GNU Linux-libre 6.8.9-gnu
[releases.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *              Probes initial implementation (includes suggestions from
9  *              Rusty Russell).
10  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *              hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *              interface to access function arguments.
14  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *              exceptions notifier to be first on the priority list.
16  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *              <prasanna@in.ibm.com> added function-return probes.
19  */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58  * Or
59  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60  */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71                                         unsigned int __unused)
72 {
73         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75
76 /*
77  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78  * kprobes can not probe.
79  */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90         struct list_head list;
91         kprobe_opcode_t *insns;         /* Page of instruction slots */
92         struct kprobe_insn_cache *cache;
93         int nused;
94         int ngarbage;
95         char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
99         (offsetof(struct kprobe_insn_page, slot_used) + \
100          (sizeof(char) * (slots)))
101
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108         SLOT_CLEAN = 0,
109         SLOT_DIRTY = 1,
110         SLOT_USED = 2,
111 };
112
113 void __weak *alloc_insn_page(void)
114 {
115         /*
116          * Use module_alloc() so this page is within +/- 2GB of where the
117          * kernel image and loaded module images reside. This is required
118          * for most of the architectures.
119          * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120          */
121         return module_alloc(PAGE_SIZE);
122 }
123
124 static void free_insn_page(void *page)
125 {
126         module_memfree(page);
127 }
128
129 struct kprobe_insn_cache kprobe_insn_slots = {
130         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131         .alloc = alloc_insn_page,
132         .free = free_insn_page,
133         .sym = KPROBE_INSN_PAGE_SYM,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156
157                         for (i = 0; i < slots_per_page(c); i++) {
158                                 if (kip->slot_used[i] == SLOT_CLEAN) {
159                                         kip->slot_used[i] = SLOT_USED;
160                                         kip->nused++;
161                                         slot = kip->insns + (i * c->insn_size);
162                                         rcu_read_unlock();
163                                         goto out;
164                                 }
165                         }
166                         /* kip->nused is broken. Fix it. */
167                         kip->nused = slots_per_page(c);
168                         WARN_ON(1);
169                 }
170         }
171         rcu_read_unlock();
172
173         /* If there are any garbage slots, collect it and try again. */
174         if (c->nr_garbage && collect_garbage_slots(c) == 0)
175                 goto retry;
176
177         /* All out of space.  Need to allocate a new page. */
178         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179         if (!kip)
180                 goto out;
181
182         kip->insns = c->alloc();
183         if (!kip->insns) {
184                 kfree(kip);
185                 goto out;
186         }
187         INIT_LIST_HEAD(&kip->list);
188         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189         kip->slot_used[0] = SLOT_USED;
190         kip->nused = 1;
191         kip->ngarbage = 0;
192         kip->cache = c;
193         list_add_rcu(&kip->list, &c->pages);
194         slot = kip->insns;
195
196         /* Record the perf ksymbol register event after adding the page */
197         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198                            PAGE_SIZE, false, c->sym);
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         /*
218                          * Record perf ksymbol unregister event before removing
219                          * the page.
220                          */
221                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222                                            (unsigned long)kip->insns, PAGE_SIZE, true,
223                                            kip->cache->sym);
224                         list_del_rcu(&kip->list);
225                         synchronize_rcu();
226                         kip->cache->free(kip->insns);
227                         kfree(kip);
228                 }
229                 return true;
230         }
231         return false;
232 }
233
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236         struct kprobe_insn_page *kip, *next;
237
238         /* Ensure no-one is interrupted on the garbages */
239         synchronize_rcu();
240
241         list_for_each_entry_safe(kip, next, &c->pages, list) {
242                 int i;
243
244                 if (kip->ngarbage == 0)
245                         continue;
246                 kip->ngarbage = 0;      /* we will collect all garbages */
247                 for (i = 0; i < slots_per_page(c); i++) {
248                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249                                 break;
250                 }
251         }
252         c->nr_garbage = 0;
253         return 0;
254 }
255
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257                       kprobe_opcode_t *slot, int dirty)
258 {
259         struct kprobe_insn_page *kip;
260         long idx;
261
262         mutex_lock(&c->mutex);
263         rcu_read_lock();
264         list_for_each_entry_rcu(kip, &c->pages, list) {
265                 idx = ((long)slot - (long)kip->insns) /
266                         (c->insn_size * sizeof(kprobe_opcode_t));
267                 if (idx >= 0 && idx < slots_per_page(c))
268                         goto out;
269         }
270         /* Could not find this slot. */
271         WARN_ON(1);
272         kip = NULL;
273 out:
274         rcu_read_unlock();
275         /* Mark and sweep: this may sleep */
276         if (kip) {
277                 /* Check double free */
278                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
279                 if (dirty) {
280                         kip->slot_used[idx] = SLOT_DIRTY;
281                         kip->ngarbage++;
282                         if (++c->nr_garbage > slots_per_page(c))
283                                 collect_garbage_slots(c);
284                 } else {
285                         collect_one_slot(kip, idx);
286                 }
287         }
288         mutex_unlock(&c->mutex);
289 }
290
291 /*
292  * Check given address is on the page of kprobe instruction slots.
293  * This will be used for checking whether the address on a stack
294  * is on a text area or not.
295  */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298         struct kprobe_insn_page *kip;
299         bool ret = false;
300
301         rcu_read_lock();
302         list_for_each_entry_rcu(kip, &c->pages, list) {
303                 if (addr >= (unsigned long)kip->insns &&
304                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
305                         ret = true;
306                         break;
307                 }
308         }
309         rcu_read_unlock();
310
311         return ret;
312 }
313
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315                              unsigned long *value, char *type, char *sym)
316 {
317         struct kprobe_insn_page *kip;
318         int ret = -ERANGE;
319
320         rcu_read_lock();
321         list_for_each_entry_rcu(kip, &c->pages, list) {
322                 if ((*symnum)--)
323                         continue;
324                 strscpy(sym, c->sym, KSYM_NAME_LEN);
325                 *type = 't';
326                 *value = (unsigned long)kip->insns;
327                 ret = 0;
328                 break;
329         }
330         rcu_read_unlock();
331
332         return ret;
333 }
334
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338         return alloc_insn_page();
339 }
340
341 void __weak free_optinsn_page(void *page)
342 {
343         free_insn_page(page);
344 }
345
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349         .alloc = alloc_optinsn_page,
350         .free = free_optinsn_page,
351         .sym = KPROBE_OPTINSN_PAGE_SYM,
352         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353         /* .insn_size is initialized later */
354         .nr_garbage = 0,
355 };
356 #endif
357 #endif
358
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362         __this_cpu_write(kprobe_instance, kp);
363 }
364
365 static inline void reset_kprobe_instance(void)
366 {
367         __this_cpu_write(kprobe_instance, NULL);
368 }
369
370 /*
371  * This routine is called either:
372  *      - under the 'kprobe_mutex' - during kprobe_[un]register().
373  *                              OR
374  *      - with preemption disabled - from architecture specific code.
375  */
376 struct kprobe *get_kprobe(void *addr)
377 {
378         struct hlist_head *head;
379         struct kprobe *p;
380
381         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382         hlist_for_each_entry_rcu(p, head, hlist,
383                                  lockdep_is_held(&kprobe_mutex)) {
384                 if (p->addr == addr)
385                         return p;
386         }
387
388         return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397         return p->pre_handler == aggr_pre_handler;
398 }
399
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404                list_empty(&p->list);
405 }
406
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417
418 /*
419  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420  * This must be called from arch-dep optimized caller.
421  */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424         struct kprobe *kp;
425
426         list_for_each_entry_rcu(kp, &p->list, list) {
427                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428                         set_kprobe_instance(kp);
429                         kp->pre_handler(kp, regs);
430                 }
431                 reset_kprobe_instance();
432         }
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439         struct optimized_kprobe *op;
440
441         op = container_of(p, struct optimized_kprobe, kp);
442         arch_remove_optimized_kprobe(op);
443         arch_remove_kprobe(p);
444         kfree(op);
445 }
446
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450         struct optimized_kprobe *op;
451
452         if (kprobe_aggrprobe(p)) {
453                 op = container_of(p, struct optimized_kprobe, kp);
454                 return arch_prepared_optinsn(&op->optinsn);
455         }
456
457         return 0;
458 }
459
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 bool kprobe_disarmed(struct kprobe *p)
462 {
463         struct optimized_kprobe *op;
464
465         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466         if (!kprobe_aggrprobe(p))
467                 return kprobe_disabled(p);
468
469         op = container_of(p, struct optimized_kprobe, kp);
470
471         return kprobe_disabled(p) && list_empty(&op->list);
472 }
473
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477         struct optimized_kprobe *op;
478
479         if (kprobe_aggrprobe(p)) {
480                 op = container_of(p, struct optimized_kprobe, kp);
481                 if (!list_empty(&op->list))
482                         return true;
483         }
484         return false;
485 }
486
487 /*
488  * Return an optimized kprobe whose optimizing code replaces
489  * instructions including 'addr' (exclude breakpoint).
490  */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493         int i;
494         struct kprobe *p = NULL;
495         struct optimized_kprobe *op;
496
497         /* Don't check i == 0, since that is a breakpoint case. */
498         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499                 p = get_kprobe(addr - i);
500
501         if (p && kprobe_optready(p)) {
502                 op = container_of(p, struct optimized_kprobe, kp);
503                 if (arch_within_optimized_kprobe(op, addr))
504                         return p;
505         }
506
507         return NULL;
508 }
509
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518
519 /*
520  * Optimize (replace a breakpoint with a jump) kprobes listed on
521  * 'optimizing_list'.
522  */
523 static void do_optimize_kprobes(void)
524 {
525         lockdep_assert_held(&text_mutex);
526         /*
527          * The optimization/unoptimization refers 'online_cpus' via
528          * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529          * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530          * This combination can cause a deadlock (cpu-hotplug tries to lock
531          * 'text_mutex' but stop_machine() can not be done because
532          * the 'online_cpus' has been changed)
533          * To avoid this deadlock, caller must have locked cpu-hotplug
534          * for preventing cpu-hotplug outside of 'text_mutex' locking.
535          */
536         lockdep_assert_cpus_held();
537
538         /* Optimization never be done when disarmed */
539         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540             list_empty(&optimizing_list))
541                 return;
542
543         arch_optimize_kprobes(&optimizing_list);
544 }
545
546 /*
547  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548  * if need) kprobes listed on 'unoptimizing_list'.
