GNU Linux-libre 5.4.257-gnu1
[releases.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333
334 static inline void futex_get_mm(union futex_key *key)
335 {
336         mmgrab(key->private.mm);
337         /*
338          * Ensure futex_get_mm() implies a full barrier such that
339          * get_futex_key() implies a full barrier. This is relied upon
340          * as smp_mb(); (B), see the ordering comment above.
341          */
342         smp_mb__after_atomic();
343 }
344
345 /*
346  * Reflects a new waiter being added to the waitqueue.
347  */
348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351         atomic_inc(&hb->waiters);
352         /*
353          * Full barrier (A), see the ordering comment above.
354          */
355         smp_mb__after_atomic();
356 #endif
357 }
358
359 /*
360  * Reflects a waiter being removed from the waitqueue by wakeup
361  * paths.
362  */
363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366         atomic_dec(&hb->waiters);
367 #endif
368 }
369
370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         return atomic_read(&hb->waiters);
374 #else
375         return 1;
376 #endif
377 }
378
379 /**
380  * hash_futex - Return the hash bucket in the global hash
381  * @key:        Pointer to the futex key for which the hash is calculated
382  *
383  * We hash on the keys returned from get_futex_key (see below) and return the
384  * corresponding hash bucket in the global hash.
385  */
386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
389                           key->both.offset);
390
391         return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393
394
395 /**
396  * match_futex - Check whether two futex keys are equal
397  * @key1:       Pointer to key1
398  * @key2:       Pointer to key2
399  *
400  * Return 1 if two futex_keys are equal, 0 otherwise.
401  */
402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404         return (key1 && key2
405                 && key1->both.word == key2->both.word
406                 && key1->both.ptr == key2->both.ptr
407                 && key1->both.offset == key2->both.offset);
408 }
409
410 /*
411  * Take a reference to the resource addressed by a key.
412  * Can be called while holding spinlocks.
413  *
414  */
415 static void get_futex_key_refs(union futex_key *key)
416 {
417         if (!key->both.ptr)
418                 return;
419
420         /*
421          * On MMU less systems futexes are always "private" as there is no per
422          * process address space. We need the smp wmb nevertheless - yes,
423          * arch/blackfin has MMU less SMP ...
424          */
425         if (!IS_ENABLED(CONFIG_MMU)) {
426                 smp_mb(); /* explicit smp_mb(); (B) */
427                 return;
428         }
429
430         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431         case FUT_OFF_INODE:
432                 smp_mb();               /* explicit smp_mb(); (B) */
433                 break;
434         case FUT_OFF_MMSHARED:
435                 futex_get_mm(key); /* implies smp_mb(); (B) */
436                 break;
437         default:
438                 /*
439                  * Private futexes do not hold reference on an inode or
440                  * mm, therefore the only purpose of calling get_futex_key_refs
441                  * is because we need the barrier for the lockless waiter check.
442                  */
443                 smp_mb(); /* explicit smp_mb(); (B) */
444         }
445 }
446
447 /*
448  * Drop a reference to the resource addressed by a key.
449  * The hash bucket spinlock must not be held. This is
450  * a no-op for private futexes, see comment in the get
451  * counterpart.
452  */
453 static void drop_futex_key_refs(union futex_key *key)
454 {
455         if (!key->both.ptr) {
456                 /* If we're here then we tried to put a key we failed to get */
457                 WARN_ON_ONCE(1);
458                 return;
459         }
460
461         if (!IS_ENABLED(CONFIG_MMU))
462                 return;
463
464         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465         case FUT_OFF_INODE:
466                 break;
467         case FUT_OFF_MMSHARED:
468                 mmdrop(key->private.mm);
469                 break;
470         }
471 }
472
473 enum futex_access {
474         FUTEX_READ,
475         FUTEX_WRITE
476 };
477
478 /**
479  * futex_setup_timer - set up the sleeping hrtimer.
480  * @time:       ptr to the given timeout value
481  * @timeout:    the hrtimer_sleeper structure to be set up
482  * @flags:      futex flags
483  * @range_ns:   optional range in ns
484  *
485  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
486  *         value given
487  */
488 static inline struct hrtimer_sleeper *
489 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
490                   int flags, u64 range_ns)
491 {
492         if (!time)
493                 return NULL;
494
495         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
496                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
497                                       HRTIMER_MODE_ABS);
498         /*
499          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
500          * effectively the same as calling hrtimer_set_expires().
501          */
502         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
503
504         return timeout;
505 }
506
507 /*
508  * Generate a machine wide unique identifier for this inode.
509  *
510  * This relies on u64 not wrapping in the life-time of the machine; which with
511  * 1ns resolution means almost 585 years.
512  *
513  * This further relies on the fact that a well formed program will not unmap
514  * the file while it has a (shared) futex waiting on it. This mapping will have
515  * a file reference which pins the mount and inode.
516  *
517  * If for some reason an inode gets evicted and read back in again, it will get
518  * a new sequence number and will _NOT_ match, even though it is the exact same
519  * file.
520  *
521  * It is important that match_futex() will never have a false-positive, esp.
522  * for PI futexes that can mess up the state. The above argues that false-negatives
523  * are only possible for malformed programs.
524  */
525 static u64 get_inode_sequence_number(struct inode *inode)
526 {
527         static atomic64_t i_seq;
528         u64 old;
529
530         /* Does the inode already have a sequence number? */
531         old = atomic64_read(&inode->i_sequence);
532         if (likely(old))
533                 return old;
534
535         for (;;) {
536                 u64 new = atomic64_add_return(1, &i_seq);
537                 if (WARN_ON_ONCE(!new))
538                         continue;
539
540                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
541                 if (old)
542                         return old;
543                 return new;
544         }
545 }
546
547 /**
548  * get_futex_key() - Get parameters which are the keys for a futex
549  * @uaddr:      virtual address of the futex
550  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
551  * @key:        address where result is stored.
552  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
553  *              FUTEX_WRITE)
554  *
555  * Return: a negative error code or 0
556  *
557  * The key words are stored in @key on success.
558  *
559  * For shared mappings (when @fshared), the key is:
560  *   ( inode->i_sequence, page->index, offset_within_page )
561  * [ also see get_inode_sequence_number() ]
562  *
563  * For private mappings (or when !@fshared), the key is:
564  *   ( current->mm, address, 0 )
565  *
566  * This allows (cross process, where applicable) identification of the futex
567  * without keeping the page pinned for the duration of the FUTEX_WAIT.
568  *
569  * lock_page() might sleep, the caller should not hold a spinlock.
570  */
571 static int
572 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
573 {
574         unsigned long address = (unsigned long)uaddr;
575         struct mm_struct *mm = current->mm;
576         struct page *page, *tail;
577         struct address_space *mapping;
578         int err, ro = 0;
579
580         /*
581          * The futex address must be "naturally" aligned.
582          */
583         key->both.offset = address % PAGE_SIZE;
584         if (unlikely((address % sizeof(u32)) != 0))
585                 return -EINVAL;
586         address -= key->both.offset;
587
588         if (unlikely(!access_ok(uaddr, sizeof(u32))))
589                 return -EFAULT;
590
591         if (unlikely(should_fail_futex(fshared)))
592                 return -EFAULT;
593
594         /*
595          * PROCESS_PRIVATE futexes are fast.
596          * As the mm cannot disappear under us and the 'key' only needs
597          * virtual address, we dont even have to find the underlying vma.
598          * Note : We do have to check 'uaddr' is a valid user address,
599          *        but access_ok() should be faster than find_vma()
600          */
601         if (!fshared) {
602                 key->private.mm = mm;
603                 key->private.address = address;
604                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
605                 return 0;
606         }
607
608 again:
609         /* Ignore any VERIFY_READ mapping (futex common case) */
610         if (unlikely(should_fail_futex(fshared)))
611                 return -EFAULT;
612
613         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
614         /*
615          * If write access is not required (eg. FUTEX_WAIT), try
616          * and get read-only access.
617          */
618         if (err == -EFAULT && rw == FUTEX_READ) {
619                 err = get_user_pages_fast(address, 1, 0, &page);
620                 ro = 1;
621         }
622         if (err < 0)
623                 return err;
624         else
625                 err = 0;
626
627         /*
628          * The treatment of mapping from this point on is critical. The page
629          * lock protects many things but in this context the page lock
630          * stabilizes mapping, prevents inode freeing in the shared
631          * file-backed region case and guards against movement to swap cache.
632          *
633          * Strictly speaking the page lock is not needed in all cases being
634          * considered here and page lock forces unnecessarily serialization
635          * From this point on, mapping will be re-verified if necessary and
636          * page lock will be acquired only if it is unavoidable
637          *
638          * Mapping checks require the head page for any compound page so the
639          * head page and mapping is looked up now. For anonymous pages, it
640          * does not matter if the page splits in the future as the key is
641          * based on the address. For filesystem-backed pages, the tail is
642          * required as the index of the page determines the key. For
643          * base pages, there is no tail page and tail == page.
644          */
645         tail = page;
646         page = compound_head(page);
647         mapping = READ_ONCE(page->mapping);
648
649         /*
650          * If page->mapping is NULL, then it cannot be a PageAnon
651          * page; but it might be the ZERO_PAGE or in the gate area or
652          * in a special mapping (all cases which we are happy to fail);
653          * or it may have been a good file page when get_user_pages_fast
654          * found it, but truncated or holepunched or subjected to
655          * invalidate_complete_page2 before we got the page lock (also
656          * cases which we are happy to fail).  And we hold a reference,
657          * so refcount care in invalidate_complete_page's remove_mapping
658          * prevents drop_caches from setting mapping to NULL beneath us.
659          *
660          * The case we do have to guard against is when memory pressure made
661          * shmem_writepage move it from filecache to swapcache beneath us:
662          * an unlikely race, but we do need to retry for page->mapping.
663          */
664         if (unlikely(!mapping)) {
665                 int shmem_swizzled;
666
667                 /*
668                  * Page lock is required to identify which special case above
669                  * applies. If this is really a shmem page then the page lock
670                  * will prevent unexpected transitions.
671                  */
672                 lock_page(page);
673                 shmem_swizzled = PageSwapCache(page) || page->mapping;
674                 unlock_page(page);
675                 put_page(page);
676
677                 if (shmem_swizzled)
678                         goto again;
679
680                 return -EFAULT;
681         }
682
683         /*
684          * Private mappings are handled in a simple way.
685          *
686          * If the futex key is stored on an anonymous page, then the associated
687          * object is the mm which is implicitly pinned by the calling process.
688          *
689          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
690          * it's a read-only handle, it's expected that futexes attach to
691          * the object not the particular process.
692          */
693         if (PageAnon(page)) {
694                 /*
695                  * A RO anonymous page will never change and thus doesn't make
696                  * sense for futex operations.
697                  */
698                 if (unlikely(should_fail_futex(fshared)) || ro) {
699                         err = -EFAULT;
700                         goto out;
701                 }
702
703                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
704                 key->private.mm = mm;
705                 key->private.address = address;
706
707         } else {
708                 struct inode *inode;
709
710                 /*
711                  * The associated futex object in this case is the inode and
712                  * the page->mapping must be traversed. Ordinarily this should
713                  * be stabilised under page lock but it's not strictly
714                  * necessary in this case as we just want to pin the inode, not
715                  * update the radix tree or anything like that.
716                  *
717                  * The RCU read lock is taken as the inode is finally freed
718                  * under RCU. If the mapping still matches expectations then the
719                  * mapping->host can be safely accessed as being a valid inode.
720                  */
721                 rcu_read_lock();
722
723                 if (READ_ONCE(page->mapping) != mapping) {
724                         rcu_read_unlock();
725                         put_page(page);
726
727                         goto again;
728                 }
729
730                 inode = READ_ONCE(mapping->host);
731                 if (!inode) {
732                         rcu_read_unlock();
733                         put_page(page);
734
735                         goto again;
736                 }
737
738                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
739                 key->shared.i_seq = get_inode_sequence_number(inode);
740                 key->shared.pgoff = page_to_pgoff(tail);
741                 rcu_read_unlock();
742         }
743
744         get_futex_key_refs(key); /* implies smp_mb(); (B) */
745
746 out:
747         put_page(page);
748         return err;
749 }
750
751 static inline void put_futex_key(union futex_key *key)
752 {
753         drop_futex_key_refs(key);
754 }
755
756 /**
757  * fault_in_user_writeable() - Fault in user address and verify RW access
758  * @uaddr:      pointer to faulting user space address
759  *
760  * Slow path to fixup the fault we just took in the atomic write
761  * access to @uaddr.
762  *
763  * We have no generic implementation of a non-destructive write to the
764  * user address. We know that we faulted in the atomic pagefault
765  * disabled section so we can as well avoid the #PF overhead by
766  * calling get_user_pages() right away.
767  */
768 static int fault_in_user_writeable(u32 __user *uaddr)
769 {
770         struct mm_struct *mm = current->mm;
771         int ret;
772
773         down_read(&mm->mmap_sem);
774         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
775                                FAULT_FLAG_WRITE, NULL);
776         up_read(&mm->mmap_sem);
777
778         return ret < 0 ? ret : 0;
779 }
780
781 /**
782  * futex_top_waiter() - Return the highest priority waiter on a futex
783  * @hb:         the hash bucket the futex_q's reside in
784  * @key:        the futex key (to distinguish it from other futex futex_q's)
785  *
786  * Must be called with the hb lock held.
787  */
788 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
789                                         union futex_key *key)
790 {
791         struct futex_q *this;
792
793         plist_for_each_entry(this, &hb->chain, list) {
794                 if (match_futex(&this->key, key))
795                         return this;
796         }
797         return NULL;
798 }
799
800 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
801                                       u32 uval, u32 newval)
802 {
803         int ret;
804
805         pagefault_disable();
806         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
807         pagefault_enable();
808
809         return ret;
810 }
811
812 static int get_futex_value_locked(u32 *dest, u32 __user *from)
813 {
814         int ret;
815
816         pagefault_disable();
817         ret = __get_user(*dest, from);
818         pagefault_enable();
819
820         return ret ? -EFAULT : 0;
821 }
822
823
824 /*
825  * PI code:
826  */
827 static int refill_pi_state_cache(void)
828 {
829         struct futex_pi_state *pi_state;
830
831         if (likely(current->pi_state_cache))
832                 return 0;
833
834         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
835
836         if (!pi_state)
837                 return -ENOMEM;
838
839         INIT_LIST_HEAD(&pi_state->list);
840         /* pi_mutex gets initialized later */
841         pi_state->owner = NULL;
842         refcount_set(&pi_state->refcount, 1);
843         pi_state->key = FUTEX_KEY_INIT;
844
845         current->pi_state_cache = pi_state;
846
847         return 0;
848 }
849
850 static struct futex_pi_state *alloc_pi_state(void)
851 {
852         struct futex_pi_state *pi_state = current->pi_state_cache;
853
854         WARN_ON(!pi_state);
855         current->pi_state_cache = NULL;
856
857         return pi_state;
858 }
859
860 static void pi_state_update_owner(struct futex_pi_state *pi_state,
861                                   struct task_struct *new_owner)
862 {
863         struct task_struct *old_owner = pi_state->owner;
864
865         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
866
867         if (old_owner) {
868                 raw_spin_lock(&old_owner->pi_lock);
869                 WARN_ON(list_empty(&pi_state->list));
870                 list_del_init(&pi_state->list);
871                 raw_spin_unlock(&old_owner->pi_lock);
872         }
873
874         if (new_owner) {
875                 raw_spin_lock(&new_owner->pi_lock);
876                 WARN_ON(!list_empty(&pi_state->list));
877                 list_add(&pi_state->list, &new_owner->pi_state_list);
878                 pi_state->owner = new_owner;
879                 raw_spin_unlock(&new_owner->pi_lock);
880         }
881 }
882
883 static void get_pi_state(struct futex_pi_state *pi_state)
884 {
885         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
886 }
887
888 /*
889  * Drops a reference to the pi_state object and frees or caches it
890  * when the last reference is gone.
