arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / kernel / futex / waitwake.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include <linux/sched/task.h>
4 #include <linux/sched/signal.h>
5 #include <linux/freezer.h>
6
7 #include "futex.h"
8
9 /*
10  * READ this before attempting to hack on futexes!
11  *
12  * Basic futex operation and ordering guarantees
13  * =============================================
14  *
15  * The waiter reads the futex value in user space and calls
16  * futex_wait(). This function computes the hash bucket and acquires
17  * the hash bucket lock. After that it reads the futex user space value
18  * again and verifies that the data has not changed. If it has not changed
19  * it enqueues itself into the hash bucket, releases the hash bucket lock
20  * and schedules.
21  *
22  * The waker side modifies the user space value of the futex and calls
23  * futex_wake(). This function computes the hash bucket and acquires the
24  * hash bucket lock. Then it looks for waiters on that futex in the hash
25  * bucket and wakes them.
26  *
27  * In futex wake up scenarios where no tasks are blocked on a futex, taking
28  * the hb spinlock can be avoided and simply return. In order for this
29  * optimization to work, ordering guarantees must exist so that the waiter
30  * being added to the list is acknowledged when the list is concurrently being
31  * checked by the waker, avoiding scenarios like the following:
32  *
33  * CPU 0                               CPU 1
34  * val = *futex;
35  * sys_futex(WAIT, futex, val);
36  *   futex_wait(futex, val);
37  *   uval = *futex;
38  *                                     *futex = newval;
39  *                                     sys_futex(WAKE, futex);
40  *                                       futex_wake(futex);
41  *                                       if (queue_empty())
42  *                                         return;
43  *   if (uval == val)
44  *      lock(hash_bucket(futex));
45  *      queue();
46  *     unlock(hash_bucket(futex));
47  *     schedule();
48  *
49  * This would cause the waiter on CPU 0 to wait forever because it
50  * missed the transition of the user space value from val to newval
51  * and the waker did not find the waiter in the hash bucket queue.
52  *
53  * The correct serialization ensures that a waiter either observes
54  * the changed user space value before blocking or is woken by a
55  * concurrent waker:
56  *
57  * CPU 0                                 CPU 1
58  * val = *futex;
59  * sys_futex(WAIT, futex, val);
60  *   futex_wait(futex, val);
61  *
62  *   waiters++; (a)
63  *   smp_mb(); (A) <-- paired with -.
64  *                                  |
65  *   lock(hash_bucket(futex));      |
66  *                                  |
67  *   uval = *futex;                 |
68  *                                  |        *futex = newval;
69  *                                  |        sys_futex(WAKE, futex);
70  *                                  |          futex_wake(futex);
71  *                                  |
72  *                                  `--------> smp_mb(); (B)
73  *   if (uval == val)
74  *     queue();
75  *     unlock(hash_bucket(futex));
76  *     schedule();                         if (waiters)
77  *                                           lock(hash_bucket(futex));
78  *   else                                    wake_waiters(futex);
79  *     waiters--; (b)                        unlock(hash_bucket(futex));
80  *
81  * Where (A) orders the waiters increment and the futex value read through
82  * atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
83  * to futex and the waiters read (see futex_hb_waiters_pending()).
84  *
85  * This yields the following case (where X:=waiters, Y:=futex):
86  *
87  *      X = Y = 0
88  *
89  *      w[X]=1          w[Y]=1
90  *      MB              MB
91  *      r[Y]=y          r[X]=x
92  *
93  * Which guarantees that x==0 && y==0 is impossible; which translates back into
94  * the guarantee that we cannot both miss the futex variable change and the
95  * enqueue.
96  *
97  * Note that a new waiter is accounted for in (a) even when it is possible that
98  * the wait call can return error, in which case we backtrack from it in (b).
99  * Refer to the comment in futex_q_lock().
100  *
101  * Similarly, in order to account for waiters being requeued on another
102  * address we always increment the waiters for the destination bucket before
103  * acquiring the lock. It then decrements them again  after releasing it -
104  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
105  * will do the additional required waiter count housekeeping. This is done for
106  * double_lock_hb() and double_unlock_hb(), respectively.
107  */
108
109 bool __futex_wake_mark(struct futex_q *q)
110 {
111         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
112                 return false;
113
114         __futex_unqueue(q);
115         /*
116          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
117          * is written, without taking any locks. This is possible in the event
118          * of a spurious wakeup, for example. A memory barrier is required here
119          * to prevent the following store to lock_ptr from getting ahead of the
120          * plist_del in __futex_unqueue().
