GNU Linux-libre 5.4.257-gnu1
[releases.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59         raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63                                         unsigned int __unused)
64 {
65         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70         return &(kretprobe_table_locks[hash].lock);
71 }
72
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84         struct list_head list;
85         kprobe_opcode_t *insns;         /* Page of instruction slots */
86         struct kprobe_insn_cache *cache;
87         int nused;
88         int ngarbage;
89         char slot_used[];
90 };
91
92 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
93         (offsetof(struct kprobe_insn_page, slot_used) + \
94          (sizeof(char) * (slots)))
95
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100
101 enum kprobe_slot_state {
102         SLOT_CLEAN = 0,
103         SLOT_DIRTY = 1,
104         SLOT_USED = 2,
105 };
106
107 void __weak *alloc_insn_page(void)
108 {
109         return module_alloc(PAGE_SIZE);
110 }
111
112 void __weak free_insn_page(void *page)
113 {
114         module_memfree(page);
115 }
116
117 struct kprobe_insn_cache kprobe_insn_slots = {
118         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119         .alloc = alloc_insn_page,
120         .free = free_insn_page,
121         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122         .insn_size = MAX_INSN_SIZE,
123         .nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133         struct kprobe_insn_page *kip;
134         kprobe_opcode_t *slot = NULL;
135
136         /* Since the slot array is not protected by rcu, we need a mutex */
137         mutex_lock(&c->mutex);
138  retry:
139         rcu_read_lock();
140         list_for_each_entry_rcu(kip, &c->pages, list) {
141                 if (kip->nused < slots_per_page(c)) {
142                         int i;
143                         for (i = 0; i < slots_per_page(c); i++) {
144                                 if (kip->slot_used[i] == SLOT_CLEAN) {
145                                         kip->slot_used[i] = SLOT_USED;
146                                         kip->nused++;
147                                         slot = kip->insns + (i * c->insn_size);
148                                         rcu_read_unlock();
149                                         goto out;
150                                 }
151                         }
152                         /* kip->nused is broken. Fix it. */
153                         kip->nused = slots_per_page(c);
154                         WARN_ON(1);
155                 }
156         }
157         rcu_read_unlock();
158
159         /* If there are any garbage slots, collect it and try again. */
160         if (c->nr_garbage && collect_garbage_slots(c) == 0)
161                 goto retry;
162
163         /* All out of space.  Need to allocate a new page. */
164         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165         if (!kip)
166                 goto out;
167
168         /*
169          * Use module_alloc so this page is within +/- 2GB of where the
170          * kernel image and loaded module images reside. This is required
171          * so x86_64 can correctly handle the %rip-relative fixups.
172          */
173         kip->insns = c->alloc();
174         if (!kip->insns) {
175                 kfree(kip);
176                 goto out;
177         }
178         INIT_LIST_HEAD(&kip->list);
179         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180         kip->slot_used[0] = SLOT_USED;
181         kip->nused = 1;
182         kip->ngarbage = 0;
183         kip->cache = c;
184         list_add_rcu(&kip->list, &c->pages);
185         slot = kip->insns;
186 out:
187         mutex_unlock(&c->mutex);
188         return slot;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194         kip->slot_used[idx] = SLOT_CLEAN;
195         kip->nused--;
196         if (kip->nused == 0) {
197                 /*
198                  * Page is no longer in use.  Free it unless
199                  * it's the last one.  We keep the last one
200                  * so as not to have to set it up again the
201                  * next time somebody inserts a probe.
202                  */
203                 if (!list_is_singular(&kip->list)) {
204                         list_del_rcu(&kip->list);
205                         synchronize_rcu();
206                         kip->cache->free(kip->insns);
207                         kfree(kip);
208                 }
209                 return 1;
210         }
211         return 0;
212 }
213
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216         struct kprobe_insn_page *kip, *next;
217
218         /* Ensure no-one is interrupted on the garbages */
219         synchronize_rcu();
220
221         list_for_each_entry_safe(kip, next, &c->pages, list) {
222                 int i;
223                 if (kip->ngarbage == 0)
224                         continue;
225                 kip->ngarbage = 0;      /* we will collect all garbages */
226                 for (i = 0; i < slots_per_page(c); i++) {
227                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228                                 break;
229                 }
230         }
231         c->nr_garbage = 0;
232         return 0;
233 }
234
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236                       kprobe_opcode_t *slot, int dirty)
237 {
238         struct kprobe_insn_page *kip;
239         long idx;
240
241         mutex_lock(&c->mutex);
242         rcu_read_lock();
243         list_for_each_entry_rcu(kip, &c->pages, list) {
244                 idx = ((long)slot - (long)kip->insns) /
245                         (c->insn_size * sizeof(kprobe_opcode_t));
246                 if (idx >= 0 && idx < slots_per_page(c))
247                         goto out;
248         }
249         /* Could not find this slot. */
250         WARN_ON(1);
251         kip = NULL;
252 out:
253         rcu_read_unlock();
254         /* Mark and sweep: this may sleep */
255         if (kip) {
256                 /* Check double free */
257                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258                 if (dirty) {
259                         kip->slot_used[idx] = SLOT_DIRTY;
260                         kip->ngarbage++;
261                         if (++c->nr_garbage > slots_per_page(c))
262                                 collect_garbage_slots(c);
263                 } else {
264                         collect_one_slot(kip, idx);
265                 }
266         }
267         mutex_unlock(&c->mutex);
268 }
269
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277         struct kprobe_insn_page *kip;
278         bool ret = false;
279
280         rcu_read_lock();
281         list_for_each_entry_rcu(kip, &c->pages, list) {
282                 if (addr >= (unsigned long)kip->insns &&
283                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
284                         ret = true;
285                         break;
286                 }
287         }
288         rcu_read_unlock();
289
290         return ret;
291 }
292
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297         .alloc = alloc_insn_page,
298         .free = free_insn_page,
299         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300         /* .insn_size is initialized later */
301         .nr_garbage = 0,
302 };
303 #endif
304 #endif
305
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309         __this_cpu_write(kprobe_instance, kp);
310 }
311
312 static inline void reset_kprobe_instance(void)
313 {
314         __this_cpu_write(kprobe_instance, NULL);
315 }
316
317 /*
318  * This routine is called either:
319  *      - under the kprobe_mutex - during kprobe_[un]register()
320  *                              OR
321  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325         struct hlist_head *head;
326         struct kprobe *p;
327
328         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329         hlist_for_each_entry_rcu(p, head, hlist,
330                                  lockdep_is_held(&kprobe_mutex)) {
331                 if (p->addr == addr)
332                         return p;
333         }
334
335         return NULL;
336 }
337 NOKPROBE_SYMBOL(get_kprobe);
338
339 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
340
341 /* Return true if the kprobe is an aggregator */
342 static inline int kprobe_aggrprobe(struct kprobe *p)
343 {
344         return p->pre_handler == aggr_pre_handler;
345 }
346
347 /* Return true(!0) if the kprobe is unused */
348 static inline int kprobe_unused(struct kprobe *p)
349 {
350         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
351                list_empty(&p->list);
352 }
353
354 /*
355  * Keep all fields in the kprobe consistent
356  */
357 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
358 {
359         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
360         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
361 }
362
363 #ifdef CONFIG_OPTPROBES
364 /* NOTE: change this value only with kprobe_mutex held */
365 static bool kprobes_allow_optimization;
366
367 /*
368  * Call all pre_handler on the list, but ignores its return value.
369  * This must be called from arch-dep optimized caller.
370  */
371 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
372 {
373         struct kprobe *kp;
374
375         list_for_each_entry_rcu(kp, &p->list, list) {
376                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
377                         set_kprobe_instance(kp);
378                         kp->pre_handler(kp, regs);
379                 }
380                 reset_kprobe_instance();
381         }
382 }
383 NOKPROBE_SYMBOL(opt_pre_handler);
384
385 /* Free optimized instructions and optimized_kprobe */
386 static void free_aggr_kprobe(struct kprobe *p)
387 {
388         struct optimized_kprobe *op;
389
390         op = container_of(p, struct optimized_kprobe, kp);
391         arch_remove_optimized_kprobe(op);
392         arch_remove_kprobe(p);
393         kfree(op);
394 }
395
396 /* Return true(!0) if the kprobe is ready for optimization. */
397 static inline int kprobe_optready(struct kprobe *p)
398 {
399         struct optimized_kprobe *op;
400
401         if (kprobe_aggrprobe(p)) {
402                 op = container_of(p, struct optimized_kprobe, kp);
403                 return arch_prepared_optinsn(&op->optinsn);
404         }
405
406         return 0;
407 }
408
409 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
410 bool kprobe_disarmed(struct kprobe *p)
411 {
412         struct optimized_kprobe *op;
413
414         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
415         if (!kprobe_aggrprobe(p))
416                 return kprobe_disabled(p);
417
418         op = container_of(p, struct optimized_kprobe, kp);
419
420         return kprobe_disabled(p) && list_empty(&op->list);
421 }
422
423 /* Return true(!0) if the probe is queued on (un)optimizing lists */
424 static int kprobe_queued(struct kprobe *p)
425 {
426         struct optimized_kprobe *op;
427
428         if (kprobe_aggrprobe(p)) {
429                 op = container_of(p, struct optimized_kprobe, kp);
430                 if (!list_empty(&op->list))
431                         return 1;
432         }
433         return 0;
434 }
435
436 /*
437  * Return an optimized kprobe whose optimizing code replaces
438  * instructions including addr (exclude breakpoint).
439  */
440 static struct kprobe *get_optimized_kprobe(unsigned long addr)
441 {
442         int i;
443         struct kprobe *p = NULL;
444         struct optimized_kprobe *op;
445
446         /* Don't check i == 0, since that is a breakpoint case. */
447         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
448                 p = get_kprobe((void *)(addr - i));
449
450         if (p && kprobe_optready(p)) {
451                 op = container_of(p, struct optimized_kprobe, kp);
452                 if (arch_within_optimized_kprobe(op, addr))
453                         return p;
454         }
455
456         return NULL;
457 }
458
459 /* Optimization staging list, protected by kprobe_mutex */
460 static LIST_HEAD(optimizing_list);
461 static LIST_HEAD(unoptimizing_list);
462 static LIST_HEAD(freeing_list);
463
464 static void kprobe_optimizer(struct work_struct *work);
465 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
466 #define OPTIMIZE_DELAY 5
467
468 /*
469  * Optimize (replace a breakpoint with a jump) kprobes listed on
470  * optimizing_list.
