GNU Linux-libre 5.4.257-gnu1
[releases.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
27 __read_mostly bool force_irqthreads;
28 EXPORT_SYMBOL_GPL(force_irqthreads);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         force_irqthreads = true;
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113  *      @irq: interrupt number to wait for
114  *
115  *      This function waits for any pending IRQ handlers for this interrupt
116  *      to complete before returning. If you use this function while
117  *      holding a resource the IRQ handler may need you will deadlock.
118  *
119  *      Can only be called from preemptible code as it might sleep when
120  *      an interrupt thread is associated to @irq.
121  *
122  *      It optionally makes sure (when the irq chip supports that method)
123  *      that the interrupt is not pending in any CPU and waiting for
124  *      service.
125  */
126 void synchronize_irq(unsigned int irq)
127 {
128         struct irq_desc *desc = irq_to_desc(irq);
129
130         if (desc) {
131                 __synchronize_hardirq(desc, true);
132                 /*
133                  * We made sure that no hardirq handler is
134                  * running. Now verify that no threaded handlers are
135                  * active.
136                  */
137                 wait_event(desc->wait_for_threads,
138                            !atomic_read(&desc->threads_active));
139         }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148         if (!desc || !irqd_can_balance(&desc->irq_data) ||
149             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150                 return false;
151         return true;
152 }
153
154 /**
155  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
156  *      @irq:           Interrupt to check
157  *
158  */
159 int irq_can_set_affinity(unsigned int irq)
160 {
161         return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166  * @irq:        Interrupt to check
167  *
168  * Like irq_can_set_affinity() above, but additionally checks for the
169  * AFFINITY_MANAGED flag.
170  */
171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173         struct irq_desc *desc = irq_to_desc(irq);
174
175         return __irq_can_set_affinity(desc) &&
176                 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
181  *      @desc:          irq descriptor which has affitnity changed
182  *
183  *      We just set IRQTF_AFFINITY and delegate the affinity setting
184  *      to the interrupt thread itself. We can not call
185  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
186  *      code can be called from hard interrupt context.
187  */
188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190         struct irqaction *action;
191
192         for_each_action_of_desc(desc, action)
193                 if (action->thread)
194                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201         struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203         if (!cpumask_empty(m))
204                 return;
205         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206                      chip->name, data->irq);
207 }
208
209 static inline void irq_init_effective_affinity(struct irq_data *data,
210                                                const struct cpumask *mask)
211 {
212         cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
216 static inline void irq_init_effective_affinity(struct irq_data *data,
217                                                const struct cpumask *mask) { }
218 #endif
219
220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221                         bool force)
222 {
223         struct irq_desc *desc = irq_data_to_desc(data);
224         struct irq_chip *chip = irq_data_get_irq_chip(data);
225         int ret;
226
227         if (!chip || !chip->irq_set_affinity)
228                 return -EINVAL;
229
230         ret = chip->irq_set_affinity(data, mask, force);
231         switch (ret) {
232         case IRQ_SET_MASK_OK:
233         case IRQ_SET_MASK_OK_DONE:
234                 cpumask_copy(desc->irq_common_data.affinity, mask);
235                 /* fall through */
236         case IRQ_SET_MASK_OK_NOCOPY:
237                 irq_validate_effective_affinity(data);
238                 irq_set_thread_affinity(desc);
239                 ret = 0;
240         }
241
242         return ret;
243 }
244
245 #ifdef CONFIG_GENERIC_PENDING_IRQ
246 static inline int irq_set_affinity_pending(struct irq_data *data,
247                                            const struct cpumask *dest)
248 {
249         struct irq_desc *desc = irq_data_to_desc(data);
250
251         irqd_set_move_pending(data);
252         irq_copy_pending(desc, dest);
253         return 0;
254 }
255 #else
256 static inline int irq_set_affinity_pending(struct irq_data *data,
257                                            const struct cpumask *dest)
258 {
259         return -EBUSY;
260 }
261 #endif
262
263 static int irq_try_set_affinity(struct irq_data *data,
264                                 const struct cpumask *dest, bool force)
265 {
266         int ret = irq_do_set_affinity(data, dest, force);
267
268         /*
269          * In case that the underlying vector management is busy and the
270          * architecture supports the generic pending mechanism then utilize
271          * this to avoid returning an error to user space.
272          */
273         if (ret == -EBUSY && !force)
274                 ret = irq_set_affinity_pending(data, dest);
275         return ret;
276 }
277
278 static bool irq_set_affinity_deactivated(struct irq_data *data,
279                                          const struct cpumask *mask, bool force)
280 {
281         struct irq_desc *desc = irq_data_to_desc(data);
282
283         /*
284          * Handle irq chips which can handle affinity only in activated
285          * state correctly
286          *
287          * If the interrupt is not yet activated, just store the affinity
288          * mask and do not call the chip driver at all. On activation the
289          * driver has to make sure anyway that the interrupt is in a
290          * useable state so startup works.
291          */
292         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
293             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
294                 return false;
295
296         cpumask_copy(desc->irq_common_data.affinity, mask);
297         irq_init_effective_affinity(data, mask);
298         irqd_set(data, IRQD_AFFINITY_SET);
299         return true;
300 }
301
302 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
303                             bool force)
304 {
305         struct irq_chip *chip = irq_data_get_irq_chip(data);
306         struct irq_desc *desc = irq_data_to_desc(data);
307         int ret = 0;
308
309         if (!chip || !chip->irq_set_affinity)
310                 return -EINVAL;
311
312         if (irq_set_affinity_deactivated(data, mask, force))
313                 return 0;
314
315         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
316                 ret = irq_try_set_affinity(data, mask, force);
317         } else {
318                 irqd_set_move_pending(data);
319                 irq_copy_pending(desc, mask);
320         }
321
322         if (desc->affinity_notify) {
323                 kref_get(&desc->affinity_notify->kref);
324                 if (!schedule_work(&desc->affinity_notify->work)) {
325                         /* Work was already scheduled, drop our extra ref */
326                         kref_put(&desc->affinity_notify->kref,
327                                  desc->affinity_notify->release);
328                 }
329         }
330         irqd_set(data, IRQD_AFFINITY_SET);
331
332         return ret;
333 }
334
335 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
336 {
337         struct irq_desc *desc = irq_to_desc(irq);
338         unsigned long flags;
339         int ret;
340
341         if (!desc)
342                 return -EINVAL;
343
344         raw_spin_lock_irqsave(&desc->lock, flags);
345         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
346         raw_spin_unlock_irqrestore(&desc->lock, flags);
347         return ret;
348 }
349
350 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
351 {
352         unsigned long flags;
353         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
354
355         if (!desc)
356                 return -EINVAL;
357         desc->affinity_hint = m;
358         irq_put_desc_unlock(desc, flags);
359         /* set the initial affinity to prevent every interrupt being on CPU0 */
360         if (m)
361                 __irq_set_affinity(irq, m, false);
362         return 0;
363 }
364 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
365
366 static void irq_affinity_notify(struct work_struct *work)
367 {
368         struct irq_affinity_notify *notify =
369                 container_of(work, struct irq_affinity_notify, work);
370         struct irq_desc *desc = irq_to_desc(notify->irq);
371         cpumask_var_t cpumask;
372         unsigned long flags;
373
374         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
375                 goto out;
376
377         raw_spin_lock_irqsave(&desc->lock, flags);
378         if (irq_move_pending(&desc->irq_data))
379                 irq_get_pending(cpumask, desc);
380         else
381                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
382         raw_spin_unlock_irqrestore(&desc->lock, flags);
383
384         notify->notify(notify, cpumask);
385
386         free_cpumask_var(cpumask);
387 out:
388         kref_put(&notify->kref, notify->release);
389 }
390
391 /**
392  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
393  *      @irq:           Interrupt for which to enable/disable notification
394  *      @notify:        Context for notification, or %NULL to disable
395  *                      notification.  Function pointers must be initialised;
396  *                      the other fields will be initialised by this function.
397  *
398  *      Must be called in process context.  Notification may only be enabled
399  *      after the IRQ is allocated and must be disabled before the IRQ is
400  *      freed using free_irq().
401  */
402 int
403 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
404 {
405         struct irq_desc *desc = irq_to_desc(irq);
406         struct irq_affinity_notify *old_notify;
407         unsigned long flags;
408
409         /* The release function is promised process context */
410         might_sleep();
411
412         if (!desc || desc->istate & IRQS_NMI)
413                 return -EINVAL;
414
415         /* Complete initialisation of *notify */
416         if (notify) {
417                 notify->irq = irq;
418                 kref_init(&notify->kref);
419                 INIT_WORK(&notify->work, irq_affinity_notify);
420         }
421
422         raw_spin_lock_irqsave(&desc->lock, flags);
423         old_notify = desc->affinity_notify;
424         desc->affinity_notify = notify;
425         raw_spin_unlock_irqrestore(&desc->lock, flags);
426
427         if (old_notify) {
428                 if (cancel_work_sync(&old_notify->work)) {
429                         /* Pending work had a ref, put that one too */
430                         kref_put(&old_notify->kref, old_notify->release);
431                 }
432                 kref_put(&old_notify->kref, old_notify->release);
433         }
434
435         return 0;
436 }
437 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
438
439 #ifndef CONFIG_AUTO_IRQ_AFFINITY
440 /*
441  * Generic version of the affinity autoselector.
442  */
443 int irq_setup_affinity(struct irq_desc *desc)
444 {
445         struct cpumask *set = irq_default_affinity;
446         int ret, node = irq_desc_get_node(desc);
447         static DEFINE_RAW_SPINLOCK(mask_lock);
448         static struct cpumask mask;
449
450         /* Excludes PER_CPU and NO_BALANCE interrupts */
451         if (!__irq_can_set_affinity(desc))
452                 return 0;
453
454         raw_spin_lock(&mask_lock);
455         /*
456          * Preserve the managed affinity setting and a userspace affinity
457          * setup, but make sure that one of the targets is online.
