GNU Linux-libre 5.15.137-gnu
[releases.git] / kernel / kexec_file.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
35 void set_kexec_sig_enforced(void)
36 {
37         sig_enforce = true;
38 }
39 #endif
40
41 static int kexec_calculate_store_digests(struct kimage *image);
42
43 /*
44  * Currently this is the only default function that is exported as some
45  * architectures need it to do additional handlings.
46  * In the future, other default functions may be exported too if required.
47  */
48 int kexec_image_probe_default(struct kimage *image, void *buf,
49                               unsigned long buf_len)
50 {
51         const struct kexec_file_ops * const *fops;
52         int ret = -ENOEXEC;
53
54         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
55                 ret = (*fops)->probe(buf, buf_len);
56                 if (!ret) {
57                         image->fops = *fops;
58                         return ret;
59                 }
60         }
61
62         return ret;
63 }
64
65 /* Architectures can provide this probe function */
66 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
67                                          unsigned long buf_len)
68 {
69         return kexec_image_probe_default(image, buf, buf_len);
70 }
71
72 static void *kexec_image_load_default(struct kimage *image)
73 {
74         if (!image->fops || !image->fops->load)
75                 return ERR_PTR(-ENOEXEC);
76
77         return image->fops->load(image, image->kernel_buf,
78                                  image->kernel_buf_len, image->initrd_buf,
79                                  image->initrd_buf_len, image->cmdline_buf,
80                                  image->cmdline_buf_len);
81 }
82
83 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
84 {
85         return kexec_image_load_default(image);
86 }
87
88 int kexec_image_post_load_cleanup_default(struct kimage *image)
89 {
90         if (!image->fops || !image->fops->cleanup)
91                 return 0;
92
93         return image->fops->cleanup(image->image_loader_data);
94 }
95
96 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
97 {
98         return kexec_image_post_load_cleanup_default(image);
99 }
100
101 #ifdef CONFIG_KEXEC_SIG
102 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
103                                           unsigned long buf_len)
104 {
105         if (!image->fops || !image->fops->verify_sig) {
106                 pr_debug("kernel loader does not support signature verification.\n");
107                 return -EKEYREJECTED;
108         }
109
110         return image->fops->verify_sig(buf, buf_len);
111 }
112
113 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
114                                         unsigned long buf_len)
115 {
116         return kexec_image_verify_sig_default(image, buf, buf_len);
117 }
118 #endif
119
120 /*
121  * Free up memory used by kernel, initrd, and command line. This is temporary
122  * memory allocation which is not needed any more after these buffers have
123  * been loaded into separate segments and have been copied elsewhere.
124  */
125 void kimage_file_post_load_cleanup(struct kimage *image)
126 {
127         struct purgatory_info *pi = &image->purgatory_info;
128
129         vfree(image->kernel_buf);
130         image->kernel_buf = NULL;
131
132         vfree(image->initrd_buf);
133         image->initrd_buf = NULL;
134
135         kfree(image->cmdline_buf);
136         image->cmdline_buf = NULL;
137
138         vfree(pi->purgatory_buf);
139         pi->purgatory_buf = NULL;
140
141         vfree(pi->sechdrs);
142         pi->sechdrs = NULL;
143
144 #ifdef CONFIG_IMA_KEXEC
145         vfree(image->ima_buffer);
146         image->ima_buffer = NULL;
147 #endif /* CONFIG_IMA_KEXEC */
148
149         /* See if architecture has anything to cleanup post load */
150         arch_kimage_file_post_load_cleanup(image);
151
152         /*
153          * Above call should have called into bootloader to free up
154          * any data stored in kimage->image_loader_data. It should
155          * be ok now to free it up.
156          */
157         kfree(image->image_loader_data);
158         image->image_loader_data = NULL;
159 }
160
161 #ifdef CONFIG_KEXEC_SIG
162 static int
163 kimage_validate_signature(struct kimage *image)
164 {
165         int ret;
166
167         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
168                                            image->kernel_buf_len);
169         if (ret) {
170
171                 if (sig_enforce) {
172                         pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
173                         return ret;
174                 }
175
176                 /*
177                  * If IMA is guaranteed to appraise a signature on the kexec
178                  * image, permit it even if the kernel is otherwise locked
179                  * down.