471  */
472 static void do_optimize_kprobes(void)
473 {
474         lockdep_assert_held(&text_mutex);
475         /*
476          * The optimization/unoptimization refers online_cpus via
477          * stop_machine() and cpu-hotplug modifies online_cpus.
478          * And same time, text_mutex will be held in cpu-hotplug and here.
479          * This combination can cause a deadlock (cpu-hotplug try to lock
480          * text_mutex but stop_machine can not be done because online_cpus
481          * has been changed)
482          * To avoid this deadlock, caller must have locked cpu hotplug
483          * for preventing cpu-hotplug outside of text_mutex locking.
484          */
485         lockdep_assert_cpus_held();
486
487         /* Optimization never be done when disarmed */
488         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
489             list_empty(&optimizing_list))
490                 return;
491
492         arch_optimize_kprobes(&optimizing_list);
493 }
494
495 /*
496  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497  * if need) kprobes listed on unoptimizing_list.
498  */
499 static void do_unoptimize_kprobes(void)
500 {
501         struct optimized_kprobe *op, *tmp;
502
503         lockdep_assert_held(&text_mutex);
504         /* See comment in do_optimize_kprobes() */
505         lockdep_assert_cpus_held();
506
507         /* Unoptimization must be done anytime */
508         if (list_empty(&unoptimizing_list))
509                 return;
510
511         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512         /* Loop free_list for disarming */
513         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514                 /* Switching from detour code to origin */
515                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
516                 /* Disarm probes if marked disabled */
517                 if (kprobe_disabled(&op->kp))
518                         arch_disarm_kprobe(&op->kp);
519                 if (kprobe_unused(&op->kp)) {
520                         /*
521                          * Remove unused probes from hash list. After waiting
522                          * for synchronization, these probes are reclaimed.
523                          * (reclaiming is done by do_free_cleaned_kprobes.)
524                          */
525                         hlist_del_rcu(&op->kp.hlist);
526                 } else
527                         list_del_init(&op->list);
528         }
529 }
530
531 /* Reclaim all kprobes on the free_list */
532 static void do_free_cleaned_kprobes(void)
533 {
534         struct optimized_kprobe *op, *tmp;
535
536         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
537                 list_del_init(&op->list);
538                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
539                         /*
540                          * This must not happen, but if there is a kprobe
541                          * still in use, keep it on kprobes hash list.
542                          */
543                         continue;
544                 }
545                 free_aggr_kprobe(&op->kp);
546         }
547 }
548
549 /* Start optimizer after OPTIMIZE_DELAY passed */
550 static void kick_kprobe_optimizer(void)
551 {
552         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
553 }
554
555 /* Kprobe jump optimizer */
556 static void kprobe_optimizer(struct work_struct *work)
557 {
558         mutex_lock(&kprobe_mutex);
559         cpus_read_lock();
560         mutex_lock(&text_mutex);
561         /* Lock modules while optimizing kprobes */
562         mutex_lock(&module_mutex);
563
564         /*
565          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566          * kprobes before waiting for quiesence period.
567          */
568         do_unoptimize_kprobes();
569
570         /*
571          * Step 2: Wait for quiesence period to ensure all potentially
572          * preempted tasks to have normally scheduled. Because optprobe
573          * may modify multiple instructions, there is a chance that Nth
574          * instruction is preempted. In that case, such tasks can return
575          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
576          * Note that on non-preemptive kernel, this is transparently converted
577          * to synchronoze_sched() to wait for all interrupts to have completed.
578          */
579         synchronize_rcu_tasks();
580
581         /* Step 3: Optimize kprobes after quiesence period */
582         do_optimize_kprobes();
583
584         /* Step 4: Free cleaned kprobes after quiesence period */
585         do_free_cleaned_kprobes();
586
587         mutex_unlock(&module_mutex);
588         mutex_unlock(&text_mutex);
589         cpus_read_unlock();
590
591         /* Step 5: Kick optimizer again if needed */
592         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593                 kick_kprobe_optimizer();
594
595         mutex_unlock(&kprobe_mutex);
596 }
597
598 /* Wait for completing optimization and unoptimization */
599 void wait_for_kprobe_optimizer(void)
600 {
601         mutex_lock(&kprobe_mutex);
602
603         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
604                 mutex_unlock(&kprobe_mutex);
605
606                 /* this will also make optimizing_work execute immmediately */
607                 flush_delayed_work(&optimizing_work);
608                 /* @optimizing_work might not have been queued yet, relax */
609                 cpu_relax();
610
611                 mutex_lock(&kprobe_mutex);
612         }
613
614         mutex_unlock(&kprobe_mutex);
615 }
616
617 bool optprobe_queued_unopt(struct optimized_kprobe *op)
618 {
619         struct optimized_kprobe *_op;
620
621         list_for_each_entry(_op, &unoptimizing_list, list) {
622                 if (op == _op)
623                         return true;
624         }
625
626         return false;
627 }
628
629 /* Optimize kprobe if p is ready to be optimized */
630 static void optimize_kprobe(struct kprobe *p)
631 {
632         struct optimized_kprobe *op;
633
634         /* Check if the kprobe is disabled or not ready for optimization. */
635         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
636             (kprobe_disabled(p) || kprobes_all_disarmed))
637                 return;
638
639         /* kprobes with post_handler can not be optimized */
640         if (p->post_handler)
641                 return;
642
643         op = container_of(p, struct optimized_kprobe, kp);
644
645         /* Check there is no other kprobes at the optimized instructions */
646         if (arch_check_optimized_kprobe(op) < 0)
647                 return;
648
649         /* Check if it is already optimized. */
650         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
651                 if (optprobe_queued_unopt(op)) {
652                         /* This is under unoptimizing. Just dequeue the probe */
653                         list_del_init(&op->list);
654                 }
655                 return;
656         }
657         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
658
659         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
660         if (WARN_ON_ONCE(!list_empty(&op->list)))
661                 return;
662
663         list_add(&op->list, &optimizing_list);
664         kick_kprobe_optimizer();
665 }
666
667 /* Short cut to direct unoptimizing */
668 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
669 {
670         lockdep_assert_cpus_held();
671         arch_unoptimize_kprobe(op);
672         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
673         if (kprobe_disabled(&op->kp))
674                 arch_disarm_kprobe(&op->kp);
675 }
676
677 /* Unoptimize a kprobe if p is optimized */
678 static void unoptimize_kprobe(struct kprobe *p, bool force)
679 {
680         struct optimized_kprobe *op;
681
682         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
683                 return; /* This is not an optprobe nor optimized */
684
685         op = container_of(p, struct optimized_kprobe, kp);
686         if (!kprobe_optimized(p))
687                 return;
688
689         if (!list_empty(&op->list)) {
690                 if (optprobe_queued_unopt(op)) {
691                         /* Queued in unoptimizing queue */
692                         if (force) {
693                                 /*
694                                  * Forcibly unoptimize the kprobe here, and queue it
695                                  * in the freeing list for release afterwards.
696                                  */
697                                 force_unoptimize_kprobe(op);
698                                 list_move(&op->list, &freeing_list);
699                         }
700                 } else {
701                         /* Dequeue from the optimizing queue */
702                         list_del_init(&op->list);
703                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
704                 }
705                 return;
706         }
707
708         /* Optimized kprobe case */
709         if (force) {
710                 /* Forcibly update the code: this is a special case */
711                 force_unoptimize_kprobe(op);
712         } else {
713                 list_add(&op->list, &unoptimizing_list);
714                 kick_kprobe_optimizer();
715         }
716 }
717
718 /* Cancel unoptimizing for reusing */
719 static int reuse_unused_kprobe(struct kprobe *ap)
720 {
721         struct optimized_kprobe *op;
722
723         /*
724          * Unused kprobe MUST be on the way of delayed unoptimizing (means
725          * there is still a relative jump) and disabled.
726          */
727         op = container_of(ap, struct optimized_kprobe, kp);
728         WARN_ON_ONCE(list_empty(&op->list));
729         /* Enable the probe again */
730         ap->flags &= ~KPROBE_FLAG_DISABLED;
731         /* Optimize it again (remove from op->list) */
732         if (!kprobe_optready(ap))
733                 return -EINVAL;
734
735         optimize_kprobe(ap);
736         return 0;
737 }
738
739 /* Remove optimized instructions */
740 static void kill_optimized_kprobe(struct kprobe *p)
741 {
742         struct optimized_kprobe *op;
743
744         op = container_of(p, struct optimized_kprobe, kp);
745         if (!list_empty(&op->list))
746                 /* Dequeue from the (un)optimization queue */
747                 list_del_init(&op->list);
748         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
749
750         if (kprobe_unused(p)) {
751                 /* Enqueue if it is unused */
752                 list_add(&op->list, &freeing_list);
753                 /*
754                  * Remove unused probes from the hash list. After waiting
755                  * for synchronization, this probe is reclaimed.
756                  * (reclaiming is done by do_free_cleaned_kprobes().)
