GNU Linux-libre 5.4.257-gnu1
[releases.git] / kernel / kexec_file.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30
31 static int kexec_calculate_store_digests(struct kimage *image);
32
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39                               unsigned long buf_len)
40 {
41         const struct kexec_file_ops * const *fops;
42         int ret = -ENOEXEC;
43
44         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45                 ret = (*fops)->probe(buf, buf_len);
46                 if (!ret) {
47                         image->fops = *fops;
48                         return ret;
49                 }
50         }
51
52         return ret;
53 }
54
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57                                          unsigned long buf_len)
58 {
59         return kexec_image_probe_default(image, buf, buf_len);
60 }
61
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64         if (!image->fops || !image->fops->load)
65                 return ERR_PTR(-ENOEXEC);
66
67         return image->fops->load(image, image->kernel_buf,
68                                  image->kernel_buf_len, image->initrd_buf,
69                                  image->initrd_buf_len, image->cmdline_buf,
70                                  image->cmdline_buf_len);
71 }
72
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75         return kexec_image_load_default(image);
76 }
77
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80         if (!image->fops || !image->fops->cleanup)
81                 return 0;
82
83         return image->fops->cleanup(image->image_loader_data);
84 }
85
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88         return kexec_image_post_load_cleanup_default(image);
89 }
90
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93                                           unsigned long buf_len)
94 {
95         if (!image->fops || !image->fops->verify_sig) {
96                 pr_debug("kernel loader does not support signature verification.\n");
97                 return -EKEYREJECTED;
98         }
99
100         return image->fops->verify_sig(buf, buf_len);
101 }
102
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104                                         unsigned long buf_len)
105 {
106         return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109
110 /*
111  * Free up memory used by kernel, initrd, and command line. This is temporary
112  * memory allocation which is not needed any more after these buffers have
113  * been loaded into separate segments and have been copied elsewhere.
114  */
115 void kimage_file_post_load_cleanup(struct kimage *image)
116 {
117         struct purgatory_info *pi = &image->purgatory_info;
118
119         vfree(image->kernel_buf);
120         image->kernel_buf = NULL;
121
122         vfree(image->initrd_buf);
123         image->initrd_buf = NULL;
124
125         kfree(image->cmdline_buf);
126         image->cmdline_buf = NULL;
127
128         vfree(pi->purgatory_buf);
129         pi->purgatory_buf = NULL;
130
131         vfree(pi->sechdrs);
132         pi->sechdrs = NULL;
133
134 #ifdef CONFIG_IMA_KEXEC
135         vfree(image->ima_buffer);
136         image->ima_buffer = NULL;
137 #endif /* CONFIG_IMA_KEXEC */
138
139         /* See if architecture has anything to cleanup post load */
140         arch_kimage_file_post_load_cleanup(image);
141
142         /*
143          * Above call should have called into bootloader to free up
144          * any data stored in kimage->image_loader_data. It should
145          * be ok now to free it up.
146          */
147         kfree(image->image_loader_data);
148         image->image_loader_data = NULL;
149 }
150
151 #ifdef CONFIG_KEXEC_SIG
152 static int
153 kimage_validate_signature(struct kimage *image)
154 {
155         const char *reason;
156         int ret;
157
158         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
159                                            image->kernel_buf_len);
160         switch (ret) {
161         case 0:
162                 break;
163
164                 /* Certain verification errors are non-fatal if we're not
165                  * checking errors, provided we aren't mandating that there
166                  * must be a valid signature.
167                  */
168         case -ENODATA:
169                 reason = "kexec of unsigned image";
170                 goto decide;
171         case -ENOPKG:
172                 reason = "kexec of image with unsupported crypto";
173                 goto decide;
174         case -ENOKEY:
175                 reason = "kexec of image with unavailable key";
176         decide:
177                 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
178                         pr_notice("%s rejected\n", reason);
179                         return ret;
180                 }
181
182                 /* If IMA is guaranteed to appraise a signature on the kexec
183                  * image, permit it even if the kernel is otherwise locked
184                  * down.
185                  */
186                 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
187                     security_locked_down(LOCKDOWN_KEXEC))
188                         return -EPERM;
189
190                 return 0;
191
192                 /* All other errors are fatal, including nomem, unparseable
193                  * signatures and signature check failures - even if signatures
194                  * aren't required.