549  */
550 static void do_unoptimize_kprobes(void)
551 {
552         struct optimized_kprobe *op, *tmp;
553
554         lockdep_assert_held(&text_mutex);
555         /* See comment in do_optimize_kprobes() */
556         lockdep_assert_cpus_held();
557
558         if (!list_empty(&unoptimizing_list))
559                 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560
561         /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
562         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
563                 /* Switching from detour code to origin */
564                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
565                 /* Disarm probes if marked disabled and not gone */
566                 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
567                         arch_disarm_kprobe(&op->kp);
568                 if (kprobe_unused(&op->kp)) {
569                         /*
570                          * Remove unused probes from hash list. After waiting
571                          * for synchronization, these probes are reclaimed.
572                          * (reclaiming is done by do_free_cleaned_kprobes().)
573                          */
574                         hlist_del_rcu(&op->kp.hlist);
575                 } else
576                         list_del_init(&op->list);
577         }
578 }
579
580 /* Reclaim all kprobes on the 'freeing_list' */
581 static void do_free_cleaned_kprobes(void)
582 {
583         struct optimized_kprobe *op, *tmp;
584
585         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
586                 list_del_init(&op->list);
587                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
588                         /*
589                          * This must not happen, but if there is a kprobe
590                          * still in use, keep it on kprobes hash list.
591                          */
592                         continue;
593                 }
594                 free_aggr_kprobe(&op->kp);
595         }
596 }
597
598 /* Start optimizer after OPTIMIZE_DELAY passed */
599 static void kick_kprobe_optimizer(void)
600 {
601         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
602 }
603
604 /* Kprobe jump optimizer */
605 static void kprobe_optimizer(struct work_struct *work)
606 {
607         mutex_lock(&kprobe_mutex);
608         cpus_read_lock();
609         mutex_lock(&text_mutex);
610
611         /*
612          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
613          * kprobes before waiting for quiesence period.
614          */
615         do_unoptimize_kprobes();
616
617         /*
618          * Step 2: Wait for quiesence period to ensure all potentially
619          * preempted tasks to have normally scheduled. Because optprobe
620          * may modify multiple instructions, there is a chance that Nth
621          * instruction is preempted. In that case, such tasks can return
622          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
623          * Note that on non-preemptive kernel, this is transparently converted
624          * to synchronoze_sched() to wait for all interrupts to have completed.
625          */
626         synchronize_rcu_tasks();
627
628         /* Step 3: Optimize kprobes after quiesence period */
629         do_optimize_kprobes();
630
631         /* Step 4: Free cleaned kprobes after quiesence period */
632         do_free_cleaned_kprobes();
633
634         mutex_unlock(&text_mutex);
635         cpus_read_unlock();
636
637         /* Step 5: Kick optimizer again if needed */
638         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
639                 kick_kprobe_optimizer();
640
641         mutex_unlock(&kprobe_mutex);
642 }
643
644 /* Wait for completing optimization and unoptimization */
645 void wait_for_kprobe_optimizer(void)
646 {
647         mutex_lock(&kprobe_mutex);
648
649         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
650                 mutex_unlock(&kprobe_mutex);
651
652                 /* This will also make 'optimizing_work' execute immmediately */
653                 flush_delayed_work(&optimizing_work);
654                 /* 'optimizing_work' might not have been queued yet, relax */
655                 cpu_relax();
656
657                 mutex_lock(&kprobe_mutex);
658         }
659
660         mutex_unlock(&kprobe_mutex);
661 }
662
663 bool optprobe_queued_unopt(struct optimized_kprobe *op)
664 {
665         struct optimized_kprobe *_op;
666
667         list_for_each_entry(_op, &unoptimizing_list, list) {
668                 if (op == _op)
669                         return true;
670         }
671
672         return false;
673 }
674
675 /* Optimize kprobe if p is ready to be optimized */
676 static void optimize_kprobe(struct kprobe *p)
677 {
678         struct optimized_kprobe *op;
679
680         /* Check if the kprobe is disabled or not ready for optimization. */
681         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682             (kprobe_disabled(p) || kprobes_all_disarmed))
683                 return;
684
685         /* kprobes with 'post_handler' can not be optimized */
686         if (p->post_handler)
687                 return;
688
689         op = container_of(p, struct optimized_kprobe, kp);
690
691         /* Check there is no other kprobes at the optimized instructions */
692         if (arch_check_optimized_kprobe(op) < 0)
693                 return;
694
695         /* Check if it is already optimized. */
696         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697                 if (optprobe_queued_unopt(op)) {
698                         /* This is under unoptimizing. Just dequeue the probe */
699                         list_del_init(&op->list);
700                 }
701                 return;
702         }
703         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705         /*
706          * On the 'unoptimizing_list' and 'optimizing_list',
707          * 'op' must have OPTIMIZED flag
708          */
709         if (WARN_ON_ONCE(!list_empty(&op->list)))
710                 return;
711
712         list_add(&op->list, &optimizing_list);
713         kick_kprobe_optimizer();
714 }
715
716 /* Short cut to direct unoptimizing */
717 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718 {
719         lockdep_assert_cpus_held();
720         arch_unoptimize_kprobe(op);
721         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 }
723
724 /* Unoptimize a kprobe if p is optimized */
725 static void unoptimize_kprobe(struct kprobe *p, bool force)
726 {
727         struct optimized_kprobe *op;
728
729         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730                 return; /* This is not an optprobe nor optimized */
731
732         op = container_of(p, struct optimized_kprobe, kp);
733         if (!kprobe_optimized(p))
734                 return;
735
736         if (!list_empty(&op->list)) {
737                 if (optprobe_queued_unopt(op)) {
738                         /* Queued in unoptimizing queue */
739                         if (force) {
740                                 /*
741                                  * Forcibly unoptimize the kprobe here, and queue it
742                                  * in the freeing list for release afterwards.
743                                  */
744                                 force_unoptimize_kprobe(op);
745                                 list_move(&op->list, &freeing_list);
746                         }
747                 } else {
748                         /* Dequeue from the optimizing queue */
749                         list_del_init(&op->list);
750                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751                 }
752                 return;
753         }
754
755         /* Optimized kprobe case */
756         if (force) {
757                 /* Forcibly update the code: this is a special case */
758                 force_unoptimize_kprobe(op);
759         } else {
760                 list_add(&op->list, &unoptimizing_list);
761                 kick_kprobe_optimizer();
762         }
763 }
764
765 /* Cancel unoptimizing for reusing */
766 static int reuse_unused_kprobe(struct kprobe *ap)
767 {
768         struct optimized_kprobe *op;
769
770         /*
771          * Unused kprobe MUST be on the way of delayed unoptimizing (means
772          * there is still a relative jump) and disabled.
773          */
774         op = container_of(ap, struct optimized_kprobe, kp);
775         WARN_ON_ONCE(list_empty(&op->list));
776         /* Enable the probe again */
777         ap->flags &= ~KPROBE_FLAG_DISABLED;
778         /* Optimize it again. (remove from 'op->list') */
779         if (!kprobe_optready(ap))
780                 return -EINVAL;
781
782         optimize_kprobe(ap);
783         return 0;
784 }
785
786 /* Remove optimized instructions */
787 static void kill_optimized_kprobe(struct kprobe *p)
788 {
789         struct optimized_kprobe *op;
790
791         op = container_of(p, struct optimized_kprobe, kp);
792         if (!list_empty(&op->list))
793                 /* Dequeue from the (un)optimization queue */
794                 list_del_init(&op->list);
795         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797         if (kprobe_unused(p)) {
798                 /*
799                  * Unused kprobe is on unoptimizing or freeing list. We move it
800                  * to freeing_list and let the kprobe_optimizer() remove it from
801                  * the kprobe hash list and free it.
802                  */
803                 if (optprobe_queued_unopt(op))
804                         list_move(&op->list, &freeing_list);
805         }
806
807         /* Don't touch the code, because it is already freed. */
808         arch_remove_optimized_kprobe(op);
809 }
810
811 static inline
812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814         if (!kprobe_ftrace(p))
815                 arch_prepare_optimized_kprobe(op, p);
816 }
817
818 /* Try to prepare optimized instructions */
819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821         struct optimized_kprobe *op;
822
823         op = container_of(p, struct optimized_kprobe, kp);
824         __prepare_optimized_kprobe(op, p);
825 }
826
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830         struct optimized_kprobe *op;
831
832         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833         if (!op)
834                 return NULL;
835
836         INIT_LIST_HEAD(&op->list);
837         op->kp.addr = p->addr;
838         __prepare_optimized_kprobe(op, p);
839
840         return &op->kp;
841 }
842
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845 /*
846  * Prepare an optimized_kprobe and optimize it.
847  * NOTE: 'p' must be a normal registered kprobe.