757                  */
758                 hlist_del_rcu(&op->kp.hlist);
759         }
760
761         /* Don't touch the code, because it is already freed. */
762         arch_remove_optimized_kprobe(op);
763 }
764
765 static inline
766 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
767 {
768         if (!kprobe_ftrace(p))
769                 arch_prepare_optimized_kprobe(op, p);
770 }
771
772 /* Try to prepare optimized instructions */
773 static void prepare_optimized_kprobe(struct kprobe *p)
774 {
775         struct optimized_kprobe *op;
776
777         op = container_of(p, struct optimized_kprobe, kp);
778         __prepare_optimized_kprobe(op, p);
779 }
780
781 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
782 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
783 {
784         struct optimized_kprobe *op;
785
786         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
787         if (!op)
788                 return NULL;
789
790         INIT_LIST_HEAD(&op->list);
791         op->kp.addr = p->addr;
792         __prepare_optimized_kprobe(op, p);
793
794         return &op->kp;
795 }
796
797 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
798
799 /*
800  * Prepare an optimized_kprobe and optimize it
801  * NOTE: p must be a normal registered kprobe
802  */
803 static void try_to_optimize_kprobe(struct kprobe *p)
804 {
805         struct kprobe *ap;
806         struct optimized_kprobe *op;
807
808         /* Impossible to optimize ftrace-based kprobe */
809         if (kprobe_ftrace(p))
810                 return;
811
812         /* For preparing optimization, jump_label_text_reserved() is called */
813         cpus_read_lock();
814         jump_label_lock();
815         mutex_lock(&text_mutex);
816
817         ap = alloc_aggr_kprobe(p);
818         if (!ap)
819                 goto out;
820
821         op = container_of(ap, struct optimized_kprobe, kp);
822         if (!arch_prepared_optinsn(&op->optinsn)) {
823                 /* If failed to setup optimizing, fallback to kprobe */
824                 arch_remove_optimized_kprobe(op);
825                 kfree(op);
826                 goto out;
827         }
828
829         init_aggr_kprobe(ap, p);
830         optimize_kprobe(ap);    /* This just kicks optimizer thread */
831
832 out:
833         mutex_unlock(&text_mutex);
834         jump_label_unlock();
835         cpus_read_unlock();
836 }
837
838 #ifdef CONFIG_SYSCTL
839 static void optimize_all_kprobes(void)
840 {
841         struct hlist_head *head;
842         struct kprobe *p;
843         unsigned int i;
844
845         mutex_lock(&kprobe_mutex);
846         /* If optimization is already allowed, just return */
847         if (kprobes_allow_optimization)
848                 goto out;
849
850         cpus_read_lock();
851         kprobes_allow_optimization = true;
852         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
853                 head = &kprobe_table[i];
854                 hlist_for_each_entry_rcu(p, head, hlist)
855                         if (!kprobe_disabled(p))
856                                 optimize_kprobe(p);
857         }
858         cpus_read_unlock();
859         printk(KERN_INFO "Kprobes globally optimized\n");
860 out:
861         mutex_unlock(&kprobe_mutex);
862 }
863
864 static void unoptimize_all_kprobes(void)
865 {
866         struct hlist_head *head;
867         struct kprobe *p;
868         unsigned int i;
869
870         mutex_lock(&kprobe_mutex);
871         /* If optimization is already prohibited, just return */
872         if (!kprobes_allow_optimization) {
873                 mutex_unlock(&kprobe_mutex);
874                 return;
875         }
876
877         cpus_read_lock();
878         kprobes_allow_optimization = false;
879         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
880                 head = &kprobe_table[i];
881                 hlist_for_each_entry_rcu(p, head, hlist) {
882                         if (!kprobe_disabled(p))
883                                 unoptimize_kprobe(p, false);
884                 }
885         }
886         cpus_read_unlock();
887         mutex_unlock(&kprobe_mutex);
888
889         /* Wait for unoptimizing completion */
890         wait_for_kprobe_optimizer();
891         printk(KERN_INFO "Kprobes globally unoptimized\n");
892 }
893
894 static DEFINE_MUTEX(kprobe_sysctl_mutex);
895 int sysctl_kprobes_optimization;
896 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
897                                       void __user *buffer, size_t *length,
898                                       loff_t *ppos)
899 {
900         int ret;
901
902         mutex_lock(&kprobe_sysctl_mutex);
903         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
904         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
905
906         if (sysctl_kprobes_optimization)
907                 optimize_all_kprobes();
908         else
909                 unoptimize_all_kprobes();
910         mutex_unlock(&kprobe_sysctl_mutex);
911
912         return ret;
913 }
914 #endif /* CONFIG_SYSCTL */
915
916 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
917 static void __arm_kprobe(struct kprobe *p)
918 {
919         struct kprobe *_p;
920
921         /* Check collision with other optimized kprobes */
922         _p = get_optimized_kprobe((unsigned long)p->addr);
923         if (unlikely(_p))
924                 /* Fallback to unoptimized kprobe */
925                 unoptimize_kprobe(_p, true);
926
927         arch_arm_kprobe(p);
928         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
929 }
930
931 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
932 static void __disarm_kprobe(struct kprobe *p, bool reopt)
933 {
934         struct kprobe *_p;
935
936         /* Try to unoptimize */
937         unoptimize_kprobe(p, kprobes_all_disarmed);
938
939         if (!kprobe_queued(p)) {
940                 arch_disarm_kprobe(p);
941                 /* If another kprobe was blocked, optimize it. */
942                 _p = get_optimized_kprobe((unsigned long)p->addr);
943                 if (unlikely(_p) && reopt)
944                         optimize_kprobe(_p);
945         }
946         /* TODO: reoptimize others after unoptimized this probe */
947 }
948
949 #else /* !CONFIG_OPTPROBES */
950
951 #define optimize_kprobe(p)                      do {} while (0)
952 #define unoptimize_kprobe(p, f)                 do {} while (0)
953 #define kill_optimized_kprobe(p)                do {} while (0)
954 #define prepare_optimized_kprobe(p)             do {} while (0)
955 #define try_to_optimize_kprobe(p)               do {} while (0)
956 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
957 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
958 #define kprobe_disarmed(p)                      kprobe_disabled(p)
959 #define wait_for_kprobe_optimizer()             do {} while (0)
960
961 static int reuse_unused_kprobe(struct kprobe *ap)
962 {
963         /*
964          * If the optimized kprobe is NOT supported, the aggr kprobe is
965          * released at the same time that the last aggregated kprobe is
966          * unregistered.
967          * Thus there should be no chance to reuse unused kprobe.
968          */
969         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
970         return -EINVAL;
971 }
972
973 static void free_aggr_kprobe(struct kprobe *p)
974 {
975         arch_remove_kprobe(p);
976         kfree(p);
977 }
978
979 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
980 {
981         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
982 }
983 #endif /* CONFIG_OPTPROBES */
984
985 #ifdef CONFIG_KPROBES_ON_FTRACE
986 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
987         .func = kprobe_ftrace_handler,
988         .flags = FTRACE_OPS_FL_SAVE_REGS,
989 };
990
991 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
992         .func = kprobe_ftrace_handler,
993         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
994 };
995
996 static int kprobe_ipmodify_enabled;
997 static int kprobe_ftrace_enabled;
998
999 /* Must ensure p->addr is really on ftrace */
1000 static int prepare_kprobe(struct kprobe *p)
1001 {
1002         if (!kprobe_ftrace(p))
1003                 return arch_prepare_kprobe(p);
1004
1005         return arch_prepare_kprobe_ftrace(p);
1006 }
1007
1008 /* Caller must lock kprobe_mutex */
1009 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1010                                int *cnt)
1011 {
1012         int ret = 0;
1013
1014         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1015         if (ret) {
1016                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1017                          p->addr, ret);
1018                 return ret;
1019         }
1020
1021         if (*cnt == 0) {
1022                 ret = register_ftrace_function(ops);
1023                 if (ret) {
1024                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1025                         goto err_ftrace;
1026                 }
1027         }
1028
1029         (*cnt)++;
1030         return ret;
1031
1032 err_ftrace:
1033         /*
1034          * At this point, sinec ops is not registered, we should be sefe from
1035          * registering empty filter.
