;
1885         void *addr;
1886
1887         /* If only rp->kp.addr is specified, check reregistering kprobes */
1888         if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1889                 return -EINVAL;
1890
1891         if (kretprobe_blacklist_size) {
1892                 addr = kprobe_addr(&rp->kp);
1893                 if (IS_ERR(addr))
1894                         return PTR_ERR(addr);
1895
1896                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1897                         if (kretprobe_blacklist[i].addr == addr)
1898                                 return -EINVAL;
1899                 }
1900         }
1901
1902         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
1903                 return -E2BIG;
1904
1905         rp->kp.pre_handler = pre_handler_kretprobe;
1906         rp->kp.post_handler = NULL;
1907         rp->kp.fault_handler = NULL;
1908         rp->kp.break_handler = NULL;
1909
1910         /* Pre-allocate memory for max kretprobe instances */
1911         if (rp->maxactive <= 0) {
1912 #ifdef CONFIG_PREEMPT
1913                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1914 #else
1915                 rp->maxactive = num_possible_cpus();
1916 #endif
1917         }
1918         raw_spin_lock_init(&rp->lock);
1919         INIT_HLIST_HEAD(&rp->free_instances);
1920         for (i = 0; i < rp->maxactive; i++) {
1921                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1922                                rp->data_size, GFP_KERNEL);
1923                 if (inst == NULL) {
1924                         free_rp_inst(rp);
1925                         return -ENOMEM;
1926                 }
1927                 INIT_HLIST_NODE(&inst->hlist);
1928                 hlist_add_head(&inst->hlist, &rp->free_instances);
1929         }
1930
1931         rp->nmissed = 0;
1932         /* Establish function entry probe point */
1933         ret = register_kprobe(&rp->kp);
1934         if (ret != 0)
1935                 free_rp_inst(rp);
1936         return ret;
1937 }
1938 EXPORT_SYMBOL_GPL(register_kretprobe);
1939
1940 int register_kretprobes(struct kretprobe **rps, int num)
1941 {
1942         int ret = 0, i;
1943
1944         if (num <= 0)
1945                 return -EINVAL;
1946         for (i = 0; i < num; i++) {
1947                 ret = register_kretprobe(rps[i]);
1948                 if (ret < 0) {
1949                         if (i > 0)
1950                                 unregister_kretprobes(rps, i);
1951                         break;
1952                 }
1953         }
1954         return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(register_kretprobes);
1957
1958 void unregister_kretprobe(struct kretprobe *rp)
1959 {
1960         unregister_kretprobes(&rp, 1);
1961 }
1962 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1963
1964 void unregister_kretprobes(struct kretprobe **rps, int num)
1965 {
1966         int i;
1967
1968         if (num <= 0)
1969                 return;
1970         mutex_lock(&kprobe_mutex);
1971         for (i = 0; i < num; i++)
1972                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1973                         rps[i]->kp.addr = NULL;
1974         mutex_unlock(&kprobe_mutex);
1975
1976         synchronize_sched();
1977         for (i = 0; i < num; i++) {
1978                 if (rps[i]->kp.addr) {
1979                         __unregister_kprobe_bottom(&rps[i]->kp);
1980                         cleanup_rp_inst(rps[i]);
1981                 }
1982         }
1983 }
1984 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1985
1986 #else /* CONFIG_KRETPROBES */
1987 int register_kretprobe(struct kretprobe *rp)
1988 {
1989         return -ENOSYS;
1990 }
1991 EXPORT_SYMBOL_GPL(register_kretprobe);
1992
1993 int register_kretprobes(struct kretprobe **rps, int num)
1994 {
1995         return -ENOSYS;
1996 }
1997 EXPORT_SYMBOL_GPL(register_kretprobes);
1998
1999 void unregister_kretprobe(struct kretprobe *rp)
2000 {
2001 }
2002 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2003
2004 void unregister_kretprobes(struct kretprobe **rps, int num)
2005 {
2006 }
2007 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2008
2009 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2010 {
2011         return 0;
2012 }
2013 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2014
2015 #endif /* CONFIG_KRETPROBES */
2016
2017 /* Set the kprobe gone and remove its instruction buffer. */
2018 static void kill_kprobe(struct kprobe *p)
2019 {
2020         struct kprobe *kp;
2021
2022         if (WARN_ON_ONCE(kprobe_gone(p)))
2023                 return;
2024
2025         p->flags |= KPROBE_FLAG_GONE;
2026         if (kprobe_aggrprobe(p)) {
2027                 /*
2028                  * If this is an aggr_kprobe, we have to list all the
2029                  * chained probes and mark them GONE.
