GNU Linux-libre 4.14.262-gnu1
[releases.git] / kernel / irq / timings.c
1 /*
2  * linux/kernel/irq/timings.c
3  *
4  * Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  */
11 #include <linux/kernel.h>
12 #include <linux/percpu.h>
13 #include <linux/slab.h>
14 #include <linux/static_key.h>
15 #include <linux/interrupt.h>
16 #include <linux/idr.h>
17 #include <linux/irq.h>
18 #include <linux/math64.h>
19
20 #include <trace/events/irq.h>
21
22 #include "internals.h"
23
24 DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
25
26 DEFINE_PER_CPU(struct irq_timings, irq_timings);
27
28 struct irqt_stat {
29         u64     next_evt;
30         u64     last_ts;
31         u64     variance;
32         u32     avg;
33         u32     nr_samples;
34         int     anomalies;
35         int     valid;
36 };
37
38 static DEFINE_IDR(irqt_stats);
39
40 void irq_timings_enable(void)
41 {
42         static_branch_enable(&irq_timing_enabled);
43 }
44
45 void irq_timings_disable(void)
46 {
47         static_branch_disable(&irq_timing_enabled);
48 }
49
50 /**
51  * irqs_update - update the irq timing statistics with a new timestamp
52  *
53  * @irqs: an irqt_stat struct pointer
54  * @ts: the new timestamp
55  *
56  * The statistics are computed online, in other words, the code is
57  * designed to compute the statistics on a stream of values rather
58  * than doing multiple passes on the values to compute the average,
59  * then the variance. The integer division introduces a loss of
60  * precision but with an acceptable error margin regarding the results
61  * we would have with the double floating precision: we are dealing
62  * with nanosec, so big numbers, consequently the mantisse is
63  * negligeable, especially when converting the time in usec
64  * afterwards.
65  *
66  * The computation happens at idle time. When the CPU is not idle, the
67  * interrupts' timestamps are stored in the circular buffer, when the
68  * CPU goes idle and this routine is called, all the buffer's values
69  * are injected in the statistical model continuying to extend the
70  * statistics from the previous busy-idle cycle.
71  *
72  * The observations showed a device will trigger a burst of periodic
73  * interrupts followed by one or two peaks of longer time, for
74  * instance when a SD card device flushes its cache, then the periodic
75  * intervals occur again. A one second inactivity period resets the
76  * stats, that gives us the certitude the statistical values won't
77  * exceed 1x10^9, thus the computation won't overflow.
78  *
79  * Basically, the purpose of the algorithm is to watch the periodic
80  * interrupts and eliminate the peaks.
81  *
82  * An interrupt is considered periodically stable if the interval of
83  * its occurences follow the normal distribution, thus the values
84  * comply with:
85  *
86  *      avg - 3 x stddev < value < avg + 3 x stddev
87  *
88  * Which can be simplified to:
89  *
90  *      -3 x stddev < value - avg < 3 x stddev
91  *
92  *      abs(value - avg) < 3 x stddev
93  *
94  * In order to save a costly square root computation, we use the
95  * variance. For the record, stddev = sqrt(variance). The equation
96  * above becomes:
97  *
98  *      abs(value - avg) < 3 x sqrt(variance)
99  *
100  * And finally we square it:
101  *
102  *      (value - avg) ^ 2 < (3 x sqrt(variance)) ^ 2
103  *
104  *      (value - avg) x (value - avg) < 9 x variance
105  *
106  * Statistically speaking, any values out of this interval is
107  * considered as an anomaly and is discarded. However, a normal
108  * distribution appears when the number of samples is 30 (it is the
109  * rule of thumb in statistics, cf. "30 samples" on Internet). When
110  * there are three consecutive anomalies, the statistics are resetted.