1036          */
1037         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1038         return ret;
1039 }
1040
1041 static int arm_kprobe_ftrace(struct kprobe *p)
1042 {
1043         bool ipmodify = (p->post_handler != NULL);
1044
1045         return __arm_kprobe_ftrace(p,
1046                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1047                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1048 }
1049
1050 /* Caller must lock kprobe_mutex */
1051 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1052                                   int *cnt)
1053 {
1054         int ret = 0;
1055
1056         if (*cnt == 1) {
1057                 ret = unregister_ftrace_function(ops);
1058                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1059                         return ret;
1060         }
1061
1062         (*cnt)--;
1063
1064         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1065         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1066                   p->addr, ret);
1067         return ret;
1068 }
1069
1070 static int disarm_kprobe_ftrace(struct kprobe *p)
1071 {
1072         bool ipmodify = (p->post_handler != NULL);
1073
1074         return __disarm_kprobe_ftrace(p,
1075                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1076                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1077 }
1078 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1079 static inline int prepare_kprobe(struct kprobe *p)
1080 {
1081         return arch_prepare_kprobe(p);
1082 }
1083
1084 static inline int arm_kprobe_ftrace(struct kprobe *p)
1085 {
1086         return -ENODEV;
1087 }
1088
1089 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1090 {
1091         return -ENODEV;
1092 }
1093 #endif
1094
1095 /* Arm a kprobe with text_mutex */
1096 static int arm_kprobe(struct kprobe *kp)
1097 {
1098         if (unlikely(kprobe_ftrace(kp)))
1099                 return arm_kprobe_ftrace(kp);
1100
1101         cpus_read_lock();
1102         mutex_lock(&text_mutex);
1103         __arm_kprobe(kp);
1104         mutex_unlock(&text_mutex);
1105         cpus_read_unlock();
1106
1107         return 0;
1108 }
1109
1110 /* Disarm a kprobe with text_mutex */
1111 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1112 {
1113         if (unlikely(kprobe_ftrace(kp)))
1114                 return disarm_kprobe_ftrace(kp);
1115
1116         cpus_read_lock();
1117         mutex_lock(&text_mutex);
1118         __disarm_kprobe(kp, reopt);
1119         mutex_unlock(&text_mutex);
1120         cpus_read_unlock();
1121
1122         return 0;
1123 }
1124
1125 /*
1126  * Aggregate handlers for multiple kprobes support - these handlers
1127  * take care of invoking the individual kprobe handlers on p->list
1128  */
1129 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1130 {
1131         struct kprobe *kp;
1132
1133         list_for_each_entry_rcu(kp, &p->list, list) {
1134                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1135                         set_kprobe_instance(kp);
1136                         if (kp->pre_handler(kp, regs))
1137                                 return 1;
1138                 }
1139                 reset_kprobe_instance();
1140         }
1141         return 0;
1142 }
1143 NOKPROBE_SYMBOL(aggr_pre_handler);
1144
1145 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1146                               unsigned long flags)
1147 {
1148         struct kprobe *kp;
1149
1150         list_for_each_entry_rcu(kp, &p->list, list) {
1151                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1152                         set_kprobe_instance(kp);
1153                         kp->post_handler(kp, regs, flags);
1154                         reset_kprobe_instance();
1155                 }
1156         }
1157 }
1158 NOKPROBE_SYMBOL(aggr_post_handler);
1159
1160 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1161                               int trapnr)
1162 {
1163         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1164
1165         /*
1166          * if we faulted "during" the execution of a user specified
1167          * probe handler, invoke just that probe's fault handler
1168          */
1169         if (cur && cur->fault_handler) {
1170                 if (cur->fault_handler(cur, regs, trapnr))
1171                         return 1;
1172         }
1173         return 0;
1174 }
1175 NOKPROBE_SYMBOL(aggr_fault_handler);
1176
1177 /* Walks the list and increments nmissed count for multiprobe case */
1178 void kprobes_inc_nmissed_count(struct kprobe *p)
1179 {
1180         struct kprobe *kp;
1181         if (!kprobe_aggrprobe(p)) {
1182                 p->nmissed++;
1183         } else {
1184                 list_for_each_entry_rcu(kp, &p->list, list)
1185                         kp->nmissed++;
1186         }
1187         return;
1188 }
1189 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1190
1191 void recycle_rp_inst(struct kretprobe_instance *ri,
1192                      struct hlist_head *head)
1193 {
1194         struct kretprobe *rp = ri->rp;
1195
1196         /* remove rp inst off the rprobe_inst_table */
1197         hlist_del(&ri->hlist);
1198         INIT_HLIST_NODE(&ri->hlist);
1199         if (likely(rp)) {
1200                 raw_spin_lock(&rp->lock);
1201                 hlist_add_head(&ri->hlist, &rp->free_instances);
1202                 raw_spin_unlock(&rp->lock);
1203         } else
1204                 /* Unregistering */
1205                 hlist_add_head(&ri->hlist, head);
1206 }
1207 NOKPROBE_SYMBOL(recycle_rp_inst);
1208
1209 void kretprobe_hash_lock(struct task_struct *tsk,
1210                          struct hlist_head **head, unsigned long *flags)
1211 __acquires(hlist_lock)
1212 {
1213         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1214         raw_spinlock_t *hlist_lock;
1215
1216         *head = &kretprobe_inst_table[hash];
1217         hlist_lock = kretprobe_table_lock_ptr(hash);
1218         raw_spin_lock_irqsave(hlist_lock, *flags);
1219 }
1220 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1221
1222 static void kretprobe_table_lock(unsigned long hash,
1223                                  unsigned long *flags)
1224 __acquires(hlist_lock)
1225 {
1226         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1227         raw_spin_lock_irqsave(hlist_lock, *flags);
1228 }
1229 NOKPROBE_SYMBOL(kretprobe_table_lock);
1230
1231 void kretprobe_hash_unlock(struct task_struct *tsk,
1232                            unsigned long *flags)
1233 __releases(hlist_lock)
1234 {
1235         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1236         raw_spinlock_t *hlist_lock;
1237
1238         hlist_lock = kretprobe_table_lock_ptr(hash);
1239         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1240 }
1241 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1242
1243 static void kretprobe_table_unlock(unsigned long hash,
1244                                    unsigned long *flags)
1245 __releases(hlist_lock)
1246 {
1247         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1248         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1249 }
1250 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1251
1252 struct kprobe kprobe_busy = {
1253         .addr = (void *) get_kprobe,
1254 };
1255
1256 void kprobe_busy_begin(void)
1257 {
1258         struct kprobe_ctlblk *kcb;
1259
1260         preempt_disable();
1261         __this_cpu_write(current_kprobe, &kprobe_busy);
1262         kcb = get_kprobe_ctlblk();
1263         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1264 }
1265
1266 void kprobe_busy_end(void)
1267 {
1268         __this_cpu_write(current_kprobe, NULL);
1269         preempt_enable();
1270 }
1271
1272 /*
1273  * This function is called from finish_task_switch when task tk becomes dead,
1274  * so that we can recycle any function-return probe instances associated
1275  * with this task. These left over instances represent probed functions
1276  * that have been called but will never return.
1277  */
1278 void kprobe_flush_task(struct task_struct *tk)
1279 {
1280         struct kretprobe_instance *ri;
1281         struct hlist_head *head, empty_rp;
1282         struct hlist_node *tmp;
1283         unsigned long hash, flags = 0;
1284
1285         if (unlikely(!kprobes_initialized))
1286                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1287                 return;
1288
1289         kprobe_busy_begin();
1290
1291         INIT_HLIST_HEAD(&empty_rp);
1292         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1293         head = &kretprobe_inst_table[hash];
1294         kretprobe_table_lock(hash, &flags);
1295         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1296                 if (ri->task == tk)
1297                         recycle_rp_inst(ri, &empty_rp);
1298         }
1299         kretprobe_table_unlock(hash, &flags);
1300         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1301                 hlist_del(&ri->hlist);
1302                 kfree(ri);
1303         }
1304
1305         kprobe_busy_end();
1306 }
1307 NOKPROBE_SYMBOL(kprobe_flush_task);
1308
1309 static inline void free_rp_inst(struct kretprobe *rp)
1310 {
1311         struct kretprobe_instance *ri;
1312         struct hlist_node *next;
1313
1314         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1315                 hlist_del(&ri->hlist);
1316                 kfree(ri);
1317         }
1318 }
1319
1320 static void cleanup_rp_inst(struct kretprobe *rp)
1321 {
1322         unsigned long flags, hash;
1323         struct kretprobe_instance *ri;
1324         struct hlist_node *next;
1325         struct hlist_head *head;
1326
1327         /* No race here */
1328         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1329                 kretprobe_table_lock(hash, &flags);
1330                 head = &kretprobe_inst_table[hash];
1331                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1332                         if (ri->rp == rp)
1333                                 ri->rp = NULL;
1334                 }
1335                 kretprobe_table_unlock(hash, &flags);
1336         }
1337         free_rp_inst(rp);
1338 }
1339 NOKPROBE_SYMBOL(cleanup_rp_inst);
1340
1341 /* Add the new probe to ap->list */
1342 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1343 {
1344         if (p->post_handler)
1345                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1346
1347         list_add_rcu(&p->list, &ap->list);
1348         if (p->post_handler && !ap->post_handler)
1349                 ap->post_handler = aggr_post_handler;
1350
1351         return 0;
1352 }
1353
1354 /*
1355  * Fill in the required fields of the "manager kprobe". Replace the
1356  * earlier kprobe in the hlist with the manager kprobe
1357  */
1358 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1359 {
1360         /* Copy p's insn slot to ap */
1361         copy_kprobe(p, ap);
1362         flush_insn_slot(ap);
1363         ap->addr = p->addr;
1364         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1365         ap->pre_handler = aggr_pre_handler;
1366         ap->fault_handler = aggr_fault_handler;
1367         /* We don't care the kprobe which has gone. */
1368         if (p->post_handler && !kprobe_gone(p))
1369                 ap->post_handler = aggr_post_handler;
1370
1371         INIT_LIST_HEAD(&ap->list);
1372         INIT_HLIST_NODE(&ap->hlist);
1373
1374         list_add_rcu(&p->list, &ap->list);
1375         hlist_replace_rcu(&p->hlist, &ap->hlist);
1376 }
1377
1378 /*
1379  * This is the second or subsequent kprobe at the address - handle
1380  * the intricacies
1381  */
1382 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1383 {
1384         int ret = 0;
1385         struct kprobe *ap = orig_p;
1386
1387         cpus_read_lock();
1388
1389         /* For preparing optimization, jump_label_text_reserved() is called */
1390         jump_label_lock();
1391         mutex_lock(&text_mutex);
1392
1393         if (!kprobe_aggrprobe(orig_p)) {
1394                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1395                 ap = alloc_aggr_kprobe(orig_p);
1396                 if (!ap) {
1397                         ret = -ENOMEM;
1398                         goto out;
1399                 }
1400                 init_aggr_kprobe(ap, orig_p);
1401         } else if (kprobe_unused(ap)) {
1402                 /* This probe is going to die. Rescue it */
1403                 ret = reuse_unused_kprobe(ap);
1404                 if (ret)
1405                         goto out;
1406         }
1407
1408         if (kprobe_gone(ap)) {
1409                 /*
1410                  * Attempting to insert new probe at the same location that
1411                  * had a probe in the module vaddr area which already
1412                  * freed. So, the instruction slot has already been
1413                  * released. We need a new slot for the new probe.
1414                  */
1415                 ret = arch_prepare_kprobe(ap);
1416                 if (ret)
1417                         /*
1418                          * Even if fail to allocate new slot, don't need to
1419                          * free aggr_probe. It will be used next time, or
1420                          * freed by unregister_kprobe.
1421                          */
1422                         goto out;
1423
1424                 /* Prepare optimized instructions if possible. */
1425                 prepare_optimized_kprobe(ap);
1426
1427                 /*
1428                  * Clear gone flag to prevent allocating new slot again, and
1429                  * set disabled flag because it is not armed yet.
