GNU Linux-libre 5.13.14-gnu1
[releases.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/static_call.h>
39 #include <linux/perf_event.h>
40
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53  * Or
54  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55  */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64
65 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66                                         unsigned int __unused)
67 {
68         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69 }
70
71 /* Blacklist -- list of struct kprobe_blacklist_entry */
72 static LIST_HEAD(kprobe_blacklist);
73
74 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75 /*
76  * kprobe->ainsn.insn points to the copy of the instruction to be
77  * single-stepped. x86_64, POWER4 and above have no-exec support and
78  * stepping on the instruction on a vmalloced/kmalloced/data page
79  * is a recipe for disaster
80  */
81 struct kprobe_insn_page {
82         struct list_head list;
83         kprobe_opcode_t *insns;         /* Page of instruction slots */
84         struct kprobe_insn_cache *cache;
85         int nused;
86         int ngarbage;
87         char slot_used[];
88 };
89
90 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
91         (offsetof(struct kprobe_insn_page, slot_used) + \
92          (sizeof(char) * (slots)))
93
94 static int slots_per_page(struct kprobe_insn_cache *c)
95 {
96         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97 }
98
99 enum kprobe_slot_state {
100         SLOT_CLEAN = 0,
101         SLOT_DIRTY = 1,
102         SLOT_USED = 2,
103 };
104
105 void __weak *alloc_insn_page(void)
106 {
107         return module_alloc(PAGE_SIZE);
108 }
109
110 void __weak free_insn_page(void *page)
111 {
112         module_memfree(page);
113 }
114
115 struct kprobe_insn_cache kprobe_insn_slots = {
116         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117         .alloc = alloc_insn_page,
118         .free = free_insn_page,
119         .sym = KPROBE_INSN_PAGE_SYM,
120         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121         .insn_size = MAX_INSN_SIZE,
122         .nr_garbage = 0,
123 };
124 static int collect_garbage_slots(struct kprobe_insn_cache *c);
125
126 /**
127  * __get_insn_slot() - Find a slot on an executable page for an instruction.
128  * We allocate an executable page if there's no room on existing ones.
129  */
130 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131 {
132         struct kprobe_insn_page *kip;
133         kprobe_opcode_t *slot = NULL;
134
135         /* Since the slot array is not protected by rcu, we need a mutex */
136         mutex_lock(&c->mutex);
137  retry:
138         rcu_read_lock();
139         list_for_each_entry_rcu(kip, &c->pages, list) {
140                 if (kip->nused < slots_per_page(c)) {
141                         int i;
142                         for (i = 0; i < slots_per_page(c); i++) {
143                                 if (kip->slot_used[i] == SLOT_CLEAN) {
144                                         kip->slot_used[i] = SLOT_USED;
145                                         kip->nused++;
146                                         slot = kip->insns + (i * c->insn_size);
147                                         rcu_read_unlock();
148                                         goto out;
149                                 }
150                         }
151                         /* kip->nused is broken. Fix it. */
152                         kip->nused = slots_per_page(c);
153                         WARN_ON(1);
154                 }
155         }
156         rcu_read_unlock();
157
158         /* If there are any garbage slots, collect it and try again. */
159         if (c->nr_garbage && collect_garbage_slots(c) == 0)
160                 goto retry;
161
162         /* All out of space.  Need to allocate a new page. */
163         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164         if (!kip)
165                 goto out;
166
167         /*
168          * Use module_alloc so this page is within +/- 2GB of where the
169          * kernel image and loaded module images reside. This is required
170          * so x86_64 can correctly handle the %rip-relative fixups.
171          */
172         kip->insns = c->alloc();
173         if (!kip->insns) {
174                 kfree(kip);
175                 goto out;
176         }
177         INIT_LIST_HEAD(&kip->list);
178         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179         kip->slot_used[0] = SLOT_USED;
180         kip->nused = 1;
181         kip->ngarbage = 0;
182         kip->cache = c;
183         list_add_rcu(&kip->list, &c->pages);
184         slot = kip->insns;
185
186         /* Record the perf ksymbol register event after adding the page */
187         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188                            PAGE_SIZE, false, c->sym);
189 out:
190         mutex_unlock(&c->mutex);
191         return slot;
192 }
193
194 /* Return 1 if all garbages are collected, otherwise 0. */
195 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196 {
197         kip->slot_used[idx] = SLOT_CLEAN;
198         kip->nused--;
199         if (kip->nused == 0) {
200                 /*
201                  * Page is no longer in use.  Free it unless
202                  * it's the last one.  We keep the last one
203                  * so as not to have to set it up again the
204                  * next time somebody inserts a probe.
205                  */
206                 if (!list_is_singular(&kip->list)) {
207                         /*
208                          * Record perf ksymbol unregister event before removing
209                          * the page.
210                          */
211                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212                                            (unsigned long)kip->insns, PAGE_SIZE, true,
213                                            kip->cache->sym);
214                         list_del_rcu(&kip->list);
215                         synchronize_rcu();
216                         kip->cache->free(kip->insns);
217                         kfree(kip);
218                 }
219                 return 1;
220         }
221         return 0;
222 }
223
224 static int collect_garbage_slots(struct kprobe_insn_cache *c)
225 {
226         struct kprobe_insn_page *kip, *next;
227
228         /* Ensure no-one is interrupted on the garbages */
229         synchronize_rcu();
230
231         list_for_each_entry_safe(kip, next, &c->pages, list) {
232                 int i;
233                 if (kip->ngarbage == 0)
234                         continue;
235                 kip->ngarbage = 0;      /* we will collect all garbages */
236                 for (i = 0; i < slots_per_page(c); i++) {
237                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238                                 break;
239                 }
240         }
241         c->nr_garbage = 0;
242         return 0;
243 }
244
245 void __free_insn_slot(struct kprobe_insn_cache *c,
246                       kprobe_opcode_t *slot, int dirty)
247 {
248         struct kprobe_insn_page *kip;
249         long idx;
250
251         mutex_lock(&c->mutex);
252         rcu_read_lock();
253         list_for_each_entry_rcu(kip, &c->pages, list) {
254                 idx = ((long)slot - (long)kip->insns) /
255                         (c->insn_size * sizeof(kprobe_opcode_t));
256                 if (idx >= 0 && idx < slots_per_page(c))
257                         goto out;
258         }
259         /* Could not find this slot. */
260         WARN_ON(1);
261         kip = NULL;
262 out:
263         rcu_read_unlock();
264         /* Mark and sweep: this may sleep */
265         if (kip) {
266                 /* Check double free */
267                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268                 if (dirty) {
269                         kip->slot_used[idx] = SLOT_DIRTY;
270                         kip->ngarbage++;
271                         if (++c->nr_garbage > slots_per_page(c))
272                                 collect_garbage_slots(c);
273                 } else {
274                         collect_one_slot(kip, idx);
275                 }
276         }
277         mutex_unlock(&c->mutex);
278 }
279
280 /*
281  * Check given address is on the page of kprobe instruction slots.
282  * This will be used for checking whether the address on a stack
283  * is on a text area or not.
284  */
285 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286 {
287         struct kprobe_insn_page *kip;
288         bool ret = false;
289
290         rcu_read_lock();
291         list_for_each_entry_rcu(kip, &c->pages, list) {
292                 if (addr >= (unsigned long)kip->insns &&
293                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
294                         ret = true;
295                         break;
296                 }
297         }
298         rcu_read_unlock();
299
300         return ret;
301 }
302
303 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304                              unsigned long *value, char *type, char *sym)
305 {
306         struct kprobe_insn_page *kip;
307         int ret = -ERANGE;
308
309         rcu_read_lock();
310         list_for_each_entry_rcu(kip, &c->pages, list) {
311                 if ((*symnum)--)
312                         continue;
313                 strlcpy(sym, c->sym, KSYM_NAME_LEN);
314                 *type = 't';
315                 *value = (unsigned long)kip->insns;
316                 ret = 0;
317                 break;
318         }
319         rcu_read_unlock();
320
321         return ret;
322 }
323
324 #ifdef CONFIG_OPTPROBES
325 /* For optimized_kprobe buffer */
326 struct kprobe_insn_cache kprobe_optinsn_slots = {
327         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
328         .alloc = alloc_insn_page,
329         .free = free_insn_page,
330         .sym = KPROBE_OPTINSN_PAGE_SYM,
331         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
332         /* .insn_size is initialized later */
333         .nr_garbage = 0,
334 };
335 #endif
336 #endif
337
338 /* We have preemption disabled.. so it is safe to use __ versions */
339 static inline void set_kprobe_instance(struct kprobe *kp)
340 {
341         __this_cpu_write(kprobe_instance, kp);
342 }
343
344 static inline void reset_kprobe_instance(void)
345 {
346         __this_cpu_write(kprobe_instance, NULL);
347 }
348
349 /*
350  * This routine is called either:
351  *      - under the kprobe_mutex - during kprobe_[un]register()
352  *                              OR
353  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
354  */
355 struct kprobe *get_kprobe(void *addr)
356 {
357         struct hlist_head *head;
358         struct kprobe *p;
359
360         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
361         hlist_for_each_entry_rcu(p, head, hlist,
362                                  lockdep_is_held(&kprobe_mutex)) {
363                 if (p->addr == addr)
364                         return p;
365         }
366
367         return NULL;
368 }
369 NOKPROBE_SYMBOL(get_kprobe);
370
371 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
372
373 /* Return true if the kprobe is an aggregator */
374 static inline int kprobe_aggrprobe(struct kprobe *p)
375 {
376         return p->pre_handler == aggr_pre_handler;
377 }
378
379 /* Return true(!0) if the kprobe is unused */
380 static inline int kprobe_unused(struct kprobe *p)
381 {
382         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
383                list_empty(&p->list);
384 }
385
386 /*
387  * Keep all fields in the kprobe consistent
388  */
389 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
390 {
391         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
392         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
393 }
394
395 #ifdef CONFIG_OPTPROBES
396 /* NOTE: change this value only with kprobe_mutex held */
397 static bool kprobes_allow_optimization;
398
399 /*
400  * Call all pre_handler on the list, but ignores its return value.
401  * This must be called from arch-dep optimized caller.