180                  */
181                 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
182                     security_locked_down(LOCKDOWN_KEXEC))
183                         return -EPERM;
184
185                 pr_debug("kernel signature verification failed (%d).\n", ret);
186         }
187
188         return 0;
189 }
190 #endif
191
192 /*
193  * In file mode list of segments is prepared by kernel. Copy relevant
194  * data from user space, do error checking, prepare segment list
195  */
196 static int
197 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
198                              const char __user *cmdline_ptr,
199                              unsigned long cmdline_len, unsigned flags)
200 {
201         int ret;
202         void *ldata;
203
204         ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
205                                        INT_MAX, NULL, READING_KEXEC_IMAGE);
206         if (ret < 0)
207                 return ret;
208         image->kernel_buf_len = ret;
209
210         /* Call arch image probe handlers */
211         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212                                             image->kernel_buf_len);
213         if (ret)
214                 goto out;
215
216 #ifdef CONFIG_KEXEC_SIG
217         ret = kimage_validate_signature(image);
218
219         if (ret)
220                 goto out;
221 #endif
222         /* It is possible that there no initramfs is being loaded */
223         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224                 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225                                                INT_MAX, NULL,
226                                                READING_KEXEC_INITRAMFS);
227                 if (ret < 0)
228                         goto out;
229                 image->initrd_buf_len = ret;
230                 ret = 0;
231         }
232
233         if (cmdline_len) {
234                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235                 if (IS_ERR(image->cmdline_buf)) {
236                         ret = PTR_ERR(image->cmdline_buf);
237                         image->cmdline_buf = NULL;
238                         goto out;
239                 }
240
241                 image->cmdline_buf_len = cmdline_len;
242
243                 /* command line should be a string with last byte null */
244                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245                         ret = -EINVAL;
246                         goto out;
247                 }
248
249                 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250                                   image->cmdline_buf_len - 1);
251         }
252
253         /* IMA needs to pass the measurement list to the next kernel. */
254         ima_add_kexec_buffer(image);
255
256         /* Call arch image load handlers */
257         ldata = arch_kexec_kernel_image_load(image);
258
259         if (IS_ERR(ldata)) {
260                 ret = PTR_ERR(ldata);
261                 goto out;
262         }
263
264         image->image_loader_data = ldata;
265 out:
266         /* In case of error, free up all allocated memory in this function */
267         if (ret)
268                 kimage_file_post_load_cleanup(image);
269         return ret;
270 }
271
272 static int
273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274                        int initrd_fd, const char __user *cmdline_ptr,
275                        unsigned long cmdline_len, unsigned long flags)
276 {
277         int ret;
278         struct kimage *image;
279         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280
281         image = do_kimage_alloc_init();
282         if (!image)
283                 return -ENOMEM;
284
285         image->file_mode = 1;
286
287         if (kexec_on_panic) {
288                 /* Enable special crash kernel control page alloc policy. */
289                 image->control_page = crashk_res.start;
290                 image->type = KEXEC_TYPE_CRASH;
291         }
292
293         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
294                                            cmdline_ptr, cmdline_len, flags);
295         if (ret)
296                 goto out_free_image;
297
298         ret = sanity_check_segment_list(image);
299         if (ret)
300                 goto out_free_post_load_bufs;
301
302         ret = -ENOMEM;
303         image->control_code_page = kimage_alloc_control_pages(image,
304                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
305         if (!image->control_code_page) {
306                 pr_err("Could not allocate control_code_buffer\n");
307                 goto out_free_post_load_bufs;
308         }
309
310         if (!kexec_on_panic) {
311                 image->swap_page = kimage_alloc_control_pages(image, 0);
312                 if (!image->swap_page) {
313                         pr_err("Could not allocate swap buffer\n");
314                         goto out_free_control_pages;
315                 }
316         }
317
318         *rimage = image;
319         return 0;
320 out_free_control_pages:
321         kimage_free_page_list(&image->control_pages);
322 out_free_post_load_bufs:
323         kimage_file_post_load_cleanup(image);
324 out_free_image:
325         kfree(image);
326         return ret;
327 }
328
329 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
330                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
331                 unsigned long, flags)
332 {
333         int ret = 0, i;
334         struct kimage **dest_image, *image;
335
336         /* We only trust the superuser with rebooting the system. */
337         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
338                 return -EPERM;
339
340         /* Make sure we have a legal set of flags */
341         if (flags != (flags & KEXEC_FILE_FLAGS))
342                 return -EINVAL;
343
344         image = NULL;
345
346         if (!kexec_trylock())
347                 return -EBUSY;
348
349         dest_image = &kexec_image;
350         if (flags & KEXEC_FILE_ON_CRASH) {
351                 dest_image = &kexec_crash_image;
352                 if (kexec_crash_image)
353                         arch_kexec_unprotect_crashkres();
354         }
355
356         if (flags & KEXEC_FILE_UNLOAD)
357                 goto exchange;
358
359         /*
360          * In case of crash, new kernel gets loaded in reserved region. It is
361          * same memory where old crash kernel might be loaded. Free any
362          * current crash dump kernel before we corrupt it.