848  */
849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851         struct kprobe *ap;
852         struct optimized_kprobe *op;
853
854         /* Impossible to optimize ftrace-based kprobe. */
855         if (kprobe_ftrace(p))
856                 return;
857
858         /* For preparing optimization, jump_label_text_reserved() is called. */
859         cpus_read_lock();
860         jump_label_lock();
861         mutex_lock(&text_mutex);
862
863         ap = alloc_aggr_kprobe(p);
864         if (!ap)
865                 goto out;
866
867         op = container_of(ap, struct optimized_kprobe, kp);
868         if (!arch_prepared_optinsn(&op->optinsn)) {
869                 /* If failed to setup optimizing, fallback to kprobe. */
870                 arch_remove_optimized_kprobe(op);
871                 kfree(op);
872                 goto out;
873         }
874
875         init_aggr_kprobe(ap, p);
876         optimize_kprobe(ap);    /* This just kicks optimizer thread. */
877
878 out:
879         mutex_unlock(&text_mutex);
880         jump_label_unlock();
881         cpus_read_unlock();
882 }
883
884 static void optimize_all_kprobes(void)
885 {
886         struct hlist_head *head;
887         struct kprobe *p;
888         unsigned int i;
889
890         mutex_lock(&kprobe_mutex);
891         /* If optimization is already allowed, just return. */
892         if (kprobes_allow_optimization)
893                 goto out;
894
895         cpus_read_lock();
896         kprobes_allow_optimization = true;
897         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898                 head = &kprobe_table[i];
899                 hlist_for_each_entry(p, head, hlist)
900                         if (!kprobe_disabled(p))
901                                 optimize_kprobe(p);
902         }
903         cpus_read_unlock();
904         pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905 out:
906         mutex_unlock(&kprobe_mutex);
907 }
908
909 #ifdef CONFIG_SYSCTL
910 static void unoptimize_all_kprobes(void)
911 {
912         struct hlist_head *head;
913         struct kprobe *p;
914         unsigned int i;
915
916         mutex_lock(&kprobe_mutex);
917         /* If optimization is already prohibited, just return. */
918         if (!kprobes_allow_optimization) {
919                 mutex_unlock(&kprobe_mutex);
920                 return;
921         }
922
923         cpus_read_lock();
924         kprobes_allow_optimization = false;
925         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926                 head = &kprobe_table[i];
927                 hlist_for_each_entry(p, head, hlist) {
928                         if (!kprobe_disabled(p))
929                                 unoptimize_kprobe(p, false);
930                 }
931         }
932         cpus_read_unlock();
933         mutex_unlock(&kprobe_mutex);
934
935         /* Wait for unoptimizing completion. */
936         wait_for_kprobe_optimizer();
937         pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938 }
939
940 static DEFINE_MUTEX(kprobe_sysctl_mutex);
941 static int sysctl_kprobes_optimization;
942 static int proc_kprobes_optimization_handler(struct ctl_table *table,
943                                              int write, void *buffer,
944                                              size_t *length, loff_t *ppos)
945 {
946         int ret;
947
948         mutex_lock(&kprobe_sysctl_mutex);
949         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951
952         if (sysctl_kprobes_optimization)
953                 optimize_all_kprobes();
954         else
955                 unoptimize_all_kprobes();
956         mutex_unlock(&kprobe_sysctl_mutex);
957
958         return ret;
959 }
960
961 static struct ctl_table kprobe_sysctls[] = {
962         {
963                 .procname       = "kprobes-optimization",
964                 .data           = &sysctl_kprobes_optimization,
965                 .maxlen         = sizeof(int),
966                 .mode           = 0644,
967                 .proc_handler   = proc_kprobes_optimization_handler,
968                 .extra1         = SYSCTL_ZERO,
969                 .extra2         = SYSCTL_ONE,
970         },
971         {}
972 };
973
974 static void __init kprobe_sysctls_init(void)
975 {
976         register_sysctl_init("debug", kprobe_sysctls);
977 }
978 #endif /* CONFIG_SYSCTL */
979
980 /* Put a breakpoint for a probe. */
981 static void __arm_kprobe(struct kprobe *p)
982 {
983         struct kprobe *_p;
984
985         lockdep_assert_held(&text_mutex);
986
987         /* Find the overlapping optimized kprobes. */
988         _p = get_optimized_kprobe(p->addr);
989         if (unlikely(_p))
990                 /* Fallback to unoptimized kprobe */
991                 unoptimize_kprobe(_p, true);
992
993         arch_arm_kprobe(p);
994         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
995 }
996
997 /* Remove the breakpoint of a probe. */
998 static void __disarm_kprobe(struct kprobe *p, bool reopt)
999 {
1000         struct kprobe *_p;
1001
1002         lockdep_assert_held(&text_mutex);
1003
1004         /* Try to unoptimize */
1005         unoptimize_kprobe(p, kprobes_all_disarmed);
1006
1007         if (!kprobe_queued(p)) {
1008                 arch_disarm_kprobe(p);
1009                 /* If another kprobe was blocked, re-optimize it. */
1010                 _p = get_optimized_kprobe(p->addr);
1011                 if (unlikely(_p) && reopt)
1012                         optimize_kprobe(_p);
1013         }
1014         /*
1015          * TODO: Since unoptimization and real disarming will be done by
1016          * the worker thread, we can not check whether another probe are
1017          * unoptimized because of this probe here. It should be re-optimized
1018          * by the worker thread.
1019          */
1020 }
1021
1022 #else /* !CONFIG_OPTPROBES */
1023
1024 #define optimize_kprobe(p)                      do {} while (0)
1025 #define unoptimize_kprobe(p, f)                 do {} while (0)
1026 #define kill_optimized_kprobe(p)                do {} while (0)
1027 #define prepare_optimized_kprobe(p)             do {} while (0)
1028 #define try_to_optimize_kprobe(p)               do {} while (0)
1029 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
1030 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
1031 #define kprobe_disarmed(p)                      kprobe_disabled(p)
1032 #define wait_for_kprobe_optimizer()             do {} while (0)
1033
1034 static int reuse_unused_kprobe(struct kprobe *ap)
1035 {
1036         /*
1037          * If the optimized kprobe is NOT supported, the aggr kprobe is
1038          * released at the same time that the last aggregated kprobe is
1039          * unregistered.
1040          * Thus there should be no chance to reuse unused kprobe.
1041          */
1042         WARN_ON_ONCE(1);
1043         return -EINVAL;
1044 }
1045
1046 static void free_aggr_kprobe(struct kprobe *p)
1047 {
1048         arch_remove_kprobe(p);
1049         kfree(p);
1050 }
1051
1052 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053 {
1054         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055 }
1056 #endif /* CONFIG_OPTPROBES */
1057
1058 #ifdef CONFIG_KPROBES_ON_FTRACE
1059 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060         .func = kprobe_ftrace_handler,
1061         .flags = FTRACE_OPS_FL_SAVE_REGS,
1062 };
1063
1064 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065         .func = kprobe_ftrace_handler,
1066         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067 };
1068
1069 static int kprobe_ipmodify_enabled;
1070 static int kprobe_ftrace_enabled;
1071
1072 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073                                int *cnt)
1074 {
1075         int ret;
1076
1077         lockdep_assert_held(&kprobe_mutex);
1078
1079         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080         if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081                 return ret;
1082
1083         if (*cnt == 0) {
1084                 ret = register_ftrace_function(ops);
1085                 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086                         goto err_ftrace;
1087         }
1088
1089         (*cnt)++;
1090         return ret;
1091
1092 err_ftrace:
1093         /*
1094          * At this point, sinec ops is not registered, we should be sefe from
1095          * registering empty filter.
1096          */
1097         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098         return ret;
1099 }
1100
1101 static int arm_kprobe_ftrace(struct kprobe *p)
1102 {
1103         bool ipmodify = (p->post_handler != NULL);
1104
1105         return __arm_kprobe_ftrace(p,
1106                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108 }
1109
1110 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111                                   int *cnt)
1112 {
1113         int ret;
1114
1115         lockdep_assert_held(&kprobe_mutex);
1116
1117         if (*cnt == 1) {
1118                 ret = unregister_ftrace_function(ops);
1119                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120                         return ret;
1121         }
1122
1123         (*cnt)--;
1124
1125         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127                   p->addr, ret);
1128         return ret;
1129 }
1130
1131 static int disarm_kprobe_ftrace(struct kprobe *p)
1132 {
1133         bool ipmodify = (p->post_handler != NULL);
1134
1135         return __disarm_kprobe_ftrace(p,
1136                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138 }
1139 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1140 static inline int arm_kprobe_ftrace(struct kprobe *p)
1141 {
1142         return -ENODEV;
1143 }
1144
1145 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1146 {
1147         return -ENODEV;
1148 }
1149 #endif
1150
1151 static int prepare_kprobe(struct kprobe *p)
1152 {
1153         /* Must ensure p->addr is really on ftrace */
1154         if (kprobe_ftrace(p))
1155                 return arch_prepare_kprobe_ftrace(p);
1156
1157         return arch_prepare_kprobe(p);
1158 }
1159
1160 static int arm_kprobe(struct kprobe *kp)
1161 {
1162         if (unlikely(kprobe_ftrace(kp)))
1163                 return arm_kprobe_ftrace(kp);
1164
1165         cpus_read_lock();
1166         mutex_lock(&text_mutex);
1167         __arm_kprobe(kp);
1168         mutex_unlock(&text_mutex);
1169         cpus_read_unlock();
1170
1171         return 0;
1172 }
1173
1174 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1175 {
1176         if (unlikely(kprobe_ftrace(kp)))
1177                 return disarm_kprobe_ftrace(kp);
1178
1179         cpus_read_lock();
1180         mutex_lock(&text_mutex);
1181         __disarm_kprobe(kp, reopt);
1182         mutex_unlock(&text_mutex);
1183         cpus_read_unlock();
1184
1185         return 0;
1186 }
1187
1188 /*
1189  * Aggregate handlers for multiple kprobes support - these handlers
1190  * take care of invoking the individual kprobe handlers on p->list
1191  */
1192 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1193 {
1194         struct kprobe *kp;
1195
1196         list_for_each_entry_rcu(kp, &p->list, list) {
1197                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1198                         set_kprobe_instance(kp);
1199                         if (kp->pre_handler(kp, regs))
1200                                 return 1;
1201                 }
1202                 reset_kprobe_instance();
1203         }
1204         return 0;
1205 }
1206 NOKPROBE_SYMBOL(aggr_pre_handler);
1207
1208 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1209                               unsigned long flags)
1210 {
1211         struct kprobe *kp;
1212
1213         list_for_each_entry_rcu(kp, &p->list, list) {
1214                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1215                         set_kprobe_instance(kp);
1216                         kp->post_handler(kp, regs, flags);
1217                         reset_kprobe_instance();
1218                 }
1219         }
1220 }
1221 NOKPROBE_SYMBOL(aggr_post_handler);
1222
1223 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1224 void kprobes_inc_nmissed_count(struct kprobe *p)
1225 {
1226         struct kprobe *kp;
1227
1228         if (!kprobe_aggrprobe(p)) {
1229                 p->nmissed++;
1230         } else {
1231                 list_for_each_entry_rcu(kp, &p->list, list)
1232                         kp->nmissed++;
1233         }
1234 }
1235 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1236
1237 static struct kprobe kprobe_busy = {
1238         .addr = (void *) get_kprobe,
1239 };
1240
1241 void kprobe_busy_begin(void)
1242 {
1243         struct kprobe_ctlblk *kcb;
1244
1245         preempt_disable();
1246         __this_cpu_write(current_kprobe, &kprobe_busy);
1247         kcb = get_kprobe_ctlblk();
1248         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1249 }
1250
1251 void kprobe_busy_end(void)
1252 {
1253         __this_cpu_write(current_kprobe, NULL);
1254         preempt_enable();
1255 }
1256
1257 /* Add the new probe to 'ap->list'. */
1258 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1259 {
1260         if (p->post_handler)
1261                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1262
1263         list_add_rcu(&p->list, &ap->list);
1264         if (p->post_handler && !ap->post_handler)
1265                 ap->post_handler = aggr_post_handler;
1266
1267         return 0;
1268 }
1269
1270 /*
1271  * Fill in the required fields of the aggregator kprobe. Replace the
1272  * earlier kprobe in the hlist with the aggregator kprobe.