891  */
892 static void put_pi_state(struct futex_pi_state *pi_state)
893 {
894         if (!pi_state)
895                 return;
896
897         if (!refcount_dec_and_test(&pi_state->refcount))
898                 return;
899
900         /*
901          * If pi_state->owner is NULL, the owner is most probably dying
902          * and has cleaned up the pi_state already
903          */
904         if (pi_state->owner) {
905                 unsigned long flags;
906
907                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
908                 pi_state_update_owner(pi_state, NULL);
909                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
910                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
911         }
912
913         if (current->pi_state_cache) {
914                 kfree(pi_state);
915         } else {
916                 /*
917                  * pi_state->list is already empty.
918                  * clear pi_state->owner.
919                  * refcount is at 0 - put it back to 1.
920                  */
921                 pi_state->owner = NULL;
922                 refcount_set(&pi_state->refcount, 1);
923                 current->pi_state_cache = pi_state;
924         }
925 }
926
927 #ifdef CONFIG_FUTEX_PI
928
929 /*
930  * This task is holding PI mutexes at exit time => bad.
931  * Kernel cleans up PI-state, but userspace is likely hosed.
932  * (Robust-futex cleanup is separate and might save the day for userspace.)
933  */
934 static void exit_pi_state_list(struct task_struct *curr)
935 {
936         struct list_head *next, *head = &curr->pi_state_list;
937         struct futex_pi_state *pi_state;
938         struct futex_hash_bucket *hb;
939         union futex_key key = FUTEX_KEY_INIT;
940
941         if (!futex_cmpxchg_enabled)
942                 return;
943         /*
944          * We are a ZOMBIE and nobody can enqueue itself on
945          * pi_state_list anymore, but we have to be careful
946          * versus waiters unqueueing themselves:
947          */
948         raw_spin_lock_irq(&curr->pi_lock);
949         while (!list_empty(head)) {
950                 next = head->next;
951                 pi_state = list_entry(next, struct futex_pi_state, list);
952                 key = pi_state->key;
953                 hb = hash_futex(&key);
954
955                 /*
956                  * We can race against put_pi_state() removing itself from the
957                  * list (a waiter going away). put_pi_state() will first
958                  * decrement the reference count and then modify the list, so
959                  * its possible to see the list entry but fail this reference
960                  * acquire.
961                  *
962                  * In that case; drop the locks to let put_pi_state() make
963                  * progress and retry the loop.
964                  */
965                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
966                         raw_spin_unlock_irq(&curr->pi_lock);
967                         cpu_relax();
968                         raw_spin_lock_irq(&curr->pi_lock);
969                         continue;
970                 }
971                 raw_spin_unlock_irq(&curr->pi_lock);
972
973                 spin_lock(&hb->lock);
974                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
975                 raw_spin_lock(&curr->pi_lock);
976                 /*
977                  * We dropped the pi-lock, so re-check whether this
978                  * task still owns the PI-state:
979                  */
980                 if (head->next != next) {
981                         /* retain curr->pi_lock for the loop invariant */
982                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
983                         spin_unlock(&hb->lock);
984                         put_pi_state(pi_state);
985                         continue;
986                 }
987
988                 WARN_ON(pi_state->owner != curr);
989                 WARN_ON(list_empty(&pi_state->list));
990                 list_del_init(&pi_state->list);
991                 pi_state->owner = NULL;
992
993                 raw_spin_unlock(&curr->pi_lock);
994                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
995                 spin_unlock(&hb->lock);
996
997                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
998                 put_pi_state(pi_state);
999
1000                 raw_spin_lock_irq(&curr->pi_lock);
1001         }
1002         raw_spin_unlock_irq(&curr->pi_lock);
1003 }
1004 #else
1005 static inline void exit_pi_state_list(struct task_struct *curr) { }
1006 #endif
1007
1008 /*
1009  * We need to check the following states:
1010  *
1011  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
1012  *
1013  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
1014  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
1015  *
1016  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
1017  *
1018  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
1019  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
1020  *
1021  * [6]  Found  | Found    | task      | 0         | 1      | Valid
1022  *
1023  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
1024  *
1025  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
1026  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
1027  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
1028  *
1029  * [1]  Indicates that the kernel can acquire the futex atomically. We
1030  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1031  *
1032  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
1033  *      thread is found then it indicates that the owner TID has died.
1034  *
1035  * [3]  Invalid. The waiter is queued on a non PI futex
1036  *
1037  * [4]  Valid state after exit_robust_list(), which sets the user space
1038  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1039  *
1040  * [5]  The user space value got manipulated between exit_robust_list()
1041  *      and exit_pi_state_list()
1042  *
1043  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1044  *      the pi_state but cannot access the user space value.
1045  *
1046  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1047  *
1048  * [8]  Owner and user space value match
1049  *
1050  * [9]  There is no transient state which sets the user space TID to 0
1051  *      except exit_robust_list(), but this is indicated by the
1052  *      FUTEX_OWNER_DIED bit. See [4]
1053  *
1054  * [10] There is no transient state which leaves owner and user space
1055  *      TID out of sync. Except one error case where the kernel is denied
1056  *      write access to the user address, see fixup_pi_state_owner().
1057  *
1058  *
1059  * Serialization and lifetime rules:
1060  *
1061  * hb->lock:
1062  *
1063  *      hb -> futex_q, relation
1064  *      futex_q -> pi_state, relation
1065  *
1066  *      (cannot be raw because hb can contain arbitrary amount
1067  *       of futex_q's)
1068  *
1069  * pi_mutex->wait_lock:
1070  *
1071  *      {uval, pi_state}
1072  *
1073  *      (and pi_mutex 'obviously')
1074  *
1075  * p->pi_lock:
1076  *
1077  *      p->pi_state_list -> pi_state->list, relation
1078  *
1079  * pi_state->refcount:
1080  *
1081  *      pi_state lifetime
1082  *
1083  *
1084  * Lock order:
1085  *
1086  *   hb->lock
1087  *     pi_mutex->wait_lock
1088  *       p->pi_lock
1089  *
1090  */
1091
1092 /*
1093  * Validate that the existing waiter has a pi_state and sanity check
1094  * the pi_state against the user space value. If correct, attach to
1095  * it.
1096  */
1097 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1098                               struct futex_pi_state *pi_state,
1099                               struct futex_pi_state **ps)
1100 {
1101         pid_t pid = uval & FUTEX_TID_MASK;
1102         u32 uval2;
1103         int ret;
1104
1105         /*
1106          * Userspace might have messed up non-PI and PI futexes [3]
1107          */
1108         if (unlikely(!pi_state))
1109                 return -EINVAL;
1110
1111         /*
1112          * We get here with hb->lock held, and having found a
1113          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1114          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1115          * which in turn means that futex_lock_pi() still has a reference on
1116          * our pi_state.
1117          *
1118          * The waiter holding a reference on @pi_state also protects against
1119          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1120          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1121          * free pi_state before we can take a reference ourselves.
1122          */
1123         WARN_ON(!refcount_read(&pi_state->refcount));
1124
1125         /*
1126          * Now that we have a pi_state, we can acquire wait_lock
1127          * and do the state validation.
1128          */
1129         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1130
1131         /*
1132          * Since {uval, pi_state} is serialized by wait_lock, and our current
1133          * uval was read without holding it, it can have changed. Verify it
1134          * still is what we expect it to be, otherwise retry the entire
1135          * operation.
1136          */
1137         if (get_futex_value_locked(&uval2, uaddr))
1138                 goto out_efault;
1139
1140         if (uval != uval2)
1141                 goto out_eagain;
1142
1143         /*
1144          * Handle the owner died case:
1145          */
1146         if (uval & FUTEX_OWNER_DIED) {
1147                 /*
1148                  * exit_pi_state_list sets owner to NULL and wakes the
1149                  * topmost waiter. The task which acquires the
1150                  * pi_state->rt_mutex will fixup owner.
1151                  */
1152                 if (!pi_state->owner) {
1153                         /*
1154                          * No pi state owner, but the user space TID
1155                          * is not 0. Inconsistent state. [5]
1156                          */
1157                         if (pid)
1158                                 goto out_einval;
1159                         /*
1160                          * Take a ref on the state and return success. [4]
1161                          */
1162                         goto out_attach;
1163                 }
1164
1165                 /*
1166                  * If TID is 0, then either the dying owner has not
1167                  * yet executed exit_pi_state_list() or some waiter
1168                  * acquired the rtmutex in the pi state, but did not
1169                  * yet fixup the TID in user space.
1170                  *
1171                  * Take a ref on the state and return success. [6]
1172                  */
1173                 if (!pid)
1174                         goto out_attach;
1175         } else {
1176                 /*
1177                  * If the owner died bit is not set, then the pi_state
1178                  * must have an owner. [7]
1179                  */
1180                 if (!pi_state->owner)
1181                         goto out_einval;
1182         }
1183
1184         /*
1185          * Bail out if user space manipulated the futex value. If pi
1186          * state exists then the owner TID must be the same as the
1187          * user space TID. [9/10]
1188          */
1189         if (pid != task_pid_vnr(pi_state->owner))
1190                 goto out_einval;
1191
1192 out_attach:
1193         get_pi_state(pi_state);
1194         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1195         *ps = pi_state;
1196         return 0;
1197
1198 out_einval:
1199         ret = -EINVAL;
1200         goto out_error;
1201
1202 out_eagain:
1203         ret = -EAGAIN;
1204         goto out_error;
1205
1206 out_efault:
1207         ret = -EFAULT;
1208         goto out_error;
1209
1210 out_error:
1211         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1212         return ret;
1213 }
1214
1215 /**
1216  * wait_for_owner_exiting - Block until the owner has exited
1217  * @exiting:    Pointer to the exiting task
1218  *
1219  * Caller must hold a refcount on @exiting.
1220  */
1221 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1222 {
1223         if (ret != -EBUSY) {
1224                 WARN_ON_ONCE(exiting);
1225                 return;
1226         }
1227
1228         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1229                 return;
1230
1231         mutex_lock(&exiting->futex_exit_mutex);
1232         /*
1233          * No point in doing state checking here. If the waiter got here
1234          * while the task was in exec()->exec_futex_release() then it can
1235          * have any FUTEX_STATE_* value when the waiter has acquired the
1236          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1237          * already. Highly unlikely and not a problem. Just one more round
1238          * through the futex maze.
1239          */
1240         mutex_unlock(&exiting->futex_exit_mutex);
1241
1242         put_task_struct(exiting);
1243 }
1244
1245 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1246                             struct task_struct *tsk)
1247 {
1248         u32 uval2;
1249
1250         /*
1251          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1252          * caller that the alleged owner is busy.
1253          */
1254         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1255                 return -EBUSY;
1256
1257         /*
1258          * Reread the user space value to handle the following situation:
1259          *
1260          * CPU0                         CPU1
1261          *
1262          * sys_exit()                   sys_futex()
1263          *  do_exit()                    futex_lock_pi()
1264          *                                futex_lock_pi_atomic()
1265          *   exit_signals(tsk)              No waiters:
1266          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1267          *  mm_release(tsk)                 Set waiter bit
1268          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1269          *      Set owner died              attach_to_pi_owner() {
1270          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1271          *   }                               if (!tsk->flags & PF_EXITING) {
1272          *  ...                                attach();
1273          *  tsk->futex_state =               } else {
1274          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1275          *                                        FUTEX_STATE_DEAD)
1276          *                                       return -EAGAIN;
1277          *                                     return -ESRCH; <--- FAIL
1278          *                                   }
1279          *
1280          * Returning ESRCH unconditionally is wrong here because the
1281          * user space value has been changed by the exiting task.
1282          *
1283          * The same logic applies to the case where the exiting task is
1284          * already gone.
1285          */
1286         if (get_futex_value_locked(&uval2, uaddr))
1287                 return -EFAULT;
1288
1289         /* If the user space value has changed, try again. */
1290         if (uval2 != uval)
1291                 return -EAGAIN;
1292
1293         /*
1294          * The exiting task did not have a robust list, the robust list was
1295          * corrupted or the user space value in *uaddr is simply bogus.
1296          * Give up and tell user space.
1297          */
1298         return -ESRCH;
1299 }
1300
1301 /*
1302  * Lookup the task for the TID provided from user space and attach to
1303  * it after doing proper sanity checks.
1304  */
1305 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1306                               struct futex_pi_state **ps,
1307                               struct task_struct **exiting)
1308 {
1309         pid_t pid = uval & FUTEX_TID_MASK;
1310         struct futex_pi_state *pi_state;
1311         struct task_struct *p;
1312
1313         /*
1314          * We are the first waiter - try to look up the real owner and attach
1315          * the new pi_state to it, but bail out when TID = 0 [1]
1316          *
1317          * The !pid check is paranoid. None of the call sites should end up
1318          * with pid == 0, but better safe than sorry. Let the caller retry
1319          */
1320         if (!pid)
1321                 return -EAGAIN;
1322         p = find_get_task_by_vpid(pid);
1323         if (!p)
1324                 return handle_exit_race(uaddr, uval, NULL);
1325
1326         if (unlikely(p->flags & PF_KTHREAD)) {
1327                 put_task_struct(p);
1328                 return -EPERM;
1329         }
1330
1331         /*
1332          * We need to look at the task state to figure out, whether the
1333          * task is exiting. To protect against the change of the task state
1334          * in futex_exit_release(), we do this protected by p->pi_lock:
1335          */
1336         raw_spin_lock_irq(&p->pi_lock);
1337         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1338                 /*
1339                  * The task is on the way out. When the futex state is
1340                  * FUTEX_STATE_DEAD, we know that the task has finished
1341                  * the cleanup:
1342                  */
1343                 int ret = handle_exit_race(uaddr, uval, p);
1344
1345                 raw_spin_unlock_irq(&p->pi_lock);
1346                 /*
1347                  * If the owner task is between FUTEX_STATE_EXITING and
1348                  * FUTEX_STATE_DEAD then store the task pointer and keep
1349                  * the reference on the task struct. The calling code will
1350                  * drop all locks, wait for the task to reach
1351                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1352                  * required to prevent a live lock when the current task
1353                  * preempted the exiting task between the two states.