363          */
364         if (flags & KEXEC_FILE_ON_CRASH)
365                 kimage_free(xchg(&kexec_crash_image, NULL));
366
367         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
368                                      cmdline_len, flags);
369         if (ret)
370                 goto out;
371
372         ret = machine_kexec_prepare(image);
373         if (ret)
374                 goto out;
375
376         /*
377          * Some architecture(like S390) may touch the crash memory before
378          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
379          */
380         ret = kimage_crash_copy_vmcoreinfo(image);
381         if (ret)
382                 goto out;
383
384         ret = kexec_calculate_store_digests(image);
385         if (ret)
386                 goto out;
387
388         for (i = 0; i < image->nr_segments; i++) {
389                 struct kexec_segment *ksegment;
390
391                 ksegment = &image->segment[i];
392                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
393                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
394                          ksegment->memsz);
395
396                 ret = kimage_load_segment(image, &image->segment[i]);
397                 if (ret)
398                         goto out;
399         }
400
401         kimage_terminate(image);
402
403         ret = machine_kexec_post_load(image);
404         if (ret)
405                 goto out;
406
407         /*
408          * Free up any temporary buffers allocated which are not needed
409          * after image has been loaded
410          */
411         kimage_file_post_load_cleanup(image);
412 exchange:
413         image = xchg(dest_image, image);
414 out:
415         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
416                 arch_kexec_protect_crashkres();
417
418         kexec_unlock();
419         kimage_free(image);
420         return ret;
421 }
422
423 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
424                                     struct kexec_buf *kbuf)
425 {
426         struct kimage *image = kbuf->image;
427         unsigned long temp_start, temp_end;
428
429         temp_end = min(end, kbuf->buf_max);
430         temp_start = temp_end - kbuf->memsz;
431
432         do {
433                 /* align down start */
434                 temp_start = temp_start & (~(kbuf->buf_align - 1));
435
436                 if (temp_start < start || temp_start < kbuf->buf_min)
437                         return 0;
438
439                 temp_end = temp_start + kbuf->memsz - 1;
440
441                 /*
442                  * Make sure this does not conflict with any of existing
443                  * segments
444                  */
445                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
446                         temp_start = temp_start - PAGE_SIZE;
447                         continue;
448                 }
449
450                 /* We found a suitable memory range */
451                 break;
452         } while (1);
453
454         /* If we are here, we found a suitable memory range */
455         kbuf->mem = temp_start;
456
457         /* Success, stop navigating through remaining System RAM ranges */
458         return 1;
459 }
460
461 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
462                                      struct kexec_buf *kbuf)
463 {
464         struct kimage *image = kbuf->image;
465         unsigned long temp_start, temp_end;
466
467         temp_start = max(start, kbuf->buf_min);
468
469         do {
470                 temp_start = ALIGN(temp_start, kbuf->buf_align);
471                 temp_end = temp_start + kbuf->memsz - 1;
472
473                 if (temp_end > end || temp_end > kbuf->buf_max)
474                         return 0;
475                 /*
476                  * Make sure this does not conflict with any of existing
477                  * segments
478                  */
479                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
480                         temp_start = temp_start + PAGE_SIZE;
481                         continue;
482                 }
483
484                 /* We found a suitable memory range */
485                 break;
486         } while (1);
487
488         /* If we are here, we found a suitable memory range */
489         kbuf->mem = temp_start;
490
491         /* Success, stop navigating through remaining System RAM ranges */
492         return 1;
493 }
494
495 static int locate_mem_hole_callback(struct resource *res, void *arg)
496 {
497         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
498         u64 start = res->start, end = res->end;
499         unsigned long sz = end - start + 1;
500
501         /* Returning 0 will take to next memory range */
502
503         /* Don't use memory that will be detected and handled by a driver. */
504         if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
505                 return 0;
506
507         if (sz < kbuf->memsz)
508                 return 0;
509
510         if (end < kbuf->buf_min || start > kbuf->buf_max)
511                 return 0;
512
513         /*
514          * Allocate memory top down with-in ram range. Otherwise bottom up
515          * allocation.
516          */
517         if (kbuf->top_down)
518                 return locate_mem_hole_top_down(start, end, kbuf);
519         return locate_mem_hole_bottom_up(start, end, kbuf);
520 }
521
522 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
523 static int kexec_walk_memblock(struct kexec_buf *kbuf,
524                                int (*func)(struct resource *, void *))
525 {
526         int ret = 0;
527         u64 i;
528         phys_addr_t mstart, mend;
529         struct resource res = { };
530
531         if (kbuf->image->type == KEXEC_TYPE_CRASH)
532                 return func(&crashk_res, kbuf);
533
534         if (kbuf->top_down) {
535                 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
536                                                 &mstart, &mend, NULL) {
537                         /*
538                          * In memblock, end points to the first byte after the
539                          * range while in kexec, end points to the last byte
540                          * in the range.
541                          */
542                         res.start = mstart;
543                         res.end = mend - 1;
544                         ret = func(&res, kbuf);
545                         if (ret)
546                                 break;
547                 }
548         } else {
549                 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
550                                         &mstart, &mend, NULL) {
551                         /*
552                          * In memblock, end points to the first byte after the
553                          * range while in kexec, end points to the last byte
554                          * in the range.
