arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / kernel / futex / requeue.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include <linux/sched/signal.h>
4
5 #include "futex.h"
6 #include "../locking/rtmutex_common.h"
7
8 /*
9  * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
10  * underlying rtmutex. The task which is about to be requeued could have
11  * just woken up (timeout, signal). After the wake up the task has to
12  * acquire hash bucket lock, which is held by the requeue code.  As a task
13  * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
14  * and the hash bucket lock blocking would collide and corrupt state.
15  *
16  * On !PREEMPT_RT this is not a problem and everything could be serialized
17  * on hash bucket lock, but aside of having the benefit of common code,
18  * this allows to avoid doing the requeue when the task is already on the
19  * way out and taking the hash bucket lock of the original uaddr1 when the
20  * requeue has been completed.
21  *
22  * The following state transitions are valid:
23  *
24  * On the waiter side:
25  *   Q_REQUEUE_PI_NONE          -> Q_REQUEUE_PI_IGNORE
26  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_WAIT
27  *
28  * On the requeue side:
29  *   Q_REQUEUE_PI_NONE          -> Q_REQUEUE_PI_INPROGRESS
30  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_DONE/LOCKED
31  *   Q_REQUEUE_PI_IN_PROGRESS   -> Q_REQUEUE_PI_NONE (requeue failed)
32  *   Q_REQUEUE_PI_WAIT          -> Q_REQUEUE_PI_DONE/LOCKED
33  *   Q_REQUEUE_PI_WAIT          -> Q_REQUEUE_PI_IGNORE (requeue failed)
34  *
35  * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
36  * signals that the waiter is already on the way out. It also means that
37  * the waiter is still on the 'wait' futex, i.e. uaddr1.
38  *
39  * The waiter side signals early wakeup to the requeue side either through
40  * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
41  * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
42  * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
43  * which means the wakeup is interleaving with a requeue in progress it has
44  * to wait for the requeue side to change the state. Either to DONE/LOCKED
45  * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
46  * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
47  * the requeue side when the requeue attempt failed via deadlock detection
48  * and therefore the waiter q is still on the uaddr1 futex.
49  */
50 enum {
51         Q_REQUEUE_PI_NONE               =  0,
52         Q_REQUEUE_PI_IGNORE,
53         Q_REQUEUE_PI_IN_PROGRESS,
54         Q_REQUEUE_PI_WAIT,
55         Q_REQUEUE_PI_DONE,
56         Q_REQUEUE_PI_LOCKED,
57 };
58
59 const struct futex_q futex_q_init = {
60         /* list gets initialized in futex_queue()*/
61         .wake           = futex_wake_mark,
62         .key            = FUTEX_KEY_INIT,
63         .bitset         = FUTEX_BITSET_MATCH_ANY,
64         .requeue_state  = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
65 };
66
67 /**
68  * requeue_futex() - Requeue a futex_q from one hb to another
69  * @q:          the futex_q to requeue
70  * @hb1:        the source hash_bucket
71  * @hb2:        the target hash_bucket
72  * @key2:       the new key for the requeued futex_q
73  */
74 static inline
75 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
76                    struct futex_hash_bucket *hb2, union futex_key *key2)
77 {
78
79         /*
80          * If key1 and key2 hash to the same bucket, no need to
81          * requeue.
82          */
83         if (likely(&hb1->chain != &hb2->chain)) {
84                 plist_del(&q->list, &hb1->chain);
85                 futex_hb_waiters_dec(hb1);
86                 futex_hb_waiters_inc(hb2);
87                 plist_add(&q->list, &hb2->chain);
88                 q->lock_ptr = &hb2->lock;
89         }
90         q->key = *key2;
91 }
92
93 static inline bool futex_requeue_pi_prepare(struct futex_q *q,
94                                             struct futex_pi_state *pi_state)
95 {
96         int old, new;
97
98         /*
99          * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
100          * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
101          * ignore the waiter.