402  */
403 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
404 {
405         struct kprobe *kp;
406
407         list_for_each_entry_rcu(kp, &p->list, list) {
408                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
409                         set_kprobe_instance(kp);
410                         kp->pre_handler(kp, regs);
411                 }
412                 reset_kprobe_instance();
413         }
414 }
415 NOKPROBE_SYMBOL(opt_pre_handler);
416
417 /* Free optimized instructions and optimized_kprobe */
418 static void free_aggr_kprobe(struct kprobe *p)
419 {
420         struct optimized_kprobe *op;
421
422         op = container_of(p, struct optimized_kprobe, kp);
423         arch_remove_optimized_kprobe(op);
424         arch_remove_kprobe(p);
425         kfree(op);
426 }
427
428 /* Return true(!0) if the kprobe is ready for optimization. */
429 static inline int kprobe_optready(struct kprobe *p)
430 {
431         struct optimized_kprobe *op;
432
433         if (kprobe_aggrprobe(p)) {
434                 op = container_of(p, struct optimized_kprobe, kp);
435                 return arch_prepared_optinsn(&op->optinsn);
436         }
437
438         return 0;
439 }
440
441 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
442 static inline int kprobe_disarmed(struct kprobe *p)
443 {
444         struct optimized_kprobe *op;
445
446         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
447         if (!kprobe_aggrprobe(p))
448                 return kprobe_disabled(p);
449
450         op = container_of(p, struct optimized_kprobe, kp);
451
452         return kprobe_disabled(p) && list_empty(&op->list);
453 }
454
455 /* Return true(!0) if the probe is queued on (un)optimizing lists */
456 static int kprobe_queued(struct kprobe *p)
457 {
458         struct optimized_kprobe *op;
459
460         if (kprobe_aggrprobe(p)) {
461                 op = container_of(p, struct optimized_kprobe, kp);
462                 if (!list_empty(&op->list))
463                         return 1;
464         }
465         return 0;
466 }
467
468 /*
469  * Return an optimized kprobe whose optimizing code replaces
470  * instructions including addr (exclude breakpoint).
471  */
472 static struct kprobe *get_optimized_kprobe(unsigned long addr)
473 {
474         int i;
475         struct kprobe *p = NULL;
476         struct optimized_kprobe *op;
477
478         /* Don't check i == 0, since that is a breakpoint case. */
479         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
480                 p = get_kprobe((void *)(addr - i));
481
482         if (p && kprobe_optready(p)) {
483                 op = container_of(p, struct optimized_kprobe, kp);
484                 if (arch_within_optimized_kprobe(op, addr))
485                         return p;
486         }
487
488         return NULL;
489 }
490
491 /* Optimization staging list, protected by kprobe_mutex */
492 static LIST_HEAD(optimizing_list);
493 static LIST_HEAD(unoptimizing_list);
494 static LIST_HEAD(freeing_list);
495
496 static void kprobe_optimizer(struct work_struct *work);
497 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
498 #define OPTIMIZE_DELAY 5
499
500 /*
501  * Optimize (replace a breakpoint with a jump) kprobes listed on
502  * optimizing_list.
503  */
504 static void do_optimize_kprobes(void)
505 {
506         lockdep_assert_held(&text_mutex);
507         /*
508          * The optimization/unoptimization refers online_cpus via
509          * stop_machine() and cpu-hotplug modifies online_cpus.
510          * And same time, text_mutex will be held in cpu-hotplug and here.
511          * This combination can cause a deadlock (cpu-hotplug try to lock
512          * text_mutex but stop_machine can not be done because online_cpus
513          * has been changed)
514          * To avoid this deadlock, caller must have locked cpu hotplug
515          * for preventing cpu-hotplug outside of text_mutex locking.
516          */
517         lockdep_assert_cpus_held();
518
519         /* Optimization never be done when disarmed */
520         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
521             list_empty(&optimizing_list))
522                 return;
523
524         arch_optimize_kprobes(&optimizing_list);
525 }
526
527 /*
528  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
529  * if need) kprobes listed on unoptimizing_list.
530  */
531 static void do_unoptimize_kprobes(void)
532 {
533         struct optimized_kprobe *op, *tmp;
534
535         lockdep_assert_held(&text_mutex);
536         /* See comment in do_optimize_kprobes() */
537         lockdep_assert_cpus_held();
538
539         /* Unoptimization must be done anytime */
540         if (list_empty(&unoptimizing_list))
541                 return;
542
543         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
544         /* Loop free_list for disarming */
545         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
546                 /* Switching from detour code to origin */
547                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
548                 /* Disarm probes if marked disabled */
549                 if (kprobe_disabled(&op->kp))
550                         arch_disarm_kprobe(&op->kp);
551                 if (kprobe_unused(&op->kp)) {
552                         /*
553                          * Remove unused probes from hash list. After waiting
554                          * for synchronization, these probes are reclaimed.
555                          * (reclaiming is done by do_free_cleaned_kprobes.)
556                          */
557                         hlist_del_rcu(&op->kp.hlist);
558                 } else
559                         list_del_init(&op->list);
560         }
561 }
562
563 /* Reclaim all kprobes on the free_list */
564 static void do_free_cleaned_kprobes(void)
565 {
566         struct optimized_kprobe *op, *tmp;
567
568         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
569                 list_del_init(&op->list);
570                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
571                         /*
572                          * This must not happen, but if there is a kprobe
573                          * still in use, keep it on kprobes hash list.
574                          */
575                         continue;
576                 }
577                 free_aggr_kprobe(&op->kp);
578         }
579 }
580
581 /* Start optimizer after OPTIMIZE_DELAY passed */
582 static void kick_kprobe_optimizer(void)
583 {
584         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
585 }
586
587 /* Kprobe jump optimizer */
588 static void kprobe_optimizer(struct work_struct *work)
589 {
590         mutex_lock(&kprobe_mutex);
591         cpus_read_lock();
592         mutex_lock(&text_mutex);
593
594         /*
595          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
596          * kprobes before waiting for quiesence period.
597          */
598         do_unoptimize_kprobes();
599
600         /*
601          * Step 2: Wait for quiesence period to ensure all potentially
602          * preempted tasks to have normally scheduled. Because optprobe
603          * may modify multiple instructions, there is a chance that Nth
604          * instruction is preempted. In that case, such tasks can return
605          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
606          * Note that on non-preemptive kernel, this is transparently converted
607          * to synchronoze_sched() to wait for all interrupts to have completed.
608          */
609         synchronize_rcu_tasks();
610
611         /* Step 3: Optimize kprobes after quiesence period */
612         do_optimize_kprobes();
613
614         /* Step 4: Free cleaned kprobes after quiesence period */
615         do_free_cleaned_kprobes();
616
617         mutex_unlock(&text_mutex);
618         cpus_read_unlock();
619
620         /* Step 5: Kick optimizer again if needed */
621         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
622                 kick_kprobe_optimizer();
623
624         mutex_unlock(&kprobe_mutex);
625 }
626
627 /* Wait for completing optimization and unoptimization */
628 void wait_for_kprobe_optimizer(void)
629 {
630         mutex_lock(&kprobe_mutex);
631
632         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
633                 mutex_unlock(&kprobe_mutex);
634
635                 /* this will also make optimizing_work execute immmediately */
636                 flush_delayed_work(&optimizing_work);
637                 /* @optimizing_work might not have been queued yet, relax */
638                 cpu_relax();
639
640                 mutex_lock(&kprobe_mutex);
641         }
642
643         mutex_unlock(&kprobe_mutex);
644 }
645
646 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
647 {
648         struct optimized_kprobe *_op;
649
650         list_for_each_entry(_op, &unoptimizing_list, list) {
651                 if (op == _op)
652                         return true;
653         }
654
655         return false;
656 }
657
658 /* Optimize kprobe if p is ready to be optimized */
659 static void optimize_kprobe(struct kprobe *p)
660 {
661         struct optimized_kprobe *op;
662
663         /* Check if the kprobe is disabled or not ready for optimization. */
664         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
665             (kprobe_disabled(p) || kprobes_all_disarmed))
666                 return;
667
668         /* kprobes with post_handler can not be optimized */
669         if (p->post_handler)
670                 return;
671
672         op = container_of(p, struct optimized_kprobe, kp);
673
674         /* Check there is no other kprobes at the optimized instructions */
675         if (arch_check_optimized_kprobe(op) < 0)
676                 return;
677
678         /* Check if it is already optimized. */
679         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
680                 if (optprobe_queued_unopt(op)) {
681                         /* This is under unoptimizing. Just dequeue the probe */
682                         list_del_init(&op->list);
683                 }
684                 return;
685         }
686         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
687
688         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
689         if (WARN_ON_ONCE(!list_empty(&op->list)))
690                 return;
691
692         list_add(&op->list, &optimizing_list);
693         kick_kprobe_optimizer();
694 }
695
696 /* Short cut to direct unoptimizing */
697 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
698 {
699         lockdep_assert_cpus_held();
700         arch_unoptimize_kprobe(op);
701         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
702 }
703
704 /* Unoptimize a kprobe if p is optimized */
705 static void unoptimize_kprobe(struct kprobe *p, bool force)
706 {
707         struct optimized_kprobe *op;
708
709         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
710                 return; /* This is not an optprobe nor optimized */
711
712         op = container_of(p, struct optimized_kprobe, kp);
713         if (!kprobe_optimized(p))
714                 return;
715
716         if (!list_empty(&op->list)) {
717                 if (optprobe_queued_unopt(op)) {
718                         /* Queued in unoptimizing queue */
719                         if (force) {
720                                 /*
721                                  * Forcibly unoptimize the kprobe here, and queue it
722                                  * in the freeing list for release afterwards.
723                                  */
724                                 force_unoptimize_kprobe(op);
725                                 list_move(&op->list, &freeing_list);
726                         }
727                 } else {
728                         /* Dequeue from the optimizing queue */
729                         list_del_init(&op->list);
730                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
731                 }
732                 return;
733         }
734
735         /* Optimized kprobe case */
736         if (force) {
737                 /* Forcibly update the code: this is a special case */
738                 force_unoptimize_kprobe(op);
739         } else {
740                 list_add(&op->list, &unoptimizing_list);
741                 kick_kprobe_optimizer();
742         }
743 }
744
745 /* Cancel unoptimizing for reusing */
746 static int reuse_unused_kprobe(struct kprobe *ap)
747 {
748         struct optimized_kprobe *op;
749
750         /*
751          * Unused kprobe MUST be on the way of delayed unoptimizing (means
752          * there is still a relative jump) and disabled.