195                  */
196         default:
197                 pr_notice("kernel signature verification failed (%d).\n", ret);
198         }
199
200         return ret;
201 }
202 #endif
203
204 /*
205  * In file mode list of segments is prepared by kernel. Copy relevant
206  * data from user space, do error checking, prepare segment list
207  */
208 static int
209 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
210                              const char __user *cmdline_ptr,
211                              unsigned long cmdline_len, unsigned flags)
212 {
213         int ret;
214         void *ldata;
215         loff_t size;
216
217         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
218                                        &size, INT_MAX, READING_KEXEC_IMAGE);
219         if (ret)
220                 return ret;
221         image->kernel_buf_len = size;
222
223         /* Call arch image probe handlers */
224         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
225                                             image->kernel_buf_len);
226         if (ret)
227                 goto out;
228
229 #ifdef CONFIG_KEXEC_SIG
230         ret = kimage_validate_signature(image);
231
232         if (ret)
233                 goto out;
234 #endif
235         /* It is possible that there no initramfs is being loaded */
236         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
237                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
238                                                &size, INT_MAX,
239                                                READING_KEXEC_INITRAMFS);
240                 if (ret)
241                         goto out;
242                 image->initrd_buf_len = size;
243         }
244
245         if (cmdline_len) {
246                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
247                 if (IS_ERR(image->cmdline_buf)) {
248                         ret = PTR_ERR(image->cmdline_buf);
249                         image->cmdline_buf = NULL;
250                         goto out;
251                 }
252
253                 image->cmdline_buf_len = cmdline_len;
254
255                 /* command line should be a string with last byte null */
256                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
257                         ret = -EINVAL;
258                         goto out;
259                 }
260
261                 ima_kexec_cmdline(image->cmdline_buf,
262                                   image->cmdline_buf_len - 1);
263         }
264
265         /* IMA needs to pass the measurement list to the next kernel. */
266         ima_add_kexec_buffer(image);
267
268         /* Call arch image load handlers */
269         ldata = arch_kexec_kernel_image_load(image);
270
271         if (IS_ERR(ldata)) {
272                 ret = PTR_ERR(ldata);
273                 goto out;
274         }
275
276         image->image_loader_data = ldata;
277 out:
278         /* In case of error, free up all allocated memory in this function */
279         if (ret)
280                 kimage_file_post_load_cleanup(image);
281         return ret;
282 }
283
284 static int
285 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
286                        int initrd_fd, const char __user *cmdline_ptr,
287                        unsigned long cmdline_len, unsigned long flags)
288 {
289         int ret;
290         struct kimage *image;
291         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
292
293         image = do_kimage_alloc_init();
294         if (!image)
295                 return -ENOMEM;
296
297         image->file_mode = 1;
298
299         if (kexec_on_panic) {
300                 /* Enable special crash kernel control page alloc policy. */
301                 image->control_page = crashk_res.start;
302                 image->type = KEXEC_TYPE_CRASH;
303         }
304
305         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
306                                            cmdline_ptr, cmdline_len, flags);
307         if (ret)
308                 goto out_free_image;
309
310         ret = sanity_check_segment_list(image);
311         if (ret)
312                 goto out_free_post_load_bufs;
313
314         ret = -ENOMEM;
315         image->control_code_page = kimage_alloc_control_pages(image,
316                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
317         if (!image->control_code_page) {
318                 pr_err("Could not allocate control_code_buffer\n");
319                 goto out_free_post_load_bufs;
320         }
321
322         if (!kexec_on_panic) {
323                 image->swap_page = kimage_alloc_control_pages(image, 0);
324                 if (!image->swap_page) {
325                         pr_err("Could not allocate swap buffer\n");
326                         goto out_free_control_pages;
327                 }
328         }
329
330         *rimage = image;
331         return 0;
332 out_free_control_pages:
333         kimage_free_page_list(&image->control_pages);
334 out_free_post_load_bufs:
335         kimage_file_post_load_cleanup(image);
336 out_free_image:
337         kfree(image);
338         return ret;
339 }
340
341 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
342                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
343                 unsigned long, flags)
344 {
345         int ret = 0, i;
346         struct kimage **dest_image, *image;
347
348         /* We only trust the superuser with rebooting the system. */
349         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
350                 return -EPERM;
351
352         /* Make sure we have a legal set of flags */
353         if (flags != (flags & KEXEC_FILE_FLAGS))
354                 return -EINVAL;
355
356         image = NULL;
357
358         if (!mutex_trylock(&kexec_mutex))
359                 return -EBUSY;
360
361         dest_image = &kexec_image;
362         if (flags & KEXEC_FILE_ON_CRASH) {
363                 dest_image = &kexec_crash_image;
364                 if (kexec_crash_image)
365                         arch_kexec_unprotect_crashkres();
366         }
367
368         if (flags & KEXEC_FILE_UNLOAD)
369                 goto exchange;
370
371         /*
372          * In case of crash, new kernel gets loaded in reserved region. It is
373          * same memory where old crash kernel might be loaded. Free any
374          * current crash dump kernel before we corrupt it.
