GNU Linux-libre 4.9.311-gnu1
[releases.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/syscalls.h>
25 #include <linux/vmalloc.h>
26 #include "kexec_internal.h"
27
28 /*
29  * Declare these symbols weak so that if architecture provides a purgatory,
30  * these will be overridden.
31  */
32 char __weak kexec_purgatory[0];
33 size_t __weak kexec_purgatory_size = 0;
34
35 static int kexec_calculate_store_digests(struct kimage *image);
36
37 /* Architectures can provide this probe function */
38 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
39                                          unsigned long buf_len)
40 {
41         return -ENOEXEC;
42 }
43
44 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
45 {
46         return ERR_PTR(-ENOEXEC);
47 }
48
49 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
50 {
51         return -EINVAL;
52 }
53
54 #ifdef CONFIG_KEXEC_VERIFY_SIG
55 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
56                                         unsigned long buf_len)
57 {
58         return -EKEYREJECTED;
59 }
60 #endif
61
62 /* Apply relocations of type RELA */
63 int __weak
64 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
65                                  unsigned int relsec)
66 {
67         pr_err("RELA relocation unsupported.\n");
68         return -ENOEXEC;
69 }
70
71 /* Apply relocations of type REL */
72 int __weak
73 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
74                              unsigned int relsec)
75 {
76         pr_err("REL relocation unsupported.\n");
77         return -ENOEXEC;
78 }
79
80 /*
81  * Free up memory used by kernel, initrd, and command line. This is temporary
82  * memory allocation which is not needed any more after these buffers have
83  * been loaded into separate segments and have been copied elsewhere.
84  */
85 void kimage_file_post_load_cleanup(struct kimage *image)
86 {
87         struct purgatory_info *pi = &image->purgatory_info;
88
89         vfree(image->kernel_buf);
90         image->kernel_buf = NULL;
91
92         vfree(image->initrd_buf);
93         image->initrd_buf = NULL;
94
95         kfree(image->cmdline_buf);
96         image->cmdline_buf = NULL;
97
98         vfree(pi->purgatory_buf);
99         pi->purgatory_buf = NULL;
100
101         vfree(pi->sechdrs);
102         pi->sechdrs = NULL;
103
104         /* See if architecture has anything to cleanup post load */
105         arch_kimage_file_post_load_cleanup(image);
106
107         /*
108          * Above call should have called into bootloader to free up
109          * any data stored in kimage->image_loader_data. It should
110          * be ok now to free it up.
111          */
112         kfree(image->image_loader_data);
113         image->image_loader_data = NULL;
114 }
115
116 /*
117  * In file mode list of segments is prepared by kernel. Copy relevant
118  * data from user space, do error checking, prepare segment list
119  */
120 static int
121 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122                              const char __user *cmdline_ptr,
123                              unsigned long cmdline_len, unsigned flags)
124 {
125         int ret = 0;
126         void *ldata;
127         loff_t size;
128
129         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130                                        &size, INT_MAX, READING_KEXEC_IMAGE);
131         if (ret)
132                 return ret;
133         image->kernel_buf_len = size;
134
135         /* Call arch image probe handlers */
136         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137                                             image->kernel_buf_len);
138         if (ret)
139                 goto out;
140
141 #ifdef CONFIG_KEXEC_VERIFY_SIG
142         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143                                            image->kernel_buf_len);
144         if (ret) {
145                 pr_debug("kernel signature verification failed.\n");
146                 goto out;
147         }
148         pr_debug("kernel signature verification successful.\n");
149 #endif
150         /* It is possible that there no initramfs is being loaded */
151         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153                                                &size, INT_MAX,
154                                                READING_KEXEC_INITRAMFS);
155                 if (ret)
156                         goto out;
157                 image->initrd_buf_len = size;
158         }
159
160         if (cmdline_len) {