2030                  */
2031                 list_for_each_entry_rcu(kp, &p->list, list)
2032                         kp->flags |= KPROBE_FLAG_GONE;
2033                 p->post_handler = NULL;
2034                 p->break_handler = NULL;
2035                 kill_optimized_kprobe(p);
2036         }
2037         /*
2038          * Here, we can remove insn_slot safely, because no thread calls
2039          * the original probed function (which will be freed soon) any more.
2040          */
2041         arch_remove_kprobe(p);
2042
2043         /*
2044          * The module is going away. We should disarm the kprobe which
2045          * is using ftrace, because ftrace framework is still available at
2046          * MODULE_STATE_GOING notification.
2047          */
2048         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2049                 disarm_kprobe_ftrace(p);
2050 }
2051
2052 /* Disable one kprobe */
2053 int disable_kprobe(struct kprobe *kp)
2054 {
2055         int ret = 0;
2056
2057         mutex_lock(&kprobe_mutex);
2058
2059         /* Disable this kprobe */
2060         if (__disable_kprobe(kp) == NULL)
2061                 ret = -EINVAL;
2062
2063         mutex_unlock(&kprobe_mutex);
2064         return ret;
2065 }
2066 EXPORT_SYMBOL_GPL(disable_kprobe);
2067
2068 /* Enable one kprobe */
2069 int enable_kprobe(struct kprobe *kp)
2070 {
2071         int ret = 0;
2072         struct kprobe *p;
2073
2074         mutex_lock(&kprobe_mutex);
2075
2076         /* Check whether specified probe is valid. */
2077         p = __get_valid_kprobe(kp);
2078         if (unlikely(p == NULL)) {
2079                 ret = -EINVAL;
2080                 goto out;
2081         }
2082
2083         if (kprobe_gone(kp)) {
2084                 /* This kprobe has gone, we couldn't enable it. */
2085                 ret = -EINVAL;
2086                 goto out;
2087         }
2088
2089         if (p != kp)
2090                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2091
2092         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2093                 p->flags &= ~KPROBE_FLAG_DISABLED;
2094                 arm_kprobe(p);
2095         }
2096 out:
2097         mutex_unlock(&kprobe_mutex);
2098         return ret;
2099 }
2100 EXPORT_SYMBOL_GPL(enable_kprobe);
2101
2102 void dump_kprobe(struct kprobe *kp)
2103 {
2104         printk(KERN_WARNING "Dumping kprobe:\n");
2105         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2106                kp->symbol_name, kp->addr, kp->offset);
2107 }
2108 NOKPROBE_SYMBOL(dump_kprobe);
2109
2110 /*
2111  * Lookup and populate the kprobe_blacklist.
2112  *
2113  * Unlike the kretprobe blacklist, we'll need to determine
2114  * the range of addresses that belong to the said functions,
2115  * since a kprobe need not necessarily be at the beginning
2116  * of a function.
2117  */
2118 static int __init populate_kprobe_blacklist(unsigned long *start,
2119                                              unsigned long *end)
2120 {
2121         unsigned long *iter;
2122         struct kprobe_blacklist_entry *ent;
2123         unsigned long entry, offset = 0, size = 0;
2124
2125         for (iter = start; iter < end; iter++) {
2126                 entry = arch_deref_entry_point((void *)*iter);
2127
2128                 if (!kernel_text_address(entry) ||
2129                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2130                         pr_err("Failed to find blacklist at %p\n",
2131                                 (void *)entry);
2132                         continue;
2133                 }
2134
2135                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2136                 if (!ent)
2137                         return -ENOMEM;
2138                 ent->start_addr = entry;
2139                 ent->end_addr = entry + size;
2140                 INIT_LIST_HEAD(&ent->list);
2141                 list_add_tail(&ent->list, &kprobe_blacklist);
2142         }
2143         return 0;
2144 }
2145
2146 /* Module notifier call back, checking kprobes on the module */
2147 static int kprobes_module_callback(struct notifier_block *nb,
2148                                    unsigned long val, void *data)
2149 {
2150         struct module *mod = data;
2151         struct hlist_head *head;
2152         struct kprobe *p;
2153         unsigned int i;
2154         int checkcore = (val == MODULE_STATE_GOING);
2155
2156         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2157                 return NOTIFY_DONE;
2158
2159         /*
2160          * When MODULE_STATE_GOING was notified, both of module .text and
2161          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2162          * notified, only .init.text section would be freed. We need to
2163          * disable kprobes which have been inserted in the sections.