1430                  */
1431                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1432                             | KPROBE_FLAG_DISABLED;
1433         }
1434
1435         /* Copy ap's insn slot to p */
1436         copy_kprobe(ap, p);
1437         ret = add_new_kprobe(ap, p);
1438
1439 out:
1440         mutex_unlock(&text_mutex);
1441         jump_label_unlock();
1442         cpus_read_unlock();
1443
1444         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1445                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1446                 if (!kprobes_all_disarmed) {
1447                         /* Arm the breakpoint again. */
1448                         ret = arm_kprobe(ap);
1449                         if (ret) {
1450                                 ap->flags |= KPROBE_FLAG_DISABLED;
1451                                 list_del_rcu(&p->list);
1452                                 synchronize_rcu();
1453                         }
1454                 }
1455         }
1456         return ret;
1457 }
1458
1459 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1460 {
1461         /* The __kprobes marked functions and entry code must not be probed */
1462         return addr >= (unsigned long)__kprobes_text_start &&
1463                addr < (unsigned long)__kprobes_text_end;
1464 }
1465
1466 static bool __within_kprobe_blacklist(unsigned long addr)
1467 {
1468         struct kprobe_blacklist_entry *ent;
1469
1470         if (arch_within_kprobe_blacklist(addr))
1471                 return true;
1472         /*
1473          * If there exists a kprobe_blacklist, verify and
1474          * fail any probe registration in the prohibited area
1475          */
1476         list_for_each_entry(ent, &kprobe_blacklist, list) {
1477                 if (addr >= ent->start_addr && addr < ent->end_addr)
1478                         return true;
1479         }
1480         return false;
1481 }
1482
1483 bool within_kprobe_blacklist(unsigned long addr)
1484 {
1485         char symname[KSYM_NAME_LEN], *p;
1486
1487         if (__within_kprobe_blacklist(addr))
1488                 return true;
1489
1490         /* Check if the address is on a suffixed-symbol */
1491         if (!lookup_symbol_name(addr, symname)) {
1492                 p = strchr(symname, '.');
1493                 if (!p)
1494                         return false;
1495                 *p = '\0';
1496                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1497                 if (addr)
1498                         return __within_kprobe_blacklist(addr);
1499         }
1500         return false;
1501 }
1502
1503 /*
1504  * If we have a symbol_name argument, look it up and add the offset field
1505  * to it. This way, we can specify a relative address to a symbol.
1506  * This returns encoded errors if it fails to look up symbol or invalid
1507  * combination of parameters.
1508  */
1509 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1510                         const char *symbol_name, unsigned int offset)
1511 {
1512         if ((symbol_name && addr) || (!symbol_name && !addr))
1513                 goto invalid;
1514
1515         if (symbol_name) {
1516                 addr = kprobe_lookup_name(symbol_name, offset);
1517                 if (!addr)
1518                         return ERR_PTR(-ENOENT);
1519         }
1520
1521         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1522         if (addr)
1523                 return addr;
1524
1525 invalid:
1526         return ERR_PTR(-EINVAL);
1527 }
1528
1529 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1530 {
1531         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1532 }
1533
1534 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1535 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1536 {
1537         struct kprobe *ap, *list_p;
1538
1539         ap = get_kprobe(p->addr);
1540         if (unlikely(!ap))
1541                 return NULL;
1542
1543         if (p != ap) {
1544                 list_for_each_entry_rcu(list_p, &ap->list, list)
1545                         if (list_p == p)
1546                         /* kprobe p is a valid probe */
1547                                 goto valid;
1548                 return NULL;
1549         }
1550 valid:
1551         return ap;
1552 }
1553
1554 /* Return error if the kprobe is being re-registered */
1555 static inline int check_kprobe_rereg(struct kprobe *p)
1556 {
1557         int ret = 0;
1558
1559         mutex_lock(&kprobe_mutex);
1560         if (__get_valid_kprobe(p))
1561                 ret = -EINVAL;
1562         mutex_unlock(&kprobe_mutex);
1563
1564         return ret;
1565 }
1566
1567 int __weak arch_check_ftrace_location(struct kprobe *p)
1568 {
1569         unsigned long ftrace_addr;
1570
1571         ftrace_addr = ftrace_location((unsigned long)p->addr);
1572         if (ftrace_addr) {
1573 #ifdef CONFIG_KPROBES_ON_FTRACE
1574                 /* Given address is not on the instruction boundary */
1575                 if ((unsigned long)p->addr != ftrace_addr)
1576                         return -EILSEQ;
1577                 p->flags |= KPROBE_FLAG_FTRACE;
1578 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1579                 return -EINVAL;
1580 #endif
1581         }
1582         return 0;
1583 }
1584
1585 static int check_kprobe_address_safe(struct kprobe *p,
1586                                      struct module **probed_mod)
1587 {
1588         int ret;
1589
1590         ret = arch_check_ftrace_location(p);
1591         if (ret)
1592                 return ret;
1593         jump_label_lock();
1594         preempt_disable();
1595
1596         /* Ensure it is not in reserved area nor out of text */
1597         if (!(core_kernel_text((unsigned long) p->addr) ||
1598             is_module_text_address((unsigned long) p->addr)) ||
1599             in_gate_area_no_mm((unsigned long) p->addr) ||
1600             within_kprobe_blacklist((unsigned long) p->addr) ||
1601             jump_label_text_reserved(p->addr, p->addr) ||
1602             find_bug((unsigned long)p->addr)) {
1603                 ret = -EINVAL;
1604                 goto out;
1605         }
1606
1607         /* Check if are we probing a module */
1608         *probed_mod = __module_text_address((unsigned long) p->addr);
1609         if (*probed_mod) {
1610                 /*
1611                  * We must hold a refcount of the probed module while updating
1612                  * its code to prohibit unexpected unloading.
1613                  */
1614                 if (unlikely(!try_module_get(*probed_mod))) {
1615                         ret = -ENOENT;
1616                         goto out;
1617                 }
1618
1619                 /*
1620                  * If the module freed .init.text, we couldn't insert
1621                  * kprobes in there.
1622                  */
1623                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1624                     (*probed_mod)->state != MODULE_STATE_COMING) {
1625                         module_put(*probed_mod);
1626                         *probed_mod = NULL;
1627                         ret = -ENOENT;
1628                 }
1629         }
1630 out:
1631         preempt_enable();
1632         jump_label_unlock();
1633
1634         return ret;
1635 }
1636
1637 int register_kprobe(struct kprobe *p)
1638 {
1639         int ret;
1640         struct kprobe *old_p;
1641         struct module *probed_mod;
1642         kprobe_opcode_t *addr;
1643
1644         /* Adjust probe address from symbol */
1645         addr = kprobe_addr(p);
1646         if (IS_ERR(addr))
1647                 return PTR_ERR(addr);
1648         p->addr = addr;
1649
1650         ret = check_kprobe_rereg(p);
1651         if (ret)
1652                 return ret;
1653
1654         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1655         p->flags &= KPROBE_FLAG_DISABLED;
1656         p->nmissed = 0;
1657         INIT_LIST_HEAD(&p->list);
1658
1659         ret = check_kprobe_address_safe(p, &probed_mod);
1660         if (ret)
1661                 return ret;
1662
1663         mutex_lock(&kprobe_mutex);
1664
1665         old_p = get_kprobe(p->addr);
1666         if (old_p) {
1667                 /* Since this may unoptimize old_p, locking text_mutex. */
1668                 ret = register_aggr_kprobe(old_p, p);
1669                 goto out;
1670         }
1671
1672         cpus_read_lock();
1673         /* Prevent text modification */
1674         mutex_lock(&text_mutex);
1675         ret = prepare_kprobe(p);
1676         mutex_unlock(&text_mutex);
1677         cpus_read_unlock();
1678         if (ret)
1679                 goto out;
1680
1681         INIT_HLIST_NODE(&p->hlist);
1682         hlist_add_head_rcu(&p->hlist,
1683                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1684
1685         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1686                 ret = arm_kprobe(p);
1687                 if (ret) {
1688                         hlist_del_rcu(&p->hlist);
1689                         synchronize_rcu();
1690                         goto out;
1691                 }
1692         }
1693
1694         /* Try to optimize kprobe */
1695         try_to_optimize_kprobe(p);
1696 out:
1697         mutex_unlock(&kprobe_mutex);
1698
1699         if (probed_mod)
1700                 module_put(probed_mod);
1701
1702         return ret;
1703 }
1704 EXPORT_SYMBOL_GPL(register_kprobe);
1705
1706 /* Check if all probes on the aggrprobe are disabled */
1707 static int aggr_kprobe_disabled(struct kprobe *ap)
1708 {
1709         struct kprobe *kp;
1710
1711         list_for_each_entry_rcu(kp, &ap->list, list)
1712                 if (!kprobe_disabled(kp))
1713                         /*
1714                          * There is an active probe on the list.
1715                          * We can't disable this ap.
1716                          */
1717                         return 0;
1718
1719         return 1;
1720 }
1721
1722 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1723 static struct kprobe *__disable_kprobe(struct kprobe *p)
1724 {
1725         struct kprobe *orig_p;
1726         int ret;
1727
1728         /* Get an original kprobe for return */
1729         orig_p = __get_valid_kprobe(p);
1730         if (unlikely(orig_p == NULL))
1731                 return ERR_PTR(-EINVAL);
1732
1733         if (!kprobe_disabled(p)) {
1734                 /* Disable probe if it is a child probe */
1735                 if (p != orig_p)
1736                         p->flags |= KPROBE_FLAG_DISABLED;
1737
1738                 /* Try to disarm and disable this/parent probe */
1739                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1740                         /*
1741                          * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1742                          * is false, 'orig_p' might not have been armed yet.
1743                          * Note arm_all_kprobes() __tries__ to arm all kprobes
1744                          * on the best effort basis.
1745                          */
1746                         if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1747                                 ret = disarm_kprobe(orig_p, true);
1748                                 if (ret) {
1749                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1750                                         return ERR_PTR(ret);
1751                                 }
1752                         }
1753                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1754                 }
1755         }
1756
1757         return orig_p;
1758 }
1759
1760 /*
1761  * Unregister a kprobe without a scheduler synchronization.
1762  */
1763 static int __unregister_kprobe_top(struct kprobe *p)
1764 {
1765         struct kprobe *ap, *list_p;
1766
1767         /* Disable kprobe. This will disarm it if needed. */
1768         ap = __disable_kprobe(p);
1769         if (IS_ERR(ap))
1770                 return PTR_ERR(ap);
1771
1772         if (ap == p)
1773                 /*
1774                  * This probe is an independent(and non-optimized) kprobe
1775                  * (not an aggrprobe). Remove from the hash list.
