GNU Linux-libre 4.19.211-gnu1
[releases.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/elf.h>
26 #include <linux/elfcore.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 #include <linux/slab.h>
30 #include <linux/syscalls.h>
31 #include <linux/vmalloc.h>
32 #include "kexec_internal.h"
33
34 static int kexec_calculate_store_digests(struct kimage *image);
35
36 /*
37  * Currently this is the only default function that is exported as some
38  * architectures need it to do additional handlings.
39  * In the future, other default functions may be exported too if required.
40  */
41 int kexec_image_probe_default(struct kimage *image, void *buf,
42                               unsigned long buf_len)
43 {
44         const struct kexec_file_ops * const *fops;
45         int ret = -ENOEXEC;
46
47         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
48                 ret = (*fops)->probe(buf, buf_len);
49                 if (!ret) {
50                         image->fops = *fops;
51                         return ret;
52                 }
53         }
54
55         return ret;
56 }
57
58 /* Architectures can provide this probe function */
59 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
60                                          unsigned long buf_len)
61 {
62         return kexec_image_probe_default(image, buf, buf_len);
63 }
64
65 static void *kexec_image_load_default(struct kimage *image)
66 {
67         if (!image->fops || !image->fops->load)
68                 return ERR_PTR(-ENOEXEC);
69
70         return image->fops->load(image, image->kernel_buf,
71                                  image->kernel_buf_len, image->initrd_buf,
72                                  image->initrd_buf_len, image->cmdline_buf,
73                                  image->cmdline_buf_len);
74 }
75
76 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
77 {
78         return kexec_image_load_default(image);
79 }
80
81 static int kexec_image_post_load_cleanup_default(struct kimage *image)
82 {
83         if (!image->fops || !image->fops->cleanup)
84                 return 0;
85
86         return image->fops->cleanup(image->image_loader_data);
87 }
88
89 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
90 {
91         return kexec_image_post_load_cleanup_default(image);
92 }
93
94 #ifdef CONFIG_KEXEC_VERIFY_SIG
95 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
96                                           unsigned long buf_len)
97 {
98         if (!image->fops || !image->fops->verify_sig) {
99                 pr_debug("kernel loader does not support signature verification.\n");
100                 return -EKEYREJECTED;
101         }
102
103         return image->fops->verify_sig(buf, buf_len);
104 }
105
106 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
107                                         unsigned long buf_len)
108 {
109         return kexec_image_verify_sig_default(image, buf, buf_len);
110 }
111 #endif
112
113 /*
114  * arch_kexec_apply_relocations_add - apply relocations of type RELA
115  * @pi:         Purgatory to be relocated.
116  * @section:    Section relocations applying to.
117  * @relsec:     Section containing RELAs.
118  * @symtab:     Corresponding symtab.
119  *
120  * Return: 0 on success, negative errno on error.
121  */
122 int __weak
123 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
124                                  const Elf_Shdr *relsec, const Elf_Shdr *symtab)
125 {
126         pr_err("RELA relocation unsupported.\n");
127         return -ENOEXEC;
128 }
129
130 /*
131  * arch_kexec_apply_relocations - apply relocations of type REL
132  * @pi:         Purgatory to be relocated.
133  * @section:    Section relocations applying to.
134  * @relsec:     Section containing RELs.
135  * @symtab:     Corresponding symtab.
136  *
137  * Return: 0 on success, negative errno on error.
138  */
139 int __weak
140 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
141                              const Elf_Shdr *relsec, const Elf_Shdr *symtab)
142 {
143         pr_err("REL relocation unsupported.\n");
144         return -ENOEXEC;
145 }
146
147 /*
148  * Free up memory used by kernel, initrd, and command line. This is temporary
149  * memory allocation which is not needed any more after these buffers have
150  * been loaded into separate segments and have been copied elsewhere.
151  */
152 void kimage_file_post_load_cleanup(struct kimage *image)
153 {
154         struct purgatory_info *pi = &image->purgatory_info;
155
156         vfree(image->kernel_buf);
157         image->kernel_buf = NULL;
158
159         vfree(image->initrd_buf);
160         image->initrd_buf = NULL;
161
162         kfree(image->cmdline_buf);
163         image->cmdline_buf = NULL;
164
165         vfree(pi->purgatory_buf);
166         pi->purgatory_buf = NULL;
167
168         vfree(pi->sechdrs);
169         pi->sechdrs = NULL;
170
171 #ifdef CONFIG_IMA_KEXEC
172         vfree(image->ima_buffer);
173         image->ima_buffer = NULL;
174 #endif /* CONFIG_IMA_KEXEC */
175
176         /* See if architecture has anything to cleanup post load */
177         arch_kimage_file_post_load_cleanup(image);
178
179         /*
180          * Above call should have called into bootloader to free up
181          * any data stored in kimage->image_loader_data. It should
182          * be ok now to free it up.