2164          */
2165         mutex_lock(&kprobe_mutex);
2166         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2167                 head = &kprobe_table[i];
2168                 hlist_for_each_entry_rcu(p, head, hlist) {
2169                         if (kprobe_gone(p))
2170                                 continue;
2171
2172                         if (within_module_init((unsigned long)p->addr, mod) ||
2173                             (checkcore &&
2174                              within_module_core((unsigned long)p->addr, mod))) {
2175                                 /*
2176                                  * The vaddr this probe is installed will soon
2177                                  * be vfreed buy not synced to disk. Hence,
2178                                  * disarming the breakpoint isn't needed.
2179                                  */
2180                                 kill_kprobe(p);
2181                         }
2182                 }
2183         }
2184         mutex_unlock(&kprobe_mutex);
2185         return NOTIFY_DONE;
2186 }
2187
2188 static struct notifier_block kprobe_module_nb = {
2189         .notifier_call = kprobes_module_callback,
2190         .priority = 0
2191 };
2192
2193 /* Markers of _kprobe_blacklist section */
2194 extern unsigned long __start_kprobe_blacklist[];
2195 extern unsigned long __stop_kprobe_blacklist[];
2196
2197 static int __init init_kprobes(void)
2198 {
2199         int i, err = 0;
2200
2201         /* FIXME allocate the probe table, currently defined statically */
2202         /* initialize all list heads */
2203         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2204                 INIT_HLIST_HEAD(&kprobe_table[i]);
2205                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2206                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2207         }
2208
2209         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2210                                         __stop_kprobe_blacklist);
2211         if (err) {
2212                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2213                 pr_err("Please take care of using kprobes.\n");
2214         }
2215
2216         if (kretprobe_blacklist_size) {
2217                 /* lookup the function address from its name */
2218                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2219                         kprobe_lookup_name(kretprobe_blacklist[i].name,
2220                                            kretprobe_blacklist[i].addr);
2221                         if (!kretprobe_blacklist[i].addr)
2222                                 printk("kretprobe: lookup failed: %s\n",
2223                                        kretprobe_blacklist[i].name);
2224                 }
2225         }
2226
2227 #if defined(CONFIG_OPTPROBES)
2228 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2229         /* Init kprobe_optinsn_slots */
2230         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2231 #endif
2232         /* By default, kprobes can be optimized */
2233         kprobes_allow_optimization = true;
2234 #endif
2235
2236         /* By default, kprobes are armed */
2237         kprobes_all_disarmed = false;
2238
2239         err = arch_init_kprobes();
2240         if (!err)
2241                 err = register_die_notifier(&kprobe_exceptions_nb);
2242         if (!err)
2243                 err = register_module_notifier(&kprobe_module_nb);
2244
2245         kprobes_initialized = (err == 0);
2246
2247         if (!err)
2248                 init_test_probes();
2249         return err;
2250 }
2251
2252 #ifdef CONFIG_DEBUG_FS
2253 static void report_probe(struct seq_file *pi, struct kprobe *p,
2254                 const char *sym, int offset, char *modname, struct kprobe *pp)
2255 {
2256         char *kprobe_type;
2257
2258         if (p->pre_handler == pre_handler_kretprobe)
2259                 kprobe_type = "r";
2260         else if (p->pre_handler == setjmp_pre_handler)
2261                 kprobe_type = "j";
2262         else
2263                 kprobe_type = "k";
2264
2265         if (sym)
2266                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2267                         p->addr, kprobe_type, sym, offset,
2268                         (modname ? modname : " "));
2269         else
2270                 seq_printf(pi, "%p  %s  %p ",