111  *
112  */
113 static void irqs_update(struct irqt_stat *irqs, u64 ts)
114 {
115         u64 old_ts = irqs->last_ts;
116         u64 variance = 0;
117         u64 interval;
118         s64 diff;
119
120         /*
121          * The timestamps are absolute time values, we need to compute
122          * the timing interval between two interrupts.
123          */
124         irqs->last_ts = ts;
125
126         /*
127          * The interval type is u64 in order to deal with the same
128          * type in our computation, that prevent mindfuck issues with
129          * overflow, sign and division.
130          */
131         interval = ts - old_ts;
132
133         /*
134          * The interrupt triggered more than one second apart, that
135          * ends the sequence as predictible for our purpose. In this
136          * case, assume we have the beginning of a sequence and the
137          * timestamp is the first value. As it is impossible to
138          * predict anything at this point, return.
139          *
140          * Note the first timestamp of the sequence will always fall
141          * in this test because the old_ts is zero. That is what we
142          * want as we need another timestamp to compute an interval.
143          */
144         if (interval >= NSEC_PER_SEC) {
145                 memset(irqs, 0, sizeof(*irqs));
146                 irqs->last_ts = ts;
147                 return;
148         }
149
150         /*
151          * Pre-compute the delta with the average as the result is
152          * used several times in this function.
153          */
154         diff = interval - irqs->avg;
155
156         /*
157          * Increment the number of samples.
158          */
159         irqs->nr_samples++;
160
161         /*
162          * Online variance divided by the number of elements if there
163          * is more than one sample.  Normally the formula is division
164          * by nr_samples - 1 but we assume the number of element will be
165          * more than 32 and dividing by 32 instead of 31 is enough
166          * precise.
167          */
168         if (likely(irqs->nr_samples > 1))
169                 variance = irqs->variance >> IRQ_TIMINGS_SHIFT;
170
171         /*
172          * The rule of thumb in statistics for the normal distribution
173          * is having at least 30 samples in order to have the model to
174          * apply. Values outside the interval are considered as an
175          * anomaly.
176          */
177         if ((irqs->nr_samples >= 30) && ((diff * diff) > (9 * variance))) {
178                 /*
179                  * After three consecutive anomalies, we reset the
180                  * stats as it is no longer stable enough.
181                  */
182                 if (irqs->anomalies++ >= 3) {
183                         memset(irqs, 0, sizeof(*irqs));
184                         irqs->last_ts = ts;
185                         return;
186                 }
187         } else {
188                 /*
189                  * The anomalies must be consecutives, so at this
190                  * point, we reset the anomalies counter.
191                  */
192                 irqs->anomalies = 0;
193         }
194
195         /*
196          * The interrupt is considered stable enough to try to predict
197          * the next event on it.
198          */
199         irqs->valid = 1;
200
201         /*
202          * Online average algorithm:
203          *
204          *  new_average = average + ((value - average) / count)
205          *
206          * The variance computation depends on the new average
207          * to be computed here first.
208          *
209          */
210         irqs->avg = irqs->avg + (diff >> IRQ_TIMINGS_SHIFT);
211
212         /*
213          * Online variance algorithm:
214          *
215          *  new_variance = variance + (value - average) x (value - new_average)
216          *
217          * Warning: irqs->avg is updated with the line above, hence
218          * 'interval - irqs->avg' is no longer equal to 'diff'
219          */
220         irqs->variance = irqs->variance + (diff * (interval - irqs->avg));
221
222         /*
223          * Update the next event
224          */
225         irqs->next_evt = ts + irqs->avg;
226 }
227
228 /**
229  * irq_timings_next_event - Return when the next event is supposed to arrive
230  *
231  * During the last busy cycle, the number of interrupts is incremented
232  * and stored in the irq_timings structure. This information is
233  * necessary to:
234  *
235  * - know if the index in the table wrapped up:
236  *
237  *      If more than the array size interrupts happened during the
238  *      last busy/idle cycle, the index wrapped up and we have to
239  *      begin with the next element in the array which is the last one
240  *      in the sequence, otherwise it is a the index 0.