753          */
754         op = container_of(ap, struct optimized_kprobe, kp);
755         WARN_ON_ONCE(list_empty(&op->list));
756         /* Enable the probe again */
757         ap->flags &= ~KPROBE_FLAG_DISABLED;
758         /* Optimize it again (remove from op->list) */
759         if (!kprobe_optready(ap))
760                 return -EINVAL;
761
762         optimize_kprobe(ap);
763         return 0;
764 }
765
766 /* Remove optimized instructions */
767 static void kill_optimized_kprobe(struct kprobe *p)
768 {
769         struct optimized_kprobe *op;
770
771         op = container_of(p, struct optimized_kprobe, kp);
772         if (!list_empty(&op->list))
773                 /* Dequeue from the (un)optimization queue */
774                 list_del_init(&op->list);
775         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
776
777         if (kprobe_unused(p)) {
778                 /* Enqueue if it is unused */
779                 list_add(&op->list, &freeing_list);
780                 /*
781                  * Remove unused probes from the hash list. After waiting
782                  * for synchronization, this probe is reclaimed.
783                  * (reclaiming is done by do_free_cleaned_kprobes().)
784                  */
785                 hlist_del_rcu(&op->kp.hlist);
786         }
787
788         /* Don't touch the code, because it is already freed. */
789         arch_remove_optimized_kprobe(op);
790 }
791
792 static inline
793 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
794 {
795         if (!kprobe_ftrace(p))
796                 arch_prepare_optimized_kprobe(op, p);
797 }
798
799 /* Try to prepare optimized instructions */
800 static void prepare_optimized_kprobe(struct kprobe *p)
801 {
802         struct optimized_kprobe *op;
803
804         op = container_of(p, struct optimized_kprobe, kp);
805         __prepare_optimized_kprobe(op, p);
806 }
807
808 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
809 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
810 {
811         struct optimized_kprobe *op;
812
813         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
814         if (!op)
815                 return NULL;
816
817         INIT_LIST_HEAD(&op->list);
818         op->kp.addr = p->addr;
819         __prepare_optimized_kprobe(op, p);
820
821         return &op->kp;
822 }
823
824 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
825
826 /*
827  * Prepare an optimized_kprobe and optimize it
828  * NOTE: p must be a normal registered kprobe
829  */
830 static void try_to_optimize_kprobe(struct kprobe *p)
831 {
832         struct kprobe *ap;
833         struct optimized_kprobe *op;
834
835         /* Impossible to optimize ftrace-based kprobe */
836         if (kprobe_ftrace(p))
837                 return;
838
839         /* For preparing optimization, jump_label_text_reserved() is called */
840         cpus_read_lock();
841         jump_label_lock();
842         mutex_lock(&text_mutex);
843
844         ap = alloc_aggr_kprobe(p);
845         if (!ap)
846                 goto out;
847
848         op = container_of(ap, struct optimized_kprobe, kp);
849         if (!arch_prepared_optinsn(&op->optinsn)) {
850                 /* If failed to setup optimizing, fallback to kprobe */
851                 arch_remove_optimized_kprobe(op);
852                 kfree(op);
853                 goto out;
854         }
855
856         init_aggr_kprobe(ap, p);
857         optimize_kprobe(ap);    /* This just kicks optimizer thread */
858
859 out:
860         mutex_unlock(&text_mutex);
861         jump_label_unlock();
862         cpus_read_unlock();
863 }
864
865 static void optimize_all_kprobes(void)
866 {
867         struct hlist_head *head;
868         struct kprobe *p;
869         unsigned int i;
870
871         mutex_lock(&kprobe_mutex);
872         /* If optimization is already allowed, just return */
873         if (kprobes_allow_optimization)
874                 goto out;
875
876         cpus_read_lock();
877         kprobes_allow_optimization = true;
878         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
879                 head = &kprobe_table[i];
880                 hlist_for_each_entry(p, head, hlist)
881                         if (!kprobe_disabled(p))
882                                 optimize_kprobe(p);
883         }
884         cpus_read_unlock();
885         printk(KERN_INFO "Kprobes globally optimized\n");
886 out:
887         mutex_unlock(&kprobe_mutex);
888 }
889
890 #ifdef CONFIG_SYSCTL
891 static void unoptimize_all_kprobes(void)
892 {
893         struct hlist_head *head;
894         struct kprobe *p;
895         unsigned int i;
896
897         mutex_lock(&kprobe_mutex);
898         /* If optimization is already prohibited, just return */
899         if (!kprobes_allow_optimization) {
900                 mutex_unlock(&kprobe_mutex);
901                 return;
902         }
903
904         cpus_read_lock();
905         kprobes_allow_optimization = false;
906         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
907                 head = &kprobe_table[i];
908                 hlist_for_each_entry(p, head, hlist) {
909                         if (!kprobe_disabled(p))
910                                 unoptimize_kprobe(p, false);
911                 }
912         }
913         cpus_read_unlock();
914         mutex_unlock(&kprobe_mutex);
915
916         /* Wait for unoptimizing completion */
917         wait_for_kprobe_optimizer();
918         printk(KERN_INFO "Kprobes globally unoptimized\n");
919 }
920
921 static DEFINE_MUTEX(kprobe_sysctl_mutex);
922 int sysctl_kprobes_optimization;
923 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
924                                       void *buffer, size_t *length,
925                                       loff_t *ppos)
926 {
927         int ret;
928
929         mutex_lock(&kprobe_sysctl_mutex);
930         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
931         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
932
933         if (sysctl_kprobes_optimization)
934                 optimize_all_kprobes();
935         else
936                 unoptimize_all_kprobes();
937         mutex_unlock(&kprobe_sysctl_mutex);
938
939         return ret;
940 }
941 #endif /* CONFIG_SYSCTL */
942
943 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
944 static void __arm_kprobe(struct kprobe *p)
945 {
946         struct kprobe *_p;
947
948         /* Check collision with other optimized kprobes */
949         _p = get_optimized_kprobe((unsigned long)p->addr);
950         if (unlikely(_p))
951                 /* Fallback to unoptimized kprobe */
952                 unoptimize_kprobe(_p, true);
953
954         arch_arm_kprobe(p);
955         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
956 }
957
958 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
959 static void __disarm_kprobe(struct kprobe *p, bool reopt)
960 {
961         struct kprobe *_p;
962
963         /* Try to unoptimize */
964         unoptimize_kprobe(p, kprobes_all_disarmed);
965
966         if (!kprobe_queued(p)) {
967                 arch_disarm_kprobe(p);
968                 /* If another kprobe was blocked, optimize it. */
969                 _p = get_optimized_kprobe((unsigned long)p->addr);
970                 if (unlikely(_p) && reopt)
971                         optimize_kprobe(_p);
972         }
973         /* TODO: reoptimize others after unoptimized this probe */
974 }
975
976 #else /* !CONFIG_OPTPROBES */
977
978 #define optimize_kprobe(p)                      do {} while (0)
979 #define unoptimize_kprobe(p, f)                 do {} while (0)
980 #define kill_optimized_kprobe(p)                do {} while (0)
981 #define prepare_optimized_kprobe(p)             do {} while (0)
982 #define try_to_optimize_kprobe(p)               do {} while (0)
983 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
984 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
985 #define kprobe_disarmed(p)                      kprobe_disabled(p)
986 #define wait_for_kprobe_optimizer()             do {} while (0)
987
988 static int reuse_unused_kprobe(struct kprobe *ap)
989 {
990         /*
991          * If the optimized kprobe is NOT supported, the aggr kprobe is
992          * released at the same time that the last aggregated kprobe is
993          * unregistered.
994          * Thus there should be no chance to reuse unused kprobe.
995          */
996         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
997         return -EINVAL;
998 }
999
1000 static void free_aggr_kprobe(struct kprobe *p)
1001 {
1002         arch_remove_kprobe(p);
1003         kfree(p);
1004 }
1005
1006 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1007 {
1008         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1009 }
1010 #endif /* CONFIG_OPTPROBES */
1011
1012 #ifdef CONFIG_KPROBES_ON_FTRACE
1013 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1014         .func = kprobe_ftrace_handler,
1015         .flags = FTRACE_OPS_FL_SAVE_REGS,
1016 };
1017
1018 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1019         .func = kprobe_ftrace_handler,
1020         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1021 };
1022
1023 static int kprobe_ipmodify_enabled;
1024 static int kprobe_ftrace_enabled;
1025
1026 /* Must ensure p->addr is really on ftrace */
1027 static int prepare_kprobe(struct kprobe *p)
1028 {
1029         if (!kprobe_ftrace(p))
1030                 return arch_prepare_kprobe(p);
1031
1032         return arch_prepare_kprobe_ftrace(p);
1033 }
1034
1035 /* Caller must lock kprobe_mutex */
1036 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1037                                int *cnt)
1038 {
1039         int ret = 0;
1040
1041         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1042         if (ret) {
1043                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1044                          p->addr, ret);
1045                 return ret;
1046         }
1047
1048         if (*cnt == 0) {
1049                 ret = register_ftrace_function(ops);
1050                 if (ret) {
1051                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1052                         goto err_ftrace;
1053                 }
1054         }
1055
1056         (*cnt)++;
1057         return ret;
1058
1059 err_ftrace:
1060         /*
1061          * At this point, sinec ops is not registered, we should be sefe from
1062          * registering empty filter.