183          */
184         kfree(image->image_loader_data);
185         image->image_loader_data = NULL;
186 }
187
188 /*
189  * In file mode list of segments is prepared by kernel. Copy relevant
190  * data from user space, do error checking, prepare segment list
191  */
192 static int
193 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
194                              const char __user *cmdline_ptr,
195                              unsigned long cmdline_len, unsigned flags)
196 {
197         int ret = 0;
198         void *ldata;
199         loff_t size;
200
201         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
202                                        &size, INT_MAX, READING_KEXEC_IMAGE);
203         if (ret)
204                 return ret;
205         image->kernel_buf_len = size;
206
207         /* IMA needs to pass the measurement list to the next kernel. */
208         ima_add_kexec_buffer(image);
209
210         /* Call arch image probe handlers */
211         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212                                             image->kernel_buf_len);
213         if (ret)
214                 goto out;
215
216 #ifdef CONFIG_KEXEC_VERIFY_SIG
217         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
218                                            image->kernel_buf_len);
219         if (ret) {
220                 pr_debug("kernel signature verification failed.\n");
221                 goto out;
222         }
223         pr_debug("kernel signature verification successful.\n");
224 #endif
225         /* It is possible that there no initramfs is being loaded */
226         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
227                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
228                                                &size, INT_MAX,
229                                                READING_KEXEC_INITRAMFS);
230                 if (ret)
231                         goto out;
232                 image->initrd_buf_len = size;
233         }
234
235         if (cmdline_len) {
236                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
237                 if (IS_ERR(image->cmdline_buf)) {
238                         ret = PTR_ERR(image->cmdline_buf);
239                         image->cmdline_buf = NULL;
240                         goto out;
241                 }
242
243                 image->cmdline_buf_len = cmdline_len;
244
245                 /* command line should be a string with last byte null */
246                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
247                         ret = -EINVAL;
248                         goto out;
249                 }
250         }
251
252         /* Call arch image load handlers */
253         ldata = arch_kexec_kernel_image_load(image);
254
255         if (IS_ERR(ldata)) {
256                 ret = PTR_ERR(ldata);
257                 goto out;
258         }
259
260         image->image_loader_data = ldata;
261 out:
262         /* In case of error, free up all allocated memory in this function */
263         if (ret)
264                 kimage_file_post_load_cleanup(image);
265         return ret;
266 }
267
268 static int
269 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
270                        int initrd_fd, const char __user *cmdline_ptr,
271                        unsigned long cmdline_len, unsigned long flags)
272 {
273         int ret;
274         struct kimage *image;
275         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
276
277         image = do_kimage_alloc_init();
278         if (!image)
279                 return -ENOMEM;
280
281         image->file_mode = 1;
282
283         if (kexec_on_panic) {
284                 /* Enable special crash kernel control page alloc policy. */
285                 image->control_page = crashk_res.start;
286                 image->type = KEXEC_TYPE_CRASH;
287         }
288
289         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
290                                            cmdline_ptr, cmdline_len, flags);
291         if (ret)
292                 goto out_free_image;
293
294         ret = sanity_check_segment_list(image);
295         if (ret)
296                 goto out_free_post_load_bufs;
297
298         ret = -ENOMEM;
299         image->control_code_page = kimage_alloc_control_pages(image,
300                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
301         if (!image->control_code_page) {
302                 pr_err("Could not allocate control_code_buffer\n");
303                 goto out_free_post_load_bufs;
304         }
305
306         if (!kexec_on_panic) {
307                 image->swap_page = kimage_alloc_control_pages(image, 0);
308                 if (!image->swap_page) {
309                         pr_err("Could not allocate swap buffer\n");
310                         goto out_free_control_pages;
311                 }
312         }
313
314         *rimage = image;
315         return 0;
316 out_free_control_pages:
317         kimage_free_page_list(&image->control_pages);
318 out_free_post_load_bufs:
319         kimage_file_post_load_cleanup(image);
320 out_free_image:
321         kfree(image);
322         return ret;
323 }
324
325 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
326                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
327                 unsigned long, flags)
328 {
329         int ret = 0, i;
330         struct kimage **dest_image, *image;
331
332         /* We only trust the superuser with rebooting the system. */
333         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
334                 return -EPERM;
335
336         /* Make sure we have a legal set of flags */
337         if (flags != (flags & KEXEC_FILE_FLAGS))
338                 return -EINVAL;
339
340         image = NULL;
341
342         if (!mutex_trylock(&kexec_mutex))
343                 return -EBUSY;
344
345         dest_image = &kexec_image;
346         if (flags & KEXEC_FILE_ON_CRASH) {
347                 dest_image = &kexec_crash_image;
348                 if (kexec_crash_image)
349                         arch_kexec_unprotect_crashkres();
350         }
351
352         if (flags & KEXEC_FILE_UNLOAD)
353                 goto exchange;
354
355         /*
356          * In case of crash, new kernel gets loaded in reserved region. It is
357          * same memory where old crash kernel might be loaded. Free any
358          * current crash dump kernel before we corrupt it.