241  *
242  * - have an indication of the interrupts activity on this CPU
243  *   (eg. irq/sec)
244  *
245  * The values are 'consumed' after inserting in the statistical model,
246  * thus the count is reinitialized.
247  *
248  * The array of values **must** be browsed in the time direction, the
249  * timestamp must increase between an element and the next one.
250  *
251  * Returns a nanosec time based estimation of the earliest interrupt,
252  * U64_MAX otherwise.
253  */
254 u64 irq_timings_next_event(u64 now)
255 {
256         struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
257         struct irqt_stat *irqs;
258         struct irqt_stat __percpu *s;
259         u64 ts, next_evt = U64_MAX;
260         int i, irq = 0;
261
262         /*
263          * This function must be called with the local irq disabled in
264          * order to prevent the timings circular buffer to be updated
265          * while we are reading it.
266          */
267         WARN_ON_ONCE(!irqs_disabled());
268
269         /*
270          * Number of elements in the circular buffer: If it happens it
271          * was flushed before, then the number of elements could be
272          * smaller than IRQ_TIMINGS_SIZE, so the count is used,
273          * otherwise the array size is used as we wrapped. The index
274          * begins from zero when we did not wrap. That could be done
275          * in a nicer way with the proper circular array structure
276          * type but with the cost of extra computation in the
277          * interrupt handler hot path. We choose efficiency.
278          *
279          * Inject measured irq/timestamp to the statistical model
280          * while decrementing the counter because we consume the data
281          * from our circular buffer.
282          */
283         for (i = irqts->count & IRQ_TIMINGS_MASK,
284                      irqts->count = min(IRQ_TIMINGS_SIZE, irqts->count);
285              irqts->count > 0; irqts->count--, i = (i + 1) & IRQ_TIMINGS_MASK) {
286
287                 irq = irq_timing_decode(irqts->values[i], &ts);
288
289                 s = idr_find(&irqt_stats, irq);
290                 if (s) {
291                         irqs = this_cpu_ptr(s);
292                         irqs_update(irqs, ts);
293                 }
294         }
295
296         /*
297          * Look in the list of interrupts' statistics, the earliest
298          * next event.
299          */
300         idr_for_each_entry(&irqt_stats, s, i) {
301
302                 irqs = this_cpu_ptr(s);
303
304                 if (!irqs->valid)
305                         continue;
306
307                 if (irqs->next_evt <= now) {
308                         irq = i;
309                         next_evt = now;
310
311                         /*
312                          * This interrupt mustn't use in the future
313                          * until new events occur and update the
314                          * statistics.
315                          */
316                         irqs->valid = 0;
317                         break;
318                 }
319
320                 if (irqs->next_evt < next_evt) {
321                         irq = i;
322                         next_evt = irqs->next_evt;
323                 }
324         }
325
326         return next_evt;
327 }
328
329 void irq_timings_free(int irq)
330 {
331         struct irqt_stat __percpu *s;
332
333         s = idr_find(&irqt_stats, irq);
334         if (s) {
335                 free_percpu(s);
336                 idr_remove(&irqt_stats, irq);
337         }
338 }
339
340 int irq_timings_alloc(int irq)
341 {
342         struct irqt_stat __percpu *s;
343         int id;
344
345         /*
346          * Some platforms can have the same private interrupt per cpu,
347          * so this function may be be called several times with the
348          * same interrupt number. Just bail out in case the per cpu
349          * stat structure is already allocated.
350          */
351         s = idr_find(&irqt_stats, irq);
352         if (s)
353                 return 0;
354
355         s = alloc_percpu(*s);
356         if (!s)
357                 return -ENOMEM;
358
359         idr_preload(GFP_KERNEL);
360         id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
361         idr_preload_end();
362
363         if (id < 0) {
364                 free_percpu(s);
365                 return id;
366         }
367
368         return 0;
369 }