GNU Linux-libre 4.9.328-gnu1
[releases.git] / kernel / irq / manage.c
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/task_work.h>
21
22 #include "internals.h"
23
24 #ifdef CONFIG_IRQ_FORCED_THREADING
25 __read_mostly bool force_irqthreads;
26
27 static int __init setup_forced_irqthreads(char *arg)
28 {
29         force_irqthreads = true;
30         return 0;
31 }
32 early_param("threadirqs", setup_forced_irqthreads);
33 #endif
34
35 static void __synchronize_hardirq(struct irq_desc *desc)
36 {
37         bool inprogress;
38
39         do {
40                 unsigned long flags;
41
42                 /*
43                  * Wait until we're out of the critical section.  This might
44                  * give the wrong answer due to the lack of memory barriers.
45                  */
46                 while (irqd_irq_inprogress(&desc->irq_data))
47                         cpu_relax();
48
49                 /* Ok, that indicated we're done: double-check carefully. */
50                 raw_spin_lock_irqsave(&desc->lock, flags);
51                 inprogress = irqd_irq_inprogress(&desc->irq_data);
52                 raw_spin_unlock_irqrestore(&desc->lock, flags);
53
54                 /* Oops, that failed? */
55         } while (inprogress);
56 }
57
58 /**
59  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
60  *      @irq: interrupt number to wait for
61  *
62  *      This function waits for any pending hard IRQ handlers for this
63  *      interrupt to complete before returning. If you use this
64  *      function while holding a resource the IRQ handler may need you
65  *      will deadlock. It does not take associated threaded handlers
66  *      into account.
67  *
68  *      Do not use this for shutdown scenarios where you must be sure
69  *      that all parts (hardirq and threaded handler) have completed.
70  *
71  *      Returns: false if a threaded handler is active.
72  *
73  *      This function may be called - with care - from IRQ context.
74  */
75 bool synchronize_hardirq(unsigned int irq)
76 {
77         struct irq_desc *desc = irq_to_desc(irq);
78
79         if (desc) {
80                 __synchronize_hardirq(desc);
81                 return !atomic_read(&desc->threads_active);
82         }
83
84         return true;
85 }
86 EXPORT_SYMBOL(synchronize_hardirq);
87
88 /**
89  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
90  *      @irq: interrupt number to wait for
91  *
92  *      This function waits for any pending IRQ handlers for this interrupt
93  *      to complete before returning. If you use this function while
94  *      holding a resource the IRQ handler may need you will deadlock.
95  *
96  *      This function may be called - with care - from IRQ context.
97  */
98 void synchronize_irq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc);
104                 /*
105                  * We made sure that no hardirq handler is
106                  * running. Now verify that no threaded handlers are
107                  * active.
108                  */
109                 wait_event(desc->wait_for_threads,
110                            !atomic_read(&desc->threads_active));
111         }
112 }
113 EXPORT_SYMBOL(synchronize_irq);
114
115 #ifdef CONFIG_SMP
116 cpumask_var_t irq_default_affinity;
117
118 static bool __irq_can_set_affinity(struct irq_desc *desc)
119 {
120         if (!desc || !irqd_can_balance(&desc->irq_data) ||
121             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
122                 return false;
123         return true;
124 }
125
126 /**
127  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
128  *      @irq:           Interrupt to check
129  *
130  */
131 int irq_can_set_affinity(unsigned int irq)
132 {
133         return __irq_can_set_affinity(irq_to_desc(irq));
134 }
135
136 /**
137  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
138  * @irq:        Interrupt to check
139  *
140  * Like irq_can_set_affinity() above, but additionally checks for the
141  * AFFINITY_MANAGED flag.
142  */
143 bool irq_can_set_affinity_usr(unsigned int irq)
144 {
145         struct irq_desc *desc = irq_to_desc(irq);
146
147         return __irq_can_set_affinity(desc) &&
148                 !irqd_affinity_is_managed(&desc->irq_data);
149 }
150
151 /**
152  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
153  *      @desc:          irq descriptor which has affitnity changed
154  *
155  *      We just set IRQTF_AFFINITY and delegate the affinity setting
156  *      to the interrupt thread itself. We can not call
157  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
158  *      code can be called from hard interrupt context.
159  */
160 void irq_set_thread_affinity(struct irq_desc *desc)
161 {
162         struct irqaction *action;
163
164         for_each_action_of_desc(desc, action)
165                 if (action->thread)
166                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
167 }
168
169 #ifdef CONFIG_GENERIC_PENDING_IRQ
170 static inline bool irq_can_move_pcntxt(struct irq_data *data)
171 {
172         return irqd_can_move_in_process_context(data);
173 }
174 static inline bool irq_move_pending(struct irq_data *data)
175 {
176         return irqd_is_setaffinity_pending(data);
177 }
178 static inline void
179 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
180 {
181         cpumask_copy(desc->pending_mask, mask);
182 }
183 static inline void
184 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
185 {
186         cpumask_copy(mask, desc->pending_mask);
187 }
188 #else
189 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
190 static inline bool irq_move_pending(struct irq_data *data) { return false; }
191 static inline void
192 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
193 static inline void
194 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
195 #endif
196
197 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
198                         bool force)
199 {
200         struct irq_desc *desc = irq_data_to_desc(data);
201         struct irq_chip *chip = irq_data_get_irq_chip(data);
202         int ret;
203
204         ret = chip->irq_set_affinity(data, mask, force);
205         switch (ret) {
206         case IRQ_SET_MASK_OK:
207         case IRQ_SET_MASK_OK_DONE:
208                 cpumask_copy(desc->irq_common_data.affinity, mask);
209         case IRQ_SET_MASK_OK_NOCOPY:
210                 irq_set_thread_affinity(desc);
211                 ret = 0;
212         }
213
214         return ret;
215 }
216
217 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
218                             bool force)
219 {
220         struct irq_chip *chip = irq_data_get_irq_chip(data);
221         struct irq_desc *desc = irq_data_to_desc(data);
222         int ret = 0;
223
224         if (!chip || !chip->irq_set_affinity)
225                 return -EINVAL;
226
227         if (irq_can_move_pcntxt(data)) {
228                 ret = irq_do_set_affinity(data, mask, force);
229         } else {
230                 irqd_set_move_pending(data);
231                 irq_copy_pending(desc, mask);
232         }
233
234         if (desc->affinity_notify) {
235                 kref_get(&desc->affinity_notify->kref);
236                 if (!schedule_work(&desc->affinity_notify->work)) {
237                         /* Work was already scheduled, drop our extra ref */
238                         kref_put(&desc->affinity_notify->kref,
239                                  desc->affinity_notify->release);
240                 }
241         }
242         irqd_set(data, IRQD_AFFINITY_SET);
243
244         return ret;
245 }
246
247 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
248 {
249         struct irq_desc *desc = irq_to_desc(irq);
250         unsigned long flags;
251         int ret;
252
253         if (!desc)
254                 return -EINVAL;
255
256         raw_spin_lock_irqsave(&desc->lock, flags);
257         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
258         raw_spin_unlock_irqrestore(&desc->lock, flags);
259         return ret;
260 }
261
262 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
263 {
264         unsigned long flags;
265         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
266
267         if (!desc)
268                 return -EINVAL;
269         desc->affinity_hint = m;
270         irq_put_desc_unlock(desc, flags);
271         /* set the initial affinity to prevent every interrupt being on CPU0 */
272         if (m)
273                 __irq_set_affinity(irq, m, false);
274         return 0;
275 }
276 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
277
278 static void irq_affinity_notify(struct work_struct *work)
279 {
280         struct irq_affinity_notify *notify =
281                 container_of(work, struct irq_affinity_notify, work);
282         struct irq_desc *desc = irq_to_desc(notify->irq);
283         cpumask_var_t cpumask;
284         unsigned long flags;
285
286         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
287                 goto out;
288
289         raw_spin_lock_irqsave(&desc->lock, flags);
290         if (irq_move_pending(&desc->irq_data))
291                 irq_get_pending(cpumask, desc);
292         else
293                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
294         raw_spin_unlock_irqrestore(&desc->lock, flags);
295
296         notify->notify(notify, cpumask);
297
298         free_cpumask_var(cpumask);
299 out:
300         kref_put(&notify->kref, notify->release);
301 }
302
303 /**
304  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
305  *      @irq:           Interrupt for which to enable/disable notification
306  *      @notify:        Context for notification, or %NULL to disable
307  *                      notification.  Function pointers must be initialised;
308  *                      the other fields will be initialised by this function.