458          */
459         if (irqd_affinity_is_managed(&desc->irq_data) ||
460             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
461                 if (cpumask_intersects(desc->irq_common_data.affinity,
462                                        cpu_online_mask))
463                         set = desc->irq_common_data.affinity;
464                 else
465                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
466         }
467
468         cpumask_and(&mask, cpu_online_mask, set);
469         if (cpumask_empty(&mask))
470                 cpumask_copy(&mask, cpu_online_mask);
471
472         if (node != NUMA_NO_NODE) {
473                 const struct cpumask *nodemask = cpumask_of_node(node);
474
475                 /* make sure at least one of the cpus in nodemask is online */
476                 if (cpumask_intersects(&mask, nodemask))
477                         cpumask_and(&mask, &mask, nodemask);
478         }
479         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
480         raw_spin_unlock(&mask_lock);
481         return ret;
482 }
483 #else
484 /* Wrapper for ALPHA specific affinity selector magic */
485 int irq_setup_affinity(struct irq_desc *desc)
486 {
487         return irq_select_affinity(irq_desc_get_irq(desc));
488 }
489 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
490 #endif /* CONFIG_SMP */
491
492
493 /**
494  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
495  *      @irq: interrupt number to set affinity
496  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
497  *                  specific data for percpu_devid interrupts
498  *
499  *      This function uses the vCPU specific data to set the vCPU
500  *      affinity for an irq. The vCPU specific data is passed from
501  *      outside, such as KVM. One example code path is as below:
502  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
503  */
504 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
505 {
506         unsigned long flags;
507         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
508         struct irq_data *data;
509         struct irq_chip *chip;
510         int ret = -ENOSYS;
511
512         if (!desc)
513                 return -EINVAL;
514
515         data = irq_desc_get_irq_data(desc);
516         do {
517                 chip = irq_data_get_irq_chip(data);
518                 if (chip && chip->irq_set_vcpu_affinity)
519                         break;
520 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
521                 data = data->parent_data;
522 #else
523                 data = NULL;
524 #endif
525         } while (data);
526
527         if (data)
528                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
529         irq_put_desc_unlock(desc, flags);
530
531         return ret;
532 }
533 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
534
535 void __disable_irq(struct irq_desc *desc)
536 {
537         if (!desc->depth++)
538                 irq_disable(desc);
539 }
540
541 static int __disable_irq_nosync(unsigned int irq)
542 {
543         unsigned long flags;
544         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
545
546         if (!desc)
547                 return -EINVAL;
548         __disable_irq(desc);
549         irq_put_desc_busunlock(desc, flags);
550         return 0;
551 }
552
553 /**
554  *      disable_irq_nosync - disable an irq without waiting
555  *      @irq: Interrupt to disable
556  *
557  *      Disable the selected interrupt line.  Disables and Enables are
558  *      nested.
559  *      Unlike disable_irq(), this function does not ensure existing
560  *      instances of the IRQ handler have completed before returning.
561  *
562  *      This function may be called from IRQ context.
563  */
564 void disable_irq_nosync(unsigned int irq)
565 {
566         __disable_irq_nosync(irq);
567 }
568 EXPORT_SYMBOL(disable_irq_nosync);
569
570 /**
571  *      disable_irq - disable an irq and wait for completion
572  *      @irq: Interrupt to disable
573  *
574  *      Disable the selected interrupt line.  Enables and Disables are
575  *      nested.
576  *      This function waits for any pending IRQ handlers for this interrupt
577  *      to complete before returning. If you use this function while
578  *      holding a resource the IRQ handler may need you will deadlock.
579  *
580  *      This function may be called - with care - from IRQ context.
581  */
582 void disable_irq(unsigned int irq)
583 {
584         if (!__disable_irq_nosync(irq))
585                 synchronize_irq(irq);
586 }
587 EXPORT_SYMBOL(disable_irq);
588
589 /**
590  *      disable_hardirq - disables an irq and waits for hardirq completion
591  *      @irq: Interrupt to disable
592  *
593  *      Disable the selected interrupt line.  Enables and Disables are
594  *      nested.
595  *      This function waits for any pending hard IRQ handlers for this
596  *      interrupt to complete before returning. If you use this function while
597  *      holding a resource the hard IRQ handler may need you will deadlock.
598  *
599  *      When used to optimistically disable an interrupt from atomic context
600  *      the return value must be checked.
601  *
602  *      Returns: false if a threaded handler is active.
603  *
604  *      This function may be called - with care - from IRQ context.
605  */
606 bool disable_hardirq(unsigned int irq)
607 {
608         if (!__disable_irq_nosync(irq))
609                 return synchronize_hardirq(irq);
610
611         return false;
612 }
613 EXPORT_SYMBOL_GPL(disable_hardirq);
614
615 /**
616  *      disable_nmi_nosync - disable an nmi without waiting
617  *      @irq: Interrupt to disable
618  *
619  *      Disable the selected interrupt line. Disables and enables are
620  *      nested.
621  *      The interrupt to disable must have been requested through request_nmi.
622  *      Unlike disable_nmi(), this function does not ensure existing
623  *      instances of the IRQ handler have completed before returning.
624  */
625 void disable_nmi_nosync(unsigned int irq)
626 {
627         disable_irq_nosync(irq);
628 }
629
630 void __enable_irq(struct irq_desc *desc)
631 {
632         switch (desc->depth) {
633         case 0:
634  err_out:
635                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
636                      irq_desc_get_irq(desc));
637                 break;
638         case 1: {
639                 if (desc->istate & IRQS_SUSPENDED)
640                         goto err_out;
641                 /* Prevent probing on this irq: */
642                 irq_settings_set_noprobe(desc);
643                 /*
644                  * Call irq_startup() not irq_enable() here because the
645                  * interrupt might be marked NOAUTOEN. So irq_startup()
646                  * needs to be invoked when it gets enabled the first
647                  * time. If it was already started up, then irq_startup()
648                  * will invoke irq_enable() under the hood.
649                  */
650                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
651                 break;
652         }
653         default:
654                 desc->depth--;
655         }
656 }
657
658 /**
659  *      enable_irq - enable handling of an irq
660  *      @irq: Interrupt to enable
661  *
662  *      Undoes the effect of one call to disable_irq().  If this
663  *      matches the last disable, processing of interrupts on this
664  *      IRQ line is re-enabled.
665  *
666  *      This function may be called from IRQ context only when
667  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
668  */
669 void enable_irq(unsigned int irq)
670 {
671         unsigned long flags;
672         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
673
674         if (!desc)
675                 return;
676         if (WARN(!desc->irq_data.chip,
677                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
678                 goto out;
679
680         __enable_irq(desc);
681 out:
682         irq_put_desc_busunlock(desc, flags);
683 }
684 EXPORT_SYMBOL(enable_irq);
685
686 /**
687  *      enable_nmi - enable handling of an nmi
688  *      @irq: Interrupt to enable
689  *
690  *      The interrupt to enable must have been requested through request_nmi.
691  *      Undoes the effect of one call to disable_nmi(). If this
692  *      matches the last disable, processing of interrupts on this
693  *      IRQ line is re-enabled.
694  */
695 void enable_nmi(unsigned int irq)
696 {
697         enable_irq(irq);
698 }
699
700 static int set_irq_wake_real(unsigned int irq, unsigned int on)
701 {
702         struct irq_desc *desc = irq_to_desc(irq);
703         int ret = -ENXIO;
704
705         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
706                 return 0;
707
708         if (desc->irq_data.chip->irq_set_wake)
709                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
710
711         return ret;
712 }
713
714 /**
715  *      irq_set_irq_wake - control irq power management wakeup
716  *      @irq:   interrupt to control
717  *      @on:    enable/disable power management wakeup
718  *
719  *      Enable/disable power management wakeup mode, which is
720  *      disabled by default.  Enables and disables must match,
721  *      just as they match for non-wakeup mode support.
722  *
723  *      Wakeup mode lets this IRQ wake the system from sleep
724  *      states like "suspend to RAM".
725  */
726 int irq_set_irq_wake(unsigned int irq, unsigned int on)
727 {
728         unsigned long flags;
729         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
730         int ret = 0;
731
732         if (!desc)
733                 return -EINVAL;
734
735         /* Don't use NMIs as wake up interrupts please */
736         if (desc->istate & IRQS_NMI) {
737                 ret = -EINVAL;
738                 goto out_unlock;
739         }
740
741         /* wakeup-capable irqs can be shared between drivers that
742          * don't need to have the same sleep mode behaviors.
743          */
744         if (on) {
745                 if (desc->wake_depth++ == 0) {
746                         ret = set_irq_wake_real(irq, on);
747                         if (ret)
748                                 desc->wake_depth = 0;
749                         else
750                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
751                 }
752         } else {
753                 if (desc->wake_depth == 0) {
754                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
755                 } else if (--desc->wake_depth == 0) {
756                         ret = set_irq_wake_real(irq, on);
757                         if (ret)
758                                 desc->wake_depth = 1;
759                         else
760                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
761                 }
762         }
763
764 out_unlock:
765         irq_put_desc_busunlock(desc, flags);
766         return ret;
767 }
768 EXPORT_SYMBOL(irq_set_irq_wake);
769
770 /*
771  * Internal function that tells the architecture code whether a
772  * particular irq has been exclusively allocated or is available
773  * for driver use.
774  */
775 int can_request_irq(unsigned int irq, unsigned long irqflags)
776 {
777         unsigned long flags;
778         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
779         int canrequest = 0;
780
781         if (!desc)
782                 return 0;
783
784         if (irq_settings_can_request(desc)) {
785                 if (!desc->action ||
786                     irqflags & desc->action->flags & IRQF_SHARED)
787                         canrequest = 1;
788         }
789         irq_put_desc_unlock(desc, flags);
790         return canrequest;
791 }
792
793 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
794 {
795         struct irq_chip *chip = desc->irq_data.chip;
796         int ret, unmask = 0;
797
798         if (!chip || !chip->irq_set_type) {
799                 /*
800                  * IRQF_TRIGGER_* but the PIC does not support multiple
801                  * flow-types?