1273  */
1274 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1275 {
1276         /* Copy the insn slot of 'p' to 'ap'. */
1277         copy_kprobe(p, ap);
1278         flush_insn_slot(ap);
1279         ap->addr = p->addr;
1280         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1281         ap->pre_handler = aggr_pre_handler;
1282         /* We don't care the kprobe which has gone. */
1283         if (p->post_handler && !kprobe_gone(p))
1284                 ap->post_handler = aggr_post_handler;
1285
1286         INIT_LIST_HEAD(&ap->list);
1287         INIT_HLIST_NODE(&ap->hlist);
1288
1289         list_add_rcu(&p->list, &ap->list);
1290         hlist_replace_rcu(&p->hlist, &ap->hlist);
1291 }
1292
1293 /*
1294  * This registers the second or subsequent kprobe at the same address.
1295  */
1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298         int ret = 0;
1299         struct kprobe *ap = orig_p;
1300
1301         cpus_read_lock();
1302
1303         /* For preparing optimization, jump_label_text_reserved() is called */
1304         jump_label_lock();
1305         mutex_lock(&text_mutex);
1306
1307         if (!kprobe_aggrprobe(orig_p)) {
1308                 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1309                 ap = alloc_aggr_kprobe(orig_p);
1310                 if (!ap) {
1311                         ret = -ENOMEM;
1312                         goto out;
1313                 }
1314                 init_aggr_kprobe(ap, orig_p);
1315         } else if (kprobe_unused(ap)) {
1316                 /* This probe is going to die. Rescue it */
1317                 ret = reuse_unused_kprobe(ap);
1318                 if (ret)
1319                         goto out;
1320         }
1321
1322         if (kprobe_gone(ap)) {
1323                 /*
1324                  * Attempting to insert new probe at the same location that
1325                  * had a probe in the module vaddr area which already
1326                  * freed. So, the instruction slot has already been
1327                  * released. We need a new slot for the new probe.
1328                  */
1329                 ret = arch_prepare_kprobe(ap);
1330                 if (ret)
1331                         /*
1332                          * Even if fail to allocate new slot, don't need to
1333                          * free the 'ap'. It will be used next time, or
1334                          * freed by unregister_kprobe().
1335                          */
1336                         goto out;
1337
1338                 /* Prepare optimized instructions if possible. */
1339                 prepare_optimized_kprobe(ap);
1340
1341                 /*
1342                  * Clear gone flag to prevent allocating new slot again, and
1343                  * set disabled flag because it is not armed yet.
1344                  */
1345                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346                             | KPROBE_FLAG_DISABLED;
1347         }
1348
1349         /* Copy the insn slot of 'p' to 'ap'. */
1350         copy_kprobe(ap, p);
1351         ret = add_new_kprobe(ap, p);
1352
1353 out:
1354         mutex_unlock(&text_mutex);
1355         jump_label_unlock();
1356         cpus_read_unlock();
1357
1358         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1360                 if (!kprobes_all_disarmed) {
1361                         /* Arm the breakpoint again. */
1362                         ret = arm_kprobe(ap);
1363                         if (ret) {
1364                                 ap->flags |= KPROBE_FLAG_DISABLED;
1365                                 list_del_rcu(&p->list);
1366                                 synchronize_rcu();
1367                         }
1368                 }
1369         }
1370         return ret;
1371 }
1372
1373 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1374 {
1375         /* The '__kprobes' functions and entry code must not be probed. */
1376         return addr >= (unsigned long)__kprobes_text_start &&
1377                addr < (unsigned long)__kprobes_text_end;
1378 }
1379
1380 static bool __within_kprobe_blacklist(unsigned long addr)
1381 {
1382         struct kprobe_blacklist_entry *ent;
1383
1384         if (arch_within_kprobe_blacklist(addr))
1385                 return true;
1386         /*
1387          * If 'kprobe_blacklist' is defined, check the address and
1388          * reject any probe registration in the prohibited area.
1389          */
1390         list_for_each_entry(ent, &kprobe_blacklist, list) {
1391                 if (addr >= ent->start_addr && addr < ent->end_addr)
1392                         return true;
1393         }
1394         return false;
1395 }
1396
1397 bool within_kprobe_blacklist(unsigned long addr)
1398 {
1399         char symname[KSYM_NAME_LEN], *p;
1400
1401         if (__within_kprobe_blacklist(addr))
1402                 return true;
1403
1404         /* Check if the address is on a suffixed-symbol */
1405         if (!lookup_symbol_name(addr, symname)) {
1406                 p = strchr(symname, '.');
1407                 if (!p)
1408                         return false;
1409                 *p = '\0';
1410                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1411                 if (addr)
1412                         return __within_kprobe_blacklist(addr);
1413         }
1414         return false;
1415 }
1416
1417 /*
1418  * arch_adjust_kprobe_addr - adjust the address
1419  * @addr: symbol base address
1420  * @offset: offset within the symbol
1421  * @on_func_entry: was this @addr+@offset on the function entry
1422  *
1423  * Typically returns @addr + @offset, except for special cases where the
1424  * function might be prefixed by a CFI landing pad, in that case any offset
1425  * inside the landing pad is mapped to the first 'real' instruction of the
1426  * symbol.
1427  *
1428  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1429  * instruction at +0.
1430  */
1431 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1432                                                 unsigned long offset,
1433                                                 bool *on_func_entry)
1434 {
1435         *on_func_entry = !offset;
1436         return (kprobe_opcode_t *)(addr + offset);
1437 }
1438
1439 /*
1440  * If 'symbol_name' is specified, look it up and add the 'offset'
1441  * to it. This way, we can specify a relative address to a symbol.
1442  * This returns encoded errors if it fails to look up symbol or invalid
1443  * combination of parameters.
1444  */
1445 static kprobe_opcode_t *
1446 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1447              unsigned long offset, bool *on_func_entry)
1448 {
1449         if ((symbol_name && addr) || (!symbol_name && !addr))
1450                 goto invalid;
1451
1452         if (symbol_name) {
1453                 /*
1454                  * Input: @sym + @offset
1455                  * Output: @addr + @offset
1456                  *
1457                  * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1458                  *       argument into it's output!
1459                  */
1460                 addr = kprobe_lookup_name(symbol_name, offset);
1461                 if (!addr)
1462                         return ERR_PTR(-ENOENT);
1463         }
1464
1465         /*
1466          * So here we have @addr + @offset, displace it into a new
1467          * @addr' + @offset' where @addr' is the symbol start address.
1468          */
1469         addr = (void *)addr + offset;
1470         if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1471                 return ERR_PTR(-ENOENT);
1472         addr = (void *)addr - offset;
1473
1474         /*
1475          * Then ask the architecture to re-combine them, taking care of
1476          * magical function entry details while telling us if this was indeed
1477          * at the start of the function.
1478          */
1479         addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1480         if (addr)
1481                 return addr;
1482
1483 invalid:
1484         return ERR_PTR(-EINVAL);
1485 }
1486
1487 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1488 {
1489         bool on_func_entry;
1490         return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1491 }
1492
1493 /*
1494  * Check the 'p' is valid and return the aggregator kprobe
1495  * at the same address.
1496  */
1497 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1498 {
1499         struct kprobe *ap, *list_p;
1500
1501         lockdep_assert_held(&kprobe_mutex);
1502
1503         ap = get_kprobe(p->addr);
1504         if (unlikely(!ap))
1505                 return NULL;
1506
1507         if (p != ap) {
1508                 list_for_each_entry(list_p, &ap->list, list)
1509                         if (list_p == p)
1510                         /* kprobe p is a valid probe */
1511                                 goto valid;
1512                 return NULL;
1513         }
1514 valid:
1515         return ap;
1516 }
1517
1518 /*
1519  * Warn and return error if the kprobe is being re-registered since
1520  * there must be a software bug.
1521  */
1522 static inline int warn_kprobe_rereg(struct kprobe *p)
1523 {
1524         int ret = 0;
1525
1526         mutex_lock(&kprobe_mutex);
1527         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1528                 ret = -EINVAL;
1529         mutex_unlock(&kprobe_mutex);
1530
1531         return ret;
1532 }
1533
1534 static int check_ftrace_location(struct kprobe *p)
1535 {
1536         unsigned long addr = (unsigned long)p->addr;
1537
1538         if (ftrace_location(addr) == addr) {
1539 #ifdef CONFIG_KPROBES_ON_FTRACE
1540                 p->flags |= KPROBE_FLAG_FTRACE;
1541 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1542                 return -EINVAL;
1543 #endif
1544         }
1545         return 0;
1546 }
1547
1548 static bool is_cfi_preamble_symbol(unsigned long addr)
1549 {
1550         char symbuf[KSYM_NAME_LEN];
1551
1552         if (lookup_symbol_name(addr, symbuf))
1553                 return false;
1554
1555         return str_has_prefix("__cfi_", symbuf) ||
1556                 str_has_prefix("__pfx_", symbuf);
1557 }
1558
1559 static int check_kprobe_address_safe(struct kprobe *p,
1560                                      struct module **probed_mod)
1561 {
1562         int ret;
1563
1564         ret = check_ftrace_location(p);
1565         if (ret)
1566                 return ret;
1567         jump_label_lock();
1568         preempt_disable();
1569
1570         /* Ensure the address is in a text area, and find a module if exists. */
1571         *probed_mod = NULL;
1572         if (!core_kernel_text((unsigned long) p->addr)) {
1573                 *probed_mod = __module_text_address((unsigned long) p->addr);
1574                 if (!(*probed_mod)) {
1575                         ret = -EINVAL;
1576                         goto out;
1577                 }
1578         }
1579         /* Ensure it is not in reserved area. */
1580         if (in_gate_area_no_mm((unsigned long) p->addr) ||
1581             within_kprobe_blacklist((unsigned long) p->addr) ||
1582             jump_label_text_reserved(p->addr, p->addr) ||
1583             static_call_text_reserved(p->addr, p->addr) ||
1584             find_bug((unsigned long)p->addr) ||
1585             is_cfi_preamble_symbol((unsigned long)p->addr)) {
1586                 ret = -EINVAL;
1587                 goto out;
1588         }
1589
1590         /* Get module refcount and reject __init functions for loaded modules. */
1591         if (*probed_mod) {
1592                 /*
1593                  * We must hold a refcount of the probed module while updating
1594                  * its code to prohibit unexpected unloading.
1595                  */
1596                 if (unlikely(!try_module_get(*probed_mod))) {
1597                         ret = -ENOENT;
1598                         goto out;
1599                 }
1600
1601                 /*
1602                  * If the module freed '.init.text', we couldn't insert
1603                  * kprobes in there.