375          */
376         if (flags & KEXEC_FILE_ON_CRASH)
377                 kimage_free(xchg(&kexec_crash_image, NULL));
378
379         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
380                                      cmdline_len, flags);
381         if (ret)
382                 goto out;
383
384         ret = machine_kexec_prepare(image);
385         if (ret)
386                 goto out;
387
388         /*
389          * Some architecture(like S390) may touch the crash memory before
390          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
391          */
392         ret = kimage_crash_copy_vmcoreinfo(image);
393         if (ret)
394                 goto out;
395
396         ret = kexec_calculate_store_digests(image);
397         if (ret)
398                 goto out;
399
400         for (i = 0; i < image->nr_segments; i++) {
401                 struct kexec_segment *ksegment;
402
403                 ksegment = &image->segment[i];
404                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
405                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
406                          ksegment->memsz);
407
408                 ret = kimage_load_segment(image, &image->segment[i]);
409                 if (ret)
410                         goto out;
411         }
412
413         kimage_terminate(image);
414
415         /*
416          * Free up any temporary buffers allocated which are not needed
417          * after image has been loaded
418          */
419         kimage_file_post_load_cleanup(image);
420 exchange:
421         image = xchg(dest_image, image);
422 out:
423         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
424                 arch_kexec_protect_crashkres();
425
426         mutex_unlock(&kexec_mutex);
427         kimage_free(image);
428         return ret;
429 }
430
431 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
432                                     struct kexec_buf *kbuf)
433 {
434         struct kimage *image = kbuf->image;
435         unsigned long temp_start, temp_end;
436
437         temp_end = min(end, kbuf->buf_max);
438         temp_start = temp_end - kbuf->memsz;
439
440         do {
441                 /* align down start */
442                 temp_start = temp_start & (~(kbuf->buf_align - 1));
443
444                 if (temp_start < start || temp_start < kbuf->buf_min)
445                         return 0;
446
447                 temp_end = temp_start + kbuf->memsz - 1;
448
449                 /*
450                  * Make sure this does not conflict with any of existing
451                  * segments
452                  */
453                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
454                         temp_start = temp_start - PAGE_SIZE;
455                         continue;
456                 }
457
458                 /* We found a suitable memory range */
459                 break;
460         } while (1);
461
462         /* If we are here, we found a suitable memory range */
463         kbuf->mem = temp_start;
464
465         /* Success, stop navigating through remaining System RAM ranges */
466         return 1;
467 }
468
469 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
470                                      struct kexec_buf *kbuf)
471 {
472         struct kimage *image = kbuf->image;
473         unsigned long temp_start, temp_end;
474
475         temp_start = max(start, kbuf->buf_min);
476
477         do {
478                 temp_start = ALIGN(temp_start, kbuf->buf_align);
479                 temp_end = temp_start + kbuf->memsz - 1;
480
481                 if (temp_end > end || temp_end > kbuf->buf_max)
482                         return 0;
483                 /*
484                  * Make sure this does not conflict with any of existing
485                  * segments
486                  */
487                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
488                         temp_start = temp_start + PAGE_SIZE;
489                         continue;
490                 }
491
492                 /* We found a suitable memory range */
493                 break;
494         } while (1);
495
496         /* If we are here, we found a suitable memory range */
497         kbuf->mem = temp_start;
498
499         /* Success, stop navigating through remaining System RAM ranges */
500         return 1;
501 }
502
503 static int locate_mem_hole_callback(struct resource *res, void *arg)
504 {
505         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
506         u64 start = res->start, end = res->end;
507         unsigned long sz = end - start + 1;
508
509         /* Returning 0 will take to next memory range */
510         if (sz < kbuf->memsz)
511                 return 0;
512
513         if (end < kbuf->buf_min || start > kbuf->buf_max)
514                 return 0;
515
516         /*
517          * Allocate memory top down with-in ram range. Otherwise bottom up
518          * allocation.
519          */
520         if (kbuf->top_down)
521                 return locate_mem_hole_top_down(start, end, kbuf);
522         return locate_mem_hole_bottom_up(start, end, kbuf);
523 }
524
525 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
526 static int kexec_walk_memblock(struct kexec_buf *kbuf,
527                                int (*func)(struct resource *, void *))
528 {
529         int ret = 0;
530         u64 i;
531         phys_addr_t mstart, mend;
532         struct resource res = { };
533
534         if (kbuf->image->type == KEXEC_TYPE_CRASH)
535                 return func(&crashk_res, kbuf);
536
537         if (kbuf->top_down) {
538                 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
539                                                 &mstart, &mend, NULL) {
540                         /*
541                          * In memblock, end points to the first byte after the
542                          * range while in kexec, end points to the last byte
543                          * in the range.