802                  */
803                 pr_debug("No set_type function for IRQ %d (%s)\n",
804                          irq_desc_get_irq(desc),
805                          chip ? (chip->name ? : "unknown") : "unknown");
806                 return 0;
807         }
808
809         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
810                 if (!irqd_irq_masked(&desc->irq_data))
811                         mask_irq(desc);
812                 if (!irqd_irq_disabled(&desc->irq_data))
813                         unmask = 1;
814         }
815
816         /* Mask all flags except trigger mode */
817         flags &= IRQ_TYPE_SENSE_MASK;
818         ret = chip->irq_set_type(&desc->irq_data, flags);
819
820         switch (ret) {
821         case IRQ_SET_MASK_OK:
822         case IRQ_SET_MASK_OK_DONE:
823                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
824                 irqd_set(&desc->irq_data, flags);
825                 /* fall through */
826
827         case IRQ_SET_MASK_OK_NOCOPY:
828                 flags = irqd_get_trigger_type(&desc->irq_data);
829                 irq_settings_set_trigger_mask(desc, flags);
830                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
831                 irq_settings_clr_level(desc);
832                 if (flags & IRQ_TYPE_LEVEL_MASK) {
833                         irq_settings_set_level(desc);
834                         irqd_set(&desc->irq_data, IRQD_LEVEL);
835                 }
836
837                 ret = 0;
838                 break;
839         default:
840                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
841                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
842         }
843         if (unmask)
844                 unmask_irq(desc);
845         return ret;
846 }
847
848 #ifdef CONFIG_HARDIRQS_SW_RESEND
849 int irq_set_parent(int irq, int parent_irq)
850 {
851         unsigned long flags;
852         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
853
854         if (!desc)
855                 return -EINVAL;
856
857         desc->parent_irq = parent_irq;
858
859         irq_put_desc_unlock(desc, flags);
860         return 0;
861 }
862 EXPORT_SYMBOL_GPL(irq_set_parent);
863 #endif
864
865 /*
866  * Default primary interrupt handler for threaded interrupts. Is
867  * assigned as primary handler when request_threaded_irq is called
868  * with handler == NULL. Useful for oneshot interrupts.
869  */
870 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
871 {
872         return IRQ_WAKE_THREAD;
873 }
874
875 /*
876  * Primary handler for nested threaded interrupts. Should never be
877  * called.
878  */
879 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
880 {
881         WARN(1, "Primary handler called for nested irq %d\n", irq);
882         return IRQ_NONE;
883 }
884
885 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
886 {
887         WARN(1, "Secondary action handler called for irq %d\n", irq);
888         return IRQ_NONE;
889 }
890
891 static int irq_wait_for_interrupt(struct irqaction *action)
892 {
893         for (;;) {
894                 set_current_state(TASK_INTERRUPTIBLE);
895
896                 if (kthread_should_stop()) {
897                         /* may need to run one last time */
898                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
899                                                &action->thread_flags)) {
900                                 __set_current_state(TASK_RUNNING);
901                                 return 0;
902                         }
903                         __set_current_state(TASK_RUNNING);
904                         return -1;
905                 }
906
907                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
908                                        &action->thread_flags)) {
909                         __set_current_state(TASK_RUNNING);
910                         return 0;
911                 }
912                 schedule();
913         }
914 }
915
916 /*
917  * Oneshot interrupts keep the irq line masked until the threaded
918  * handler finished. unmask if the interrupt has not been disabled and
919  * is marked MASKED.
920  */
921 static void irq_finalize_oneshot(struct irq_desc *desc,
922                                  struct irqaction *action)
923 {
924         if (!(desc->istate & IRQS_ONESHOT) ||
925             action->handler == irq_forced_secondary_handler)
926                 return;
927 again:
928         chip_bus_lock(desc);
929         raw_spin_lock_irq(&desc->lock);
930
931         /*
932          * Implausible though it may be we need to protect us against
933          * the following scenario:
934          *
935          * The thread is faster done than the hard interrupt handler
936          * on the other CPU. If we unmask the irq line then the
937          * interrupt can come in again and masks the line, leaves due
938          * to IRQS_INPROGRESS and the irq line is masked forever.
939          *
940          * This also serializes the state of shared oneshot handlers
941          * versus "desc->threads_onehsot |= action->thread_mask;" in
942          * irq_wake_thread(). See the comment there which explains the
943          * serialization.
944          */
945         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
946                 raw_spin_unlock_irq(&desc->lock);
947                 chip_bus_sync_unlock(desc);
948                 cpu_relax();
949                 goto again;
950         }
951
952         /*
953          * Now check again, whether the thread should run. Otherwise
954          * we would clear the threads_oneshot bit of this thread which
955          * was just set.
956          */
957         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
958                 goto out_unlock;
959
960         desc->threads_oneshot &= ~action->thread_mask;
961
962         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
963             irqd_irq_masked(&desc->irq_data))
964                 unmask_threaded_irq(desc);
965
966 out_unlock:
967         raw_spin_unlock_irq(&desc->lock);
968         chip_bus_sync_unlock(desc);
969 }
970
971 #ifdef CONFIG_SMP
972 /*
973  * Check whether we need to change the affinity of the interrupt thread.
974  */
975 static void
976 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
977 {
978         cpumask_var_t mask;
979         bool valid = true;
980
981         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
982                 return;
983
984         /*
985          * In case we are out of memory we set IRQTF_AFFINITY again and
986          * try again next time
987          */
988         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
989                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
990                 return;
991         }
992
993         raw_spin_lock_irq(&desc->lock);
994         /*
995          * This code is triggered unconditionally. Check the affinity
996          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
997          */
998         if (cpumask_available(desc->irq_common_data.affinity)) {
999                 const struct cpumask *m;
1000
1001                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1002                 cpumask_copy(mask, m);
1003         } else {
1004                 valid = false;
1005         }
1006         raw_spin_unlock_irq(&desc->lock);
1007
1008         if (valid)
1009                 set_cpus_allowed_ptr(current, mask);
1010         free_cpumask_var(mask);
1011 }
1012 #else
1013 static inline void
1014 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1015 #endif
1016
1017 /*
1018  * Interrupts which are not explicitly requested as threaded
1019  * interrupts rely on the implicit bh/preempt disable of the hard irq
1020  * context. So we need to disable bh here to avoid deadlocks and other
1021  * side effects.
1022  */
1023 static irqreturn_t
1024 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1025 {
1026         irqreturn_t ret;
1027
1028         local_bh_disable();
1029         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1030                 local_irq_disable();
1031         ret = action->thread_fn(action->irq, action->dev_id);
1032         if (ret == IRQ_HANDLED)
1033                 atomic_inc(&desc->threads_handled);
1034
1035         irq_finalize_oneshot(desc, action);
1036         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1037                 local_irq_enable();
1038         local_bh_enable();
1039         return ret;
1040 }
1041
1042 /*
1043  * Interrupts explicitly requested as threaded interrupts want to be
1044  * preemtible - many of them need to sleep and wait for slow busses to
1045  * complete.
1046  */
1047 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1048                 struct irqaction *action)
1049 {
1050         irqreturn_t ret;
1051
1052         ret = action->thread_fn(action->irq, action->dev_id);
1053         if (ret == IRQ_HANDLED)
1054                 atomic_inc(&desc->threads_handled);
1055
1056         irq_finalize_oneshot(desc, action);
1057         return ret;
1058 }
1059
1060 static void wake_threads_waitq(struct irq_desc *desc)
1061 {
1062         if (atomic_dec_and_test(&desc->threads_active))
1063                 wake_up(&desc->wait_for_threads);
1064 }
1065
1066 static void irq_thread_dtor(struct callback_head *unused)
1067 {
1068         struct task_struct *tsk = current;
1069         struct irq_desc *desc;
1070         struct irqaction *action;
1071
1072         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1073                 return;
1074
1075         action = kthread_data(tsk);
1076
1077         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1078                tsk->comm, tsk->pid, action->irq);
1079
1080
1081         desc = irq_to_desc(action->irq);
1082         /*
1083          * If IRQTF_RUNTHREAD is set, we need to decrement
1084          * desc->threads_active and wake possible waiters.
1085          */
1086         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1087                 wake_threads_waitq(desc);
1088
1089         /* Prevent a stale desc->threads_oneshot */
1090         irq_finalize_oneshot(desc, action);
1091 }
1092
1093 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1094 {
1095         struct irqaction *secondary = action->secondary;
1096
1097         if (WARN_ON_ONCE(!secondary))
1098                 return;
1099
1100         raw_spin_lock_irq(&desc->lock);
1101         __irq_wake_thread(desc, secondary);
1102         raw_spin_unlock_irq(&desc->lock);
1103 }
1104
1105 /*
1106  * Internal function to notify that a interrupt thread is ready.
1107  */
1108 static void irq_thread_set_ready(struct irq_desc *desc,
1109                                  struct irqaction *action)
1110 {
1111         set_bit(IRQTF_READY, &action->thread_flags);
1112         wake_up(&desc->wait_for_threads);
1113 }
1114
1115 /*
1116  * Internal function to wake up a interrupt thread and wait until it is
1117  * ready.
1118  */
1119 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1120                                                   struct irqaction *action)
1121 {
1122         if (!action || !action->thread)
1123                 return;
1124
1125         wake_up_process(action->thread);
1126         wait_event(desc->wait_for_threads,
1127                    test_bit(IRQTF_READY, &action->thread_flags));
1128 }
1129
1130 /*
1131  * Interrupt handler thread
1132  */
1133 static int irq_thread(void *data)
1134 {
1135         struct callback_head on_exit_work;
1136         struct irqaction *action = data;
1137         struct irq_desc *desc = irq_to_desc(action->irq);
1138         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1139                         struct irqaction *action);
1140
1141         irq_thread_set_ready(desc, action);
1142
1143         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1144                                         &action->thread_flags))
1145                 handler_fn = irq_forced_thread_fn;
1146         else
1147                 handler_fn = irq_thread_fn;
1148
1149         init_task_work(&on_exit_work, irq_thread_dtor);
1150         task_work_add(current, &on_exit_work, false);
1151
1152         irq_thread_check_affinity(desc, action);
1153
1154         while (!irq_wait_for_interrupt(action)) {
1155                 irqreturn_t action_ret;
1156
1157                 irq_thread_check_affinity(desc, action);
1158
1159                 action_ret = handler_fn(desc, action);
1160                 if (action_ret == IRQ_WAKE_THREAD)
1161                         irq_wake_secondary(desc, action);
1162
1163                 wake_threads_waitq(desc);
1164         }
1165
1166         /*
1167          * This is the regular exit path. __free_irq() is stopping the
1168          * thread via kthread_stop() after calling
1169          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1170          * oneshot mask bit can be set.