359          */
360         if (flags & KEXEC_FILE_ON_CRASH)
361                 kimage_free(xchg(&kexec_crash_image, NULL));
362
363         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
364                                      cmdline_len, flags);
365         if (ret)
366                 goto out;
367
368         ret = machine_kexec_prepare(image);
369         if (ret)
370                 goto out;
371
372         /*
373          * Some architecture(like S390) may touch the crash memory before
374          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
375          */
376         ret = kimage_crash_copy_vmcoreinfo(image);
377         if (ret)
378                 goto out;
379
380         ret = kexec_calculate_store_digests(image);
381         if (ret)
382                 goto out;
383
384         for (i = 0; i < image->nr_segments; i++) {
385                 struct kexec_segment *ksegment;
386
387                 ksegment = &image->segment[i];
388                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
389                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
390                          ksegment->memsz);
391
392                 ret = kimage_load_segment(image, &image->segment[i]);
393                 if (ret)
394                         goto out;
395         }
396
397         kimage_terminate(image);
398
399         /*
400          * Free up any temporary buffers allocated which are not needed
401          * after image has been loaded
402          */
403         kimage_file_post_load_cleanup(image);
404 exchange:
405         image = xchg(dest_image, image);
406 out:
407         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
408                 arch_kexec_protect_crashkres();
409
410         mutex_unlock(&kexec_mutex);
411         kimage_free(image);
412         return ret;
413 }
414
415 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
416                                     struct kexec_buf *kbuf)
417 {
418         struct kimage *image = kbuf->image;
419         unsigned long temp_start, temp_end;
420
421         temp_end = min(end, kbuf->buf_max);
422         temp_start = temp_end - kbuf->memsz;
423
424         do {
425                 /* align down start */
426                 temp_start = temp_start & (~(kbuf->buf_align - 1));
427
428                 if (temp_start < start || temp_start < kbuf->buf_min)
429                         return 0;
430
431                 temp_end = temp_start + kbuf->memsz - 1;
432
433                 /*
434                  * Make sure this does not conflict with any of existing
435                  * segments
436                  */
437                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
438                         temp_start = temp_start - PAGE_SIZE;
439                         continue;
440                 }
441
442                 /* We found a suitable memory range */
443                 break;
444         } while (1);
445
446         /* If we are here, we found a suitable memory range */
447         kbuf->mem = temp_start;
448
449         /* Success, stop navigating through remaining System RAM ranges */
450         return 1;
451 }
452
453 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
454                                      struct kexec_buf *kbuf)
455 {
456         struct kimage *image = kbuf->image;
457         unsigned long temp_start, temp_end;
458
459         temp_start = max(start, kbuf->buf_min);
460
461         do {
462                 temp_start = ALIGN(temp_start, kbuf->buf_align);
463                 temp_end = temp_start + kbuf->memsz - 1;
464
465                 if (temp_end > end || temp_end > kbuf->buf_max)
466                         return 0;
467                 /*
468                  * Make sure this does not conflict with any of existing
469                  * segments
470                  */
471                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
472                         temp_start = temp_start + PAGE_SIZE;
473                         continue;
474                 }
475
476                 /* We found a suitable memory range */
477                 break;
478         } while (1);
479
480         /* If we are here, we found a suitable memory range */
481         kbuf->mem = temp_start;
482
483         /* Success, stop navigating through remaining System RAM ranges */
484         return 1;
485 }
486
487 static int locate_mem_hole_callback(struct resource *res, void *arg)
488 {
489         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
490         u64 start = res->start, end = res->end;
491         unsigned long sz = end - start + 1;
492
493         /* Returning 0 will take to next memory range */
494         if (sz < kbuf->memsz)
495                 return 0;
496
497         if (end < kbuf->buf_min || start > kbuf->buf_max)
498                 return 0;
499
500         /*
501          * Allocate memory top down with-in ram range. Otherwise bottom up
502          * allocation.