1063          */
1064         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1065         return ret;
1066 }
1067
1068 static int arm_kprobe_ftrace(struct kprobe *p)
1069 {
1070         bool ipmodify = (p->post_handler != NULL);
1071
1072         return __arm_kprobe_ftrace(p,
1073                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1074                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1075 }
1076
1077 /* Caller must lock kprobe_mutex */
1078 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1079                                   int *cnt)
1080 {
1081         int ret = 0;
1082
1083         if (*cnt == 1) {
1084                 ret = unregister_ftrace_function(ops);
1085                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1086                         return ret;
1087         }
1088
1089         (*cnt)--;
1090
1091         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1092         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1093                   p->addr, ret);
1094         return ret;
1095 }
1096
1097 static int disarm_kprobe_ftrace(struct kprobe *p)
1098 {
1099         bool ipmodify = (p->post_handler != NULL);
1100
1101         return __disarm_kprobe_ftrace(p,
1102                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1103                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1104 }
1105 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1106 static inline int prepare_kprobe(struct kprobe *p)
1107 {
1108         return arch_prepare_kprobe(p);
1109 }
1110
1111 static inline int arm_kprobe_ftrace(struct kprobe *p)
1112 {
1113         return -ENODEV;
1114 }
1115
1116 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1117 {
1118         return -ENODEV;
1119 }
1120 #endif
1121
1122 /* Arm a kprobe with text_mutex */
1123 static int arm_kprobe(struct kprobe *kp)
1124 {
1125         if (unlikely(kprobe_ftrace(kp)))
1126                 return arm_kprobe_ftrace(kp);
1127
1128         cpus_read_lock();
1129         mutex_lock(&text_mutex);
1130         __arm_kprobe(kp);
1131         mutex_unlock(&text_mutex);
1132         cpus_read_unlock();
1133
1134         return 0;
1135 }
1136
1137 /* Disarm a kprobe with text_mutex */
1138 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1139 {
1140         if (unlikely(kprobe_ftrace(kp)))
1141                 return disarm_kprobe_ftrace(kp);
1142
1143         cpus_read_lock();
1144         mutex_lock(&text_mutex);
1145         __disarm_kprobe(kp, reopt);
1146         mutex_unlock(&text_mutex);
1147         cpus_read_unlock();
1148
1149         return 0;
1150 }
1151
1152 /*
1153  * Aggregate handlers for multiple kprobes support - these handlers
1154  * take care of invoking the individual kprobe handlers on p->list
1155  */
1156 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1157 {
1158         struct kprobe *kp;
1159
1160         list_for_each_entry_rcu(kp, &p->list, list) {
1161                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1162                         set_kprobe_instance(kp);
1163                         if (kp->pre_handler(kp, regs))
1164                                 return 1;
1165                 }
1166                 reset_kprobe_instance();
1167         }
1168         return 0;
1169 }
1170 NOKPROBE_SYMBOL(aggr_pre_handler);
1171
1172 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1173                               unsigned long flags)
1174 {
1175         struct kprobe *kp;
1176
1177         list_for_each_entry_rcu(kp, &p->list, list) {
1178                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1179                         set_kprobe_instance(kp);
1180                         kp->post_handler(kp, regs, flags);
1181                         reset_kprobe_instance();
1182                 }
1183         }
1184 }
1185 NOKPROBE_SYMBOL(aggr_post_handler);
1186
1187 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1188                               int trapnr)
1189 {
1190         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1191
1192         /*
1193          * if we faulted "during" the execution of a user specified
1194          * probe handler, invoke just that probe's fault handler
1195          */
1196         if (cur && cur->fault_handler) {
1197                 if (cur->fault_handler(cur, regs, trapnr))
1198                         return 1;
1199         }
1200         return 0;
1201 }
1202 NOKPROBE_SYMBOL(aggr_fault_handler);
1203
1204 /* Walks the list and increments nmissed count for multiprobe case */
1205 void kprobes_inc_nmissed_count(struct kprobe *p)
1206 {
1207         struct kprobe *kp;
1208         if (!kprobe_aggrprobe(p)) {
1209                 p->nmissed++;
1210         } else {
1211                 list_for_each_entry_rcu(kp, &p->list, list)
1212                         kp->nmissed++;
1213         }
1214         return;
1215 }
1216 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1217
1218 static void free_rp_inst_rcu(struct rcu_head *head)
1219 {
1220         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1221
1222         if (refcount_dec_and_test(&ri->rph->ref))
1223                 kfree(ri->rph);
1224         kfree(ri);
1225 }
1226 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1227
1228 static void recycle_rp_inst(struct kretprobe_instance *ri)
1229 {
1230         struct kretprobe *rp = get_kretprobe(ri);
1231
1232         if (likely(rp)) {
1233                 freelist_add(&ri->freelist, &rp->freelist);
1234         } else
1235                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1236 }
1237 NOKPROBE_SYMBOL(recycle_rp_inst);
1238
1239 static struct kprobe kprobe_busy = {
1240         .addr = (void *) get_kprobe,
1241 };
1242
1243 void kprobe_busy_begin(void)
1244 {
1245         struct kprobe_ctlblk *kcb;
1246
1247         preempt_disable();
1248         __this_cpu_write(current_kprobe, &kprobe_busy);
1249         kcb = get_kprobe_ctlblk();
1250         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1251 }
1252
1253 void kprobe_busy_end(void)
1254 {
1255         __this_cpu_write(current_kprobe, NULL);
1256         preempt_enable();
1257 }
1258
1259 /*
1260  * This function is called from finish_task_switch when task tk becomes dead,
1261  * so that we can recycle any function-return probe instances associated
1262  * with this task. These left over instances represent probed functions
1263  * that have been called but will never return.
1264  */
1265 void kprobe_flush_task(struct task_struct *tk)
1266 {
1267         struct kretprobe_instance *ri;
1268         struct llist_node *node;
1269
1270         /* Early boot, not yet initialized. */
1271         if (unlikely(!kprobes_initialized))
1272                 return;
1273
1274         kprobe_busy_begin();
1275
1276         node = __llist_del_all(&tk->kretprobe_instances);
1277         while (node) {
1278                 ri = container_of(node, struct kretprobe_instance, llist);
1279                 node = node->next;
1280
1281                 recycle_rp_inst(ri);
1282         }
1283
1284         kprobe_busy_end();
1285 }
1286 NOKPROBE_SYMBOL(kprobe_flush_task);
1287
1288 static inline void free_rp_inst(struct kretprobe *rp)
1289 {
1290         struct kretprobe_instance *ri;
1291         struct freelist_node *node;
1292         int count = 0;
1293
1294         node = rp->freelist.head;
1295         while (node) {
1296                 ri = container_of(node, struct kretprobe_instance, freelist);
1297                 node = node->next;
1298
1299                 kfree(ri);
1300                 count++;
1301         }
1302
1303         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1304                 kfree(rp->rph);
1305                 rp->rph = NULL;
1306         }
1307 }
1308
1309 /* Add the new probe to ap->list */
1310 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1311 {
1312         if (p->post_handler)
1313                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1314
1315         list_add_rcu(&p->list, &ap->list);
1316         if (p->post_handler && !ap->post_handler)
1317                 ap->post_handler = aggr_post_handler;
1318
1319         return 0;
1320 }
1321
1322 /*
1323  * Fill in the required fields of the "manager kprobe". Replace the
1324  * earlier kprobe in the hlist with the manager kprobe
1325  */
1326 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1327 {
1328         /* Copy p's insn slot to ap */
1329         copy_kprobe(p, ap);
1330         flush_insn_slot(ap);
1331         ap->addr = p->addr;
1332         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1333         ap->pre_handler = aggr_pre_handler;
1334         ap->fault_handler = aggr_fault_handler;
1335         /* We don't care the kprobe which has gone. */
1336         if (p->post_handler && !kprobe_gone(p))
1337                 ap->post_handler = aggr_post_handler;
1338
1339         INIT_LIST_HEAD(&ap->list);
1340         INIT_HLIST_NODE(&ap->hlist);
1341
1342         list_add_rcu(&p->list, &ap->list);
1343         hlist_replace_rcu(&p->hlist, &ap->hlist);
1344 }
1345
1346 /*
1347  * This is the second or subsequent kprobe at the address - handle
1348  * the intricacies
1349  */
1350 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1351 {
1352         int ret = 0;
1353         struct kprobe *ap = orig_p;
1354
1355         cpus_read_lock();
1356
1357         /* For preparing optimization, jump_label_text_reserved() is called */
1358         jump_label_lock();
1359         mutex_lock(&text_mutex);
1360
1361         if (!kprobe_aggrprobe(orig_p)) {
1362                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1363                 ap = alloc_aggr_kprobe(orig_p);
1364                 if (!ap) {
1365                         ret = -ENOMEM;
1366                         goto out;
1367                 }
1368                 init_aggr_kprobe(ap, orig_p);
1369         } else if (kprobe_unused(ap)) {
1370                 /* This probe is going to die. Rescue it */
1371                 ret = reuse_unused_kprobe(ap);
1372                 if (ret)
1373                         goto out;
1374         }
1375
1376         if (kprobe_gone(ap)) {
1377                 /*
1378                  * Attempting to insert new probe at the same location that
1379                  * had a probe in the module vaddr area which already
1380                  * freed. So, the instruction slot has already been
1381                  * released. We need a new slot for the new probe.
1382                  */
1383                 ret = arch_prepare_kprobe(ap);
1384                 if (ret)
1385                         /*
1386                          * Even if fail to allocate new slot, don't need to
1387                          * free aggr_probe. It will be used next time, or
1388                          * freed by unregister_kprobe.
1389                          */
1390                         goto out;
1391
1392                 /* Prepare optimized instructions if possible. */
1393                 prepare_optimized_kprobe(ap);
1394
1395                 /*
1396                  * Clear gone flag to prevent allocating new slot again, and
1397                  * set disabled flag because it is not armed yet.
1398                  */
1399                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1400                             | KPROBE_FLAG_DISABLED;
1401         }
1402
1403         /* Copy ap's insn slot to p */
1404         copy_kprobe(ap, p);
1405         ret = add_new_kprobe(ap, p);
1406
1407 out:
1408         mutex_unlock(&text_mutex);
1409         jump_label_unlock();
1410         cpus_read_unlock();
1411
1412         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1413                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1414                 if (!kprobes_all_disarmed) {
1415                         /* Arm the breakpoint again. */
1416                         ret = arm_kprobe(ap);
1417                         if (ret) {
1418                                 ap->flags |= KPROBE_FLAG_DISABLED;
1419                                 list_del_rcu(&p->list);
1420                                 synchronize_rcu();
1421                         }
1422                 }
1423         }
1424         return ret;
1425 }
1426
1427 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1428 {
1429         /* The __kprobes marked functions and entry code must not be probed */
1430         return addr >= (unsigned long)__kprobes_text_start &&
1431                addr < (unsigned long)__kprobes_text_end;
1432 }
1433
1434 static bool __within_kprobe_blacklist(unsigned long addr)
1435 {
1436         struct kprobe_blacklist_entry *ent;
1437
1438         if (arch_within_kprobe_blacklist(addr))
1439                 return true;
1440         /*
1441          * If there exists a kprobe_blacklist, verify and
1442          * fail any probe registration in the prohibited area
1443          */
1444         list_for_each_entry(ent, &kprobe_blacklist, list) {
1445                 if (addr >= ent->start_addr && addr < ent->end_addr)
1446                         return true;
1447         }
1448         return false;
1449 }
1450
1451 bool within_kprobe_blacklist(unsigned long addr)
1452 {
1453         char symname[KSYM_NAME_LEN], *p;
1454
1455         if (__within_kprobe_blacklist(addr))
1456                 return true;
1457
1458         /* Check if the address is on a suffixed-symbol */
1459         if (!lookup_symbol_name(addr, symname)) {
1460                 p = strchr(symname, '.');
1461                 if (!p)
1462                         return false;
1463                 *p = '\0';
1464                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1465                 if (addr)
1466                         return __within_kprobe_blacklist(addr);
1467         }
1468         return false;
1469 }
1470
1471 /*
1472  * If we have a symbol_name argument, look it up and add the offset field
1473  * to it. This way, we can specify a relative address to a symbol.