161                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162                 if (!image->cmdline_buf) {
163                         ret = -ENOMEM;
164                         goto out;
165                 }
166
167                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168                                      cmdline_len);
169                 if (ret) {
170                         ret = -EFAULT;
171                         goto out;
172                 }
173
174                 image->cmdline_buf_len = cmdline_len;
175
176                 /* command line should be a string with last byte null */
177                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178                         ret = -EINVAL;
179                         goto out;
180                 }
181         }
182
183         /* Call arch image load handlers */
184         ldata = arch_kexec_kernel_image_load(image);
185
186         if (IS_ERR(ldata)) {
187                 ret = PTR_ERR(ldata);
188                 goto out;
189         }
190
191         image->image_loader_data = ldata;
192 out:
193         /* In case of error, free up all allocated memory in this function */
194         if (ret)
195                 kimage_file_post_load_cleanup(image);
196         return ret;
197 }
198
199 static int
200 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201                        int initrd_fd, const char __user *cmdline_ptr,
202                        unsigned long cmdline_len, unsigned long flags)
203 {
204         int ret;
205         struct kimage *image;
206         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208         image = do_kimage_alloc_init();
209         if (!image)
210                 return -ENOMEM;
211
212         image->file_mode = 1;
213
214         if (kexec_on_panic) {
215                 /* Enable special crash kernel control page alloc policy. */
216                 image->control_page = crashk_res.start;
217                 image->type = KEXEC_TYPE_CRASH;
218         }
219
220         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221                                            cmdline_ptr, cmdline_len, flags);
222         if (ret)
223                 goto out_free_image;
224
225         ret = sanity_check_segment_list(image);
226         if (ret)
227                 goto out_free_post_load_bufs;
228
229         ret = -ENOMEM;
230         image->control_code_page = kimage_alloc_control_pages(image,
231                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
232         if (!image->control_code_page) {
233                 pr_err("Could not allocate control_code_buffer\n");
234                 goto out_free_post_load_bufs;
235         }
236
237         if (!kexec_on_panic) {
238                 image->swap_page = kimage_alloc_control_pages(image, 0);
239                 if (!image->swap_page) {
240                         pr_err("Could not allocate swap buffer\n");
241                         goto out_free_control_pages;
242                 }
243         }
244
245         *rimage = image;
246         return 0;
247 out_free_control_pages:
248         kimage_free_page_list(&image->control_pages);
249 out_free_post_load_bufs:
250         kimage_file_post_load_cleanup(image);
251 out_free_image:
252         kfree(image);
253         return ret;
254 }
255
256 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258                 unsigned long, flags)
259 {
260         int ret = 0, i;
261         struct kimage **dest_image, *image;
262
263         /* We only trust the superuser with rebooting the system. */
264         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265                 return -EPERM;
266
267         /* Make sure we have a legal set of flags */
268         if (flags != (flags & KEXEC_FILE_FLAGS))
269                 return -EINVAL;
270
271         image = NULL;
272
273         if (!mutex_trylock(&kexec_mutex))
274                 return -EBUSY;
275
276         dest_image = &kexec_image;
277         if (flags & KEXEC_FILE_ON_CRASH) {
278                 dest_image = &kexec_crash_image;
279                 if (kexec_crash_image)
280                         arch_kexec_unprotect_crashkres();
281         }
282
283         if (flags & KEXEC_FILE_UNLOAD)
284                 goto exchange;
285
286         /*
287          * In case of crash, new kernel gets loaded in reserved region. It is
288          * same memory where old crash kernel might be loaded. Free any
289          * current crash dump kernel before we corrupt it.
