GNU Linux-libre 4.4.289-gnu1
[releases.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/hugetlb.h>
66 #include <linux/freezer.h>
67 #include <linux/bootmem.h>
68 #include <linux/fault-inject.h>
69
70 #include <asm/futex.h>
71
72 #include "locking/rtmutex_common.h"
73
74 /*
75  * READ this before attempting to hack on futexes!
76  *
77  * Basic futex operation and ordering guarantees
78  * =============================================
79  *
80  * The waiter reads the futex value in user space and calls
81  * futex_wait(). This function computes the hash bucket and acquires
82  * the hash bucket lock. After that it reads the futex user space value
83  * again and verifies that the data has not changed. If it has not changed
84  * it enqueues itself into the hash bucket, releases the hash bucket lock
85  * and schedules.
86  *
87  * The waker side modifies the user space value of the futex and calls
88  * futex_wake(). This function computes the hash bucket and acquires the
89  * hash bucket lock. Then it looks for waiters on that futex in the hash
90  * bucket and wakes them.
91  *
92  * In futex wake up scenarios where no tasks are blocked on a futex, taking
93  * the hb spinlock can be avoided and simply return. In order for this
94  * optimization to work, ordering guarantees must exist so that the waiter
95  * being added to the list is acknowledged when the list is concurrently being
96  * checked by the waker, avoiding scenarios like the following:
97  *
98  * CPU 0                               CPU 1
99  * val = *futex;
100  * sys_futex(WAIT, futex, val);
101  *   futex_wait(futex, val);
102  *   uval = *futex;
103  *                                     *futex = newval;
104  *                                     sys_futex(WAKE, futex);
105  *                                       futex_wake(futex);
106  *                                       if (queue_empty())
107  *                                         return;
108  *   if (uval == val)
109  *      lock(hash_bucket(futex));
110  *      queue();
111  *     unlock(hash_bucket(futex));
112  *     schedule();
113  *
114  * This would cause the waiter on CPU 0 to wait forever because it
115  * missed the transition of the user space value from val to newval
116  * and the waker did not find the waiter in the hash bucket queue.
117  *
118  * The correct serialization ensures that a waiter either observes
119  * the changed user space value before blocking or is woken by a
120  * concurrent waker:
121  *
122  * CPU 0                                 CPU 1
123  * val = *futex;
124  * sys_futex(WAIT, futex, val);
125  *   futex_wait(futex, val);
126  *
127  *   waiters++; (a)
128  *   mb(); (A) <-- paired with -.
129  *                              |
130  *   lock(hash_bucket(futex));  |
131  *                              |
132  *   uval = *futex;             |
133  *                              |        *futex = newval;
134  *                              |        sys_futex(WAKE, futex);
135  *                              |          futex_wake(futex);
136  *                              |
137  *                              `------->  mb(); (B)
138  *   if (uval == val)
139  *     queue();
140  *     unlock(hash_bucket(futex));
141  *     schedule();                         if (waiters)
142  *                                           lock(hash_bucket(futex));
143  *   else                                    wake_waiters(futex);
144  *     waiters--; (b)                        unlock(hash_bucket(futex));
145  *
146  * Where (A) orders the waiters increment and the futex value read through
147  * atomic operations (see hb_waiters_inc) and where (B) orders the write
148  * to futex and the waiters read -- this is done by the barriers for both
149  * shared and private futexes in get_futex_key_refs().
150  *
151  * This yields the following case (where X:=waiters, Y:=futex):
152  *
153  *      X = Y = 0
154  *
155  *      w[X]=1          w[Y]=1
156  *      MB              MB
157  *      r[Y]=y          r[X]=x
158  *
159  * Which guarantees that x==0 && y==0 is impossible; which translates back into
160  * the guarantee that we cannot both miss the futex variable change and the
161  * enqueue.
162  *
163  * Note that a new waiter is accounted for in (a) even when it is possible that
164  * the wait call can return error, in which case we backtrack from it in (b).
165  * Refer to the comment in queue_lock().
166  *
167  * Similarly, in order to account for waiters being requeued on another
168  * address we always increment the waiters for the destination bucket before
169  * acquiring the lock. It then decrements them again  after releasing it -
170  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
171  * will do the additional required waiter count housekeeping. This is done for
172  * double_lock_hb() and double_unlock_hb(), respectively.
173  */
174
175 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
176 #define futex_cmpxchg_enabled 1
177 #else
178 static int  __read_mostly futex_cmpxchg_enabled;
179 #endif
180
181 /*
182  * Futex flags used to encode options to functions and preserve them across
183  * restarts.
184  */
185 #define FLAGS_SHARED            0x01
186 #define FLAGS_CLOCKRT           0x02
187 #define FLAGS_HAS_TIMEOUT       0x04
188
189 /*
190  * Priority Inheritance state:
191  */
192 struct futex_pi_state {
193         /*
194          * list of 'owned' pi_state instances - these have to be
195          * cleaned up in do_exit() if the task exits prematurely:
196          */
197         struct list_head list;
198
199         /*
200          * The PI object:
201          */
202         struct rt_mutex pi_mutex;
203
204         struct task_struct *owner;
205         atomic_t refcount;
206
207         union futex_key key;
208 };
209
210 /**
211  * struct futex_q - The hashed futex queue entry, one per waiting task
212  * @list:               priority-sorted list of tasks waiting on this futex
213  * @task:               the task waiting on the futex
214  * @lock_ptr:           the hash bucket lock
215  * @key:                the key the futex is hashed on
216  * @pi_state:           optional priority inheritance state
217  * @rt_waiter:          rt_waiter storage for use with requeue_pi
218  * @requeue_pi_key:     the requeue_pi target futex key
219  * @bitset:             bitset for the optional bitmasked wakeup
220  *
221  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
222  * we can wake only the relevant ones (hashed queues may be shared).
223  *
224  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
225  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
226  * The order of wakeup is always to make the first condition true, then
227  * the second.
228  *
229  * PI futexes are typically woken before they are removed from the hash list via
230  * the rt_mutex code. See unqueue_me_pi().
231  */
232 struct futex_q {
233         struct plist_node list;
234
235         struct task_struct *task;
236         spinlock_t *lock_ptr;
237         union futex_key key;
238         struct futex_pi_state *pi_state;
239         struct rt_mutex_waiter *rt_waiter;
240         union futex_key *requeue_pi_key;
241         u32 bitset;
242 };
243
244 static const struct futex_q futex_q_init = {
245         /* list gets initialized in queue_me()*/
246         .key = FUTEX_KEY_INIT,
247         .bitset = FUTEX_BITSET_MATCH_ANY
248 };
249
250 /*
251  * Hash buckets are shared by all the futex_keys that hash to the same
252  * location.  Each key may have multiple futex_q structures, one for each task
253  * waiting on a futex.
254  */
255 struct futex_hash_bucket {
256         atomic_t waiters;
257         spinlock_t lock;
258         struct plist_head chain;
259 } ____cacheline_aligned_in_smp;
260
261 /*
262  * The base of the bucket array and its size are always used together
263  * (after initialization only in hash_futex()), so ensure that they
264  * reside in the same cacheline.
265  */
266 static struct {
267         struct futex_hash_bucket *queues;
268         unsigned long            hashsize;
269 } __futex_data __read_mostly __aligned(2*sizeof(long));
270 #define futex_queues   (__futex_data.queues)
271 #define futex_hashsize (__futex_data.hashsize)
272
273
274 /*
275  * Fault injections for futexes.
276  */
277 #ifdef CONFIG_FAIL_FUTEX
278
279 static struct {
280         struct fault_attr attr;
281
282         bool ignore_private;
283 } fail_futex = {
284         .attr = FAULT_ATTR_INITIALIZER,
285         .ignore_private = false,
286 };
287
288 static int __init setup_fail_futex(char *str)
289 {
290         return setup_fault_attr(&fail_futex.attr, str);
291 }
292 __setup("fail_futex=", setup_fail_futex);
293
294 static bool should_fail_futex(bool fshared)
295 {
296         if (fail_futex.ignore_private && !fshared)
297                 return false;
298
299         return should_fail(&fail_futex.attr, 1);
300 }
301
302 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
303
304 static int __init fail_futex_debugfs(void)
305 {
306         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
307         struct dentry *dir;
308
309         dir = fault_create_debugfs_attr("fail_futex", NULL,
310                                         &fail_futex.attr);
311         if (IS_ERR(dir))
312                 return PTR_ERR(dir);
313
314         if (!debugfs_create_bool("ignore-private", mode, dir,
315                                  &fail_futex.ignore_private)) {
316                 debugfs_remove_recursive(dir);
317                 return -ENOMEM;
318         }
319
320         return 0;
321 }
322
323 late_initcall(fail_futex_debugfs);
324
325 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
326
327 #else
328 static inline bool should_fail_futex(bool fshared)
329 {
330         return false;
331 }
332 #endif /* CONFIG_FAIL_FUTEX */
333
334 #ifdef CONFIG_COMPAT
335 static void compat_exit_robust_list(struct task_struct *curr);
336 #else
337 static inline void compat_exit_robust_list(struct task_struct *curr) { }
338 #endif
339
340 static inline void futex_get_mm(union futex_key *key)
341 {
342         atomic_inc(&key->private.mm->mm_count);
343         /*
344          * Ensure futex_get_mm() implies a full barrier such that
345          * get_futex_key() implies a full barrier. This is relied upon
346          * as full barrier (B), see the ordering comment above.
347          */
348         smp_mb__after_atomic();
349 }
350
351 /*
352  * Reflects a new waiter being added to the waitqueue.
353  */
354 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
355 {
356 #ifdef CONFIG_SMP
357         atomic_inc(&hb->waiters);
358         /*
359          * Full barrier (A), see the ordering comment above.
360          */
361         smp_mb__after_atomic();
362 #endif
363 }
364
365 /*
366  * Reflects a waiter being removed from the waitqueue by wakeup
367  * paths.
368  */
369 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
370 {
371 #ifdef CONFIG_SMP
372         atomic_dec(&hb->waiters);
373 #endif
374 }
375
376 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
377 {
378 #ifdef CONFIG_SMP
379         return atomic_read(&hb->waiters);
380 #else
381         return 1;
382 #endif
383 }
384
385 /*
386  * We hash on the keys returned from get_futex_key (see below).
387  */
388 static struct futex_hash_bucket *hash_futex(union futex_key *key)
389 {
390         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
391                           key->both.offset);
392
393         return &futex_queues[hash & (futex_hashsize - 1)];
394 }
395
396 /*
397  * Return 1 if two futex_keys are equal, 0 otherwise.
398  */
399 static inline int match_futex(union futex_key *key1, union futex_key *key2)
400 {
401         return (key1 && key2
402                 && key1->both.word == key2->both.word
403                 && key1->both.ptr == key2->both.ptr
404                 && key1->both.offset == key2->both.offset);
405 }
406
407 /*
408  * Take a reference to the resource addressed by a key.
409  * Can be called while holding spinlocks.
410  *
411  */
412 static void get_futex_key_refs(union futex_key *key)
413 {
414         if (!key->both.ptr)
415                 return;
416
417         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
418         case FUT_OFF_INODE:
419                 smp_mb();               /* explicit smp_mb(); (B) */
420                 break;
421         case FUT_OFF_MMSHARED:
422                 futex_get_mm(key); /* implies MB (B) */
423                 break;
424         default:
425                 /*
426                  * Private futexes do not hold reference on an inode or
427                  * mm, therefore the only purpose of calling get_futex_key_refs
428                  * is because we need the barrier for the lockless waiter check.
429                  */
430                 smp_mb(); /* explicit MB (B) */
431         }
432 }
433
434 /*
435  * Drop a reference to the resource addressed by a key.
436  * The hash bucket spinlock must not be held. This is
437  * a no-op for private futexes, see comment in the get
438  * counterpart.
439  */
440 static void drop_futex_key_refs(union futex_key *key)
441 {
442         if (!key->both.ptr) {
443                 /* If we're here then we tried to put a key we failed to get */
444                 WARN_ON_ONCE(1);
445                 return;
446         }
447
448         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
449         case FUT_OFF_INODE:
450                 break;
451         case FUT_OFF_MMSHARED:
452                 mmdrop(key->private.mm);
453                 break;
454         }
455 }
456
457 /*
458  * Generate a machine wide unique identifier for this inode.
459  *
460  * This relies on u64 not wrapping in the life-time of the machine; which with
461  * 1ns resolution means almost 585 years.
462  *
463  * This further relies on the fact that a well formed program will not unmap
464  * the file while it has a (shared) futex waiting on it. This mapping will have
465  * a file reference which pins the mount and inode.
466  *
467  * If for some reason an inode gets evicted and read back in again, it will get
468  * a new sequence number and will _NOT_ match, even though it is the exact same
469  * file.
470  *
471  * It is important that match_futex() will never have a false-positive, esp.
472  * for PI futexes that can mess up the state. The above argues that false-negatives
473  * are only possible for malformed programs.
474  */
475 static u64 get_inode_sequence_number(struct inode *inode)
476 {
477         static atomic64_t i_seq;
478         u64 old;
479
480         /* Does the inode already have a sequence number? */
481         old = atomic64_read(&inode->i_sequence);
482         if (likely(old))
483                 return old;
484
485         for (;;) {
486                 u64 new = atomic64_add_return(1, &i_seq);
487                 if (WARN_ON_ONCE(!new))
488                         continue;
489
490                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
491                 if (old)
492                         return old;
493                 return new;
494         }
495 }
496
497 /**
498  * get_futex_key() - Get parameters which are the keys for a futex
499  * @uaddr:      virtual address of the futex
500  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
501  * @key:        address where result is stored.
502  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
503  *              VERIFY_WRITE)
504  *
505  * Return: a negative error code or 0
506  *
507  * The key words are stored in *key on success.
508  *
509  * For shared mappings (when @fshared), the key is:
510  *   ( inode->i_sequence, page->index, offset_within_page )
511  * [ also see get_inode_sequence_number() ]
512  *
513  * For private mappings (or when !@fshared), the key is:
514  *   ( current->mm, address, 0 )
515  *
516  * This allows (cross process, where applicable) identification of the futex
517  * without keeping the page pinned for the duration of the FUTEX_WAIT.
518  *
519  * lock_page() might sleep, the caller should not hold a spinlock.
520  */
521 static int
522 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
523 {
524         unsigned long address = (unsigned long)uaddr;
525         struct mm_struct *mm = current->mm;
526         struct page *page, *page_head;
527         struct address_space *mapping;
528         int err, ro = 0;
529
530         /*
531          * The futex address must be "naturally" aligned.
532          */
533         key->both.offset = address % PAGE_SIZE;
534         if (unlikely((address % sizeof(u32)) != 0))
535                 return -EINVAL;
536         address -= key->both.offset;
537
538         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
539                 return -EFAULT;
540
541         if (unlikely(should_fail_futex(fshared)))
542                 return -EFAULT;
543
544         /*
545          * PROCESS_PRIVATE futexes are fast.
546          * As the mm cannot disappear under us and the 'key' only needs
547          * virtual address, we dont even have to find the underlying vma.