102          */
103         old = atomic_read_acquire(&q->requeue_state);
104         do {
105                 if (old == Q_REQUEUE_PI_IGNORE)
106                         return false;
107
108                 /*
109                  * futex_proxy_trylock_atomic() might have set it to
110                  * IN_PROGRESS and a interleaved early wake to WAIT.
111                  *
112                  * It was considered to have an extra state for that
113                  * trylock, but that would just add more conditionals
114                  * all over the place for a dubious value.
115                  */
116                 if (old != Q_REQUEUE_PI_NONE)
117                         break;
118
119                 new = Q_REQUEUE_PI_IN_PROGRESS;
120         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
121
122         q->pi_state = pi_state;
123         return true;
124 }
125
126 static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
127 {
128         int old, new;
129
130         old = atomic_read_acquire(&q->requeue_state);
131         do {
132                 if (old == Q_REQUEUE_PI_IGNORE)
133                         return;
134
135                 if (locked >= 0) {
136                         /* Requeue succeeded. Set DONE or LOCKED */
137                         WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
138                                      old != Q_REQUEUE_PI_WAIT);
139                         new = Q_REQUEUE_PI_DONE + locked;
140                 } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
141                         /* Deadlock, no early wakeup interleave */
142                         new = Q_REQUEUE_PI_NONE;
143                 } else {
144                         /* Deadlock, early wakeup interleave. */
145                         WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
146                         new = Q_REQUEUE_PI_IGNORE;
147                 }
148         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
149
150 #ifdef CONFIG_PREEMPT_RT
151         /* If the waiter interleaved with the requeue let it know */
152         if (unlikely(old == Q_REQUEUE_PI_WAIT))
153                 rcuwait_wake_up(&q->requeue_wait);
154 #endif
155 }
156
157 static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
158 {
159         int old, new;
160
161         old = atomic_read_acquire(&q->requeue_state);
162         do {
163                 /* Is requeue done already? */
164                 if (old >= Q_REQUEUE_PI_DONE)
165                         return old;
166
167                 /*
168                  * If not done, then tell the requeue code to either ignore
169                  * the waiter or to wake it up once the requeue is done.
170                  */
171                 new = Q_REQUEUE_PI_WAIT;
172                 if (old == Q_REQUEUE_PI_NONE)
173                         new = Q_REQUEUE_PI_IGNORE;
174         } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
175
176         /* If the requeue was in progress, wait for it to complete */
177         if (old == Q_REQUEUE_PI_IN_PROGRESS) {
178 #ifdef CONFIG_PREEMPT_RT
179                 rcuwait_wait_event(&q->requeue_wait,
180                                    atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
181                                    TASK_UNINTERRUPTIBLE);
182 #else
183                 (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
184 #endif
185         }
186
187         /*
188          * Requeue is now either prohibited or complete. Reread state
189          * because during the wait above it might have changed. Nothing
190          * will modify q->requeue_state after this point.
191          */
192         return atomic_read(&q->requeue_state);
193 }
194
195 /**
196  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
197  * @q:          the futex_q
198  * @key:        the key of the requeue target futex
199  * @hb:         the hash_bucket of the requeue target futex
200  *
201  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
202  * target futex if it is uncontended or via a lock steal.
203  *
204  * 1) Set @q::key to the requeue target futex key so the waiter can detect
205  *    the wakeup on the right futex.
206  *
207  * 2) Dequeue @q from the hash bucket.
208  *
209  * 3) Set @q::rt_waiter to NULL so the woken up task can detect atomic lock
210  *    acquisition.
211  *
212  * 4) Set the q->lock_ptr to the requeue target hb->lock for the case that
213  *    the waiter has to fixup the pi state.
214  *
215  * 5) Complete the requeue state so the waiter can make progress. After
216  *    this point the waiter task can return from the syscall immediately in
217  *    case that the pi state does not have to be fixed up.
218  *
219  * 6) Wake the waiter task.
220  *
221  * Must be called with both q->lock_ptr and hb->lock held.