1604                  */
1605                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1606                     (*probed_mod)->state != MODULE_STATE_COMING) {
1607                         module_put(*probed_mod);
1608                         *probed_mod = NULL;
1609                         ret = -ENOENT;
1610                 }
1611         }
1612 out:
1613         preempt_enable();
1614         jump_label_unlock();
1615
1616         return ret;
1617 }
1618
1619 int register_kprobe(struct kprobe *p)
1620 {
1621         int ret;
1622         struct kprobe *old_p;
1623         struct module *probed_mod;
1624         kprobe_opcode_t *addr;
1625         bool on_func_entry;
1626
1627         /* Adjust probe address from symbol */
1628         addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1629         if (IS_ERR(addr))
1630                 return PTR_ERR(addr);
1631         p->addr = addr;
1632
1633         ret = warn_kprobe_rereg(p);
1634         if (ret)
1635                 return ret;
1636
1637         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1638         p->flags &= KPROBE_FLAG_DISABLED;
1639         p->nmissed = 0;
1640         INIT_LIST_HEAD(&p->list);
1641
1642         ret = check_kprobe_address_safe(p, &probed_mod);
1643         if (ret)
1644                 return ret;
1645
1646         mutex_lock(&kprobe_mutex);
1647
1648         if (on_func_entry)
1649                 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1650
1651         old_p = get_kprobe(p->addr);
1652         if (old_p) {
1653                 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1654                 ret = register_aggr_kprobe(old_p, p);
1655                 goto out;
1656         }
1657
1658         cpus_read_lock();
1659         /* Prevent text modification */
1660         mutex_lock(&text_mutex);
1661         ret = prepare_kprobe(p);
1662         mutex_unlock(&text_mutex);
1663         cpus_read_unlock();
1664         if (ret)
1665                 goto out;
1666
1667         INIT_HLIST_NODE(&p->hlist);
1668         hlist_add_head_rcu(&p->hlist,
1669                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1670
1671         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1672                 ret = arm_kprobe(p);
1673                 if (ret) {
1674                         hlist_del_rcu(&p->hlist);
1675                         synchronize_rcu();
1676                         goto out;
1677                 }
1678         }
1679
1680         /* Try to optimize kprobe */
1681         try_to_optimize_kprobe(p);
1682 out:
1683         mutex_unlock(&kprobe_mutex);
1684
1685         if (probed_mod)
1686                 module_put(probed_mod);
1687
1688         return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(register_kprobe);
1691
1692 /* Check if all probes on the 'ap' are disabled. */
1693 static bool aggr_kprobe_disabled(struct kprobe *ap)
1694 {
1695         struct kprobe *kp;
1696
1697         lockdep_assert_held(&kprobe_mutex);
1698
1699         list_for_each_entry(kp, &ap->list, list)
1700                 if (!kprobe_disabled(kp))
1701                         /*
1702                          * Since there is an active probe on the list,
1703                          * we can't disable this 'ap'.
1704                          */
1705                         return false;
1706
1707         return true;
1708 }
1709
1710 static struct kprobe *__disable_kprobe(struct kprobe *p)
1711 {
1712         struct kprobe *orig_p;
1713         int ret;
1714
1715         lockdep_assert_held(&kprobe_mutex);
1716
1717         /* Get an original kprobe for return */
1718         orig_p = __get_valid_kprobe(p);
1719         if (unlikely(orig_p == NULL))
1720                 return ERR_PTR(-EINVAL);
1721
1722         if (!kprobe_disabled(p)) {
1723                 /* Disable probe if it is a child probe */
1724                 if (p != orig_p)
1725                         p->flags |= KPROBE_FLAG_DISABLED;
1726
1727                 /* Try to disarm and disable this/parent probe */
1728                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1729                         /*
1730                          * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1731                          * is false, 'orig_p' might not have been armed yet.
1732                          * Note arm_all_kprobes() __tries__ to arm all kprobes
1733                          * on the best effort basis.
1734                          */
1735                         if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1736                                 ret = disarm_kprobe(orig_p, true);
1737                                 if (ret) {
1738                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1739                                         return ERR_PTR(ret);
1740                                 }
1741                         }
1742                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1743                 }
1744         }
1745
1746         return orig_p;
1747 }
1748
1749 /*
1750  * Unregister a kprobe without a scheduler synchronization.
1751  */
1752 static int __unregister_kprobe_top(struct kprobe *p)
1753 {
1754         struct kprobe *ap, *list_p;
1755
1756         /* Disable kprobe. This will disarm it if needed. */
1757         ap = __disable_kprobe(p);
1758         if (IS_ERR(ap))
1759                 return PTR_ERR(ap);
1760
1761         if (ap == p)
1762                 /*
1763                  * This probe is an independent(and non-optimized) kprobe
1764                  * (not an aggrprobe). Remove from the hash list.
1765                  */
1766                 goto disarmed;
1767
1768         /* Following process expects this probe is an aggrprobe */
1769         WARN_ON(!kprobe_aggrprobe(ap));
1770
1771         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1772                 /*
1773                  * !disarmed could be happen if the probe is under delayed
1774                  * unoptimizing.
1775                  */
1776                 goto disarmed;
1777         else {
1778                 /* If disabling probe has special handlers, update aggrprobe */
1779                 if (p->post_handler && !kprobe_gone(p)) {
1780                         list_for_each_entry(list_p, &ap->list, list) {
1781                                 if ((list_p != p) && (list_p->post_handler))
1782                                         goto noclean;
1783                         }
1784                         /*
1785                          * For the kprobe-on-ftrace case, we keep the
1786                          * post_handler setting to identify this aggrprobe
1787                          * armed with kprobe_ipmodify_ops.
1788                          */
1789                         if (!kprobe_ftrace(ap))
1790                                 ap->post_handler = NULL;
1791                 }
1792 noclean:
1793                 /*
1794                  * Remove from the aggrprobe: this path will do nothing in
1795                  * __unregister_kprobe_bottom().
1796                  */
1797                 list_del_rcu(&p->list);
1798                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1799                         /*
1800                          * Try to optimize this probe again, because post
1801                          * handler may have been changed.
1802                          */
1803                         optimize_kprobe(ap);
1804         }
1805         return 0;
1806
1807 disarmed:
1808         hlist_del_rcu(&ap->hlist);
1809         return 0;
1810 }
1811
1812 static void __unregister_kprobe_bottom(struct kprobe *p)
1813 {
1814         struct kprobe *ap;
1815
1816         if (list_empty(&p->list))
1817                 /* This is an independent kprobe */
1818                 arch_remove_kprobe(p);
1819         else if (list_is_singular(&p->list)) {
1820                 /* This is the last child of an aggrprobe */
1821                 ap = list_entry(p->list.next, struct kprobe, list);
1822                 list_del(&p->list);
1823                 free_aggr_kprobe(ap);
1824         }
1825         /* Otherwise, do nothing. */
1826 }
1827
1828 int register_kprobes(struct kprobe **kps, int num)
1829 {
1830         int i, ret = 0;
1831
1832         if (num <= 0)
1833                 return -EINVAL;
1834         for (i = 0; i < num; i++) {
1835                 ret = register_kprobe(kps[i]);
1836                 if (ret < 0) {
1837                         if (i > 0)
1838                                 unregister_kprobes(kps, i);
1839                         break;
1840                 }
1841         }
1842         return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(register_kprobes);
1845
1846 void unregister_kprobe(struct kprobe *p)
1847 {
1848         unregister_kprobes(&p, 1);
1849 }
1850 EXPORT_SYMBOL_GPL(unregister_kprobe);
1851
1852 void unregister_kprobes(struct kprobe **kps, int num)
1853 {
1854         int i;
1855
1856         if (num <= 0)
1857                 return;
1858         mutex_lock(&kprobe_mutex);
1859         for (i = 0; i < num; i++)
1860                 if (__unregister_kprobe_top(kps[i]) < 0)
1861                         kps[i]->addr = NULL;
1862         mutex_unlock(&kprobe_mutex);
1863
1864         synchronize_rcu();
1865         for (i = 0; i < num; i++)
1866                 if (kps[i]->addr)
1867                         __unregister_kprobe_bottom(kps[i]);
1868 }
1869 EXPORT_SYMBOL_GPL(unregister_kprobes);
1870
1871 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1872                                         unsigned long val, void *data)
1873 {
1874         return NOTIFY_DONE;
1875 }
1876 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1877
1878 static struct notifier_block kprobe_exceptions_nb = {
1879         .notifier_call = kprobe_exceptions_notify,
1880         .priority = 0x7fffffff /* we need to be notified first */
1881 };
1882
1883 #ifdef CONFIG_KRETPROBES
1884
1885 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1886
1887 /* callbacks for objpool of kretprobe instances */
1888 static int kretprobe_init_inst(void *nod, void *context)
1889 {
1890         struct kretprobe_instance *ri = nod;
1891
1892         ri->rph = context;
1893         return 0;
1894 }
1895 static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1896 {
1897         kfree(context);
1898         return 0;
1899 }
1900
1901 static void free_rp_inst_rcu(struct rcu_head *head)
1902 {
1903         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1904         struct kretprobe_holder *rph = ri->rph;
1905
1906         objpool_drop(ri, &rph->pool);
1907 }
1908 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1909
1910 static void recycle_rp_inst(struct kretprobe_instance *ri)
1911 {
1912         struct kretprobe *rp = get_kretprobe(ri);
1913
1914         if (likely(rp))
1915                 objpool_push(ri, &rp->rph->pool);
1916         else
1917                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1918 }
1919 NOKPROBE_SYMBOL(recycle_rp_inst);
1920
1921 /*
1922  * This function is called from delayed_put_task_struct() when a task is
1923  * dead and cleaned up to recycle any kretprobe instances associated with
1924  * this task. These left over instances represent probed functions that
1925  * have been called but will never return.
1926  */
1927 void kprobe_flush_task(struct task_struct *tk)
1928 {
1929         struct kretprobe_instance *ri;
1930         struct llist_node *node;
1931
1932         /* Early boot, not yet initialized. */
1933         if (unlikely(!kprobes_initialized))
1934                 return;
1935
1936         kprobe_busy_begin();
1937
1938         node = __llist_del_all(&tk->kretprobe_instances);
1939         while (node) {
1940                 ri = container_of(node, struct kretprobe_instance, llist);
1941                 node = node->next;
1942
1943                 recycle_rp_inst(ri);
1944         }
1945
1946         kprobe_busy_end();
1947 }
1948 NOKPROBE_SYMBOL(kprobe_flush_task);
1949
1950 static inline void free_rp_inst(struct kretprobe *rp)
1951 {
1952         struct kretprobe_holder *rph = rp->rph;
1953
1954         if (!rph)
1955                 return;
1956         rp->rph = NULL;
1957         objpool_fini(&rph->pool);
1958 }
1959
1960 /* This assumes the 'tsk' is the current task or the is not running. */
1961 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1962                                                   struct llist_node **cur)
1963 {
1964         struct kretprobe_instance *ri = NULL;
1965         struct llist_node *node = *cur;
1966
1967         if (!node)
1968                 node = tsk->kretprobe_instances.first;
1969         else
1970                 node = node->next;
1971
1972         while (node) {
1973                 ri = container_of(node, struct kretprobe_instance, llist);
1974                 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1975                         *cur = node;
1976                         return ri->ret_addr;
1977                 }
1978                 node = node->next;
1979         }
1980         return NULL;
1981 }
1982 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1983
1984 /**
1985  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1986  * @tsk: Target task
1987  * @fp: A frame pointer
1988  * @cur: a storage of the loop cursor llist_node pointer for next call
1989  *
1990  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1991  * long type. If it finds the return address, this returns that address value,
1992  * or this returns 0.