290          */
291         if (flags & KEXEC_FILE_ON_CRASH)
292                 kimage_free(xchg(&kexec_crash_image, NULL));
293
294         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
295                                      cmdline_len, flags);
296         if (ret)
297                 goto out;
298
299         ret = machine_kexec_prepare(image);
300         if (ret)
301                 goto out;
302
303         ret = kexec_calculate_store_digests(image);
304         if (ret)
305                 goto out;
306
307         for (i = 0; i < image->nr_segments; i++) {
308                 struct kexec_segment *ksegment;
309
310                 ksegment = &image->segment[i];
311                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
312                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
313                          ksegment->memsz);
314
315                 ret = kimage_load_segment(image, &image->segment[i]);
316                 if (ret)
317                         goto out;
318         }
319
320         kimage_terminate(image);
321
322         /*
323          * Free up any temporary buffers allocated which are not needed
324          * after image has been loaded
325          */
326         kimage_file_post_load_cleanup(image);
327 exchange:
328         image = xchg(dest_image, image);
329 out:
330         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
331                 arch_kexec_protect_crashkres();
332
333         mutex_unlock(&kexec_mutex);
334         kimage_free(image);
335         return ret;
336 }
337
338 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
339                                     struct kexec_buf *kbuf)
340 {
341         struct kimage *image = kbuf->image;
342         unsigned long temp_start, temp_end;
343
344         temp_end = min(end, kbuf->buf_max);
345         temp_start = temp_end - kbuf->memsz;
346
347         do {
348                 /* align down start */
349                 temp_start = temp_start & (~(kbuf->buf_align - 1));
350
351                 if (temp_start < start || temp_start < kbuf->buf_min)
352                         return 0;
353
354                 temp_end = temp_start + kbuf->memsz - 1;
355
356                 /*
357                  * Make sure this does not conflict with any of existing
358                  * segments
359                  */
360                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
361                         temp_start = temp_start - PAGE_SIZE;
362                         continue;
363                 }
364
365                 /* We found a suitable memory range */
366                 break;
367         } while (1);
368
369         /* If we are here, we found a suitable memory range */
370         kbuf->mem = temp_start;
371
372         /* Success, stop navigating through remaining System RAM ranges */
373         return 1;
374 }
375
376 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
377                                      struct kexec_buf *kbuf)
378 {
379         struct kimage *image = kbuf->image;
380         unsigned long temp_start, temp_end;
381
382         temp_start = max(start, kbuf->buf_min);
383
384         do {
385                 temp_start = ALIGN(temp_start, kbuf->buf_align);
386                 temp_end = temp_start + kbuf->memsz - 1;
387
388                 if (temp_end > end || temp_end > kbuf->buf_max)
389                         return 0;
390                 /*
391                  * Make sure this does not conflict with any of existing
392                  * segments
393                  */
394                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
395                         temp_start = temp_start + PAGE_SIZE;
396                         continue;
397                 }
398
399                 /* We found a suitable memory range */
400                 break;
401         } while (1);
402
403         /* If we are here, we found a suitable memory range */
404         kbuf->mem = temp_start;
405
406         /* Success, stop navigating through remaining System RAM ranges */
407         return 1;
408 }
409
410 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
411 {
412         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
413         unsigned long sz = end - start + 1;
414
415         /* Returning 0 will take to next memory range */
416         if (sz < kbuf->memsz)
417                 return 0;
418
419         if (end < kbuf->buf_min || start > kbuf->buf_max)
420                 return 0;
421
422         /*
423          * Allocate memory top down with-in ram range. Otherwise bottom up
424          * allocation.
425          */
426         if (kbuf->top_down)
427                 return locate_mem_hole_top_down(start, end, kbuf);
428         return locate_mem_hole_bottom_up(start, end, kbuf);
429 }
430
431 /*
432  * Helper function for placing a buffer in a kexec segment. This assumes
433  * that kexec_mutex is held.
434  */
435 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
436                      unsigned long memsz, unsigned long buf_align,
437                      unsigned long buf_min, unsigned long buf_max,
438                      bool top_down, unsigned long *load_addr)
439 {
440
441         struct kexec_segment *ksegment;
442         struct kexec_buf buf, *kbuf;
443         int ret;
444
445         /* Currently adding segment this way is allowed only in file mode */
446         if (!image->file_mode)
447                 return -EINVAL;
448
449         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
450                 return -EINVAL;
451
452         /*
453          * Make sure we are not trying to add buffer after allocating
454          * control pages. All segments need to be placed first before
455          * any control pages are allocated. As control page allocation
456          * logic goes through list of segments to make sure there are
457          * no destination overlaps.