555                          */
556                         res.start = mstart;
557                         res.end = mend - 1;
558                         ret = func(&res, kbuf);
559                         if (ret)
560                                 break;
561                 }
562         }
563
564         return ret;
565 }
566 #else
567 static int kexec_walk_memblock(struct kexec_buf *kbuf,
568                                int (*func)(struct resource *, void *))
569 {
570         return 0;
571 }
572 #endif
573
574 /**
575  * kexec_walk_resources - call func(data) on free memory regions
576  * @kbuf:       Context info for the search. Also passed to @func.
577  * @func:       Function to call for each memory region.
578  *
579  * Return: The memory walk will stop when func returns a non-zero value
580  * and that value will be returned. If all free regions are visited without
581  * func returning non-zero, then zero will be returned.
582  */
583 static int kexec_walk_resources(struct kexec_buf *kbuf,
584                                 int (*func)(struct resource *, void *))
585 {
586         if (kbuf->image->type == KEXEC_TYPE_CRASH)
587                 return walk_iomem_res_desc(crashk_res.desc,
588                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
589                                            crashk_res.start, crashk_res.end,
590                                            kbuf, func);
591         else
592                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
593 }
594
595 /**
596  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
597  * @kbuf:       Parameters for the memory search.
598  *
599  * On success, kbuf->mem will have the start address of the memory region found.
600  *
601  * Return: 0 on success, negative errno on error.
602  */
603 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
604 {
605         int ret;
606
607         /* Arch knows where to place */
608         if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
609                 return 0;
610
611         if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
612                 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
613         else
614                 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
615
616         return ret == 1 ? 0 : -EADDRNOTAVAIL;
617 }
618
619 /**
620  * arch_kexec_locate_mem_hole - Find free memory to place the segments.
621  * @kbuf:                       Parameters for the memory search.
622  *
623  * On success, kbuf->mem will have the start address of the memory region found.
624  *
625  * Return: 0 on success, negative errno on error.
626  */
627 int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
628 {
629         return kexec_locate_mem_hole(kbuf);
630 }
631
632 /**
633  * kexec_add_buffer - place a buffer in a kexec segment
634  * @kbuf:       Buffer contents and memory parameters.
635  *
636  * This function assumes that kexec_mutex is held.
637  * On successful return, @kbuf->mem will have the physical address of
638  * the buffer in memory.
639  *
640  * Return: 0 on success, negative errno on error.
641  */
642 int kexec_add_buffer(struct kexec_buf *kbuf)
643 {
644         struct kexec_segment *ksegment;
645         int ret;
646
647         /* Currently adding segment this way is allowed only in file mode */
648         if (!kbuf->image->file_mode)
649                 return -EINVAL;
650
651         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
652                 return -EINVAL;
653
654         /*
655          * Make sure we are not trying to add buffer after allocating
656          * control pages. All segments need to be placed first before
657          * any control pages are allocated. As control page allocation
658          * logic goes through list of segments to make sure there are
659          * no destination overlaps.
660          */
661         if (!list_empty(&kbuf->image->control_pages)) {
662                 WARN_ON(1);
663                 return -EINVAL;
664         }
665
666         /* Ensure minimum alignment needed for segments. */
667         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
668         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
669
670         /* Walk the RAM ranges and allocate a suitable range for the buffer */
671         ret = arch_kexec_locate_mem_hole(kbuf);
672         if (ret)
673                 return ret;
674
675         /* Found a suitable memory range */
676         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
677         ksegment->kbuf = kbuf->buffer;
678         ksegment->bufsz = kbuf->bufsz;
679         ksegment->mem = kbuf->mem;
680         ksegment->memsz = kbuf->memsz;
681         kbuf->image->nr_segments++;
682         return 0;
683 }
684
685 /* Calculate and store the digest of segments */
686 static int kexec_calculate_store_digests(struct kimage *image)
687 {
688         struct crypto_shash *tfm;
689         struct shash_desc *desc;
690         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
691         size_t desc_size, nullsz;
692         char *digest;
693         void *zero_buf;
694         struct kexec_sha_region *sha_regions;
695         struct purgatory_info *pi = &image->purgatory_info;
696
697         if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
698                 return 0;
699
700         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
701         zero_buf_sz = PAGE_SIZE;
702
703         tfm = crypto_alloc_shash("sha256", 0, 0);
704         if (IS_ERR(tfm)) {
705                 ret = PTR_ERR(tfm);
706                 goto out;
707         }
708
709         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
710         desc = kzalloc(desc_size, GFP_KERNEL);
711         if (!desc) {
712                 ret = -ENOMEM;
713                 goto out_free_tfm;
714         }
715
716         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
717         sha_regions = vzalloc(sha_region_sz);
718         if (!sha_regions) {
719                 ret = -ENOMEM;
720                 goto out_free_desc;
721         }
722
723         desc->tfm   = tfm;
724
725         ret = crypto_shash_init(desc);
726         if (ret < 0)
727                 goto out_free_sha_regions;
728
729         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
730         if (!digest) {
731                 ret = -ENOMEM;
732                 goto out_free_sha_regions;
733         }
734
735         for (j = i = 0; i < image->nr_segments; i++) {
736                 struct kexec_segment *ksegment;
737
738                 ksegment = &image->segment[i];
739                 /*
740                  * Skip purgatory as it will be modified once we put digest
741                  * info in purgatory.