1993  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1994  * to get the currect return address - which is compared with the
1995  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1996  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1997  * first call, but '@cur' itself must NOT NULL.
1998  */
1999 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
2000                                       struct llist_node **cur)
2001 {
2002         struct kretprobe_instance *ri;
2003         kprobe_opcode_t *ret;
2004
2005         if (WARN_ON_ONCE(!cur))
2006                 return 0;
2007
2008         do {
2009                 ret = __kretprobe_find_ret_addr(tsk, cur);
2010                 if (!ret)
2011                         break;
2012                 ri = container_of(*cur, struct kretprobe_instance, llist);
2013         } while (ri->fp != fp);
2014
2015         return (unsigned long)ret;
2016 }
2017 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2018
2019 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2020                                         kprobe_opcode_t *correct_ret_addr)
2021 {
2022         /*
2023          * Do nothing by default. Please fill this to update the fake return
2024          * address on the stack with the correct one on each arch if possible.
2025          */
2026 }
2027
2028 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2029                                              void *frame_pointer)
2030 {
2031         struct kretprobe_instance *ri = NULL;
2032         struct llist_node *first, *node = NULL;
2033         kprobe_opcode_t *correct_ret_addr;
2034         struct kretprobe *rp;
2035
2036         /* Find correct address and all nodes for this frame. */
2037         correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2038         if (!correct_ret_addr) {
2039                 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2040                 BUG_ON(1);
2041         }
2042
2043         /*
2044          * Set the return address as the instruction pointer, because if the
2045          * user handler calls stack_trace_save_regs() with this 'regs',
2046          * the stack trace will start from the instruction pointer.
2047          */
2048         instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2049
2050         /* Run the user handler of the nodes. */
2051         first = current->kretprobe_instances.first;
2052         while (first) {
2053                 ri = container_of(first, struct kretprobe_instance, llist);
2054
2055                 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2056                         break;
2057
2058                 rp = get_kretprobe(ri);
2059                 if (rp && rp->handler) {
2060                         struct kprobe *prev = kprobe_running();
2061
2062                         __this_cpu_write(current_kprobe, &rp->kp);
2063                         ri->ret_addr = correct_ret_addr;
2064                         rp->handler(ri, regs);
2065                         __this_cpu_write(current_kprobe, prev);
2066                 }
2067                 if (first == node)
2068                         break;
2069
2070                 first = first->next;
2071         }
2072
2073         arch_kretprobe_fixup_return(regs, correct_ret_addr);
2074
2075         /* Unlink all nodes for this frame. */
2076         first = current->kretprobe_instances.first;
2077         current->kretprobe_instances.first = node->next;
2078         node->next = NULL;
2079
2080         /* Recycle free instances. */
2081         while (first) {
2082                 ri = container_of(first, struct kretprobe_instance, llist);
2083                 first = first->next;
2084
2085                 recycle_rp_inst(ri);
2086         }
2087
2088         return (unsigned long)correct_ret_addr;
2089 }
2090 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2091
2092 /*
2093  * This kprobe pre_handler is registered with every kretprobe. When probe
2094  * hits it will set up the return probe.
2095  */
2096 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2097 {
2098         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2099         struct kretprobe_holder *rph = rp->rph;
2100         struct kretprobe_instance *ri;
2101
2102         ri = objpool_pop(&rph->pool);
2103         if (!ri) {
2104                 rp->nmissed++;
2105                 return 0;
2106         }
2107
2108         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2109                 objpool_push(ri, &rph->pool);
2110                 return 0;
2111         }
2112
2113         arch_prepare_kretprobe(ri, regs);
2114
2115         __llist_add(&ri->llist, &current->kretprobe_instances);
2116
2117         return 0;
2118 }
2119 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2120 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2121 /*
2122  * This kprobe pre_handler is registered with every kretprobe. When probe
2123  * hits it will set up the return probe.
2124  */
2125 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2126 {
2127         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2128         struct kretprobe_instance *ri;
2129         struct rethook_node *rhn;
2130
2131         rhn = rethook_try_get(rp->rh);
2132         if (!rhn) {
2133                 rp->nmissed++;
2134                 return 0;
2135         }
2136
2137         ri = container_of(rhn, struct kretprobe_instance, node);
2138
2139         if (rp->entry_handler && rp->entry_handler(ri, regs))
2140                 rethook_recycle(rhn);
2141         else
2142                 rethook_hook(rhn, regs, kprobe_ftrace(p));
2143
2144         return 0;
2145 }
2146 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2147
2148 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2149                                       unsigned long ret_addr,
2150                                       struct pt_regs *regs)
2151 {
2152         struct kretprobe *rp = (struct kretprobe *)data;
2153         struct kretprobe_instance *ri;
2154         struct kprobe_ctlblk *kcb;
2155
2156         /* The data must NOT be null. This means rethook data structure is broken. */
2157         if (WARN_ON_ONCE(!data) || !rp->handler)
2158                 return;
2159
2160         __this_cpu_write(current_kprobe, &rp->kp);
2161         kcb = get_kprobe_ctlblk();
2162         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2163
2164         ri = container_of(rh, struct kretprobe_instance, node);
2165         rp->handler(ri, regs);
2166
2167         __this_cpu_write(current_kprobe, NULL);
2168 }
2169 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2170
2171 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2172
2173 /**
2174  * kprobe_on_func_entry() -- check whether given address is function entry
2175  * @addr: Target address
2176  * @sym:  Target symbol name
2177  * @offset: The offset from the symbol or the address
2178  *
2179  * This checks whether the given @addr+@offset or @sym+@offset is on the
2180  * function entry address or not.
2181  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2182  * And also it returns -ENOENT if it fails the symbol or address lookup.
2183  * Caller must pass @addr or @sym (either one must be NULL), or this
2184  * returns -EINVAL.
2185  */
2186 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2187 {
2188         bool on_func_entry;
2189         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2190
2191         if (IS_ERR(kp_addr))
2192                 return PTR_ERR(kp_addr);
2193
2194         if (!on_func_entry)
2195                 return -EINVAL;
2196
2197         return 0;
2198 }
2199
2200 int register_kretprobe(struct kretprobe *rp)
2201 {
2202         int ret;
2203         int i;
2204         void *addr;
2205
2206         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2207         if (ret)
2208                 return ret;
2209
2210         /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2211         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2212                 return -EINVAL;
2213
2214         if (kretprobe_blacklist_size) {
2215                 addr = kprobe_addr(&rp->kp);
2216                 if (IS_ERR(addr))
2217                         return PTR_ERR(addr);
2218
2219                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2220                         if (kretprobe_blacklist[i].addr == addr)
2221                                 return -EINVAL;
2222                 }
2223         }
2224
2225         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2226                 return -E2BIG;
2227
2228         rp->kp.pre_handler = pre_handler_kretprobe;
2229         rp->kp.post_handler = NULL;
2230
2231         /* Pre-allocate memory for max kretprobe instances */
2232         if (rp->maxactive <= 0)
2233                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2234
2235 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2236         rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2237                                 sizeof(struct kretprobe_instance) +
2238                                 rp->data_size, rp->maxactive);
2239         if (IS_ERR(rp->rh))
2240                 return PTR_ERR(rp->rh);
2241
2242         rp->nmissed = 0;
2243         /* Establish function entry probe point */
2244         ret = register_kprobe(&rp->kp);
2245         if (ret != 0) {
2246                 rethook_free(rp->rh);
2247                 rp->rh = NULL;
2248         }
2249 #else   /* !CONFIG_KRETPROBE_ON_RETHOOK */
2250         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2251         if (!rp->rph)
2252                 return -ENOMEM;
2253
2254         if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2255                         sizeof(struct kretprobe_instance), GFP_KERNEL,
2256                         rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2257                 kfree(rp->rph);
2258                 rp->rph = NULL;
2259                 return -ENOMEM;
2260         }
2261         rcu_assign_pointer(rp->rph->rp, rp);
2262         rp->nmissed = 0;
2263         /* Establish function entry probe point */
2264         ret = register_kprobe(&rp->kp);
2265         if (ret != 0)
2266                 free_rp_inst(rp);
2267 #endif
2268         return ret;
2269 }
2270 EXPORT_SYMBOL_GPL(register_kretprobe);
2271
2272 int register_kretprobes(struct kretprobe **rps, int num)
2273 {
2274         int ret = 0, i;
2275
2276         if (num <= 0)
2277                 return -EINVAL;
2278         for (i = 0; i < num; i++) {
2279                 ret = register_kretprobe(rps[i]);
2280                 if (ret < 0) {
2281                         if (i > 0)
2282                                 unregister_kretprobes(rps, i);
2283                         break;
2284                 }
2285         }
2286         return ret;
2287 }
2288 EXPORT_SYMBOL_GPL(register_kretprobes);
2289
2290 void unregister_kretprobe(struct kretprobe *rp)
2291 {
2292         unregister_kretprobes(&rp, 1);
2293 }
2294 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2295
2296 void unregister_kretprobes(struct kretprobe **rps, int num)
2297 {
2298         int i;
2299
2300         if (num <= 0)
2301                 return;
2302         mutex_lock(&kprobe_mutex);
2303         for (i = 0; i < num; i++) {
2304                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2305                         rps[i]->kp.addr = NULL;
2306 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2307                 rethook_free(rps[i]->rh);
2308 #else
2309                 rcu_assign_pointer(rps[i]->rph->rp, NULL);
2310 #endif
2311         }
2312         mutex_unlock(&kprobe_mutex);
2313
2314         synchronize_rcu();
2315         for (i = 0; i < num; i++) {
2316                 if (rps[i]->kp.addr) {
2317                         __unregister_kprobe_bottom(&rps[i]->kp);
2318 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2319                         free_rp_inst(rps[i]);
2320 #endif
2321                 }
2322         }
2323 }
2324 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2325
2326 #else /* CONFIG_KRETPROBES */
2327 int register_kretprobe(struct kretprobe *rp)
2328 {
2329         return -EOPNOTSUPP;
2330 }
2331 EXPORT_SYMBOL_GPL(register_kretprobe);
2332
2333 int register_kretprobes(struct kretprobe **rps, int num)
2334 {
2335         return -EOPNOTSUPP;
2336 }
2337 EXPORT_SYMBOL_GPL(register_kretprobes);
2338
2339 void unregister_kretprobe(struct kretprobe *rp)
2340 {
2341 }
2342 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2343
2344 void unregister_kretprobes(struct kretprobe **rps, int num)
2345 {
2346 }
2347 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2348
2349 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2350 {
2351         return 0;
2352 }
2353 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2354
2355 #endif /* CONFIG_KRETPROBES */
2356
2357 /* Set the kprobe gone and remove its instruction buffer. */
2358 static void kill_kprobe(struct kprobe *p)
2359 {
2360         struct kprobe *kp;
2361
2362         lockdep_assert_held(&kprobe_mutex);
2363
2364         /*
2365          * The module is going away. We should disarm the kprobe which
2366          * is using ftrace, because ftrace framework is still available at
2367          * 'MODULE_STATE_GOING' notification.