548          * Note : We do have to check 'uaddr' is a valid user address,
549          *        but access_ok() should be faster than find_vma()
550          */
551         if (!fshared) {
552                 key->private.mm = mm;
553                 key->private.address = address;
554                 get_futex_key_refs(key);  /* implies MB (B) */
555                 return 0;
556         }
557
558 again:
559         /* Ignore any VERIFY_READ mapping (futex common case) */
560         if (unlikely(should_fail_futex(fshared)))
561                 return -EFAULT;
562
563         err = get_user_pages_fast(address, 1, 1, &page);
564         /*
565          * If write access is not required (eg. FUTEX_WAIT), try
566          * and get read-only access.
567          */
568         if (err == -EFAULT && rw == VERIFY_READ) {
569                 err = get_user_pages_fast(address, 1, 0, &page);
570                 ro = 1;
571         }
572         if (err < 0)
573                 return err;
574         else
575                 err = 0;
576
577 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
578         page_head = page;
579         if (unlikely(PageTail(page))) {
580                 put_page(page);
581                 /* serialize against __split_huge_page_splitting() */
582                 local_irq_disable();
583                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
584                         page_head = compound_head(page);
585                         /*
586                          * page_head is valid pointer but we must pin
587                          * it before taking the PG_lock and/or
588                          * PG_compound_lock. The moment we re-enable
589                          * irqs __split_huge_page_splitting() can
590                          * return and the head page can be freed from
591                          * under us. We can't take the PG_lock and/or
592                          * PG_compound_lock on a page that could be
593                          * freed from under us.
594                          */
595                         if (page != page_head) {
596                                 get_page(page_head);
597                                 put_page(page);
598                         }
599                         local_irq_enable();
600                 } else {
601                         local_irq_enable();
602                         goto again;
603                 }
604         }
605 #else
606         page_head = compound_head(page);
607         if (page != page_head) {
608                 get_page(page_head);
609                 put_page(page);
610         }
611 #endif
612
613         /*
614          * The treatment of mapping from this point on is critical. The page
615          * lock protects many things but in this context the page lock
616          * stabilizes mapping, prevents inode freeing in the shared
617          * file-backed region case and guards against movement to swap cache.
618          *
619          * Strictly speaking the page lock is not needed in all cases being
620          * considered here and page lock forces unnecessarily serialization
621          * From this point on, mapping will be re-verified if necessary and
622          * page lock will be acquired only if it is unavoidable
623          */
624
625         mapping = READ_ONCE(page_head->mapping);
626
627         /*
628          * If page_head->mapping is NULL, then it cannot be a PageAnon
629          * page; but it might be the ZERO_PAGE or in the gate area or
630          * in a special mapping (all cases which we are happy to fail);
631          * or it may have been a good file page when get_user_pages_fast
632          * found it, but truncated or holepunched or subjected to
633          * invalidate_complete_page2 before we got the page lock (also
634          * cases which we are happy to fail).  And we hold a reference,
635          * so refcount care in invalidate_complete_page's remove_mapping
636          * prevents drop_caches from setting mapping to NULL beneath us.
637          *
638          * The case we do have to guard against is when memory pressure made
639          * shmem_writepage move it from filecache to swapcache beneath us:
640          * an unlikely race, but we do need to retry for page_head->mapping.
641          */
642         if (unlikely(!mapping)) {
643                 int shmem_swizzled;
644
645                 /*
646                  * Page lock is required to identify which special case above
647                  * applies. If this is really a shmem page then the page lock
648                  * will prevent unexpected transitions.
649                  */
650                 lock_page(page_head);
651                 shmem_swizzled = PageSwapCache(page_head) || page_head->mapping;
652                 unlock_page(page_head);
653                 put_page(page_head);
654
655                 if (shmem_swizzled)
656                         goto again;
657
658                 return -EFAULT;
659         }
660
661         /*
662          * Private mappings are handled in a simple way.
663          *
664          * If the futex key is stored on an anonymous page, then the associated
665          * object is the mm which is implicitly pinned by the calling process.
666          *
667          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
668          * it's a read-only handle, it's expected that futexes attach to
669          * the object not the particular process.
670          */
671         if (PageAnon(page_head)) {
672                 /*
673                  * A RO anonymous page will never change and thus doesn't make
674                  * sense for futex operations.
675                  */
676                 if (unlikely(should_fail_futex(fshared)) || ro) {
677                         err = -EFAULT;
678                         goto out;
679                 }
680
681                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
682                 key->private.mm = mm;
683                 key->private.address = address;
684
685         } else {
686                 struct inode *inode;
687
688                 /*
689                  * The associated futex object in this case is the inode and
690                  * the page->mapping must be traversed. Ordinarily this should
691                  * be stabilised under page lock but it's not strictly
692                  * necessary in this case as we just want to pin the inode, not
693                  * update the radix tree or anything like that.
694                  *
695                  * The RCU read lock is taken as the inode is finally freed
696                  * under RCU. If the mapping still matches expectations then the
697                  * mapping->host can be safely accessed as being a valid inode.
698                  */
699                 rcu_read_lock();
700
701                 if (READ_ONCE(page_head->mapping) != mapping) {
702                         rcu_read_unlock();
703                         put_page(page_head);
704
705                         goto again;
706                 }
707
708                 inode = READ_ONCE(mapping->host);
709                 if (!inode) {
710                         rcu_read_unlock();
711                         put_page(page_head);
712
713                         goto again;
714                 }
715
716                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
717                 key->shared.i_seq = get_inode_sequence_number(inode);
718                 key->shared.pgoff = basepage_index(page);
719                 rcu_read_unlock();
720         }
721
722         get_futex_key_refs(key); /* implies smp_mb(); (B) */
723
724 out:
725         put_page(page_head);
726         return err;
727 }
728
729 static inline void put_futex_key(union futex_key *key)
730 {
731         drop_futex_key_refs(key);
732 }
733
734 /**
735  * fault_in_user_writeable() - Fault in user address and verify RW access
736  * @uaddr:      pointer to faulting user space address
737  *
738  * Slow path to fixup the fault we just took in the atomic write
739  * access to @uaddr.
740  *
741  * We have no generic implementation of a non-destructive write to the
742  * user address. We know that we faulted in the atomic pagefault
743  * disabled section so we can as well avoid the #PF overhead by
744  * calling get_user_pages() right away.
745  */
746 static int fault_in_user_writeable(u32 __user *uaddr)
747 {
748         struct mm_struct *mm = current->mm;
749         int ret;
750
751         down_read(&mm->mmap_sem);
752         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
753                                FAULT_FLAG_WRITE);
754         up_read(&mm->mmap_sem);
755
756         return ret < 0 ? ret : 0;
757 }
758
759 /**
760  * futex_top_waiter() - Return the highest priority waiter on a futex
761  * @hb:         the hash bucket the futex_q's reside in
762  * @key:        the futex key (to distinguish it from other futex futex_q's)
763  *
764  * Must be called with the hb lock held.
765  */
766 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
767                                         union futex_key *key)
768 {
769         struct futex_q *this;
770
771         plist_for_each_entry(this, &hb->chain, list) {
772                 if (match_futex(&this->key, key))
773                         return this;
774         }
775         return NULL;
776 }
777
778 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
779                                       u32 uval, u32 newval)
780 {
781         int ret;
782
783         pagefault_disable();
784         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
785         pagefault_enable();
786
787         return ret;
788 }
789
790 static int get_futex_value_locked(u32 *dest, u32 __user *from)
791 {
792         int ret;
793
794         pagefault_disable();
795         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
796         pagefault_enable();
797
798         return ret ? -EFAULT : 0;
799 }
800
801
802 /*
803  * PI code:
804  */
805 static int refill_pi_state_cache(void)
806 {
807         struct futex_pi_state *pi_state;
808
809         if (likely(current->pi_state_cache))
810                 return 0;
811
812         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
813
814         if (!pi_state)
815                 return -ENOMEM;
816
817         INIT_LIST_HEAD(&pi_state->list);
818         /* pi_mutex gets initialized later */
819         pi_state->owner = NULL;
820         atomic_set(&pi_state->refcount, 1);
821         pi_state->key = FUTEX_KEY_INIT;
822
823         current->pi_state_cache = pi_state;
824
825         return 0;
826 }
827
828 static struct futex_pi_state *alloc_pi_state(void)
829 {
830         struct futex_pi_state *pi_state = current->pi_state_cache;
831
832         WARN_ON(!pi_state);
833         current->pi_state_cache = NULL;
834
835         return pi_state;
836 }
837
838 static void pi_state_update_owner(struct futex_pi_state *pi_state,
839                                   struct task_struct *new_owner)
840 {
841         struct task_struct *old_owner = pi_state->owner;
842
843         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
844
845         if (old_owner) {
846                 raw_spin_lock(&old_owner->pi_lock);
847                 WARN_ON(list_empty(&pi_state->list));
848                 list_del_init(&pi_state->list);
849                 raw_spin_unlock(&old_owner->pi_lock);
850         }
851
852         if (new_owner) {
853                 raw_spin_lock(&new_owner->pi_lock);
854                 WARN_ON(!list_empty(&pi_state->list));
855                 list_add(&pi_state->list, &new_owner->pi_state_list);
856                 pi_state->owner = new_owner;
857                 raw_spin_unlock(&new_owner->pi_lock);
858         }
859 }
860
861 static void get_pi_state(struct futex_pi_state *pi_state)
862 {
863         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
864 }
865
866 /*
867  * Drops a reference to the pi_state object and frees or caches it
868  * when the last reference is gone.
869  *
870  * Must be called with the hb lock held.
871  */
872 static void put_pi_state(struct futex_pi_state *pi_state)
873 {
874         if (!pi_state)
875                 return;
876
877         if (!atomic_dec_and_test(&pi_state->refcount))
878                 return;
879
880         /*
881          * If pi_state->owner is NULL, the owner is most probably dying
882          * and has cleaned up the pi_state already
883          */
884         if (pi_state->owner) {
885                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
886                 pi_state_update_owner(pi_state, NULL);
887                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
888                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
889         }
890
891         if (current->pi_state_cache)
892                 kfree(pi_state);
893         else {
894                 /*
895                  * pi_state->list is already empty.
896                  * clear pi_state->owner.
897                  * refcount is at 0 - put it back to 1.
898                  */
899                 pi_state->owner = NULL;
900                 atomic_set(&pi_state->refcount, 1);
901                 current->pi_state_cache = pi_state;
902         }
903 }
904
905 /*
906  * Look up the task based on what TID userspace gave us.
907  * We dont trust it.
908  */
909 static struct task_struct *futex_find_get_task(pid_t pid)
910 {
911         struct task_struct *p;
912
913         rcu_read_lock();
914         p = find_task_by_vpid(pid);
915         if (p)
916                 get_task_struct(p);
917
918         rcu_read_unlock();
919
920         return p;
921 }
922
923 /*
924  * This task is holding PI mutexes at exit time => bad.
925  * Kernel cleans up PI-state, but userspace is likely hosed.
926  * (Robust-futex cleanup is separate and might save the day for userspace.)
927  */
928 static void exit_pi_state_list(struct task_struct *curr)
929 {
930         struct list_head *next, *head = &curr->pi_state_list;
931         struct futex_pi_state *pi_state;
932         struct futex_hash_bucket *hb;
933         union futex_key key = FUTEX_KEY_INIT;
934
935         if (!futex_cmpxchg_enabled)
936                 return;
937         /*
938          * We are a ZOMBIE and nobody can enqueue itself on
939          * pi_state_list anymore, but we have to be careful
940          * versus waiters unqueueing themselves:
941          */
942         raw_spin_lock_irq(&curr->pi_lock);
943         while (!list_empty(head)) {
944
945                 next = head->next;
946                 pi_state = list_entry(next, struct futex_pi_state, list);
947                 key = pi_state->key;
948                 hb = hash_futex(&key);
949                 raw_spin_unlock_irq(&curr->pi_lock);
950
951                 spin_lock(&hb->lock);
952
953                 raw_spin_lock_irq(&curr->pi_lock);
954                 /*
955                  * We dropped the pi-lock, so re-check whether this
956                  * task still owns the PI-state:
957                  */
958                 if (head->next != next) {
959                         spin_unlock(&hb->lock);
960                         continue;
961                 }
962
963                 WARN_ON(pi_state->owner != curr);
964                 WARN_ON(list_empty(&pi_state->list));
965                 list_del_init(&pi_state->list);
966                 pi_state->owner = NULL;
967                 raw_spin_unlock_irq(&curr->pi_lock);
968
969                 get_pi_state(pi_state);
970                 spin_unlock(&hb->lock);
971
972                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
973                 put_pi_state(pi_state);
974
975                 raw_spin_lock_irq(&curr->pi_lock);
976         }
977         raw_spin_unlock_irq(&curr->pi_lock);
978 }
979
980 /*
981  * We need to check the following states:
982  *
983  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
984  *
985  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
986  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
987  *
988  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
989  *
990  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
991  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
992  *
993  * [6]  Found  | Found    | task      | 0         | 1      | Valid
994  *
995  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
996  *
997  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
998  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
999  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
1000  *
1001  * [1]  Indicates that the kernel can acquire the futex atomically. We
1002  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1003  *
1004  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
1005  *      thread is found then it indicates that the owner TID has died.
1006  *
1007  * [3]  Invalid. The waiter is queued on a non PI futex
1008  *
1009  * [4]  Valid state after exit_robust_list(), which sets the user space
1010  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1011  *
1012  * [5]  The user space value got manipulated between exit_robust_list()
1013  *      and exit_pi_state_list()
1014  *
1015  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1016  *      the pi_state but cannot access the user space value.
1017  *
1018  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1019  *
1020  * [8]  Owner and user space value match
1021  *
1022  * [9]  There is no transient state which sets the user space TID to 0
1023  *      except exit_robust_list(), but this is indicated by the
1024  *      FUTEX_OWNER_DIED bit. See [4]
1025  *
1026  * [10] There is no transient state which leaves owner and user space
1027  *      TID out of sync. Except one error case where the kernel is denied
1028  *      write access to the user address, see fixup_pi_state_owner().
1029  *
1030  *
1031  * Serialization and lifetime rules:
1032  *
1033  * hb->lock:
1034  *
1035  *      hb -> futex_q, relation
1036  *      futex_q -> pi_state, relation
1037  *
1038  *      (cannot be raw because hb can contain arbitrary amount
1039  *       of futex_q's)
1040  *
1041  * pi_mutex->wait_lock:
1042  *
1043  *      {uval, pi_state}
1044  *
1045  *      (and pi_mutex 'obviously')
1046  *
1047  * p->pi_lock:
1048  *
1049  *      p->pi_state_list -> pi_state->list, relation
1050  *
1051  * pi_state->refcount:
1052  *
1053  *      pi_state lifetime
1054  *
1055  *
1056  * Lock order:
1057  *
1058  *   hb->lock
1059  *     pi_mutex->wait_lock
1060  *       p->pi_lock
1061  *
1062  */
1063
1064 /*
1065  * Validate that the existing waiter has a pi_state and sanity check
1066  * the pi_state against the user space value. If correct, attach to
1067  * it.