458          */
459         if (!list_empty(&image->control_pages)) {
460                 WARN_ON(1);
461                 return -EINVAL;
462         }
463
464         memset(&buf, 0, sizeof(struct kexec_buf));
465         kbuf = &buf;
466         kbuf->image = image;
467         kbuf->buffer = buffer;
468         kbuf->bufsz = bufsz;
469
470         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
471         kbuf->buf_align = max(buf_align, PAGE_SIZE);
472         kbuf->buf_min = buf_min;
473         kbuf->buf_max = buf_max;
474         kbuf->top_down = top_down;
475
476         /* Walk the RAM ranges and allocate a suitable range for the buffer */
477         if (image->type == KEXEC_TYPE_CRASH)
478                 ret = walk_iomem_res_desc(crashk_res.desc,
479                                 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
480                                 crashk_res.start, crashk_res.end, kbuf,
481                                 locate_mem_hole_callback);
482         else
483                 ret = walk_system_ram_res(0, -1, kbuf,
484                                           locate_mem_hole_callback);
485         if (ret != 1) {
486                 /* A suitable memory range could not be found for buffer */
487                 return -EADDRNOTAVAIL;
488         }
489
490         /* Found a suitable memory range */
491         ksegment = &image->segment[image->nr_segments];
492         ksegment->kbuf = kbuf->buffer;
493         ksegment->bufsz = kbuf->bufsz;
494         ksegment->mem = kbuf->mem;
495         ksegment->memsz = kbuf->memsz;
496         image->nr_segments++;
497         *load_addr = ksegment->mem;
498         return 0;
499 }
500
501 /* Calculate and store the digest of segments */
502 static int kexec_calculate_store_digests(struct kimage *image)
503 {
504         struct crypto_shash *tfm;
505         struct shash_desc *desc;
506         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
507         size_t desc_size, nullsz;
508         char *digest;
509         void *zero_buf;
510         struct kexec_sha_region *sha_regions;
511         struct purgatory_info *pi = &image->purgatory_info;
512
513         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
514         zero_buf_sz = PAGE_SIZE;
515
516         tfm = crypto_alloc_shash("sha256", 0, 0);
517         if (IS_ERR(tfm)) {
518                 ret = PTR_ERR(tfm);
519                 goto out;
520         }
521
522         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
523         desc = kzalloc(desc_size, GFP_KERNEL);
524         if (!desc) {
525                 ret = -ENOMEM;
526                 goto out_free_tfm;
527         }
528
529         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
530         sha_regions = vzalloc(sha_region_sz);
531         if (!sha_regions) {
532                 ret = -ENOMEM;
533                 goto out_free_desc;
534         }
535
536         desc->tfm   = tfm;
537         desc->flags = 0;
538
539         ret = crypto_shash_init(desc);
540         if (ret < 0)
541                 goto out_free_sha_regions;
542
543         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
544         if (!digest) {
545                 ret = -ENOMEM;
546                 goto out_free_sha_regions;
547         }
548
549         for (j = i = 0; i < image->nr_segments; i++) {
550                 struct kexec_segment *ksegment;
551
552                 ksegment = &image->segment[i];
553                 /*
554                  * Skip purgatory as it will be modified once we put digest
555                  * info in purgatory.
556                  */
557                 if (ksegment->kbuf == pi->purgatory_buf)
558                         continue;
559
560                 ret = crypto_shash_update(desc, ksegment->kbuf,
561                                           ksegment->bufsz);
562                 if (ret)
563                         break;
564
565                 /*
566                  * Assume rest of the buffer is filled with zero and
567                  * update digest accordingly.