503          */
504         if (kbuf->top_down)
505                 return locate_mem_hole_top_down(start, end, kbuf);
506         return locate_mem_hole_bottom_up(start, end, kbuf);
507 }
508
509 /**
510  * arch_kexec_walk_mem - call func(data) on free memory regions
511  * @kbuf:       Context info for the search. Also passed to @func.
512  * @func:       Function to call for each memory region.
513  *
514  * Return: The memory walk will stop when func returns a non-zero value
515  * and that value will be returned. If all free regions are visited without
516  * func returning non-zero, then zero will be returned.
517  */
518 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
519                                int (*func)(struct resource *, void *))
520 {
521         if (kbuf->image->type == KEXEC_TYPE_CRASH)
522                 return walk_iomem_res_desc(crashk_res.desc,
523                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
524                                            crashk_res.start, crashk_res.end,
525                                            kbuf, func);
526         else
527                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
528 }
529
530 /**
531  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
532  * @kbuf:       Parameters for the memory search.
533  *
534  * On success, kbuf->mem will have the start address of the memory region found.
535  *
536  * Return: 0 on success, negative errno on error.
537  */
538 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
539 {
540         int ret;
541
542         ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
543
544         return ret == 1 ? 0 : -EADDRNOTAVAIL;
545 }
546
547 /**
548  * kexec_add_buffer - place a buffer in a kexec segment
549  * @kbuf:       Buffer contents and memory parameters.
550  *
551  * This function assumes that kexec_mutex is held.
552  * On successful return, @kbuf->mem will have the physical address of
553  * the buffer in memory.
554  *
555  * Return: 0 on success, negative errno on error.
556  */
557 int kexec_add_buffer(struct kexec_buf *kbuf)
558 {
559
560         struct kexec_segment *ksegment;
561         int ret;
562
563         /* Currently adding segment this way is allowed only in file mode */
564         if (!kbuf->image->file_mode)
565                 return -EINVAL;
566
567         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
568                 return -EINVAL;
569
570         /*
571          * Make sure we are not trying to add buffer after allocating
572          * control pages. All segments need to be placed first before
573          * any control pages are allocated. As control page allocation
574          * logic goes through list of segments to make sure there are
575          * no destination overlaps.
576          */
577         if (!list_empty(&kbuf->image->control_pages)) {
578                 WARN_ON(1);
579                 return -EINVAL;
580         }
581
582         /* Ensure minimum alignment needed for segments. */
583         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
584         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
585
586         /* Walk the RAM ranges and allocate a suitable range for the buffer */
587         ret = kexec_locate_mem_hole(kbuf);
588         if (ret)
589                 return ret;
590
591         /* Found a suitable memory range */
592         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
593         ksegment->kbuf = kbuf->buffer;
594         ksegment->bufsz = kbuf->bufsz;
595         ksegment->mem = kbuf->mem;
596         ksegment->memsz = kbuf->memsz;
597         kbuf->image->nr_segments++;
598         return 0;
599 }
600
601 /* Calculate and store the digest of segments */
602 static int kexec_calculate_store_digests(struct kimage *image)
603 {
604         struct crypto_shash *tfm;
605         struct shash_desc *desc;
606         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
607         size_t desc_size, nullsz;
608         char *digest;
609         void *zero_buf;
610         struct kexec_sha_region *sha_regions;
611         struct purgatory_info *pi = &image->purgatory_info;
612
613         if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
614                 return 0;
615
616         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
617         zero_buf_sz = PAGE_SIZE;
618
619         tfm = crypto_alloc_shash("sha256", 0, 0);
620         if (IS_ERR(tfm)) {
621                 ret = PTR_ERR(tfm);
622                 goto out;
623         }
624
625         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
626         desc = kzalloc(desc_size, GFP_KERNEL);
627         if (!desc) {
628                 ret = -ENOMEM;
629                 goto out_free_tfm;
630         }
631
632         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
633         sha_regions = vzalloc(sha_region_sz);
634         if (!sha_regions) {
635                 ret = -ENOMEM;
636                 goto out_free_desc;
637         }
638
639         desc->tfm   = tfm;
640         desc->flags = 0;
641
642         ret = crypto_shash_init(desc);
643         if (ret < 0)
644                 goto out_free_sha_regions;
645
646         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
647         if (!digest) {
648                 ret = -ENOMEM;
649                 goto out_free_sha_regions;
650         }
651
652         for (j = i = 0; i < image->nr_segments; i++) {
653                 struct kexec_segment *ksegment;
654
655                 ksegment = &image->segment[i];
656                 /*
657                  * Skip purgatory as it will be modified once we put digest
658                  * info in purgatory.