1171          */
1172         task_work_cancel(current, irq_thread_dtor);
1173         return 0;
1174 }
1175
1176 /**
1177  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1178  *      @irq:           Interrupt line
1179  *      @dev_id:        Device identity for which the thread should be woken
1180  *
1181  */
1182 void irq_wake_thread(unsigned int irq, void *dev_id)
1183 {
1184         struct irq_desc *desc = irq_to_desc(irq);
1185         struct irqaction *action;
1186         unsigned long flags;
1187
1188         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1189                 return;
1190
1191         raw_spin_lock_irqsave(&desc->lock, flags);
1192         for_each_action_of_desc(desc, action) {
1193                 if (action->dev_id == dev_id) {
1194                         if (action->thread)
1195                                 __irq_wake_thread(desc, action);
1196                         break;
1197                 }
1198         }
1199         raw_spin_unlock_irqrestore(&desc->lock, flags);
1200 }
1201 EXPORT_SYMBOL_GPL(irq_wake_thread);
1202
1203 static int irq_setup_forced_threading(struct irqaction *new)
1204 {
1205         if (!force_irqthreads)
1206                 return 0;
1207         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1208                 return 0;
1209
1210         /*
1211          * No further action required for interrupts which are requested as
1212          * threaded interrupts already
1213          */
1214         if (new->handler == irq_default_primary_handler)
1215                 return 0;
1216
1217         new->flags |= IRQF_ONESHOT;
1218
1219         /*
1220          * Handle the case where we have a real primary handler and a
1221          * thread handler. We force thread them as well by creating a
1222          * secondary action.
1223          */
1224         if (new->handler && new->thread_fn) {
1225                 /* Allocate the secondary action */
1226                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1227                 if (!new->secondary)
1228                         return -ENOMEM;
1229                 new->secondary->handler = irq_forced_secondary_handler;
1230                 new->secondary->thread_fn = new->thread_fn;
1231                 new->secondary->dev_id = new->dev_id;
1232                 new->secondary->irq = new->irq;
1233                 new->secondary->name = new->name;
1234         }
1235         /* Deal with the primary handler */
1236         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1237         new->thread_fn = new->handler;
1238         new->handler = irq_default_primary_handler;
1239         return 0;
1240 }
1241
1242 static int irq_request_resources(struct irq_desc *desc)
1243 {
1244         struct irq_data *d = &desc->irq_data;
1245         struct irq_chip *c = d->chip;
1246
1247         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1248 }
1249
1250 static void irq_release_resources(struct irq_desc *desc)
1251 {
1252         struct irq_data *d = &desc->irq_data;
1253         struct irq_chip *c = d->chip;
1254
1255         if (c->irq_release_resources)
1256                 c->irq_release_resources(d);
1257 }
1258
1259 static bool irq_supports_nmi(struct irq_desc *desc)
1260 {
1261         struct irq_data *d = irq_desc_get_irq_data(desc);
1262
1263 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1264         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1265         if (d->parent_data)
1266                 return false;
1267 #endif
1268         /* Don't support NMIs for chips behind a slow bus */
1269         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1270                 return false;
1271
1272         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1273 }
1274
1275 static int irq_nmi_setup(struct irq_desc *desc)
1276 {
1277         struct irq_data *d = irq_desc_get_irq_data(desc);
1278         struct irq_chip *c = d->chip;
1279
1280         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1281 }
1282
1283 static void irq_nmi_teardown(struct irq_desc *desc)
1284 {
1285         struct irq_data *d = irq_desc_get_irq_data(desc);
1286         struct irq_chip *c = d->chip;
1287
1288         if (c->irq_nmi_teardown)
1289                 c->irq_nmi_teardown(d);
1290 }
1291
1292 static int
1293 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1294 {
1295         struct task_struct *t;
1296         struct sched_param param = {
1297                 .sched_priority = MAX_USER_RT_PRIO/2,
1298         };
1299
1300         if (!secondary) {
1301                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1302                                    new->name);
1303         } else {
1304                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1305                                    new->name);
1306                 param.sched_priority -= 1;
1307         }
1308
1309         if (IS_ERR(t))
1310                 return PTR_ERR(t);
1311
1312         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1313
1314         /*
1315          * We keep the reference to the task struct even if
1316          * the thread dies to avoid that the interrupt code
1317          * references an already freed task_struct.
1318          */
1319         new->thread = get_task_struct(t);
1320         /*
1321          * Tell the thread to set its affinity. This is
1322          * important for shared interrupt handlers as we do
1323          * not invoke setup_affinity() for the secondary
1324          * handlers as everything is already set up. Even for
1325          * interrupts marked with IRQF_NO_BALANCE this is
1326          * correct as we want the thread to move to the cpu(s)
1327          * on which the requesting code placed the interrupt.
1328          */
1329         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1330         return 0;
1331 }
1332
1333 /*
1334  * Internal function to register an irqaction - typically used to
1335  * allocate special interrupts that are part of the architecture.
1336  *
1337  * Locking rules:
1338  *
1339  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1340  *   chip_bus_lock      Provides serialization for slow bus operations
1341  *     desc->lock       Provides serialization against hard interrupts
1342  *
1343  * chip_bus_lock and desc->lock are sufficient for all other management and
1344  * interrupt related functions. desc->request_mutex solely serializes
1345  * request/free_irq().
1346  */
1347 static int
1348 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1349 {
1350         struct irqaction *old, **old_ptr;
1351         unsigned long flags, thread_mask = 0;
1352         int ret, nested, shared = 0;
1353
1354         if (!desc)
1355                 return -EINVAL;
1356
1357         if (desc->irq_data.chip == &no_irq_chip)
1358                 return -ENOSYS;
1359         if (!try_module_get(desc->owner))
1360                 return -ENODEV;
1361
1362         new->irq = irq;
1363
1364         /*
1365          * If the trigger type is not specified by the caller,
1366          * then use the default for this interrupt.
1367          */
1368         if (!(new->flags & IRQF_TRIGGER_MASK))
1369                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1370
1371         /*
1372          * Check whether the interrupt nests into another interrupt
1373          * thread.
1374          */
1375         nested = irq_settings_is_nested_thread(desc);
1376         if (nested) {
1377                 if (!new->thread_fn) {
1378                         ret = -EINVAL;
1379                         goto out_mput;
1380                 }
1381                 /*
1382                  * Replace the primary handler which was provided from
1383                  * the driver for non nested interrupt handling by the
1384                  * dummy function which warns when called.
1385                  */
1386                 new->handler = irq_nested_primary_handler;
1387         } else {
1388                 if (irq_settings_can_thread(desc)) {
1389                         ret = irq_setup_forced_threading(new);
1390                         if (ret)
1391                                 goto out_mput;
1392                 }
1393         }
1394
1395         /*
1396          * Create a handler thread when a thread function is supplied
1397          * and the interrupt does not nest into another interrupt
1398          * thread.
1399          */
1400         if (new->thread_fn && !nested) {
1401                 ret = setup_irq_thread(new, irq, false);
1402                 if (ret)
1403                         goto out_mput;
1404                 if (new->secondary) {
1405                         ret = setup_irq_thread(new->secondary, irq, true);
1406                         if (ret)
1407                                 goto out_thread;
1408                 }
1409         }
1410
1411         /*
1412          * Drivers are often written to work w/o knowledge about the
1413          * underlying irq chip implementation, so a request for a
1414          * threaded irq without a primary hard irq context handler
1415          * requires the ONESHOT flag to be set. Some irq chips like
1416          * MSI based interrupts are per se one shot safe. Check the
1417          * chip flags, so we can avoid the unmask dance at the end of
1418          * the threaded handler for those.
1419          */
1420         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1421                 new->flags &= ~IRQF_ONESHOT;
1422
1423         /*
1424          * Protects against a concurrent __free_irq() call which might wait
1425          * for synchronize_hardirq() to complete without holding the optional
1426          * chip bus lock and desc->lock. Also protects against handing out
1427          * a recycled oneshot thread_mask bit while it's still in use by
1428          * its previous owner.
1429          */
1430         mutex_lock(&desc->request_mutex);
1431
1432         /*
1433          * Acquire bus lock as the irq_request_resources() callback below
1434          * might rely on the serialization or the magic power management
1435          * functions which are abusing the irq_bus_lock() callback,
1436          */
1437         chip_bus_lock(desc);
1438
1439         /* First installed action requests resources. */
1440         if (!desc->action) {
1441                 ret = irq_request_resources(desc);
1442                 if (ret) {
1443                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1444                                new->name, irq, desc->irq_data.chip->name);
1445                         goto out_bus_unlock;
1446                 }
1447         }
1448
1449         /*
1450          * The following block of code has to be executed atomically
1451          * protected against a concurrent interrupt and any of the other
1452          * management calls which are not serialized via
1453          * desc->request_mutex or the optional bus lock.
1454          */
1455         raw_spin_lock_irqsave(&desc->lock, flags);
1456         old_ptr = &desc->action;
1457         old = *old_ptr;
1458         if (old) {
1459                 /*
1460                  * Can't share interrupts unless both agree to and are
1461                  * the same type (level, edge, polarity). So both flag
1462                  * fields must have IRQF_SHARED set and the bits which
1463                  * set the trigger type must match. Also all must
1464                  * agree on ONESHOT.
1465                  * Interrupt lines used for NMIs cannot be shared.
1466                  */
1467                 unsigned int oldtype;
1468
1469                 if (desc->istate & IRQS_NMI) {
1470                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1471                                 new->name, irq, desc->irq_data.chip->name);
1472                         ret = -EINVAL;
1473                         goto out_unlock;
1474                 }
1475
1476                 /*
1477                  * If nobody did set the configuration before, inherit
1478                  * the one provided by the requester.