1068  */
1069 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1070                               struct futex_pi_state *pi_state,
1071                               struct futex_pi_state **ps)
1072 {
1073         pid_t pid = uval & FUTEX_TID_MASK;
1074         int ret, uval2;
1075
1076         /*
1077          * Userspace might have messed up non-PI and PI futexes [3]
1078          */
1079         if (unlikely(!pi_state))
1080                 return -EINVAL;
1081
1082         /*
1083          * We get here with hb->lock held, and having found a
1084          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1085          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1086          * which in turn means that futex_lock_pi() still has a reference on
1087          * our pi_state.
1088          *
1089          * The waiter holding a reference on @pi_state also protects against
1090          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1091          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1092          * free pi_state before we can take a reference ourselves.
1093          */
1094         WARN_ON(!atomic_read(&pi_state->refcount));
1095
1096         /*
1097          * Now that we have a pi_state, we can acquire wait_lock
1098          * and do the state validation.
1099          */
1100         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1101
1102         /*
1103          * Since {uval, pi_state} is serialized by wait_lock, and our current
1104          * uval was read without holding it, it can have changed. Verify it
1105          * still is what we expect it to be, otherwise retry the entire
1106          * operation.
1107          */
1108         if (get_futex_value_locked(&uval2, uaddr))
1109                 goto out_efault;
1110
1111         if (uval != uval2)
1112                 goto out_eagain;
1113
1114         /*
1115          * Handle the owner died case:
1116          */
1117         if (uval & FUTEX_OWNER_DIED) {
1118                 /*
1119                  * exit_pi_state_list sets owner to NULL and wakes the
1120                  * topmost waiter. The task which acquires the
1121                  * pi_state->rt_mutex will fixup owner.
1122                  */
1123                 if (!pi_state->owner) {
1124                         /*
1125                          * No pi state owner, but the user space TID
1126                          * is not 0. Inconsistent state. [5]
1127                          */
1128                         if (pid)
1129                                 goto out_einval;
1130                         /*
1131                          * Take a ref on the state and return success. [4]
1132                          */
1133                         goto out_attach;
1134                 }
1135
1136                 /*
1137                  * If TID is 0, then either the dying owner has not
1138                  * yet executed exit_pi_state_list() or some waiter
1139                  * acquired the rtmutex in the pi state, but did not
1140                  * yet fixup the TID in user space.
1141                  *
1142                  * Take a ref on the state and return success. [6]
1143                  */
1144                 if (!pid)
1145                         goto out_attach;
1146         } else {
1147                 /*
1148                  * If the owner died bit is not set, then the pi_state
1149                  * must have an owner. [7]
1150                  */
1151                 if (!pi_state->owner)
1152                         goto out_einval;
1153         }
1154
1155         /*
1156          * Bail out if user space manipulated the futex value. If pi
1157          * state exists then the owner TID must be the same as the
1158          * user space TID. [9/10]
1159          */
1160         if (pid != task_pid_vnr(pi_state->owner))
1161                 goto out_einval;
1162
1163 out_attach:
1164         get_pi_state(pi_state);
1165         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166         *ps = pi_state;
1167         return 0;
1168
1169 out_einval:
1170         ret = -EINVAL;
1171         goto out_error;
1172
1173 out_eagain:
1174         ret = -EAGAIN;
1175         goto out_error;
1176
1177 out_efault:
1178         ret = -EFAULT;
1179         goto out_error;
1180
1181 out_error:
1182         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1183         return ret;
1184 }
1185
1186 /**
1187  * wait_for_owner_exiting - Block until the owner has exited
1188  * @exiting:    Pointer to the exiting task
1189  *
1190  * Caller must hold a refcount on @exiting.
1191  */
1192 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1193 {
1194         if (ret != -EBUSY) {
1195                 WARN_ON_ONCE(exiting);
1196                 return;
1197         }
1198
1199         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1200                 return;
1201
1202         mutex_lock(&exiting->futex_exit_mutex);
1203         /*
1204          * No point in doing state checking here. If the waiter got here
1205          * while the task was in exec()->exec_futex_release() then it can
1206          * have any FUTEX_STATE_* value when the waiter has acquired the
1207          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1208          * already. Highly unlikely and not a problem. Just one more round
1209          * through the futex maze.
1210          */
1211         mutex_unlock(&exiting->futex_exit_mutex);
1212
1213         put_task_struct(exiting);
1214 }
1215
1216 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1217                             struct task_struct *tsk)
1218 {
1219         u32 uval2;
1220
1221         /*
1222          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1223          * caller that the alleged owner is busy.
1224          */
1225         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1226                 return -EBUSY;
1227
1228         /*
1229          * Reread the user space value to handle the following situation:
1230          *
1231          * CPU0                         CPU1
1232          *
1233          * sys_exit()                   sys_futex()
1234          *  do_exit()                    futex_lock_pi()
1235          *                                futex_lock_pi_atomic()
1236          *   exit_signals(tsk)              No waiters:
1237          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1238          *  mm_release(tsk)                 Set waiter bit
1239          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1240          *      Set owner died              attach_to_pi_owner() {
1241          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1242          *   }                               if (!tsk->flags & PF_EXITING) {
1243          *  ...                                attach();
1244          *  tsk->futex_state =               } else {
1245          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1246          *                                        FUTEX_STATE_DEAD)
1247          *                                       return -EAGAIN;
1248          *                                     return -ESRCH; <--- FAIL
1249          *                                   }
1250          *
1251          * Returning ESRCH unconditionally is wrong here because the
1252          * user space value has been changed by the exiting task.
1253          *
1254          * The same logic applies to the case where the exiting task is
1255          * already gone.
1256          */
1257         if (get_futex_value_locked(&uval2, uaddr))
1258                 return -EFAULT;
1259
1260         /* If the user space value has changed, try again. */
1261         if (uval2 != uval)
1262                 return -EAGAIN;
1263
1264         /*
1265          * The exiting task did not have a robust list, the robust list was
1266          * corrupted or the user space value in *uaddr is simply bogus.
1267          * Give up and tell user space.
1268          */
1269         return -ESRCH;
1270 }
1271
1272 /*
1273  * Lookup the task for the TID provided from user space and attach to
1274  * it after doing proper sanity checks.
1275  */
1276 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1277                               struct futex_pi_state **ps,
1278                               struct task_struct **exiting)
1279 {
1280         pid_t pid = uval & FUTEX_TID_MASK;
1281         struct futex_pi_state *pi_state;
1282         struct task_struct *p;
1283
1284         /*
1285          * We are the first waiter - try to look up the real owner and attach
1286          * the new pi_state to it, but bail out when TID = 0 [1]
1287          *
1288          * The !pid check is paranoid. None of the call sites should end up
1289          * with pid == 0, but better safe than sorry. Let the caller retry
1290          */
1291         if (!pid)
1292                 return -EAGAIN;
1293         p = futex_find_get_task(pid);
1294         if (!p)
1295                 return handle_exit_race(uaddr, uval, NULL);
1296
1297         if (unlikely(p->flags & PF_KTHREAD)) {
1298                 put_task_struct(p);
1299                 return -EPERM;
1300         }
1301
1302         /*
1303          * We need to look at the task state to figure out, whether the
1304          * task is exiting. To protect against the change of the task state
1305          * in futex_exit_release(), we do this protected by p->pi_lock:
1306          */
1307         raw_spin_lock_irq(&p->pi_lock);
1308         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1309                 /*
1310                  * The task is on the way out. When the futex state is
1311                  * FUTEX_STATE_DEAD, we know that the task has finished
1312                  * the cleanup:
1313                  */
1314                 int ret = handle_exit_race(uaddr, uval, p);
1315
1316                 raw_spin_unlock_irq(&p->pi_lock);
1317                 /*
1318                  * If the owner task is between FUTEX_STATE_EXITING and
1319                  * FUTEX_STATE_DEAD then store the task pointer and keep
1320                  * the reference on the task struct. The calling code will
1321                  * drop all locks, wait for the task to reach
1322                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1323                  * required to prevent a live lock when the current task
1324                  * preempted the exiting task between the two states.
1325                  */
1326                 if (ret == -EBUSY)
1327                         *exiting = p;
1328                 else
1329                         put_task_struct(p);
1330                 return ret;
1331         }
1332
1333         /*
1334          * No existing pi state. First waiter. [2]
1335          *
1336          * This creates pi_state, we have hb->lock held, this means nothing can
1337          * observe this state, wait_lock is irrelevant.
1338          */
1339         pi_state = alloc_pi_state();
1340
1341         /*
1342          * Initialize the pi_mutex in locked state and make @p
1343          * the owner of it:
1344          */
1345         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1346
1347         /* Store the key for possible exit cleanups: */
1348         pi_state->key = *key;
1349
1350         WARN_ON(!list_empty(&pi_state->list));
1351         list_add(&pi_state->list, &p->pi_state_list);
1352         pi_state->owner = p;
1353         raw_spin_unlock_irq(&p->pi_lock);
1354
1355         put_task_struct(p);
1356
1357         *ps = pi_state;
1358
1359         return 0;
1360 }
1361
1362 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1363                            struct futex_hash_bucket *hb,
1364                            union futex_key *key, struct futex_pi_state **ps,
1365                            struct task_struct **exiting)
1366 {
1367         struct futex_q *match = futex_top_waiter(hb, key);
1368
1369         /*
1370          * If there is a waiter on that futex, validate it and
1371          * attach to the pi_state when the validation succeeds.
1372          */
1373         if (match)
1374                 return attach_to_pi_state(uaddr, uval, match->pi_state, ps);
1375
1376         /*
1377          * We are the first waiter - try to look up the owner based on
1378          * @uval and attach to it.
1379          */
1380         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1381 }
1382
1383 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1384 {
1385         u32 uninitialized_var(curval);
1386
1387         if (unlikely(should_fail_futex(true)))
1388                 return -EFAULT;
1389
1390         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1391                 return -EFAULT;
1392
1393         /* If user space value changed, let the caller retry */
1394         return curval != uval ? -EAGAIN : 0;
1395 }
1396
1397 /**
1398  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1399  * @uaddr:              the pi futex user address
1400  * @hb:                 the pi futex hash bucket
1401  * @key:                the futex key associated with uaddr and hb
1402  * @ps:                 the pi_state pointer where we store the result of the
1403  *                      lookup
1404  * @task:               the task to perform the atomic lock work for.  This will
1405  *                      be "current" except in the case of requeue pi.
1406  * @exiting:            Pointer to store the task pointer of the owner task
1407  *                      which is in the middle of exiting
1408  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1409  *
1410  * Return:
1411  *  0 - ready to wait;
1412  *  1 - acquired the lock;
1413  * <0 - error
1414  *
1415  * The hb->lock and futex_key refs shall be held by the caller.
1416  *
1417  * @exiting is only set when the return value is -EBUSY. If so, this holds
1418  * a refcount on the exiting task on return and the caller needs to drop it
1419  * after waiting for the exit to complete.
1420  */
1421 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1422                                 union futex_key *key,
1423                                 struct futex_pi_state **ps,
1424                                 struct task_struct *task,
1425                                 struct task_struct **exiting,
1426                                 int set_waiters)
1427 {
1428         u32 uval, newval, vpid = task_pid_vnr(task);
1429         struct futex_q *match;
1430         int ret;
1431
1432         /*
1433          * Read the user space value first so we can validate a few
1434          * things before proceeding further.
1435          */
1436         if (get_futex_value_locked(&uval, uaddr))
1437                 return -EFAULT;
1438
1439         if (unlikely(should_fail_futex(true)))
1440                 return -EFAULT;
1441
1442         /*
1443          * Detect deadlocks.
1444          */
1445         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1446                 return -EDEADLK;
1447
1448         if ((unlikely(should_fail_futex(true))))
1449                 return -EDEADLK;
1450
1451         /*
1452          * Lookup existing state first. If it exists, try to attach to
1453          * its pi_state.
1454          */
1455         match = futex_top_waiter(hb, key);
1456         if (match)
1457                 return attach_to_pi_state(uaddr, uval, match->pi_state, ps);
1458
1459         /*
1460          * No waiter and user TID is 0. We are here because the
1461          * waiters or the owner died bit is set or called from
1462          * requeue_cmp_pi or for whatever reason something took the
1463          * syscall.
1464          */
1465         if (!(uval & FUTEX_TID_MASK)) {
1466                 /*
1467                  * We take over the futex. No other waiters and the user space
1468                  * TID is 0. We preserve the owner died bit.
1469                  */
1470                 newval = uval & FUTEX_OWNER_DIED;
1471                 newval |= vpid;
1472
1473                 /* The futex requeue_pi code can enforce the waiters bit */
1474                 if (set_waiters)
1475                         newval |= FUTEX_WAITERS;
1476
1477                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1478                 /* If the take over worked, return 1 */
1479                 return ret < 0 ? ret : 1;
1480         }
1481
1482         /*
1483          * First waiter. Set the waiters bit before attaching ourself to
1484          * the owner. If owner tries to unlock, it will be forced into
1485          * the kernel and blocked on hb->lock.
1486          */
1487         newval = uval | FUTEX_WAITERS;
1488         ret = lock_pi_update_atomic(uaddr, uval, newval);
1489         if (ret)
1490                 return ret;
1491         /*
1492          * If the update of the user space value succeeded, we try to
1493          * attach to the owner. If that fails, no harm done, we only
1494          * set the FUTEX_WAITERS bit in the user space variable.
1495          */
1496         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1497 }
1498
1499 /**
1500  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1501  * @q:  The futex_q to unqueue
1502  *
1503  * The q->lock_ptr must not be NULL and must be held by the caller.
1504  */
1505 static void __unqueue_futex(struct futex_q *q)
1506 {
1507         struct futex_hash_bucket *hb;
1508
1509         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1510             || WARN_ON(plist_node_empty(&q->list)))
1511                 return;
1512
1513         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1514         plist_del(&q->list, &hb->chain);
1515         hb_waiters_dec(hb);
1516 }
1517
1518 /*
1519  * The hash bucket lock must be held when this is called.
1520  * Afterwards, the futex_q must not be accessed. Callers
1521  * must ensure to later call wake_up_q() for the actual
1522  * wakeups to occur.
1523  */
1524 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1525 {
1526         struct task_struct *p = q->task;
1527
1528         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1529                 return;
1530
1531         /*
1532          * Queue the task for later wakeup for after we've released
1533          * the hb->lock. wake_q_add() grabs reference to p.
1534          */
1535         wake_q_add(wake_q, p);
1536         __unqueue_futex(q);
1537         /*
1538          * The waiting task can free the futex_q as soon as
1539          * q->lock_ptr = NULL is written, without taking any locks. A
1540          * memory barrier is required here to prevent the following
1541          * store to lock_ptr from getting ahead of the plist_del.
1542          */
1543         smp_wmb();
1544         q->lock_ptr = NULL;
1545 }
1546
1547 /*
1548  * Caller must hold a reference on @pi_state.
1549  */
1550 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1551 {
1552         u32 uninitialized_var(curval), newval;
1553         struct task_struct *new_owner;
1554         bool deboost = false;
1555         WAKE_Q(wake_q);
1556         int ret = 0;
1557
1558         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1559         if (WARN_ON_ONCE(!new_owner)) {
1560                 /*
1561                  * As per the comment in futex_unlock_pi() this should not happen.