659                  */
660                 if (ksegment->kbuf == pi->purgatory_buf)
661                         continue;
662
663                 ret = crypto_shash_update(desc, ksegment->kbuf,
664                                           ksegment->bufsz);
665                 if (ret)
666                         break;
667
668                 /*
669                  * Assume rest of the buffer is filled with zero and
670                  * update digest accordingly.
671                  */
672                 nullsz = ksegment->memsz - ksegment->bufsz;
673                 while (nullsz) {
674                         unsigned long bytes = nullsz;
675
676                         if (bytes > zero_buf_sz)
677                                 bytes = zero_buf_sz;
678                         ret = crypto_shash_update(desc, zero_buf, bytes);
679                         if (ret)
680                                 break;
681                         nullsz -= bytes;
682                 }
683
684                 if (ret)
685                         break;
686
687                 sha_regions[j].start = ksegment->mem;
688                 sha_regions[j].len = ksegment->memsz;
689                 j++;
690         }
691
692         if (!ret) {
693                 ret = crypto_shash_final(desc, digest);
694                 if (ret)
695                         goto out_free_digest;
696                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
697                                                      sha_regions, sha_region_sz, 0);
698                 if (ret)
699                         goto out_free_digest;
700
701                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
702                                                      digest, SHA256_DIGEST_SIZE, 0);
703                 if (ret)
704                         goto out_free_digest;
705         }
706
707 out_free_digest:
708         kfree(digest);
709 out_free_sha_regions:
710         vfree(sha_regions);
711 out_free_desc:
712         kfree(desc);
713 out_free_tfm:
714         kfree(tfm);
715 out:
716         return ret;
717 }
718
719 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
720 /*
721  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
722  * @pi:         Purgatory to be loaded.
723  * @kbuf:       Buffer to setup.
724  *
725  * Allocates the memory needed for the buffer. Caller is responsible to free
726  * the memory after use.
727  *
728  * Return: 0 on success, negative errno on error.
729  */
730 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
731                                       struct kexec_buf *kbuf)
732 {
733         const Elf_Shdr *sechdrs;
734         unsigned long bss_align;
735         unsigned long bss_sz;
736         unsigned long align;
737         int i, ret;
738
739         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
740         kbuf->buf_align = bss_align = 1;
741         kbuf->bufsz = bss_sz = 0;
742
743         for (i = 0; i < pi->ehdr->e_shnum; i++) {
744                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
745                         continue;
746
747                 align = sechdrs[i].sh_addralign;
748                 if (sechdrs[i].sh_type != SHT_NOBITS) {
749                         if (kbuf->buf_align < align)
750                                 kbuf->buf_align = align;
751                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
752                         kbuf->bufsz += sechdrs[i].sh_size;
753                 } else {
754                         if (bss_align < align)
755                                 bss_align = align;
756                         bss_sz = ALIGN(bss_sz, align);
757                         bss_sz += sechdrs[i].sh_size;
758                 }
759         }
760         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
761         kbuf->memsz = kbuf->bufsz + bss_sz;
762         if (kbuf->buf_align < bss_align)
763                 kbuf->buf_align = bss_align;
764
765         kbuf->buffer = vzalloc(kbuf->bufsz);
766         if (!kbuf->buffer)
767                 return -ENOMEM;
768         pi->purgatory_buf = kbuf->buffer;
769
770         ret = kexec_add_buffer(kbuf);
771         if (ret)
772                 goto out;
773
774         return 0;
775 out:
776         vfree(pi->purgatory_buf);
777         pi->purgatory_buf = NULL;
778         return ret;
779 }
780
781 /*
782  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
783  * @pi:         Purgatory to be loaded.
784  * @kbuf:       Buffer prepared to store purgatory.
785  *
786  * Allocates the memory needed for the buffer. Caller is responsible to free
787  * the memory after use.
788  *
789  * Return: 0 on success, negative errno on error.
790  */
791 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
792                                          struct kexec_buf *kbuf)
793 {
794         unsigned long bss_addr;
795         unsigned long offset;
796         Elf_Shdr *sechdrs;
797         int i;
798
799         /*
800          * The section headers in kexec_purgatory are read-only. In order to
801          * have them modifiable make a temporary copy.