1479                  */
1480                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1481                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1482                 } else {
1483                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1484                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1485                 }
1486
1487                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1488                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1489                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1490                         goto mismatch;
1491
1492                 /* All handlers must agree on per-cpuness */
1493                 if ((old->flags & IRQF_PERCPU) !=
1494                     (new->flags & IRQF_PERCPU))
1495                         goto mismatch;
1496
1497                 /* add new interrupt at end of irq queue */
1498                 do {
1499                         /*
1500                          * Or all existing action->thread_mask bits,
1501                          * so we can find the next zero bit for this
1502                          * new action.
1503                          */
1504                         thread_mask |= old->thread_mask;
1505                         old_ptr = &old->next;
1506                         old = *old_ptr;
1507                 } while (old);
1508                 shared = 1;
1509         }
1510
1511         /*
1512          * Setup the thread mask for this irqaction for ONESHOT. For
1513          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1514          * conditional in irq_wake_thread().
1515          */
1516         if (new->flags & IRQF_ONESHOT) {
1517                 /*
1518                  * Unlikely to have 32 resp 64 irqs sharing one line,
1519                  * but who knows.
1520                  */
1521                 if (thread_mask == ~0UL) {
1522                         ret = -EBUSY;
1523                         goto out_unlock;
1524                 }
1525                 /*
1526                  * The thread_mask for the action is or'ed to
1527                  * desc->thread_active to indicate that the
1528                  * IRQF_ONESHOT thread handler has been woken, but not
1529                  * yet finished. The bit is cleared when a thread
1530                  * completes. When all threads of a shared interrupt
1531                  * line have completed desc->threads_active becomes
1532                  * zero and the interrupt line is unmasked. See
1533                  * handle.c:irq_wake_thread() for further information.
1534                  *
1535                  * If no thread is woken by primary (hard irq context)
1536                  * interrupt handlers, then desc->threads_active is
1537                  * also checked for zero to unmask the irq line in the
1538                  * affected hard irq flow handlers
1539                  * (handle_[fasteoi|level]_irq).
1540                  *
1541                  * The new action gets the first zero bit of
1542                  * thread_mask assigned. See the loop above which or's
1543                  * all existing action->thread_mask bits.
1544                  */
1545                 new->thread_mask = 1UL << ffz(thread_mask);
1546
1547         } else if (new->handler == irq_default_primary_handler &&
1548                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1549                 /*
1550                  * The interrupt was requested with handler = NULL, so
1551                  * we use the default primary handler for it. But it
1552                  * does not have the oneshot flag set. In combination
1553                  * with level interrupts this is deadly, because the
1554                  * default primary handler just wakes the thread, then
1555                  * the irq lines is reenabled, but the device still
1556                  * has the level irq asserted. Rinse and repeat....
1557                  *
1558                  * While this works for edge type interrupts, we play
1559                  * it safe and reject unconditionally because we can't
1560                  * say for sure which type this interrupt really
1561                  * has. The type flags are unreliable as the
1562                  * underlying chip implementation can override them.
1563                  */
1564                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1565                        irq);
1566                 ret = -EINVAL;
1567                 goto out_unlock;
1568         }
1569
1570         if (!shared) {
1571                 /* Setup the type (level, edge polarity) if configured: */
1572                 if (new->flags & IRQF_TRIGGER_MASK) {
1573                         ret = __irq_set_trigger(desc,
1574                                                 new->flags & IRQF_TRIGGER_MASK);
1575
1576                         if (ret)
1577                                 goto out_unlock;
1578                 }
1579
1580                 /*
1581                  * Activate the interrupt. That activation must happen
1582                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1583                  * and the callers are supposed to handle
1584                  * that. enable_irq() of an interrupt requested with
1585                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1586                  * keeps it in shutdown mode, it merily associates
1587                  * resources if necessary and if that's not possible it
1588                  * fails. Interrupts which are in managed shutdown mode
1589                  * will simply ignore that activation request.
1590                  */
1591                 ret = irq_activate(desc);
1592                 if (ret)
1593                         goto out_unlock;
1594
1595                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1596                                   IRQS_ONESHOT | IRQS_WAITING);
1597                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1598
1599                 if (new->flags & IRQF_PERCPU) {
1600                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1601                         irq_settings_set_per_cpu(desc);
1602                 }
1603
1604                 if (new->flags & IRQF_ONESHOT)
1605                         desc->istate |= IRQS_ONESHOT;
1606
1607                 /* Exclude IRQ from balancing if requested */
1608                 if (new->flags & IRQF_NOBALANCING) {
1609                         irq_settings_set_no_balancing(desc);
1610                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1611                 }
1612
1613                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1614                     irq_settings_can_autoenable(desc)) {
1615                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1616                 } else {
1617                         /*
1618                          * Shared interrupts do not go well with disabling
1619                          * auto enable. The sharing interrupt might request
1620                          * it while it's still disabled and then wait for
1621                          * interrupts forever.
1622                          */
1623                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1624                         /* Undo nested disables: */
1625                         desc->depth = 1;
1626                 }
1627
1628         } else if (new->flags & IRQF_TRIGGER_MASK) {
1629                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1630                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1631
1632                 if (nmsk != omsk)
1633                         /* hope the handler works with current  trigger mode */
1634                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1635                                 irq, omsk, nmsk);
1636         }
1637
1638         *old_ptr = new;
1639
1640         irq_pm_install_action(desc, new);
1641
1642         /* Reset broken irq detection when installing new handler */
1643         desc->irq_count = 0;
1644         desc->irqs_unhandled = 0;
1645
1646         /*
1647          * Check whether we disabled the irq via the spurious handler
1648          * before. Reenable it and give it another chance.
1649          */
1650         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1651                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1652                 __enable_irq(desc);
1653         }
1654
1655         raw_spin_unlock_irqrestore(&desc->lock, flags);
1656         chip_bus_sync_unlock(desc);
1657         mutex_unlock(&desc->request_mutex);
1658
1659         irq_setup_timings(desc, new);
1660
1661         wake_up_and_wait_for_irq_thread_ready(desc, new);
1662         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1663
1664         register_irq_proc(irq, desc);
1665         new->dir = NULL;
1666         register_handler_proc(irq, new);
1667         return 0;
1668
1669 mismatch:
1670         if (!(new->flags & IRQF_PROBE_SHARED)) {
1671                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1672                        irq, new->flags, new->name, old->flags, old->name);
1673 #ifdef CONFIG_DEBUG_SHIRQ
1674                 dump_stack();
1675 #endif
1676         }
1677         ret = -EBUSY;
1678
1679 out_unlock:
1680         raw_spin_unlock_irqrestore(&desc->lock, flags);
1681
1682         if (!desc->action)
1683                 irq_release_resources(desc);
1684 out_bus_unlock:
1685         chip_bus_sync_unlock(desc);
1686         mutex_unlock(&desc->request_mutex);
1687
1688 out_thread:
1689         if (new->thread) {
1690                 struct task_struct *t = new->thread;
1691
1692                 new->thread = NULL;
1693                 kthread_stop(t);
1694                 put_task_struct(t);
1695         }
1696         if (new->secondary && new->secondary->thread) {
1697                 struct task_struct *t = new->secondary->thread;
1698
1699                 new->secondary->thread = NULL;
1700                 kthread_stop(t);
1701                 put_task_struct(t);
1702         }
1703 out_mput:
1704         module_put(desc->owner);
1705         return ret;
1706 }
1707
1708 /**
1709  *      setup_irq - setup an interrupt
1710  *      @irq: Interrupt line to setup
1711  *      @act: irqaction for the interrupt
1712  *
1713  * Used to statically setup interrupts in the early boot process.
1714  */
1715 int setup_irq(unsigned int irq, struct irqaction *act)
1716 {
1717         int retval;
1718         struct irq_desc *desc = irq_to_desc(irq);
1719
1720         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1721                 return -EINVAL;
1722
1723         retval = irq_chip_pm_get(&desc->irq_data);
1724         if (retval < 0)
1725                 return retval;
1726
1727         retval = __setup_irq(irq, desc, act);
1728
1729         if (retval)
1730                 irq_chip_pm_put(&desc->irq_data);
1731
1732         return retval;
1733 }
1734 EXPORT_SYMBOL_GPL(setup_irq);
1735
1736 /*
1737  * Internal function to unregister an irqaction - used to free
1738  * regular and special interrupts that are part of the architecture.
1739  */
1740 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1741 {
1742         unsigned irq = desc->irq_data.irq;
1743         struct irqaction *action, **action_ptr;
1744         unsigned long flags;
1745
1746         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1747
1748         mutex_lock(&desc->request_mutex);
1749         chip_bus_lock(desc);
1750         raw_spin_lock_irqsave(&desc->lock, flags);
1751
1752         /*
1753          * There can be multiple actions per IRQ descriptor, find the right
1754          * one based on the dev_id:
1755          */
1756         action_ptr = &desc->action;
1757         for (;;) {
1758                 action = *action_ptr;
1759
1760                 if (!action) {
1761                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1762                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1763                         chip_bus_sync_unlock(desc);
1764                         mutex_unlock(&desc->request_mutex);
1765                         return NULL;
1766                 }
1767
1768                 if (action->dev_id == dev_id)
1769                         break;
1770                 action_ptr = &action->next;
1771         }
1772
1773         /* Found it - now remove it from the list of entries: */
1774         *action_ptr = action->next;
1775
1776         irq_pm_remove_action(desc, action);
1777
1778         /* If this was the last handler, shut down the IRQ line: */
1779         if (!desc->action) {
1780                 irq_settings_clr_disable_unlazy(desc);
1781                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1782                 irq_shutdown(desc);
1783         }
1784
1785 #ifdef CONFIG_SMP
1786         /* make sure affinity_hint is cleaned up */
1787         if (WARN_ON_ONCE(desc->affinity_hint))
1788                 desc->affinity_hint = NULL;
1789 #endif
1790
1791         raw_spin_unlock_irqrestore(&desc->lock, flags);
1792         /*
1793          * Drop bus_lock here so the changes which were done in the chip
1794          * callbacks above are synced out to the irq chips which hang
1795          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1796          *
1797          * Aside of that the bus_lock can also be taken from the threaded
1798          * handler in irq_finalize_oneshot() which results in a deadlock
1799          * because kthread_stop() would wait forever for the thread to
1800          * complete, which is blocked on the bus lock.