121          */
122         smp_store_release(&q->lock_ptr, NULL);
123
124         return true;
125 }
126
127 /*
128  * The hash bucket lock must be held when this is called.
129  * Afterwards, the futex_q must not be accessed. Callers
130  * must ensure to later call wake_up_q() for the actual
131  * wakeups to occur.
132  */
133 void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
134 {
135         struct task_struct *p = q->task;
136
137         get_task_struct(p);
138
139         if (!__futex_wake_mark(q)) {
140                 put_task_struct(p);
141                 return;
142         }
143
144         /*
145          * Queue the task for later wakeup for after we've released
146          * the hb->lock.
147          */
148         wake_q_add_safe(wake_q, p);
149 }
150
151 /*
152  * Wake up waiters matching bitset queued on this futex (uaddr).
153  */
154 int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
155 {
156         struct futex_hash_bucket *hb;
157         struct futex_q *this, *next;
158         union futex_key key = FUTEX_KEY_INIT;
159         DEFINE_WAKE_Q(wake_q);
160         int ret;
161
162         if (!bitset)
163                 return -EINVAL;
164
165         ret = get_futex_key(uaddr, flags, &key, FUTEX_READ);
166         if (unlikely(ret != 0))
167                 return ret;
168
169         if ((flags & FLAGS_STRICT) && !nr_wake)
170                 return 0;
171
172         hb = futex_hash(&key);
173
174         /* Make sure we really have tasks to wakeup */
175         if (!futex_hb_waiters_pending(hb))
176                 return ret;
177
178         spin_lock(&hb->lock);
179
180         plist_for_each_entry_safe(this, next, &hb->chain, list) {
181                 if (futex_match (&this->key, &key)) {
182                         if (this->pi_state || this->rt_waiter) {
183                                 ret = -EINVAL;
184                                 break;
185                         }
186
187                         /* Check if one of the bits is set in both bitsets */
188                         if (!(this->bitset & bitset))
189                                 continue;
190
191                         this->wake(&wake_q, this);
192                         if (++ret >= nr_wake)
193                                 break;
194                 }
195         }
196
197         spin_unlock(&hb->lock);
198         wake_up_q(&wake_q);
199         return ret;
200 }
201
202 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
203 {
204         unsigned int op =         (encoded_op & 0x70000000) >> 28;
205         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
206         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
207         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
208         int oldval, ret;
209
210         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
211                 if (oparg < 0 || oparg > 31) {
212                         char comm[sizeof(current->comm)];
213                         /*
214                          * kill this print and return -EINVAL when userspace
215                          * is sane again
216                          */
217                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
218                                         get_task_comm(comm, current), oparg);
219                         oparg &= 31;
220                 }
221                 oparg = 1 << oparg;
222         }
223
224         pagefault_disable();
225         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
226         pagefault_enable();
227         if (ret)
228                 return ret;
229
230         switch (cmp) {
231         case FUTEX_OP_CMP_EQ:
232                 return oldval == cmparg;
233         case FUTEX_OP_CMP_NE:
234                 return oldval != cmparg;
235         case FUTEX_OP_CMP_LT:
236                 return oldval < cmparg;
237         case FUTEX_OP_CMP_GE:
238                 return oldval >= cmparg;
239         case FUTEX_OP_CMP_LE:
240                 return oldval <= cmparg;
241         case FUTEX_OP_CMP_GT:
242                 return oldval > cmparg;
243         default:
244                 return -ENOSYS;
245         }
246 }
247
248 /*
249  * Wake up all waiters hashed on the physical page that is mapped
250  * to this virtual address:
251  */
252 int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
253                   int nr_wake, int nr_wake2, int op)
254 {
255         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
256         struct futex_hash_bucket *hb1, *hb2;
257         struct futex_q *this, *next;
258         int ret, op_ret;
259         DEFINE_WAKE_Q(wake_q);
260
261 retry:
262         ret = get_futex_key(uaddr1, flags, &key1, FUTEX_READ);
263         if (unlikely(ret != 0))
264                 return ret;
265         ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
266         if (unlikely(ret != 0))
267                 return ret;
268
269         hb1 = futex_hash(&key1);
270         hb2 = futex_hash(&key2);
271
272 retry_private:
273         double_lock_hb(hb1, hb2);
274         op_ret = futex_atomic_op_inuser(op, uaddr2);
275         if (unlikely(op_ret < 0)) {
276                 double_unlock_hb(hb1, hb2);
277
278                 if (!IS_ENABLED(CONFIG_MMU) ||
279                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
280                         /*
281                          * we don't get EFAULT from MMU faults if we don't have
282                          * an MMU, but we might get them from range checking
283                          */
284                         ret = op_ret;