742                  */
743                 if (ksegment->kbuf == pi->purgatory_buf)
744                         continue;
745
746                 ret = crypto_shash_update(desc, ksegment->kbuf,
747                                           ksegment->bufsz);
748                 if (ret)
749                         break;
750
751                 /*
752                  * Assume rest of the buffer is filled with zero and
753                  * update digest accordingly.
754                  */
755                 nullsz = ksegment->memsz - ksegment->bufsz;
756                 while (nullsz) {
757                         unsigned long bytes = nullsz;
758
759                         if (bytes > zero_buf_sz)
760                                 bytes = zero_buf_sz;
761                         ret = crypto_shash_update(desc, zero_buf, bytes);
762                         if (ret)
763                                 break;
764                         nullsz -= bytes;
765                 }
766
767                 if (ret)
768                         break;
769
770                 sha_regions[j].start = ksegment->mem;
771                 sha_regions[j].len = ksegment->memsz;
772                 j++;
773         }
774
775         if (!ret) {
776                 ret = crypto_shash_final(desc, digest);
777                 if (ret)
778                         goto out_free_digest;
779                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
780                                                      sha_regions, sha_region_sz, 0);
781                 if (ret)
782                         goto out_free_digest;
783
784                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
785                                                      digest, SHA256_DIGEST_SIZE, 0);
786                 if (ret)
787                         goto out_free_digest;
788         }
789
790 out_free_digest:
791         kfree(digest);
792 out_free_sha_regions:
793         vfree(sha_regions);
794 out_free_desc:
795         kfree(desc);
796 out_free_tfm:
797         kfree(tfm);
798 out:
799         return ret;
800 }
801
802 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
803 /*
804  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
805  * @pi:         Purgatory to be loaded.
806  * @kbuf:       Buffer to setup.
807  *
808  * Allocates the memory needed for the buffer. Caller is responsible to free
809  * the memory after use.
810  *
811  * Return: 0 on success, negative errno on error.
812  */
813 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
814                                       struct kexec_buf *kbuf)
815 {
816         const Elf_Shdr *sechdrs;
817         unsigned long bss_align;
818         unsigned long bss_sz;
819         unsigned long align;
820         int i, ret;
821
822         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
823         kbuf->buf_align = bss_align = 1;
824         kbuf->bufsz = bss_sz = 0;
825
826         for (i = 0; i < pi->ehdr->e_shnum; i++) {
827                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
828                         continue;
829
830                 align = sechdrs[i].sh_addralign;
831                 if (sechdrs[i].sh_type != SHT_NOBITS) {
832                         if (kbuf->buf_align < align)
833                                 kbuf->buf_align = align;
834                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
835                         kbuf->bufsz += sechdrs[i].sh_size;
836                 } else {
837                         if (bss_align < align)
838                                 bss_align = align;
839                         bss_sz = ALIGN(bss_sz, align);
840                         bss_sz += sechdrs[i].sh_size;
841                 }
842         }
843         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
844         kbuf->memsz = kbuf->bufsz + bss_sz;
845         if (kbuf->buf_align < bss_align)
846                 kbuf->buf_align = bss_align;
847
848         kbuf->buffer = vzalloc(kbuf->bufsz);
849         if (!kbuf->buffer)
850                 return -ENOMEM;
851         pi->purgatory_buf = kbuf->buffer;
852
853         ret = kexec_add_buffer(kbuf);
854         if (ret)
855                 goto out;
856
857         return 0;
858 out:
859         vfree(pi->purgatory_buf);
860         pi->purgatory_buf = NULL;
861         return ret;
862 }
863
864 /*
865  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
866  * @pi:         Purgatory to be loaded.
867  * @kbuf:       Buffer prepared to store purgatory.
868  *
869  * Allocates the memory needed for the buffer. Caller is responsible to free
870  * the memory after use.
871  *
872  * Return: 0 on success, negative errno on error.
873  */
874 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
875                                          struct kexec_buf *kbuf)
876 {
877         unsigned long bss_addr;
878         unsigned long offset;
879         Elf_Shdr *sechdrs;
880         int i;
881
882         /*
883          * The section headers in kexec_purgatory are read-only. In order to
884          * have them modifiable make a temporary copy.