1776                  */
1777                 goto disarmed;
1778
1779         /* Following process expects this probe is an aggrprobe */
1780         WARN_ON(!kprobe_aggrprobe(ap));
1781
1782         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1783                 /*
1784                  * !disarmed could be happen if the probe is under delayed
1785                  * unoptimizing.
1786                  */
1787                 goto disarmed;
1788         else {
1789                 /* If disabling probe has special handlers, update aggrprobe */
1790                 if (p->post_handler && !kprobe_gone(p)) {
1791                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1792                                 if ((list_p != p) && (list_p->post_handler))
1793                                         goto noclean;
1794                         }
1795                         /*
1796                          * For the kprobe-on-ftrace case, we keep the
1797                          * post_handler setting to identify this aggrprobe
1798                          * armed with kprobe_ipmodify_ops.
1799                          */
1800                         if (!kprobe_ftrace(ap))
1801                                 ap->post_handler = NULL;
1802                 }
1803 noclean:
1804                 /*
1805                  * Remove from the aggrprobe: this path will do nothing in
1806                  * __unregister_kprobe_bottom().
1807                  */
1808                 list_del_rcu(&p->list);
1809                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1810                         /*
1811                          * Try to optimize this probe again, because post
1812                          * handler may have been changed.
1813                          */
1814                         optimize_kprobe(ap);
1815         }
1816         return 0;
1817
1818 disarmed:
1819         hlist_del_rcu(&ap->hlist);
1820         return 0;
1821 }
1822
1823 static void __unregister_kprobe_bottom(struct kprobe *p)
1824 {
1825         struct kprobe *ap;
1826
1827         if (list_empty(&p->list))
1828                 /* This is an independent kprobe */
1829                 arch_remove_kprobe(p);
1830         else if (list_is_singular(&p->list)) {
1831                 /* This is the last child of an aggrprobe */
1832                 ap = list_entry(p->list.next, struct kprobe, list);
1833                 list_del(&p->list);
1834                 free_aggr_kprobe(ap);
1835         }
1836         /* Otherwise, do nothing. */
1837 }
1838
1839 int register_kprobes(struct kprobe **kps, int num)
1840 {
1841         int i, ret = 0;
1842
1843         if (num <= 0)
1844                 return -EINVAL;
1845         for (i = 0; i < num; i++) {
1846                 ret = register_kprobe(kps[i]);
1847                 if (ret < 0) {
1848                         if (i > 0)
1849                                 unregister_kprobes(kps, i);
1850                         break;
1851                 }
1852         }
1853         return ret;
1854 }
1855 EXPORT_SYMBOL_GPL(register_kprobes);
1856
1857 void unregister_kprobe(struct kprobe *p)
1858 {
1859         unregister_kprobes(&p, 1);
1860 }
1861 EXPORT_SYMBOL_GPL(unregister_kprobe);
1862
1863 void unregister_kprobes(struct kprobe **kps, int num)
1864 {
1865         int i;
1866
1867         if (num <= 0)
1868                 return;
1869         mutex_lock(&kprobe_mutex);
1870         for (i = 0; i < num; i++)
1871                 if (__unregister_kprobe_top(kps[i]) < 0)
1872                         kps[i]->addr = NULL;
1873         mutex_unlock(&kprobe_mutex);
1874
1875         synchronize_rcu();
1876         for (i = 0; i < num; i++)
1877                 if (kps[i]->addr)
1878                         __unregister_kprobe_bottom(kps[i]);
1879 }
1880 EXPORT_SYMBOL_GPL(unregister_kprobes);
1881
1882 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1883                                         unsigned long val, void *data)
1884 {
1885         return NOTIFY_DONE;
1886 }
1887 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1888
1889 static struct notifier_block kprobe_exceptions_nb = {
1890         .notifier_call = kprobe_exceptions_notify,
1891         .priority = 0x7fffffff /* we need to be notified first */
1892 };
1893
1894 unsigned long __weak arch_deref_entry_point(void *entry)
1895 {
1896         return (unsigned long)entry;
1897 }
1898
1899 #ifdef CONFIG_KRETPROBES
1900 /*
1901  * This kprobe pre_handler is registered with every kretprobe. When probe
1902  * hits it will set up the return probe.
1903  */
1904 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1905 {
1906         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1907         unsigned long hash, flags = 0;
1908         struct kretprobe_instance *ri;
1909
1910         /*
1911          * To avoid deadlocks, prohibit return probing in NMI contexts,
1912          * just skip the probe and increase the (inexact) 'nmissed'
1913          * statistical counter, so that the user is informed that
1914          * something happened:
1915          */
1916         if (unlikely(in_nmi())) {
1917                 rp->nmissed++;
1918                 return 0;
1919         }
1920
1921         /* TODO: consider to only swap the RA after the last pre_handler fired */
1922         hash = hash_ptr(current, KPROBE_HASH_BITS);
1923         raw_spin_lock_irqsave(&rp->lock, flags);
1924         if (!hlist_empty(&rp->free_instances)) {
1925                 ri = hlist_entry(rp->free_instances.first,
1926                                 struct kretprobe_instance, hlist);
1927                 hlist_del(&ri->hlist);
1928                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1929
1930                 ri->rp = rp;
1931                 ri->task = current;
1932
1933                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1934                         raw_spin_lock_irqsave(&rp->lock, flags);
1935                         hlist_add_head(&ri->hlist, &rp->free_instances);
1936                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1937                         return 0;
1938                 }
1939
1940                 arch_prepare_kretprobe(ri, regs);
1941
1942                 /* XXX(hch): why is there no hlist_move_head? */
1943                 INIT_HLIST_NODE(&ri->hlist);
1944                 kretprobe_table_lock(hash, &flags);
1945                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1946                 kretprobe_table_unlock(hash, &flags);
1947         } else {
1948                 rp->nmissed++;
1949                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1950         }
1951         return 0;
1952 }
1953 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1954
1955 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1956 {
1957         return !offset;
1958 }
1959
1960 /**
1961  * kprobe_on_func_entry() -- check whether given address is function entry
1962  * @addr: Target address
1963  * @sym:  Target symbol name
1964  * @offset: The offset from the symbol or the address
1965  *
1966  * This checks whether the given @addr+@offset or @sym+@offset is on the
1967  * function entry address or not.
1968  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1969  * And also it returns -ENOENT if it fails the symbol or address lookup.
1970  * Caller must pass @addr or @sym (either one must be NULL), or this
1971  * returns -EINVAL.
1972  */
1973 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1974 {
1975         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1976
1977         if (IS_ERR(kp_addr))
1978                 return PTR_ERR(kp_addr);
1979
1980         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1981                 return -ENOENT;
1982
1983         if (!arch_kprobe_on_func_entry(offset))
1984                 return -EINVAL;
1985
1986         return 0;
1987 }
1988
1989 int register_kretprobe(struct kretprobe *rp)
1990 {
1991         int ret;
1992         struct kretprobe_instance *inst;
1993         int i;
1994         void *addr;
1995
1996         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1997         if (ret)
1998                 return ret;
1999
2000         /* If only rp->kp.addr is specified, check reregistering kprobes */
2001         if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
2002                 return -EINVAL;
2003
2004         if (kretprobe_blacklist_size) {
2005                 addr = kprobe_addr(&rp->kp);
2006                 if (IS_ERR(addr))
2007                         return PTR_ERR(addr);
2008
2009                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2010                         if (kretprobe_blacklist[i].addr == addr)
2011                                 return -EINVAL;
2012                 }
2013         }
2014
2015         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2016                 return -E2BIG;
2017
2018         rp->kp.pre_handler = pre_handler_kretprobe;
2019         rp->kp.post_handler = NULL;
2020         rp->kp.fault_handler = NULL;
2021
2022         /* Pre-allocate memory for max kretprobe instances */
2023         if (rp->maxactive <= 0) {
2024 #ifdef CONFIG_PREEMPTION
2025                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2026 #else
2027                 rp->maxactive = num_possible_cpus();
2028 #endif
2029         }
2030         raw_spin_lock_init(&rp->lock);
2031         INIT_HLIST_HEAD(&rp->free_instances);
2032         for (i = 0; i < rp->maxactive; i++) {
2033                 inst = kmalloc(sizeof(struct kretprobe_instance) +
2034                                rp->data_size, GFP_KERNEL);
2035                 if (inst == NULL) {
2036                         free_rp_inst(rp);
2037                         return -ENOMEM;
2038                 }
2039                 INIT_HLIST_NODE(&inst->hlist);
2040                 hlist_add_head(&inst->hlist, &rp->free_instances);
2041         }
2042
2043         rp->nmissed = 0;
2044         /* Establish function entry probe point */
2045         ret = register_kprobe(&rp->kp);
2046         if (ret != 0)
2047                 free_rp_inst(rp);
2048         return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(register_kretprobe);
2051
2052 int register_kretprobes(struct kretprobe **rps, int num)
2053 {
2054         int ret = 0, i;
2055
2056         if (num <= 0)
2057                 return -EINVAL;
2058         for (i = 0; i < num; i++) {
2059                 ret = register_kretprobe(rps[i]);
2060                 if (ret < 0) {
2061                         if (i > 0)
2062                                 unregister_kretprobes(rps, i);
2063                         break;
2064                 }
2065         }
2066         return ret;
2067 }
2068 EXPORT_SYMBOL_GPL(register_kretprobes);
2069
2070 void unregister_kretprobe(struct kretprobe *rp)
2071 {
2072         unregister_kretprobes(&rp, 1);
2073 }
2074 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2075
2076 void unregister_kretprobes(struct kretprobe **rps, int num)
2077 {
2078         int i;
2079
2080         if (num <= 0)
2081                 return;
2082         mutex_lock(&kprobe_mutex);
2083         for (i = 0; i < num; i++)
2084                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2085                         rps[i]->kp.addr = NULL;
2086         mutex_unlock(&kprobe_mutex);
2087
2088         synchronize_rcu();
2089         for (i = 0; i < num; i++) {
2090                 if (rps[i]->kp.addr) {
2091                         __unregister_kprobe_bottom(&rps[i]->kp);
2092                         cleanup_rp_inst(rps[i]);
2093                 }
2094         }
2095 }
2096 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2097
2098 #else /* CONFIG_KRETPROBES */
2099 int register_kretprobe(struct kretprobe *rp)
2100 {
2101         return -ENOSYS;
2102 }
2103 EXPORT_SYMBOL_GPL(register_kretprobe);
2104
2105 int register_kretprobes(struct kretprobe **rps, int num)
2106 {
2107         return -ENOSYS;
2108 }
2109 EXPORT_SYMBOL_GPL(register_kretprobes);
2110
2111 void unregister_kretprobe(struct kretprobe *rp)
2112 {
2113 }
2114 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2115
2116 void unregister_kretprobes(struct kretprobe **rps, int num)
2117 {
2118 }
2119 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2120
2121 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2122 {
2123         return 0;
2124 }
2125 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2126
2127 #endif /* CONFIG_KRETPROBES */
2128
2129 /* Set the kprobe gone and remove its instruction buffer. */
2130 static void kill_kprobe(struct kprobe *p)
2131 {
2132         struct kprobe *kp;
2133
2134         if (WARN_ON_ONCE(kprobe_gone(p)))
2135                 return;
2136
2137         p->flags |= KPROBE_FLAG_GONE;
2138         if (kprobe_aggrprobe(p)) {
2139                 /*
2140                  * If this is an aggr_kprobe, we have to list all the
2141                  * chained probes and mark them GONE.