309  *
310  *      Must be called in process context.  Notification may only be enabled
311  *      after the IRQ is allocated and must be disabled before the IRQ is
312  *      freed using free_irq().
313  */
314 int
315 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
316 {
317         struct irq_desc *desc = irq_to_desc(irq);
318         struct irq_affinity_notify *old_notify;
319         unsigned long flags;
320
321         /* The release function is promised process context */
322         might_sleep();
323
324         if (!desc)
325                 return -EINVAL;
326
327         /* Complete initialisation of *notify */
328         if (notify) {
329                 notify->irq = irq;
330                 kref_init(&notify->kref);
331                 INIT_WORK(&notify->work, irq_affinity_notify);
332         }
333
334         raw_spin_lock_irqsave(&desc->lock, flags);
335         old_notify = desc->affinity_notify;
336         desc->affinity_notify = notify;
337         raw_spin_unlock_irqrestore(&desc->lock, flags);
338
339         if (old_notify) {
340                 if (cancel_work_sync(&old_notify->work)) {
341                         /* Pending work had a ref, put that one too */
342                         kref_put(&old_notify->kref, old_notify->release);
343                 }
344                 kref_put(&old_notify->kref, old_notify->release);
345         }
346
347         return 0;
348 }
349 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
350
351 #ifndef CONFIG_AUTO_IRQ_AFFINITY
352 /*
353  * Generic version of the affinity autoselector.
354  */
355 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
356 {
357         struct cpumask *set = irq_default_affinity;
358         int node = irq_desc_get_node(desc);
359
360         /* Excludes PER_CPU and NO_BALANCE interrupts */
361         if (!__irq_can_set_affinity(desc))
362                 return 0;
363
364         /*
365          * Preserve the managed affinity setting and an userspace affinity
366          * setup, but make sure that one of the targets is online.
367          */
368         if (irqd_affinity_is_managed(&desc->irq_data) ||
369             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
370                 if (cpumask_intersects(desc->irq_common_data.affinity,
371                                        cpu_online_mask))
372                         set = desc->irq_common_data.affinity;
373                 else
374                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
375         }
376
377         cpumask_and(mask, cpu_online_mask, set);
378         if (node != NUMA_NO_NODE) {
379                 const struct cpumask *nodemask = cpumask_of_node(node);
380
381                 /* make sure at least one of the cpus in nodemask is online */
382                 if (cpumask_intersects(mask, nodemask))
383                         cpumask_and(mask, mask, nodemask);
384         }
385         irq_do_set_affinity(&desc->irq_data, mask, false);
386         return 0;
387 }
388 #else
389 /* Wrapper for ALPHA specific affinity selector magic */
390 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
391 {
392         return irq_select_affinity(irq_desc_get_irq(d));
393 }
394 #endif
395
396 /*
397  * Called when affinity is set via /proc/irq
398  */
399 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
400 {
401         struct irq_desc *desc = irq_to_desc(irq);
402         unsigned long flags;
403         int ret;
404
405         raw_spin_lock_irqsave(&desc->lock, flags);
406         ret = setup_affinity(desc, mask);
407         raw_spin_unlock_irqrestore(&desc->lock, flags);
408         return ret;
409 }
410
411 #else
412 static inline int
413 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
414 {
415         return 0;
416 }
417 #endif
418
419 /**
420  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
421  *      @irq: interrupt number to set affinity
422  *      @vcpu_info: vCPU specific data
423  *
424  *      This function uses the vCPU specific data to set the vCPU
425  *      affinity for an irq. The vCPU specific data is passed from
426  *      outside, such as KVM. One example code path is as below:
427  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
428  */
429 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
430 {
431         unsigned long flags;
432         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
433         struct irq_data *data;
434         struct irq_chip *chip;
435         int ret = -ENOSYS;
436
437         if (!desc)
438                 return -EINVAL;
439
440         data = irq_desc_get_irq_data(desc);
441         chip = irq_data_get_irq_chip(data);
442         if (chip && chip->irq_set_vcpu_affinity)
443                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
444         irq_put_desc_unlock(desc, flags);
445
446         return ret;
447 }
448 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
449
450 void __disable_irq(struct irq_desc *desc)
451 {
452         if (!desc->depth++)
453                 irq_disable(desc);
454 }
455
456 static int __disable_irq_nosync(unsigned int irq)
457 {
458         unsigned long flags;
459         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
460
461         if (!desc)
462                 return -EINVAL;
463         __disable_irq(desc);
464         irq_put_desc_busunlock(desc, flags);
465         return 0;
466 }
467
468 /**
469  *      disable_irq_nosync - disable an irq without waiting
470  *      @irq: Interrupt to disable
471  *
472  *      Disable the selected interrupt line.  Disables and Enables are
473  *      nested.
474  *      Unlike disable_irq(), this function does not ensure existing
475  *      instances of the IRQ handler have completed before returning.
476  *
477  *      This function may be called from IRQ context.
478  */
479 void disable_irq_nosync(unsigned int irq)
480 {
481         __disable_irq_nosync(irq);
482 }
483 EXPORT_SYMBOL(disable_irq_nosync);
484
485 /**
486  *      disable_irq - disable an irq and wait for completion
487  *      @irq: Interrupt to disable
488  *
489  *      Disable the selected interrupt line.  Enables and Disables are
490  *      nested.
491  *      This function waits for any pending IRQ handlers for this interrupt
492  *      to complete before returning. If you use this function while
493  *      holding a resource the IRQ handler may need you will deadlock.
494  *
495  *      This function may be called - with care - from IRQ context.
496  */
497 void disable_irq(unsigned int irq)
498 {
499         if (!__disable_irq_nosync(irq))
500                 synchronize_irq(irq);
501 }
502 EXPORT_SYMBOL(disable_irq);
503
504 /**
505  *      disable_hardirq - disables an irq and waits for hardirq completion
506  *      @irq: Interrupt to disable
507  *
508  *      Disable the selected interrupt line.  Enables and Disables are
509  *      nested.
510  *      This function waits for any pending hard IRQ handlers for this
511  *      interrupt to complete before returning. If you use this function while
512  *      holding a resource the hard IRQ handler may need you will deadlock.
513  *
514  *      When used to optimistically disable an interrupt from atomic context
515  *      the return value must be checked.
516  *
517  *      Returns: false if a threaded handler is active.
518  *
519  *      This function may be called - with care - from IRQ context.
520  */
521 bool disable_hardirq(unsigned int irq)
522 {
523         if (!__disable_irq_nosync(irq))
524                 return synchronize_hardirq(irq);
525
526         return false;
527 }
528 EXPORT_SYMBOL_GPL(disable_hardirq);
529
530 void __enable_irq(struct irq_desc *desc)
531 {
532         switch (desc->depth) {
533         case 0:
534  err_out:
535                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
536                      irq_desc_get_irq(desc));
537                 break;
538         case 1: {
539                 if (desc->istate & IRQS_SUSPENDED)
540                         goto err_out;
541                 /* Prevent probing on this irq: */
542                 irq_settings_set_noprobe(desc);
543                 irq_enable(desc);
544                 check_irq_resend(desc);
545                 /* fall-through */
546         }
547         default:
548                 desc->depth--;
549         }
550 }
551
552 /**
553  *      enable_irq - enable handling of an irq
554  *      @irq: Interrupt to enable
555  *
556  *      Undoes the effect of one call to disable_irq().  If this
557  *      matches the last disable, processing of interrupts on this
558  *      IRQ line is re-enabled.