544                          */
545                         res.start = mstart;
546                         res.end = mend - 1;
547                         ret = func(&res, kbuf);
548                         if (ret)
549                                 break;
550                 }
551         } else {
552                 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
553                                         &mstart, &mend, NULL) {
554                         /*
555                          * In memblock, end points to the first byte after the
556                          * range while in kexec, end points to the last byte
557                          * in the range.
558                          */
559                         res.start = mstart;
560                         res.end = mend - 1;
561                         ret = func(&res, kbuf);
562                         if (ret)
563                                 break;
564                 }
565         }
566
567         return ret;
568 }
569 #else
570 static int kexec_walk_memblock(struct kexec_buf *kbuf,
571                                int (*func)(struct resource *, void *))
572 {
573         return 0;
574 }
575 #endif
576
577 /**
578  * kexec_walk_resources - call func(data) on free memory regions
579  * @kbuf:       Context info for the search. Also passed to @func.
580  * @func:       Function to call for each memory region.
581  *
582  * Return: The memory walk will stop when func returns a non-zero value
583  * and that value will be returned. If all free regions are visited without
584  * func returning non-zero, then zero will be returned.
585  */
586 static int kexec_walk_resources(struct kexec_buf *kbuf,
587                                 int (*func)(struct resource *, void *))
588 {
589         if (kbuf->image->type == KEXEC_TYPE_CRASH)
590                 return walk_iomem_res_desc(crashk_res.desc,
591                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
592                                            crashk_res.start, crashk_res.end,
593                                            kbuf, func);
594         else
595                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
596 }
597
598 /**
599  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
600  * @kbuf:       Parameters for the memory search.
601  *
602  * On success, kbuf->mem will have the start address of the memory region found.
603  *
604  * Return: 0 on success, negative errno on error.
605  */
606 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
607 {
608         int ret;
609
610         /* Arch knows where to place */
611         if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
612                 return 0;
613
614         if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
615                 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
616         else
617                 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
618
619         return ret == 1 ? 0 : -EADDRNOTAVAIL;
620 }
621
622 /**
623  * kexec_add_buffer - place a buffer in a kexec segment
624  * @kbuf:       Buffer contents and memory parameters.
625  *
626  * This function assumes that kexec_mutex is held.
627  * On successful return, @kbuf->mem will have the physical address of
628  * the buffer in memory.
629  *
630  * Return: 0 on success, negative errno on error.
631  */
632 int kexec_add_buffer(struct kexec_buf *kbuf)
633 {
634
635         struct kexec_segment *ksegment;
636         int ret;
637
638         /* Currently adding segment this way is allowed only in file mode */
639         if (!kbuf->image->file_mode)
640                 return -EINVAL;
641
642         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
643                 return -EINVAL;
644
645         /*
646          * Make sure we are not trying to add buffer after allocating
647          * control pages. All segments need to be placed first before
648          * any control pages are allocated. As control page allocation
649          * logic goes through list of segments to make sure there are
650          * no destination overlaps.
651          */
652         if (!list_empty(&kbuf->image->control_pages)) {
653                 WARN_ON(1);
654                 return -EINVAL;
655         }
656
657         /* Ensure minimum alignment needed for segments. */
658         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
659         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
660
661         /* Walk the RAM ranges and allocate a suitable range for the buffer */
662         ret = kexec_locate_mem_hole(kbuf);
663         if (ret)
664                 return ret;
665
666         /* Found a suitable memory range */
667         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
668         ksegment->kbuf = kbuf->buffer;
669         ksegment->bufsz = kbuf->bufsz;
670         ksegment->mem = kbuf->mem;
671         ksegment->memsz = kbuf->memsz;
672         kbuf->image->nr_segments++;
673         return 0;
674 }
675
676 /* Calculate and store the digest of segments */
677 static int kexec_calculate_store_digests(struct kimage *image)
678 {
679         struct crypto_shash *tfm;
680         struct shash_desc *desc;
681         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
682         size_t desc_size, nullsz;
683         char *digest;
684         void *zero_buf;
685         struct kexec_sha_region *sha_regions;
686         struct purgatory_info *pi = &image->purgatory_info;
687
688         if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
689                 return 0;
690
691         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
692         zero_buf_sz = PAGE_SIZE;
693
694         tfm = crypto_alloc_shash("sha256", 0, 0);
695         if (IS_ERR(tfm)) {
696                 ret = PTR_ERR(tfm);
697                 goto out;
698         }
699
700         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
701         desc = kzalloc(desc_size, GFP_KERNEL);
702         if (!desc) {
703                 ret = -ENOMEM;
704                 goto out_free_tfm;
705         }
706
707         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
708         sha_regions = vzalloc(sha_region_sz);
709         if (!sha_regions) {
710                 ret = -ENOMEM;
711                 goto out_free_desc;
712         }
713
714         desc->tfm   = tfm;
715
716         ret = crypto_shash_init(desc);
717         if (ret < 0)
718                 goto out_free_sha_regions;
719
720         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
721         if (!digest) {
722                 ret = -ENOMEM;
723                 goto out_free_sha_regions;
724         }
725
726         for (j = i = 0; i < image->nr_segments; i++) {
727                 struct kexec_segment *ksegment;
728
729                 ksegment = &image->segment[i];
730                 /*
731                  * Skip purgatory as it will be modified once we put digest
732                  * info in purgatory.