1562                  *
1563                  * When this happens, give up our locks and try again, giving
1564                  * the futex_lock_pi() instance time to complete, either by
1565                  * waiting on the rtmutex or removing itself from the futex
1566                  * queue.
1567                  */
1568                 ret = -EAGAIN;
1569                 goto out_unlock;
1570         }
1571
1572         /*
1573          * We pass it to the next owner. The WAITERS bit is always kept
1574          * enabled while there is PI state around. We cleanup the owner
1575          * died bit, because we are the owner.
1576          */
1577         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1578
1579         if (unlikely(should_fail_futex(true)))
1580                 ret = -EFAULT;
1581
1582         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1583                 ret = -EFAULT;
1584
1585         } else if (curval != uval) {
1586                 /*
1587                  * If a unconditional UNLOCK_PI operation (user space did not
1588                  * try the TID->0 transition) raced with a waiter setting the
1589                  * FUTEX_WAITERS flag between get_user() and locking the hash
1590                  * bucket lock, retry the operation.
1591                  */
1592                 if ((FUTEX_TID_MASK & curval) == uval)
1593                         ret = -EAGAIN;
1594                 else
1595                         ret = -EINVAL;
1596         }
1597
1598         if (!ret) {
1599                 /*
1600                  * This is a point of no return; once we modified the uval
1601                  * there is no going back and subsequent operations must
1602                  * not fail.
1603                  */
1604                 pi_state_update_owner(pi_state, new_owner);
1605                 deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1606         }
1607
1608 out_unlock:
1609         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1610
1611         if (deboost) {
1612                 wake_up_q(&wake_q);
1613                 rt_mutex_adjust_prio(current);
1614         }
1615
1616         return ret;
1617 }
1618
1619 /*
1620  * Express the locking dependencies for lockdep:
1621  */
1622 static inline void
1623 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1624 {
1625         if (hb1 <= hb2) {
1626                 spin_lock(&hb1->lock);
1627                 if (hb1 < hb2)
1628                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1629         } else { /* hb1 > hb2 */
1630                 spin_lock(&hb2->lock);
1631                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1632         }
1633 }
1634
1635 static inline void
1636 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1637 {
1638         spin_unlock(&hb1->lock);
1639         if (hb1 != hb2)
1640                 spin_unlock(&hb2->lock);
1641 }
1642
1643 /*
1644  * Wake up waiters matching bitset queued on this futex (uaddr).
1645  */
1646 static int
1647 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1648 {
1649         struct futex_hash_bucket *hb;
1650         struct futex_q *this, *next;
1651         union futex_key key = FUTEX_KEY_INIT;
1652         int ret;
1653         WAKE_Q(wake_q);
1654
1655         if (!bitset)
1656                 return -EINVAL;
1657
1658         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1659         if (unlikely(ret != 0))
1660                 goto out;
1661
1662         hb = hash_futex(&key);
1663
1664         /* Make sure we really have tasks to wakeup */
1665         if (!hb_waiters_pending(hb))
1666                 goto out_put_key;
1667
1668         spin_lock(&hb->lock);
1669
1670         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1671                 if (match_futex (&this->key, &key)) {
1672                         if (this->pi_state || this->rt_waiter) {
1673                                 ret = -EINVAL;
1674                                 break;
1675                         }
1676
1677                         /* Check if one of the bits is set in both bitsets */
1678                         if (!(this->bitset & bitset))
1679                                 continue;
1680
1681                         mark_wake_futex(&wake_q, this);
1682                         if (++ret >= nr_wake)
1683                                 break;
1684                 }
1685         }
1686
1687         spin_unlock(&hb->lock);
1688         wake_up_q(&wake_q);
1689 out_put_key:
1690         put_futex_key(&key);
1691 out:
1692         return ret;
1693 }
1694
1695 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1696 {
1697         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1698         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1699         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1700         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1701         int oldval, ret;
1702
1703         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1704                 if (oparg < 0 || oparg > 31) {
1705                         char comm[sizeof(current->comm)];
1706                         /*
1707                          * kill this print and return -EINVAL when userspace
1708                          * is sane again
1709                          */
1710                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1711                                         get_task_comm(comm, current), oparg);
1712                         oparg &= 31;
1713                 }
1714                 oparg = 1 << oparg;
1715         }
1716
1717         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1718                 return -EFAULT;
1719
1720         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1721         if (ret)
1722                 return ret;
1723
1724         switch (cmp) {
1725         case FUTEX_OP_CMP_EQ:
1726                 return oldval == cmparg;
1727         case FUTEX_OP_CMP_NE:
1728                 return oldval != cmparg;
1729         case FUTEX_OP_CMP_LT:
1730                 return oldval < cmparg;
1731         case FUTEX_OP_CMP_GE:
1732                 return oldval >= cmparg;
1733         case FUTEX_OP_CMP_LE:
1734                 return oldval <= cmparg;
1735         case FUTEX_OP_CMP_GT:
1736                 return oldval > cmparg;
1737         default:
1738                 return -ENOSYS;
1739         }
1740 }
1741
1742 /*
1743  * Wake up all waiters hashed on the physical page that is mapped
1744  * to this virtual address:
1745  */
1746 static int
1747 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1748               int nr_wake, int nr_wake2, int op)
1749 {
1750         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1751         struct futex_hash_bucket *hb1, *hb2;
1752         struct futex_q *this, *next;
1753         int ret, op_ret;
1754         WAKE_Q(wake_q);
1755
1756 retry:
1757         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1758         if (unlikely(ret != 0))
1759                 goto out;
1760         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1761         if (unlikely(ret != 0))
1762                 goto out_put_key1;
1763
1764         hb1 = hash_futex(&key1);
1765         hb2 = hash_futex(&key2);
1766
1767 retry_private:
1768         double_lock_hb(hb1, hb2);
1769         op_ret = futex_atomic_op_inuser(op, uaddr2);
1770         if (unlikely(op_ret < 0)) {
1771
1772                 double_unlock_hb(hb1, hb2);
1773
1774 #ifndef CONFIG_MMU
1775                 /*
1776                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1777                  * but we might get them from range checking
1778                  */
1779                 ret = op_ret;
1780                 goto out_put_keys;
1781 #endif
1782
1783                 if (unlikely(op_ret != -EFAULT)) {
1784                         ret = op_ret;
1785                         goto out_put_keys;
1786                 }
1787
1788                 ret = fault_in_user_writeable(uaddr2);
1789                 if (ret)
1790                         goto out_put_keys;
1791
1792                 if (!(flags & FLAGS_SHARED))
1793                         goto retry_private;
1794
1795                 put_futex_key(&key2);
1796                 put_futex_key(&key1);
1797                 goto retry;
1798         }
1799
1800         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1801                 if (match_futex (&this->key, &key1)) {
1802                         if (this->pi_state || this->rt_waiter) {
1803                                 ret = -EINVAL;
1804                                 goto out_unlock;
1805                         }
1806                         mark_wake_futex(&wake_q, this);
1807                         if (++ret >= nr_wake)
1808                                 break;
1809                 }
1810         }
1811
1812         if (op_ret > 0) {
1813                 op_ret = 0;
1814                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1815                         if (match_futex (&this->key, &key2)) {
1816                                 if (this->pi_state || this->rt_waiter) {
1817                                         ret = -EINVAL;
1818                                         goto out_unlock;
1819                                 }
1820                                 mark_wake_futex(&wake_q, this);
1821                                 if (++op_ret >= nr_wake2)
1822                                         break;
1823                         }
1824                 }
1825                 ret += op_ret;
1826         }
1827
1828 out_unlock:
1829         double_unlock_hb(hb1, hb2);
1830         wake_up_q(&wake_q);
1831 out_put_keys:
1832         put_futex_key(&key2);
1833 out_put_key1:
1834         put_futex_key(&key1);
1835 out:
1836         return ret;
1837 }
1838
1839 /**
1840  * requeue_futex() - Requeue a futex_q from one hb to another
1841  * @q:          the futex_q to requeue
1842  * @hb1:        the source hash_bucket
1843  * @hb2:        the target hash_bucket
1844  * @key2:       the new key for the requeued futex_q
1845  */
1846 static inline
1847 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1848                    struct futex_hash_bucket *hb2, union futex_key *key2)
1849 {
1850
1851         /*
1852          * If key1 and key2 hash to the same bucket, no need to
1853          * requeue.
1854          */
1855         if (likely(&hb1->chain != &hb2->chain)) {
1856                 plist_del(&q->list, &hb1->chain);
1857                 hb_waiters_dec(hb1);
1858                 hb_waiters_inc(hb2);
1859                 plist_add(&q->list, &hb2->chain);
1860                 q->lock_ptr = &hb2->lock;
1861         }
1862         get_futex_key_refs(key2);
1863         q->key = *key2;
1864 }
1865
1866 /**
1867  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1868  * @q:          the futex_q
1869  * @key:        the key of the requeue target futex
1870  * @hb:         the hash_bucket of the requeue target futex
1871  *
1872  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1873  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1874  * to the requeue target futex so the waiter can detect the wakeup on the right
1875  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1876  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1877  * to protect access to the pi_state to fixup the owner later.  Must be called
1878  * with both q->lock_ptr and hb->lock held.
1879  */
1880 static inline
1881 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1882                            struct futex_hash_bucket *hb)
1883 {
1884         get_futex_key_refs(key);
1885         q->key = *key;
1886
1887         __unqueue_futex(q);
1888
1889         WARN_ON(!q->rt_waiter);
1890         q->rt_waiter = NULL;
1891
1892         q->lock_ptr = &hb->lock;
1893
1894         wake_up_state(q->task, TASK_NORMAL);
1895 }
1896
1897 /**
1898  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1899  * @pifutex:            the user address of the to futex
1900  * @hb1:                the from futex hash bucket, must be locked by the caller
1901  * @hb2:                the to futex hash bucket, must be locked by the caller
1902  * @key1:               the from futex key
1903  * @key2:               the to futex key
1904  * @ps:                 address to store the pi_state pointer
1905  * @exiting:            Pointer to store the task pointer of the owner task
1906  *                      which is in the middle of exiting
1907  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1908  *
1909  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1910  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1911  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1912  * hb1 and hb2 must be held by the caller.
1913  *
1914  * @exiting is only set when the return value is -EBUSY. If so, this holds
1915  * a refcount on the exiting task on return and the caller needs to drop it
1916  * after waiting for the exit to complete.
1917  *
1918  * Return:
1919  *  0 - failed to acquire the lock atomically;
1920  * >0 - acquired the lock, return value is vpid of the top_waiter
1921  * <0 - error
1922  */
1923 static int
1924 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1925                            struct futex_hash_bucket *hb2, union futex_key *key1,
1926                            union futex_key *key2, struct futex_pi_state **ps,
1927                            struct task_struct **exiting, int set_waiters)
1928 {
1929         struct futex_q *top_waiter = NULL;
1930         u32 curval;
1931         int ret, vpid;
1932
1933         if (get_futex_value_locked(&curval, pifutex))
1934                 return -EFAULT;
1935
1936         if (unlikely(should_fail_futex(true)))
1937                 return -EFAULT;
1938
1939         /*
1940          * Find the top_waiter and determine if there are additional waiters.
1941          * If the caller intends to requeue more than 1 waiter to pifutex,
1942          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1943          * as we have means to handle the possible fault.  If not, don't set
1944          * the bit unecessarily as it will force the subsequent unlock to enter
1945          * the kernel.
1946          */
1947         top_waiter = futex_top_waiter(hb1, key1);
1948
1949         /* There are no waiters, nothing for us to do. */
1950         if (!top_waiter)
1951                 return 0;
1952
1953         /* Ensure we requeue to the expected futex. */
1954         if (!match_futex(top_waiter->requeue_pi_key, key2))
1955                 return -EINVAL;
1956
1957         /*
1958          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1959          * the contended case or if set_waiters is 1.  The pi_state is returned
1960          * in ps in contended cases.
1961          */
1962         vpid = task_pid_vnr(top_waiter->task);
1963         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1964                                    exiting, set_waiters);
1965         if (ret == 1) {
1966                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1967                 return vpid;
1968         }
1969         return ret;
1970 }
1971
1972 /**
1973  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1974  * @uaddr1:     source futex user address
1975  * @flags:      futex flags (FLAGS_SHARED, etc.)
1976  * @uaddr2:     target futex user address
1977  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1978  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1979  * @cmpval:     @uaddr1 expected value (or %NULL)
1980  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1981  *              pi futex (pi to pi requeue is not supported)
1982  *
1983  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1984  * uaddr2 atomically on behalf of the top waiter.
1985  *
1986  * Return:
1987  * >=0 - on success, the number of tasks requeued or woken;
1988  *  <0 - on error
1989  */
1990 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1991                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1992                          u32 *cmpval, int requeue_pi)
1993 {
1994         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1995         int drop_count = 0, task_count = 0, ret;
1996         struct futex_pi_state *pi_state = NULL;
1997         struct futex_hash_bucket *hb1, *hb2;
1998         struct futex_q *this, *next;
1999         WAKE_Q(wake_q);
2000
2001         if (nr_wake < 0 || nr_requeue < 0)
2002                 return -EINVAL;
2003
2004         if (requeue_pi) {
2005                 /*
2006                  * Requeue PI only works on two distinct uaddrs. This
2007                  * check is only valid for private futexes. See below.
2008                  */
2009                 if (uaddr1 == uaddr2)
2010                         return -EINVAL;
2011
2012                 /*
2013                  * requeue_pi requires a pi_state, try to allocate it now
2014                  * without any locks in case it fails.
2015                  */
2016                 if (refill_pi_state_cache())
2017                         return -ENOMEM;
2018                 /*
2019                  * requeue_pi must wake as many tasks as it can, up to nr_wake
2020                  * + nr_requeue, since it acquires the rt_mutex prior to
2021                  * returning to userspace, so as to not leave the rt_mutex with
2022                  * waiters and no owner.  However, second and third wake-ups
2023                  * cannot be predicted as they involve race conditions with the
2024                  * first wake and a fault while looking up the pi_state.  Both
2025                  * pthread_cond_signal() and pthread_cond_broadcast() should
2026                  * use nr_wake=1.