1354                  */
1355                 if (ret == -EBUSY)
1356                         *exiting = p;
1357                 else
1358                         put_task_struct(p);
1359                 return ret;
1360         }
1361
1362         /*
1363          * No existing pi state. First waiter. [2]
1364          *
1365          * This creates pi_state, we have hb->lock held, this means nothing can
1366          * observe this state, wait_lock is irrelevant.
1367          */
1368         pi_state = alloc_pi_state();
1369
1370         /*
1371          * Initialize the pi_mutex in locked state and make @p
1372          * the owner of it:
1373          */
1374         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1375
1376         /* Store the key for possible exit cleanups: */
1377         pi_state->key = *key;
1378
1379         WARN_ON(!list_empty(&pi_state->list));
1380         list_add(&pi_state->list, &p->pi_state_list);
1381         /*
1382          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1383          * because there is no concurrency as the object is not published yet.
1384          */
1385         pi_state->owner = p;
1386         raw_spin_unlock_irq(&p->pi_lock);
1387
1388         put_task_struct(p);
1389
1390         *ps = pi_state;
1391
1392         return 0;
1393 }
1394
1395 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1396                            struct futex_hash_bucket *hb,
1397                            union futex_key *key, struct futex_pi_state **ps,
1398                            struct task_struct **exiting)
1399 {
1400         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1401
1402         /*
1403          * If there is a waiter on that futex, validate it and
1404          * attach to the pi_state when the validation succeeds.
1405          */
1406         if (top_waiter)
1407                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1408
1409         /*
1410          * We are the first waiter - try to look up the owner based on
1411          * @uval and attach to it.
1412          */
1413         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1414 }
1415
1416 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1417 {
1418         int err;
1419         u32 curval;
1420
1421         if (unlikely(should_fail_futex(true)))
1422                 return -EFAULT;
1423
1424         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1425         if (unlikely(err))
1426                 return err;
1427
1428         /* If user space value changed, let the caller retry */
1429         return curval != uval ? -EAGAIN : 0;
1430 }
1431
1432 /**
1433  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1434  * @uaddr:              the pi futex user address
1435  * @hb:                 the pi futex hash bucket
1436  * @key:                the futex key associated with uaddr and hb
1437  * @ps:                 the pi_state pointer where we store the result of the
1438  *                      lookup
1439  * @task:               the task to perform the atomic lock work for.  This will
1440  *                      be "current" except in the case of requeue pi.
1441  * @exiting:            Pointer to store the task pointer of the owner task
1442  *                      which is in the middle of exiting
1443  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1444  *
1445  * Return:
1446  *  -  0 - ready to wait;
1447  *  -  1 - acquired the lock;
1448  *  - <0 - error
1449  *
1450  * The hb->lock and futex_key refs shall be held by the caller.
1451  *
1452  * @exiting is only set when the return value is -EBUSY. If so, this holds
1453  * a refcount on the exiting task on return and the caller needs to drop it
1454  * after waiting for the exit to complete.
1455  */
1456 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1457                                 union futex_key *key,
1458                                 struct futex_pi_state **ps,
1459                                 struct task_struct *task,
1460                                 struct task_struct **exiting,
1461                                 int set_waiters)
1462 {
1463         u32 uval, newval, vpid = task_pid_vnr(task);
1464         struct futex_q *top_waiter;
1465         int ret;
1466
1467         /*
1468          * Read the user space value first so we can validate a few
1469          * things before proceeding further.
1470          */
1471         if (get_futex_value_locked(&uval, uaddr))
1472                 return -EFAULT;
1473
1474         if (unlikely(should_fail_futex(true)))
1475                 return -EFAULT;
1476
1477         /*
1478          * Detect deadlocks.
1479          */
1480         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1481                 return -EDEADLK;
1482
1483         if ((unlikely(should_fail_futex(true))))
1484                 return -EDEADLK;
1485
1486         /*
1487          * Lookup existing state first. If it exists, try to attach to
1488          * its pi_state.
1489          */
1490         top_waiter = futex_top_waiter(hb, key);
1491         if (top_waiter)
1492                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1493
1494         /*
1495          * No waiter and user TID is 0. We are here because the
1496          * waiters or the owner died bit is set or called from
1497          * requeue_cmp_pi or for whatever reason something took the
1498          * syscall.
1499          */
1500         if (!(uval & FUTEX_TID_MASK)) {
1501                 /*
1502                  * We take over the futex. No other waiters and the user space
1503                  * TID is 0. We preserve the owner died bit.
1504                  */
1505                 newval = uval & FUTEX_OWNER_DIED;
1506                 newval |= vpid;
1507
1508                 /* The futex requeue_pi code can enforce the waiters bit */
1509                 if (set_waiters)
1510                         newval |= FUTEX_WAITERS;
1511
1512                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1513                 /* If the take over worked, return 1 */
1514                 return ret < 0 ? ret : 1;
1515         }
1516
1517         /*
1518          * First waiter. Set the waiters bit before attaching ourself to
1519          * the owner. If owner tries to unlock, it will be forced into
1520          * the kernel and blocked on hb->lock.
1521          */
1522         newval = uval | FUTEX_WAITERS;
1523         ret = lock_pi_update_atomic(uaddr, uval, newval);
1524         if (ret)
1525                 return ret;
1526         /*
1527          * If the update of the user space value succeeded, we try to
1528          * attach to the owner. If that fails, no harm done, we only
1529          * set the FUTEX_WAITERS bit in the user space variable.
1530          */
1531         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1532 }
1533
1534 /**
1535  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1536  * @q:  The futex_q to unqueue
1537  *
1538  * The q->lock_ptr must not be NULL and must be held by the caller.
1539  */
1540 static void __unqueue_futex(struct futex_q *q)
1541 {
1542         struct futex_hash_bucket *hb;
1543
1544         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1545                 return;
1546         lockdep_assert_held(q->lock_ptr);
1547
1548         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1549         plist_del(&q->list, &hb->chain);
1550         hb_waiters_dec(hb);
1551 }
1552
1553 /*
1554  * The hash bucket lock must be held when this is called.
1555  * Afterwards, the futex_q must not be accessed. Callers
1556  * must ensure to later call wake_up_q() for the actual
1557  * wakeups to occur.
1558  */
1559 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1560 {
1561         struct task_struct *p = q->task;
1562
1563         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1564                 return;
1565
1566         get_task_struct(p);
1567         __unqueue_futex(q);
1568         /*
1569          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1570          * is written, without taking any locks. This is possible in the event
1571          * of a spurious wakeup, for example. A memory barrier is required here
1572          * to prevent the following store to lock_ptr from getting ahead of the
1573          * plist_del in __unqueue_futex().
1574          */
1575         smp_store_release(&q->lock_ptr, NULL);
1576
1577         /*
1578          * Queue the task for later wakeup for after we've released
1579          * the hb->lock. wake_q_add() grabs reference to p.
1580          */
1581         wake_q_add_safe(wake_q, p);
1582 }
1583
1584 /*
1585  * Caller must hold a reference on @pi_state.
1586  */
1587 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1588 {
1589         u32 curval, newval;
1590         struct task_struct *new_owner;
1591         bool postunlock = false;
1592         DEFINE_WAKE_Q(wake_q);
1593         int ret = 0;
1594
1595         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1596         if (WARN_ON_ONCE(!new_owner)) {
1597                 /*
1598                  * As per the comment in futex_unlock_pi() this should not happen.
1599                  *
1600                  * When this happens, give up our locks and try again, giving
1601                  * the futex_lock_pi() instance time to complete, either by
1602                  * waiting on the rtmutex or removing itself from the futex
1603                  * queue.
1604                  */
1605                 ret = -EAGAIN;
1606                 goto out_unlock;
1607         }
1608
1609         /*
1610          * We pass it to the next owner. The WAITERS bit is always kept
1611          * enabled while there is PI state around. We cleanup the owner
1612          * died bit, because we are the owner.
1613          */
1614         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1615
1616         if (unlikely(should_fail_futex(true))) {
1617                 ret = -EFAULT;
1618                 goto out_unlock;
1619         }
1620
1621         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1622         if (!ret && (curval != uval)) {
1623                 /*
1624                  * If a unconditional UNLOCK_PI operation (user space did not
1625                  * try the TID->0 transition) raced with a waiter setting the
1626                  * FUTEX_WAITERS flag between get_user() and locking the hash
1627                  * bucket lock, retry the operation.
1628                  */
1629                 if ((FUTEX_TID_MASK & curval) == uval)
1630                         ret = -EAGAIN;
1631                 else
1632                         ret = -EINVAL;
1633         }
1634
1635         if (!ret) {
1636                 /*
1637                  * This is a point of no return; once we modified the uval
1638                  * there is no going back and subsequent operations must
1639                  * not fail.
1640                  */
1641                 pi_state_update_owner(pi_state, new_owner);
1642                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1643         }
1644
1645 out_unlock:
1646         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1647
1648         if (postunlock)
1649                 rt_mutex_postunlock(&wake_q);
1650
1651         return ret;
1652 }
1653
1654 /*
1655  * Express the locking dependencies for lockdep:
1656  */
1657 static inline void
1658 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1659 {
1660         if (hb1 <= hb2) {
1661                 spin_lock(&hb1->lock);
1662                 if (hb1 < hb2)
1663                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1664         } else { /* hb1 > hb2 */
1665                 spin_lock(&hb2->lock);
1666                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1667         }
1668 }
1669
1670 static inline void
1671 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1672 {
1673         spin_unlock(&hb1->lock);
1674         if (hb1 != hb2)
1675                 spin_unlock(&hb2->lock);
1676 }
1677
1678 /*
1679  * Wake up waiters matching bitset queued on this futex (uaddr).
1680  */
1681 static int
1682 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1683 {
1684         struct futex_hash_bucket *hb;
1685         struct futex_q *this, *next;
1686         union futex_key key = FUTEX_KEY_INIT;
1687         int ret;
1688         DEFINE_WAKE_Q(wake_q);
1689
1690         if (!bitset)
1691                 return -EINVAL;
1692
1693         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1694         if (unlikely(ret != 0))
1695                 goto out;
1696
1697         hb = hash_futex(&key);
1698
1699         /* Make sure we really have tasks to wakeup */
1700         if (!hb_waiters_pending(hb))
1701                 goto out_put_key;
1702
1703         spin_lock(&hb->lock);
1704
1705         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1706                 if (match_futex (&this->key, &key)) {
1707                         if (this->pi_state || this->rt_waiter) {
1708                                 ret = -EINVAL;
1709                                 break;
1710                         }
1711
1712                         /* Check if one of the bits is set in both bitsets */
1713                         if (!(this->bitset & bitset))
1714                                 continue;
1715
1716                         mark_wake_futex(&wake_q, this);
1717                         if (++ret >= nr_wake)
1718                                 break;
1719                 }
1720         }
1721
1722         spin_unlock(&hb->lock);
1723         wake_up_q(&wake_q);
1724 out_put_key:
1725         put_futex_key(&key);
1726 out:
1727         return ret;
1728 }
1729
1730 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1731 {
1732         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1733         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1734         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1735         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1736         int oldval, ret;
1737
1738         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1739                 if (oparg < 0 || oparg > 31) {
1740                         char comm[sizeof(current->comm)];
1741                         /*
1742                          * kill this print and return -EINVAL when userspace
1743                          * is sane again
1744                          */
1745                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1746                                         get_task_comm(comm, current), oparg);
1747                         oparg &= 31;
1748                 }
1749                 oparg = 1 << oparg;
1750         }
1751
1752         if (!access_ok(uaddr, sizeof(u32)))
1753                 return -EFAULT;
1754
1755         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1756         if (ret)
1757                 return ret;
1758
1759         switch (cmp) {
1760         case FUTEX_OP_CMP_EQ:
1761                 return oldval == cmparg;
1762         case FUTEX_OP_CMP_NE:
1763                 return oldval != cmparg;
1764         case FUTEX_OP_CMP_LT:
1765                 return oldval < cmparg;
1766         case FUTEX_OP_CMP_GE:
1767                 return oldval >= cmparg;
1768         case FUTEX_OP_CMP_LE:
1769                 return oldval <= cmparg;
1770         case FUTEX_OP_CMP_GT:
1771                 return oldval > cmparg;
1772         default:
1773                 return -ENOSYS;
1774         }
1775 }
1776
1777 /*
1778  * Wake up all waiters hashed on the physical page that is mapped
1779  * to this virtual address:
1780  */
1781 static int
1782 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1783               int nr_wake, int nr_wake2, int op)
1784 {
1785         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1786         struct futex_hash_bucket *hb1, *hb2;
1787         struct futex_q *this, *next;
1788         int ret, op_ret;
1789         DEFINE_WAKE_Q(wake_q);
1790
1791 retry:
1792         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1793         if (unlikely(ret != 0))
1794                 goto out;
1795         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1796         if (unlikely(ret != 0))
1797                 goto out_put_key1;
1798
1799         hb1 = hash_futex(&key1);
1800         hb2 = hash_futex(&key2);
1801
1802 retry_private:
1803         double_lock_hb(hb1, hb2);
1804         op_ret = futex_atomic_op_inuser(op, uaddr2);
1805         if (unlikely(op_ret < 0)) {
1806                 double_unlock_hb(hb1, hb2);
1807
1808                 if (!IS_ENABLED(CONFIG_MMU) ||
1809                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1810                         /*
1811                          * we don't get EFAULT from MMU faults if we don't have
1812                          * an MMU, but we might get them from range checking
1813                          */
1814                         ret = op_ret;
1815                         goto out_put_keys;
1816                 }
1817
1818                 if (op_ret == -EFAULT) {
1819                         ret = fault_in_user_writeable(uaddr2);
1820                         if (ret)
1821                                 goto out_put_keys;
1822                 }
1823
1824                 if (!(flags & FLAGS_SHARED)) {
1825                         cond_resched();
1826                         goto retry_private;
1827                 }
1828
1829                 put_futex_key(&key2);
1830                 put_futex_key(&key1);
1831                 cond_resched();
1832                 goto retry;
1833         }
1834
1835         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1836                 if (match_futex (&this->key, &key1)) {
1837                         if (this->pi_state || this->rt_waiter) {
1838                                 ret = -EINVAL;
1839                                 goto out_unlock;
1840                         }
1841                         mark_wake_futex(&wake_q, this);
1842                         if (++ret >= nr_wake)
1843                                 break;
1844                 }
1845         }
1846
1847         if (op_ret > 0) {
1848                 op_ret = 0;
1849                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1850                         if (match_futex (&this->key, &key2)) {
1851                                 if (this->pi_state || this->rt_waiter) {
1852                                         ret = -EINVAL;
1853                                         goto out_unlock;
1854                                 }
1855                                 mark_wake_futex(&wake_q, this);
1856                                 if (++op_ret >= nr_wake2)
1857                                         break;
1858                         }
1859                 }
1860                 ret += op_ret;
1861         }
1862
1863 out_unlock:
1864         double_unlock_hb(hb1, hb2);
1865         wake_up_q(&wake_q);
1866 out_put_keys:
1867         put_futex_key(&key2);
1868 out_put_key1:
1869         put_futex_key(&key1);
1870 out:
1871         return ret;
1872 }
1873
1874 /**
1875  * requeue_futex() - Requeue a futex_q from one hb to another
1876  * @q:          the futex_q to requeue
1877  * @hb1:        the source hash_bucket
1878  * @hb2:        the target hash_bucket
1879  * @key2:       the new key for the requeued futex_q
1880  */
1881 static inline
1882 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1883                    struct futex_hash_bucket *hb2, union futex_key *key2)
1884 {
1885
1886         /*
1887          * If key1 and key2 hash to the same bucket, no need to
1888          * requeue.