733                  */
734                 if (ksegment->kbuf == pi->purgatory_buf)
735                         continue;
736
737                 ret = crypto_shash_update(desc, ksegment->kbuf,
738                                           ksegment->bufsz);
739                 if (ret)
740                         break;
741
742                 /*
743                  * Assume rest of the buffer is filled with zero and
744                  * update digest accordingly.
745                  */
746                 nullsz = ksegment->memsz - ksegment->bufsz;
747                 while (nullsz) {
748                         unsigned long bytes = nullsz;
749
750                         if (bytes > zero_buf_sz)
751                                 bytes = zero_buf_sz;
752                         ret = crypto_shash_update(desc, zero_buf, bytes);
753                         if (ret)
754                                 break;
755                         nullsz -= bytes;
756                 }
757
758                 if (ret)
759                         break;
760
761                 sha_regions[j].start = ksegment->mem;
762                 sha_regions[j].len = ksegment->memsz;
763                 j++;
764         }
765
766         if (!ret) {
767                 ret = crypto_shash_final(desc, digest);
768                 if (ret)
769                         goto out_free_digest;
770                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
771                                                      sha_regions, sha_region_sz, 0);
772                 if (ret)
773                         goto out_free_digest;
774
775                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
776                                                      digest, SHA256_DIGEST_SIZE, 0);
777                 if (ret)
778                         goto out_free_digest;
779         }
780
781 out_free_digest:
782         kfree(digest);
783 out_free_sha_regions:
784         vfree(sha_regions);
785 out_free_desc:
786         kfree(desc);
787 out_free_tfm:
788         kfree(tfm);
789 out:
790         return ret;
791 }
792
793 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
794 /*
795  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
796  * @pi:         Purgatory to be loaded.
797  * @kbuf:       Buffer to setup.
798  *
799  * Allocates the memory needed for the buffer. Caller is responsible to free
800  * the memory after use.
801  *
802  * Return: 0 on success, negative errno on error.
803  */
804 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
805                                       struct kexec_buf *kbuf)
806 {
807         const Elf_Shdr *sechdrs;
808         unsigned long bss_align;
809         unsigned long bss_sz;
810         unsigned long align;
811         int i, ret;
812
813         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
814         kbuf->buf_align = bss_align = 1;
815         kbuf->bufsz = bss_sz = 0;
816
817         for (i = 0; i < pi->ehdr->e_shnum; i++) {
818                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
819                         continue;
820
821                 align = sechdrs[i].sh_addralign;
822                 if (sechdrs[i].sh_type != SHT_NOBITS) {
823                         if (kbuf->buf_align < align)
824                                 kbuf->buf_align = align;
825                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
826                         kbuf->bufsz += sechdrs[i].sh_size;
827                 } else {
828                         if (bss_align < align)
829                                 bss_align = align;
830                         bss_sz = ALIGN(bss_sz, align);
831                         bss_sz += sechdrs[i].sh_size;
832                 }
833         }
834         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
835         kbuf->memsz = kbuf->bufsz + bss_sz;
836         if (kbuf->buf_align < bss_align)
837                 kbuf->buf_align = bss_align;
838
839         kbuf->buffer = vzalloc(kbuf->bufsz);
840         if (!kbuf->buffer)
841                 return -ENOMEM;
842         pi->purgatory_buf = kbuf->buffer;
843
844         ret = kexec_add_buffer(kbuf);
845         if (ret)
846                 goto out;
847
848         return 0;
849 out:
850         vfree(pi->purgatory_buf);
851         pi->purgatory_buf = NULL;
852         return ret;
853 }
854
855 /*
856  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
857  * @pi:         Purgatory to be loaded.
858  * @kbuf:       Buffer prepared to store purgatory.
859  *
860  * Allocates the memory needed for the buffer. Caller is responsible to free
861  * the memory after use.
862  *
863  * Return: 0 on success, negative errno on error.
864  */
865 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
866                                          struct kexec_buf *kbuf)
867 {
868         unsigned long bss_addr;
869         unsigned long offset;
870         Elf_Shdr *sechdrs;
871         int i;
872
873         /*
874          * The section headers in kexec_purgatory are read-only. In order to
875          * have them modifiable make a temporary copy.