559  *
560  *      This function may be called from IRQ context only when
561  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
562  */
563 void enable_irq(unsigned int irq)
564 {
565         unsigned long flags;
566         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
567
568         if (!desc)
569                 return;
570         if (WARN(!desc->irq_data.chip,
571                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
572                 goto out;
573
574         __enable_irq(desc);
575 out:
576         irq_put_desc_busunlock(desc, flags);
577 }
578 EXPORT_SYMBOL(enable_irq);
579
580 static int set_irq_wake_real(unsigned int irq, unsigned int on)
581 {
582         struct irq_desc *desc = irq_to_desc(irq);
583         int ret = -ENXIO;
584
585         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
586                 return 0;
587
588         if (desc->irq_data.chip->irq_set_wake)
589                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
590
591         return ret;
592 }
593
594 /**
595  *      irq_set_irq_wake - control irq power management wakeup
596  *      @irq:   interrupt to control
597  *      @on:    enable/disable power management wakeup
598  *
599  *      Enable/disable power management wakeup mode, which is
600  *      disabled by default.  Enables and disables must match,
601  *      just as they match for non-wakeup mode support.
602  *
603  *      Wakeup mode lets this IRQ wake the system from sleep
604  *      states like "suspend to RAM".
605  */
606 int irq_set_irq_wake(unsigned int irq, unsigned int on)
607 {
608         unsigned long flags;
609         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
610         int ret = 0;
611
612         if (!desc)
613                 return -EINVAL;
614
615         /* wakeup-capable irqs can be shared between drivers that
616          * don't need to have the same sleep mode behaviors.
617          */
618         if (on) {
619                 if (desc->wake_depth++ == 0) {
620                         ret = set_irq_wake_real(irq, on);
621                         if (ret)
622                                 desc->wake_depth = 0;
623                         else
624                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
625                 }
626         } else {
627                 if (desc->wake_depth == 0) {
628                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
629                 } else if (--desc->wake_depth == 0) {
630                         ret = set_irq_wake_real(irq, on);
631                         if (ret)
632                                 desc->wake_depth = 1;
633                         else
634                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
635                 }
636         }
637         irq_put_desc_busunlock(desc, flags);
638         return ret;
639 }
640 EXPORT_SYMBOL(irq_set_irq_wake);
641
642 /*
643  * Internal function that tells the architecture code whether a
644  * particular irq has been exclusively allocated or is available
645  * for driver use.
646  */
647 int can_request_irq(unsigned int irq, unsigned long irqflags)
648 {
649         unsigned long flags;
650         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
651         int canrequest = 0;
652
653         if (!desc)
654                 return 0;
655
656         if (irq_settings_can_request(desc)) {
657                 if (!desc->action ||
658                     irqflags & desc->action->flags & IRQF_SHARED)
659                         canrequest = 1;
660         }
661         irq_put_desc_unlock(desc, flags);
662         return canrequest;
663 }
664
665 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
666 {
667         struct irq_chip *chip = desc->irq_data.chip;
668         int ret, unmask = 0;
669
670         if (!chip || !chip->irq_set_type) {
671                 /*
672                  * IRQF_TRIGGER_* but the PIC does not support multiple
673                  * flow-types?
674                  */
675                 pr_debug("No set_type function for IRQ %d (%s)\n",
676                          irq_desc_get_irq(desc),
677                          chip ? (chip->name ? : "unknown") : "unknown");
678                 return 0;
679         }
680
681         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
682                 if (!irqd_irq_masked(&desc->irq_data))
683                         mask_irq(desc);
684                 if (!irqd_irq_disabled(&desc->irq_data))
685                         unmask = 1;
686         }
687
688         /* Mask all flags except trigger mode */
689         flags &= IRQ_TYPE_SENSE_MASK;
690         ret = chip->irq_set_type(&desc->irq_data, flags);
691
692         switch (ret) {
693         case IRQ_SET_MASK_OK:
694         case IRQ_SET_MASK_OK_DONE:
695                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
696                 irqd_set(&desc->irq_data, flags);
697
698         case IRQ_SET_MASK_OK_NOCOPY:
699                 flags = irqd_get_trigger_type(&desc->irq_data);
700                 irq_settings_set_trigger_mask(desc, flags);
701                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
702                 irq_settings_clr_level(desc);
703                 if (flags & IRQ_TYPE_LEVEL_MASK) {
704                         irq_settings_set_level(desc);
705                         irqd_set(&desc->irq_data, IRQD_LEVEL);
706                 }
707
708                 ret = 0;
709                 break;
710         default:
711                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
712                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
713         }
714         if (unmask)
715                 unmask_irq(desc);
716         return ret;
717 }
718
719 #ifdef CONFIG_HARDIRQS_SW_RESEND
720 int irq_set_parent(int irq, int parent_irq)
721 {
722         unsigned long flags;
723         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
724
725         if (!desc)
726                 return -EINVAL;
727
728         desc->parent_irq = parent_irq;
729
730         irq_put_desc_unlock(desc, flags);
731         return 0;
732 }
733 EXPORT_SYMBOL_GPL(irq_set_parent);
734 #endif
735
736 /*
737  * Default primary interrupt handler for threaded interrupts. Is
738  * assigned as primary handler when request_threaded_irq is called
739  * with handler == NULL. Useful for oneshot interrupts.
740  */
741 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
742 {
743         return IRQ_WAKE_THREAD;
744 }
745
746 /*
747  * Primary handler for nested threaded interrupts. Should never be
748  * called.
749  */
750 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
751 {
752         WARN(1, "Primary handler called for nested irq %d\n", irq);
753         return IRQ_NONE;
754 }
755
756 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
757 {
758         WARN(1, "Secondary action handler called for irq %d\n", irq);
759         return IRQ_NONE;
760 }
761
762 static int irq_wait_for_interrupt(struct irqaction *action)
763 {
764         set_current_state(TASK_INTERRUPTIBLE);
765
766         while (!kthread_should_stop()) {
767
768                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
769                                        &action->thread_flags)) {
770                         __set_current_state(TASK_RUNNING);
771                         return 0;
772                 }
773                 schedule();
774                 set_current_state(TASK_INTERRUPTIBLE);
775         }
776         __set_current_state(TASK_RUNNING);
777         return -1;
778 }
779
780 /*
781  * Oneshot interrupts keep the irq line masked until the threaded
782  * handler finished. unmask if the interrupt has not been disabled and
783  * is marked MASKED.
784  */
785 static void irq_finalize_oneshot(struct irq_desc *desc,
786                                  struct irqaction *action)
787 {
788         if (!(desc->istate & IRQS_ONESHOT) ||
789             action->handler == irq_forced_secondary_handler)
790                 return;
791 again:
792         chip_bus_lock(desc);
793         raw_spin_lock_irq(&desc->lock);
794
795         /*
796          * Implausible though it may be we need to protect us against
797          * the following scenario:
798          *
799          * The thread is faster done than the hard interrupt handler
800          * on the other CPU. If we unmask the irq line then the
801          * interrupt can come in again and masks the line, leaves due
802          * to IRQS_INPROGRESS and the irq line is masked forever.
803          *
804          * This also serializes the state of shared oneshot handlers
805          * versus "desc->threads_onehsot |= action->thread_mask;" in
806          * irq_wake_thread(). See the comment there which explains the
807          * serialization.
808          */
809         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
810                 raw_spin_unlock_irq(&desc->lock);
811                 chip_bus_sync_unlock(desc);
812                 cpu_relax();
813                 goto again;
814         }
815
816         /*
817          * Now check again, whether the thread should run. Otherwise
818          * we would clear the threads_oneshot bit of this thread which
819          * was just set.
820          */
821         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
822                 goto out_unlock;
823
824         desc->threads_oneshot &= ~action->thread_mask;
825
826         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
827             irqd_irq_masked(&desc->irq_data))
828                 unmask_threaded_irq(desc);
829
830 out_unlock:
831         raw_spin_unlock_irq(&desc->lock);
832         chip_bus_sync_unlock(desc);
833 }
834
835 #ifdef CONFIG_SMP
836 /*
837  * Check whether we need to change the affinity of the interrupt thread.