1474  * This returns encoded errors if it fails to look up symbol or invalid
1475  * combination of parameters.
1476  */
1477 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1478                         const char *symbol_name, unsigned int offset)
1479 {
1480         if ((symbol_name && addr) || (!symbol_name && !addr))
1481                 goto invalid;
1482
1483         if (symbol_name) {
1484                 addr = kprobe_lookup_name(symbol_name, offset);
1485                 if (!addr)
1486                         return ERR_PTR(-ENOENT);
1487         }
1488
1489         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1490         if (addr)
1491                 return addr;
1492
1493 invalid:
1494         return ERR_PTR(-EINVAL);
1495 }
1496
1497 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1498 {
1499         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1500 }
1501
1502 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1503 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1504 {
1505         struct kprobe *ap, *list_p;
1506
1507         lockdep_assert_held(&kprobe_mutex);
1508
1509         ap = get_kprobe(p->addr);
1510         if (unlikely(!ap))
1511                 return NULL;
1512
1513         if (p != ap) {
1514                 list_for_each_entry(list_p, &ap->list, list)
1515                         if (list_p == p)
1516                         /* kprobe p is a valid probe */
1517                                 goto valid;
1518                 return NULL;
1519         }
1520 valid:
1521         return ap;
1522 }
1523
1524 /*
1525  * Warn and return error if the kprobe is being re-registered since
1526  * there must be a software bug.
1527  */
1528 static inline int warn_kprobe_rereg(struct kprobe *p)
1529 {
1530         int ret = 0;
1531
1532         mutex_lock(&kprobe_mutex);
1533         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1534                 ret = -EINVAL;
1535         mutex_unlock(&kprobe_mutex);
1536
1537         return ret;
1538 }
1539
1540 int __weak arch_check_ftrace_location(struct kprobe *p)
1541 {
1542         unsigned long ftrace_addr;
1543
1544         ftrace_addr = ftrace_location((unsigned long)p->addr);
1545         if (ftrace_addr) {
1546 #ifdef CONFIG_KPROBES_ON_FTRACE
1547                 /* Given address is not on the instruction boundary */
1548                 if ((unsigned long)p->addr != ftrace_addr)
1549                         return -EILSEQ;
1550                 p->flags |= KPROBE_FLAG_FTRACE;
1551 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1552                 return -EINVAL;
1553 #endif
1554         }
1555         return 0;
1556 }
1557
1558 static int check_kprobe_address_safe(struct kprobe *p,
1559                                      struct module **probed_mod)
1560 {
1561         int ret;
1562
1563         ret = arch_check_ftrace_location(p);
1564         if (ret)
1565                 return ret;
1566         jump_label_lock();
1567         preempt_disable();
1568
1569         /* Ensure it is not in reserved area nor out of text */
1570         if (!kernel_text_address((unsigned long) p->addr) ||
1571             within_kprobe_blacklist((unsigned long) p->addr) ||
1572             jump_label_text_reserved(p->addr, p->addr) ||
1573             static_call_text_reserved(p->addr, p->addr) ||
1574             find_bug((unsigned long)p->addr)) {
1575                 ret = -EINVAL;
1576                 goto out;
1577         }
1578
1579         /* Check if are we probing a module */
1580         *probed_mod = __module_text_address((unsigned long) p->addr);
1581         if (*probed_mod) {
1582                 /*
1583                  * We must hold a refcount of the probed module while updating
1584                  * its code to prohibit unexpected unloading.
1585                  */
1586                 if (unlikely(!try_module_get(*probed_mod))) {
1587                         ret = -ENOENT;
1588                         goto out;
1589                 }
1590
1591                 /*
1592                  * If the module freed .init.text, we couldn't insert
1593                  * kprobes in there.
1594                  */
1595                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1596                     (*probed_mod)->state != MODULE_STATE_COMING) {
1597                         module_put(*probed_mod);
1598                         *probed_mod = NULL;
1599                         ret = -ENOENT;
1600                 }
1601         }
1602 out:
1603         preempt_enable();
1604         jump_label_unlock();
1605
1606         return ret;
1607 }
1608
1609 int register_kprobe(struct kprobe *p)
1610 {
1611         int ret;
1612         struct kprobe *old_p;
1613         struct module *probed_mod;
1614         kprobe_opcode_t *addr;
1615
1616         /* Adjust probe address from symbol */
1617         addr = kprobe_addr(p);
1618         if (IS_ERR(addr))
1619                 return PTR_ERR(addr);
1620         p->addr = addr;
1621
1622         ret = warn_kprobe_rereg(p);
1623         if (ret)
1624                 return ret;
1625
1626         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1627         p->flags &= KPROBE_FLAG_DISABLED;
1628         p->nmissed = 0;
1629         INIT_LIST_HEAD(&p->list);
1630
1631         ret = check_kprobe_address_safe(p, &probed_mod);
1632         if (ret)
1633                 return ret;
1634
1635         mutex_lock(&kprobe_mutex);
1636
1637         old_p = get_kprobe(p->addr);
1638         if (old_p) {
1639                 /* Since this may unoptimize old_p, locking text_mutex. */
1640                 ret = register_aggr_kprobe(old_p, p);
1641                 goto out;
1642         }
1643
1644         cpus_read_lock();
1645         /* Prevent text modification */
1646         mutex_lock(&text_mutex);
1647         ret = prepare_kprobe(p);
1648         mutex_unlock(&text_mutex);
1649         cpus_read_unlock();
1650         if (ret)
1651                 goto out;
1652
1653         INIT_HLIST_NODE(&p->hlist);
1654         hlist_add_head_rcu(&p->hlist,
1655                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1656
1657         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1658                 ret = arm_kprobe(p);
1659                 if (ret) {
1660                         hlist_del_rcu(&p->hlist);
1661                         synchronize_rcu();
1662                         goto out;
1663                 }
1664         }
1665
1666         /* Try to optimize kprobe */
1667         try_to_optimize_kprobe(p);
1668 out:
1669         mutex_unlock(&kprobe_mutex);
1670
1671         if (probed_mod)
1672                 module_put(probed_mod);
1673
1674         return ret;
1675 }
1676 EXPORT_SYMBOL_GPL(register_kprobe);
1677
1678 /* Check if all probes on the aggrprobe are disabled */
1679 static int aggr_kprobe_disabled(struct kprobe *ap)
1680 {
1681         struct kprobe *kp;
1682
1683         lockdep_assert_held(&kprobe_mutex);
1684
1685         list_for_each_entry(kp, &ap->list, list)
1686                 if (!kprobe_disabled(kp))
1687                         /*
1688                          * There is an active probe on the list.
1689                          * We can't disable this ap.
1690                          */
1691                         return 0;
1692
1693         return 1;
1694 }
1695
1696 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1697 static struct kprobe *__disable_kprobe(struct kprobe *p)
1698 {
1699         struct kprobe *orig_p;
1700         int ret;
1701
1702         /* Get an original kprobe for return */
1703         orig_p = __get_valid_kprobe(p);
1704         if (unlikely(orig_p == NULL))
1705                 return ERR_PTR(-EINVAL);
1706
1707         if (!kprobe_disabled(p)) {
1708                 /* Disable probe if it is a child probe */
1709                 if (p != orig_p)
1710                         p->flags |= KPROBE_FLAG_DISABLED;
1711
1712                 /* Try to disarm and disable this/parent probe */
1713                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1714                         /*
1715                          * If kprobes_all_disarmed is set, orig_p
1716                          * should have already been disarmed, so
1717                          * skip unneed disarming process.
1718                          */
1719                         if (!kprobes_all_disarmed) {
1720                                 ret = disarm_kprobe(orig_p, true);
1721                                 if (ret) {
1722                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1723                                         return ERR_PTR(ret);
1724                                 }
1725                         }
1726                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1727                 }
1728         }
1729
1730         return orig_p;
1731 }
1732
1733 /*
1734  * Unregister a kprobe without a scheduler synchronization.
1735  */
1736 static int __unregister_kprobe_top(struct kprobe *p)
1737 {
1738         struct kprobe *ap, *list_p;
1739
1740         /* Disable kprobe. This will disarm it if needed. */
1741         ap = __disable_kprobe(p);
1742         if (IS_ERR(ap))
1743                 return PTR_ERR(ap);
1744
1745         if (ap == p)
1746                 /*
1747                  * This probe is an independent(and non-optimized) kprobe
1748                  * (not an aggrprobe). Remove from the hash list.
1749                  */
1750                 goto disarmed;
1751
1752         /* Following process expects this probe is an aggrprobe */
1753         WARN_ON(!kprobe_aggrprobe(ap));
1754
1755         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1756                 /*
1757                  * !disarmed could be happen if the probe is under delayed
1758                  * unoptimizing.
1759                  */
1760                 goto disarmed;
1761         else {
1762                 /* If disabling probe has special handlers, update aggrprobe */
1763                 if (p->post_handler && !kprobe_gone(p)) {
1764                         list_for_each_entry(list_p, &ap->list, list) {
1765                                 if ((list_p != p) && (list_p->post_handler))
1766                                         goto noclean;
1767                         }
1768                         ap->post_handler = NULL;
1769                 }
1770 noclean:
1771                 /*
1772                  * Remove from the aggrprobe: this path will do nothing in
1773                  * __unregister_kprobe_bottom().
1774                  */
1775                 list_del_rcu(&p->list);
1776                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1777                         /*
1778                          * Try to optimize this probe again, because post
1779                          * handler may have been changed.