2142                  */
2143                 list_for_each_entry_rcu(kp, &p->list, list)
2144                         kp->flags |= KPROBE_FLAG_GONE;
2145                 p->post_handler = NULL;
2146                 kill_optimized_kprobe(p);
2147         }
2148         /*
2149          * Here, we can remove insn_slot safely, because no thread calls
2150          * the original probed function (which will be freed soon) any more.
2151          */
2152         arch_remove_kprobe(p);
2153
2154         /*
2155          * The module is going away. We should disarm the kprobe which
2156          * is using ftrace, because ftrace framework is still available at
2157          * MODULE_STATE_GOING notification.
2158          */
2159         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2160                 disarm_kprobe_ftrace(p);
2161 }
2162
2163 /* Disable one kprobe */
2164 int disable_kprobe(struct kprobe *kp)
2165 {
2166         int ret = 0;
2167         struct kprobe *p;
2168
2169         mutex_lock(&kprobe_mutex);
2170
2171         /* Disable this kprobe */
2172         p = __disable_kprobe(kp);
2173         if (IS_ERR(p))
2174                 ret = PTR_ERR(p);
2175
2176         mutex_unlock(&kprobe_mutex);
2177         return ret;
2178 }
2179 EXPORT_SYMBOL_GPL(disable_kprobe);
2180
2181 /* Enable one kprobe */
2182 int enable_kprobe(struct kprobe *kp)
2183 {
2184         int ret = 0;
2185         struct kprobe *p;
2186
2187         mutex_lock(&kprobe_mutex);
2188
2189         /* Check whether specified probe is valid. */
2190         p = __get_valid_kprobe(kp);
2191         if (unlikely(p == NULL)) {
2192                 ret = -EINVAL;
2193                 goto out;
2194         }
2195
2196         if (kprobe_gone(kp)) {
2197                 /* This kprobe has gone, we couldn't enable it. */
2198                 ret = -EINVAL;
2199                 goto out;
2200         }
2201
2202         if (p != kp)
2203                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2204
2205         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2206                 p->flags &= ~KPROBE_FLAG_DISABLED;
2207                 ret = arm_kprobe(p);
2208                 if (ret) {
2209                         p->flags |= KPROBE_FLAG_DISABLED;
2210                         if (p != kp)
2211                                 kp->flags |= KPROBE_FLAG_DISABLED;
2212                 }
2213         }
2214 out:
2215         mutex_unlock(&kprobe_mutex);
2216         return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(enable_kprobe);
2219
2220 /* Caller must NOT call this in usual path. This is only for critical case */
2221 void dump_kprobe(struct kprobe *kp)
2222 {
2223         pr_err("Dumping kprobe:\n");
2224         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2225                kp->symbol_name, kp->offset, kp->addr);
2226 }
2227 NOKPROBE_SYMBOL(dump_kprobe);
2228
2229 int kprobe_add_ksym_blacklist(unsigned long entry)
2230 {
2231         struct kprobe_blacklist_entry *ent;
2232         unsigned long offset = 0, size = 0;
2233
2234         if (!kernel_text_address(entry) ||
2235             !kallsyms_lookup_size_offset(entry, &size, &offset))
2236                 return -EINVAL;
2237
2238         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2239         if (!ent)
2240                 return -ENOMEM;
2241         ent->start_addr = entry;
2242         ent->end_addr = entry + size;
2243         INIT_LIST_HEAD(&ent->list);
2244         list_add_tail(&ent->list, &kprobe_blacklist);
2245
2246         return (int)size;
2247 }
2248
2249 /* Add all symbols in given area into kprobe blacklist */
2250 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2251 {
2252         unsigned long entry;
2253         int ret = 0;
2254
2255         for (entry = start; entry < end; entry += ret) {
2256                 ret = kprobe_add_ksym_blacklist(entry);
2257                 if (ret < 0)
2258                         return ret;
2259                 if (ret == 0)   /* In case of alias symbol */
2260                         ret = 1;
2261         }
2262         return 0;
2263 }
2264
2265 int __init __weak arch_populate_kprobe_blacklist(void)
2266 {
2267         return 0;
2268 }
2269
2270 /*
2271  * Lookup and populate the kprobe_blacklist.
2272  *
2273  * Unlike the kretprobe blacklist, we'll need to determine
2274  * the range of addresses that belong to the said functions,
2275  * since a kprobe need not necessarily be at the beginning
2276  * of a function.
2277  */
2278 static int __init populate_kprobe_blacklist(unsigned long *start,
2279                                              unsigned long *end)
2280 {
2281         unsigned long entry;
2282         unsigned long *iter;
2283         int ret;
2284
2285         for (iter = start; iter < end; iter++) {
2286                 entry = arch_deref_entry_point((void *)*iter);
2287                 ret = kprobe_add_ksym_blacklist(entry);
2288                 if (ret == -EINVAL)
2289                         continue;
2290                 if (ret < 0)
2291                         return ret;
2292         }
2293
2294         /* Symbols in __kprobes_text are blacklisted */
2295         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2296                                         (unsigned long)__kprobes_text_end);
2297
2298         return ret ? : arch_populate_kprobe_blacklist();
2299 }
2300
2301 /* Module notifier call back, checking kprobes on the module */
2302 static int kprobes_module_callback(struct notifier_block *nb,
2303                                    unsigned long val, void *data)
2304 {
2305         struct module *mod = data;
2306         struct hlist_head *head;
2307         struct kprobe *p;
2308         unsigned int i;
2309         int checkcore = (val == MODULE_STATE_GOING);
2310
2311         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2312                 return NOTIFY_DONE;
2313
2314         /*
2315          * When MODULE_STATE_GOING was notified, both of module .text and
2316          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2317          * notified, only .init.text section would be freed. We need to
2318          * disable kprobes which have been inserted in the sections.
2319          */
2320         mutex_lock(&kprobe_mutex);
2321         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2322                 head = &kprobe_table[i];
2323                 hlist_for_each_entry_rcu(p, head, hlist) {
2324                         if (kprobe_gone(p))
2325                                 continue;
2326
2327                         if (within_module_init((unsigned long)p->addr, mod) ||
2328                             (checkcore &&
2329                              within_module_core((unsigned long)p->addr, mod))) {
2330                                 /*
2331                                  * The vaddr this probe is installed will soon
2332                                  * be vfreed buy not synced to disk. Hence,
2333                                  * disarming the breakpoint isn't needed.
2334                                  *
2335                                  * Note, this will also move any optimized probes
2336                                  * that are pending to be removed from their
2337                                  * corresponding lists to the freeing_list and
2338                                  * will not be touched by the delayed
2339                                  * kprobe_optimizer work handler.