876          */
877         sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
878         if (!sechdrs)
879                 return -ENOMEM;
880         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
881                pi->ehdr->e_shnum * sizeof(Elf_Shdr));
882         pi->sechdrs = sechdrs;
883
884         offset = 0;
885         bss_addr = kbuf->mem + kbuf->bufsz;
886         kbuf->image->start = pi->ehdr->e_entry;
887
888         for (i = 0; i < pi->ehdr->e_shnum; i++) {
889                 unsigned long align;
890                 void *src, *dst;
891
892                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
893                         continue;
894
895                 align = sechdrs[i].sh_addralign;
896                 if (sechdrs[i].sh_type == SHT_NOBITS) {
897                         bss_addr = ALIGN(bss_addr, align);
898                         sechdrs[i].sh_addr = bss_addr;
899                         bss_addr += sechdrs[i].sh_size;
900                         continue;
901                 }
902
903                 offset = ALIGN(offset, align);
904
905                 /*
906                  * Check if the segment contains the entry point, if so,
907                  * calculate the value of image->start based on it.
908                  * If the compiler has produced more than one .text section
909                  * (Eg: .text.hot), they are generally after the main .text
910                  * section, and they shall not be used to calculate
911                  * image->start. So do not re-calculate image->start if it
912                  * is not set to the initial value, and warn the user so they
913                  * have a chance to fix their purgatory's linker script.
914                  */
915                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
916                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
917                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
918                                          + sechdrs[i].sh_size) &&
919                     !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
920                         kbuf->image->start -= sechdrs[i].sh_addr;
921                         kbuf->image->start += kbuf->mem + offset;
922                 }
923
924                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
925                 dst = pi->purgatory_buf + offset;
926                 memcpy(dst, src, sechdrs[i].sh_size);
927
928                 sechdrs[i].sh_addr = kbuf->mem + offset;
929                 sechdrs[i].sh_offset = offset;
930                 offset += sechdrs[i].sh_size;
931         }
932
933         return 0;
934 }
935
936 static int kexec_apply_relocations(struct kimage *image)
937 {
938         int i, ret;
939         struct purgatory_info *pi = &image->purgatory_info;
940         const Elf_Shdr *sechdrs;
941
942         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
943
944         for (i = 0; i < pi->ehdr->e_shnum; i++) {
945                 const Elf_Shdr *relsec;
946                 const Elf_Shdr *symtab;
947                 Elf_Shdr *section;
948
949                 relsec = sechdrs + i;
950
951                 if (relsec->sh_type != SHT_RELA &&
952                     relsec->sh_type != SHT_REL)
953                         continue;
954
955                 /*
956                  * For section of type SHT_RELA/SHT_REL,
957                  * ->sh_link contains section header index of associated
958                  * symbol table. And ->sh_info contains section header
959                  * index of section to which relocations apply.
960                  */
961                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
962                     relsec->sh_link >= pi->ehdr->e_shnum)
963                         return -ENOEXEC;
964
965                 section = pi->sechdrs + relsec->sh_info;
966                 symtab = sechdrs + relsec->sh_link;
967
968                 if (!(section->sh_flags & SHF_ALLOC))
969                         continue;
970
971                 /*
972                  * symtab->sh_link contain section header index of associated
973                  * string table.
974                  */
975                 if (symtab->sh_link >= pi->ehdr->e_shnum)
976                         /* Invalid section number? */
977                         continue;
978
979                 /*
980                  * Respective architecture needs to provide support for applying
981                  * relocations of type SHT_RELA/SHT_REL.
982                  */
983                 if (relsec->sh_type == SHT_RELA)
984                         ret = arch_kexec_apply_relocations_add(pi, section,
985                                                                relsec, symtab);
986                 else if (relsec->sh_type == SHT_REL)
987                         ret = arch_kexec_apply_relocations(pi, section,
988                                                            relsec, symtab);
989                 if (ret)
990                         return ret;
991         }
992
993         return 0;
994 }
995
996 /*
997  * kexec_load_purgatory - Load and relocate the purgatory object.
998  * @image:      Image to add the purgatory to.
999  * @kbuf:       Memory parameters to use.
1000  *
1001  * Allocates the memory needed for image->purgatory_info.sechdrs and
1002  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1003  * to free the memory after use.
1004  *
1005  * Return: 0 on success, negative errno on error.