2368          */
2369         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2370                 disarm_kprobe_ftrace(p);
2371
2372         p->flags |= KPROBE_FLAG_GONE;
2373         if (kprobe_aggrprobe(p)) {
2374                 /*
2375                  * If this is an aggr_kprobe, we have to list all the
2376                  * chained probes and mark them GONE.
2377                  */
2378                 list_for_each_entry(kp, &p->list, list)
2379                         kp->flags |= KPROBE_FLAG_GONE;
2380                 p->post_handler = NULL;
2381                 kill_optimized_kprobe(p);
2382         }
2383         /*
2384          * Here, we can remove insn_slot safely, because no thread calls
2385          * the original probed function (which will be freed soon) any more.
2386          */
2387         arch_remove_kprobe(p);
2388 }
2389
2390 /* Disable one kprobe */
2391 int disable_kprobe(struct kprobe *kp)
2392 {
2393         int ret = 0;
2394         struct kprobe *p;
2395
2396         mutex_lock(&kprobe_mutex);
2397
2398         /* Disable this kprobe */
2399         p = __disable_kprobe(kp);
2400         if (IS_ERR(p))
2401                 ret = PTR_ERR(p);
2402
2403         mutex_unlock(&kprobe_mutex);
2404         return ret;
2405 }
2406 EXPORT_SYMBOL_GPL(disable_kprobe);
2407
2408 /* Enable one kprobe */
2409 int enable_kprobe(struct kprobe *kp)
2410 {
2411         int ret = 0;
2412         struct kprobe *p;
2413
2414         mutex_lock(&kprobe_mutex);
2415
2416         /* Check whether specified probe is valid. */
2417         p = __get_valid_kprobe(kp);
2418         if (unlikely(p == NULL)) {
2419                 ret = -EINVAL;
2420                 goto out;
2421         }
2422
2423         if (kprobe_gone(kp)) {
2424                 /* This kprobe has gone, we couldn't enable it. */
2425                 ret = -EINVAL;
2426                 goto out;
2427         }
2428
2429         if (p != kp)
2430                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2431
2432         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2433                 p->flags &= ~KPROBE_FLAG_DISABLED;
2434                 ret = arm_kprobe(p);
2435                 if (ret) {
2436                         p->flags |= KPROBE_FLAG_DISABLED;
2437                         if (p != kp)
2438                                 kp->flags |= KPROBE_FLAG_DISABLED;
2439                 }
2440         }
2441 out:
2442         mutex_unlock(&kprobe_mutex);
2443         return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(enable_kprobe);
2446
2447 /* Caller must NOT call this in usual path. This is only for critical case */
2448 void dump_kprobe(struct kprobe *kp)
2449 {
2450         pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2451                kp->symbol_name, kp->offset, kp->addr);
2452 }
2453 NOKPROBE_SYMBOL(dump_kprobe);
2454
2455 int kprobe_add_ksym_blacklist(unsigned long entry)
2456 {
2457         struct kprobe_blacklist_entry *ent;
2458         unsigned long offset = 0, size = 0;
2459
2460         if (!kernel_text_address(entry) ||
2461             !kallsyms_lookup_size_offset(entry, &size, &offset))
2462                 return -EINVAL;
2463
2464         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2465         if (!ent)
2466                 return -ENOMEM;
2467         ent->start_addr = entry;
2468         ent->end_addr = entry + size;
2469         INIT_LIST_HEAD(&ent->list);
2470         list_add_tail(&ent->list, &kprobe_blacklist);
2471
2472         return (int)size;
2473 }
2474
2475 /* Add all symbols in given area into kprobe blacklist */
2476 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2477 {
2478         unsigned long entry;
2479         int ret = 0;
2480
2481         for (entry = start; entry < end; entry += ret) {
2482                 ret = kprobe_add_ksym_blacklist(entry);
2483                 if (ret < 0)
2484                         return ret;
2485                 if (ret == 0)   /* In case of alias symbol */
2486                         ret = 1;
2487         }
2488         return 0;
2489 }
2490
2491 /* Remove all symbols in given area from kprobe blacklist */
2492 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2493 {
2494         struct kprobe_blacklist_entry *ent, *n;
2495
2496         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2497                 if (ent->start_addr < start || ent->start_addr >= end)
2498                         continue;
2499                 list_del(&ent->list);
2500                 kfree(ent);
2501         }
2502 }
2503
2504 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2505 {
2506         kprobe_remove_area_blacklist(entry, entry + 1);
2507 }
2508
2509 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2510                                    char *type, char *sym)
2511 {
2512         return -ERANGE;
2513 }
2514
2515 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2516                        char *sym)
2517 {
2518 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2519         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2520                 return 0;
2521 #ifdef CONFIG_OPTPROBES
2522         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2523                 return 0;
2524 #endif
2525 #endif
2526         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2527                 return 0;
2528         return -ERANGE;
2529 }
2530
2531 int __init __weak arch_populate_kprobe_blacklist(void)
2532 {
2533         return 0;
2534 }
2535
2536 /*
2537  * Lookup and populate the kprobe_blacklist.
2538  *
2539  * Unlike the kretprobe blacklist, we'll need to determine
2540  * the range of addresses that belong to the said functions,
2541  * since a kprobe need not necessarily be at the beginning
2542  * of a function.
2543  */
2544 static int __init populate_kprobe_blacklist(unsigned long *start,
2545                                              unsigned long *end)
2546 {
2547         unsigned long entry;
2548         unsigned long *iter;
2549         int ret;
2550
2551         for (iter = start; iter < end; iter++) {
2552                 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2553                 ret = kprobe_add_ksym_blacklist(entry);
2554                 if (ret == -EINVAL)
2555                         continue;
2556                 if (ret < 0)
2557                         return ret;
2558         }
2559
2560         /* Symbols in '__kprobes_text' are blacklisted */
2561         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2562                                         (unsigned long)__kprobes_text_end);
2563         if (ret)
2564                 return ret;
2565
2566         /* Symbols in 'noinstr' section are blacklisted */
2567         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2568                                         (unsigned long)__noinstr_text_end);
2569
2570         return ret ? : arch_populate_kprobe_blacklist();
2571 }
2572
2573 static void add_module_kprobe_blacklist(struct module *mod)
2574 {
2575         unsigned long start, end;
2576         int i;
2577
2578         if (mod->kprobe_blacklist) {
2579                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2580                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2581         }
2582
2583         start = (unsigned long)mod->kprobes_text_start;
2584         if (start) {
2585                 end = start + mod->kprobes_text_size;
2586                 kprobe_add_area_blacklist(start, end);
2587         }
2588
2589         start = (unsigned long)mod->noinstr_text_start;
2590         if (start) {
2591                 end = start + mod->noinstr_text_size;
2592                 kprobe_add_area_blacklist(start, end);
2593         }
2594 }
2595
2596 static void remove_module_kprobe_blacklist(struct module *mod)
2597 {
2598         unsigned long start, end;
2599         int i;
2600
2601         if (mod->kprobe_blacklist) {
2602                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2603                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2604         }
2605
2606         start = (unsigned long)mod->kprobes_text_start;
2607         if (start) {
2608                 end = start + mod->kprobes_text_size;
2609                 kprobe_remove_area_blacklist(start, end);
2610         }
2611
2612         start = (unsigned long)mod->noinstr_text_start;
2613         if (start) {
2614                 end = start + mod->noinstr_text_size;
2615                 kprobe_remove_area_blacklist(start, end);
2616         }
2617 }
2618
2619 /* Module notifier call back, checking kprobes on the module */
2620 static int kprobes_module_callback(struct notifier_block *nb,
2621                                    unsigned long val, void *data)
2622 {
2623         struct module *mod = data;
2624         struct hlist_head *head;
2625         struct kprobe *p;
2626         unsigned int i;
2627         int checkcore = (val == MODULE_STATE_GOING);
2628
2629         if (val == MODULE_STATE_COMING) {
2630                 mutex_lock(&kprobe_mutex);
2631                 add_module_kprobe_blacklist(mod);
2632                 mutex_unlock(&kprobe_mutex);
2633         }
2634         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2635                 return NOTIFY_DONE;
2636
2637         /*
2638          * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2639          * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2640          * notified, only '.init.text' section would be freed. We need to
2641          * disable kprobes which have been inserted in the sections.
2642          */
2643         mutex_lock(&kprobe_mutex);
2644         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2645                 head = &kprobe_table[i];
2646                 hlist_for_each_entry(p, head, hlist)
2647                         if (within_module_init((unsigned long)p->addr, mod) ||
2648                             (checkcore &&
2649                              within_module_core((unsigned long)p->addr, mod))) {
2650                                 /*
2651                                  * The vaddr this probe is installed will soon
2652                                  * be vfreed buy not synced to disk. Hence,
2653                                  * disarming the breakpoint isn't needed.
2654                                  *
2655                                  * Note, this will also move any optimized probes
2656                                  * that are pending to be removed from their
2657                                  * corresponding lists to the 'freeing_list' and
2658                                  * will not be touched by the delayed
2659                                  * kprobe_optimizer() work handler.