802          */
803         sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
804         if (!sechdrs)
805                 return -ENOMEM;
806         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
807                pi->ehdr->e_shnum * sizeof(Elf_Shdr));
808         pi->sechdrs = sechdrs;
809
810         offset = 0;
811         bss_addr = kbuf->mem + kbuf->bufsz;
812         kbuf->image->start = pi->ehdr->e_entry;
813
814         for (i = 0; i < pi->ehdr->e_shnum; i++) {
815                 unsigned long align;
816                 void *src, *dst;
817
818                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
819                         continue;
820
821                 align = sechdrs[i].sh_addralign;
822                 if (sechdrs[i].sh_type == SHT_NOBITS) {
823                         bss_addr = ALIGN(bss_addr, align);
824                         sechdrs[i].sh_addr = bss_addr;
825                         bss_addr += sechdrs[i].sh_size;
826                         continue;
827                 }
828
829                 offset = ALIGN(offset, align);
830                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
831                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
832                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
833                                          + sechdrs[i].sh_size)) {
834                         kbuf->image->start -= sechdrs[i].sh_addr;
835                         kbuf->image->start += kbuf->mem + offset;
836                 }
837
838                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
839                 dst = pi->purgatory_buf + offset;
840                 memcpy(dst, src, sechdrs[i].sh_size);
841
842                 sechdrs[i].sh_addr = kbuf->mem + offset;
843                 sechdrs[i].sh_offset = offset;
844                 offset += sechdrs[i].sh_size;
845         }
846
847         return 0;
848 }
849
850 static int kexec_apply_relocations(struct kimage *image)
851 {
852         int i, ret;
853         struct purgatory_info *pi = &image->purgatory_info;
854         const Elf_Shdr *sechdrs;
855
856         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
857
858         for (i = 0; i < pi->ehdr->e_shnum; i++) {
859                 const Elf_Shdr *relsec;
860                 const Elf_Shdr *symtab;
861                 Elf_Shdr *section;
862
863                 relsec = sechdrs + i;
864
865                 if (relsec->sh_type != SHT_RELA &&
866                     relsec->sh_type != SHT_REL)
867                         continue;
868
869                 /*
870                  * For section of type SHT_RELA/SHT_REL,
871                  * ->sh_link contains section header index of associated
872                  * symbol table. And ->sh_info contains section header
873                  * index of section to which relocations apply.
874                  */
875                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
876                     relsec->sh_link >= pi->ehdr->e_shnum)
877                         return -ENOEXEC;
878
879                 section = pi->sechdrs + relsec->sh_info;
880                 symtab = sechdrs + relsec->sh_link;
881
882                 if (!(section->sh_flags & SHF_ALLOC))
883                         continue;
884
885                 /*
886                  * symtab->sh_link contain section header index of associated
887                  * string table.
888                  */
889                 if (symtab->sh_link >= pi->ehdr->e_shnum)
890                         /* Invalid section number? */
891                         continue;
892
893                 /*
894                  * Respective architecture needs to provide support for applying
895                  * relocations of type SHT_RELA/SHT_REL.
896                  */
897                 if (relsec->sh_type == SHT_RELA)
898                         ret = arch_kexec_apply_relocations_add(pi, section,
899                                                                relsec, symtab);
900                 else if (relsec->sh_type == SHT_REL)
901                         ret = arch_kexec_apply_relocations(pi, section,
902                                                            relsec, symtab);
903                 if (ret)
904                         return ret;
905         }
906
907         return 0;
908 }
909
910 /*
911  * kexec_load_purgatory - Load and relocate the purgatory object.
912  * @image:      Image to add the purgatory to.
913  * @kbuf:       Memory parameters to use.
914  *
915  * Allocates the memory needed for image->purgatory_info.sechdrs and
916  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
917  * to free the memory after use.
918  *
919  * Return: 0 on success, negative errno on error.
920  */
921 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
922 {
923         struct purgatory_info *pi = &image->purgatory_info;
924         int ret;
925
926         if (kexec_purgatory_size <= 0)
927                 return -EINVAL;
928
929         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
930
931         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
932         if (ret)
933                 return ret;
934
935         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
936         if (ret)
937                 goto out_free_kbuf;
938
939         ret = kexec_apply_relocations(image);
940         if (ret)
941                 goto out;
942
943         return 0;
944 out:
945         vfree(pi->sechdrs);
946         pi->sechdrs = NULL;
947 out_free_kbuf:
948         vfree(pi->purgatory_buf);
949         pi->purgatory_buf = NULL;
950         return ret;
951 }
952
953 /*
954  * kexec_purgatory_find_symbol - find a symbol in the purgatory
955  * @pi:         Purgatory to search in.
956  * @name:       Name of the symbol.