1889          */
1890         if (likely(&hb1->chain != &hb2->chain)) {
1891                 plist_del(&q->list, &hb1->chain);
1892                 hb_waiters_dec(hb1);
1893                 hb_waiters_inc(hb2);
1894                 plist_add(&q->list, &hb2->chain);
1895                 q->lock_ptr = &hb2->lock;
1896         }
1897         get_futex_key_refs(key2);
1898         q->key = *key2;
1899 }
1900
1901 /**
1902  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1903  * @q:          the futex_q
1904  * @key:        the key of the requeue target futex
1905  * @hb:         the hash_bucket of the requeue target futex
1906  *
1907  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1908  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1909  * to the requeue target futex so the waiter can detect the wakeup on the right
1910  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1911  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1912  * to protect access to the pi_state to fixup the owner later.  Must be called
1913  * with both q->lock_ptr and hb->lock held.
1914  */
1915 static inline
1916 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1917                            struct futex_hash_bucket *hb)
1918 {
1919         get_futex_key_refs(key);
1920         q->key = *key;
1921
1922         __unqueue_futex(q);
1923
1924         WARN_ON(!q->rt_waiter);
1925         q->rt_waiter = NULL;
1926
1927         q->lock_ptr = &hb->lock;
1928
1929         wake_up_state(q->task, TASK_NORMAL);
1930 }
1931
1932 /**
1933  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1934  * @pifutex:            the user address of the to futex
1935  * @hb1:                the from futex hash bucket, must be locked by the caller
1936  * @hb2:                the to futex hash bucket, must be locked by the caller
1937  * @key1:               the from futex key
1938  * @key2:               the to futex key
1939  * @ps:                 address to store the pi_state pointer
1940  * @exiting:            Pointer to store the task pointer of the owner task
1941  *                      which is in the middle of exiting
1942  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1943  *
1944  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1945  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1946  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1947  * hb1 and hb2 must be held by the caller.
1948  *
1949  * @exiting is only set when the return value is -EBUSY. If so, this holds
1950  * a refcount on the exiting task on return and the caller needs to drop it
1951  * after waiting for the exit to complete.
1952  *
1953  * Return:
1954  *  -  0 - failed to acquire the lock atomically;
1955  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1956  *  - <0 - error
1957  */
1958 static int
1959 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1960                            struct futex_hash_bucket *hb2, union futex_key *key1,
1961                            union futex_key *key2, struct futex_pi_state **ps,
1962                            struct task_struct **exiting, int set_waiters)
1963 {
1964         struct futex_q *top_waiter = NULL;
1965         u32 curval;
1966         int ret, vpid;
1967
1968         if (get_futex_value_locked(&curval, pifutex))
1969                 return -EFAULT;
1970
1971         if (unlikely(should_fail_futex(true)))
1972                 return -EFAULT;
1973
1974         /*
1975          * Find the top_waiter and determine if there are additional waiters.
1976          * If the caller intends to requeue more than 1 waiter to pifutex,
1977          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1978          * as we have means to handle the possible fault.  If not, don't set
1979          * the bit unecessarily as it will force the subsequent unlock to enter
1980          * the kernel.
1981          */
1982         top_waiter = futex_top_waiter(hb1, key1);
1983
1984         /* There are no waiters, nothing for us to do. */
1985         if (!top_waiter)
1986                 return 0;
1987
1988         /* Ensure we requeue to the expected futex. */
1989         if (!match_futex(top_waiter->requeue_pi_key, key2))
1990                 return -EINVAL;
1991
1992         /*
1993          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1994          * the contended case or if set_waiters is 1.  The pi_state is returned
1995          * in ps in contended cases.
1996          */
1997         vpid = task_pid_vnr(top_waiter->task);
1998         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1999                                    exiting, set_waiters);
2000         if (ret == 1) {
2001                 requeue_pi_wake_futex(top_waiter, key2, hb2);
2002                 return vpid;
2003         }
2004         return ret;
2005 }
2006
2007 /**
2008  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2009  * @uaddr1:     source futex user address
2010  * @flags:      futex flags (FLAGS_SHARED, etc.)
2011  * @uaddr2:     target futex user address
2012  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
2013  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2014  * @cmpval:     @uaddr1 expected value (or %NULL)
2015  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2016  *              pi futex (pi to pi requeue is not supported)
2017  *
2018  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2019  * uaddr2 atomically on behalf of the top waiter.
2020  *
2021  * Return:
2022  *  - >=0 - on success, the number of tasks requeued or woken;
2023  *  -  <0 - on error
2024  */
2025 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2026                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
2027                          u32 *cmpval, int requeue_pi)
2028 {
2029         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2030         int drop_count = 0, task_count = 0, ret;
2031         struct futex_pi_state *pi_state = NULL;
2032         struct futex_hash_bucket *hb1, *hb2;
2033         struct futex_q *this, *next;
2034         DEFINE_WAKE_Q(wake_q);
2035
2036         if (nr_wake < 0 || nr_requeue < 0)
2037                 return -EINVAL;
2038
2039         /*
2040          * When PI not supported: return -ENOSYS if requeue_pi is true,
2041          * consequently the compiler knows requeue_pi is always false past
2042          * this point which will optimize away all the conditional code
2043          * further down.
2044          */
2045         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2046                 return -ENOSYS;
2047
2048         if (requeue_pi) {
2049                 /*
2050                  * Requeue PI only works on two distinct uaddrs. This
2051                  * check is only valid for private futexes. See below.
2052                  */
2053                 if (uaddr1 == uaddr2)
2054                         return -EINVAL;
2055
2056                 /*
2057                  * requeue_pi requires a pi_state, try to allocate it now
2058                  * without any locks in case it fails.
2059                  */
2060                 if (refill_pi_state_cache())
2061                         return -ENOMEM;
2062                 /*
2063                  * requeue_pi must wake as many tasks as it can, up to nr_wake
2064                  * + nr_requeue, since it acquires the rt_mutex prior to
2065                  * returning to userspace, so as to not leave the rt_mutex with
2066                  * waiters and no owner.  However, second and third wake-ups
2067                  * cannot be predicted as they involve race conditions with the
2068                  * first wake and a fault while looking up the pi_state.  Both
2069                  * pthread_cond_signal() and pthread_cond_broadcast() should
2070                  * use nr_wake=1.
2071                  */
2072                 if (nr_wake != 1)
2073                         return -EINVAL;
2074         }
2075
2076 retry:
2077         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2078         if (unlikely(ret != 0))
2079                 goto out;
2080         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2081                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2082         if (unlikely(ret != 0))
2083                 goto out_put_key1;
2084
2085         /*
2086          * The check above which compares uaddrs is not sufficient for
2087          * shared futexes. We need to compare the keys:
2088          */
2089         if (requeue_pi && match_futex(&key1, &key2)) {
2090                 ret = -EINVAL;
2091                 goto out_put_keys;
2092         }
2093
2094         hb1 = hash_futex(&key1);
2095         hb2 = hash_futex(&key2);
2096
2097 retry_private:
2098         hb_waiters_inc(hb2);
2099         double_lock_hb(hb1, hb2);
2100
2101         if (likely(cmpval != NULL)) {
2102                 u32 curval;
2103
2104                 ret = get_futex_value_locked(&curval, uaddr1);
2105
2106                 if (unlikely(ret)) {
2107                         double_unlock_hb(hb1, hb2);
2108                         hb_waiters_dec(hb2);
2109
2110                         ret = get_user(curval, uaddr1);
2111                         if (ret)
2112                                 goto out_put_keys;
2113
2114                         if (!(flags & FLAGS_SHARED))
2115                                 goto retry_private;
2116
2117                         put_futex_key(&key2);
2118                         put_futex_key(&key1);
2119                         goto retry;
2120                 }
2121                 if (curval != *cmpval) {
2122                         ret = -EAGAIN;
2123                         goto out_unlock;
2124                 }
2125         }
2126
2127         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2128                 struct task_struct *exiting = NULL;
2129
2130                 /*
2131                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2132                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2133                  * bit.  We force this here where we are able to easily handle
2134                  * faults rather in the requeue loop below.
2135                  */
2136                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2137                                                  &key2, &pi_state,
2138                                                  &exiting, nr_requeue);
2139
2140                 /*
2141                  * At this point the top_waiter has either taken uaddr2 or is
2142                  * waiting on it.  If the former, then the pi_state will not
2143                  * exist yet, look it up one more time to ensure we have a
2144                  * reference to it. If the lock was taken, ret contains the
2145                  * vpid of the top waiter task.
2146                  * If the lock was not taken, we have pi_state and an initial
2147                  * refcount on it. In case of an error we have nothing.
2148                  */
2149                 if (ret > 0) {
2150                         WARN_ON(pi_state);
2151                         drop_count++;
2152                         task_count++;
2153                         /*
2154                          * If we acquired the lock, then the user space value
2155                          * of uaddr2 should be vpid. It cannot be changed by
2156                          * the top waiter as it is blocked on hb2 lock if it
2157                          * tries to do so. If something fiddled with it behind
2158                          * our back the pi state lookup might unearth it. So
2159                          * we rather use the known value than rereading and
2160                          * handing potential crap to lookup_pi_state.
2161                          *
2162                          * If that call succeeds then we have pi_state and an
2163                          * initial refcount on it.
2164                          */
2165                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2166                                               &pi_state, &exiting);
2167                 }
2168
2169                 switch (ret) {
2170                 case 0:
2171                         /* We hold a reference on the pi state. */
2172                         break;
2173
2174                         /* If the above failed, then pi_state is NULL */
2175                 case -EFAULT:
2176                         double_unlock_hb(hb1, hb2);
2177                         hb_waiters_dec(hb2);
2178                         put_futex_key(&key2);
2179                         put_futex_key(&key1);
2180                         ret = fault_in_user_writeable(uaddr2);
2181                         if (!ret)
2182                                 goto retry;
2183                         goto out;
2184                 case -EBUSY:
2185                 case -EAGAIN:
2186                         /*
2187                          * Two reasons for this:
2188                          * - EBUSY: Owner is exiting and we just wait for the
2189                          *   exit to complete.
2190                          * - EAGAIN: The user space value changed.
2191                          */
2192                         double_unlock_hb(hb1, hb2);
2193                         hb_waiters_dec(hb2);
2194                         put_futex_key(&key2);
2195                         put_futex_key(&key1);
2196                         /*
2197                          * Handle the case where the owner is in the middle of
2198                          * exiting. Wait for the exit to complete otherwise
2199                          * this task might loop forever, aka. live lock.
2200                          */
2201                         wait_for_owner_exiting(ret, exiting);
2202                         cond_resched();
2203                         goto retry;
2204                 default:
2205                         goto out_unlock;
2206                 }
2207         }
2208
2209         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2210                 if (task_count - nr_wake >= nr_requeue)
2211                         break;
2212
2213                 if (!match_futex(&this->key, &key1))
2214                         continue;
2215
2216                 /*
2217                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2218                  * be paired with each other and no other futex ops.
2219                  *
2220                  * We should never be requeueing a futex_q with a pi_state,
2221                  * which is awaiting a futex_unlock_pi().
2222                  */
2223                 if ((requeue_pi && !this->rt_waiter) ||
2224                     (!requeue_pi && this->rt_waiter) ||
2225                     this->pi_state) {
2226                         ret = -EINVAL;
2227                         break;
2228                 }
2229
2230                 /*
2231                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2232                  * lock, we already woke the top_waiter.  If not, it will be
2233                  * woken by futex_unlock_pi().
2234                  */
2235                 if (++task_count <= nr_wake && !requeue_pi) {
2236                         mark_wake_futex(&wake_q, this);
2237                         continue;
2238                 }
2239
2240                 /* Ensure we requeue to the expected futex for requeue_pi. */
2241                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2242                         ret = -EINVAL;
2243                         break;
2244                 }
2245
2246                 /*
2247                  * Requeue nr_requeue waiters and possibly one more in the case
2248                  * of requeue_pi if we couldn't acquire the lock atomically.
2249                  */
2250                 if (requeue_pi) {
2251                         /*
2252                          * Prepare the waiter to take the rt_mutex. Take a
2253                          * refcount on the pi_state and store the pointer in
2254                          * the futex_q object of the waiter.
2255                          */
2256                         get_pi_state(pi_state);
2257                         this->pi_state = pi_state;
2258                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2259                                                         this->rt_waiter,
2260                                                         this->task);
2261                         if (ret == 1) {
2262                                 /*
2263                                  * We got the lock. We do neither drop the
2264                                  * refcount on pi_state nor clear
2265                                  * this->pi_state because the waiter needs the
2266                                  * pi_state for cleaning up the user space
2267                                  * value. It will drop the refcount after
2268                                  * doing so.
2269                                  */
2270                                 requeue_pi_wake_futex(this, &key2, hb2);
2271                                 drop_count++;
2272                                 continue;
2273                         } else if (ret) {
2274                                 /*
2275                                  * rt_mutex_start_proxy_lock() detected a
2276                                  * potential deadlock when we tried to queue
2277                                  * that waiter. Drop the pi_state reference
2278                                  * which we took above and remove the pointer
2279                                  * to the state from the waiters futex_q
2280                                  * object.