285                         return ret;
286                 }
287
288                 if (op_ret == -EFAULT) {
289                         ret = fault_in_user_writeable(uaddr2);
290                         if (ret)
291                                 return ret;
292                 }
293
294                 cond_resched();
295                 if (!(flags & FLAGS_SHARED))
296                         goto retry_private;
297                 goto retry;
298         }
299
300         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
301                 if (futex_match (&this->key, &key1)) {
302                         if (this->pi_state || this->rt_waiter) {
303                                 ret = -EINVAL;
304                                 goto out_unlock;
305                         }
306                         this->wake(&wake_q, this);
307                         if (++ret >= nr_wake)
308                                 break;
309                 }
310         }
311
312         if (op_ret > 0) {
313                 op_ret = 0;
314                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
315                         if (futex_match (&this->key, &key2)) {
316                                 if (this->pi_state || this->rt_waiter) {
317                                         ret = -EINVAL;
318                                         goto out_unlock;
319                                 }
320                                 this->wake(&wake_q, this);
321                                 if (++op_ret >= nr_wake2)
322                                         break;
323                         }
324                 }
325                 ret += op_ret;
326         }
327
328 out_unlock:
329         double_unlock_hb(hb1, hb2);
330         wake_up_q(&wake_q);
331         return ret;
332 }
333
334 static long futex_wait_restart(struct restart_block *restart);
335
336 /**
337  * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
338  * @hb:         the futex hash bucket, must be locked by the caller
339  * @q:          the futex_q to queue up on
340  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
341  */
342 void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
343                             struct hrtimer_sleeper *timeout)
344 {
345         /*
346          * The task state is guaranteed to be set before another task can
347          * wake it. set_current_state() is implemented using smp_store_mb() and
348          * futex_queue() calls spin_unlock() upon completion, both serializing
349          * access to the hash list and forcing another memory barrier.
350          */
351         set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
352         futex_queue(q, hb);
353
354         /* Arm the timer */
355         if (timeout)
356                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
357
358         /*
359          * If we have been removed from the hash list, then another task
360          * has tried to wake us, and we can skip the call to schedule().
361          */
362         if (likely(!plist_node_empty(&q->list))) {
363                 /*
364                  * If the timer has already expired, current will already be
365                  * flagged for rescheduling. Only call schedule if there
366                  * is no timeout, or if it has yet to expire.
367                  */
368                 if (!timeout || timeout->task)
369                         schedule();
370         }
371         __set_current_state(TASK_RUNNING);
372 }
373
374 /**
375  * futex_unqueue_multiple - Remove various futexes from their hash bucket
376  * @v:     The list of futexes to unqueue
377  * @count: Number of futexes in the list
378  *
379  * Helper to unqueue a list of futexes. This can't fail.
380  *
381  * Return:
382  *  - >=0 - Index of the last futex that was awoken;
383  *  - -1  - No futex was awoken
384  */
385 int futex_unqueue_multiple(struct futex_vector *v, int count)
386 {
387         int ret = -1, i;
388
389         for (i = 0; i < count; i++) {
390                 if (!futex_unqueue(&v[i].q))
391                         ret = i;
392         }
393
394         return ret;
395 }
396
397 /**
398  * futex_wait_multiple_setup - Prepare to wait and enqueue multiple futexes
399  * @vs:         The futex list to wait on
400  * @count:      The size of the list
401  * @woken:      Index of the last woken futex, if any. Used to notify the
402  *              caller that it can return this index to userspace (return parameter)
403  *
404  * Prepare multiple futexes in a single step and enqueue them. This may fail if
405  * the futex list is invalid or if any futex was already awoken. On success the
406  * task is ready to interruptible sleep.
407  *
408  * Return:
409  *  -  1 - One of the futexes was woken by another thread
410  *  -  0 - Success
411  *  - <0 - -EFAULT, -EWOULDBLOCK or -EINVAL
412  */
413 int futex_wait_multiple_setup(struct futex_vector *vs, int count, int *woken)
414 {
415         struct futex_hash_bucket *hb;
416         bool retry = false;
417         int ret, i;
418         u32 uval;
419
420         /*
421          * Enqueuing multiple futexes is tricky, because we need to enqueue
422          * each futex on the list before dealing with the next one to avoid
423          * deadlocking on the hash bucket. But, before enqueuing, we need to
424          * make sure that current->state is TASK_INTERRUPTIBLE, so we don't
425          * lose any wake events, which cannot be done before the get_futex_key
426          * of the next key, because it calls get_user_pages, which can sleep.