885          */
886         sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
887         if (!sechdrs)
888                 return -ENOMEM;
889         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
890                pi->ehdr->e_shnum * sizeof(Elf_Shdr));
891         pi->sechdrs = sechdrs;
892
893         offset = 0;
894         bss_addr = kbuf->mem + kbuf->bufsz;
895         kbuf->image->start = pi->ehdr->e_entry;
896
897         for (i = 0; i < pi->ehdr->e_shnum; i++) {
898                 unsigned long align;
899                 void *src, *dst;
900
901                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
902                         continue;
903
904                 align = sechdrs[i].sh_addralign;
905                 if (sechdrs[i].sh_type == SHT_NOBITS) {
906                         bss_addr = ALIGN(bss_addr, align);
907                         sechdrs[i].sh_addr = bss_addr;
908                         bss_addr += sechdrs[i].sh_size;
909                         continue;
910                 }
911
912                 offset = ALIGN(offset, align);
913
914                 /*
915                  * Check if the segment contains the entry point, if so,
916                  * calculate the value of image->start based on it.
917                  * If the compiler has produced more than one .text section
918                  * (Eg: .text.hot), they are generally after the main .text
919                  * section, and they shall not be used to calculate
920                  * image->start. So do not re-calculate image->start if it
921                  * is not set to the initial value, and warn the user so they
922                  * have a chance to fix their purgatory's linker script.
923                  */
924                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
925                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
926                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
927                                          + sechdrs[i].sh_size) &&
928                     !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
929                         kbuf->image->start -= sechdrs[i].sh_addr;
930                         kbuf->image->start += kbuf->mem + offset;
931                 }
932
933                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
934                 dst = pi->purgatory_buf + offset;
935                 memcpy(dst, src, sechdrs[i].sh_size);
936
937                 sechdrs[i].sh_addr = kbuf->mem + offset;
938                 sechdrs[i].sh_offset = offset;
939                 offset += sechdrs[i].sh_size;
940         }
941
942         return 0;
943 }
944
945 static int kexec_apply_relocations(struct kimage *image)
946 {
947         int i, ret;
948         struct purgatory_info *pi = &image->purgatory_info;
949         const Elf_Shdr *sechdrs;
950
951         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
952
953         for (i = 0; i < pi->ehdr->e_shnum; i++) {
954                 const Elf_Shdr *relsec;
955                 const Elf_Shdr *symtab;
956                 Elf_Shdr *section;
957
958                 relsec = sechdrs + i;
959
960                 if (relsec->sh_type != SHT_RELA &&
961                     relsec->sh_type != SHT_REL)
962                         continue;
963
964                 /*
965                  * For section of type SHT_RELA/SHT_REL,
966                  * ->sh_link contains section header index of associated
967                  * symbol table. And ->sh_info contains section header
968                  * index of section to which relocations apply.
969                  */
970                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
971                     relsec->sh_link >= pi->ehdr->e_shnum)
972                         return -ENOEXEC;
973
974                 section = pi->sechdrs + relsec->sh_info;
975                 symtab = sechdrs + relsec->sh_link;
976
977                 if (!(section->sh_flags & SHF_ALLOC))
978                         continue;
979
980                 /*
981                  * symtab->sh_link contain section header index of associated
982                  * string table.
983                  */
984                 if (symtab->sh_link >= pi->ehdr->e_shnum)
985                         /* Invalid section number? */
986                         continue;
987
988                 /*
989                  * Respective architecture needs to provide support for applying
990                  * relocations of type SHT_RELA/SHT_REL.
991                  */
992                 if (relsec->sh_type == SHT_RELA)
993                         ret = arch_kexec_apply_relocations_add(pi, section,
994                                                                relsec, symtab);
995                 else if (relsec->sh_type == SHT_REL)
996                         ret = arch_kexec_apply_relocations(pi, section,
997                                                            relsec, symtab);
998                 if (ret)
999                         return ret;
1000         }
1001
1002         return 0;
1003 }
1004
1005 /*
1006  * kexec_load_purgatory - Load and relocate the purgatory object.
1007  * @image:      Image to add the purgatory to.
1008  * @kbuf:       Memory parameters to use.
1009  *
1010  * Allocates the memory needed for image->purgatory_info.sechdrs and
1011  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1012  * to free the memory after use.
1013  *
1014  * Return: 0 on success, negative errno on error.
1015  */
1016 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1017 {
1018         struct purgatory_info *pi = &image->purgatory_info;
1019         int ret;
1020
1021         if (kexec_purgatory_size <= 0)
1022                 return -EINVAL;
1023
1024         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1025
1026         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1027         if (ret)
1028                 return ret;
1029
1030         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1031         if (ret)
1032                 goto out_free_kbuf;
1033
1034         ret = kexec_apply_relocations(image);
1035         if (ret)
1036                 goto out;
1037
1038         return 0;
1039 out:
1040         vfree(pi->sechdrs);
1041         pi->sechdrs = NULL;
1042 out_free_kbuf:
1043         vfree(pi->purgatory_buf);
1044         pi->purgatory_buf = NULL;
1045         return ret;
1046 }
1047
1048 /*
1049  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1050  * @pi:         Purgatory to search in.