838  */
839 static void
840 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
841 {
842         cpumask_var_t mask;
843         bool valid = true;
844
845         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
846                 return;
847
848         /*
849          * In case we are out of memory we set IRQTF_AFFINITY again and
850          * try again next time
851          */
852         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
853                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
854                 return;
855         }
856
857         raw_spin_lock_irq(&desc->lock);
858         /*
859          * This code is triggered unconditionally. Check the affinity
860          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
861          */
862         if (cpumask_available(desc->irq_common_data.affinity))
863                 cpumask_copy(mask, desc->irq_common_data.affinity);
864         else
865                 valid = false;
866         raw_spin_unlock_irq(&desc->lock);
867
868         if (valid)
869                 set_cpus_allowed_ptr(current, mask);
870         free_cpumask_var(mask);
871 }
872 #else
873 static inline void
874 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
875 #endif
876
877 /*
878  * Interrupts which are not explicitely requested as threaded
879  * interrupts rely on the implicit bh/preempt disable of the hard irq
880  * context. So we need to disable bh here to avoid deadlocks and other
881  * side effects.
882  */
883 static irqreturn_t
884 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
885 {
886         irqreturn_t ret;
887
888         local_bh_disable();
889         if (!IS_ENABLED(CONFIG_PREEMPT_RT_BASE))
890                 local_irq_disable();
891         ret = action->thread_fn(action->irq, action->dev_id);
892         if (ret == IRQ_HANDLED)
893                 atomic_inc(&desc->threads_handled);
894
895         irq_finalize_oneshot(desc, action);
896         if (!IS_ENABLED(CONFIG_PREEMPT_RT_BASE))
897                 local_irq_enable();
898         local_bh_enable();
899         return ret;
900 }
901
902 /*
903  * Interrupts explicitly requested as threaded interrupts want to be
904  * preemtible - many of them need to sleep and wait for slow busses to
905  * complete.
906  */
907 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
908                 struct irqaction *action)
909 {
910         irqreturn_t ret;
911
912         ret = action->thread_fn(action->irq, action->dev_id);
913         if (ret == IRQ_HANDLED)
914                 atomic_inc(&desc->threads_handled);
915
916         irq_finalize_oneshot(desc, action);
917         return ret;
918 }
919
920 static void wake_threads_waitq(struct irq_desc *desc)
921 {
922         if (atomic_dec_and_test(&desc->threads_active))
923                 wake_up(&desc->wait_for_threads);
924 }
925
926 static void irq_thread_dtor(struct callback_head *unused)
927 {
928         struct task_struct *tsk = current;
929         struct irq_desc *desc;
930         struct irqaction *action;
931
932         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
933                 return;
934
935         action = kthread_data(tsk);
936
937         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
938                tsk->comm, tsk->pid, action->irq);
939
940
941         desc = irq_to_desc(action->irq);
942         /*
943          * If IRQTF_RUNTHREAD is set, we need to decrement
944          * desc->threads_active and wake possible waiters.
945          */
946         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
947                 wake_threads_waitq(desc);
948
949         /* Prevent a stale desc->threads_oneshot */
950         irq_finalize_oneshot(desc, action);
951 }
952
953 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
954 {
955         struct irqaction *secondary = action->secondary;
956
957         if (WARN_ON_ONCE(!secondary))
958                 return;
959
960         raw_spin_lock_irq(&desc->lock);
961         __irq_wake_thread(desc, secondary);
962         raw_spin_unlock_irq(&desc->lock);
963 }
964
965 /*
966  * Interrupt handler thread
967  */
968 static int irq_thread(void *data)
969 {
970         struct callback_head on_exit_work;
971         struct irqaction *action = data;
972         struct irq_desc *desc = irq_to_desc(action->irq);
973         irqreturn_t (*handler_fn)(struct irq_desc *desc,
974                         struct irqaction *action);
975
976         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
977                                         &action->thread_flags))
978                 handler_fn = irq_forced_thread_fn;
979         else
980                 handler_fn = irq_thread_fn;
981
982         init_task_work(&on_exit_work, irq_thread_dtor);
983         task_work_add(current, &on_exit_work, false);
984
985         irq_thread_check_affinity(desc, action);
986
987         while (!irq_wait_for_interrupt(action)) {
988                 irqreturn_t action_ret;
989
990                 irq_thread_check_affinity(desc, action);
991
992                 action_ret = handler_fn(desc, action);
993                 if (action_ret == IRQ_WAKE_THREAD)
994                         irq_wake_secondary(desc, action);
995
996                 wake_threads_waitq(desc);
997         }
998
999         /*
1000          * This is the regular exit path. __free_irq() is stopping the
1001          * thread via kthread_stop() after calling
1002          * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
1003          * oneshot mask bit can be set. We cannot verify that as we
1004          * cannot touch the oneshot mask at this point anymore as
1005          * __setup_irq() might have given out currents thread_mask
1006          * again.
1007          */
1008         task_work_cancel(current, irq_thread_dtor);
1009         return 0;
1010 }
1011
1012 /**
1013  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1014  *      @irq:           Interrupt line
1015  *      @dev_id:        Device identity for which the thread should be woken
1016  *
1017  */
1018 void irq_wake_thread(unsigned int irq, void *dev_id)
1019 {
1020         struct irq_desc *desc = irq_to_desc(irq);
1021         struct irqaction *action;
1022         unsigned long flags;
1023
1024         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1025                 return;
1026
1027         raw_spin_lock_irqsave(&desc->lock, flags);
1028         for_each_action_of_desc(desc, action) {
1029                 if (action->dev_id == dev_id) {
1030                         if (action->thread)
1031                                 __irq_wake_thread(desc, action);
1032                         break;
1033                 }
1034         }
1035         raw_spin_unlock_irqrestore(&desc->lock, flags);
1036 }
1037 EXPORT_SYMBOL_GPL(irq_wake_thread);
1038
1039 static int irq_setup_forced_threading(struct irqaction *new)
1040 {
1041         if (!force_irqthreads)
1042                 return 0;
1043         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1044                 return 0;
1045
1046         /*
1047          * No further action required for interrupts which are requested as
1048          * threaded interrupts already
1049          */
1050         if (new->handler == irq_default_primary_handler)
1051                 return 0;
1052
1053         new->flags |= IRQF_ONESHOT;
1054
1055         /*
1056          * Handle the case where we have a real primary handler and a
1057          * thread handler. We force thread them as well by creating a
1058          * secondary action.
1059          */
1060         if (new->handler && new->thread_fn) {
1061                 /* Allocate the secondary action */
1062                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1063                 if (!new->secondary)
1064                         return -ENOMEM;
1065                 new->secondary->handler = irq_forced_secondary_handler;
1066                 new->secondary->thread_fn = new->thread_fn;
1067                 new->secondary->dev_id = new->dev_id;
1068                 new->secondary->irq = new->irq;
1069                 new->secondary->name = new->name;
1070         }
1071         /* Deal with the primary handler */
1072         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1073         new->thread_fn = new->handler;
1074         new->handler = irq_default_primary_handler;
1075         return 0;
1076 }
1077
1078 static int irq_request_resources(struct irq_desc *desc)
1079 {
1080         struct irq_data *d = &desc->irq_data;
1081         struct irq_chip *c = d->chip;
1082
1083         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1084 }
1085
1086 static void irq_release_resources(struct irq_desc *desc)
1087 {
1088         struct irq_data *d = &desc->irq_data;
1089         struct irq_chip *c = d->chip;
1090
1091         if (c->irq_release_resources)
1092                 c->irq_release_resources(d);
1093 }
1094
1095 static int
1096 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1097 {
1098         struct task_struct *t;
1099         struct sched_param param = {
1100                 .sched_priority = MAX_USER_RT_PRIO/2,
1101         };
1102
1103         if (!secondary) {
1104                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1105                                    new->name);
1106         } else {
1107                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1108                                    new->name);
1109                 param.sched_priority -= 1;
1110         }
1111
1112         if (IS_ERR(t))
1113                 return PTR_ERR(t);
1114
1115         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1116
1117         /*
1118          * We keep the reference to the task struct even if
1119          * the thread dies to avoid that the interrupt code
1120          * references an already freed task_struct.