2281                                  */
2282                                 this->pi_state = NULL;
2283                                 put_pi_state(pi_state);
2284                                 /*
2285                                  * We stop queueing more waiters and let user
2286                                  * space deal with the mess.
2287                                  */
2288                                 break;
2289                         }
2290                 }
2291                 requeue_futex(this, hb1, hb2, &key2);
2292                 drop_count++;
2293         }
2294
2295         /*
2296          * We took an extra initial reference to the pi_state either
2297          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2298          * need to drop it here again.
2299          */
2300         put_pi_state(pi_state);
2301
2302 out_unlock:
2303         double_unlock_hb(hb1, hb2);
2304         wake_up_q(&wake_q);
2305         hb_waiters_dec(hb2);
2306
2307         /*
2308          * drop_futex_key_refs() must be called outside the spinlocks. During
2309          * the requeue we moved futex_q's from the hash bucket at key1 to the
2310          * one at key2 and updated their key pointer.  We no longer need to
2311          * hold the references to key1.
2312          */
2313         while (--drop_count >= 0)
2314                 drop_futex_key_refs(&key1);
2315
2316 out_put_keys:
2317         put_futex_key(&key2);
2318 out_put_key1:
2319         put_futex_key(&key1);
2320 out:
2321         return ret ? ret : task_count;
2322 }
2323
2324 /* The key must be already stored in q->key. */
2325 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2326         __acquires(&hb->lock)
2327 {
2328         struct futex_hash_bucket *hb;
2329
2330         hb = hash_futex(&q->key);
2331
2332         /*
2333          * Increment the counter before taking the lock so that
2334          * a potential waker won't miss a to-be-slept task that is
2335          * waiting for the spinlock. This is safe as all queue_lock()
2336          * users end up calling queue_me(). Similarly, for housekeeping,
2337          * decrement the counter at queue_unlock() when some error has
2338          * occurred and we don't end up adding the task to the list.
2339          */
2340         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2341
2342         q->lock_ptr = &hb->lock;
2343
2344         spin_lock(&hb->lock);
2345         return hb;
2346 }
2347
2348 static inline void
2349 queue_unlock(struct futex_hash_bucket *hb)
2350         __releases(&hb->lock)
2351 {
2352         spin_unlock(&hb->lock);
2353         hb_waiters_dec(hb);
2354 }
2355
2356 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2357 {
2358         int prio;
2359
2360         /*
2361          * The priority used to register this element is
2362          * - either the real thread-priority for the real-time threads
2363          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2364          * - or MAX_RT_PRIO for non-RT threads.
2365          * Thus, all RT-threads are woken first in priority order, and
2366          * the others are woken last, in FIFO order.
2367          */
2368         prio = min(current->normal_prio, MAX_RT_PRIO);
2369
2370         plist_node_init(&q->list, prio);
2371         plist_add(&q->list, &hb->chain);
2372         q->task = current;
2373 }
2374
2375 /**
2376  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2377  * @q:  The futex_q to enqueue
2378  * @hb: The destination hash bucket
2379  *
2380  * The hb->lock must be held by the caller, and is released here. A call to
2381  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2382  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2383  * or nothing if the unqueue is done as part of the wake process and the unqueue
2384  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2385  * an example).
2386  */
2387 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2388         __releases(&hb->lock)
2389 {
2390         __queue_me(q, hb);
2391         spin_unlock(&hb->lock);
2392 }
2393
2394 /**
2395  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2396  * @q:  The futex_q to unqueue
2397  *
2398  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2399  * be paired with exactly one earlier call to queue_me().
2400  *
2401  * Return:
2402  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2403  *  - 0 - if the futex_q was already removed by the waking thread
2404  */
2405 static int unqueue_me(struct futex_q *q)
2406 {
2407         spinlock_t *lock_ptr;
2408         int ret = 0;
2409
2410         /* In the common case we don't take the spinlock, which is nice. */
2411 retry:
2412         /*
2413          * q->lock_ptr can change between this read and the following spin_lock.
2414          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2415          * optimizing lock_ptr out of the logic below.
2416          */
2417         lock_ptr = READ_ONCE(q->lock_ptr);
2418         if (lock_ptr != NULL) {
2419                 spin_lock(lock_ptr);
2420                 /*
2421                  * q->lock_ptr can change between reading it and
2422                  * spin_lock(), causing us to take the wrong lock.  This
2423                  * corrects the race condition.
2424                  *
2425                  * Reasoning goes like this: if we have the wrong lock,
2426                  * q->lock_ptr must have changed (maybe several times)
2427                  * between reading it and the spin_lock().  It can
2428                  * change again after the spin_lock() but only if it was
2429                  * already changed before the spin_lock().  It cannot,
2430                  * however, change back to the original value.  Therefore
2431                  * we can detect whether we acquired the correct lock.
2432                  */
2433                 if (unlikely(lock_ptr != q->lock_ptr)) {
2434                         spin_unlock(lock_ptr);
2435                         goto retry;
2436                 }
2437                 __unqueue_futex(q);
2438
2439                 BUG_ON(q->pi_state);
2440
2441                 spin_unlock(lock_ptr);
2442                 ret = 1;
2443         }
2444
2445         drop_futex_key_refs(&q->key);
2446         return ret;
2447 }
2448
2449 /*
2450  * PI futexes can not be requeued and must remove themself from the
2451  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2452  * and dropped here.
2453  */
2454 static void unqueue_me_pi(struct futex_q *q)
2455         __releases(q->lock_ptr)
2456 {
2457         __unqueue_futex(q);
2458
2459         BUG_ON(!q->pi_state);
2460         put_pi_state(q->pi_state);
2461         q->pi_state = NULL;
2462
2463         spin_unlock(q->lock_ptr);
2464 }
2465
2466 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2467                                   struct task_struct *argowner)
2468 {
2469         u32 uval, uninitialized_var(curval), newval, newtid;
2470         struct futex_pi_state *pi_state = q->pi_state;
2471         struct task_struct *oldowner, *newowner;
2472         int err = 0;
2473
2474         oldowner = pi_state->owner;
2475
2476         /*
2477          * We are here because either:
2478          *
2479          *  - we stole the lock and pi_state->owner needs updating to reflect
2480          *    that (@argowner == current),
2481          *
2482          * or:
2483          *
2484          *  - someone stole our lock and we need to fix things to point to the
2485          *    new owner (@argowner == NULL).
2486          *
2487          * Either way, we have to replace the TID in the user space variable.
2488          * This must be atomic as we have to preserve the owner died bit here.
2489          *
2490          * Note: We write the user space value _before_ changing the pi_state
2491          * because we can fault here. Imagine swapped out pages or a fork
2492          * that marked all the anonymous memory readonly for cow.
2493          *
2494          * Modifying pi_state _before_ the user space value would leave the
2495          * pi_state in an inconsistent state when we fault here, because we
2496          * need to drop the locks to handle the fault. This might be observed
2497          * in the PID check in lookup_pi_state.
2498          */
2499 retry:
2500         if (!argowner) {
2501                 if (oldowner != current) {
2502                         /*
2503                          * We raced against a concurrent self; things are
2504                          * already fixed up. Nothing to do.
2505                          */
2506                         return 0;
2507                 }
2508
2509                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2510                         /* We got the lock. pi_state is correct. Tell caller. */
2511                         return 1;
2512                 }
2513
2514                 /*
2515                  * The trylock just failed, so either there is an owner or
2516                  * there is a higher priority waiter than this one.
2517                  */
2518                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2519                 /*
2520                  * If the higher priority waiter has not yet taken over the
2521                  * rtmutex then newowner is NULL. We can't return here with
2522                  * that state because it's inconsistent vs. the user space
2523                  * state. So drop the locks and try again. It's a valid
2524                  * situation and not any different from the other retry
2525                  * conditions.
2526                  */
2527                 if (unlikely(!newowner)) {
2528                         err = -EAGAIN;
2529                         goto handle_err;
2530                 }
2531         } else {
2532                 WARN_ON_ONCE(argowner != current);
2533                 if (oldowner == current) {
2534                         /*
2535                          * We raced against a concurrent self; things are
2536                          * already fixed up. Nothing to do.
2537                          */
2538                         return 1;
2539                 }
2540                 newowner = argowner;
2541         }
2542
2543         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2544         /* Owner died? */
2545         if (!pi_state->owner)
2546                 newtid |= FUTEX_OWNER_DIED;
2547
2548         err = get_futex_value_locked(&uval, uaddr);
2549         if (err)
2550                 goto handle_err;
2551
2552         for (;;) {
2553                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2554
2555                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2556                 if (err)
2557                         goto handle_err;
2558
2559                 if (curval == uval)
2560                         break;
2561                 uval = curval;
2562         }
2563
2564         /*
2565          * We fixed up user space. Now we need to fix the pi_state
2566          * itself.
2567          */
2568         pi_state_update_owner(pi_state, newowner);
2569
2570         return argowner == current;
2571
2572         /*
2573          * In order to reschedule or handle a page fault, we need to drop the
2574          * locks here. In the case of a fault, this gives the other task
2575          * (either the highest priority waiter itself or the task which stole
2576          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2577          * are back from handling the fault we need to check the pi_state after
2578          * reacquiring the locks and before trying to do another fixup. When
2579          * the fixup has been done already we simply return.
2580          *
2581          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2582          * drop hb->lock since the caller owns the hb -> futex_q relation.
2583          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2584          */
2585 handle_err:
2586         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2587         spin_unlock(q->lock_ptr);
2588
2589         switch (err) {
2590         case -EFAULT:
2591                 err = fault_in_user_writeable(uaddr);
2592                 break;
2593
2594         case -EAGAIN:
2595                 cond_resched();
2596                 err = 0;
2597                 break;
2598
2599         default:
2600                 WARN_ON_ONCE(1);
2601                 break;
2602         }
2603
2604         spin_lock(q->lock_ptr);
2605         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2606
2607         /*
2608          * Check if someone else fixed it for us:
2609          */
2610         if (pi_state->owner != oldowner)
2611                 return argowner == current;
2612
2613         /* Retry if err was -EAGAIN or the fault in succeeded */
2614         if (!err)
2615                 goto retry;
2616
2617         /*
2618          * fault_in_user_writeable() failed so user state is immutable. At
2619          * best we can make the kernel state consistent but user state will
2620          * be most likely hosed and any subsequent unlock operation will be
2621          * rejected due to PI futex rule [10].
2622          *
2623          * Ensure that the rtmutex owner is also the pi_state owner despite
2624          * the user space value claiming something different. There is no
2625          * point in unlocking the rtmutex if current is the owner as it
2626          * would need to wait until the next waiter has taken the rtmutex
2627          * to guarantee consistent state. Keep it simple. Userspace asked
2628          * for this wreckaged state.
2629          *
2630          * The rtmutex has an owner - either current or some other
2631          * task. See the EAGAIN loop above.
2632          */
2633         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2634
2635         return err;
2636 }
2637
2638 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2639                                 struct task_struct *argowner)
2640 {
2641         struct futex_pi_state *pi_state = q->pi_state;
2642         int ret;
2643
2644         lockdep_assert_held(q->lock_ptr);
2645
2646         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2647         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2648         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2649         return ret;
2650 }
2651
2652 static long futex_wait_restart(struct restart_block *restart);
2653
2654 /**
2655  * fixup_owner() - Post lock pi_state and corner case management
2656  * @uaddr:      user address of the futex
2657  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2658  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2659  *
2660  * After attempting to lock an rt_mutex, this function is called to cleanup
2661  * the pi_state owner as well as handle race conditions that may allow us to
2662  * acquire the lock. Must be called with the hb lock held.
2663  *
2664  * Return:
2665  *  -  1 - success, lock taken;
2666  *  -  0 - success, lock not taken;
2667  *  - <0 - on error (-EFAULT)
2668  */
2669 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2670 {
2671         if (locked) {
2672                 /*
2673                  * Got the lock. We might not be the anticipated owner if we
2674                  * did a lock-steal - fix up the PI-state in that case:
2675                  *
2676                  * Speculative pi_state->owner read (we don't hold wait_lock);
2677                  * since we own the lock pi_state->owner == current is the
2678                  * stable state, anything else needs more attention.
2679                  */
2680                 if (q->pi_state->owner != current)
2681                         return fixup_pi_state_owner(uaddr, q, current);
2682                 return 1;
2683         }
2684
2685         /*
2686          * If we didn't get the lock; check if anybody stole it from us. In
2687          * that case, we need to fix up the uval to point to them instead of
2688          * us, otherwise bad things happen. [10]
2689          *
2690          * Another speculative read; pi_state->owner == current is unstable
2691          * but needs our attention.
2692          */
2693         if (q->pi_state->owner == current)
2694                 return fixup_pi_state_owner(uaddr, q, NULL);
2695
2696         /*
2697          * Paranoia check. If we did not take the lock, then we should not be
2698          * the owner of the rt_mutex. Warn and establish consistent state.
2699          */
2700         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2701                 return fixup_pi_state_owner(uaddr, q, current);
2702
2703         return 0;
2704 }
2705
2706 /**
2707  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2708  * @hb:         the futex hash bucket, must be locked by the caller
2709  * @q:          the futex_q to queue up on
2710  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2711  */
2712 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2713                                 struct hrtimer_sleeper *timeout)
2714 {
2715         /*
2716          * The task state is guaranteed to be set before another task can
2717          * wake it. set_current_state() is implemented using smp_store_mb() and
2718          * queue_me() calls spin_unlock() upon completion, both serializing
2719          * access to the hash list and forcing another memory barrier.
2720          */
2721         set_current_state(TASK_INTERRUPTIBLE);
2722         queue_me(q, hb);
2723
2724         /* Arm the timer */
2725         if (timeout)
2726                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2727
2728         /*
2729          * If we have been removed from the hash list, then another task
2730          * has tried to wake us, and we can skip the call to schedule().
2731          */
2732         if (likely(!plist_node_empty(&q->list))) {
2733                 /*
2734                  * If the timer has already expired, current will already be
2735                  * flagged for rescheduling. Only call schedule if there
2736                  * is no timeout, or if it has yet to expire.
2737                  */
2738                 if (!timeout || timeout->task)
2739                         freezable_schedule();
2740         }
2741         __set_current_state(TASK_RUNNING);
2742 }
2743
2744 /**
2745  * futex_wait_setup() - Prepare to wait on a futex
2746  * @uaddr:      the futex userspace address
2747  * @val:        the expected value
2748  * @flags:      futex flags (FLAGS_SHARED, etc.)
2749  * @q:          the associated futex_q
2750  * @hb:         storage for hash_bucket pointer to be returned to caller
2751  *
2752  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2753  * compare it with the expected value.  Handle atomic faults internally.