1780                          */
1781                         optimize_kprobe(ap);
1782         }
1783         return 0;
1784
1785 disarmed:
1786         hlist_del_rcu(&ap->hlist);
1787         return 0;
1788 }
1789
1790 static void __unregister_kprobe_bottom(struct kprobe *p)
1791 {
1792         struct kprobe *ap;
1793
1794         if (list_empty(&p->list))
1795                 /* This is an independent kprobe */
1796                 arch_remove_kprobe(p);
1797         else if (list_is_singular(&p->list)) {
1798                 /* This is the last child of an aggrprobe */
1799                 ap = list_entry(p->list.next, struct kprobe, list);
1800                 list_del(&p->list);
1801                 free_aggr_kprobe(ap);
1802         }
1803         /* Otherwise, do nothing. */
1804 }
1805
1806 int register_kprobes(struct kprobe **kps, int num)
1807 {
1808         int i, ret = 0;
1809
1810         if (num <= 0)
1811                 return -EINVAL;
1812         for (i = 0; i < num; i++) {
1813                 ret = register_kprobe(kps[i]);
1814                 if (ret < 0) {
1815                         if (i > 0)
1816                                 unregister_kprobes(kps, i);
1817                         break;
1818                 }
1819         }
1820         return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(register_kprobes);
1823
1824 void unregister_kprobe(struct kprobe *p)
1825 {
1826         unregister_kprobes(&p, 1);
1827 }
1828 EXPORT_SYMBOL_GPL(unregister_kprobe);
1829
1830 void unregister_kprobes(struct kprobe **kps, int num)
1831 {
1832         int i;
1833
1834         if (num <= 0)
1835                 return;
1836         mutex_lock(&kprobe_mutex);
1837         for (i = 0; i < num; i++)
1838                 if (__unregister_kprobe_top(kps[i]) < 0)
1839                         kps[i]->addr = NULL;
1840         mutex_unlock(&kprobe_mutex);
1841
1842         synchronize_rcu();
1843         for (i = 0; i < num; i++)
1844                 if (kps[i]->addr)
1845                         __unregister_kprobe_bottom(kps[i]);
1846 }
1847 EXPORT_SYMBOL_GPL(unregister_kprobes);
1848
1849 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1850                                         unsigned long val, void *data)
1851 {
1852         return NOTIFY_DONE;
1853 }
1854 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1855
1856 static struct notifier_block kprobe_exceptions_nb = {
1857         .notifier_call = kprobe_exceptions_notify,
1858         .priority = 0x7fffffff /* we need to be notified first */
1859 };
1860
1861 unsigned long __weak arch_deref_entry_point(void *entry)
1862 {
1863         return (unsigned long)entry;
1864 }
1865
1866 #ifdef CONFIG_KRETPROBES
1867
1868 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1869                                              void *trampoline_address,
1870                                              void *frame_pointer)
1871 {
1872         kprobe_opcode_t *correct_ret_addr = NULL;
1873         struct kretprobe_instance *ri = NULL;
1874         struct llist_node *first, *node;
1875         struct kretprobe *rp;
1876
1877         /* Find all nodes for this frame. */
1878         first = node = current->kretprobe_instances.first;
1879         while (node) {
1880                 ri = container_of(node, struct kretprobe_instance, llist);
1881
1882                 BUG_ON(ri->fp != frame_pointer);
1883
1884                 if (ri->ret_addr != trampoline_address) {
1885                         correct_ret_addr = ri->ret_addr;
1886                         /*
1887                          * This is the real return address. Any other
1888                          * instances associated with this task are for
1889                          * other calls deeper on the call stack
1890                          */
1891                         goto found;
1892                 }
1893
1894                 node = node->next;
1895         }
1896         pr_err("Oops! Kretprobe fails to find correct return address.\n");
1897         BUG_ON(1);
1898
1899 found:
1900         /* Unlink all nodes for this frame. */
1901         current->kretprobe_instances.first = node->next;
1902         node->next = NULL;
1903
1904         /* Run them..  */
1905         while (first) {
1906                 ri = container_of(first, struct kretprobe_instance, llist);
1907                 first = first->next;
1908
1909                 rp = get_kretprobe(ri);
1910                 if (rp && rp->handler) {
1911                         struct kprobe *prev = kprobe_running();
1912
1913                         __this_cpu_write(current_kprobe, &rp->kp);
1914                         ri->ret_addr = correct_ret_addr;
1915                         rp->handler(ri, regs);
1916                         __this_cpu_write(current_kprobe, prev);
1917                 }
1918
1919                 recycle_rp_inst(ri);
1920         }
1921
1922         return (unsigned long)correct_ret_addr;
1923 }
1924 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1925
1926 /*
1927  * This kprobe pre_handler is registered with every kretprobe. When probe
1928  * hits it will set up the return probe.
1929  */
1930 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1931 {
1932         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1933         struct kretprobe_instance *ri;
1934         struct freelist_node *fn;
1935
1936         fn = freelist_try_get(&rp->freelist);
1937         if (!fn) {
1938                 rp->nmissed++;
1939                 return 0;
1940         }
1941
1942         ri = container_of(fn, struct kretprobe_instance, freelist);
1943
1944         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1945                 freelist_add(&ri->freelist, &rp->freelist);
1946                 return 0;
1947         }
1948
1949         arch_prepare_kretprobe(ri, regs);
1950
1951         __llist_add(&ri->llist, &current->kretprobe_instances);
1952
1953         return 0;
1954 }
1955 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1956
1957 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1958 {
1959         return !offset;
1960 }
1961
1962 /**
1963  * kprobe_on_func_entry() -- check whether given address is function entry
1964  * @addr: Target address
1965  * @sym:  Target symbol name
1966  * @offset: The offset from the symbol or the address
1967  *
1968  * This checks whether the given @addr+@offset or @sym+@offset is on the
1969  * function entry address or not.
1970  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1971  * And also it returns -ENOENT if it fails the symbol or address lookup.
1972  * Caller must pass @addr or @sym (either one must be NULL), or this
1973  * returns -EINVAL.
1974  */
1975 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1976 {
1977         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1978
1979         if (IS_ERR(kp_addr))
1980                 return PTR_ERR(kp_addr);
1981
1982         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1983                 return -ENOENT;
1984
1985         if (!arch_kprobe_on_func_entry(offset))
1986                 return -EINVAL;
1987
1988         return 0;
1989 }
1990
1991 int register_kretprobe(struct kretprobe *rp)
1992 {
1993         int ret;
1994         struct kretprobe_instance *inst;
1995         int i;
1996         void *addr;
1997
1998         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1999         if (ret)
2000                 return ret;
2001
2002         /* If only rp->kp.addr is specified, check reregistering kprobes */
2003         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2004                 return -EINVAL;
2005
2006         if (kretprobe_blacklist_size) {
2007                 addr = kprobe_addr(&rp->kp);
2008                 if (IS_ERR(addr))
2009                         return PTR_ERR(addr);
2010
2011                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2012                         if (kretprobe_blacklist[i].addr == addr)
2013                                 return -EINVAL;
2014                 }
2015         }
2016
2017         rp->kp.pre_handler = pre_handler_kretprobe;
2018         rp->kp.post_handler = NULL;
2019         rp->kp.fault_handler = NULL;
2020
2021         /* Pre-allocate memory for max kretprobe instances */
2022         if (rp->maxactive <= 0) {
2023 #ifdef CONFIG_PREEMPTION
2024                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2025 #else
2026                 rp->maxactive = num_possible_cpus();
2027 #endif
2028         }
2029         rp->freelist.head = NULL;
2030         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2031         if (!rp->rph)
2032                 return -ENOMEM;
2033
2034         rp->rph->rp = rp;
2035         for (i = 0; i < rp->maxactive; i++) {
2036                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2037                                rp->data_size, GFP_KERNEL);
2038                 if (inst == NULL) {
2039                         refcount_set(&rp->rph->ref, i);
2040                         free_rp_inst(rp);
2041                         return -ENOMEM;
2042                 }
2043                 inst->rph = rp->rph;
2044                 freelist_add(&inst->freelist, &rp->freelist);
2045         }
2046         refcount_set(&rp->rph->ref, i);
2047
2048         rp->nmissed = 0;
2049         /* Establish function entry probe point */
2050         ret = register_kprobe(&rp->kp);
2051         if (ret != 0)
2052                 free_rp_inst(rp);
2053         return ret;
2054 }
2055 EXPORT_SYMBOL_GPL(register_kretprobe);
2056
2057 int register_kretprobes(struct kretprobe **rps, int num)
2058 {
2059         int ret = 0, i;
2060
2061         if (num <= 0)
2062                 return -EINVAL;
2063         for (i = 0; i < num; i++) {
2064                 ret = register_kretprobe(rps[i]);
2065                 if (ret < 0) {
2066                         if (i > 0)
2067                                 unregister_kretprobes(rps, i);
2068                         break;
2069                 }
2070         }
2071         return ret;
2072 }
2073 EXPORT_SYMBOL_GPL(register_kretprobes);
2074
2075 void unregister_kretprobe(struct kretprobe *rp)
2076 {
2077         unregister_kretprobes(&rp, 1);
2078 }
2079 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2080
2081 void unregister_kretprobes(struct kretprobe **rps, int num)
2082 {
2083         int i;
2084
2085         if (num <= 0)
2086                 return;
2087         mutex_lock(&kprobe_mutex);
2088         for (i = 0; i < num; i++) {
2089                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2090                         rps[i]->kp.addr = NULL;
2091                 rps[i]->rph->rp = NULL;
2092         }
2093         mutex_unlock(&kprobe_mutex);
2094
2095         synchronize_rcu();
2096         for (i = 0; i < num; i++) {
2097                 if (rps[i]->kp.addr) {
2098                         __unregister_kprobe_bottom(&rps[i]->kp);
2099                         free_rp_inst(rps[i]);
2100                 }
2101         }
2102 }
2103 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2104
2105 #else /* CONFIG_KRETPROBES */
2106 int register_kretprobe(struct kretprobe *rp)
2107 {
2108         return -ENOSYS;
2109 }
2110 EXPORT_SYMBOL_GPL(register_kretprobe);
2111
2112 int register_kretprobes(struct kretprobe **rps, int num)
2113 {
2114         return -ENOSYS;
2115 }
2116 EXPORT_SYMBOL_GPL(register_kretprobes);
2117
2118 void unregister_kretprobe(struct kretprobe *rp)
2119 {
2120 }
2121 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2122
2123 void unregister_kretprobes(struct kretprobe **rps, int num)
2124 {
2125 }
2126 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2127
2128 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129 {
2130         return 0;
2131 }
2132 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2133
2134 #endif /* CONFIG_KRETPROBES */
2135
2136 /* Set the kprobe gone and remove its instruction buffer. */
2137 static void kill_kprobe(struct kprobe *p)
2138 {
2139         struct kprobe *kp;
2140
2141         lockdep_assert_held(&kprobe_mutex);
2142
2143         p->flags |= KPROBE_FLAG_GONE;
2144         if (kprobe_aggrprobe(p)) {
2145                 /*
2146                  * If this is an aggr_kprobe, we have to list all the
2147                  * chained probes and mark them GONE.