1121          */
1122         get_task_struct(t);
1123         new->thread = t;
1124         /*
1125          * Tell the thread to set its affinity. This is
1126          * important for shared interrupt handlers as we do
1127          * not invoke setup_affinity() for the secondary
1128          * handlers as everything is already set up. Even for
1129          * interrupts marked with IRQF_NO_BALANCE this is
1130          * correct as we want the thread to move to the cpu(s)
1131          * on which the requesting code placed the interrupt.
1132          */
1133         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1134         return 0;
1135 }
1136
1137 /*
1138  * Internal function to register an irqaction - typically used to
1139  * allocate special interrupts that are part of the architecture.
1140  */
1141 static int
1142 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1143 {
1144         struct irqaction *old, **old_ptr;
1145         unsigned long flags, thread_mask = 0;
1146         int ret, nested, shared = 0;
1147         cpumask_var_t mask;
1148
1149         if (!desc)
1150                 return -EINVAL;
1151
1152         if (desc->irq_data.chip == &no_irq_chip)
1153                 return -ENOSYS;
1154         if (!try_module_get(desc->owner))
1155                 return -ENODEV;
1156
1157         new->irq = irq;
1158
1159         /*
1160          * If the trigger type is not specified by the caller,
1161          * then use the default for this interrupt.
1162          */
1163         if (!(new->flags & IRQF_TRIGGER_MASK))
1164                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1165
1166         /*
1167          * Check whether the interrupt nests into another interrupt
1168          * thread.
1169          */
1170         nested = irq_settings_is_nested_thread(desc);
1171         if (nested) {
1172                 if (!new->thread_fn) {
1173                         ret = -EINVAL;
1174                         goto out_mput;
1175                 }
1176                 /*
1177                  * Replace the primary handler which was provided from
1178                  * the driver for non nested interrupt handling by the
1179                  * dummy function which warns when called.
1180                  */
1181                 new->handler = irq_nested_primary_handler;
1182         } else {
1183                 if (irq_settings_can_thread(desc)) {
1184                         ret = irq_setup_forced_threading(new);
1185                         if (ret)
1186                                 goto out_mput;
1187                 }
1188         }
1189
1190         /*
1191          * Create a handler thread when a thread function is supplied
1192          * and the interrupt does not nest into another interrupt
1193          * thread.
1194          */
1195         if (new->thread_fn && !nested) {
1196                 ret = setup_irq_thread(new, irq, false);
1197                 if (ret)
1198                         goto out_mput;
1199                 if (new->secondary) {
1200                         ret = setup_irq_thread(new->secondary, irq, true);
1201                         if (ret)
1202                                 goto out_thread;
1203                 }
1204         }
1205
1206         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1207                 ret = -ENOMEM;
1208                 goto out_thread;
1209         }
1210
1211         /*
1212          * Drivers are often written to work w/o knowledge about the
1213          * underlying irq chip implementation, so a request for a
1214          * threaded irq without a primary hard irq context handler
1215          * requires the ONESHOT flag to be set. Some irq chips like
1216          * MSI based interrupts are per se one shot safe. Check the
1217          * chip flags, so we can avoid the unmask dance at the end of
1218          * the threaded handler for those.
1219          */
1220         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1221                 new->flags &= ~IRQF_ONESHOT;
1222
1223         /*
1224          * The following block of code has to be executed atomically
1225          */
1226         raw_spin_lock_irqsave(&desc->lock, flags);
1227         old_ptr = &desc->action;
1228         old = *old_ptr;
1229         if (old) {
1230                 /*
1231                  * Can't share interrupts unless both agree to and are
1232                  * the same type (level, edge, polarity). So both flag
1233                  * fields must have IRQF_SHARED set and the bits which
1234                  * set the trigger type must match. Also all must
1235                  * agree on ONESHOT.
1236                  */
1237                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1238                     ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1239                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1240                         goto mismatch;
1241
1242                 /* All handlers must agree on per-cpuness */
1243                 if ((old->flags & IRQF_PERCPU) !=
1244                     (new->flags & IRQF_PERCPU))
1245                         goto mismatch;
1246
1247                 /* add new interrupt at end of irq queue */
1248                 do {
1249                         /*
1250                          * Or all existing action->thread_mask bits,
1251                          * so we can find the next zero bit for this
1252                          * new action.
1253                          */
1254                         thread_mask |= old->thread_mask;
1255                         old_ptr = &old->next;
1256                         old = *old_ptr;
1257                 } while (old);
1258                 shared = 1;
1259         }
1260
1261         /*
1262          * Setup the thread mask for this irqaction for ONESHOT. For
1263          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1264          * conditional in irq_wake_thread().
1265          */
1266         if (new->flags & IRQF_ONESHOT) {
1267                 /*
1268                  * Unlikely to have 32 resp 64 irqs sharing one line,
1269                  * but who knows.
1270                  */
1271                 if (thread_mask == ~0UL) {
1272                         ret = -EBUSY;
1273                         goto out_mask;
1274                 }
1275                 /*
1276                  * The thread_mask for the action is or'ed to
1277                  * desc->thread_active to indicate that the
1278                  * IRQF_ONESHOT thread handler has been woken, but not
1279                  * yet finished. The bit is cleared when a thread
1280                  * completes. When all threads of a shared interrupt
1281                  * line have completed desc->threads_active becomes
1282                  * zero and the interrupt line is unmasked. See
1283                  * handle.c:irq_wake_thread() for further information.
1284                  *
1285                  * If no thread is woken by primary (hard irq context)
1286                  * interrupt handlers, then desc->threads_active is
1287                  * also checked for zero to unmask the irq line in the
1288                  * affected hard irq flow handlers
1289                  * (handle_[fasteoi|level]_irq).
1290                  *
1291                  * The new action gets the first zero bit of
1292                  * thread_mask assigned. See the loop above which or's
1293                  * all existing action->thread_mask bits.
1294                  */
1295                 new->thread_mask = 1 << ffz(thread_mask);
1296
1297         } else if (new->handler == irq_default_primary_handler &&
1298                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1299                 /*
1300                  * The interrupt was requested with handler = NULL, so
1301                  * we use the default primary handler for it. But it
1302                  * does not have the oneshot flag set. In combination
1303                  * with level interrupts this is deadly, because the
1304                  * default primary handler just wakes the thread, then
1305                  * the irq lines is reenabled, but the device still
1306                  * has the level irq asserted. Rinse and repeat....
1307                  *
1308                  * While this works for edge type interrupts, we play
1309                  * it safe and reject unconditionally because we can't
1310                  * say for sure which type this interrupt really
1311                  * has. The type flags are unreliable as the
1312                  * underlying chip implementation can override them.
1313                  */
1314                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1315                        irq);
1316                 ret = -EINVAL;
1317                 goto out_mask;
1318         }
1319
1320         if (!shared) {
1321                 ret = irq_request_resources(desc);
1322                 if (ret) {
1323                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1324                                new->name, irq, desc->irq_data.chip->name);
1325                         goto out_mask;
1326                 }
1327
1328                 init_waitqueue_head(&desc->wait_for_threads);
1329
1330                 /* Setup the type (level, edge polarity) if configured: */
1331                 if (new->flags & IRQF_TRIGGER_MASK) {
1332                         ret = __irq_set_trigger(desc,
1333                                                 new->flags & IRQF_TRIGGER_MASK);
1334
1335                         if (ret) {
1336                                 irq_release_resources(desc);
1337                                 goto out_mask;
1338                         }
1339                 }
1340
1341                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1342                                   IRQS_ONESHOT | IRQS_WAITING);
1343                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1344
1345                 if (new->flags & IRQF_PERCPU) {
1346                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1347                         irq_settings_set_per_cpu(desc);
1348                 }
1349
1350                 if (new->flags & IRQF_ONESHOT)
1351                         desc->istate |= IRQS_ONESHOT;
1352
1353                 if (irq_settings_can_autoenable(desc))
1354                         irq_startup(desc, true);
1355                 else
1356                         /* Undo nested disables: */
1357                         desc->depth = 1;
1358
1359                 /* Exclude IRQ from balancing if requested */
1360                 if (new->flags & IRQF_NOBALANCING) {
1361                         irq_settings_set_no_balancing(desc);
1362                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1363                 }
1364
1365                 /* Set default affinity mask once everything is setup */
1366                 setup_affinity(desc, mask);
1367
1368         } else if (new->flags & IRQF_TRIGGER_MASK) {
1369                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1370                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1371
1372                 if (nmsk != omsk)
1373                         /* hope the handler works with current  trigger mode */
1374                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1375                                 irq, omsk, nmsk);
1376         }
1377
1378         *old_ptr = new;
1379
1380         irq_pm_install_action(desc, new);
1381
1382         /* Reset broken irq detection when installing new handler */
1383         desc->irq_count = 0;
1384         desc->irqs_unhandled = 0;
1385
1386         /*
1387          * Check whether we disabled the irq via the spurious handler
1388          * before. Reenable it and give it another chance.