1801          *
1802          * The still held desc->request_mutex() protects against a
1803          * concurrent request_irq() of this irq so the release of resources
1804          * and timing data is properly serialized.
1805          */
1806         chip_bus_sync_unlock(desc);
1807
1808         unregister_handler_proc(irq, action);
1809
1810         /*
1811          * Make sure it's not being used on another CPU and if the chip
1812          * supports it also make sure that there is no (not yet serviced)
1813          * interrupt in flight at the hardware level.
1814          */
1815         __synchronize_hardirq(desc, true);
1816
1817 #ifdef CONFIG_DEBUG_SHIRQ
1818         /*
1819          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1820          * event to happen even now it's being freed, so let's make sure that
1821          * is so by doing an extra call to the handler ....
1822          *
1823          * ( We do this after actually deregistering it, to make sure that a
1824          *   'real' IRQ doesn't run in parallel with our fake. )
1825          */
1826         if (action->flags & IRQF_SHARED) {
1827                 local_irq_save(flags);
1828                 action->handler(irq, dev_id);
1829                 local_irq_restore(flags);
1830         }
1831 #endif
1832
1833         /*
1834          * The action has already been removed above, but the thread writes
1835          * its oneshot mask bit when it completes. Though request_mutex is
1836          * held across this which prevents __setup_irq() from handing out
1837          * the same bit to a newly requested action.
1838          */
1839         if (action->thread) {
1840                 kthread_stop(action->thread);
1841                 put_task_struct(action->thread);
1842                 if (action->secondary && action->secondary->thread) {
1843                         kthread_stop(action->secondary->thread);
1844                         put_task_struct(action->secondary->thread);
1845                 }
1846         }
1847
1848         /* Last action releases resources */
1849         if (!desc->action) {
1850                 /*
1851                  * Reaquire bus lock as irq_release_resources() might
1852                  * require it to deallocate resources over the slow bus.
1853                  */
1854                 chip_bus_lock(desc);
1855                 /*
1856                  * There is no interrupt on the fly anymore. Deactivate it
1857                  * completely.
1858                  */
1859                 raw_spin_lock_irqsave(&desc->lock, flags);
1860                 irq_domain_deactivate_irq(&desc->irq_data);
1861                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1862
1863                 irq_release_resources(desc);
1864                 chip_bus_sync_unlock(desc);
1865                 irq_remove_timings(desc);
1866         }
1867
1868         mutex_unlock(&desc->request_mutex);
1869
1870         irq_chip_pm_put(&desc->irq_data);
1871         module_put(desc->owner);
1872         kfree(action->secondary);
1873         return action;
1874 }
1875
1876 /**
1877  *      remove_irq - free an interrupt
1878  *      @irq: Interrupt line to free
1879  *      @act: irqaction for the interrupt
1880  *
1881  * Used to remove interrupts statically setup by the early boot process.
1882  */
1883 void remove_irq(unsigned int irq, struct irqaction *act)
1884 {
1885         struct irq_desc *desc = irq_to_desc(irq);
1886
1887         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1888                 __free_irq(desc, act->dev_id);
1889 }
1890 EXPORT_SYMBOL_GPL(remove_irq);
1891
1892 /**
1893  *      free_irq - free an interrupt allocated with request_irq
1894  *      @irq: Interrupt line to free
1895  *      @dev_id: Device identity to free
1896  *
1897  *      Remove an interrupt handler. The handler is removed and if the
1898  *      interrupt line is no longer in use by any driver it is disabled.
1899  *      On a shared IRQ the caller must ensure the interrupt is disabled
1900  *      on the card it drives before calling this function. The function
1901  *      does not return until any executing interrupts for this IRQ
1902  *      have completed.
1903  *
1904  *      This function must not be called from interrupt context.
1905  *
1906  *      Returns the devname argument passed to request_irq.
1907  */
1908 const void *free_irq(unsigned int irq, void *dev_id)
1909 {
1910         struct irq_desc *desc = irq_to_desc(irq);
1911         struct irqaction *action;
1912         const char *devname;
1913
1914         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1915                 return NULL;
1916
1917 #ifdef CONFIG_SMP
1918         if (WARN_ON(desc->affinity_notify))
1919                 desc->affinity_notify = NULL;
1920 #endif
1921
1922         action = __free_irq(desc, dev_id);
1923
1924         if (!action)
1925                 return NULL;
1926
1927         devname = action->name;
1928         kfree(action);
1929         return devname;
1930 }
1931 EXPORT_SYMBOL(free_irq);
1932
1933 /* This function must be called with desc->lock held */
1934 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1935 {
1936         const char *devname = NULL;
1937
1938         desc->istate &= ~IRQS_NMI;
1939
1940         if (!WARN_ON(desc->action == NULL)) {
1941                 irq_pm_remove_action(desc, desc->action);
1942                 devname = desc->action->name;
1943                 unregister_handler_proc(irq, desc->action);
1944
1945                 kfree(desc->action);
1946                 desc->action = NULL;
1947         }
1948
1949         irq_settings_clr_disable_unlazy(desc);
1950         irq_shutdown_and_deactivate(desc);
1951
1952         irq_release_resources(desc);
1953
1954         irq_chip_pm_put(&desc->irq_data);
1955         module_put(desc->owner);
1956
1957         return devname;
1958 }
1959
1960 const void *free_nmi(unsigned int irq, void *dev_id)
1961 {
1962         struct irq_desc *desc = irq_to_desc(irq);
1963         unsigned long flags;
1964         const void *devname;
1965
1966         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1967                 return NULL;
1968
1969         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1970                 return NULL;
1971
1972         /* NMI still enabled */
1973         if (WARN_ON(desc->depth == 0))
1974                 disable_nmi_nosync(irq);
1975
1976         raw_spin_lock_irqsave(&desc->lock, flags);
1977
1978         irq_nmi_teardown(desc);
1979         devname = __cleanup_nmi(irq, desc);
1980
1981         raw_spin_unlock_irqrestore(&desc->lock, flags);
1982
1983         return devname;
1984 }
1985
1986 /**
1987  *      request_threaded_irq - allocate an interrupt line
1988  *      @irq: Interrupt line to allocate
1989  *      @handler: Function to be called when the IRQ occurs.
1990  *                Primary handler for threaded interrupts
1991  *                If NULL and thread_fn != NULL the default
1992  *                primary handler is installed
1993  *      @thread_fn: Function called from the irq handler thread
1994  *                  If NULL, no irq thread is created
1995  *      @irqflags: Interrupt type flags
1996  *      @devname: An ascii name for the claiming device
1997  *      @dev_id: A cookie passed back to the handler function
1998  *
1999  *      This call allocates interrupt resources and enables the
2000  *      interrupt line and IRQ handling. From the point this
2001  *      call is made your handler function may be invoked. Since
2002  *      your handler function must clear any interrupt the board
2003  *      raises, you must take care both to initialise your hardware
2004  *      and to set up the interrupt handler in the right order.
2005  *
2006  *      If you want to set up a threaded irq handler for your device
2007  *      then you need to supply @handler and @thread_fn. @handler is
2008  *      still called in hard interrupt context and has to check
2009  *      whether the interrupt originates from the device. If yes it
2010  *      needs to disable the interrupt on the device and return
2011  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2012  *      @thread_fn. This split handler design is necessary to support
2013  *      shared interrupts.
2014  *
2015  *      Dev_id must be globally unique. Normally the address of the
2016  *      device data structure is used as the cookie. Since the handler
2017  *      receives this value it makes sense to use it.
2018  *
2019  *      If your interrupt is shared you must pass a non NULL dev_id
2020  *      as this is required when freeing the interrupt.
2021  *
2022  *      Flags:
2023  *
2024  *      IRQF_SHARED             Interrupt is shared
2025  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2026  *
2027  */
2028 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2029                          irq_handler_t thread_fn, unsigned long irqflags,
2030                          const char *devname, void *dev_id)
2031 {
2032         struct irqaction *action;
2033         struct irq_desc *desc;
2034         int retval;
2035
2036         if (irq == IRQ_NOTCONNECTED)
2037                 return -ENOTCONN;
2038
2039         /*
2040          * Sanity-check: shared interrupts must pass in a real dev-ID,
2041          * otherwise we'll have trouble later trying to figure out
2042          * which interrupt is which (messes up the interrupt freeing
2043          * logic etc).
2044          *
2045          * Also shared interrupts do not go well with disabling auto enable.
2046          * The sharing interrupt might request it while it's still disabled
2047          * and then wait for interrupts forever.
2048          *
2049          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2050          * it cannot be set along with IRQF_NO_SUSPEND.
2051          */
2052         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2053             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2054             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2055             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2056                 return -EINVAL;
2057
2058         desc = irq_to_desc(irq);
2059         if (!desc)
2060                 return -EINVAL;
2061
2062         if (!irq_settings_can_request(desc) ||
2063             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2064                 return -EINVAL;
2065
2066         if (!handler) {
2067                 if (!thread_fn)
2068                         return -EINVAL;
2069                 handler = irq_default_primary_handler;
2070         }
2071
2072         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2073         if (!action)
2074                 return -ENOMEM;
2075
2076         action->handler = handler;
2077         action->thread_fn = thread_fn;
2078         action->flags = irqflags;
2079         action->name = devname;
2080         action->dev_id = dev_id;
2081
2082         retval = irq_chip_pm_get(&desc->irq_data);
2083         if (retval < 0) {
2084                 kfree(action);
2085                 return retval;
2086         }
2087
2088         retval = __setup_irq(irq, desc, action);
2089
2090         if (retval) {
2091                 irq_chip_pm_put(&desc->irq_data);
2092                 kfree(action->secondary);
2093                 kfree(action);
2094         }
2095
2096 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2097         if (!retval && (irqflags & IRQF_SHARED)) {
2098                 /*
2099                  * It's a shared IRQ -- the driver ought to be prepared for it
2100                  * to happen immediately, so let's make sure....
2101                  * We disable the irq to make sure that a 'real' IRQ doesn't
2102                  * run in parallel with our fake.