2271                         p->addr, kprobe_type, p->addr);
2272
2273         if (!pp)
2274                 pp = p;
2275         seq_printf(pi, "%s%s%s%s\n",
2276                 (kprobe_gone(p) ? "[GONE]" : ""),
2277                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2278                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2279                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2280 }
2281
2282 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2283 {
2284         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2285 }
2286
2287 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2288 {
2289         (*pos)++;
2290         if (*pos >= KPROBE_TABLE_SIZE)
2291                 return NULL;
2292         return pos;
2293 }
2294
2295 static void kprobe_seq_stop(struct seq_file *f, void *v)
2296 {
2297         /* Nothing to do */
2298 }
2299
2300 static int show_kprobe_addr(struct seq_file *pi, void *v)
2301 {
2302         struct hlist_head *head;
2303         struct kprobe *p, *kp;
2304         const char *sym = NULL;
2305         unsigned int i = *(loff_t *) v;
2306         unsigned long offset = 0;
2307         char *modname, namebuf[KSYM_NAME_LEN];
2308
2309         head = &kprobe_table[i];
2310         preempt_disable();
2311         hlist_for_each_entry_rcu(p, head, hlist) {
2312                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2313                                         &offset, &modname, namebuf);
2314                 if (kprobe_aggrprobe(p)) {
2315                         list_for_each_entry_rcu(kp, &p->list, list)
2316                                 report_probe(pi, kp, sym, offset, modname, p);
2317                 } else
2318                         report_probe(pi, p, sym, offset, modname, NULL);
2319         }
2320         preempt_enable();
2321         return 0;
2322 }
2323
2324 static const struct seq_operations kprobes_seq_ops = {
2325         .start = kprobe_seq_start,
2326         .next  = kprobe_seq_next,
2327         .stop  = kprobe_seq_stop,
2328         .show  = show_kprobe_addr
2329 };
2330
2331 static int kprobes_open(struct inode *inode, struct file *filp)
2332 {
2333         return seq_open(filp, &kprobes_seq_ops);
2334 }
2335
2336 static const struct file_operations debugfs_kprobes_operations = {
2337         .open           = kprobes_open,
2338         .read           = seq_read,
2339         .llseek         = seq_lseek,
2340         .release        = seq_release,
2341 };
2342
2343 /* kprobes/blacklist -- shows which functions can not be probed */
2344 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2345 {
2346         return seq_list_start(&kprobe_blacklist, *pos);
2347 }
2348
2349 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2350 {
2351         return seq_list_next(v, &kprobe_blacklist, pos);
2352 }
2353
2354 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2355 {
2356         struct kprobe_blacklist_entry *ent =
2357                 list_entry(v, struct kprobe_blacklist_entry, list);
2358
2359         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2360                    (void *)ent->end_addr, (void *)ent->start_addr);
2361         return 0;
2362 }
2363
2364 static const struct seq_operations kprobe_blacklist_seq_ops = {
2365         .start = kprobe_blacklist_seq_start,
2366         .next  = kprobe_blacklist_seq_next,
2367         .stop  = kprobe_seq_stop,       /* Reuse void function */
2368         .show  = kprobe_blacklist_seq_show,
2369 };
2370
2371 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2372 {
2373         return seq_open(filp, &kprobe_blacklist_seq_ops);
2374 }
2375
2376 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2377         .open           = kprobe_blacklist_open,
2378         .read           = seq_read,
2379         .llseek         = seq_lseek,
2380         .release        = seq_release,
2381 };
2382
2383 static void arm_all_kprobes(void)
2384 {
2385         struct hlist_head *head;
2386         struct kprobe *p;
2387         unsigned int i;
2388
2389         mutex_lock(&kprobe_mutex);
2390
2391         /* If kprobes are armed, just return */
2392         if (!kprobes_all_disarmed)
2393                 goto already_enabled;
2394
2395         /*
2396          * optimize_kprobe() called by arm_kprobe() checks
2397          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2398          * arm_kprobe.