2027                  */
2028                 if (nr_wake != 1)
2029                         return -EINVAL;
2030         }
2031
2032 retry:
2033         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
2034         if (unlikely(ret != 0))
2035                 goto out;
2036         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2037                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
2038         if (unlikely(ret != 0))
2039                 goto out_put_key1;
2040
2041         /*
2042          * The check above which compares uaddrs is not sufficient for
2043          * shared futexes. We need to compare the keys:
2044          */
2045         if (requeue_pi && match_futex(&key1, &key2)) {
2046                 ret = -EINVAL;
2047                 goto out_put_keys;
2048         }
2049
2050         hb1 = hash_futex(&key1);
2051         hb2 = hash_futex(&key2);
2052
2053 retry_private:
2054         hb_waiters_inc(hb2);
2055         double_lock_hb(hb1, hb2);
2056
2057         if (likely(cmpval != NULL)) {
2058                 u32 curval;
2059
2060                 ret = get_futex_value_locked(&curval, uaddr1);
2061
2062                 if (unlikely(ret)) {
2063                         double_unlock_hb(hb1, hb2);
2064                         hb_waiters_dec(hb2);
2065
2066                         ret = get_user(curval, uaddr1);
2067                         if (ret)
2068                                 goto out_put_keys;
2069
2070                         if (!(flags & FLAGS_SHARED))
2071                                 goto retry_private;
2072
2073                         put_futex_key(&key2);
2074                         put_futex_key(&key1);
2075                         goto retry;
2076                 }
2077                 if (curval != *cmpval) {
2078                         ret = -EAGAIN;
2079                         goto out_unlock;
2080                 }
2081         }
2082
2083         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2084                 struct task_struct *exiting = NULL;
2085
2086                 /*
2087                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2088                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2089                  * bit.  We force this here where we are able to easily handle
2090                  * faults rather in the requeue loop below.
2091                  */
2092                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2093                                                  &key2, &pi_state,
2094                                                  &exiting, nr_requeue);
2095
2096                 /*
2097                  * At this point the top_waiter has either taken uaddr2 or is
2098                  * waiting on it.  If the former, then the pi_state will not
2099                  * exist yet, look it up one more time to ensure we have a
2100                  * reference to it. If the lock was taken, ret contains the
2101                  * vpid of the top waiter task.
2102                  */
2103                 if (ret > 0) {
2104                         WARN_ON(pi_state);
2105                         drop_count++;
2106                         task_count++;
2107                         /*
2108                          * If we acquired the lock, then the user
2109                          * space value of uaddr2 should be vpid. It
2110                          * cannot be changed by the top waiter as it
2111                          * is blocked on hb2 lock if it tries to do
2112                          * so. If something fiddled with it behind our
2113                          * back the pi state lookup might unearth
2114                          * it. So we rather use the known value than
2115                          * rereading and handing potential crap to
2116                          * lookup_pi_state.
2117                          */
2118                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2119                                               &pi_state, &exiting);
2120                 }
2121
2122                 switch (ret) {
2123                 case 0:
2124                         break;
2125                 case -EFAULT:
2126                         put_pi_state(pi_state);
2127                         pi_state = NULL;
2128                         double_unlock_hb(hb1, hb2);
2129                         hb_waiters_dec(hb2);
2130                         put_futex_key(&key2);
2131                         put_futex_key(&key1);
2132                         ret = fault_in_user_writeable(uaddr2);
2133                         if (!ret)
2134                                 goto retry;
2135                         goto out;
2136                 case -EBUSY:
2137                 case -EAGAIN:
2138                         /*
2139                          * Two reasons for this:
2140                          * - EBUSY: Owner is exiting and we just wait for the
2141                          *   exit to complete.
2142                          * - EAGAIN: The user space value changed.
2143                          */
2144                         put_pi_state(pi_state);
2145                         pi_state = NULL;
2146                         double_unlock_hb(hb1, hb2);
2147                         hb_waiters_dec(hb2);
2148                         put_futex_key(&key2);
2149                         put_futex_key(&key1);
2150                         /*
2151                          * Handle the case where the owner is in the middle of
2152                          * exiting. Wait for the exit to complete otherwise
2153                          * this task might loop forever, aka. live lock.
2154                          */
2155                         wait_for_owner_exiting(ret, exiting);
2156                         cond_resched();
2157                         goto retry;
2158                 default:
2159                         goto out_unlock;
2160                 }
2161         }
2162
2163         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2164                 if (task_count - nr_wake >= nr_requeue)
2165                         break;
2166
2167                 if (!match_futex(&this->key, &key1))
2168                         continue;
2169
2170                 /*
2171                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2172                  * be paired with each other and no other futex ops.
2173                  *
2174                  * We should never be requeueing a futex_q with a pi_state,
2175                  * which is awaiting a futex_unlock_pi().
2176                  */
2177                 if ((requeue_pi && !this->rt_waiter) ||
2178                     (!requeue_pi && this->rt_waiter) ||
2179                     this->pi_state) {
2180                         ret = -EINVAL;
2181                         break;
2182                 }
2183
2184                 /*
2185                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2186                  * lock, we already woke the top_waiter.  If not, it will be
2187                  * woken by futex_unlock_pi().
2188                  */
2189                 if (++task_count <= nr_wake && !requeue_pi) {
2190                         mark_wake_futex(&wake_q, this);
2191                         continue;
2192                 }
2193
2194                 /* Ensure we requeue to the expected futex for requeue_pi. */
2195                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2196                         ret = -EINVAL;
2197                         break;
2198                 }
2199
2200                 /*
2201                  * Requeue nr_requeue waiters and possibly one more in the case
2202                  * of requeue_pi if we couldn't acquire the lock atomically.
2203                  */
2204                 if (requeue_pi) {
2205                         /* Prepare the waiter to take the rt_mutex. */
2206                         get_pi_state(pi_state);
2207                         this->pi_state = pi_state;
2208                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2209                                                         this->rt_waiter,
2210                                                         this->task);
2211                         if (ret == 1) {
2212                                 /* We got the lock. */
2213                                 requeue_pi_wake_futex(this, &key2, hb2);
2214                                 drop_count++;
2215                                 continue;
2216                         } else if (ret) {
2217                                 /* -EDEADLK */
2218                                 this->pi_state = NULL;
2219                                 put_pi_state(pi_state);
2220                                 goto out_unlock;
2221                         }
2222                 }
2223                 requeue_futex(this, hb1, hb2, &key2);
2224                 drop_count++;
2225         }
2226
2227 out_unlock:
2228         put_pi_state(pi_state);
2229         double_unlock_hb(hb1, hb2);
2230         wake_up_q(&wake_q);
2231         hb_waiters_dec(hb2);
2232
2233         /*
2234          * drop_futex_key_refs() must be called outside the spinlocks. During
2235          * the requeue we moved futex_q's from the hash bucket at key1 to the
2236          * one at key2 and updated their key pointer.  We no longer need to
2237          * hold the references to key1.
2238          */
2239         while (--drop_count >= 0)
2240                 drop_futex_key_refs(&key1);
2241
2242 out_put_keys:
2243         put_futex_key(&key2);
2244 out_put_key1:
2245         put_futex_key(&key1);
2246 out:
2247         return ret ? ret : task_count;
2248 }
2249
2250 /* The key must be already stored in q->key. */
2251 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2252         __acquires(&hb->lock)
2253 {
2254         struct futex_hash_bucket *hb;
2255
2256         hb = hash_futex(&q->key);
2257
2258         /*
2259          * Increment the counter before taking the lock so that
2260          * a potential waker won't miss a to-be-slept task that is
2261          * waiting for the spinlock. This is safe as all queue_lock()
2262          * users end up calling queue_me(). Similarly, for housekeeping,
2263          * decrement the counter at queue_unlock() when some error has
2264          * occurred and we don't end up adding the task to the list.
2265          */
2266         hb_waiters_inc(hb);
2267
2268         q->lock_ptr = &hb->lock;
2269
2270         spin_lock(&hb->lock); /* implies MB (A) */
2271         return hb;
2272 }
2273
2274 static inline void
2275 queue_unlock(struct futex_hash_bucket *hb)
2276         __releases(&hb->lock)
2277 {
2278         spin_unlock(&hb->lock);
2279         hb_waiters_dec(hb);
2280 }
2281
2282 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2283 {
2284         int prio;
2285
2286         /*
2287          * The priority used to register this element is
2288          * - either the real thread-priority for the real-time threads
2289          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2290          * - or MAX_RT_PRIO for non-RT threads.
2291          * Thus, all RT-threads are woken first in priority order, and
2292          * the others are woken last, in FIFO order.
2293          */
2294         prio = min(current->normal_prio, MAX_RT_PRIO);
2295
2296         plist_node_init(&q->list, prio);
2297         plist_add(&q->list, &hb->chain);
2298         q->task = current;
2299 }
2300
2301 /**
2302  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2303  * @q:  The futex_q to enqueue
2304  * @hb: The destination hash bucket
2305  *
2306  * The hb->lock must be held by the caller, and is released here. A call to
2307  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2308  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2309  * or nothing if the unqueue is done as part of the wake process and the unqueue
2310  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2311  * an example).
2312  */
2313 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2314         __releases(&hb->lock)
2315 {
2316         __queue_me(q, hb);
2317         spin_unlock(&hb->lock);
2318 }
2319
2320 /**
2321  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2322  * @q:  The futex_q to unqueue
2323  *
2324  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2325  * be paired with exactly one earlier call to queue_me().
2326  *
2327  * Return:
2328  *   1 - if the futex_q was still queued (and we removed unqueued it);
2329  *   0 - if the futex_q was already removed by the waking thread
2330  */
2331 static int unqueue_me(struct futex_q *q)
2332 {
2333         spinlock_t *lock_ptr;
2334         int ret = 0;
2335
2336         /* In the common case we don't take the spinlock, which is nice. */
2337 retry:
2338         /*
2339          * q->lock_ptr can change between this read and the following spin_lock.
2340          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2341          * optimizing lock_ptr out of the logic below.
2342          */
2343         lock_ptr = READ_ONCE(q->lock_ptr);
2344         if (lock_ptr != NULL) {
2345                 spin_lock(lock_ptr);
2346                 /*
2347                  * q->lock_ptr can change between reading it and
2348                  * spin_lock(), causing us to take the wrong lock.  This
2349                  * corrects the race condition.
2350                  *
2351                  * Reasoning goes like this: if we have the wrong lock,
2352                  * q->lock_ptr must have changed (maybe several times)
2353                  * between reading it and the spin_lock().  It can
2354                  * change again after the spin_lock() but only if it was
2355                  * already changed before the spin_lock().  It cannot,
2356                  * however, change back to the original value.  Therefore
2357                  * we can detect whether we acquired the correct lock.
2358                  */
2359                 if (unlikely(lock_ptr != q->lock_ptr)) {
2360                         spin_unlock(lock_ptr);
2361                         goto retry;
2362                 }
2363                 __unqueue_futex(q);
2364
2365                 BUG_ON(q->pi_state);
2366
2367                 spin_unlock(lock_ptr);
2368                 ret = 1;
2369         }
2370
2371         drop_futex_key_refs(&q->key);
2372         return ret;
2373 }
2374
2375 /*
2376  * PI futexes can not be requeued and must remove themself from the
2377  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2378  * and dropped here.
2379  */
2380 static void unqueue_me_pi(struct futex_q *q)
2381         __releases(q->lock_ptr)
2382 {
2383         __unqueue_futex(q);
2384
2385         BUG_ON(!q->pi_state);
2386         put_pi_state(q->pi_state);
2387         q->pi_state = NULL;
2388
2389         spin_unlock(q->lock_ptr);
2390 }
2391
2392 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2393                                   struct task_struct *argowner)
2394 {
2395         struct futex_pi_state *pi_state = q->pi_state;
2396         struct task_struct *oldowner, *newowner;
2397         u32 uval, curval, newval, newtid;
2398         int err = 0;
2399
2400         oldowner = pi_state->owner;
2401         /*
2402          * We are here because either:
2403          *
2404          *  - we stole the lock and pi_state->owner needs updating to reflect
2405          *    that (@argowner == current),
2406          *
2407          * or:
2408          *
2409          *  - someone stole our lock and we need to fix things to point to the
2410          *    new owner (@argowner == NULL).
2411          *
2412          * Either way, we have to replace the TID in the user space variable.
2413          * This must be atomic as we have to preserve the owner died bit here.
2414          *
2415          * Note: We write the user space value _before_ changing the pi_state
2416          * because we can fault here. Imagine swapped out pages or a fork
2417          * that marked all the anonymous memory readonly for cow.
2418          *
2419          * Modifying pi_state _before_ the user space value would leave the
2420          * pi_state in an inconsistent state when we fault here, because we
2421          * need to drop the locks to handle the fault. This might be observed
2422          * in the PID check in lookup_pi_state.
2423          */
2424 retry:
2425         if (!argowner) {
2426                 if (oldowner != current) {
2427                         /*
2428                          * We raced against a concurrent self; things are
2429                          * already fixed up. Nothing to do.
2430                          */
2431                         return 0;
2432                 }
2433
2434                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2435                         /* We got the lock. pi_state is correct. Tell caller */
2436                         return 1;
2437                 }
2438
2439                 /*
2440                  * The trylock just failed, so either there is an owner or
2441                  * there is a higher priority waiter than this one.
2442                  */
2443                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2444                 /*
2445                  * If the higher priority waiter has not yet taken over the
2446                  * rtmutex then newowner is NULL. We can't return here with
2447                  * that state because it's inconsistent vs. the user space
2448                  * state. So drop the locks and try again. It's a valid
2449                  * situation and not any different from the other retry
2450                  * conditions.
2451                  */
2452                 if (unlikely(!newowner)) {
2453                         err = -EAGAIN;
2454                         goto handle_fault;
2455                 }
2456         } else {
2457                 WARN_ON_ONCE(argowner != current);
2458                 if (oldowner == current) {
2459                         /*
2460                          * We raced against a concurrent self; things are
2461                          * already fixed up. Nothing to do.
2462                          */
2463                         return 1;
2464                 }
2465                 newowner = argowner;
2466         }
2467
2468         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2469         /* Owner died? */
2470         if (!pi_state->owner)
2471                 newtid |= FUTEX_OWNER_DIED;
2472
2473         if (get_futex_value_locked(&uval, uaddr))
2474                 goto handle_fault;
2475
2476         for (;;) {
2477                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2478
2479                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2480                         goto handle_fault;
2481                 if (curval == uval)
2482                         break;
2483                 uval = curval;
2484         }
2485
2486         /*
2487          * We fixed up user space. Now we need to fix the pi_state
2488          * itself.
2489          */
2490         pi_state_update_owner(pi_state, newowner);
2491
2492         return argowner == current;
2493
2494         /*
2495          * To handle the page fault we need to drop the locks here. That gives
2496          * the other task (either the highest priority waiter itself or the
2497          * task which stole the rtmutex) the chance to try the fixup of the
2498          * pi_state. So once we are back from handling the fault we need to
2499          * check the pi_state after reacquiring the locks and before trying to
2500          * do another fixup. When the fixup has been done already we simply
2501          * return.
2502          *
2503          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2504          * drop hb->lock since the caller owns the hb -> futex_q relation.
2505          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2506          */
2507 handle_fault:
2508         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2509         spin_unlock(q->lock_ptr);
2510
2511         err = fault_in_user_writeable(uaddr);
2512
2513         spin_lock(q->lock_ptr);
2514         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2515
2516         /*
2517          * Check if someone else fixed it for us:
2518          */
2519         if (pi_state->owner != oldowner)
2520                 return argowner == current;
2521
2522         /* Retry if err was -EAGAIN or the fault in succeeded */
2523         if (!err)
2524                 goto retry;
2525
2526         /*
2527          * fault_in_user_writeable() failed so user state is immutable. At
2528          * best we can make the kernel state consistent but user state will
2529          * be most likely hosed and any subsequent unlock operation will be
2530          * rejected due to PI futex rule [10].