2148                  */
2149                 list_for_each_entry(kp, &p->list, list)
2150                         kp->flags |= KPROBE_FLAG_GONE;
2151                 p->post_handler = NULL;
2152                 kill_optimized_kprobe(p);
2153         }
2154         /*
2155          * Here, we can remove insn_slot safely, because no thread calls
2156          * the original probed function (which will be freed soon) any more.
2157          */
2158         arch_remove_kprobe(p);
2159
2160         /*
2161          * The module is going away. We should disarm the kprobe which
2162          * is using ftrace, because ftrace framework is still available at
2163          * MODULE_STATE_GOING notification.
2164          */
2165         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2166                 disarm_kprobe_ftrace(p);
2167 }
2168
2169 /* Disable one kprobe */
2170 int disable_kprobe(struct kprobe *kp)
2171 {
2172         int ret = 0;
2173         struct kprobe *p;
2174
2175         mutex_lock(&kprobe_mutex);
2176
2177         /* Disable this kprobe */
2178         p = __disable_kprobe(kp);
2179         if (IS_ERR(p))
2180                 ret = PTR_ERR(p);
2181
2182         mutex_unlock(&kprobe_mutex);
2183         return ret;
2184 }
2185 EXPORT_SYMBOL_GPL(disable_kprobe);
2186
2187 /* Enable one kprobe */
2188 int enable_kprobe(struct kprobe *kp)
2189 {
2190         int ret = 0;
2191         struct kprobe *p;
2192
2193         mutex_lock(&kprobe_mutex);
2194
2195         /* Check whether specified probe is valid. */
2196         p = __get_valid_kprobe(kp);
2197         if (unlikely(p == NULL)) {
2198                 ret = -EINVAL;
2199                 goto out;
2200         }
2201
2202         if (kprobe_gone(kp)) {
2203                 /* This kprobe has gone, we couldn't enable it. */
2204                 ret = -EINVAL;
2205                 goto out;
2206         }
2207
2208         if (p != kp)
2209                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2210
2211         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2212                 p->flags &= ~KPROBE_FLAG_DISABLED;
2213                 ret = arm_kprobe(p);
2214                 if (ret)
2215                         p->flags |= KPROBE_FLAG_DISABLED;
2216         }
2217 out:
2218         mutex_unlock(&kprobe_mutex);
2219         return ret;
2220 }
2221 EXPORT_SYMBOL_GPL(enable_kprobe);
2222
2223 /* Caller must NOT call this in usual path. This is only for critical case */
2224 void dump_kprobe(struct kprobe *kp)
2225 {
2226         pr_err("Dumping kprobe:\n");
2227         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2228                kp->symbol_name, kp->offset, kp->addr);
2229 }
2230 NOKPROBE_SYMBOL(dump_kprobe);
2231
2232 int kprobe_add_ksym_blacklist(unsigned long entry)
2233 {
2234         struct kprobe_blacklist_entry *ent;
2235         unsigned long offset = 0, size = 0;
2236
2237         if (!kernel_text_address(entry) ||
2238             !kallsyms_lookup_size_offset(entry, &size, &offset))
2239                 return -EINVAL;
2240
2241         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2242         if (!ent)
2243                 return -ENOMEM;
2244         ent->start_addr = entry;
2245         ent->end_addr = entry + size;
2246         INIT_LIST_HEAD(&ent->list);
2247         list_add_tail(&ent->list, &kprobe_blacklist);
2248
2249         return (int)size;
2250 }
2251
2252 /* Add all symbols in given area into kprobe blacklist */
2253 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2254 {
2255         unsigned long entry;
2256         int ret = 0;
2257
2258         for (entry = start; entry < end; entry += ret) {
2259                 ret = kprobe_add_ksym_blacklist(entry);
2260                 if (ret < 0)
2261                         return ret;
2262                 if (ret == 0)   /* In case of alias symbol */
2263                         ret = 1;
2264         }
2265         return 0;
2266 }
2267
2268 /* Remove all symbols in given area from kprobe blacklist */
2269 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2270 {
2271         struct kprobe_blacklist_entry *ent, *n;
2272
2273         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2274                 if (ent->start_addr < start || ent->start_addr >= end)
2275                         continue;
2276                 list_del(&ent->list);
2277                 kfree(ent);
2278         }
2279 }
2280
2281 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2282 {
2283         kprobe_remove_area_blacklist(entry, entry + 1);
2284 }
2285
2286 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2287                                    char *type, char *sym)
2288 {
2289         return -ERANGE;
2290 }
2291
2292 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2293                        char *sym)
2294 {
2295 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2296         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2297                 return 0;
2298 #ifdef CONFIG_OPTPROBES
2299         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2300                 return 0;
2301 #endif
2302 #endif
2303         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2304                 return 0;
2305         return -ERANGE;
2306 }
2307
2308 int __init __weak arch_populate_kprobe_blacklist(void)
2309 {
2310         return 0;
2311 }
2312
2313 /*
2314  * Lookup and populate the kprobe_blacklist.
2315  *
2316  * Unlike the kretprobe blacklist, we'll need to determine
2317  * the range of addresses that belong to the said functions,
2318  * since a kprobe need not necessarily be at the beginning
2319  * of a function.
2320  */
2321 static int __init populate_kprobe_blacklist(unsigned long *start,
2322                                              unsigned long *end)
2323 {
2324         unsigned long entry;
2325         unsigned long *iter;
2326         int ret;
2327
2328         for (iter = start; iter < end; iter++) {
2329                 entry = arch_deref_entry_point((void *)*iter);
2330                 ret = kprobe_add_ksym_blacklist(entry);
2331                 if (ret == -EINVAL)
2332                         continue;
2333                 if (ret < 0)
2334                         return ret;
2335         }
2336
2337         /* Symbols in __kprobes_text are blacklisted */
2338         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2339                                         (unsigned long)__kprobes_text_end);
2340         if (ret)
2341                 return ret;
2342
2343         /* Symbols in noinstr section are blacklisted */
2344         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2345                                         (unsigned long)__noinstr_text_end);
2346
2347         return ret ? : arch_populate_kprobe_blacklist();
2348 }
2349
2350 static void add_module_kprobe_blacklist(struct module *mod)
2351 {
2352         unsigned long start, end;
2353         int i;
2354
2355         if (mod->kprobe_blacklist) {
2356                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2357                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2358         }
2359
2360         start = (unsigned long)mod->kprobes_text_start;
2361         if (start) {
2362                 end = start + mod->kprobes_text_size;
2363                 kprobe_add_area_blacklist(start, end);
2364         }
2365
2366         start = (unsigned long)mod->noinstr_text_start;
2367         if (start) {
2368                 end = start + mod->noinstr_text_size;
2369                 kprobe_add_area_blacklist(start, end);
2370         }
2371 }
2372
2373 static void remove_module_kprobe_blacklist(struct module *mod)
2374 {
2375         unsigned long start, end;
2376         int i;
2377
2378         if (mod->kprobe_blacklist) {
2379                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2380                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2381         }
2382
2383         start = (unsigned long)mod->kprobes_text_start;
2384         if (start) {
2385                 end = start + mod->kprobes_text_size;
2386                 kprobe_remove_area_blacklist(start, end);
2387         }
2388
2389         start = (unsigned long)mod->noinstr_text_start;
2390         if (start) {
2391                 end = start + mod->noinstr_text_size;
2392                 kprobe_remove_area_blacklist(start, end);
2393         }
2394 }
2395
2396 /* Module notifier call back, checking kprobes on the module */
2397 static int kprobes_module_callback(struct notifier_block *nb,
2398                                    unsigned long val, void *data)
2399 {
2400         struct module *mod = data;
2401         struct hlist_head *head;
2402         struct kprobe *p;
2403         unsigned int i;
2404         int checkcore = (val == MODULE_STATE_GOING);
2405
2406         if (val == MODULE_STATE_COMING) {
2407                 mutex_lock(&kprobe_mutex);
2408                 add_module_kprobe_blacklist(mod);
2409                 mutex_unlock(&kprobe_mutex);
2410         }
2411         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2412                 return NOTIFY_DONE;
2413
2414         /*
2415          * When MODULE_STATE_GOING was notified, both of module .text and
2416          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2417          * notified, only .init.text section would be freed. We need to
2418          * disable kprobes which have been inserted in the sections.
2419          */
2420         mutex_lock(&kprobe_mutex);
2421         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2422                 head = &kprobe_table[i];
2423                 hlist_for_each_entry(p, head, hlist)
2424                         if (within_module_init((unsigned long)p->addr, mod) ||
2425                             (checkcore &&
2426                              within_module_core((unsigned long)p->addr, mod))) {
2427                                 /*
2428                                  * The vaddr this probe is installed will soon
2429                                  * be vfreed buy not synced to disk. Hence,
2430                                  * disarming the breakpoint isn't needed.
2431                                  *
2432                                  * Note, this will also move any optimized probes
2433                                  * that are pending to be removed from their
2434                                  * corresponding lists to the freeing_list and
2435                                  * will not be touched by the delayed
2436                                  * kprobe_optimizer work handler.