427          * Thus, we fetch the list of futexes keys in two steps, by first
428          * pinning all the memory keys in the futex key, and only then we read
429          * each key and queue the corresponding futex.
430          *
431          * Private futexes doesn't need to recalculate hash in retry, so skip
432          * get_futex_key() when retrying.
433          */
434 retry:
435         for (i = 0; i < count; i++) {
436                 if (!(vs[i].w.flags & FLAGS_SHARED) && retry)
437                         continue;
438
439                 ret = get_futex_key(u64_to_user_ptr(vs[i].w.uaddr),
440                                     vs[i].w.flags,
441                                     &vs[i].q.key, FUTEX_READ);
442
443                 if (unlikely(ret))
444                         return ret;
445         }
446
447         set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
448
449         for (i = 0; i < count; i++) {
450                 u32 __user *uaddr = (u32 __user *)(unsigned long)vs[i].w.uaddr;
451                 struct futex_q *q = &vs[i].q;
452                 u32 val = vs[i].w.val;
453
454                 hb = futex_q_lock(q);
455                 ret = futex_get_value_locked(&uval, uaddr);
456
457                 if (!ret && uval == val) {
458                         /*
459                          * The bucket lock can't be held while dealing with the
460                          * next futex. Queue each futex at this moment so hb can
461                          * be unlocked.
462                          */
463                         futex_queue(q, hb);
464                         continue;
465                 }
466
467                 futex_q_unlock(hb);
468                 __set_current_state(TASK_RUNNING);
469
470                 /*
471                  * Even if something went wrong, if we find out that a futex
472                  * was woken, we don't return error and return this index to
473                  * userspace
474                  */
475                 *woken = futex_unqueue_multiple(vs, i);
476                 if (*woken >= 0)
477                         return 1;
478
479                 if (ret) {
480                         /*
481                          * If we need to handle a page fault, we need to do so
482                          * without any lock and any enqueued futex (otherwise
483                          * we could lose some wakeup). So we do it here, after
484                          * undoing all the work done so far. In success, we
485                          * retry all the work.
486                          */
487                         if (get_user(uval, uaddr))
488                                 return -EFAULT;
489
490                         retry = true;
491                         goto retry;
492                 }
493
494                 if (uval != val)
495                         return -EWOULDBLOCK;
496         }
497
498         return 0;
499 }
500
501 /**
502  * futex_sleep_multiple - Check sleeping conditions and sleep
503  * @vs:    List of futexes to wait for
504  * @count: Length of vs
505  * @to:    Timeout
506  *
507  * Sleep if and only if the timeout hasn't expired and no futex on the list has
508  * been woken up.
509  */
510 static void futex_sleep_multiple(struct futex_vector *vs, unsigned int count,
511                                  struct hrtimer_sleeper *to)
512 {
513         if (to && !to->task)
514                 return;
515
516         for (; count; count--, vs++) {
517                 if (!READ_ONCE(vs->q.lock_ptr))
518                         return;
519         }
520
521         schedule();
522 }
523
524 /**
525  * futex_wait_multiple - Prepare to wait on and enqueue several futexes
526  * @vs:         The list of futexes to wait on
527  * @count:      The number of objects
528  * @to:         Timeout before giving up and returning to userspace
529  *
530  * Entry point for the FUTEX_WAIT_MULTIPLE futex operation, this function
531  * sleeps on a group of futexes and returns on the first futex that is
532  * wake, or after the timeout has elapsed.
533  *
534  * Return:
535  *  - >=0 - Hint to the futex that was awoken
536  *  - <0  - On error
537  */
538 int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
539                         struct hrtimer_sleeper *to)
540 {
541         int ret, hint = 0;
542
543         if (to)
544                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
545
546         while (1) {
547                 ret = futex_wait_multiple_setup(vs, count, &hint);
548                 if (ret) {
549                         if (ret > 0) {
550                                 /* A futex was woken during setup */
551                                 ret = hint;
552                         }
553                         return ret;
554                 }
555
556                 futex_sleep_multiple(vs, count, to);
557
558                 __set_current_state(TASK_RUNNING);
559
560                 ret = futex_unqueue_multiple(vs, count);
561                 if (ret >= 0)
562                         return ret;
563
564                 if (to && !to->task)
565                         return -ETIMEDOUT;
566                 else if (signal_pending(current))
567                         return -ERESTARTSYS;
568                 /*
569                  * The final case is a spurious wakeup, for
570                  * which just retry.