2531          *
2532          * Ensure that the rtmutex owner is also the pi_state owner despite
2533          * the user space value claiming something different. There is no
2534          * point in unlocking the rtmutex if current is the owner as it
2535          * would need to wait until the next waiter has taken the rtmutex
2536          * to guarantee consistent state. Keep it simple. Userspace asked
2537          * for this wreckaged state.
2538          *
2539          * The rtmutex has an owner - either current or some other
2540          * task. See the EAGAIN loop above.
2541          */
2542         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2543
2544         return err;
2545 }
2546
2547 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2548                                 struct task_struct *argowner)
2549 {
2550         struct futex_pi_state *pi_state = q->pi_state;
2551         int ret;
2552
2553         lockdep_assert_held(q->lock_ptr);
2554
2555         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2556         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2557         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2558         return ret;
2559 }
2560
2561 static long futex_wait_restart(struct restart_block *restart);
2562
2563 /**
2564  * fixup_owner() - Post lock pi_state and corner case management
2565  * @uaddr:      user address of the futex
2566  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2567  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2568  *
2569  * After attempting to lock an rt_mutex, this function is called to cleanup
2570  * the pi_state owner as well as handle race conditions that may allow us to
2571  * acquire the lock. Must be called with the hb lock held.
2572  *
2573  * Return:
2574  *  1 - success, lock taken;
2575  *  0 - success, lock not taken;
2576  * <0 - on error (-EFAULT)
2577  */
2578 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2579 {
2580         if (locked) {
2581                 /*
2582                  * Got the lock. We might not be the anticipated owner if we
2583                  * did a lock-steal - fix up the PI-state in that case:
2584                  *
2585                  * Speculative pi_state->owner read (we don't hold wait_lock);
2586                  * since we own the lock pi_state->owner == current is the
2587                  * stable state, anything else needs more attention.
2588                  */
2589                 if (q->pi_state->owner != current)
2590                         return fixup_pi_state_owner(uaddr, q, current);
2591                 return 1;
2592         }
2593
2594         /*
2595          * If we didn't get the lock; check if anybody stole it from us. In
2596          * that case, we need to fix up the uval to point to them instead of
2597          * us, otherwise bad things happen. [10]
2598          *
2599          * Another speculative read; pi_state->owner == current is unstable
2600          * but needs our attention.
2601          */
2602         if (q->pi_state->owner == current)
2603                 return fixup_pi_state_owner(uaddr, q, NULL);
2604
2605         /*
2606          * Paranoia check. If we did not take the lock, then we should not be
2607          * the owner of the rt_mutex. Warn and establish consistent state.
2608          */
2609         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2610                 return fixup_pi_state_owner(uaddr, q, current);
2611
2612         return 0;
2613 }
2614
2615 /**
2616  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2617  * @hb:         the futex hash bucket, must be locked by the caller
2618  * @q:          the futex_q to queue up on
2619  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2620  */
2621 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2622                                 struct hrtimer_sleeper *timeout)
2623 {
2624         /*
2625          * The task state is guaranteed to be set before another task can
2626          * wake it. set_current_state() is implemented using smp_store_mb() and
2627          * queue_me() calls spin_unlock() upon completion, both serializing
2628          * access to the hash list and forcing another memory barrier.
2629          */
2630         set_current_state(TASK_INTERRUPTIBLE);
2631         queue_me(q, hb);
2632
2633         /* Arm the timer */
2634         if (timeout)
2635                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2636
2637         /*
2638          * If we have been removed from the hash list, then another task
2639          * has tried to wake us, and we can skip the call to schedule().
2640          */
2641         if (likely(!plist_node_empty(&q->list))) {
2642                 /*
2643                  * If the timer has already expired, current will already be
2644                  * flagged for rescheduling. Only call schedule if there
2645                  * is no timeout, or if it has yet to expire.
2646                  */
2647                 if (!timeout || timeout->task)
2648                         freezable_schedule();
2649         }
2650         __set_current_state(TASK_RUNNING);
2651 }
2652
2653 /**
2654  * futex_wait_setup() - Prepare to wait on a futex
2655  * @uaddr:      the futex userspace address
2656  * @val:        the expected value
2657  * @flags:      futex flags (FLAGS_SHARED, etc.)
2658  * @q:          the associated futex_q
2659  * @hb:         storage for hash_bucket pointer to be returned to caller
2660  *
2661  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2662  * compare it with the expected value.  Handle atomic faults internally.
2663  * Return with the hb lock held and a q.key reference on success, and unlocked
2664  * with no q.key reference on failure.
2665  *
2666  * Return:
2667  *  0 - uaddr contains val and hb has been locked;
2668  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2669  */
2670 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2671                            struct futex_q *q, struct futex_hash_bucket **hb)
2672 {
2673         u32 uval;
2674         int ret;
2675
2676         /*
2677          * Access the page AFTER the hash-bucket is locked.
2678          * Order is important:
2679          *
2680          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2681          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2682          *
2683          * The basic logical guarantee of a futex is that it blocks ONLY
2684          * if cond(var) is known to be true at the time of blocking, for
2685          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2686          * would open a race condition where we could block indefinitely with
2687          * cond(var) false, which would violate the guarantee.
2688          *
2689          * On the other hand, we insert q and release the hash-bucket only
2690          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2691          * absorb a wakeup if *uaddr does not match the desired values
2692          * while the syscall executes.
2693          */
2694 retry:
2695         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2696         if (unlikely(ret != 0))
2697                 return ret;
2698
2699 retry_private:
2700         *hb = queue_lock(q);
2701
2702         ret = get_futex_value_locked(&uval, uaddr);
2703
2704         if (ret) {
2705                 queue_unlock(*hb);
2706
2707                 ret = get_user(uval, uaddr);
2708                 if (ret)
2709                         goto out;
2710
2711                 if (!(flags & FLAGS_SHARED))
2712                         goto retry_private;
2713
2714                 put_futex_key(&q->key);
2715                 goto retry;
2716         }
2717
2718         if (uval != val) {
2719                 queue_unlock(*hb);
2720                 ret = -EWOULDBLOCK;
2721         }
2722
2723 out:
2724         if (ret)
2725                 put_futex_key(&q->key);
2726         return ret;
2727 }
2728
2729 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2730                       ktime_t *abs_time, u32 bitset)
2731 {
2732         struct hrtimer_sleeper timeout, *to = NULL;
2733         struct restart_block *restart;
2734         struct futex_hash_bucket *hb;
2735         struct futex_q q = futex_q_init;
2736         int ret;
2737
2738         if (!bitset)
2739                 return -EINVAL;
2740         q.bitset = bitset;
2741
2742         if (abs_time) {
2743                 to = &timeout;
2744
2745                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2746                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2747                                       HRTIMER_MODE_ABS);
2748                 hrtimer_init_sleeper(to, current);
2749                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2750                                              current->timer_slack_ns);
2751         }
2752
2753 retry:
2754         /*
2755          * Prepare to wait on uaddr. On success, holds hb lock and increments
2756          * q.key refs.
2757          */
2758         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2759         if (ret)
2760                 goto out;
2761
2762         /* queue_me and wait for wakeup, timeout, or a signal. */
2763         futex_wait_queue_me(hb, &q, to);
2764
2765         /* If we were woken (and unqueued), we succeeded, whatever. */
2766         ret = 0;
2767         /* unqueue_me() drops q.key ref */
2768         if (!unqueue_me(&q))
2769                 goto out;
2770         ret = -ETIMEDOUT;
2771         if (to && !to->task)
2772                 goto out;
2773
2774         /*
2775          * We expect signal_pending(current), but we might be the
2776          * victim of a spurious wakeup as well.
2777          */
2778         if (!signal_pending(current))
2779                 goto retry;
2780
2781         ret = -ERESTARTSYS;
2782         if (!abs_time)
2783                 goto out;
2784
2785         restart = &current->restart_block;
2786         restart->fn = futex_wait_restart;
2787         restart->futex.uaddr = uaddr;
2788         restart->futex.val = val;
2789         restart->futex.time = abs_time->tv64;
2790         restart->futex.bitset = bitset;
2791         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2792
2793         ret = -ERESTART_RESTARTBLOCK;
2794
2795 out:
2796         if (to) {
2797                 hrtimer_cancel(&to->timer);
2798                 destroy_hrtimer_on_stack(&to->timer);
2799         }
2800         return ret;
2801 }
2802
2803
2804 static long futex_wait_restart(struct restart_block *restart)
2805 {
2806         u32 __user *uaddr = restart->futex.uaddr;
2807         ktime_t t, *tp = NULL;
2808
2809         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2810                 t.tv64 = restart->futex.time;
2811                 tp = &t;
2812         }
2813         restart->fn = do_no_restart_syscall;
2814
2815         return (long)futex_wait(uaddr, restart->futex.flags,
2816                                 restart->futex.val, tp, restart->futex.bitset);
2817 }
2818
2819
2820 /*
2821  * Userspace tried a 0 -> TID atomic transition of the futex value
2822  * and failed. The kernel side here does the whole locking operation:
2823  * if there are waiters then it will block as a consequence of relying
2824  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2825  * a 0 value of the futex too.).
2826  *
2827  * Also serves as futex trylock_pi()'ing, and due semantics.
2828  */
2829 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2830                          ktime_t *time, int trylock)
2831 {
2832         struct hrtimer_sleeper timeout, *to = NULL;
2833         struct task_struct *exiting = NULL;
2834         struct rt_mutex_waiter rt_waiter;
2835         struct futex_hash_bucket *hb;
2836         struct futex_q q = futex_q_init;
2837         int res, ret;
2838
2839         if (refill_pi_state_cache())
2840                 return -ENOMEM;
2841
2842         if (time) {
2843                 to = &timeout;
2844                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2845                                       HRTIMER_MODE_ABS);
2846                 hrtimer_init_sleeper(to, current);
2847                 hrtimer_set_expires(&to->timer, *time);
2848         }
2849
2850 retry:
2851         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2852         if (unlikely(ret != 0))
2853                 goto out;
2854
2855 retry_private:
2856         hb = queue_lock(&q);
2857
2858         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2859                                    &exiting, 0);
2860         if (unlikely(ret)) {
2861                 /*
2862                  * Atomic work succeeded and we got the lock,
2863                  * or failed. Either way, we do _not_ block.
2864                  */
2865                 switch (ret) {
2866                 case 1:
2867                         /* We got the lock. */
2868                         ret = 0;
2869                         goto out_unlock_put_key;
2870                 case -EFAULT:
2871                         goto uaddr_faulted;
2872                 case -EBUSY:
2873                 case -EAGAIN:
2874                         /*
2875                          * Two reasons for this:
2876                          * - EBUSY: Task is exiting and we just wait for the
2877                          *   exit to complete.
2878                          * - EAGAIN: The user space value changed.
2879                          */
2880                         queue_unlock(hb);
2881                         put_futex_key(&q.key);
2882                         /*
2883                          * Handle the case where the owner is in the middle of
2884                          * exiting. Wait for the exit to complete otherwise
2885                          * this task might loop forever, aka. live lock.
2886                          */
2887                         wait_for_owner_exiting(ret, exiting);
2888                         cond_resched();
2889                         goto retry;
2890                 default:
2891                         goto out_unlock_put_key;
2892                 }
2893         }
2894
2895         WARN_ON(!q.pi_state);
2896
2897         /*
2898          * Only actually queue now that the atomic ops are done:
2899          */
2900         __queue_me(&q, hb);
2901
2902         if (trylock) {
2903                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2904                 /* Fixup the trylock return value: */
2905                 ret = ret ? 0 : -EWOULDBLOCK;
2906                 goto no_block;
2907         }
2908
2909         /*
2910          * We must add ourselves to the rt_mutex waitlist while holding hb->lock
2911          * such that the hb and rt_mutex wait lists match.
2912          */
2913         rt_mutex_init_waiter(&rt_waiter);
2914         ret = rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2915         if (ret) {
2916                 if (ret == 1)
2917                         ret = 0;
2918
2919                 goto no_block;
2920         }
2921
2922         spin_unlock(q.lock_ptr);
2923
2924         if (unlikely(to))
2925                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2926
2927         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2928
2929         spin_lock(q.lock_ptr);
2930         /*
2931          * If we failed to acquire the lock (signal/timeout), we must
2932          * first acquire the hb->lock before removing the lock from the
2933          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2934          * wait lists consistent.
2935          */
2936         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2937                 ret = 0;
2938
2939 no_block:
2940         /*
2941          * Fixup the pi_state owner and possibly acquire the lock if we
2942          * haven't already.
2943          */
2944         res = fixup_owner(uaddr, &q, !ret);
2945         /*
2946          * If fixup_owner() returned an error, proprogate that.  If it acquired
2947          * the lock, clear our -ETIMEDOUT or -EINTR.
2948          */
2949         if (res)
2950                 ret = (res < 0) ? res : 0;
2951
2952         /* Unqueue and drop the lock */
2953         unqueue_me_pi(&q);
2954
2955         goto out_put_key;
2956
2957 out_unlock_put_key:
2958         queue_unlock(hb);
2959
2960 out_put_key:
2961         put_futex_key(&q.key);
2962 out:
2963         if (to) {
2964                 hrtimer_cancel(&to->timer);
2965                 destroy_hrtimer_on_stack(&to->timer);
2966         }
2967         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2968
2969 uaddr_faulted:
2970         queue_unlock(hb);
2971
2972         ret = fault_in_user_writeable(uaddr);
2973         if (ret)
2974                 goto out_put_key;
2975
2976         if (!(flags & FLAGS_SHARED))
2977                 goto retry_private;
2978
2979         put_futex_key(&q.key);
2980         goto retry;
2981 }
2982
2983 /*
2984  * Userspace attempted a TID -> 0 atomic transition, and failed.
2985  * This is the in-kernel slowpath: we look up the PI state (if any),
2986  * and do the rt-mutex unlock.
2987  */
2988 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2989 {
2990         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2991         union futex_key key = FUTEX_KEY_INIT;
2992         struct futex_hash_bucket *hb;
2993         struct futex_q *match;
2994         int ret;
2995
2996 retry:
2997         if (get_user(uval, uaddr))
2998                 return -EFAULT;
2999         /*
3000          * We release only a lock we actually own:
3001          */
3002         if ((uval & FUTEX_TID_MASK) != vpid)
3003                 return -EPERM;
3004
3005         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3006         if (ret)
3007                 return ret;
3008
3009         hb = hash_futex(&key);
3010         spin_lock(&hb->lock);
3011
3012         /*
3013          * Check waiters first. We do not trust user space values at
3014          * all and we at least want to know if user space fiddled
3015          * with the futex value instead of blindly unlocking.
3016          */
3017         match = futex_top_waiter(hb, &key);
3018         if (match) {
3019                 struct futex_pi_state *pi_state = match->pi_state;
3020
3021                 ret = -EINVAL;
3022                 if (!pi_state)
3023                         goto out_unlock;
3024
3025                 /*
3026                  * If current does not own the pi_state then the futex is
3027                  * inconsistent and user space fiddled with the futex value.