2754  * Return with the hb lock held and a q.key reference on success, and unlocked
2755  * with no q.key reference on failure.
2756  *
2757  * Return:
2758  *  -  0 - uaddr contains val and hb has been locked;
2759  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2760  */
2761 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2762                            struct futex_q *q, struct futex_hash_bucket **hb)
2763 {
2764         u32 uval;
2765         int ret;
2766
2767         /*
2768          * Access the page AFTER the hash-bucket is locked.
2769          * Order is important:
2770          *
2771          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2772          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2773          *
2774          * The basic logical guarantee of a futex is that it blocks ONLY
2775          * if cond(var) is known to be true at the time of blocking, for
2776          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2777          * would open a race condition where we could block indefinitely with
2778          * cond(var) false, which would violate the guarantee.
2779          *
2780          * On the other hand, we insert q and release the hash-bucket only
2781          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2782          * absorb a wakeup if *uaddr does not match the desired values
2783          * while the syscall executes.
2784          */
2785 retry:
2786         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2787         if (unlikely(ret != 0))
2788                 return ret;
2789
2790 retry_private:
2791         *hb = queue_lock(q);
2792
2793         ret = get_futex_value_locked(&uval, uaddr);
2794
2795         if (ret) {
2796                 queue_unlock(*hb);
2797
2798                 ret = get_user(uval, uaddr);
2799                 if (ret)
2800                         goto out;
2801
2802                 if (!(flags & FLAGS_SHARED))
2803                         goto retry_private;
2804
2805                 put_futex_key(&q->key);
2806                 goto retry;
2807         }
2808
2809         if (uval != val) {
2810                 queue_unlock(*hb);
2811                 ret = -EWOULDBLOCK;
2812         }
2813
2814 out:
2815         if (ret)
2816                 put_futex_key(&q->key);
2817         return ret;
2818 }
2819
2820 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2821                       ktime_t *abs_time, u32 bitset)
2822 {
2823         struct hrtimer_sleeper timeout, *to;
2824         struct restart_block *restart;
2825         struct futex_hash_bucket *hb;
2826         struct futex_q q = futex_q_init;
2827         int ret;
2828
2829         if (!bitset)
2830                 return -EINVAL;
2831         q.bitset = bitset;
2832
2833         to = futex_setup_timer(abs_time, &timeout, flags,
2834                                current->timer_slack_ns);
2835 retry:
2836         /*
2837          * Prepare to wait on uaddr. On success, holds hb lock and increments
2838          * q.key refs.
2839          */
2840         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2841         if (ret)
2842                 goto out;
2843
2844         /* queue_me and wait for wakeup, timeout, or a signal. */
2845         futex_wait_queue_me(hb, &q, to);
2846
2847         /* If we were woken (and unqueued), we succeeded, whatever. */
2848         ret = 0;
2849         /* unqueue_me() drops q.key ref */
2850         if (!unqueue_me(&q))
2851                 goto out;
2852         ret = -ETIMEDOUT;
2853         if (to && !to->task)
2854                 goto out;
2855
2856         /*
2857          * We expect signal_pending(current), but we might be the
2858          * victim of a spurious wakeup as well.
2859          */
2860         if (!signal_pending(current))
2861                 goto retry;
2862
2863         ret = -ERESTARTSYS;
2864         if (!abs_time)
2865                 goto out;
2866
2867         restart = &current->restart_block;
2868         restart->futex.uaddr = uaddr;
2869         restart->futex.val = val;
2870         restart->futex.time = *abs_time;
2871         restart->futex.bitset = bitset;
2872         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2873
2874         ret = set_restart_fn(restart, futex_wait_restart);
2875
2876 out:
2877         if (to) {
2878                 hrtimer_cancel(&to->timer);
2879                 destroy_hrtimer_on_stack(&to->timer);
2880         }
2881         return ret;
2882 }
2883
2884
2885 static long futex_wait_restart(struct restart_block *restart)
2886 {
2887         u32 __user *uaddr = restart->futex.uaddr;
2888         ktime_t t, *tp = NULL;
2889
2890         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2891                 t = restart->futex.time;
2892                 tp = &t;
2893         }
2894         restart->fn = do_no_restart_syscall;
2895
2896         return (long)futex_wait(uaddr, restart->futex.flags,
2897                                 restart->futex.val, tp, restart->futex.bitset);
2898 }
2899
2900
2901 /*
2902  * Userspace tried a 0 -> TID atomic transition of the futex value
2903  * and failed. The kernel side here does the whole locking operation:
2904  * if there are waiters then it will block as a consequence of relying
2905  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2906  * a 0 value of the futex too.).
2907  *
2908  * Also serves as futex trylock_pi()'ing, and due semantics.
2909  */
2910 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2911                          ktime_t *time, int trylock)
2912 {
2913         struct hrtimer_sleeper timeout, *to;
2914         struct task_struct *exiting = NULL;
2915         struct rt_mutex_waiter rt_waiter;
2916         struct futex_hash_bucket *hb;
2917         struct futex_q q = futex_q_init;
2918         int res, ret;
2919
2920         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2921                 return -ENOSYS;
2922
2923         if (refill_pi_state_cache())
2924                 return -ENOMEM;
2925
2926         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2927
2928 retry:
2929         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2930         if (unlikely(ret != 0))
2931                 goto out;
2932
2933 retry_private:
2934         hb = queue_lock(&q);
2935
2936         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2937                                    &exiting, 0);
2938         if (unlikely(ret)) {
2939                 /*
2940                  * Atomic work succeeded and we got the lock,
2941                  * or failed. Either way, we do _not_ block.
2942                  */
2943                 switch (ret) {
2944                 case 1:
2945                         /* We got the lock. */
2946                         ret = 0;
2947                         goto out_unlock_put_key;
2948                 case -EFAULT:
2949                         goto uaddr_faulted;
2950                 case -EBUSY:
2951                 case -EAGAIN:
2952                         /*
2953                          * Two reasons for this:
2954                          * - EBUSY: Task is exiting and we just wait for the
2955                          *   exit to complete.
2956                          * - EAGAIN: The user space value changed.
2957                          */
2958                         queue_unlock(hb);
2959                         put_futex_key(&q.key);
2960                         /*
2961                          * Handle the case where the owner is in the middle of
2962                          * exiting. Wait for the exit to complete otherwise
2963                          * this task might loop forever, aka. live lock.
2964                          */
2965                         wait_for_owner_exiting(ret, exiting);
2966                         cond_resched();
2967                         goto retry;
2968                 default:
2969                         goto out_unlock_put_key;
2970                 }
2971         }
2972
2973         WARN_ON(!q.pi_state);
2974
2975         /*
2976          * Only actually queue now that the atomic ops are done:
2977          */
2978         __queue_me(&q, hb);
2979
2980         if (trylock) {
2981                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2982                 /* Fixup the trylock return value: */
2983                 ret = ret ? 0 : -EWOULDBLOCK;
2984                 goto no_block;
2985         }
2986
2987         rt_mutex_init_waiter(&rt_waiter);
2988
2989         /*
2990          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2991          * hold it while doing rt_mutex_start_proxy(), because then it will
2992          * include hb->lock in the blocking chain, even through we'll not in
2993          * fact hold it while blocking. This will lead it to report -EDEADLK
2994          * and BUG when futex_unlock_pi() interleaves with this.
2995          *
2996          * Therefore acquire wait_lock while holding hb->lock, but drop the
2997          * latter before calling __rt_mutex_start_proxy_lock(). This
2998          * interleaves with futex_unlock_pi() -- which does a similar lock
2999          * handoff -- such that the latter can observe the futex_q::pi_state
3000          * before __rt_mutex_start_proxy_lock() is done.
3001          */
3002         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
3003         spin_unlock(q.lock_ptr);
3004         /*
3005          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
3006          * such that futex_unlock_pi() is guaranteed to observe the waiter when
3007          * it sees the futex_q::pi_state.
3008          */
3009         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
3010         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
3011
3012         if (ret) {
3013                 if (ret == 1)
3014                         ret = 0;
3015                 goto cleanup;
3016         }
3017
3018         if (unlikely(to))
3019                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
3020
3021         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3022
3023 cleanup:
3024         spin_lock(q.lock_ptr);
3025         /*
3026          * If we failed to acquire the lock (deadlock/signal/timeout), we must
3027          * first acquire the hb->lock before removing the lock from the
3028          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3029          * lists consistent.
3030          *
3031          * In particular; it is important that futex_unlock_pi() can not
3032          * observe this inconsistency.
3033          */
3034         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3035                 ret = 0;
3036
3037 no_block:
3038         /*
3039          * Fixup the pi_state owner and possibly acquire the lock if we
3040          * haven't already.
3041          */
3042         res = fixup_owner(uaddr, &q, !ret);
3043         /*
3044          * If fixup_owner() returned an error, proprogate that.  If it acquired
3045          * the lock, clear our -ETIMEDOUT or -EINTR.
3046          */
3047         if (res)
3048                 ret = (res < 0) ? res : 0;
3049
3050         /* Unqueue and drop the lock */
3051         unqueue_me_pi(&q);
3052
3053         goto out_put_key;
3054
3055 out_unlock_put_key:
3056         queue_unlock(hb);
3057
3058 out_put_key:
3059         put_futex_key(&q.key);
3060 out:
3061         if (to) {
3062                 hrtimer_cancel(&to->timer);
3063                 destroy_hrtimer_on_stack(&to->timer);
3064         }
3065         return ret != -EINTR ? ret : -ERESTARTNOINTR;
3066
3067 uaddr_faulted:
3068         queue_unlock(hb);
3069
3070         ret = fault_in_user_writeable(uaddr);
3071         if (ret)
3072                 goto out_put_key;
3073
3074         if (!(flags & FLAGS_SHARED))
3075                 goto retry_private;
3076
3077         put_futex_key(&q.key);
3078         goto retry;
3079 }
3080
3081 /*
3082  * Userspace attempted a TID -> 0 atomic transition, and failed.
3083  * This is the in-kernel slowpath: we look up the PI state (if any),
3084  * and do the rt-mutex unlock.
3085  */
3086 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3087 {
3088         u32 curval, uval, vpid = task_pid_vnr(current);
3089         union futex_key key = FUTEX_KEY_INIT;
3090         struct futex_hash_bucket *hb;
3091         struct futex_q *top_waiter;
3092         int ret;
3093
3094         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3095                 return -ENOSYS;
3096
3097 retry:
3098         if (get_user(uval, uaddr))
3099                 return -EFAULT;
3100         /*
3101          * We release only a lock we actually own:
3102          */
3103         if ((uval & FUTEX_TID_MASK) != vpid)
3104                 return -EPERM;
3105
3106         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3107         if (ret)
3108                 return ret;
3109
3110         hb = hash_futex(&key);
3111         spin_lock(&hb->lock);
3112
3113         /*
3114          * Check waiters first. We do not trust user space values at
3115          * all and we at least want to know if user space fiddled
3116          * with the futex value instead of blindly unlocking.
3117          */
3118         top_waiter = futex_top_waiter(hb, &key);
3119         if (top_waiter) {
3120                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3121
3122                 ret = -EINVAL;
3123                 if (!pi_state)
3124                         goto out_unlock;
3125
3126                 /*
3127                  * If current does not own the pi_state then the futex is
3128                  * inconsistent and user space fiddled with the futex value.
3129                  */
3130                 if (pi_state->owner != current)
3131                         goto out_unlock;
3132
3133                 get_pi_state(pi_state);
3134                 /*
3135                  * By taking wait_lock while still holding hb->lock, we ensure
3136                  * there is no point where we hold neither; and therefore
3137                  * wake_futex_pi() must observe a state consistent with what we
3138                  * observed.
3139                  *
3140                  * In particular; this forces __rt_mutex_start_proxy() to
3141                  * complete such that we're guaranteed to observe the
3142                  * rt_waiter. Also see the WARN in wake_futex_pi().
3143                  */
3144                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3145                 spin_unlock(&hb->lock);
3146
3147                 /* drops pi_state->pi_mutex.wait_lock */
3148                 ret = wake_futex_pi(uaddr, uval, pi_state);
3149
3150                 put_pi_state(pi_state);
3151
3152                 /*
3153                  * Success, we're done! No tricky corner cases.
3154                  */
3155                 if (!ret)
3156                         goto out_putkey;
3157                 /*
3158                  * The atomic access to the futex value generated a
3159                  * pagefault, so retry the user-access and the wakeup:
3160                  */
3161                 if (ret == -EFAULT)
3162                         goto pi_faulted;
3163                 /*
3164                  * A unconditional UNLOCK_PI op raced against a waiter
3165                  * setting the FUTEX_WAITERS bit. Try again.
3166                  */
3167                 if (ret == -EAGAIN)
3168                         goto pi_retry;
3169                 /*
3170                  * wake_futex_pi has detected invalid state. Tell user
3171                  * space.
3172                  */
3173                 goto out_putkey;
3174         }
3175
3176         /*
3177          * We have no kernel internal state, i.e. no waiters in the
3178          * kernel. Waiters which are about to queue themselves are stuck
3179          * on hb->lock. So we can safely ignore them. We do neither
3180          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3181          * owner.
3182          */
3183         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3184                 spin_unlock(&hb->lock);
3185                 switch (ret) {
3186                 case -EFAULT:
3187                         goto pi_faulted;
3188
3189                 case -EAGAIN:
3190                         goto pi_retry;
3191
3192                 default:
3193                         WARN_ON_ONCE(1);
3194                         goto out_putkey;
3195                 }
3196         }
3197
3198         /*
3199          * If uval has changed, let user space handle it.
3200          */
3201         ret = (curval == uval) ? 0 : -EAGAIN;
3202
3203 out_unlock:
3204         spin_unlock(&hb->lock);
3205 out_putkey:
3206         put_futex_key(&key);
3207         return ret;
3208
3209 pi_retry:
3210         put_futex_key(&key);
3211         cond_resched();
3212         goto retry;
3213
3214 pi_faulted:
3215         put_futex_key(&key);
3216
3217         ret = fault_in_user_writeable(uaddr);
3218         if (!ret)
3219                 goto retry;
3220
3221         return ret;
3222 }
3223
3224 /**
3225  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3226  * @hb:         the hash_bucket futex_q was original enqueued on
3227  * @q:          the futex_q woken while waiting to be requeued
3228  * @key2:       the futex_key of the requeue target futex
3229  * @timeout:    the timeout associated with the wait (NULL if none)
3230  *
3231  * Detect if the task was woken on the initial futex as opposed to the requeue
3232  * target futex.  If so, determine if it was a timeout or a signal that caused
3233  * the wakeup and return the appropriate error code to the caller.  Must be
3234  * called with the hb lock held.