2103                  */
2104                 unsigned long flags;
2105
2106                 disable_irq(irq);
2107                 local_irq_save(flags);
2108
2109                 handler(irq, dev_id);
2110
2111                 local_irq_restore(flags);
2112                 enable_irq(irq);
2113         }
2114 #endif
2115         return retval;
2116 }
2117 EXPORT_SYMBOL(request_threaded_irq);
2118
2119 /**
2120  *      request_any_context_irq - allocate an interrupt line
2121  *      @irq: Interrupt line to allocate
2122  *      @handler: Function to be called when the IRQ occurs.
2123  *                Threaded handler for threaded interrupts.
2124  *      @flags: Interrupt type flags
2125  *      @name: An ascii name for the claiming device
2126  *      @dev_id: A cookie passed back to the handler function
2127  *
2128  *      This call allocates interrupt resources and enables the
2129  *      interrupt line and IRQ handling. It selects either a
2130  *      hardirq or threaded handling method depending on the
2131  *      context.
2132  *
2133  *      On failure, it returns a negative value. On success,
2134  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2135  */
2136 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2137                             unsigned long flags, const char *name, void *dev_id)
2138 {
2139         struct irq_desc *desc;
2140         int ret;
2141
2142         if (irq == IRQ_NOTCONNECTED)
2143                 return -ENOTCONN;
2144
2145         desc = irq_to_desc(irq);
2146         if (!desc)
2147                 return -EINVAL;
2148
2149         if (irq_settings_is_nested_thread(desc)) {
2150                 ret = request_threaded_irq(irq, NULL, handler,
2151                                            flags, name, dev_id);
2152                 return !ret ? IRQC_IS_NESTED : ret;
2153         }
2154
2155         ret = request_irq(irq, handler, flags, name, dev_id);
2156         return !ret ? IRQC_IS_HARDIRQ : ret;
2157 }
2158 EXPORT_SYMBOL_GPL(request_any_context_irq);
2159
2160 /**
2161  *      request_nmi - allocate an interrupt line for NMI delivery
2162  *      @irq: Interrupt line to allocate
2163  *      @handler: Function to be called when the IRQ occurs.
2164  *                Threaded handler for threaded interrupts.
2165  *      @irqflags: Interrupt type flags
2166  *      @name: An ascii name for the claiming device
2167  *      @dev_id: A cookie passed back to the handler function
2168  *
2169  *      This call allocates interrupt resources and enables the
2170  *      interrupt line and IRQ handling. It sets up the IRQ line
2171  *      to be handled as an NMI.
2172  *
2173  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2174  *      cannot be threaded.
2175  *
2176  *      Interrupt lines requested for NMI delivering must produce per cpu
2177  *      interrupts and have auto enabling setting disabled.
2178  *
2179  *      Dev_id must be globally unique. Normally the address of the
2180  *      device data structure is used as the cookie. Since the handler
2181  *      receives this value it makes sense to use it.
2182  *
2183  *      If the interrupt line cannot be used to deliver NMIs, function
2184  *      will fail and return a negative value.
2185  */
2186 int request_nmi(unsigned int irq, irq_handler_t handler,
2187                 unsigned long irqflags, const char *name, void *dev_id)
2188 {
2189         struct irqaction *action;
2190         struct irq_desc *desc;
2191         unsigned long flags;
2192         int retval;
2193
2194         if (irq == IRQ_NOTCONNECTED)
2195                 return -ENOTCONN;
2196
2197         /* NMI cannot be shared, used for Polling */
2198         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2199                 return -EINVAL;
2200
2201         if (!(irqflags & IRQF_PERCPU))
2202                 return -EINVAL;
2203
2204         if (!handler)
2205                 return -EINVAL;
2206
2207         desc = irq_to_desc(irq);
2208
2209         if (!desc || (irq_settings_can_autoenable(desc) &&
2210             !(irqflags & IRQF_NO_AUTOEN)) ||
2211             !irq_settings_can_request(desc) ||
2212             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2213             !irq_supports_nmi(desc))
2214                 return -EINVAL;
2215
2216         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2217         if (!action)
2218                 return -ENOMEM;
2219
2220         action->handler = handler;
2221         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2222         action->name = name;
2223         action->dev_id = dev_id;
2224
2225         retval = irq_chip_pm_get(&desc->irq_data);
2226         if (retval < 0)
2227                 goto err_out;
2228
2229         retval = __setup_irq(irq, desc, action);
2230         if (retval)
2231                 goto err_irq_setup;
2232
2233         raw_spin_lock_irqsave(&desc->lock, flags);
2234
2235         /* Setup NMI state */
2236         desc->istate |= IRQS_NMI;
2237         retval = irq_nmi_setup(desc);
2238         if (retval) {
2239                 __cleanup_nmi(irq, desc);
2240                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2241                 return -EINVAL;
2242         }
2243
2244         raw_spin_unlock_irqrestore(&desc->lock, flags);
2245
2246         return 0;
2247
2248 err_irq_setup:
2249         irq_chip_pm_put(&desc->irq_data);
2250 err_out:
2251         kfree(action);
2252
2253         return retval;
2254 }
2255
2256 void enable_percpu_irq(unsigned int irq, unsigned int type)
2257 {
2258         unsigned int cpu = smp_processor_id();
2259         unsigned long flags;
2260         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2261
2262         if (!desc)
2263                 return;
2264
2265         /*
2266          * If the trigger type is not specified by the caller, then
2267          * use the default for this interrupt.
2268          */
2269         type &= IRQ_TYPE_SENSE_MASK;
2270         if (type == IRQ_TYPE_NONE)
2271                 type = irqd_get_trigger_type(&desc->irq_data);
2272
2273         if (type != IRQ_TYPE_NONE) {
2274                 int ret;
2275
2276                 ret = __irq_set_trigger(desc, type);
2277
2278                 if (ret) {
2279                         WARN(1, "failed to set type for IRQ%d\n", irq);
2280                         goto out;
2281                 }
2282         }
2283
2284         irq_percpu_enable(desc, cpu);
2285 out:
2286         irq_put_desc_unlock(desc, flags);
2287 }
2288 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2289
2290 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2291 {
2292         enable_percpu_irq(irq, type);
2293 }
2294
2295 /**
2296  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2297  * @irq:        Linux irq number to check for
2298  *
2299  * Must be called from a non migratable context. Returns the enable
2300  * state of a per cpu interrupt on the current cpu.
2301  */
2302 bool irq_percpu_is_enabled(unsigned int irq)
2303 {
2304         unsigned int cpu = smp_processor_id();
2305         struct irq_desc *desc;
2306         unsigned long flags;
2307         bool is_enabled;
2308
2309         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2310         if (!desc)
2311                 return false;
2312
2313         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2314         irq_put_desc_unlock(desc, flags);
2315
2316         return is_enabled;
2317 }
2318 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2319
2320 void disable_percpu_irq(unsigned int irq)
2321 {
2322         unsigned int cpu = smp_processor_id();
2323         unsigned long flags;
2324         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2325
2326         if (!desc)
2327                 return;
2328
2329         irq_percpu_disable(desc, cpu);
2330         irq_put_desc_unlock(desc, flags);
2331 }
2332 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2333
2334 void disable_percpu_nmi(unsigned int irq)
2335 {
2336         disable_percpu_irq(irq);
2337 }
2338
2339 /*
2340  * Internal function to unregister a percpu irqaction.
2341  */
2342 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2343 {
2344         struct irq_desc *desc = irq_to_desc(irq);
2345         struct irqaction *action;
2346         unsigned long flags;
2347
2348         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2349
2350         if (!desc)
2351                 return NULL;
2352
2353         raw_spin_lock_irqsave(&desc->lock, flags);
2354
2355         action = desc->action;
2356         if (!action || action->percpu_dev_id != dev_id) {
2357                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2358                 goto bad;
2359         }
2360
2361         if (!cpumask_empty(desc->percpu_enabled)) {
2362                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2363                      irq, cpumask_first(desc->percpu_enabled));
2364                 goto bad;
2365         }
2366
2367         /* Found it - now remove it from the list of entries: */
2368         desc->action = NULL;
2369
2370         desc->istate &= ~IRQS_NMI;
2371
2372         raw_spin_unlock_irqrestore(&desc->lock, flags);
2373
2374         unregister_handler_proc(irq, action);
2375
2376         irq_chip_pm_put(&desc->irq_data);
2377         module_put(desc->owner);
2378         return action;
2379
2380 bad:
2381         raw_spin_unlock_irqrestore(&desc->lock, flags);
2382         return NULL;
2383 }
2384
2385 /**
2386  *      remove_percpu_irq - free a per-cpu interrupt
2387  *      @irq: Interrupt line to free
2388  *      @act: irqaction for the interrupt
2389  *
2390  * Used to remove interrupts statically setup by the early boot process.
2391  */
2392 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2393 {
2394         struct irq_desc *desc = irq_to_desc(irq);
2395
2396         if (desc && irq_settings_is_per_cpu_devid(desc))
2397             __free_percpu_irq(irq, act->percpu_dev_id);
2398 }
2399
2400 /**
2401  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2402  *      @irq: Interrupt line to free
2403  *      @dev_id: Device identity to free
2404  *
2405  *      Remove a percpu interrupt handler. The handler is removed, but
2406  *      the interrupt line is not disabled. This must be done on each
2407  *      CPU before calling this function. The function does not return
2408  *      until any executing interrupts for this IRQ have completed.
2409  *
2410  *      This function must not be called from interrupt context.
2411  */
2412 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2413 {
2414         struct irq_desc *desc = irq_to_desc(irq);
2415
2416         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2417                 return;
2418
2419         chip_bus_lock(desc);
2420         kfree(__free_percpu_irq(irq, dev_id));
2421         chip_bus_sync_unlock(desc);
2422 }
2423 EXPORT_SYMBOL_GPL(free_percpu_irq);
2424
2425 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2426 {
2427         struct irq_desc *desc = irq_to_desc(irq);
2428
2429         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2430                 return;
2431
2432         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2433                 return;
2434
2435         kfree(__free_percpu_irq(irq, dev_id));
2436 }
2437
2438 /**
2439  *      setup_percpu_irq - setup a per-cpu interrupt
2440  *      @irq: Interrupt line to setup
2441  *      @act: irqaction for the interrupt
2442  *
2443  * Used to statically setup per-cpu interrupts in the early boot process.