957  *
958  * Return: pointer to symbol in read-only symtab on success, NULL on error.
959  */
960 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
961                                                   const char *name)
962 {
963         const Elf_Shdr *sechdrs;
964         const Elf_Ehdr *ehdr;
965         const Elf_Sym *syms;
966         const char *strtab;
967         int i, k;
968
969         if (!pi->ehdr)
970                 return NULL;
971
972         ehdr = pi->ehdr;
973         sechdrs = (void *)ehdr + ehdr->e_shoff;
974
975         for (i = 0; i < ehdr->e_shnum; i++) {
976                 if (sechdrs[i].sh_type != SHT_SYMTAB)
977                         continue;
978
979                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
980                         /* Invalid strtab section number */
981                         continue;
982                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
983                 syms = (void *)ehdr + sechdrs[i].sh_offset;
984
985                 /* Go through symbols for a match */
986                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
987                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
988                                 continue;
989
990                         if (strcmp(strtab + syms[k].st_name, name) != 0)
991                                 continue;
992
993                         if (syms[k].st_shndx == SHN_UNDEF ||
994                             syms[k].st_shndx >= ehdr->e_shnum) {
995                                 pr_debug("Symbol: %s has bad section index %d.\n",
996                                                 name, syms[k].st_shndx);
997                                 return NULL;
998                         }
999
1000                         /* Found the symbol we are looking for */
1001                         return &syms[k];
1002                 }
1003         }
1004
1005         return NULL;
1006 }
1007
1008 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1009 {
1010         struct purgatory_info *pi = &image->purgatory_info;
1011         const Elf_Sym *sym;
1012         Elf_Shdr *sechdr;
1013
1014         sym = kexec_purgatory_find_symbol(pi, name);
1015         if (!sym)
1016                 return ERR_PTR(-EINVAL);
1017
1018         sechdr = &pi->sechdrs[sym->st_shndx];
1019
1020         /*
1021          * Returns the address where symbol will finally be loaded after
1022          * kexec_load_segment()
1023          */
1024         return (void *)(sechdr->sh_addr + sym->st_value);
1025 }
1026
1027 /*
1028  * Get or set value of a symbol. If "get_value" is true, symbol value is
1029  * returned in buf otherwise symbol value is set based on value in buf.
1030  */
1031 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1032                                    void *buf, unsigned int size, bool get_value)
1033 {
1034         struct purgatory_info *pi = &image->purgatory_info;
1035         const Elf_Sym *sym;
1036         Elf_Shdr *sec;
1037         char *sym_buf;
1038
1039         sym = kexec_purgatory_find_symbol(pi, name);
1040         if (!sym)
1041                 return -EINVAL;
1042
1043         if (sym->st_size != size) {
1044                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1045                        name, (unsigned long)sym->st_size, size);
1046                 return -EINVAL;
1047         }
1048
1049         sec = pi->sechdrs + sym->st_shndx;
1050
1051         if (sec->sh_type == SHT_NOBITS) {
1052                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1053                        get_value ? "get" : "set");
1054                 return -EINVAL;
1055         }
1056
1057         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1058
1059         if (get_value)
1060                 memcpy((void *)buf, sym_buf, size);
1061         else
1062                 memcpy((void *)sym_buf, buf, size);
1063
1064         return 0;
1065 }
1066 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1067
1068 int crash_exclude_mem_range(struct crash_mem *mem,
1069                             unsigned long long mstart, unsigned long long mend)
1070 {
1071         int i, j;
1072         unsigned long long start, end;
1073         struct crash_mem_range temp_range = {0, 0};
1074
1075         for (i = 0; i < mem->nr_ranges; i++) {
1076                 start = mem->ranges[i].start;
1077                 end = mem->ranges[i].end;
1078
1079                 if (mstart > end || mend < start)
1080                         continue;
1081
1082                 /* Truncate any area outside of range */
1083                 if (mstart < start)
1084                         mstart = start;
1085                 if (mend > end)
1086                         mend = end;
1087
1088                 /* Found completely overlapping range */
1089                 if (mstart == start && mend == end) {
1090                         mem->ranges[i].start = 0;
1091                         mem->ranges[i].end = 0;
1092                         if (i < mem->nr_ranges - 1) {
1093                                 /* Shift rest of the ranges to left */
1094                                 for (j = i; j < mem->nr_ranges - 1; j++) {
1095                                         mem->ranges[j].start =
1096                                                 mem->ranges[j+1].start;
1097                                         mem->ranges[j].end =
1098                                                         mem->ranges[j+1].end;
1099                                 }
1100                         }