1006  */
1007 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1008 {
1009         struct purgatory_info *pi = &image->purgatory_info;
1010         int ret;
1011
1012         if (kexec_purgatory_size <= 0)
1013                 return -EINVAL;
1014
1015         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1016
1017         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1018         if (ret)
1019                 return ret;
1020
1021         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1022         if (ret)
1023                 goto out_free_kbuf;
1024
1025         ret = kexec_apply_relocations(image);
1026         if (ret)
1027                 goto out;
1028
1029         return 0;
1030 out:
1031         vfree(pi->sechdrs);
1032         pi->sechdrs = NULL;
1033 out_free_kbuf:
1034         vfree(pi->purgatory_buf);
1035         pi->purgatory_buf = NULL;
1036         return ret;
1037 }
1038
1039 /*
1040  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1041  * @pi:         Purgatory to search in.
1042  * @name:       Name of the symbol.
1043  *
1044  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1045  */
1046 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1047                                                   const char *name)
1048 {
1049         const Elf_Shdr *sechdrs;
1050         const Elf_Ehdr *ehdr;
1051         const Elf_Sym *syms;
1052         const char *strtab;
1053         int i, k;
1054
1055         if (!pi->ehdr)
1056                 return NULL;
1057
1058         ehdr = pi->ehdr;
1059         sechdrs = (void *)ehdr + ehdr->e_shoff;
1060
1061         for (i = 0; i < ehdr->e_shnum; i++) {
1062                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1063                         continue;
1064
1065                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1066                         /* Invalid strtab section number */
1067                         continue;
1068                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1069                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1070
1071                 /* Go through symbols for a match */
1072                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1073                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1074                                 continue;
1075
1076                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1077                                 continue;
1078
1079                         if (syms[k].st_shndx == SHN_UNDEF ||
1080                             syms[k].st_shndx >= ehdr->e_shnum) {
1081                                 pr_debug("Symbol: %s has bad section index %d.\n",
1082                                                 name, syms[k].st_shndx);
1083                                 return NULL;
1084                         }
1085
1086                         /* Found the symbol we are looking for */
1087                         return &syms[k];
1088                 }
1089         }
1090
1091         return NULL;
1092 }
1093
1094 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1095 {
1096         struct purgatory_info *pi = &image->purgatory_info;
1097         const Elf_Sym *sym;
1098         Elf_Shdr *sechdr;
1099
1100         sym = kexec_purgatory_find_symbol(pi, name);
1101         if (!sym)
1102                 return ERR_PTR(-EINVAL);
1103
1104         sechdr = &pi->sechdrs[sym->st_shndx];
1105
1106         /*
1107          * Returns the address where symbol will finally be loaded after
1108          * kexec_load_segment()
1109          */
1110         return (void *)(sechdr->sh_addr + sym->st_value);
1111 }
1112
1113 /*
1114  * Get or set value of a symbol. If "get_value" is true, symbol value is
1115  * returned in buf otherwise symbol value is set based on value in buf.
1116  */
1117 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1118                                    void *buf, unsigned int size, bool get_value)
1119 {
1120         struct purgatory_info *pi = &image->purgatory_info;
1121         const Elf_Sym *sym;
1122         Elf_Shdr *sec;
1123         char *sym_buf;
1124
1125         sym = kexec_purgatory_find_symbol(pi, name);
1126         if (!sym)
1127                 return -EINVAL;
1128
1129         if (sym->st_size != size) {
1130                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1131                        name, (unsigned long)sym->st_size, size);
1132                 return -EINVAL;
1133         }
1134
1135         sec = pi->sechdrs + sym->st_shndx;
1136
1137         if (sec->sh_type == SHT_NOBITS) {
1138                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1139                        get_value ? "get" : "set");
1140                 return -EINVAL;
1141         }
1142
1143         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1144
1145         if (get_value)
1146                 memcpy((void *)buf, sym_buf, size);
1147         else
1148                 memcpy((void *)sym_buf, buf, size);
1149
1150         return 0;
1151 }
1152 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1153
1154 int crash_exclude_mem_range(struct crash_mem *mem,
1155                             unsigned long long mstart, unsigned long long mend)
1156 {
1157         int i, j;
1158         unsigned long long start, end;
1159         struct crash_mem_range temp_range = {0, 0};
1160
1161         for (i = 0; i < mem->nr_ranges; i++) {
1162                 start = mem->ranges[i].start;
1163                 end = mem->ranges[i].end;
1164
1165                 if (mstart > end || mend < start)
1166                         continue;
1167
1168                 /* Truncate any area outside of range */
1169                 if (mstart < start)
1170                         mstart = start;
1171                 if (mend > end)
1172                         mend = end;
1173
1174                 /* Found completely overlapping range */
1175                 if (mstart == start && mend == end) {
1176                         mem->ranges[i].start = 0;
1177                         mem->ranges[i].end = 0;
1178                         if (i < mem->nr_ranges - 1) {