568                  */
569                 nullsz = ksegment->memsz - ksegment->bufsz;
570                 while (nullsz) {
571                         unsigned long bytes = nullsz;
572
573                         if (bytes > zero_buf_sz)
574                                 bytes = zero_buf_sz;
575                         ret = crypto_shash_update(desc, zero_buf, bytes);
576                         if (ret)
577                                 break;
578                         nullsz -= bytes;
579                 }
580
581                 if (ret)
582                         break;
583
584                 sha_regions[j].start = ksegment->mem;
585                 sha_regions[j].len = ksegment->memsz;
586                 j++;
587         }
588
589         if (!ret) {
590                 ret = crypto_shash_final(desc, digest);
591                 if (ret)
592                         goto out_free_digest;
593                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
594                                                 sha_regions, sha_region_sz, 0);
595                 if (ret)
596                         goto out_free_digest;
597
598                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
599                                                 digest, SHA256_DIGEST_SIZE, 0);
600                 if (ret)
601                         goto out_free_digest;
602         }
603
604 out_free_digest:
605         kfree(digest);
606 out_free_sha_regions:
607         vfree(sha_regions);
608 out_free_desc:
609         kfree(desc);
610 out_free_tfm:
611         kfree(tfm);
612 out:
613         return ret;
614 }
615
616 /* Actually load purgatory. Lot of code taken from kexec-tools */
617 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
618                                   unsigned long max, int top_down)
619 {
620         struct purgatory_info *pi = &image->purgatory_info;
621         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
622         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
623         unsigned char *buf_addr, *src;
624         int i, ret = 0, entry_sidx = -1;
625         const Elf_Shdr *sechdrs_c;
626         Elf_Shdr *sechdrs = NULL;
627         void *purgatory_buf = NULL;
628
629         /*
630          * sechdrs_c points to section headers in purgatory and are read
631          * only. No modifications allowed.
632          */
633         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
634
635         /*
636          * We can not modify sechdrs_c[] and its fields. It is read only.
637          * Copy it over to a local copy where one can store some temporary
638          * data and free it at the end. We need to modify ->sh_addr and
639          * ->sh_offset fields to keep track of permanent and temporary
640          * locations of sections.
641          */
642         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
643         if (!sechdrs)
644                 return -ENOMEM;
645
646         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
647
648         /*
649          * We seem to have multiple copies of sections. First copy is which
650          * is embedded in kernel in read only section. Some of these sections
651          * will be copied to a temporary buffer and relocated. And these
652          * sections will finally be copied to their final destination at
653          * segment load time.
654          *
655          * Use ->sh_offset to reflect section address in memory. It will
656          * point to original read only copy if section is not allocatable.
657          * Otherwise it will point to temporary copy which will be relocated.
658          *
659          * Use ->sh_addr to contain final address of the section where it
660          * will go during execution time.
661          */
662         for (i = 0; i < pi->ehdr->e_shnum; i++) {
663                 if (sechdrs[i].sh_type == SHT_NOBITS)
664                         continue;
665
666                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
667                                                 sechdrs[i].sh_offset;
668         }
669
670         /*
671          * Identify entry point section and make entry relative to section
672          * start.
673          */
674         entry = pi->ehdr->e_entry;
675         for (i = 0; i < pi->ehdr->e_shnum; i++) {
676                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
677                         continue;
678
679                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
680                         continue;
681
682                 /* Make entry section relative */
683                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
684                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
685                      pi->ehdr->e_entry)) {
686                         entry_sidx = i;
687                         entry -= sechdrs[i].sh_addr;
688                         break;
689                 }
690         }
691
692         /* Determine how much memory is needed to load relocatable object. */
693         buf_align = 1;
694         bss_align = 1;
695         buf_sz = 0;
696         bss_sz = 0;
697
698         for (i = 0; i < pi->ehdr->e_shnum; i++) {
699                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
700                         continue;
701
702                 align = sechdrs[i].sh_addralign;
703                 if (sechdrs[i].sh_type != SHT_NOBITS) {
704                         if (buf_align < align)
705                                 buf_align = align;
706                         buf_sz = ALIGN(buf_sz, align);
707                         buf_sz += sechdrs[i].sh_size;
708                 } else {
709                         /* bss section */
710                         if (bss_align < align)
711                                 bss_align = align;
712                         bss_sz = ALIGN(bss_sz, align);
713                         bss_sz += sechdrs[i].sh_size;
714                 }
715         }
716
717         /* Determine the bss padding required to align bss properly */
718         bss_pad = 0;
719         if (buf_sz & (bss_align - 1))
720                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
721
722         memsz = buf_sz + bss_pad + bss_sz;
723
724         /* Allocate buffer for purgatory */
725         purgatory_buf = vzalloc(buf_sz);
726         if (!purgatory_buf) {
727                 ret = -ENOMEM;
728                 goto out;
729         }
730
731         if (buf_align < bss_align)
732                 buf_align = bss_align;
733
734         /* Add buffer to segment list */
735         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
736                                 buf_align, min, max, top_down,
737                                 &pi->purgatory_load_addr);
738         if (ret)
739                 goto out;
740
741         /* Load SHF_ALLOC sections */
742         buf_addr = purgatory_buf;
743         load_addr = curr_load_addr = pi->purgatory_load_addr;
744         bss_addr = load_addr + buf_sz + bss_pad;
745
746         for (i = 0; i < pi->ehdr->e_shnum; i++) {
747                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
748                         continue;
749
750                 align = sechdrs[i].sh_addralign;
751                 if (sechdrs[i].sh_type != SHT_NOBITS) {
752                         curr_load_addr = ALIGN(curr_load_addr, align);
753                         offset = curr_load_addr - load_addr;
754                         /* We already modifed ->sh_offset to keep src addr */
755                         src = (char *) sechdrs[i].sh_offset;
756                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
757
758                         /* Store load address and source address of section */
759                         sechdrs[i].sh_addr = curr_load_addr;
760
761                         /*
762                          * This section got copied to temporary buffer. Update
763                          * ->sh_offset accordingly.