1101                         mem->nr_ranges--;
1102                         return 0;
1103                 }
1104
1105                 if (mstart > start && mend < end) {
1106                         /* Split original range */
1107                         mem->ranges[i].end = mstart - 1;
1108                         temp_range.start = mend + 1;
1109                         temp_range.end = end;
1110                 } else if (mstart != start)
1111                         mem->ranges[i].end = mstart - 1;
1112                 else
1113                         mem->ranges[i].start = mend + 1;
1114                 break;
1115         }
1116
1117         /* If a split happened, add the split to array */
1118         if (!temp_range.end)
1119                 return 0;
1120
1121         /* Split happened */
1122         if (i == mem->max_nr_ranges - 1)
1123                 return -ENOMEM;
1124
1125         /* Location where new range should go */
1126         j = i + 1;
1127         if (j < mem->nr_ranges) {
1128                 /* Move over all ranges one slot towards the end */
1129                 for (i = mem->nr_ranges - 1; i >= j; i--)
1130                         mem->ranges[i + 1] = mem->ranges[i];
1131         }
1132
1133         mem->ranges[j].start = temp_range.start;
1134         mem->ranges[j].end = temp_range.end;
1135         mem->nr_ranges++;
1136         return 0;
1137 }
1138
1139 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1140                           void **addr, unsigned long *sz)
1141 {
1142         Elf64_Ehdr *ehdr;
1143         Elf64_Phdr *phdr;
1144         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1145         unsigned char *buf;
1146         unsigned int cpu, i;
1147         unsigned long long notes_addr;
1148         unsigned long mstart, mend;
1149
1150         /* extra phdr for vmcoreinfo elf note */
1151         nr_phdr = nr_cpus + 1;
1152         nr_phdr += mem->nr_ranges;
1153
1154         /*
1155          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1156          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1157          * I think this is required by tools like gdb. So same physical
1158          * memory will be mapped in two elf headers. One will contain kernel
1159          * text virtual addresses and other will have __va(physical) addresses.
1160          */
1161
1162         nr_phdr++;
1163         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1164         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1165
1166         buf = vzalloc(elf_sz);
1167         if (!buf)
1168                 return -ENOMEM;
1169
1170         ehdr = (Elf64_Ehdr *)buf;
1171         phdr = (Elf64_Phdr *)(ehdr + 1);
1172         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1173         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1174         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1175         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1176         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1177         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1178         ehdr->e_type = ET_CORE;
1179         ehdr->e_machine = ELF_ARCH;
1180         ehdr->e_version = EV_CURRENT;
1181         ehdr->e_phoff = sizeof(Elf64_Ehdr);
1182         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1183         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1184
1185         /* Prepare one phdr of type PT_NOTE for each present cpu */
1186         for_each_present_cpu(cpu) {
1187                 phdr->p_type = PT_NOTE;
1188                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1189                 phdr->p_offset = phdr->p_paddr = notes_addr;
1190                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1191                 (ehdr->e_phnum)++;
1192                 phdr++;
1193         }
1194
1195         /* Prepare one PT_NOTE header for vmcoreinfo */
1196         phdr->p_type = PT_NOTE;
1197         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1198         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1199         (ehdr->e_phnum)++;
1200         phdr++;
1201
1202         /* Prepare PT_LOAD type program header for kernel text region */
1203         if (kernel_map) {
1204                 phdr->p_type = PT_LOAD;
1205                 phdr->p_flags = PF_R|PF_W|PF_X;
1206                 phdr->p_vaddr = (Elf64_Addr)_text;
1207                 phdr->p_filesz = phdr->p_memsz = _end - _text;
1208                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1209                 ehdr->e_phnum++;
1210                 phdr++;
1211         }
1212
1213         /* Go through all the ranges in mem->ranges[] and prepare phdr */
1214         for (i = 0; i < mem->nr_ranges; i++) {
1215                 mstart = mem->ranges[i].start;
1216                 mend = mem->ranges[i].end;
1217
1218                 phdr->p_type = PT_LOAD;
1219                 phdr->p_flags = PF_R|PF_W|PF_X;
1220                 phdr->p_offset  = mstart;
1221
1222                 phdr->p_paddr = mstart;
1223                 phdr->p_vaddr = (unsigned long long) __va(mstart);
1224                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1225                 phdr->p_align = 0;
1226                 ehdr->e_phnum++;
1227                 phdr++;
1228                 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1229                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1230                         ehdr->e_phnum, phdr->p_offset);
1231         }
1232
1233         *addr = buf;
1234         *sz = elf_sz;
1235         return 0;
1236 }