3235  *
3236  * Return:
3237  *  -  0 = no early wakeup detected;
3238  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3239  */
3240 static inline
3241 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3242                                    struct futex_q *q, union futex_key *key2,
3243                                    struct hrtimer_sleeper *timeout)
3244 {
3245         int ret = 0;
3246
3247         /*
3248          * With the hb lock held, we avoid races while we process the wakeup.
3249          * We only need to hold hb (and not hb2) to ensure atomicity as the
3250          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3251          * It can't be requeued from uaddr2 to something else since we don't
3252          * support a PI aware source futex for requeue.
3253          */
3254         if (!match_futex(&q->key, key2)) {
3255                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3256                 /*
3257                  * We were woken prior to requeue by a timeout or a signal.
3258                  * Unqueue the futex_q and determine which it was.
3259                  */
3260                 plist_del(&q->list, &hb->chain);
3261                 hb_waiters_dec(hb);
3262
3263                 /* Handle spurious wakeups gracefully */
3264                 ret = -EWOULDBLOCK;
3265                 if (timeout && !timeout->task)
3266                         ret = -ETIMEDOUT;
3267                 else if (signal_pending(current))
3268                         ret = -ERESTARTNOINTR;
3269         }
3270         return ret;
3271 }
3272
3273 /**
3274  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3275  * @uaddr:      the futex we initially wait on (non-pi)
3276  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3277  *              the same type, no requeueing from private to shared, etc.
3278  * @val:        the expected value of uaddr
3279  * @abs_time:   absolute timeout
3280  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3281  * @uaddr2:     the pi futex we will take prior to returning to user-space
3282  *
3283  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3284  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3285  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3286  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3287  * without one, the pi logic would not know which task to boost/deboost, if
3288  * there was a need to.
3289  *
3290  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3291  * via the following--
3292  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3293  * 2) wakeup on uaddr2 after a requeue
3294  * 3) signal
3295  * 4) timeout
3296  *
3297  * If 3, cleanup and return -ERESTARTNOINTR.
3298  *
3299  * If 2, we may then block on trying to take the rt_mutex and return via:
3300  * 5) successful lock
3301  * 6) signal
3302  * 7) timeout
3303  * 8) other lock acquisition failure
3304  *
3305  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3306  *
3307  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3308  *
3309  * Return:
3310  *  -  0 - On success;
3311  *  - <0 - On error
3312  */
3313 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3314                                  u32 val, ktime_t *abs_time, u32 bitset,
3315                                  u32 __user *uaddr2)
3316 {
3317         struct hrtimer_sleeper timeout, *to;
3318         struct rt_mutex_waiter rt_waiter;
3319         struct futex_hash_bucket *hb;
3320         union futex_key key2 = FUTEX_KEY_INIT;
3321         struct futex_q q = futex_q_init;
3322         int res, ret;
3323
3324         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3325                 return -ENOSYS;
3326
3327         if (uaddr == uaddr2)
3328                 return -EINVAL;
3329
3330         if (!bitset)
3331                 return -EINVAL;
3332
3333         to = futex_setup_timer(abs_time, &timeout, flags,
3334                                current->timer_slack_ns);
3335
3336         /*
3337          * The waiter is allocated on our stack, manipulated by the requeue
3338          * code while we sleep on uaddr.
3339          */
3340         rt_mutex_init_waiter(&rt_waiter);
3341
3342         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3343         if (unlikely(ret != 0))
3344                 goto out;
3345
3346         q.bitset = bitset;
3347         q.rt_waiter = &rt_waiter;
3348         q.requeue_pi_key = &key2;
3349
3350         /*
3351          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3352          * count.
3353          */
3354         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3355         if (ret)
3356                 goto out_key2;
3357
3358         /*
3359          * The check above which compares uaddrs is not sufficient for
3360          * shared futexes. We need to compare the keys:
3361          */
3362         if (match_futex(&q.key, &key2)) {
3363                 queue_unlock(hb);
3364                 ret = -EINVAL;
3365                 goto out_put_keys;
3366         }
3367
3368         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3369         futex_wait_queue_me(hb, &q, to);
3370
3371         spin_lock(&hb->lock);
3372         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3373         spin_unlock(&hb->lock);
3374         if (ret)
3375                 goto out_put_keys;
3376
3377         /*
3378          * In order for us to be here, we know our q.key == key2, and since
3379          * we took the hb->lock above, we also know that futex_requeue() has
3380          * completed and we no longer have to concern ourselves with a wakeup
3381          * race with the atomic proxy lock acquisition by the requeue code. The
3382          * futex_requeue dropped our key1 reference and incremented our key2
3383          * reference count.
3384          */
3385
3386         /* Check if the requeue code acquired the second futex for us. */
3387         if (!q.rt_waiter) {
3388                 /*
3389                  * Got the lock. We might not be the anticipated owner if we
3390                  * did a lock-steal - fix up the PI-state in that case.
3391                  */
3392                 if (q.pi_state && (q.pi_state->owner != current)) {
3393                         spin_lock(q.lock_ptr);
3394                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3395                         /*
3396                          * Drop the reference to the pi state which
3397                          * the requeue_pi() code acquired for us.
3398                          */
3399                         put_pi_state(q.pi_state);
3400                         spin_unlock(q.lock_ptr);
3401                         /*
3402                          * Adjust the return value. It's either -EFAULT or
3403                          * success (1) but the caller expects 0 for success.
3404                          */
3405                         ret = ret < 0 ? ret : 0;
3406                 }
3407         } else {
3408                 struct rt_mutex *pi_mutex;
3409
3410                 /*
3411                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3412                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3413                  * the pi_state.
3414                  */
3415                 WARN_ON(!q.pi_state);
3416                 pi_mutex = &q.pi_state->pi_mutex;
3417                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3418
3419                 spin_lock(q.lock_ptr);
3420                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3421                         ret = 0;
3422
3423                 debug_rt_mutex_free_waiter(&rt_waiter);
3424                 /*
3425                  * Fixup the pi_state owner and possibly acquire the lock if we
3426                  * haven't already.
3427                  */
3428                 res = fixup_owner(uaddr2, &q, !ret);
3429                 /*
3430                  * If fixup_owner() returned an error, proprogate that.  If it
3431                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3432                  */
3433                 if (res)
3434                         ret = (res < 0) ? res : 0;
3435
3436                 /* Unqueue and drop the lock. */
3437                 unqueue_me_pi(&q);
3438         }
3439
3440         if (ret == -EINTR) {
3441                 /*
3442                  * We've already been requeued, but cannot restart by calling
3443                  * futex_lock_pi() directly. We could restart this syscall, but
3444                  * it would detect that the user space "val" changed and return
3445                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3446                  * -EWOULDBLOCK directly.
3447                  */
3448                 ret = -EWOULDBLOCK;
3449         }
3450
3451 out_put_keys:
3452         put_futex_key(&q.key);
3453 out_key2:
3454         put_futex_key(&key2);
3455
3456 out:
3457         if (to) {
3458                 hrtimer_cancel(&to->timer);
3459                 destroy_hrtimer_on_stack(&to->timer);
3460         }
3461         return ret;
3462 }
3463
3464 /*
3465  * Support for robust futexes: the kernel cleans up held futexes at
3466  * thread exit time.
3467  *
3468  * Implementation: user-space maintains a per-thread list of locks it
3469  * is holding. Upon do_exit(), the kernel carefully walks this list,
3470  * and marks all locks that are owned by this thread with the
3471  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3472  * always manipulated with the lock held, so the list is private and
3473  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3474  * field, to allow the kernel to clean up if the thread dies after
3475  * acquiring the lock, but just before it could have added itself to
3476  * the list. There can only be one such pending lock.
3477  */
3478
3479 /**
3480  * sys_set_robust_list() - Set the robust-futex list head of a task
3481  * @head:       pointer to the list-head
3482  * @len:        length of the list-head, as userspace expects
3483  */
3484 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3485                 size_t, len)
3486 {
3487         if (!futex_cmpxchg_enabled)
3488                 return -ENOSYS;
3489         /*
3490          * The kernel knows only one size for now:
3491          */
3492         if (unlikely(len != sizeof(*head)))
3493                 return -EINVAL;
3494
3495         current->robust_list = head;
3496
3497         return 0;
3498 }
3499
3500 /**
3501  * sys_get_robust_list() - Get the robust-futex list head of a task
3502  * @pid:        pid of the process [zero for current task]
3503  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3504  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3505  */
3506 SYSCALL_DEFINE3(get_robust_list, int, pid,
3507                 struct robust_list_head __user * __user *, head_ptr,
3508                 size_t __user *, len_ptr)
3509 {
3510         struct robust_list_head __user *head;
3511         unsigned long ret;
3512         struct task_struct *p;
3513
3514         if (!futex_cmpxchg_enabled)
3515                 return -ENOSYS;
3516
3517         rcu_read_lock();
3518
3519         ret = -ESRCH;
3520         if (!pid)
3521                 p = current;
3522         else {
3523                 p = find_task_by_vpid(pid);
3524                 if (!p)
3525                         goto err_unlock;
3526         }
3527
3528         ret = -EPERM;
3529         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3530                 goto err_unlock;
3531
3532         head = p->robust_list;
3533         rcu_read_unlock();
3534
3535         if (put_user(sizeof(*head), len_ptr))
3536                 return -EFAULT;
3537         return put_user(head, head_ptr);
3538
3539 err_unlock:
3540         rcu_read_unlock();
3541
3542         return ret;
3543 }
3544
3545 /* Constants for the pending_op argument of handle_futex_death */
3546 #define HANDLE_DEATH_PENDING    true
3547 #define HANDLE_DEATH_LIST       false
3548
3549 /*
3550  * Process a futex-list entry, check whether it's owned by the
3551  * dying task, and do notification if so:
3552  */
3553 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3554                               bool pi, bool pending_op)
3555 {
3556         u32 uval, nval, mval;
3557         int err;
3558
3559         /* Futex address must be 32bit aligned */
3560         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3561                 return -1;
3562
3563 retry:
3564         if (get_user(uval, uaddr))
3565                 return -1;
3566
3567         /*
3568          * Special case for regular (non PI) futexes. The unlock path in
3569          * user space has two race scenarios:
3570          *
3571          * 1. The unlock path releases the user space futex value and
3572          *    before it can execute the futex() syscall to wake up
3573          *    waiters it is killed.
3574          *
3575          * 2. A woken up waiter is killed before it can acquire the
3576          *    futex in user space.
3577          *
3578          * In both cases the TID validation below prevents a wakeup of
3579          * potential waiters which can cause these waiters to block
3580          * forever.
3581          *
3582          * In both cases the following conditions are met:
3583          *
3584          *      1) task->robust_list->list_op_pending != NULL
3585          *         @pending_op == true
3586          *      2) User space futex value == 0
3587          *      3) Regular futex: @pi == false
3588          *
3589          * If these conditions are met, it is safe to attempt waking up a
3590          * potential waiter without touching the user space futex value and
3591          * trying to set the OWNER_DIED bit. The user space futex value is
3592          * uncontended and the rest of the user space mutex state is
3593          * consistent, so a woken waiter will just take over the
3594          * uncontended futex. Setting the OWNER_DIED bit would create
3595          * inconsistent state and malfunction of the user space owner died
3596          * handling.
3597          */
3598         if (pending_op && !pi && !uval) {
3599                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3600                 return 0;
3601         }
3602
3603         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3604                 return 0;
3605
3606         /*
3607          * Ok, this dying thread is truly holding a futex
3608          * of interest. Set the OWNER_DIED bit atomically
3609          * via cmpxchg, and if the value had FUTEX_WAITERS
3610          * set, wake up a waiter (if any). (We have to do a
3611          * futex_wake() even if OWNER_DIED is already set -
3612          * to handle the rare but possible case of recursive
3613          * thread-death.) The rest of the cleanup is done in
3614          * userspace.
3615          */
3616         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3617
3618         /*
3619          * We are not holding a lock here, but we want to have
3620          * the pagefault_disable/enable() protection because
3621          * we want to handle the fault gracefully. If the
3622          * access fails we try to fault in the futex with R/W
3623          * verification via get_user_pages. get_user() above
3624          * does not guarantee R/W access. If that fails we
3625          * give up and leave the futex locked.
3626          */
3627         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3628                 switch (err) {
3629                 case -EFAULT:
3630                         if (fault_in_user_writeable(uaddr))
3631                                 return -1;
3632                         goto retry;
3633
3634                 case -EAGAIN:
3635                         cond_resched();
3636                         goto retry;
3637
3638                 default:
3639                         WARN_ON_ONCE(1);
3640                         return err;
3641                 }
3642         }
3643
3644         if (nval != uval)
3645                 goto retry;
3646
3647         /*
3648          * Wake robust non-PI futexes here. The wakeup of
3649          * PI futexes happens in exit_pi_state():
3650          */
3651         if (!pi && (uval & FUTEX_WAITERS))
3652                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3653
3654         return 0;
3655 }
3656
3657 /*
3658  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3659  */
3660 static inline int fetch_robust_entry(struct robust_list __user **entry,
3661                                      struct robust_list __user * __user *head,
3662                                      unsigned int *pi)
3663 {
3664         unsigned long uentry;
3665
3666         if (get_user(uentry, (unsigned long __user *)head))
3667                 return -EFAULT;
3668
3669         *entry = (void __user *)(uentry & ~1UL);
3670         *pi = uentry & 1;
3671
3672         return 0;
3673 }
3674
3675 /*
3676  * Walk curr->robust_list (very carefully, it's a userspace list!)
3677  * and mark any locks found there dead, and notify any waiters.
3678  *
3679  * We silently return on any sign of list-walking problem.