3028                  */
3029                 if (pi_state->owner != current)
3030                         goto out_unlock;
3031
3032                 get_pi_state(pi_state);
3033                 /*
3034                  * Since modifying the wait_list is done while holding both
3035                  * hb->lock and wait_lock, holding either is sufficient to
3036                  * observe it.
3037                  *
3038                  * By taking wait_lock while still holding hb->lock, we ensure
3039                  * there is no point where we hold neither; and therefore
3040                  * wake_futex_pi() must observe a state consistent with what we
3041                  * observed.
3042                  */
3043                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3044                 spin_unlock(&hb->lock);
3045
3046                 ret = wake_futex_pi(uaddr, uval, pi_state);
3047
3048                 put_pi_state(pi_state);
3049
3050                 /*
3051                  * Success, we're done! No tricky corner cases.
3052                  */
3053                 if (!ret)
3054                         goto out_putkey;
3055                 /*
3056                  * The atomic access to the futex value generated a
3057                  * pagefault, so retry the user-access and the wakeup:
3058                  */
3059                 if (ret == -EFAULT)
3060                         goto pi_faulted;
3061                 /*
3062                  * A unconditional UNLOCK_PI op raced against a waiter
3063                  * setting the FUTEX_WAITERS bit. Try again.
3064                  */
3065                 if (ret == -EAGAIN) {
3066                         put_futex_key(&key);
3067                         goto retry;
3068                 }
3069                 /*
3070                  * wake_futex_pi has detected invalid state. Tell user
3071                  * space.
3072                  */
3073                 goto out_putkey;
3074         }
3075
3076         /*
3077          * We have no kernel internal state, i.e. no waiters in the
3078          * kernel. Waiters which are about to queue themselves are stuck
3079          * on hb->lock. So we can safely ignore them. We do neither
3080          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3081          * owner.
3082          */
3083         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3084                 spin_unlock(&hb->lock);
3085                 goto pi_faulted;
3086         }
3087
3088         /*
3089          * If uval has changed, let user space handle it.
3090          */
3091         ret = (curval == uval) ? 0 : -EAGAIN;
3092
3093 out_unlock:
3094         spin_unlock(&hb->lock);
3095 out_putkey:
3096         put_futex_key(&key);
3097         return ret;
3098
3099 pi_faulted:
3100         put_futex_key(&key);
3101
3102         ret = fault_in_user_writeable(uaddr);
3103         if (!ret)
3104                 goto retry;
3105
3106         return ret;
3107 }
3108
3109 /**
3110  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3111  * @hb:         the hash_bucket futex_q was original enqueued on
3112  * @q:          the futex_q woken while waiting to be requeued
3113  * @key2:       the futex_key of the requeue target futex
3114  * @timeout:    the timeout associated with the wait (NULL if none)
3115  *
3116  * Detect if the task was woken on the initial futex as opposed to the requeue
3117  * target futex.  If so, determine if it was a timeout or a signal that caused
3118  * the wakeup and return the appropriate error code to the caller.  Must be
3119  * called with the hb lock held.
3120  *
3121  * Return:
3122  *  0 = no early wakeup detected;
3123  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
3124  */
3125 static inline
3126 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3127                                    struct futex_q *q, union futex_key *key2,
3128                                    struct hrtimer_sleeper *timeout)
3129 {
3130         int ret = 0;
3131
3132         /*
3133          * With the hb lock held, we avoid races while we process the wakeup.
3134          * We only need to hold hb (and not hb2) to ensure atomicity as the
3135          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3136          * It can't be requeued from uaddr2 to something else since we don't
3137          * support a PI aware source futex for requeue.
3138          */
3139         if (!match_futex(&q->key, key2)) {
3140                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3141                 /*
3142                  * We were woken prior to requeue by a timeout or a signal.
3143                  * Unqueue the futex_q and determine which it was.
3144                  */
3145                 plist_del(&q->list, &hb->chain);
3146                 hb_waiters_dec(hb);
3147
3148                 /* Handle spurious wakeups gracefully */
3149                 ret = -EWOULDBLOCK;
3150                 if (timeout && !timeout->task)
3151                         ret = -ETIMEDOUT;
3152                 else if (signal_pending(current))
3153                         ret = -ERESTARTNOINTR;
3154         }
3155         return ret;
3156 }
3157
3158 /**
3159  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3160  * @uaddr:      the futex we initially wait on (non-pi)
3161  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3162  *              the same type, no requeueing from private to shared, etc.
3163  * @val:        the expected value of uaddr
3164  * @abs_time:   absolute timeout
3165  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3166  * @uaddr2:     the pi futex we will take prior to returning to user-space
3167  *
3168  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3169  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3170  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3171  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3172  * without one, the pi logic would not know which task to boost/deboost, if
3173  * there was a need to.
3174  *
3175  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3176  * via the following--
3177  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3178  * 2) wakeup on uaddr2 after a requeue
3179  * 3) signal
3180  * 4) timeout
3181  *
3182  * If 3, cleanup and return -ERESTARTNOINTR.
3183  *
3184  * If 2, we may then block on trying to take the rt_mutex and return via:
3185  * 5) successful lock
3186  * 6) signal
3187  * 7) timeout
3188  * 8) other lock acquisition failure
3189  *
3190  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3191  *
3192  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3193  *
3194  * Return:
3195  *  0 - On success;
3196  * <0 - On error
3197  */
3198 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3199                                  u32 val, ktime_t *abs_time, u32 bitset,
3200                                  u32 __user *uaddr2)
3201 {
3202         struct hrtimer_sleeper timeout, *to = NULL;
3203         struct rt_mutex_waiter rt_waiter;
3204         struct futex_hash_bucket *hb;
3205         union futex_key key2 = FUTEX_KEY_INIT;
3206         struct futex_q q = futex_q_init;
3207         int res, ret;
3208
3209         if (uaddr == uaddr2)
3210                 return -EINVAL;
3211
3212         if (!bitset)
3213                 return -EINVAL;
3214
3215         if (abs_time) {
3216                 to = &timeout;
3217                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3218                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3219                                       HRTIMER_MODE_ABS);
3220                 hrtimer_init_sleeper(to, current);
3221                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3222                                              current->timer_slack_ns);
3223         }
3224
3225         /*
3226          * The waiter is allocated on our stack, manipulated by the requeue
3227          * code while we sleep on uaddr.
3228          */
3229         rt_mutex_init_waiter(&rt_waiter);
3230
3231         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3232         if (unlikely(ret != 0))
3233                 goto out;
3234
3235         q.bitset = bitset;
3236         q.rt_waiter = &rt_waiter;
3237         q.requeue_pi_key = &key2;
3238
3239         /*
3240          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3241          * count.
3242          */
3243         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3244         if (ret)
3245                 goto out_key2;
3246
3247         /*
3248          * The check above which compares uaddrs is not sufficient for
3249          * shared futexes. We need to compare the keys:
3250          */
3251         if (match_futex(&q.key, &key2)) {
3252                 queue_unlock(hb);
3253                 ret = -EINVAL;
3254                 goto out_put_keys;
3255         }
3256
3257         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3258         futex_wait_queue_me(hb, &q, to);
3259
3260         spin_lock(&hb->lock);
3261         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3262         spin_unlock(&hb->lock);
3263         if (ret)
3264                 goto out_put_keys;
3265
3266         /*
3267          * In order for us to be here, we know our q.key == key2, and since
3268          * we took the hb->lock above, we also know that futex_requeue() has
3269          * completed and we no longer have to concern ourselves with a wakeup
3270          * race with the atomic proxy lock acquisition by the requeue code. The
3271          * futex_requeue dropped our key1 reference and incremented our key2
3272          * reference count.
3273          */
3274
3275         /* Check if the requeue code acquired the second futex for us. */
3276         if (!q.rt_waiter) {
3277                 /*
3278                  * Got the lock. We might not be the anticipated owner if we
3279                  * did a lock-steal - fix up the PI-state in that case.
3280                  */
3281                 if (q.pi_state && (q.pi_state->owner != current)) {
3282                         spin_lock(q.lock_ptr);
3283                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3284                         /*
3285                          * Drop the reference to the pi state which
3286                          * the requeue_pi() code acquired for us.
3287                          */
3288                         put_pi_state(q.pi_state);
3289                         spin_unlock(q.lock_ptr);
3290                         /*
3291                          * Adjust the return value. It's either -EFAULT or
3292                          * success (1) but the caller expects 0 for success.
3293                          */
3294                         ret = ret < 0 ? ret : 0;
3295                 }
3296         } else {
3297                 struct rt_mutex *pi_mutex;
3298
3299                 /*
3300                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3301                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3302                  * the pi_state.
3303                  */
3304                 WARN_ON(!q.pi_state);
3305                 pi_mutex = &q.pi_state->pi_mutex;
3306                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3307
3308                 spin_lock(q.lock_ptr);
3309                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3310                         ret = 0;
3311
3312                 debug_rt_mutex_free_waiter(&rt_waiter);
3313                 /*
3314                  * Fixup the pi_state owner and possibly acquire the lock if we
3315                  * haven't already.
3316                  */
3317                 res = fixup_owner(uaddr2, &q, !ret);
3318                 /*
3319                  * If fixup_owner() returned an error, proprogate that.  If it
3320                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3321                  */
3322                 if (res)
3323                         ret = (res < 0) ? res : 0;
3324
3325                 /* Unqueue and drop the lock. */
3326                 unqueue_me_pi(&q);
3327         }
3328
3329         if (ret == -EINTR) {
3330                 /*
3331                  * We've already been requeued, but cannot restart by calling
3332                  * futex_lock_pi() directly. We could restart this syscall, but
3333                  * it would detect that the user space "val" changed and return
3334                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3335                  * -EWOULDBLOCK directly.
3336                  */
3337                 ret = -EWOULDBLOCK;
3338         }
3339
3340 out_put_keys:
3341         put_futex_key(&q.key);
3342 out_key2:
3343         put_futex_key(&key2);
3344
3345 out:
3346         if (to) {
3347                 hrtimer_cancel(&to->timer);
3348                 destroy_hrtimer_on_stack(&to->timer);
3349         }
3350         return ret;
3351 }
3352
3353 /*
3354  * Support for robust futexes: the kernel cleans up held futexes at
3355  * thread exit time.
3356  *
3357  * Implementation: user-space maintains a per-thread list of locks it
3358  * is holding. Upon do_exit(), the kernel carefully walks this list,
3359  * and marks all locks that are owned by this thread with the
3360  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3361  * always manipulated with the lock held, so the list is private and
3362  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3363  * field, to allow the kernel to clean up if the thread dies after
3364  * acquiring the lock, but just before it could have added itself to
3365  * the list. There can only be one such pending lock.
3366  */
3367
3368 /**
3369  * sys_set_robust_list() - Set the robust-futex list head of a task
3370  * @head:       pointer to the list-head
3371  * @len:        length of the list-head, as userspace expects
3372  */
3373 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3374                 size_t, len)
3375 {
3376         if (!futex_cmpxchg_enabled)
3377                 return -ENOSYS;
3378         /*
3379          * The kernel knows only one size for now:
3380          */
3381         if (unlikely(len != sizeof(*head)))
3382                 return -EINVAL;
3383
3384         current->robust_list = head;
3385
3386         return 0;
3387 }
3388
3389 /**
3390  * sys_get_robust_list() - Get the robust-futex list head of a task
3391  * @pid:        pid of the process [zero for current task]
3392  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3393  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3394  */
3395 SYSCALL_DEFINE3(get_robust_list, int, pid,
3396                 struct robust_list_head __user * __user *, head_ptr,
3397                 size_t __user *, len_ptr)
3398 {
3399         struct robust_list_head __user *head;
3400         unsigned long ret;
3401         struct task_struct *p;
3402
3403         if (!futex_cmpxchg_enabled)
3404                 return -ENOSYS;
3405
3406         rcu_read_lock();
3407
3408         ret = -ESRCH;
3409         if (!pid)
3410                 p = current;
3411         else {
3412                 p = find_task_by_vpid(pid);
3413                 if (!p)
3414                         goto err_unlock;
3415         }
3416
3417         ret = -EPERM;
3418         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3419                 goto err_unlock;
3420
3421         head = p->robust_list;
3422         rcu_read_unlock();
3423
3424         if (put_user(sizeof(*head), len_ptr))
3425                 return -EFAULT;
3426         return put_user(head, head_ptr);
3427
3428 err_unlock:
3429         rcu_read_unlock();
3430
3431         return ret;
3432 }
3433
3434 /*
3435  * Process a futex-list entry, check whether it's owned by the
3436  * dying task, and do notification if so:
3437  */
3438 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3439 {
3440         u32 uval, uninitialized_var(nval), mval;
3441
3442         /* Futex address must be 32bit aligned */
3443         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3444                 return -1;
3445
3446 retry:
3447         if (get_user(uval, uaddr))
3448                 return -1;
3449
3450         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3451                 /*
3452                  * Ok, this dying thread is truly holding a futex
3453                  * of interest. Set the OWNER_DIED bit atomically
3454                  * via cmpxchg, and if the value had FUTEX_WAITERS
3455                  * set, wake up a waiter (if any). (We have to do a
3456                  * futex_wake() even if OWNER_DIED is already set -
3457                  * to handle the rare but possible case of recursive
3458                  * thread-death.) The rest of the cleanup is done in
3459                  * userspace.
3460                  */
3461                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3462                 /*
3463                  * We are not holding a lock here, but we want to have
3464                  * the pagefault_disable/enable() protection because
3465                  * we want to handle the fault gracefully. If the
3466                  * access fails we try to fault in the futex with R/W
3467                  * verification via get_user_pages. get_user() above
3468                  * does not guarantee R/W access. If that fails we
3469                  * give up and leave the futex locked.
3470                  */
3471                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3472                         if (fault_in_user_writeable(uaddr))
3473                                 return -1;
3474                         goto retry;
3475                 }
3476                 if (nval != uval)
3477                         goto retry;
3478
3479                 /*
3480                  * Wake robust non-PI futexes here. The wakeup of
3481                  * PI futexes happens in exit_pi_state():
3482                  */
3483                 if (!pi && (uval & FUTEX_WAITERS))
3484                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3485         }
3486         return 0;
3487 }
3488
3489 /*
3490  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3491  */
3492 static inline int fetch_robust_entry(struct robust_list __user **entry,
3493                                      struct robust_list __user * __user *head,
3494                                      unsigned int *pi)
3495 {
3496         unsigned long uentry;
3497
3498         if (get_user(uentry, (unsigned long __user *)head))
3499                 return -EFAULT;
3500
3501         *entry = (void __user *)(uentry & ~1UL);
3502         *pi = uentry & 1;
3503
3504         return 0;
3505 }
3506
3507 /*
3508  * Walk curr->robust_list (very carefully, it's a userspace list!)
3509  * and mark any locks found there dead, and notify any waiters.
3510  *
3511  * We silently return on any sign of list-walking problem.