2340                                  */
2341                                 kill_kprobe(p);
2342                         }
2343                 }
2344         }
2345         mutex_unlock(&kprobe_mutex);
2346         return NOTIFY_DONE;
2347 }
2348
2349 static struct notifier_block kprobe_module_nb = {
2350         .notifier_call = kprobes_module_callback,
2351         .priority = 0
2352 };
2353
2354 /* Markers of _kprobe_blacklist section */
2355 extern unsigned long __start_kprobe_blacklist[];
2356 extern unsigned long __stop_kprobe_blacklist[];
2357
2358 void kprobe_free_init_mem(void)
2359 {
2360         void *start = (void *)(&__init_begin);
2361         void *end = (void *)(&__init_end);
2362         struct hlist_head *head;
2363         struct kprobe *p;
2364         int i;
2365
2366         mutex_lock(&kprobe_mutex);
2367
2368         /* Kill all kprobes on initmem */
2369         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2370                 head = &kprobe_table[i];
2371                 hlist_for_each_entry(p, head, hlist) {
2372                         if (start <= (void *)p->addr && (void *)p->addr < end)
2373                                 kill_kprobe(p);
2374                 }
2375         }
2376
2377         mutex_unlock(&kprobe_mutex);
2378 }
2379
2380 static int __init init_kprobes(void)
2381 {
2382         int i, err = 0;
2383
2384         /* FIXME allocate the probe table, currently defined statically */
2385         /* initialize all list heads */
2386         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2387                 INIT_HLIST_HEAD(&kprobe_table[i]);
2388                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2389                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2390         }
2391
2392         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2393                                         __stop_kprobe_blacklist);
2394         if (err) {
2395                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2396                 pr_err("Please take care of using kprobes.\n");
2397         }
2398
2399         if (kretprobe_blacklist_size) {
2400                 /* lookup the function address from its name */
2401                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2402                         kretprobe_blacklist[i].addr =
2403                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2404                         if (!kretprobe_blacklist[i].addr)
2405                                 printk("kretprobe: lookup failed: %s\n",
2406                                        kretprobe_blacklist[i].name);
2407                 }
2408         }
2409
2410 #if defined(CONFIG_OPTPROBES)
2411 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2412         /* Init kprobe_optinsn_slots */
2413         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2414 #endif
2415         /* By default, kprobes can be optimized */
2416         kprobes_allow_optimization = true;
2417 #endif
2418
2419         /* By default, kprobes are armed */
2420         kprobes_all_disarmed = false;
2421
2422         err = arch_init_kprobes();
2423         if (!err)
2424                 err = register_die_notifier(&kprobe_exceptions_nb);
2425         if (!err)
2426                 err = register_module_notifier(&kprobe_module_nb);
2427
2428         kprobes_initialized = (err == 0);
2429
2430         if (!err)
2431                 init_test_probes();
2432         return err;
2433 }
2434 subsys_initcall(init_kprobes);
2435
2436 #ifdef CONFIG_DEBUG_FS
2437 static void report_probe(struct seq_file *pi, struct kprobe *p,
2438                 const char *sym, int offset, char *modname, struct kprobe *pp)
2439 {
2440         char *kprobe_type;
2441         void *addr = p->addr;
2442
2443         if (p->pre_handler == pre_handler_kretprobe)
2444                 kprobe_type = "r";
2445         else
2446                 kprobe_type = "k";
2447
2448         if (!kallsyms_show_value(pi->file->f_cred))
2449                 addr = NULL;
2450
2451         if (sym)
2452                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2453                         addr, kprobe_type, sym, offset,
2454                         (modname ? modname : " "));
2455         else    /* try to use %pS */
2456                 seq_printf(pi, "%px  %s  %pS ",
2457                         addr, kprobe_type, p->addr);
2458
2459         if (!pp)
2460                 pp = p;
2461         seq_printf(pi, "%s%s%s%s\n",
2462                 (kprobe_gone(p) ? "[GONE]" : ""),
2463                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2464                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2465                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2466 }
2467
2468 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2469 {
2470         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2471 }
2472
2473 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2474 {
2475         (*pos)++;
2476         if (*pos >= KPROBE_TABLE_SIZE)
2477                 return NULL;
2478         return pos;
2479 }
2480
2481 static void kprobe_seq_stop(struct seq_file *f, void *v)
2482 {
2483         /* Nothing to do */
2484 }
2485
2486 static int show_kprobe_addr(struct seq_file *pi, void *v)
2487 {
2488         struct hlist_head *head;
2489         struct kprobe *p, *kp;
2490         const char *sym = NULL;
2491         unsigned int i = *(loff_t *) v;
2492         unsigned long offset = 0;
2493         char *modname, namebuf[KSYM_NAME_LEN];
2494
2495         head = &kprobe_table[i];
2496         preempt_disable();
2497         hlist_for_each_entry_rcu(p, head, hlist) {
2498                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2499                                         &offset, &modname, namebuf);
2500                 if (kprobe_aggrprobe(p)) {
2501                         list_for_each_entry_rcu(kp, &p->list, list)
2502                                 report_probe(pi, kp, sym, offset, modname, p);
2503                 } else
2504                         report_probe(pi, p, sym, offset, modname, NULL);
2505         }
2506         preempt_enable();
2507         return 0;
2508 }
2509
2510 static const struct seq_operations kprobes_seq_ops = {
2511         .start = kprobe_seq_start,
2512         .next  = kprobe_seq_next,
2513         .stop  = kprobe_seq_stop,
2514         .show  = show_kprobe_addr
2515 };
2516
2517 static int kprobes_open(struct inode *inode, struct file *filp)
2518 {
2519         return seq_open(filp, &kprobes_seq_ops);
2520 }
2521
2522 static const struct file_operations debugfs_kprobes_operations = {
2523         .open           = kprobes_open,
2524         .read           = seq_read,
2525         .llseek         = seq_lseek,
2526         .release        = seq_release,
2527 };
2528
2529 /* kprobes/blacklist -- shows which functions can not be probed */
2530 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2531 {
2532         return seq_list_start(&kprobe_blacklist, *pos);
2533 }
2534
2535 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2536 {
2537         return seq_list_next(v, &kprobe_blacklist, pos);
2538 }
2539
2540 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2541 {
2542         struct kprobe_blacklist_entry *ent =
2543                 list_entry(v, struct kprobe_blacklist_entry, list);
2544
2545         /*
2546          * If /proc/kallsyms is not showing kernel address, we won't
2547          * show them here either.
2548          */
2549         if (!kallsyms_show_value(m->file->f_cred))
2550                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2551                            (void *)ent->start_addr);
2552         else
2553                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2554                            (void *)ent->end_addr, (void *)ent->start_addr);
2555         return 0;
2556 }
2557
2558 static const struct seq_operations kprobe_blacklist_seq_ops = {
2559         .start = kprobe_blacklist_seq_start,
2560         .next  = kprobe_blacklist_seq_next,
2561         .stop  = kprobe_seq_stop,       /* Reuse void function */
2562         .show  = kprobe_blacklist_seq_show,
2563 };
2564
2565 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2566 {
2567         return seq_open(filp, &kprobe_blacklist_seq_ops);
2568 }
2569
2570 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2571         .open           = kprobe_blacklist_open,
2572         .read           = seq_read,
2573         .llseek         = seq_lseek,
2574         .release        = seq_release,
2575 };
2576
2577 static int arm_all_kprobes(void)
2578 {
2579         struct hlist_head *head;
2580         struct kprobe *p;
2581         unsigned int i, total = 0, errors = 0;
2582         int err, ret = 0;
2583
2584         mutex_lock(&kprobe_mutex);
2585
2586         /* If kprobes are armed, just return */
2587         if (!kprobes_all_disarmed)
2588                 goto already_enabled;
2589
2590         /*
2591          * optimize_kprobe() called by arm_kprobe() checks
2592          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2593          * arm_kprobe.
2594          */
2595         kprobes_all_disarmed = false;
2596         /* Arming kprobes doesn't optimize kprobe itself */
2597         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2598                 head = &kprobe_table[i];
2599                 /* Arm all kprobes on a best-effort basis */
2600                 hlist_for_each_entry_rcu(p, head, hlist) {
2601                         if (!kprobe_disabled(p)) {
2602                                 err = arm_kprobe(p);
2603                                 if (err)  {
2604                                         errors++;
2605                                         ret = err;
2606                                 }
2607                                 total++;
2608                         }
2609                 }
2610         }
2611
2612         if (errors)
2613                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2614                         errors, total);
2615         else
2616                 pr_info("Kprobes globally enabled\n");
2617
2618 already_enabled:
2619         mutex_unlock(&kprobe_mutex);
2620         return ret;
2621 }
2622
2623 static int disarm_all_kprobes(void)
2624 {
2625         struct hlist_head *head;
2626         struct kprobe *p;
2627         unsigned int i, total = 0, errors = 0;
2628         int err, ret = 0;
2629
2630         mutex_lock(&kprobe_mutex);
2631
2632         /* If kprobes are already disarmed, just return */
2633         if (kprobes_all_disarmed) {
2634                 mutex_unlock(&kprobe_mutex);
2635                 return 0;
2636         }
2637
2638         kprobes_all_disarmed = true;
2639
2640         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2641                 head = &kprobe_table[i];
2642                 /* Disarm all kprobes on a best-effort basis */
2643                 hlist_for_each_entry_rcu(p, head, hlist) {
2644                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2645                                 err = disarm_kprobe(p, false);
2646                                 if (err) {
2647                                         errors++;
2648                                         ret = err;
2649                                 }
2650                                 total++;
2651                         }
2652                 }
2653         }
2654
2655         if (errors)
2656                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2657                         errors, total);
2658         else
2659                 pr_info("Kprobes globally disabled\n");
2660
2661         mutex_unlock(&kprobe_mutex);
2662
2663         /* Wait for disarming all kprobes by optimizer */
2664         wait_for_kprobe_optimizer();
2665
2666         return ret;
2667 }
2668
2669 /*
2670  * XXX: The debugfs bool file interface doesn't allow for callbacks
2671  * when the bool state is switched. We can reuse that facility when
2672  * available
2673  */
2674 static ssize_t read_enabled_file_bool(struct file *file,
2675                char __user *user_buf, size_t count, loff_t *ppos)
2676 {
2677         char buf[3];
2678
2679         if (!kprobes_all_disarmed)
2680                 buf[0] = '1';
2681         else
2682                 buf[0] = '0';
2683         buf[1] = '\n';
2684         buf[2] = 0x00;
2685         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2686 }
2687
2688 static ssize_t write_enabled_file_bool(struct file *file,
2689                const char __user *user_buf, size_t count, loff_t *ppos)
2690 {
2691         char buf[32];
2692         size_t buf_size;
2693         int ret = 0;
2694
2695         buf_size = min(count, (sizeof(buf)-1));
2696         if (copy_from_user(buf, user_buf, buf_size))
2697                 return -EFAULT;
2698
2699         buf[buf_size] = '\0';
2700         switch (buf[0]) {
2701         case 'y':
2702         case 'Y':
2703         case '1':
2704                 ret = arm_all_kprobes();
2705                 break;
2706         case 'n':
2707         case 'N':
2708         case '0':
2709                 ret = disarm_all_kprobes();
2710                 break;
2711         default:
2712                 return -EINVAL;
2713         }
2714
2715         if (ret)
2716                 return ret;
2717
2718         return count;
2719 }
2720
2721 static const struct file_operations fops_kp = {
2722         .read =         read_enabled_file_bool,
2723         .write =        write_enabled_file_bool,
2724         .llseek =       default_llseek,
2725 };
2726
2727 static int __init debugfs_kprobe_init(void)
2728 {
2729         struct dentry *dir;
2730
2731         dir = debugfs_create_dir("kprobes", NULL);
2732
2733         debugfs_create_file("list", 0400, dir, NULL,
2734                             &debugfs_kprobes_operations);
2735
2736         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2737
2738         debugfs_create_file("blacklist", 0400, dir, NULL,
2739                             &debugfs_kprobe_blacklist_ops);
2740
2741         return 0;
2742 }
2743
2744 late_initcall(debugfs_kprobe_init);
2745 #endif /* CONFIG_DEBUG_FS */