3680  */
3681 static void exit_robust_list(struct task_struct *curr)
3682 {
3683         struct robust_list_head __user *head = curr->robust_list;
3684         struct robust_list __user *entry, *next_entry, *pending;
3685         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3686         unsigned int next_pi;
3687         unsigned long futex_offset;
3688         int rc;
3689
3690         if (!futex_cmpxchg_enabled)
3691                 return;
3692
3693         /*
3694          * Fetch the list head (which was registered earlier, via
3695          * sys_set_robust_list()):
3696          */
3697         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3698                 return;
3699         /*
3700          * Fetch the relative futex offset:
3701          */
3702         if (get_user(futex_offset, &head->futex_offset))
3703                 return;
3704         /*
3705          * Fetch any possibly pending lock-add first, and handle it
3706          * if it exists:
3707          */
3708         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3709                 return;
3710
3711         next_entry = NULL;      /* avoid warning with gcc */
3712         while (entry != &head->list) {
3713                 /*
3714                  * Fetch the next entry in the list before calling
3715                  * handle_futex_death:
3716                  */
3717                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3718                 /*
3719                  * A pending lock might already be on the list, so
3720                  * don't process it twice:
3721                  */
3722                 if (entry != pending) {
3723                         if (handle_futex_death((void __user *)entry + futex_offset,
3724                                                 curr, pi, HANDLE_DEATH_LIST))
3725                                 return;
3726                 }
3727                 if (rc)
3728                         return;
3729                 entry = next_entry;
3730                 pi = next_pi;
3731                 /*
3732                  * Avoid excessively long or circular lists:
3733                  */
3734                 if (!--limit)
3735                         break;
3736
3737                 cond_resched();
3738         }
3739
3740         if (pending) {
3741                 handle_futex_death((void __user *)pending + futex_offset,
3742                                    curr, pip, HANDLE_DEATH_PENDING);
3743         }
3744 }
3745
3746 static void futex_cleanup(struct task_struct *tsk)
3747 {
3748         if (unlikely(tsk->robust_list)) {
3749                 exit_robust_list(tsk);
3750                 tsk->robust_list = NULL;
3751         }
3752
3753 #ifdef CONFIG_COMPAT
3754         if (unlikely(tsk->compat_robust_list)) {
3755                 compat_exit_robust_list(tsk);
3756                 tsk->compat_robust_list = NULL;
3757         }
3758 #endif
3759
3760         if (unlikely(!list_empty(&tsk->pi_state_list)))
3761                 exit_pi_state_list(tsk);
3762 }
3763
3764 /**
3765  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3766  * @tsk:        task to set the state on
3767  *
3768  * Set the futex exit state of the task lockless. The futex waiter code
3769  * observes that state when a task is exiting and loops until the task has
3770  * actually finished the futex cleanup. The worst case for this is that the
3771  * waiter runs through the wait loop until the state becomes visible.
3772  *
3773  * This is called from the recursive fault handling path in do_exit().
3774  *
3775  * This is best effort. Either the futex exit code has run already or
3776  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3777  * take it over. If not, the problem is pushed back to user space. If the
3778  * futex exit code did not run yet, then an already queued waiter might
3779  * block forever, but there is nothing which can be done about that.
3780  */
3781 void futex_exit_recursive(struct task_struct *tsk)
3782 {
3783         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3784         if (tsk->futex_state == FUTEX_STATE_EXITING)
3785                 mutex_unlock(&tsk->futex_exit_mutex);
3786         tsk->futex_state = FUTEX_STATE_DEAD;
3787 }
3788
3789 static void futex_cleanup_begin(struct task_struct *tsk)
3790 {
3791         /*
3792          * Prevent various race issues against a concurrent incoming waiter
3793          * including live locks by forcing the waiter to block on
3794          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3795          * attach_to_pi_owner().
3796          */
3797         mutex_lock(&tsk->futex_exit_mutex);
3798
3799         /*
3800          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3801          *
3802          * This ensures that all subsequent checks of tsk->futex_state in
3803          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3804          * tsk->pi_lock held.
3805          *
3806          * It guarantees also that a pi_state which was queued right before
3807          * the state change under tsk->pi_lock by a concurrent waiter must
3808          * be observed in exit_pi_state_list().
3809          */
3810         raw_spin_lock_irq(&tsk->pi_lock);
3811         tsk->futex_state = FUTEX_STATE_EXITING;
3812         raw_spin_unlock_irq(&tsk->pi_lock);
3813 }
3814
3815 static void futex_cleanup_end(struct task_struct *tsk, int state)
3816 {
3817         /*
3818          * Lockless store. The only side effect is that an observer might
3819          * take another loop until it becomes visible.
3820          */
3821         tsk->futex_state = state;
3822         /*
3823          * Drop the exit protection. This unblocks waiters which observed
3824          * FUTEX_STATE_EXITING to reevaluate the state.
3825          */
3826         mutex_unlock(&tsk->futex_exit_mutex);
3827 }
3828
3829 void futex_exec_release(struct task_struct *tsk)
3830 {
3831         /*
3832          * The state handling is done for consistency, but in the case of
3833          * exec() there is no way to prevent futher damage as the PID stays
3834          * the same. But for the unlikely and arguably buggy case that a
3835          * futex is held on exec(), this provides at least as much state
3836          * consistency protection which is possible.
3837          */
3838         futex_cleanup_begin(tsk);
3839         futex_cleanup(tsk);
3840         /*
3841          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3842          * exec a new binary.
3843          */
3844         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3845 }
3846
3847 void futex_exit_release(struct task_struct *tsk)
3848 {
3849         futex_cleanup_begin(tsk);
3850         futex_cleanup(tsk);
3851         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3852 }
3853
3854 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3855                 u32 __user *uaddr2, u32 val2, u32 val3)
3856 {
3857         int cmd = op & FUTEX_CMD_MASK;
3858         unsigned int flags = 0;
3859
3860         if (!(op & FUTEX_PRIVATE_FLAG))
3861                 flags |= FLAGS_SHARED;
3862
3863         if (op & FUTEX_CLOCK_REALTIME) {
3864                 flags |= FLAGS_CLOCKRT;
3865                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3866                         return -ENOSYS;
3867         }
3868
3869         switch (cmd) {
3870         case FUTEX_LOCK_PI:
3871         case FUTEX_UNLOCK_PI:
3872         case FUTEX_TRYLOCK_PI:
3873         case FUTEX_WAIT_REQUEUE_PI:
3874         case FUTEX_CMP_REQUEUE_PI:
3875                 if (!futex_cmpxchg_enabled)
3876                         return -ENOSYS;
3877         }
3878
3879         switch (cmd) {
3880         case FUTEX_WAIT:
3881                 val3 = FUTEX_BITSET_MATCH_ANY;
3882                 /* fall through */
3883         case FUTEX_WAIT_BITSET:
3884                 return futex_wait(uaddr, flags, val, timeout, val3);
3885         case FUTEX_WAKE:
3886                 val3 = FUTEX_BITSET_MATCH_ANY;
3887                 /* fall through */
3888         case FUTEX_WAKE_BITSET:
3889                 return futex_wake(uaddr, flags, val, val3);
3890         case FUTEX_REQUEUE:
3891                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3892         case FUTEX_CMP_REQUEUE:
3893                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3894         case FUTEX_WAKE_OP:
3895                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3896         case FUTEX_LOCK_PI:
3897                 return futex_lock_pi(uaddr, flags, timeout, 0);
3898         case FUTEX_UNLOCK_PI:
3899                 return futex_unlock_pi(uaddr, flags);
3900         case FUTEX_TRYLOCK_PI:
3901                 return futex_lock_pi(uaddr, flags, NULL, 1);
3902         case FUTEX_WAIT_REQUEUE_PI:
3903                 val3 = FUTEX_BITSET_MATCH_ANY;
3904                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3905                                              uaddr2);
3906         case FUTEX_CMP_REQUEUE_PI:
3907                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3908         }
3909         return -ENOSYS;
3910 }
3911
3912
3913 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3914                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3915                 u32, val3)
3916 {
3917         struct timespec64 ts;
3918         ktime_t t, *tp = NULL;
3919         u32 val2 = 0;
3920         int cmd = op & FUTEX_CMD_MASK;
3921
3922         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3923                       cmd == FUTEX_WAIT_BITSET ||
3924                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3925                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3926                         return -EFAULT;
3927                 if (get_timespec64(&ts, utime))
3928                         return -EFAULT;
3929                 if (!timespec64_valid(&ts))
3930                         return -EINVAL;
3931
3932                 t = timespec64_to_ktime(ts);
3933                 if (cmd == FUTEX_WAIT)
3934                         t = ktime_add_safe(ktime_get(), t);
3935                 tp = &t;
3936         }
3937         /*
3938          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3939          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3940          */
3941         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3942             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3943                 val2 = (u32) (unsigned long) utime;
3944
3945         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3946 }
3947
3948 #ifdef CONFIG_COMPAT
3949 /*
3950  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3951  */
3952 static inline int
3953 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3954                    compat_uptr_t __user *head, unsigned int *pi)
3955 {
3956         if (get_user(*uentry, head))
3957                 return -EFAULT;
3958
3959         *entry = compat_ptr((*uentry) & ~1);
3960         *pi = (unsigned int)(*uentry) & 1;
3961
3962         return 0;
3963 }
3964
3965 static void __user *futex_uaddr(struct robust_list __user *entry,
3966                                 compat_long_t futex_offset)
3967 {
3968         compat_uptr_t base = ptr_to_compat(entry);
3969         void __user *uaddr = compat_ptr(base + futex_offset);
3970
3971         return uaddr;
3972 }
3973
3974 /*
3975  * Walk curr->robust_list (very carefully, it's a userspace list!)
3976  * and mark any locks found there dead, and notify any waiters.
3977  *
3978  * We silently return on any sign of list-walking problem.
3979  */
3980 static void compat_exit_robust_list(struct task_struct *curr)
3981 {
3982         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3983         struct robust_list __user *entry, *next_entry, *pending;
3984         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3985         unsigned int next_pi;
3986         compat_uptr_t uentry, next_uentry, upending;
3987         compat_long_t futex_offset;
3988         int rc;
3989
3990         if (!futex_cmpxchg_enabled)
3991                 return;
3992
3993         /*
3994          * Fetch the list head (which was registered earlier, via
3995          * sys_set_robust_list()):
3996          */
3997         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3998                 return;
3999         /*
4000          * Fetch the relative futex offset:
4001          */
4002         if (get_user(futex_offset, &head->futex_offset))
4003                 return;
4004         /*
4005          * Fetch any possibly pending lock-add first, and handle it
4006          * if it exists:
4007          */
4008         if (compat_fetch_robust_entry(&upending, &pending,
4009                                &head->list_op_pending, &pip))
4010                 return;
4011
4012         next_entry = NULL;      /* avoid warning with gcc */
4013         while (entry != (struct robust_list __user *) &head->list) {
4014                 /*
4015                  * Fetch the next entry in the list before calling
4016                  * handle_futex_death:
4017                  */
4018                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4019                         (compat_uptr_t __user *)&entry->next, &next_pi);
4020                 /*
4021                  * A pending lock might already be on the list, so
4022                  * dont process it twice:
4023                  */
4024                 if (entry != pending) {
4025                         void __user *uaddr = futex_uaddr(entry, futex_offset);
4026
4027                         if (handle_futex_death(uaddr, curr, pi,
4028                                                HANDLE_DEATH_LIST))
4029                                 return;
4030                 }
4031                 if (rc)
4032                         return;
4033                 uentry = next_uentry;
4034                 entry = next_entry;
4035                 pi = next_pi;
4036                 /*
4037                  * Avoid excessively long or circular lists:
4038                  */
4039                 if (!--limit)
4040                         break;
4041
4042                 cond_resched();
4043         }
4044         if (pending) {
4045                 void __user *uaddr = futex_uaddr(pending, futex_offset);
4046
4047                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4048         }
4049 }
4050
4051 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4052                 struct compat_robust_list_head __user *, head,
4053                 compat_size_t, len)
4054 {
4055         if (!futex_cmpxchg_enabled)
4056                 return -ENOSYS;
4057
4058         if (unlikely(len != sizeof(*head)))
4059                 return -EINVAL;
4060
4061         current->compat_robust_list = head;
4062
4063         return 0;
4064 }
4065
4066 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4067                         compat_uptr_t __user *, head_ptr,
4068                         compat_size_t __user *, len_ptr)
4069 {
4070         struct compat_robust_list_head __user *head;
4071         unsigned long ret;
4072         struct task_struct *p;
4073
4074         if (!futex_cmpxchg_enabled)
4075                 return -ENOSYS;
4076
4077         rcu_read_lock();
4078
4079         ret = -ESRCH;
4080         if (!pid)
4081                 p = current;
4082         else {
4083                 p = find_task_by_vpid(pid);
4084                 if (!p)
4085                         goto err_unlock;
4086         }
4087
4088         ret = -EPERM;
4089         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4090                 goto err_unlock;
4091
4092         head = p->compat_robust_list;
4093         rcu_read_unlock();
4094
4095         if (put_user(sizeof(*head), len_ptr))
4096                 return -EFAULT;
4097         return put_user(ptr_to_compat(head), head_ptr);
4098
4099 err_unlock:
4100         rcu_read_unlock();
4101
4102         return ret;
4103 }
4104 #endif /* CONFIG_COMPAT */
4105
4106 #ifdef CONFIG_COMPAT_32BIT_TIME
4107 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4108                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4109                 u32, val3)
4110 {
4111         struct timespec64 ts;
4112         ktime_t t, *tp = NULL;
4113         int val2 = 0;
4114         int cmd = op & FUTEX_CMD_MASK;
4115
4116         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4117                       cmd == FUTEX_WAIT_BITSET ||
4118                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4119                 if (get_old_timespec32(&ts, utime))
4120                         return -EFAULT;
4121                 if (!timespec64_valid(&ts))
4122                         return -EINVAL;
4123
4124                 t = timespec64_to_ktime(ts);
4125                 if (cmd == FUTEX_WAIT)
4126                         t = ktime_add_safe(ktime_get(), t);
4127                 tp = &t;
4128         }
4129         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4130             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4131                 val2 = (int) (unsigned long) utime;
4132
4133         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4134 }
4135 #endif /* CONFIG_COMPAT_32BIT_TIME */
4136
4137 static void __init futex_detect_cmpxchg(void)
4138 {
4139 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4140         u32 curval;
4141
4142         /*
4143          * This will fail and we want it. Some arch implementations do
4144          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4145          * functionality. We want to know that before we call in any
4146          * of the complex code paths. Also we want to prevent
4147          * registration of robust lists in that case. NULL is
4148          * guaranteed to fault and we get -EFAULT on functional
4149          * implementation, the non-functional ones will return
4150          * -ENOSYS.
4151          */
4152         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4153                 futex_cmpxchg_enabled = 1;
4154 #endif
4155 }
4156
4157 static int __init futex_init(void)
4158 {
4159         unsigned int futex_shift;
4160         unsigned long i;
4161
4162 #if CONFIG_BASE_SMALL
4163         futex_hashsize = 16;
4164 #else
4165         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4166 #endif
4167
4168         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4169                                                futex_hashsize, 0,
4170                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4171                                                &futex_shift, NULL,
4172                                                futex_hashsize, futex_hashsize);
4173         futex_hashsize = 1UL << futex_shift;
4174
4175         futex_detect_cmpxchg();
4176
4177         for (i = 0; i < futex_hashsize; i++) {
4178                 atomic_set(&futex_queues[i].waiters, 0);
4179                 plist_head_init(&futex_queues[i].chain);
4180                 spin_lock_init(&futex_queues[i].lock);
4181         }
4182
4183         return 0;
4184 }
4185 core_initcall(futex_init);