1389          */
1390         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1391                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1392                 __enable_irq(desc);
1393         }
1394
1395         raw_spin_unlock_irqrestore(&desc->lock, flags);
1396
1397         /*
1398          * Strictly no need to wake it up, but hung_task complains
1399          * when no hard interrupt wakes the thread up.
1400          */
1401         if (new->thread)
1402                 wake_up_process(new->thread);
1403         if (new->secondary)
1404                 wake_up_process(new->secondary->thread);
1405
1406         register_irq_proc(irq, desc);
1407         new->dir = NULL;
1408         register_handler_proc(irq, new);
1409         free_cpumask_var(mask);
1410
1411         return 0;
1412
1413 mismatch:
1414         if (!(new->flags & IRQF_PROBE_SHARED)) {
1415                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1416                        irq, new->flags, new->name, old->flags, old->name);
1417 #ifdef CONFIG_DEBUG_SHIRQ
1418                 dump_stack();
1419 #endif
1420         }
1421         ret = -EBUSY;
1422
1423 out_mask:
1424         raw_spin_unlock_irqrestore(&desc->lock, flags);
1425         free_cpumask_var(mask);
1426
1427 out_thread:
1428         if (new->thread) {
1429                 struct task_struct *t = new->thread;
1430
1431                 new->thread = NULL;
1432                 kthread_stop(t);
1433                 put_task_struct(t);
1434         }
1435         if (new->secondary && new->secondary->thread) {
1436                 struct task_struct *t = new->secondary->thread;
1437
1438                 new->secondary->thread = NULL;
1439                 kthread_stop(t);
1440                 put_task_struct(t);
1441         }
1442 out_mput:
1443         module_put(desc->owner);
1444         return ret;
1445 }
1446
1447 /**
1448  *      setup_irq - setup an interrupt
1449  *      @irq: Interrupt line to setup
1450  *      @act: irqaction for the interrupt
1451  *
1452  * Used to statically setup interrupts in the early boot process.
1453  */
1454 int setup_irq(unsigned int irq, struct irqaction *act)
1455 {
1456         int retval;
1457         struct irq_desc *desc = irq_to_desc(irq);
1458
1459         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1460                 return -EINVAL;
1461
1462         retval = irq_chip_pm_get(&desc->irq_data);
1463         if (retval < 0)
1464                 return retval;
1465
1466         chip_bus_lock(desc);
1467         retval = __setup_irq(irq, desc, act);
1468         chip_bus_sync_unlock(desc);
1469
1470         if (retval)
1471                 irq_chip_pm_put(&desc->irq_data);
1472
1473         return retval;
1474 }
1475 EXPORT_SYMBOL_GPL(setup_irq);
1476
1477 /*
1478  * Internal function to unregister an irqaction - used to free
1479  * regular and special interrupts that are part of the architecture.
1480  */
1481 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1482 {
1483         struct irq_desc *desc = irq_to_desc(irq);
1484         struct irqaction *action, **action_ptr;
1485         unsigned long flags;
1486
1487         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1488
1489         if (!desc)
1490                 return NULL;
1491
1492         chip_bus_lock(desc);
1493         raw_spin_lock_irqsave(&desc->lock, flags);
1494
1495         /*
1496          * There can be multiple actions per IRQ descriptor, find the right
1497          * one based on the dev_id:
1498          */
1499         action_ptr = &desc->action;
1500         for (;;) {
1501                 action = *action_ptr;
1502
1503                 if (!action) {
1504                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1505                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1506                         chip_bus_sync_unlock(desc);
1507                         return NULL;
1508                 }
1509
1510                 if (action->dev_id == dev_id)
1511                         break;
1512                 action_ptr = &action->next;
1513         }
1514
1515         /* Found it - now remove it from the list of entries: */
1516         *action_ptr = action->next;
1517
1518         irq_pm_remove_action(desc, action);
1519
1520         /* If this was the last handler, shut down the IRQ line: */
1521         if (!desc->action) {
1522                 irq_settings_clr_disable_unlazy(desc);
1523                 irq_shutdown(desc);
1524                 irq_release_resources(desc);
1525         }
1526
1527 #ifdef CONFIG_SMP
1528         /* make sure affinity_hint is cleaned up */
1529         if (WARN_ON_ONCE(desc->affinity_hint))
1530                 desc->affinity_hint = NULL;
1531 #endif
1532
1533         raw_spin_unlock_irqrestore(&desc->lock, flags);
1534         chip_bus_sync_unlock(desc);
1535
1536         unregister_handler_proc(irq, action);
1537
1538         /* Make sure it's not being used on another CPU: */
1539         synchronize_irq(irq);
1540
1541 #ifdef CONFIG_DEBUG_SHIRQ
1542         /*
1543          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1544          * event to happen even now it's being freed, so let's make sure that
1545          * is so by doing an extra call to the handler ....
1546          *
1547          * ( We do this after actually deregistering it, to make sure that a
1548          *   'real' IRQ doesn't run in * parallel with our fake. )
1549          */
1550         if (action->flags & IRQF_SHARED) {
1551                 local_irq_save(flags);
1552                 action->handler(irq, dev_id);
1553                 local_irq_restore(flags);
1554         }
1555 #endif
1556
1557         if (action->thread) {
1558                 kthread_stop(action->thread);
1559                 put_task_struct(action->thread);
1560                 if (action->secondary && action->secondary->thread) {
1561                         kthread_stop(action->secondary->thread);
1562                         put_task_struct(action->secondary->thread);
1563                 }
1564         }
1565
1566         irq_chip_pm_put(&desc->irq_data);
1567         module_put(desc->owner);
1568         kfree(action->secondary);
1569         return action;
1570 }
1571
1572 /**
1573  *      remove_irq - free an interrupt
1574  *      @irq: Interrupt line to free
1575  *      @act: irqaction for the interrupt
1576  *
1577  * Used to remove interrupts statically setup by the early boot process.
1578  */
1579 void remove_irq(unsigned int irq, struct irqaction *act)
1580 {
1581         struct irq_desc *desc = irq_to_desc(irq);
1582
1583         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1584             __free_irq(irq, act->dev_id);
1585 }
1586 EXPORT_SYMBOL_GPL(remove_irq);
1587
1588 /**
1589  *      free_irq - free an interrupt allocated with request_irq
1590  *      @irq: Interrupt line to free
1591  *      @dev_id: Device identity to free
1592  *
1593  *      Remove an interrupt handler. The handler is removed and if the
1594  *      interrupt line is no longer in use by any driver it is disabled.
1595  *      On a shared IRQ the caller must ensure the interrupt is disabled
1596  *      on the card it drives before calling this function. The function
1597  *      does not return until any executing interrupts for this IRQ
1598  *      have completed.
1599  *
1600  *      This function must not be called from interrupt context.
1601  */
1602 void free_irq(unsigned int irq, void *dev_id)
1603 {
1604         struct irq_desc *desc = irq_to_desc(irq);
1605
1606         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1607                 return;
1608
1609 #ifdef CONFIG_SMP
1610         if (WARN_ON(desc->affinity_notify))
1611                 desc->affinity_notify = NULL;
1612 #endif
1613
1614         kfree(__free_irq(irq, dev_id));
1615 }
1616 EXPORT_SYMBOL(free_irq);
1617
1618 /**
1619  *      request_threaded_irq - allocate an interrupt line
1620  *      @irq: Interrupt line to allocate
1621  *      @handler: Function to be called when the IRQ occurs.