1051  * @name:       Name of the symbol.
1052  *
1053  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1054  */
1055 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1056                                                   const char *name)
1057 {
1058         const Elf_Shdr *sechdrs;
1059         const Elf_Ehdr *ehdr;
1060         const Elf_Sym *syms;
1061         const char *strtab;
1062         int i, k;
1063
1064         if (!pi->ehdr)
1065                 return NULL;
1066
1067         ehdr = pi->ehdr;
1068         sechdrs = (void *)ehdr + ehdr->e_shoff;
1069
1070         for (i = 0; i < ehdr->e_shnum; i++) {
1071                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1072                         continue;
1073
1074                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1075                         /* Invalid strtab section number */
1076                         continue;
1077                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1078                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1079
1080                 /* Go through symbols for a match */
1081                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1082                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1083                                 continue;
1084
1085                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1086                                 continue;
1087
1088                         if (syms[k].st_shndx == SHN_UNDEF ||
1089                             syms[k].st_shndx >= ehdr->e_shnum) {
1090                                 pr_debug("Symbol: %s has bad section index %d.\n",
1091                                                 name, syms[k].st_shndx);
1092                                 return NULL;
1093                         }
1094
1095                         /* Found the symbol we are looking for */
1096                         return &syms[k];
1097                 }
1098         }
1099
1100         return NULL;
1101 }
1102
1103 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1104 {
1105         struct purgatory_info *pi = &image->purgatory_info;
1106         const Elf_Sym *sym;
1107         Elf_Shdr *sechdr;
1108
1109         sym = kexec_purgatory_find_symbol(pi, name);
1110         if (!sym)
1111                 return ERR_PTR(-EINVAL);
1112
1113         sechdr = &pi->sechdrs[sym->st_shndx];
1114
1115         /*
1116          * Returns the address where symbol will finally be loaded after
1117          * kexec_load_segment()
1118          */
1119         return (void *)(sechdr->sh_addr + sym->st_value);
1120 }
1121
1122 /*
1123  * Get or set value of a symbol. If "get_value" is true, symbol value is
1124  * returned in buf otherwise symbol value is set based on value in buf.
1125  */
1126 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1127                                    void *buf, unsigned int size, bool get_value)
1128 {
1129         struct purgatory_info *pi = &image->purgatory_info;
1130         const Elf_Sym *sym;
1131         Elf_Shdr *sec;
1132         char *sym_buf;
1133
1134         sym = kexec_purgatory_find_symbol(pi, name);
1135         if (!sym)
1136                 return -EINVAL;
1137
1138         if (sym->st_size != size) {
1139                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1140                        name, (unsigned long)sym->st_size, size);
1141                 return -EINVAL;
1142         }
1143
1144         sec = pi->sechdrs + sym->st_shndx;
1145
1146         if (sec->sh_type == SHT_NOBITS) {
1147                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1148                        get_value ? "get" : "set");
1149                 return -EINVAL;
1150         }
1151
1152         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1153
1154         if (get_value)
1155                 memcpy((void *)buf, sym_buf, size);
1156         else
1157                 memcpy((void *)sym_buf, buf, size);
1158
1159         return 0;
1160 }
1161 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1162
1163 int crash_exclude_mem_range(struct crash_mem *mem,
1164                             unsigned long long mstart, unsigned long long mend)
1165 {
1166         int i, j;
1167         unsigned long long start, end, p_start, p_end;
1168         struct crash_mem_range temp_range = {0, 0};
1169
1170         for (i = 0; i < mem->nr_ranges; i++) {
1171                 start = mem->ranges[i].start;
1172                 end = mem->ranges[i].end;
1173                 p_start = mstart;
1174                 p_end = mend;
1175
1176                 if (mstart > end || mend < start)
1177                         continue;
1178
1179                 /* Truncate any area outside of range */
1180                 if (mstart < start)
1181                         p_start = start;
1182                 if (mend > end)
1183                         p_end = end;
1184
1185                 /* Found completely overlapping range */
1186                 if (p_start == start && p_end == end) {
1187                         mem->ranges[i].start = 0;
1188                         mem->ranges[i].end = 0;
1189                         if (i < mem->nr_ranges - 1) {
1190                                 /* Shift rest of the ranges to left */
1191                                 for (j = i; j < mem->nr_ranges - 1; j++) {
1192                                         mem->ranges[j].start =
1193                                                 mem->ranges[j+1].start;
1194                                         mem->ranges[j].end =
1195                                                         mem->ranges[j+1].end;
1196                                 }
1197
1198                                 /*
1199                                  * Continue to check if there are another overlapping ranges
1200                                  * from the current position because of shifting the above
1201                                  * mem ranges.