764                          */
765                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
766
767                         /* Advance to the next address */
768                         curr_load_addr += sechdrs[i].sh_size;
769                 } else {
770                         bss_addr = ALIGN(bss_addr, align);
771                         sechdrs[i].sh_addr = bss_addr;
772                         bss_addr += sechdrs[i].sh_size;
773                 }
774         }
775
776         /* Update entry point based on load address of text section */
777         if (entry_sidx >= 0)
778                 entry += sechdrs[entry_sidx].sh_addr;
779
780         /* Make kernel jump to purgatory after shutdown */
781         image->start = entry;
782
783         /* Used later to get/set symbol values */
784         pi->sechdrs = sechdrs;
785
786         /*
787          * Used later to identify which section is purgatory and skip it
788          * from checksumming.
789          */
790         pi->purgatory_buf = purgatory_buf;
791         return ret;
792 out:
793         vfree(sechdrs);
794         vfree(purgatory_buf);
795         return ret;
796 }
797
798 static int kexec_apply_relocations(struct kimage *image)
799 {
800         int i, ret;
801         struct purgatory_info *pi = &image->purgatory_info;
802         Elf_Shdr *sechdrs = pi->sechdrs;
803
804         /* Apply relocations */
805         for (i = 0; i < pi->ehdr->e_shnum; i++) {
806                 Elf_Shdr *section, *symtab;
807
808                 if (sechdrs[i].sh_type != SHT_RELA &&
809                     sechdrs[i].sh_type != SHT_REL)
810                         continue;
811
812                 /*
813                  * For section of type SHT_RELA/SHT_REL,
814                  * ->sh_link contains section header index of associated
815                  * symbol table. And ->sh_info contains section header
816                  * index of section to which relocations apply.
817                  */
818                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
819                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
820                         return -ENOEXEC;
821
822                 section = &sechdrs[sechdrs[i].sh_info];
823                 symtab = &sechdrs[sechdrs[i].sh_link];
824
825                 if (!(section->sh_flags & SHF_ALLOC))
826                         continue;
827
828                 /*
829                  * symtab->sh_link contain section header index of associated
830                  * string table.
831                  */
832                 if (symtab->sh_link >= pi->ehdr->e_shnum)
833                         /* Invalid section number? */
834                         continue;
835
836                 /*
837                  * Respective architecture needs to provide support for applying
838                  * relocations of type SHT_RELA/SHT_REL.