1622  *                Primary handler for threaded interrupts
1623  *                If NULL and thread_fn != NULL the default
1624  *                primary handler is installed
1625  *      @thread_fn: Function called from the irq handler thread
1626  *                  If NULL, no irq thread is created
1627  *      @irqflags: Interrupt type flags
1628  *      @devname: An ascii name for the claiming device
1629  *      @dev_id: A cookie passed back to the handler function
1630  *
1631  *      This call allocates interrupt resources and enables the
1632  *      interrupt line and IRQ handling. From the point this
1633  *      call is made your handler function may be invoked. Since
1634  *      your handler function must clear any interrupt the board
1635  *      raises, you must take care both to initialise your hardware
1636  *      and to set up the interrupt handler in the right order.
1637  *
1638  *      If you want to set up a threaded irq handler for your device
1639  *      then you need to supply @handler and @thread_fn. @handler is
1640  *      still called in hard interrupt context and has to check
1641  *      whether the interrupt originates from the device. If yes it
1642  *      needs to disable the interrupt on the device and return
1643  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1644  *      @thread_fn. This split handler design is necessary to support
1645  *      shared interrupts.
1646  *
1647  *      Dev_id must be globally unique. Normally the address of the
1648  *      device data structure is used as the cookie. Since the handler
1649  *      receives this value it makes sense to use it.
1650  *
1651  *      If your interrupt is shared you must pass a non NULL dev_id
1652  *      as this is required when freeing the interrupt.
1653  *
1654  *      Flags:
1655  *
1656  *      IRQF_SHARED             Interrupt is shared
1657  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1658  *
1659  */
1660 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1661                          irq_handler_t thread_fn, unsigned long irqflags,
1662                          const char *devname, void *dev_id)
1663 {
1664         struct irqaction *action;
1665         struct irq_desc *desc;
1666         int retval;
1667
1668         if (irq == IRQ_NOTCONNECTED)
1669                 return -ENOTCONN;
1670
1671         /*
1672          * Sanity-check: shared interrupts must pass in a real dev-ID,
1673          * otherwise we'll have trouble later trying to figure out
1674          * which interrupt is which (messes up the interrupt freeing
1675          * logic etc).
1676          *
1677          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1678          * it cannot be set along with IRQF_NO_SUSPEND.
1679          */
1680         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1681             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1682             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1683                 return -EINVAL;
1684
1685         desc = irq_to_desc(irq);
1686         if (!desc)
1687                 return -EINVAL;
1688
1689         if (!irq_settings_can_request(desc) ||
1690             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1691                 return -EINVAL;
1692
1693         if (!handler) {
1694                 if (!thread_fn)
1695                         return -EINVAL;
1696                 handler = irq_default_primary_handler;
1697         }
1698
1699         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1700         if (!action)
1701                 return -ENOMEM;
1702
1703         action->handler = handler;
1704         action->thread_fn = thread_fn;
1705         action->flags = irqflags;
1706         action->name = devname;
1707         action->dev_id = dev_id;
1708
1709         retval = irq_chip_pm_get(&desc->irq_data);
1710         if (retval < 0) {
1711                 kfree(action);
1712                 return retval;
1713         }
1714
1715         chip_bus_lock(desc);
1716         retval = __setup_irq(irq, desc, action);
1717         chip_bus_sync_unlock(desc);
1718
1719         if (retval) {
1720                 irq_chip_pm_put(&desc->irq_data);
1721                 kfree(action->secondary);
1722                 kfree(action);
1723         }
1724
1725 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1726         if (!retval && (irqflags & IRQF_SHARED)) {
1727                 /*
1728                  * It's a shared IRQ -- the driver ought to be prepared for it
1729                  * to happen immediately, so let's make sure....
1730                  * We disable the irq to make sure that a 'real' IRQ doesn't
1731                  * run in parallel with our fake.
1732                  */
1733                 unsigned long flags;
1734
1735                 disable_irq(irq);
1736                 local_irq_save(flags);
1737
1738                 handler(irq, dev_id);
1739
1740                 local_irq_restore(flags);
1741                 enable_irq(irq);
1742         }
1743 #endif
1744         return retval;
1745 }
1746 EXPORT_SYMBOL(request_threaded_irq);
1747
1748 /**
1749  *      request_any_context_irq - allocate an interrupt line
1750  *      @irq: Interrupt line to allocate
1751  *      @handler: Function to be called when the IRQ occurs.
1752  *                Threaded handler for threaded interrupts.
1753  *      @flags: Interrupt type flags
1754  *      @name: An ascii name for the claiming device
1755  *      @dev_id: A cookie passed back to the handler function
1756  *
1757  *      This call allocates interrupt resources and enables the
1758  *      interrupt line and IRQ handling. It selects either a
1759  *      hardirq or threaded handling method depending on the
1760  *      context.
1761  *
1762  *      On failure, it returns a negative value. On success,
1763  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1764  */
1765 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1766                             unsigned long flags, const char *name, void *dev_id)
1767 {
1768         struct irq_desc *desc;
1769         int ret;
1770
1771         if (irq == IRQ_NOTCONNECTED)
1772                 return -ENOTCONN;
1773
1774         desc = irq_to_desc(irq);
1775         if (!desc)
1776                 return -EINVAL;
1777
1778         if (irq_settings_is_nested_thread(desc)) {
1779                 ret = request_threaded_irq(irq, NULL, handler,
1780                                            flags, name, dev_id);
1781                 return !ret ? IRQC_IS_NESTED : ret;
1782         }
1783
1784         ret = request_irq(irq, handler, flags, name, dev_id);
1785         return !ret ? IRQC_IS_HARDIRQ : ret;
1786 }
1787 EXPORT_SYMBOL_GPL(request_any_context_irq);
1788
1789 void enable_percpu_irq(unsigned int irq, unsigned int type)
1790 {
1791         unsigned int cpu = smp_processor_id();
1792         unsigned long flags;
1793         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1794
1795         if (!desc)
1796                 return;
1797
1798         /*
1799          * If the trigger type is not specified by the caller, then
1800          * use the default for this interrupt.
1801          */
1802         type &= IRQ_TYPE_SENSE_MASK;
1803         if (type == IRQ_TYPE_NONE)
1804                 type = irqd_get_trigger_type(&desc->irq_data);
1805
1806         if (type != IRQ_TYPE_NONE) {
1807                 int ret;
1808
1809                 ret = __irq_set_trigger(desc, type);
1810
1811                 if (ret) {
1812                         WARN(1, "failed to set type for IRQ%d\n", irq);
1813                         goto out;
1814                 }
1815         }
1816
1817         irq_percpu_enable(desc, cpu);
1818 out:
1819         irq_put_desc_unlock(desc, flags);
1820 }
1821 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1822
1823 /**
1824  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1825  * @irq:        Linux irq number to check for
1826  *
1827  * Must be called from a non migratable context. Returns the enable
1828  * state of a per cpu interrupt on the current cpu.
1829  */
1830 bool irq_percpu_is_enabled(unsigned int irq)
1831 {
1832         unsigned int cpu = smp_processor_id();
1833         struct irq_desc *desc;
1834         unsigned long flags;
1835         bool is_enabled;
1836
1837         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1838         if (!desc)
1839                 return false;
1840
1841         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1842         irq_put_desc_unlock(desc, flags);
1843
1844         return is_enabled;
1845 }
1846 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1847
1848 void disable_percpu_irq(unsigned int irq)
1849 {
1850         unsigned int cpu = smp_processor_id();
1851         unsigned long flags;
1852         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1853
1854         if (!desc)
1855                 return;
1856
1857         irq_percpu_disable(desc, cpu);
1858         irq_put_desc_unlock(desc, flags);
1859 }
1860 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1861
1862 /*
1863  * Internal function to unregister a percpu irqaction.