2660                                  */
2661                                 kill_kprobe(p);
2662                         }
2663         }
2664         if (val == MODULE_STATE_GOING)
2665                 remove_module_kprobe_blacklist(mod);
2666         mutex_unlock(&kprobe_mutex);
2667         return NOTIFY_DONE;
2668 }
2669
2670 static struct notifier_block kprobe_module_nb = {
2671         .notifier_call = kprobes_module_callback,
2672         .priority = 0
2673 };
2674
2675 void kprobe_free_init_mem(void)
2676 {
2677         void *start = (void *)(&__init_begin);
2678         void *end = (void *)(&__init_end);
2679         struct hlist_head *head;
2680         struct kprobe *p;
2681         int i;
2682
2683         mutex_lock(&kprobe_mutex);
2684
2685         /* Kill all kprobes on initmem because the target code has been freed. */
2686         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2687                 head = &kprobe_table[i];
2688                 hlist_for_each_entry(p, head, hlist) {
2689                         if (start <= (void *)p->addr && (void *)p->addr < end)
2690                                 kill_kprobe(p);
2691                 }
2692         }
2693
2694         mutex_unlock(&kprobe_mutex);
2695 }
2696
2697 static int __init init_kprobes(void)
2698 {
2699         int i, err;
2700
2701         /* FIXME allocate the probe table, currently defined statically */
2702         /* initialize all list heads */
2703         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2704                 INIT_HLIST_HEAD(&kprobe_table[i]);
2705
2706         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2707                                         __stop_kprobe_blacklist);
2708         if (err)
2709                 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2710
2711         if (kretprobe_blacklist_size) {
2712                 /* lookup the function address from its name */
2713                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2714                         kretprobe_blacklist[i].addr =
2715                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2716                         if (!kretprobe_blacklist[i].addr)
2717                                 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2718                                        kretprobe_blacklist[i].name);
2719                 }
2720         }
2721
2722         /* By default, kprobes are armed */
2723         kprobes_all_disarmed = false;
2724
2725 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2726         /* Init 'kprobe_optinsn_slots' for allocation */
2727         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2728 #endif
2729
2730         err = arch_init_kprobes();
2731         if (!err)
2732                 err = register_die_notifier(&kprobe_exceptions_nb);
2733         if (!err)
2734                 err = register_module_notifier(&kprobe_module_nb);
2735
2736         kprobes_initialized = (err == 0);
2737         kprobe_sysctls_init();
2738         return err;
2739 }
2740 early_initcall(init_kprobes);
2741
2742 #if defined(CONFIG_OPTPROBES)
2743 static int __init init_optprobes(void)
2744 {
2745         /*
2746          * Enable kprobe optimization - this kicks the optimizer which
2747          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2748          * not spawned in early initcall. So delay the optimization.
2749          */
2750         optimize_all_kprobes();
2751
2752         return 0;
2753 }
2754 subsys_initcall(init_optprobes);
2755 #endif
2756
2757 #ifdef CONFIG_DEBUG_FS
2758 static void report_probe(struct seq_file *pi, struct kprobe *p,
2759                 const char *sym, int offset, char *modname, struct kprobe *pp)
2760 {
2761         char *kprobe_type;
2762         void *addr = p->addr;
2763
2764         if (p->pre_handler == pre_handler_kretprobe)
2765                 kprobe_type = "r";
2766         else
2767                 kprobe_type = "k";
2768
2769         if (!kallsyms_show_value(pi->file->f_cred))
2770                 addr = NULL;
2771
2772         if (sym)
2773                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2774                         addr, kprobe_type, sym, offset,
2775                         (modname ? modname : " "));
2776         else    /* try to use %pS */
2777                 seq_printf(pi, "%px  %s  %pS ",
2778                         addr, kprobe_type, p->addr);
2779
2780         if (!pp)
2781                 pp = p;
2782         seq_printf(pi, "%s%s%s%s\n",
2783                 (kprobe_gone(p) ? "[GONE]" : ""),
2784                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2785                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2786                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2787 }
2788
2789 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2790 {
2791         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2792 }
2793
2794 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2795 {
2796         (*pos)++;
2797         if (*pos >= KPROBE_TABLE_SIZE)
2798                 return NULL;
2799         return pos;
2800 }
2801
2802 static void kprobe_seq_stop(struct seq_file *f, void *v)
2803 {
2804         /* Nothing to do */
2805 }
2806
2807 static int show_kprobe_addr(struct seq_file *pi, void *v)
2808 {
2809         struct hlist_head *head;
2810         struct kprobe *p, *kp;
2811         const char *sym;
2812         unsigned int i = *(loff_t *) v;
2813         unsigned long offset = 0;
2814         char *modname, namebuf[KSYM_NAME_LEN];
2815
2816         head = &kprobe_table[i];
2817         preempt_disable();
2818         hlist_for_each_entry_rcu(p, head, hlist) {
2819                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2820                                         &offset, &modname, namebuf);
2821                 if (kprobe_aggrprobe(p)) {
2822                         list_for_each_entry_rcu(kp, &p->list, list)
2823                                 report_probe(pi, kp, sym, offset, modname, p);
2824                 } else
2825                         report_probe(pi, p, sym, offset, modname, NULL);
2826         }
2827         preempt_enable();
2828         return 0;
2829 }
2830
2831 static const struct seq_operations kprobes_sops = {
2832         .start = kprobe_seq_start,
2833         .next  = kprobe_seq_next,
2834         .stop  = kprobe_seq_stop,
2835         .show  = show_kprobe_addr
2836 };
2837
2838 DEFINE_SEQ_ATTRIBUTE(kprobes);
2839
2840 /* kprobes/blacklist -- shows which functions can not be probed */
2841 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2842 {
2843         mutex_lock(&kprobe_mutex);
2844         return seq_list_start(&kprobe_blacklist, *pos);
2845 }
2846
2847 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2848 {
2849         return seq_list_next(v, &kprobe_blacklist, pos);
2850 }
2851
2852 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2853 {
2854         struct kprobe_blacklist_entry *ent =
2855                 list_entry(v, struct kprobe_blacklist_entry, list);
2856
2857         /*
2858          * If '/proc/kallsyms' is not showing kernel address, we won't
2859          * show them here either.
2860          */
2861         if (!kallsyms_show_value(m->file->f_cred))
2862                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2863                            (void *)ent->start_addr);
2864         else
2865                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2866                            (void *)ent->end_addr, (void *)ent->start_addr);
2867         return 0;
2868 }
2869
2870 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2871 {
2872         mutex_unlock(&kprobe_mutex);
2873 }
2874
2875 static const struct seq_operations kprobe_blacklist_sops = {
2876         .start = kprobe_blacklist_seq_start,
2877         .next  = kprobe_blacklist_seq_next,
2878         .stop  = kprobe_blacklist_seq_stop,
2879         .show  = kprobe_blacklist_seq_show,
2880 };
2881 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2882
2883 static int arm_all_kprobes(void)
2884 {
2885         struct hlist_head *head;
2886         struct kprobe *p;
2887         unsigned int i, total = 0, errors = 0;
2888         int err, ret = 0;
2889
2890         mutex_lock(&kprobe_mutex);
2891
2892         /* If kprobes are armed, just return */
2893         if (!kprobes_all_disarmed)
2894                 goto already_enabled;
2895
2896         /*
2897          * optimize_kprobe() called by arm_kprobe() checks
2898          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2899          * arm_kprobe.
2900          */
2901         kprobes_all_disarmed = false;
2902         /* Arming kprobes doesn't optimize kprobe itself */
2903         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2904                 head = &kprobe_table[i];
2905                 /* Arm all kprobes on a best-effort basis */
2906                 hlist_for_each_entry(p, head, hlist) {
2907                         if (!kprobe_disabled(p)) {
2908                                 err = arm_kprobe(p);
2909                                 if (err)  {
2910                                         errors++;
2911                                         ret = err;
2912                                 }
2913                                 total++;
2914                         }
2915                 }
2916         }
2917
2918         if (errors)
2919                 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2920                         errors, total);
2921         else
2922                 pr_info("Kprobes globally enabled\n");
2923
2924 already_enabled:
2925         mutex_unlock(&kprobe_mutex);
2926         return ret;
2927 }
2928
2929 static int disarm_all_kprobes(void)
2930 {
2931         struct hlist_head *head;
2932         struct kprobe *p;
2933         unsigned int i, total = 0, errors = 0;
2934         int err, ret = 0;
2935
2936         mutex_lock(&kprobe_mutex);
2937
2938         /* If kprobes are already disarmed, just return */
2939         if (kprobes_all_disarmed) {
2940                 mutex_unlock(&kprobe_mutex);
2941                 return 0;
2942         }
2943
2944         kprobes_all_disarmed = true;
2945
2946         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2947                 head = &kprobe_table[i];
2948                 /* Disarm all kprobes on a best-effort basis */
2949                 hlist_for_each_entry(p, head, hlist) {
2950                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2951                                 err = disarm_kprobe(p, false);
2952                                 if (err) {
2953                                         errors++;
2954                                         ret = err;
2955                                 }
2956                                 total++;
2957                         }
2958                 }
2959         }
2960
2961         if (errors)
2962                 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2963                         errors, total);
2964         else
2965                 pr_info("Kprobes globally disabled\n");
2966
2967         mutex_unlock(&kprobe_mutex);
2968
2969         /* Wait for disarming all kprobes by optimizer */
2970         wait_for_kprobe_optimizer();
2971
2972         return ret;
2973 }
2974
2975 /*
2976  * XXX: The debugfs bool file interface doesn't allow for callbacks
2977  * when the bool state is switched. We can reuse that facility when
2978  * available
2979  */
2980 static ssize_t read_enabled_file_bool(struct file *file,
2981                char __user *user_buf, size_t count, loff_t *ppos)
2982 {
2983         char buf[3];
2984
2985         if (!kprobes_all_disarmed)
2986                 buf[0] = '1';
2987         else
2988                 buf[0] = '0';
2989         buf[1] = '\n';
2990         buf[2] = 0x00;
2991         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2992 }
2993
2994 static ssize_t write_enabled_file_bool(struct file *file,
2995                const char __user *user_buf, size_t count, loff_t *ppos)
2996 {
2997         bool enable;
2998         int ret;
2999
3000         ret = kstrtobool_from_user(user_buf, count, &enable);
3001         if (ret)
3002                 return ret;
3003
3004         ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3005         if (ret)
3006                 return ret;
3007
3008         return count;
3009 }
3010
3011 static const struct file_operations fops_kp = {
3012         .read =         read_enabled_file_bool,
3013         .write =        write_enabled_file_bool,
3014         .llseek =       default_llseek,
3015 };
3016
3017 static int __init debugfs_kprobe_init(void)
3018 {
3019         struct dentry *dir;
3020
3021         dir = debugfs_create_dir("kprobes", NULL);
3022
3023         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3024
3025         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3026
3027         debugfs_create_file("blacklist", 0400, dir, NULL,
3028                             &kprobe_blacklist_fops);
3029
3030         return 0;
3031 }
3032
3033 late_initcall(debugfs_kprobe_init);
3034 #endif /* CONFIG_DEBUG_FS */