2444  */
2445 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2446 {
2447         struct irq_desc *desc = irq_to_desc(irq);
2448         int retval;
2449
2450         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2451                 return -EINVAL;
2452
2453         retval = irq_chip_pm_get(&desc->irq_data);
2454         if (retval < 0)
2455                 return retval;
2456
2457         retval = __setup_irq(irq, desc, act);
2458
2459         if (retval)
2460                 irq_chip_pm_put(&desc->irq_data);
2461
2462         return retval;
2463 }
2464
2465 /**
2466  *      __request_percpu_irq - allocate a percpu interrupt line
2467  *      @irq: Interrupt line to allocate
2468  *      @handler: Function to be called when the IRQ occurs.
2469  *      @flags: Interrupt type flags (IRQF_TIMER only)
2470  *      @devname: An ascii name for the claiming device
2471  *      @dev_id: A percpu cookie passed back to the handler function
2472  *
2473  *      This call allocates interrupt resources and enables the
2474  *      interrupt on the local CPU. If the interrupt is supposed to be
2475  *      enabled on other CPUs, it has to be done on each CPU using
2476  *      enable_percpu_irq().
2477  *
2478  *      Dev_id must be globally unique. It is a per-cpu variable, and
2479  *      the handler gets called with the interrupted CPU's instance of
2480  *      that variable.
2481  */
2482 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2483                          unsigned long flags, const char *devname,
2484                          void __percpu *dev_id)
2485 {
2486         struct irqaction *action;
2487         struct irq_desc *desc;
2488         int retval;
2489
2490         if (!dev_id)
2491                 return -EINVAL;
2492
2493         desc = irq_to_desc(irq);
2494         if (!desc || !irq_settings_can_request(desc) ||
2495             !irq_settings_is_per_cpu_devid(desc))
2496                 return -EINVAL;
2497
2498         if (flags && flags != IRQF_TIMER)
2499                 return -EINVAL;
2500
2501         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2502         if (!action)
2503                 return -ENOMEM;
2504
2505         action->handler = handler;
2506         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2507         action->name = devname;
2508         action->percpu_dev_id = dev_id;
2509
2510         retval = irq_chip_pm_get(&desc->irq_data);
2511         if (retval < 0) {
2512                 kfree(action);
2513                 return retval;
2514         }
2515
2516         retval = __setup_irq(irq, desc, action);
2517
2518         if (retval) {
2519                 irq_chip_pm_put(&desc->irq_data);
2520                 kfree(action);
2521         }
2522
2523         return retval;
2524 }
2525 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2526
2527 /**
2528  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2529  *      @irq: Interrupt line to allocate
2530  *      @handler: Function to be called when the IRQ occurs.
2531  *      @name: An ascii name for the claiming device
2532  *      @dev_id: A percpu cookie passed back to the handler function
2533  *
2534  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2535  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2536  *      being enabled on the same CPU by using enable_percpu_nmi().
2537  *
2538  *      Dev_id must be globally unique. It is a per-cpu variable, and
2539  *      the handler gets called with the interrupted CPU's instance of
2540  *      that variable.
2541  *
2542  *      Interrupt lines requested for NMI delivering should have auto enabling
2543  *      setting disabled.
2544  *
2545  *      If the interrupt line cannot be used to deliver NMIs, function
2546  *      will fail returning a negative value.
2547  */
2548 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2549                        const char *name, void __percpu *dev_id)
2550 {
2551         struct irqaction *action;
2552         struct irq_desc *desc;
2553         unsigned long flags;
2554         int retval;
2555
2556         if (!handler)
2557                 return -EINVAL;
2558
2559         desc = irq_to_desc(irq);
2560
2561         if (!desc || !irq_settings_can_request(desc) ||
2562             !irq_settings_is_per_cpu_devid(desc) ||
2563             irq_settings_can_autoenable(desc) ||
2564             !irq_supports_nmi(desc))
2565                 return -EINVAL;
2566
2567         /* The line cannot already be NMI */
2568         if (desc->istate & IRQS_NMI)
2569                 return -EINVAL;
2570
2571         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2572         if (!action)
2573                 return -ENOMEM;
2574
2575         action->handler = handler;
2576         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2577                 | IRQF_NOBALANCING;
2578         action->name = name;
2579         action->percpu_dev_id = dev_id;
2580
2581         retval = irq_chip_pm_get(&desc->irq_data);
2582         if (retval < 0)
2583                 goto err_out;
2584
2585         retval = __setup_irq(irq, desc, action);
2586         if (retval)
2587                 goto err_irq_setup;
2588
2589         raw_spin_lock_irqsave(&desc->lock, flags);
2590         desc->istate |= IRQS_NMI;
2591         raw_spin_unlock_irqrestore(&desc->lock, flags);
2592
2593         return 0;
2594
2595 err_irq_setup:
2596         irq_chip_pm_put(&desc->irq_data);
2597 err_out:
2598         kfree(action);
2599
2600         return retval;
2601 }
2602
2603 /**
2604  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2605  *      @irq: Interrupt line to prepare for NMI delivery
2606  *
2607  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2608  *      before that interrupt line gets enabled with enable_percpu_nmi().
2609  *
2610  *      As a CPU local operation, this should be called from non-preemptible
2611  *      context.
2612  *
2613  *      If the interrupt line cannot be used to deliver NMIs, function
2614  *      will fail returning a negative value.
2615  */
2616 int prepare_percpu_nmi(unsigned int irq)
2617 {
2618         unsigned long flags;
2619         struct irq_desc *desc;
2620         int ret = 0;
2621
2622         WARN_ON(preemptible());
2623
2624         desc = irq_get_desc_lock(irq, &flags,
2625                                  IRQ_GET_DESC_CHECK_PERCPU);
2626         if (!desc)
2627                 return -EINVAL;
2628
2629         if (WARN(!(desc->istate & IRQS_NMI),
2630                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2631                  irq)) {
2632                 ret = -EINVAL;
2633                 goto out;
2634         }
2635
2636         ret = irq_nmi_setup(desc);
2637         if (ret) {
2638                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2639                 goto out;
2640         }
2641
2642 out:
2643         irq_put_desc_unlock(desc, flags);
2644         return ret;
2645 }
2646
2647 /**
2648  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2649  *      @irq: Interrupt line from which CPU local NMI configuration should be
2650  *            removed
2651  *
2652  *      This call undoes the setup done by prepare_percpu_nmi().
2653  *
2654  *      IRQ line should not be enabled for the current CPU.
2655  *
2656  *      As a CPU local operation, this should be called from non-preemptible
2657  *      context.
2658  */
2659 void teardown_percpu_nmi(unsigned int irq)
2660 {
2661         unsigned long flags;
2662         struct irq_desc *desc;
2663
2664         WARN_ON(preemptible());
2665
2666         desc = irq_get_desc_lock(irq, &flags,
2667                                  IRQ_GET_DESC_CHECK_PERCPU);
2668         if (!desc)
2669                 return;
2670
2671         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2672                 goto out;
2673
2674         irq_nmi_teardown(desc);
2675 out:
2676         irq_put_desc_unlock(desc, flags);
2677 }
2678
2679 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2680                             bool *state)
2681 {
2682         struct irq_chip *chip;
2683         int err = -EINVAL;
2684
2685         do {
2686                 chip = irq_data_get_irq_chip(data);
2687                 if (chip->irq_get_irqchip_state)
2688                         break;
2689 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2690                 data = data->parent_data;
2691 #else
2692                 data = NULL;
2693 #endif
2694         } while (data);
2695
2696         if (data)
2697                 err = chip->irq_get_irqchip_state(data, which, state);
2698         return err;
2699 }
2700
2701 /**
2702  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2703  *      @irq: Interrupt line that is forwarded to a VM
2704  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2705  *      @state: a pointer to a boolean where the state is to be storeed
2706  *
2707  *      This call snapshots the internal irqchip state of an
2708  *      interrupt, returning into @state the bit corresponding to
2709  *      stage @which
2710  *
2711  *      This function should be called with preemption disabled if the
2712  *      interrupt controller has per-cpu registers.
2713  */
2714 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2715                           bool *state)
2716 {
2717         struct irq_desc *desc;
2718         struct irq_data *data;
2719         unsigned long flags;
2720         int err = -EINVAL;
2721
2722         desc = irq_get_desc_buslock(irq, &flags, 0);
2723         if (!desc)
2724                 return err;
2725
2726         data = irq_desc_get_irq_data(desc);
2727
2728         err = __irq_get_irqchip_state(data, which, state);
2729
2730         irq_put_desc_busunlock(desc, flags);
2731         return err;
2732 }
2733 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2734
2735 /**
2736  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2737  *      @irq: Interrupt line that is forwarded to a VM
2738  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2739  *      @val: Value corresponding to @which
2740  *
2741  *      This call sets the internal irqchip state of an interrupt,
2742  *      depending on the value of @which.
2743  *
2744  *      This function should be called with preemption disabled if the
2745  *      interrupt controller has per-cpu registers.
2746  */
2747 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2748                           bool val)
2749 {
2750         struct irq_desc *desc;
2751         struct irq_data *data;
2752         struct irq_chip *chip;
2753         unsigned long flags;
2754         int err = -EINVAL;
2755
2756         desc = irq_get_desc_buslock(irq, &flags, 0);
2757         if (!desc)
2758                 return err;
2759
2760         data = irq_desc_get_irq_data(desc);
2761
2762         do {
2763                 chip = irq_data_get_irq_chip(data);
2764                 if (chip->irq_set_irqchip_state)
2765                         break;
2766 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2767                 data = data->parent_data;
2768 #else
2769                 data = NULL;
2770 #endif
2771         } while (data);
2772
2773         if (data)
2774                 err = chip->irq_set_irqchip_state(data, which, val);
2775
2776         irq_put_desc_busunlock(desc, flags);
2777         return err;
2778 }
2779 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);