1864  */
1865 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1866 {
1867         struct irq_desc *desc = irq_to_desc(irq);
1868         struct irqaction *action;
1869         unsigned long flags;
1870
1871         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1872
1873         if (!desc)
1874                 return NULL;
1875
1876         raw_spin_lock_irqsave(&desc->lock, flags);
1877
1878         action = desc->action;
1879         if (!action || action->percpu_dev_id != dev_id) {
1880                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1881                 goto bad;
1882         }
1883
1884         if (!cpumask_empty(desc->percpu_enabled)) {
1885                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1886                      irq, cpumask_first(desc->percpu_enabled));
1887                 goto bad;
1888         }
1889
1890         /* Found it - now remove it from the list of entries: */
1891         desc->action = NULL;
1892
1893         raw_spin_unlock_irqrestore(&desc->lock, flags);
1894
1895         unregister_handler_proc(irq, action);
1896
1897         irq_chip_pm_put(&desc->irq_data);
1898         module_put(desc->owner);
1899         return action;
1900
1901 bad:
1902         raw_spin_unlock_irqrestore(&desc->lock, flags);
1903         return NULL;
1904 }
1905
1906 /**
1907  *      remove_percpu_irq - free a per-cpu interrupt
1908  *      @irq: Interrupt line to free
1909  *      @act: irqaction for the interrupt
1910  *
1911  * Used to remove interrupts statically setup by the early boot process.
1912  */
1913 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1914 {
1915         struct irq_desc *desc = irq_to_desc(irq);
1916
1917         if (desc && irq_settings_is_per_cpu_devid(desc))
1918             __free_percpu_irq(irq, act->percpu_dev_id);
1919 }
1920
1921 /**
1922  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
1923  *      @irq: Interrupt line to free
1924  *      @dev_id: Device identity to free
1925  *
1926  *      Remove a percpu interrupt handler. The handler is removed, but
1927  *      the interrupt line is not disabled. This must be done on each
1928  *      CPU before calling this function. The function does not return
1929  *      until any executing interrupts for this IRQ have completed.
1930  *
1931  *      This function must not be called from interrupt context.
1932  */
1933 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1934 {
1935         struct irq_desc *desc = irq_to_desc(irq);
1936
1937         if (!desc || !irq_settings_is_per_cpu_devid(desc))
1938                 return;
1939
1940         chip_bus_lock(desc);
1941         kfree(__free_percpu_irq(irq, dev_id));
1942         chip_bus_sync_unlock(desc);
1943 }
1944 EXPORT_SYMBOL_GPL(free_percpu_irq);
1945
1946 /**
1947  *      setup_percpu_irq - setup a per-cpu interrupt
1948  *      @irq: Interrupt line to setup
1949  *      @act: irqaction for the interrupt
1950  *
1951  * Used to statically setup per-cpu interrupts in the early boot process.
1952  */
1953 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1954 {
1955         struct irq_desc *desc = irq_to_desc(irq);
1956         int retval;
1957
1958         if (!desc || !irq_settings_is_per_cpu_devid(desc))
1959                 return -EINVAL;
1960
1961         retval = irq_chip_pm_get(&desc->irq_data);
1962         if (retval < 0)
1963                 return retval;
1964
1965         chip_bus_lock(desc);
1966         retval = __setup_irq(irq, desc, act);
1967         chip_bus_sync_unlock(desc);
1968
1969         if (retval)
1970                 irq_chip_pm_put(&desc->irq_data);
1971
1972         return retval;
1973 }
1974
1975 /**
1976  *      request_percpu_irq - allocate a percpu interrupt line
1977  *      @irq: Interrupt line to allocate
1978  *      @handler: Function to be called when the IRQ occurs.
1979  *      @devname: An ascii name for the claiming device
1980  *      @dev_id: A percpu cookie passed back to the handler function
1981  *
1982  *      This call allocates interrupt resources and enables the
1983  *      interrupt on the local CPU. If the interrupt is supposed to be
1984  *      enabled on other CPUs, it has to be done on each CPU using
1985  *      enable_percpu_irq().
1986  *
1987  *      Dev_id must be globally unique. It is a per-cpu variable, and
1988  *      the handler gets called with the interrupted CPU's instance of
1989  *      that variable.
1990  */
1991 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1992                        const char *devname, void __percpu *dev_id)
1993 {
1994         struct irqaction *action;
1995         struct irq_desc *desc;
1996         int retval;
1997
1998         if (!dev_id)
1999                 return -EINVAL;
2000
2001         desc = irq_to_desc(irq);
2002         if (!desc || !irq_settings_can_request(desc) ||
2003             !irq_settings_is_per_cpu_devid(desc))
2004                 return -EINVAL;
2005
2006         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2007         if (!action)
2008                 return -ENOMEM;
2009
2010         action->handler = handler;
2011         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
2012         action->name = devname;
2013         action->percpu_dev_id = dev_id;
2014
2015         retval = irq_chip_pm_get(&desc->irq_data);
2016         if (retval < 0) {
2017                 kfree(action);
2018                 return retval;
2019         }
2020
2021         chip_bus_lock(desc);
2022         retval = __setup_irq(irq, desc, action);
2023         chip_bus_sync_unlock(desc);
2024
2025         if (retval) {
2026                 irq_chip_pm_put(&desc->irq_data);
2027                 kfree(action);
2028         }
2029
2030         return retval;
2031 }
2032 EXPORT_SYMBOL_GPL(request_percpu_irq);
2033
2034 /**
2035  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2036  *      @irq: Interrupt line that is forwarded to a VM
2037  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2038  *      @state: a pointer to a boolean where the state is to be storeed
2039  *
2040  *      This call snapshots the internal irqchip state of an
2041  *      interrupt, returning into @state the bit corresponding to
2042  *      stage @which
2043  *
2044  *      This function should be called with preemption disabled if the
2045  *      interrupt controller has per-cpu registers.
2046  */
2047 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2048                           bool *state)
2049 {
2050         struct irq_desc *desc;
2051         struct irq_data *data;
2052         struct irq_chip *chip;
2053         unsigned long flags;
2054         int err = -EINVAL;
2055
2056         desc = irq_get_desc_buslock(irq, &flags, 0);
2057         if (!desc)
2058                 return err;
2059
2060         data = irq_desc_get_irq_data(desc);
2061
2062         do {
2063                 chip = irq_data_get_irq_chip(data);
2064                 if (chip->irq_get_irqchip_state)
2065                         break;
2066 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2067                 data = data->parent_data;
2068 #else
2069                 data = NULL;
2070 #endif
2071         } while (data);
2072
2073         if (data)
2074                 err = chip->irq_get_irqchip_state(data, which, state);
2075
2076         irq_put_desc_busunlock(desc, flags);
2077         return err;
2078 }
2079 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2080
2081 /**
2082  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2083  *      @irq: Interrupt line that is forwarded to a VM
2084  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2085  *      @val: Value corresponding to @which
2086  *
2087  *      This call sets the internal irqchip state of an interrupt,
2088  *      depending on the value of @which.
2089  *
2090  *      This function should be called with preemption disabled if the
2091  *      interrupt controller has per-cpu registers.
2092  */
2093 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2094                           bool val)
2095 {
2096         struct irq_desc *desc;
2097         struct irq_data *data;
2098         struct irq_chip *chip;
2099         unsigned long flags;
2100         int err = -EINVAL;
2101
2102         desc = irq_get_desc_buslock(irq, &flags, 0);
2103         if (!desc)
2104                 return err;
2105
2106         data = irq_desc_get_irq_data(desc);
2107
2108         do {
2109                 chip = irq_data_get_irq_chip(data);
2110                 if (chip->irq_set_irqchip_state)
2111                         break;
2112 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2113                 data = data->parent_data;
2114 #else
2115                 data = NULL;
2116 #endif
2117         } while (data);
2118
2119         if (data)
2120                 err = chip->irq_set_irqchip_state(data, which, val);
2121
2122         irq_put_desc_busunlock(desc, flags);
2123         return err;
2124 }
2125 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);