2399          */
2400         kprobes_all_disarmed = false;
2401         /* Arming kprobes doesn't optimize kprobe itself */
2402         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2403                 head = &kprobe_table[i];
2404                 hlist_for_each_entry_rcu(p, head, hlist)
2405                         if (!kprobe_disabled(p))
2406                                 arm_kprobe(p);
2407         }
2408
2409         printk(KERN_INFO "Kprobes globally enabled\n");
2410
2411 already_enabled:
2412         mutex_unlock(&kprobe_mutex);
2413         return;
2414 }
2415
2416 static void disarm_all_kprobes(void)
2417 {
2418         struct hlist_head *head;
2419         struct kprobe *p;
2420         unsigned int i;
2421
2422         mutex_lock(&kprobe_mutex);
2423
2424         /* If kprobes are already disarmed, just return */
2425         if (kprobes_all_disarmed) {
2426                 mutex_unlock(&kprobe_mutex);
2427                 return;
2428         }
2429
2430         kprobes_all_disarmed = true;
2431         printk(KERN_INFO "Kprobes globally disabled\n");
2432
2433         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2434                 head = &kprobe_table[i];
2435                 hlist_for_each_entry_rcu(p, head, hlist) {
2436                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2437                                 disarm_kprobe(p, false);
2438                 }
2439         }
2440         mutex_unlock(&kprobe_mutex);
2441
2442         /* Wait for disarming all kprobes by optimizer */
2443         wait_for_kprobe_optimizer();
2444 }
2445
2446 /*
2447  * XXX: The debugfs bool file interface doesn't allow for callbacks
2448  * when the bool state is switched. We can reuse that facility when
2449  * available
2450  */
2451 static ssize_t read_enabled_file_bool(struct file *file,
2452                char __user *user_buf, size_t count, loff_t *ppos)
2453 {
2454         char buf[3];
2455
2456         if (!kprobes_all_disarmed)
2457                 buf[0] = '1';
2458         else
2459                 buf[0] = '0';
2460         buf[1] = '\n';
2461         buf[2] = 0x00;
2462         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2463 }
2464
2465 static ssize_t write_enabled_file_bool(struct file *file,
2466                const char __user *user_buf, size_t count, loff_t *ppos)
2467 {
2468         char buf[32];
2469         size_t buf_size;
2470
2471         buf_size = min(count, (sizeof(buf)-1));
2472         if (copy_from_user(buf, user_buf, buf_size))
2473                 return -EFAULT;
2474
2475         buf[buf_size] = '\0';
2476         switch (buf[0]) {
2477         case 'y':
2478         case 'Y':
2479         case '1':
2480                 arm_all_kprobes();
2481                 break;
2482         case 'n':
2483         case 'N':
2484         case '0':
2485                 disarm_all_kprobes();
2486                 break;
2487         default:
2488                 return -EINVAL;
2489         }
2490
2491         return count;
2492 }
2493
2494 static const struct file_operations fops_kp = {
2495         .read =         read_enabled_file_bool,
2496         .write =        write_enabled_file_bool,
2497         .llseek =       default_llseek,
2498 };
2499
2500 static int __init debugfs_kprobe_init(void)
2501 {
2502         struct dentry *dir, *file;
2503         unsigned int value = 1;
2504
2505         dir = debugfs_create_dir("kprobes", NULL);
2506         if (!dir)
2507                 return -ENOMEM;
2508
2509         file = debugfs_create_file("list", 0400, dir, NULL,
2510                                 &debugfs_kprobes_operations);
2511         if (!file)
2512                 goto error;
2513
2514         file = debugfs_create_file("enabled", 0600, dir,
2515                                         &value, &fops_kp);
2516         if (!file)
2517                 goto error;
2518
2519         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2520                                 &debugfs_kprobe_blacklist_ops);
2521         if (!file)
2522                 goto error;
2523
2524         return 0;
2525
2526 error:
2527         debugfs_remove(dir);
2528         return -ENOMEM;
2529 }
2530
2531 late_initcall(debugfs_kprobe_init);
2532 #endif /* CONFIG_DEBUG_FS */
2533
2534 module_init(init_kprobes);
2535
2536 /* defined in arch/.../kernel/kprobes.c */
2537 EXPORT_SYMBOL_GPL(jprobe_return);