2437                                  */
2438                                 kill_kprobe(p);
2439                         }
2440         }
2441         if (val == MODULE_STATE_GOING)
2442                 remove_module_kprobe_blacklist(mod);
2443         mutex_unlock(&kprobe_mutex);
2444         return NOTIFY_DONE;
2445 }
2446
2447 static struct notifier_block kprobe_module_nb = {
2448         .notifier_call = kprobes_module_callback,
2449         .priority = 0
2450 };
2451
2452 /* Markers of _kprobe_blacklist section */
2453 extern unsigned long __start_kprobe_blacklist[];
2454 extern unsigned long __stop_kprobe_blacklist[];
2455
2456 void kprobe_free_init_mem(void)
2457 {
2458         void *start = (void *)(&__init_begin);
2459         void *end = (void *)(&__init_end);
2460         struct hlist_head *head;
2461         struct kprobe *p;
2462         int i;
2463
2464         mutex_lock(&kprobe_mutex);
2465
2466         /* Kill all kprobes on initmem */
2467         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2468                 head = &kprobe_table[i];
2469                 hlist_for_each_entry(p, head, hlist) {
2470                         if (start <= (void *)p->addr && (void *)p->addr < end)
2471                                 kill_kprobe(p);
2472                 }
2473         }
2474
2475         mutex_unlock(&kprobe_mutex);
2476 }
2477
2478 static int __init init_kprobes(void)
2479 {
2480         int i, err = 0;
2481
2482         /* FIXME allocate the probe table, currently defined statically */
2483         /* initialize all list heads */
2484         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2485                 INIT_HLIST_HEAD(&kprobe_table[i]);
2486
2487         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2488                                         __stop_kprobe_blacklist);
2489         if (err) {
2490                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2491                 pr_err("Please take care of using kprobes.\n");
2492         }
2493
2494         if (kretprobe_blacklist_size) {
2495                 /* lookup the function address from its name */
2496                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2497                         kretprobe_blacklist[i].addr =
2498                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2499                         if (!kretprobe_blacklist[i].addr)
2500                                 printk("kretprobe: lookup failed: %s\n",
2501                                        kretprobe_blacklist[i].name);
2502                 }
2503         }
2504
2505         /* By default, kprobes are armed */
2506         kprobes_all_disarmed = false;
2507
2508 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2509         /* Init kprobe_optinsn_slots for allocation */
2510         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2511 #endif
2512
2513         err = arch_init_kprobes();
2514         if (!err)
2515                 err = register_die_notifier(&kprobe_exceptions_nb);
2516         if (!err)
2517                 err = register_module_notifier(&kprobe_module_nb);
2518
2519         kprobes_initialized = (err == 0);
2520
2521         if (!err)
2522                 init_test_probes();
2523         return err;
2524 }
2525 early_initcall(init_kprobes);
2526
2527 #if defined(CONFIG_OPTPROBES)
2528 static int __init init_optprobes(void)
2529 {
2530         /*
2531          * Enable kprobe optimization - this kicks the optimizer which
2532          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2533          * not spawned in early initcall. So delay the optimization.
2534          */
2535         optimize_all_kprobes();
2536
2537         return 0;
2538 }
2539 subsys_initcall(init_optprobes);
2540 #endif
2541
2542 #ifdef CONFIG_DEBUG_FS
2543 static void report_probe(struct seq_file *pi, struct kprobe *p,
2544                 const char *sym, int offset, char *modname, struct kprobe *pp)
2545 {
2546         char *kprobe_type;
2547         void *addr = p->addr;
2548
2549         if (p->pre_handler == pre_handler_kretprobe)
2550                 kprobe_type = "r";
2551         else
2552                 kprobe_type = "k";
2553
2554         if (!kallsyms_show_value(pi->file->f_cred))
2555                 addr = NULL;
2556
2557         if (sym)
2558                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2559                         addr, kprobe_type, sym, offset,
2560                         (modname ? modname : " "));
2561         else    /* try to use %pS */
2562                 seq_printf(pi, "%px  %s  %pS ",
2563                         addr, kprobe_type, p->addr);
2564
2565         if (!pp)
2566                 pp = p;
2567         seq_printf(pi, "%s%s%s%s\n",
2568                 (kprobe_gone(p) ? "[GONE]" : ""),
2569                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2570                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2571                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2572 }
2573
2574 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2575 {
2576         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2577 }
2578
2579 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2580 {
2581         (*pos)++;
2582         if (*pos >= KPROBE_TABLE_SIZE)
2583                 return NULL;
2584         return pos;
2585 }
2586
2587 static void kprobe_seq_stop(struct seq_file *f, void *v)
2588 {
2589         /* Nothing to do */
2590 }
2591
2592 static int show_kprobe_addr(struct seq_file *pi, void *v)
2593 {
2594         struct hlist_head *head;
2595         struct kprobe *p, *kp;
2596         const char *sym = NULL;
2597         unsigned int i = *(loff_t *) v;
2598         unsigned long offset = 0;
2599         char *modname, namebuf[KSYM_NAME_LEN];
2600
2601         head = &kprobe_table[i];
2602         preempt_disable();
2603         hlist_for_each_entry_rcu(p, head, hlist) {
2604                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2605                                         &offset, &modname, namebuf);
2606                 if (kprobe_aggrprobe(p)) {
2607                         list_for_each_entry_rcu(kp, &p->list, list)
2608                                 report_probe(pi, kp, sym, offset, modname, p);
2609                 } else
2610                         report_probe(pi, p, sym, offset, modname, NULL);
2611         }
2612         preempt_enable();
2613         return 0;
2614 }
2615
2616 static const struct seq_operations kprobes_sops = {
2617         .start = kprobe_seq_start,
2618         .next  = kprobe_seq_next,
2619         .stop  = kprobe_seq_stop,
2620         .show  = show_kprobe_addr
2621 };
2622
2623 DEFINE_SEQ_ATTRIBUTE(kprobes);
2624
2625 /* kprobes/blacklist -- shows which functions can not be probed */
2626 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2627 {
2628         mutex_lock(&kprobe_mutex);
2629         return seq_list_start(&kprobe_blacklist, *pos);
2630 }
2631
2632 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2633 {
2634         return seq_list_next(v, &kprobe_blacklist, pos);
2635 }
2636
2637 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2638 {
2639         struct kprobe_blacklist_entry *ent =
2640                 list_entry(v, struct kprobe_blacklist_entry, list);
2641
2642         /*
2643          * If /proc/kallsyms is not showing kernel address, we won't
2644          * show them here either.
2645          */
2646         if (!kallsyms_show_value(m->file->f_cred))
2647                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2648                            (void *)ent->start_addr);
2649         else
2650                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2651                            (void *)ent->end_addr, (void *)ent->start_addr);
2652         return 0;
2653 }
2654
2655 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2656 {
2657         mutex_unlock(&kprobe_mutex);
2658 }
2659
2660 static const struct seq_operations kprobe_blacklist_sops = {
2661         .start = kprobe_blacklist_seq_start,
2662         .next  = kprobe_blacklist_seq_next,
2663         .stop  = kprobe_blacklist_seq_stop,
2664         .show  = kprobe_blacklist_seq_show,
2665 };
2666 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2667
2668 static int arm_all_kprobes(void)
2669 {
2670         struct hlist_head *head;
2671         struct kprobe *p;
2672         unsigned int i, total = 0, errors = 0;
2673         int err, ret = 0;
2674
2675         mutex_lock(&kprobe_mutex);
2676
2677         /* If kprobes are armed, just return */
2678         if (!kprobes_all_disarmed)
2679                 goto already_enabled;
2680
2681         /*
2682          * optimize_kprobe() called by arm_kprobe() checks
2683          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2684          * arm_kprobe.
2685          */
2686         kprobes_all_disarmed = false;
2687         /* Arming kprobes doesn't optimize kprobe itself */
2688         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2689                 head = &kprobe_table[i];
2690                 /* Arm all kprobes on a best-effort basis */
2691                 hlist_for_each_entry(p, head, hlist) {
2692                         if (!kprobe_disabled(p)) {
2693                                 err = arm_kprobe(p);
2694                                 if (err)  {
2695                                         errors++;
2696                                         ret = err;
2697                                 }
2698                                 total++;
2699                         }
2700                 }
2701         }
2702
2703         if (errors)
2704                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2705                         errors, total);
2706         else
2707                 pr_info("Kprobes globally enabled\n");
2708
2709 already_enabled:
2710         mutex_unlock(&kprobe_mutex);
2711         return ret;
2712 }
2713
2714 static int disarm_all_kprobes(void)
2715 {
2716         struct hlist_head *head;
2717         struct kprobe *p;
2718         unsigned int i, total = 0, errors = 0;
2719         int err, ret = 0;
2720
2721         mutex_lock(&kprobe_mutex);
2722
2723         /* If kprobes are already disarmed, just return */
2724         if (kprobes_all_disarmed) {
2725                 mutex_unlock(&kprobe_mutex);
2726                 return 0;
2727         }
2728
2729         kprobes_all_disarmed = true;
2730
2731         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2732                 head = &kprobe_table[i];
2733                 /* Disarm all kprobes on a best-effort basis */
2734                 hlist_for_each_entry(p, head, hlist) {
2735                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2736                                 err = disarm_kprobe(p, false);
2737                                 if (err) {
2738                                         errors++;
2739                                         ret = err;
2740                                 }
2741                                 total++;
2742                         }
2743                 }
2744         }
2745
2746         if (errors)
2747                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2748                         errors, total);
2749         else
2750                 pr_info("Kprobes globally disabled\n");
2751
2752         mutex_unlock(&kprobe_mutex);
2753
2754         /* Wait for disarming all kprobes by optimizer */
2755         wait_for_kprobe_optimizer();
2756
2757         return ret;
2758 }
2759
2760 /*
2761  * XXX: The debugfs bool file interface doesn't allow for callbacks
2762  * when the bool state is switched. We can reuse that facility when
2763  * available
2764  */
2765 static ssize_t read_enabled_file_bool(struct file *file,
2766                char __user *user_buf, size_t count, loff_t *ppos)
2767 {
2768         char buf[3];
2769
2770         if (!kprobes_all_disarmed)
2771                 buf[0] = '1';
2772         else
2773                 buf[0] = '0';
2774         buf[1] = '\n';
2775         buf[2] = 0x00;
2776         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2777 }
2778
2779 static ssize_t write_enabled_file_bool(struct file *file,
2780                const char __user *user_buf, size_t count, loff_t *ppos)
2781 {
2782         char buf[32];
2783         size_t buf_size;
2784         int ret = 0;
2785
2786         buf_size = min(count, (sizeof(buf)-1));
2787         if (copy_from_user(buf, user_buf, buf_size))
2788                 return -EFAULT;
2789
2790         buf[buf_size] = '\0';
2791         switch (buf[0]) {
2792         case 'y':
2793         case 'Y':
2794         case '1':
2795                 ret = arm_all_kprobes();
2796                 break;
2797         case 'n':
2798         case 'N':
2799         case '0':
2800                 ret = disarm_all_kprobes();
2801                 break;
2802         default:
2803                 return -EINVAL;
2804         }
2805
2806         if (ret)
2807                 return ret;
2808
2809         return count;
2810 }
2811
2812 static const struct file_operations fops_kp = {
2813         .read =         read_enabled_file_bool,
2814         .write =        write_enabled_file_bool,
2815         .llseek =       default_llseek,
2816 };
2817
2818 static int __init debugfs_kprobe_init(void)
2819 {
2820         struct dentry *dir;
2821         unsigned int value = 1;
2822
2823         dir = debugfs_create_dir("kprobes", NULL);
2824
2825         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2826
2827         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2828
2829         debugfs_create_file("blacklist", 0400, dir, NULL,
2830                             &kprobe_blacklist_fops);
2831
2832         return 0;
2833 }
2834
2835 late_initcall(debugfs_kprobe_init);
2836 #endif /* CONFIG_DEBUG_FS */