571                  */
572         }
573 }
574
575 /**
576  * futex_wait_setup() - Prepare to wait on a futex
577  * @uaddr:      the futex userspace address
578  * @val:        the expected value
579  * @flags:      futex flags (FLAGS_SHARED, etc.)
580  * @q:          the associated futex_q
581  * @hb:         storage for hash_bucket pointer to be returned to caller
582  *
583  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
584  * compare it with the expected value.  Handle atomic faults internally.
585  * Return with the hb lock held on success, and unlocked on failure.
586  *
587  * Return:
588  *  -  0 - uaddr contains val and hb has been locked;
589  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
590  */
591 int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
592                      struct futex_q *q, struct futex_hash_bucket **hb)
593 {
594         u32 uval;
595         int ret;
596
597         /*
598          * Access the page AFTER the hash-bucket is locked.
599          * Order is important:
600          *
601          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
602          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
603          *
604          * The basic logical guarantee of a futex is that it blocks ONLY
605          * if cond(var) is known to be true at the time of blocking, for
606          * any cond.  If we locked the hash-bucket after testing *uaddr, that
607          * would open a race condition where we could block indefinitely with
608          * cond(var) false, which would violate the guarantee.
609          *
610          * On the other hand, we insert q and release the hash-bucket only
611          * after testing *uaddr.  This guarantees that futex_wait() will NOT
612          * absorb a wakeup if *uaddr does not match the desired values
613          * while the syscall executes.
614          */
615 retry:
616         ret = get_futex_key(uaddr, flags, &q->key, FUTEX_READ);
617         if (unlikely(ret != 0))
618                 return ret;
619
620 retry_private:
621         *hb = futex_q_lock(q);
622
623         ret = futex_get_value_locked(&uval, uaddr);
624
625         if (ret) {
626                 futex_q_unlock(*hb);
627
628                 ret = get_user(uval, uaddr);
629                 if (ret)
630                         return ret;
631
632                 if (!(flags & FLAGS_SHARED))
633                         goto retry_private;
634
635                 goto retry;
636         }
637
638         if (uval != val) {
639                 futex_q_unlock(*hb);
640                 ret = -EWOULDBLOCK;
641         }
642
643         return ret;
644 }
645
646 int __futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
647                  struct hrtimer_sleeper *to, u32 bitset)
648 {
649         struct futex_q q = futex_q_init;
650         struct futex_hash_bucket *hb;
651         int ret;
652
653         if (!bitset)
654                 return -EINVAL;
655
656         q.bitset = bitset;
657
658 retry:
659         /*
660          * Prepare to wait on uaddr. On success, it holds hb->lock and q
661          * is initialized.
662          */
663         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
664         if (ret)
665                 return ret;
666
667         /* futex_queue and wait for wakeup, timeout, or a signal. */
668         futex_wait_queue(hb, &q, to);
669
670         /* If we were woken (and unqueued), we succeeded, whatever. */
671         if (!futex_unqueue(&q))
672                 return 0;
673
674         if (to && !to->task)
675                 return -ETIMEDOUT;
676
677         /*
678          * We expect signal_pending(current), but we might be the
679          * victim of a spurious wakeup as well.
680          */
681         if (!signal_pending(current))
682                 goto retry;
683
684         return -ERESTARTSYS;
685 }
686
687 int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
688 {
689         struct hrtimer_sleeper timeout, *to;
690         struct restart_block *restart;
691         int ret;
692
693         to = futex_setup_timer(abs_time, &timeout, flags,
694                                current->timer_slack_ns);
695
696         ret = __futex_wait(uaddr, flags, val, to, bitset);
697
698         /* No timeout, nothing to clean up. */
699         if (!to)
700                 return ret;
701
702         hrtimer_cancel(&to->timer);
703         destroy_hrtimer_on_stack(&to->timer);
704
705         if (ret == -ERESTARTSYS) {
706                 restart = &current->restart_block;
707                 restart->futex.uaddr = uaddr;
708                 restart->futex.val = val;
709                 restart->futex.time = *abs_time;
710                 restart->futex.bitset = bitset;
711                 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
712
713                 return set_restart_fn(restart, futex_wait_restart);
714         }
715
716         return ret;
717 }
718
719 static long futex_wait_restart(struct restart_block *restart)
720 {
721         u32 __user *uaddr = restart->futex.uaddr;
722         ktime_t t, *tp = NULL;
723
724         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
725                 t = restart->futex.time;
726                 tp = &t;
727         }
728         restart->fn = do_no_restart_syscall;
729
730         return (long)futex_wait(uaddr, restart->futex.flags,
731                                 restart->futex.val, tp, restart->futex.bitset);
732 }
733