3512  */
3513 static void exit_robust_list(struct task_struct *curr)
3514 {
3515         struct robust_list_head __user *head = curr->robust_list;
3516         struct robust_list __user *entry, *next_entry, *pending;
3517         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3518         unsigned int uninitialized_var(next_pi);
3519         unsigned long futex_offset;
3520         int rc;
3521
3522         if (!futex_cmpxchg_enabled)
3523                 return;
3524
3525         /*
3526          * Fetch the list head (which was registered earlier, via
3527          * sys_set_robust_list()):
3528          */
3529         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3530                 return;
3531         /*
3532          * Fetch the relative futex offset:
3533          */
3534         if (get_user(futex_offset, &head->futex_offset))
3535                 return;
3536         /*
3537          * Fetch any possibly pending lock-add first, and handle it
3538          * if it exists:
3539          */
3540         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3541                 return;
3542
3543         next_entry = NULL;      /* avoid warning with gcc */
3544         while (entry != &head->list) {
3545                 /*
3546                  * Fetch the next entry in the list before calling
3547                  * handle_futex_death:
3548                  */
3549                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3550                 /*
3551                  * A pending lock might already be on the list, so
3552                  * don't process it twice:
3553                  */
3554                 if (entry != pending)
3555                         if (handle_futex_death((void __user *)entry + futex_offset,
3556                                                 curr, pi))
3557                                 return;
3558                 if (rc)
3559                         return;
3560                 entry = next_entry;
3561                 pi = next_pi;
3562                 /*
3563                  * Avoid excessively long or circular lists:
3564                  */
3565                 if (!--limit)
3566                         break;
3567
3568                 cond_resched();
3569         }
3570
3571         if (pending)
3572                 handle_futex_death((void __user *)pending + futex_offset,
3573                                    curr, pip);
3574 }
3575
3576 static void futex_cleanup(struct task_struct *tsk)
3577 {
3578         if (unlikely(tsk->robust_list)) {
3579                 exit_robust_list(tsk);
3580                 tsk->robust_list = NULL;
3581         }
3582
3583 #ifdef CONFIG_COMPAT
3584         if (unlikely(tsk->compat_robust_list)) {
3585                 compat_exit_robust_list(tsk);
3586                 tsk->compat_robust_list = NULL;
3587         }
3588 #endif
3589
3590         if (unlikely(!list_empty(&tsk->pi_state_list)))
3591                 exit_pi_state_list(tsk);
3592 }
3593
3594 /**
3595  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3596  * @tsk:        task to set the state on
3597  *
3598  * Set the futex exit state of the task lockless. The futex waiter code
3599  * observes that state when a task is exiting and loops until the task has
3600  * actually finished the futex cleanup. The worst case for this is that the
3601  * waiter runs through the wait loop until the state becomes visible.
3602  *
3603  * This is called from the recursive fault handling path in do_exit().
3604  *
3605  * This is best effort. Either the futex exit code has run already or
3606  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3607  * take it over. If not, the problem is pushed back to user space. If the
3608  * futex exit code did not run yet, then an already queued waiter might
3609  * block forever, but there is nothing which can be done about that.
3610  */
3611 void futex_exit_recursive(struct task_struct *tsk)
3612 {
3613         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3614         if (tsk->futex_state == FUTEX_STATE_EXITING)
3615                 mutex_unlock(&tsk->futex_exit_mutex);
3616         tsk->futex_state = FUTEX_STATE_DEAD;
3617 }
3618
3619 static void futex_cleanup_begin(struct task_struct *tsk)
3620 {
3621         /*
3622          * Prevent various race issues against a concurrent incoming waiter
3623          * including live locks by forcing the waiter to block on
3624          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3625          * attach_to_pi_owner().
3626          */
3627         mutex_lock(&tsk->futex_exit_mutex);
3628
3629         /*
3630          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3631          *
3632          * This ensures that all subsequent checks of tsk->futex_state in
3633          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3634          * tsk->pi_lock held.
3635          *
3636          * It guarantees also that a pi_state which was queued right before
3637          * the state change under tsk->pi_lock by a concurrent waiter must
3638          * be observed in exit_pi_state_list().
3639          */
3640         raw_spin_lock_irq(&tsk->pi_lock);
3641         tsk->futex_state = FUTEX_STATE_EXITING;
3642         raw_spin_unlock_irq(&tsk->pi_lock);
3643 }
3644
3645 static void futex_cleanup_end(struct task_struct *tsk, int state)
3646 {
3647         /*
3648          * Lockless store. The only side effect is that an observer might
3649          * take another loop until it becomes visible.
3650          */
3651         tsk->futex_state = state;
3652         /*
3653          * Drop the exit protection. This unblocks waiters which observed
3654          * FUTEX_STATE_EXITING to reevaluate the state.
3655          */
3656         mutex_unlock(&tsk->futex_exit_mutex);
3657 }
3658
3659 void futex_exec_release(struct task_struct *tsk)
3660 {
3661         /*
3662          * The state handling is done for consistency, but in the case of
3663          * exec() there is no way to prevent futher damage as the PID stays
3664          * the same. But for the unlikely and arguably buggy case that a
3665          * futex is held on exec(), this provides at least as much state
3666          * consistency protection which is possible.
3667          */
3668         futex_cleanup_begin(tsk);
3669         futex_cleanup(tsk);
3670         /*
3671          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3672          * exec a new binary.
3673          */
3674         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3675 }
3676
3677 void futex_exit_release(struct task_struct *tsk)
3678 {
3679         futex_cleanup_begin(tsk);
3680         futex_cleanup(tsk);
3681         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3682 }
3683
3684 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3685                 u32 __user *uaddr2, u32 val2, u32 val3)
3686 {
3687         int cmd = op & FUTEX_CMD_MASK;
3688         unsigned int flags = 0;
3689
3690         if (!(op & FUTEX_PRIVATE_FLAG))
3691                 flags |= FLAGS_SHARED;
3692
3693         if (op & FUTEX_CLOCK_REALTIME) {
3694                 flags |= FLAGS_CLOCKRT;
3695                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3696                         return -ENOSYS;
3697         }
3698
3699         switch (cmd) {
3700         case FUTEX_LOCK_PI:
3701         case FUTEX_UNLOCK_PI:
3702         case FUTEX_TRYLOCK_PI:
3703         case FUTEX_WAIT_REQUEUE_PI:
3704         case FUTEX_CMP_REQUEUE_PI:
3705                 if (!futex_cmpxchg_enabled)
3706                         return -ENOSYS;
3707         }
3708
3709         switch (cmd) {
3710         case FUTEX_WAIT:
3711                 val3 = FUTEX_BITSET_MATCH_ANY;
3712         case FUTEX_WAIT_BITSET:
3713                 return futex_wait(uaddr, flags, val, timeout, val3);
3714         case FUTEX_WAKE:
3715                 val3 = FUTEX_BITSET_MATCH_ANY;
3716         case FUTEX_WAKE_BITSET:
3717                 return futex_wake(uaddr, flags, val, val3);
3718         case FUTEX_REQUEUE:
3719                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3720         case FUTEX_CMP_REQUEUE:
3721                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3722         case FUTEX_WAKE_OP:
3723                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3724         case FUTEX_LOCK_PI:
3725                 return futex_lock_pi(uaddr, flags, timeout, 0);
3726         case FUTEX_UNLOCK_PI:
3727                 return futex_unlock_pi(uaddr, flags);
3728         case FUTEX_TRYLOCK_PI:
3729                 return futex_lock_pi(uaddr, flags, NULL, 1);
3730         case FUTEX_WAIT_REQUEUE_PI:
3731                 val3 = FUTEX_BITSET_MATCH_ANY;
3732                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3733                                              uaddr2);
3734         case FUTEX_CMP_REQUEUE_PI:
3735                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3736         }
3737         return -ENOSYS;
3738 }
3739
3740
3741 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3742                 struct timespec __user *, utime, u32 __user *, uaddr2,
3743                 u32, val3)
3744 {
3745         struct timespec ts;
3746         ktime_t t, *tp = NULL;
3747         u32 val2 = 0;
3748         int cmd = op & FUTEX_CMD_MASK;
3749
3750         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3751                       cmd == FUTEX_WAIT_BITSET ||
3752                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3753                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3754                         return -EFAULT;
3755                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3756                         return -EFAULT;
3757                 if (!timespec_valid(&ts))
3758                         return -EINVAL;
3759
3760                 t = timespec_to_ktime(ts);
3761                 if (cmd == FUTEX_WAIT)
3762                         t = ktime_add_safe(ktime_get(), t);
3763                 tp = &t;
3764         }
3765         /*
3766          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3767          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3768          */
3769         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3770             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3771                 val2 = (u32) (unsigned long) utime;
3772
3773         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3774 }
3775
3776 #ifdef CONFIG_COMPAT
3777 /*
3778  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3779  */
3780 static inline int
3781 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3782                    compat_uptr_t __user *head, unsigned int *pi)
3783 {
3784         if (get_user(*uentry, head))
3785                 return -EFAULT;
3786
3787         *entry = compat_ptr((*uentry) & ~1);
3788         *pi = (unsigned int)(*uentry) & 1;
3789
3790         return 0;
3791 }
3792
3793 static void __user *futex_uaddr(struct robust_list __user *entry,
3794                                 compat_long_t futex_offset)
3795 {
3796         compat_uptr_t base = ptr_to_compat(entry);
3797         void __user *uaddr = compat_ptr(base + futex_offset);
3798
3799         return uaddr;
3800 }
3801
3802 /*
3803  * Walk curr->robust_list (very carefully, it's a userspace list!)
3804  * and mark any locks found there dead, and notify any waiters.
3805  *
3806  * We silently return on any sign of list-walking problem.
3807  */
3808 void compat_exit_robust_list(struct task_struct *curr)
3809 {
3810         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3811         struct robust_list __user *entry, *next_entry, *pending;
3812         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3813         unsigned int uninitialized_var(next_pi);
3814         compat_uptr_t uentry, next_uentry, upending;
3815         compat_long_t futex_offset;
3816         int rc;
3817
3818         if (!futex_cmpxchg_enabled)
3819                 return;
3820
3821         /*
3822          * Fetch the list head (which was registered earlier, via
3823          * sys_set_robust_list()):
3824          */
3825         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3826                 return;
3827         /*
3828          * Fetch the relative futex offset:
3829          */
3830         if (get_user(futex_offset, &head->futex_offset))
3831                 return;
3832         /*
3833          * Fetch any possibly pending lock-add first, and handle it
3834          * if it exists:
3835          */
3836         if (compat_fetch_robust_entry(&upending, &pending,
3837                                &head->list_op_pending, &pip))
3838                 return;
3839
3840         next_entry = NULL;      /* avoid warning with gcc */
3841         while (entry != (struct robust_list __user *) &head->list) {
3842                 /*
3843                  * Fetch the next entry in the list before calling
3844                  * handle_futex_death:
3845                  */
3846                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3847                         (compat_uptr_t __user *)&entry->next, &next_pi);
3848                 /*
3849                  * A pending lock might already be on the list, so
3850                  * dont process it twice:
3851                  */
3852                 if (entry != pending) {
3853                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3854
3855                         if (handle_futex_death(uaddr, curr, pi))
3856                                 return;
3857                 }
3858                 if (rc)
3859                         return;
3860                 uentry = next_uentry;
3861                 entry = next_entry;
3862                 pi = next_pi;
3863                 /*
3864                  * Avoid excessively long or circular lists:
3865                  */
3866                 if (!--limit)
3867                         break;
3868
3869                 cond_resched();
3870         }
3871         if (pending) {
3872                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3873
3874                 handle_futex_death(uaddr, curr, pip);
3875         }
3876 }
3877
3878 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3879                 struct compat_robust_list_head __user *, head,
3880                 compat_size_t, len)
3881 {
3882         if (!futex_cmpxchg_enabled)
3883                 return -ENOSYS;
3884
3885         if (unlikely(len != sizeof(*head)))
3886                 return -EINVAL;
3887
3888         current->compat_robust_list = head;
3889
3890         return 0;
3891 }
3892
3893 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3894                         compat_uptr_t __user *, head_ptr,
3895                         compat_size_t __user *, len_ptr)
3896 {
3897         struct compat_robust_list_head __user *head;
3898         unsigned long ret;
3899         struct task_struct *p;
3900
3901         if (!futex_cmpxchg_enabled)
3902                 return -ENOSYS;
3903
3904         rcu_read_lock();
3905
3906         ret = -ESRCH;
3907         if (!pid)
3908                 p = current;
3909         else {
3910                 p = find_task_by_vpid(pid);
3911                 if (!p)
3912                         goto err_unlock;
3913         }
3914
3915         ret = -EPERM;
3916         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3917                 goto err_unlock;
3918
3919         head = p->compat_robust_list;
3920         rcu_read_unlock();
3921
3922         if (put_user(sizeof(*head), len_ptr))
3923                 return -EFAULT;
3924         return put_user(ptr_to_compat(head), head_ptr);
3925
3926 err_unlock:
3927         rcu_read_unlock();
3928
3929         return ret;
3930 }
3931
3932 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3933                 struct compat_timespec __user *, utime, u32 __user *, uaddr2,
3934                 u32, val3)
3935 {
3936         struct timespec ts;
3937         ktime_t t, *tp = NULL;
3938         int val2 = 0;
3939         int cmd = op & FUTEX_CMD_MASK;
3940
3941         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3942                       cmd == FUTEX_WAIT_BITSET ||
3943                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3944                 if (compat_get_timespec(&ts, utime))
3945                         return -EFAULT;
3946                 if (!timespec_valid(&ts))
3947                         return -EINVAL;
3948
3949                 t = timespec_to_ktime(ts);
3950                 if (cmd == FUTEX_WAIT)
3951                         t = ktime_add_safe(ktime_get(), t);
3952                 tp = &t;
3953         }
3954         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3955             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3956                 val2 = (int) (unsigned long) utime;
3957
3958         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3959 }
3960 #endif /* CONFIG_COMPAT */
3961
3962 static void __init futex_detect_cmpxchg(void)
3963 {
3964 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3965         u32 curval;
3966
3967         /*
3968          * This will fail and we want it. Some arch implementations do
3969          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3970          * functionality. We want to know that before we call in any
3971          * of the complex code paths. Also we want to prevent
3972          * registration of robust lists in that case. NULL is
3973          * guaranteed to fault and we get -EFAULT on functional
3974          * implementation, the non-functional ones will return
3975          * -ENOSYS.
3976          */
3977         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3978                 futex_cmpxchg_enabled = 1;
3979 #endif
3980 }
3981
3982 static int __init futex_init(void)
3983 {
3984         unsigned int futex_shift;
3985         unsigned long i;
3986
3987 #if CONFIG_BASE_SMALL
3988         futex_hashsize = 16;
3989 #else
3990         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3991 #endif
3992
3993         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3994                                                futex_hashsize, 0,
3995                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3996                                                &futex_shift, NULL,
3997                                                futex_hashsize, futex_hashsize);
3998         futex_hashsize = 1UL << futex_shift;
3999
4000         futex_detect_cmpxchg();
4001
4002         for (i = 0; i < futex_hashsize; i++) {
4003                 atomic_set(&futex_queues[i].waiters, 0);
4004                 plist_head_init(&futex_queues[i].chain);
4005                 spin_lock_init(&futex_queues[i].lock);
4006         }
4007
4008         return 0;
4009 }
4010 core_initcall(futex_init);