1202                                  */
1203                                 i--;
1204                                 mem->nr_ranges--;
1205                                 continue;
1206                         }
1207                         mem->nr_ranges--;
1208                         return 0;
1209                 }
1210
1211                 if (p_start > start && p_end < end) {
1212                         /* Split original range */
1213                         mem->ranges[i].end = p_start - 1;
1214                         temp_range.start = p_end + 1;
1215                         temp_range.end = end;
1216                 } else if (p_start != start)
1217                         mem->ranges[i].end = p_start - 1;
1218                 else
1219                         mem->ranges[i].start = p_end + 1;
1220                 break;
1221         }
1222
1223         /* If a split happened, add the split to array */
1224         if (!temp_range.end)
1225                 return 0;
1226
1227         /* Split happened */
1228         if (i == mem->max_nr_ranges - 1)
1229                 return -ENOMEM;
1230
1231         /* Location where new range should go */
1232         j = i + 1;
1233         if (j < mem->nr_ranges) {
1234                 /* Move over all ranges one slot towards the end */
1235                 for (i = mem->nr_ranges - 1; i >= j; i--)
1236                         mem->ranges[i + 1] = mem->ranges[i];
1237         }
1238
1239         mem->ranges[j].start = temp_range.start;
1240         mem->ranges[j].end = temp_range.end;
1241         mem->nr_ranges++;
1242         return 0;
1243 }
1244
1245 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1246                           void **addr, unsigned long *sz)
1247 {
1248         Elf64_Ehdr *ehdr;
1249         Elf64_Phdr *phdr;
1250         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1251         unsigned char *buf;
1252         unsigned int cpu, i;
1253         unsigned long long notes_addr;
1254         unsigned long mstart, mend;
1255
1256         /* extra phdr for vmcoreinfo ELF note */
1257         nr_phdr = nr_cpus + 1;
1258         nr_phdr += mem->nr_ranges;
1259
1260         /*
1261          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1262          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1263          * I think this is required by tools like gdb. So same physical
1264          * memory will be mapped in two ELF headers. One will contain kernel
1265          * text virtual addresses and other will have __va(physical) addresses.
1266          */
1267
1268         nr_phdr++;
1269         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1270         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1271
1272         buf = vzalloc(elf_sz);
1273         if (!buf)
1274                 return -ENOMEM;
1275
1276         ehdr = (Elf64_Ehdr *)buf;
1277         phdr = (Elf64_Phdr *)(ehdr + 1);
1278         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1279         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1280         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1281         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1282         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1283         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1284         ehdr->e_type = ET_CORE;
1285         ehdr->e_machine = ELF_ARCH;
1286         ehdr->e_version = EV_CURRENT;
1287         ehdr->e_phoff = sizeof(Elf64_Ehdr);
1288         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1289         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1290
1291         /* Prepare one phdr of type PT_NOTE for each present CPU */
1292         for_each_present_cpu(cpu) {
1293                 phdr->p_type = PT_NOTE;
1294                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1295                 phdr->p_offset = phdr->p_paddr = notes_addr;
1296                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1297                 (ehdr->e_phnum)++;
1298                 phdr++;
1299         }
1300
1301         /* Prepare one PT_NOTE header for vmcoreinfo */
1302         phdr->p_type = PT_NOTE;
1303         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1304         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1305         (ehdr->e_phnum)++;
1306         phdr++;
1307
1308         /* Prepare PT_LOAD type program header for kernel text region */
1309         if (kernel_map) {
1310                 phdr->p_type = PT_LOAD;
1311                 phdr->p_flags = PF_R|PF_W|PF_X;
1312                 phdr->p_vaddr = (unsigned long) _text;
1313                 phdr->p_filesz = phdr->p_memsz = _end - _text;
1314                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1315                 ehdr->e_phnum++;
1316                 phdr++;
1317         }
1318
1319         /* Go through all the ranges in mem->ranges[] and prepare phdr */
1320         for (i = 0; i < mem->nr_ranges; i++) {
1321                 mstart = mem->ranges[i].start;
1322                 mend = mem->ranges[i].end;
1323
1324                 phdr->p_type = PT_LOAD;
1325                 phdr->p_flags = PF_R|PF_W|PF_X;
1326                 phdr->p_offset  = mstart;
1327
1328                 phdr->p_paddr = mstart;
1329                 phdr->p_vaddr = (unsigned long) __va(mstart);
1330                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1331                 phdr->p_align = 0;
1332                 ehdr->e_phnum++;
1333                 pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1334                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1335                         ehdr->e_phnum, phdr->p_offset);
1336                 phdr++;
1337         }
1338
1339         *addr = buf;
1340         *sz = elf_sz;
1341         return 0;
1342 }