839                  */
840                 if (sechdrs[i].sh_type == SHT_RELA)
841                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
842                                                                sechdrs, i);
843                 else if (sechdrs[i].sh_type == SHT_REL)
844                         ret = arch_kexec_apply_relocations(pi->ehdr,
845                                                            sechdrs, i);
846                 if (ret)
847                         return ret;
848         }
849
850         return 0;
851 }
852
853 /* Load relocatable purgatory object and relocate it appropriately */
854 int kexec_load_purgatory(struct kimage *image, unsigned long min,
855                          unsigned long max, int top_down,
856                          unsigned long *load_addr)
857 {
858         struct purgatory_info *pi = &image->purgatory_info;
859         int ret;
860
861         if (kexec_purgatory_size <= 0)
862                 return -EINVAL;
863
864         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
865                 return -ENOEXEC;
866
867         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
868
869         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
870             || pi->ehdr->e_type != ET_REL
871             || !elf_check_arch(pi->ehdr)
872             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
873                 return -ENOEXEC;
874
875         if (pi->ehdr->e_shoff >= kexec_purgatory_size
876             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
877             kexec_purgatory_size - pi->ehdr->e_shoff))
878                 return -ENOEXEC;
879
880         ret = __kexec_load_purgatory(image, min, max, top_down);
881         if (ret)
882                 return ret;
883
884         ret = kexec_apply_relocations(image);
885         if (ret)
886                 goto out;
887
888         *load_addr = pi->purgatory_load_addr;
889         return 0;
890 out:
891         vfree(pi->sechdrs);
892         pi->sechdrs = NULL;
893
894         vfree(pi->purgatory_buf);
895         pi->purgatory_buf = NULL;
896         return ret;
897 }
898
899 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
900                                             const char *name)
901 {
902         Elf_Sym *syms;
903         Elf_Shdr *sechdrs;
904         Elf_Ehdr *ehdr;
905         int i, k;
906         const char *strtab;
907
908         if (!pi->sechdrs || !pi->ehdr)
909                 return NULL;
910
911         sechdrs = pi->sechdrs;
912         ehdr = pi->ehdr;
913
914         for (i = 0; i < ehdr->e_shnum; i++) {
915                 if (sechdrs[i].sh_type != SHT_SYMTAB)
916                         continue;
917
918                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
919                         /* Invalid strtab section number */
920                         continue;
921                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
922                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
923
924                 /* Go through symbols for a match */
925                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
926                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
927                                 continue;
928
929                         if (strcmp(strtab + syms[k].st_name, name) != 0)
930                                 continue;
931
932                         if (syms[k].st_shndx == SHN_UNDEF ||
933                             syms[k].st_shndx >= ehdr->e_shnum) {
934                                 pr_debug("Symbol: %s has bad section index %d.\n",
935                                                 name, syms[k].st_shndx);
936                                 return NULL;
937                         }
938
939                         /* Found the symbol we are looking for */
940                         return &syms[k];
941                 }
942         }
943
944         return NULL;
945 }
946
947 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
948 {
949         struct purgatory_info *pi = &image->purgatory_info;
950         Elf_Sym *sym;
951         Elf_Shdr *sechdr;
952
953         sym = kexec_purgatory_find_symbol(pi, name);
954         if (!sym)
955                 return ERR_PTR(-EINVAL);
956
957         sechdr = &pi->sechdrs[sym->st_shndx];
958
959         /*
960          * Returns the address where symbol will finally be loaded after
961          * kexec_load_segment()
962          */
963         return (void *)(sechdr->sh_addr + sym->st_value);
964 }
965
966 /*
967  * Get or set value of a symbol. If "get_value" is true, symbol value is
968  * returned in buf otherwise symbol value is set based on value in buf.
969  */
970 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
971                                    void *buf, unsigned int size, bool get_value)
972 {
973         Elf_Sym *sym;
974         Elf_Shdr *sechdrs;
975         struct purgatory_info *pi = &image->purgatory_info;
976         char *sym_buf;
977
978         sym = kexec_purgatory_find_symbol(pi, name);
979         if (!sym)
980                 return -EINVAL;
981
982         if (sym->st_size != size) {
983                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
984                        name, (unsigned long)sym->st_size, size);
985                 return -EINVAL;
986         }
987
988         sechdrs = pi->sechdrs;
989
990         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
991                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
992                        get_value ? "get" : "set");
993                 return -EINVAL;
994         }
995
996         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
997                                         sym->st_value;
998
999         if (get_value)
1000                 memcpy((void *)buf, sym_buf, size);
1001         else
1002                 memcpy((void *)sym_buf, buf, size);
1003
1004         return 0;
1005 }