1179                                 /* Shift rest of the ranges to left */
1180                                 for (j = i; j < mem->nr_ranges - 1; j++) {
1181                                         mem->ranges[j].start =
1182                                                 mem->ranges[j+1].start;
1183                                         mem->ranges[j].end =
1184                                                         mem->ranges[j+1].end;
1185                                 }
1186                         }
1187                         mem->nr_ranges--;
1188                         return 0;
1189                 }
1190
1191                 if (mstart > start && mend < end) {
1192                         /* Split original range */
1193                         mem->ranges[i].end = mstart - 1;
1194                         temp_range.start = mend + 1;
1195                         temp_range.end = end;
1196                 } else if (mstart != start)
1197                         mem->ranges[i].end = mstart - 1;
1198                 else
1199                         mem->ranges[i].start = mend + 1;
1200                 break;
1201         }
1202
1203         /* If a split happened, add the split to array */
1204         if (!temp_range.end)
1205                 return 0;
1206
1207         /* Split happened */
1208         if (i == mem->max_nr_ranges - 1)
1209                 return -ENOMEM;
1210
1211         /* Location where new range should go */
1212         j = i + 1;
1213         if (j < mem->nr_ranges) {
1214                 /* Move over all ranges one slot towards the end */
1215                 for (i = mem->nr_ranges - 1; i >= j; i--)
1216                         mem->ranges[i + 1] = mem->ranges[i];
1217         }
1218
1219         mem->ranges[j].start = temp_range.start;
1220         mem->ranges[j].end = temp_range.end;
1221         mem->nr_ranges++;
1222         return 0;
1223 }
1224
1225 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1226                           void **addr, unsigned long *sz)
1227 {
1228         Elf64_Ehdr *ehdr;
1229         Elf64_Phdr *phdr;
1230         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1231         unsigned char *buf;
1232         unsigned int cpu, i;
1233         unsigned long long notes_addr;
1234         unsigned long mstart, mend;
1235
1236         /* extra phdr for vmcoreinfo elf note */
1237         nr_phdr = nr_cpus + 1;
1238         nr_phdr += mem->nr_ranges;
1239
1240         /*
1241          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1242          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1243          * I think this is required by tools like gdb. So same physical
1244          * memory will be mapped in two elf headers. One will contain kernel
1245          * text virtual addresses and other will have __va(physical) addresses.
1246          */
1247
1248         nr_phdr++;
1249         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1250         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1251
1252         buf = vzalloc(elf_sz);
1253         if (!buf)
1254                 return -ENOMEM;
1255
1256         ehdr = (Elf64_Ehdr *)buf;
1257         phdr = (Elf64_Phdr *)(ehdr + 1);
1258         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1259         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1260         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1261         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1262         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1263         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1264         ehdr->e_type = ET_CORE;
1265         ehdr->e_machine = ELF_ARCH;
1266         ehdr->e_version = EV_CURRENT;
1267         ehdr->e_phoff = sizeof(Elf64_Ehdr);
1268         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1269         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1270
1271         /* Prepare one phdr of type PT_NOTE for each present cpu */
1272         for_each_present_cpu(cpu) {
1273                 phdr->p_type = PT_NOTE;
1274                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1275                 phdr->p_offset = phdr->p_paddr = notes_addr;
1276                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1277                 (ehdr->e_phnum)++;
1278                 phdr++;
1279         }
1280
1281         /* Prepare one PT_NOTE header for vmcoreinfo */
1282         phdr->p_type = PT_NOTE;
1283         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1284         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1285         (ehdr->e_phnum)++;
1286         phdr++;
1287
1288         /* Prepare PT_LOAD type program header for kernel text region */
1289         if (kernel_map) {
1290                 phdr->p_type = PT_LOAD;
1291                 phdr->p_flags = PF_R|PF_W|PF_X;
1292                 phdr->p_vaddr = (Elf64_Addr)_text;
1293                 phdr->p_filesz = phdr->p_memsz = _end - _text;
1294                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1295                 ehdr->e_phnum++;
1296                 phdr++;
1297         }
1298
1299         /* Go through all the ranges in mem->ranges[] and prepare phdr */
1300         for (i = 0; i < mem->nr_ranges; i++) {
1301                 mstart = mem->ranges[i].start;
1302                 mend = mem->ranges[i].end;
1303
1304                 phdr->p_type = PT_LOAD;
1305                 phdr->p_flags = PF_R|PF_W|PF_X;
1306                 phdr->p_offset  = mstart;
1307
1308                 phdr->p_paddr = mstart;
1309                 phdr->p_vaddr = (unsigned long long) __va(mstart);
1310                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1311                 phdr->p_align = 0;
1312                 ehdr->e_phnum++;
1313                 phdr++;
1314                 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1315                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1316                         ehdr->e_phnum, phdr->p_offset);
1317         }
1318
1319         *addr = buf;
1320         *sz = elf_sz;
1321         return 0;
1322 }