222  */
223 static inline
224 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
225                            struct futex_hash_bucket *hb)
226 {
227         q->key = *key;
228
229         __futex_unqueue(q);
230
231         WARN_ON(!q->rt_waiter);
232         q->rt_waiter = NULL;
233
234         q->lock_ptr = &hb->lock;
235
236         /* Signal locked state to the waiter */
237         futex_requeue_pi_complete(q, 1);
238         wake_up_state(q->task, TASK_NORMAL);
239 }
240
241 /**
242  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
243  * @pifutex:            the user address of the to futex
244  * @hb1:                the from futex hash bucket, must be locked by the caller
245  * @hb2:                the to futex hash bucket, must be locked by the caller
246  * @key1:               the from futex key
247  * @key2:               the to futex key
248  * @ps:                 address to store the pi_state pointer
249  * @exiting:            Pointer to store the task pointer of the owner task
250  *                      which is in the middle of exiting
251  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
252  *
253  * Try and get the lock on behalf of the top waiter if we can do it atomically.
254  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
255  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
256  * hb1 and hb2 must be held by the caller.
257  *
258  * @exiting is only set when the return value is -EBUSY. If so, this holds
259  * a refcount on the exiting task on return and the caller needs to drop it
260  * after waiting for the exit to complete.
261  *
262  * Return:
263  *  -  0 - failed to acquire the lock atomically;
264  *  - >0 - acquired the lock, return value is vpid of the top_waiter
265  *  - <0 - error
266  */
267 static int
268 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
269                            struct futex_hash_bucket *hb2, union futex_key *key1,
270                            union futex_key *key2, struct futex_pi_state **ps,
271                            struct task_struct **exiting, int set_waiters)
272 {
273         struct futex_q *top_waiter;
274         u32 curval;
275         int ret;
276
277         if (futex_get_value_locked(&curval, pifutex))
278                 return -EFAULT;
279
280         if (unlikely(should_fail_futex(true)))
281                 return -EFAULT;
282
283         /*
284          * Find the top_waiter and determine if there are additional waiters.
285          * If the caller intends to requeue more than 1 waiter to pifutex,
286          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
287          * as we have means to handle the possible fault.  If not, don't set
288          * the bit unnecessarily as it will force the subsequent unlock to enter
289          * the kernel.
290          */
291         top_waiter = futex_top_waiter(hb1, key1);
292
293         /* There are no waiters, nothing for us to do. */
294         if (!top_waiter)
295                 return 0;
296
297         /*
298          * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
299          * and waiting on the 'waitqueue' futex which is always !PI.
300          */
301         if (!top_waiter->rt_waiter || top_waiter->pi_state)
302                 return -EINVAL;
303
304         /* Ensure we requeue to the expected futex. */
305         if (!futex_match(top_waiter->requeue_pi_key, key2))
306                 return -EINVAL;
307
308         /* Ensure that this does not race against an early wakeup */
309         if (!futex_requeue_pi_prepare(top_waiter, NULL))
310                 return -EAGAIN;
311
312         /*
313          * Try to take the lock for top_waiter and set the FUTEX_WAITERS bit
314          * in the contended case or if @set_waiters is true.
315          *
316          * In the contended case PI state is attached to the lock owner. If
317          * the user space lock can be acquired then PI state is attached to
318          * the new owner (@top_waiter->task) when @set_waiters is true.
319          */
320         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
321                                    exiting, set_waiters);
322         if (ret == 1) {
323                 /*
324                  * Lock was acquired in user space and PI state was
325                  * attached to @top_waiter->task. That means state is fully
326                  * consistent and the waiter can return to user space
327                  * immediately after the wakeup.
328                  */
329                 requeue_pi_wake_futex(top_waiter, key2, hb2);
330         } else if (ret < 0) {
331                 /* Rewind top_waiter::requeue_state */
332                 futex_requeue_pi_complete(top_waiter, ret);
333         } else {
334                 /*
335                  * futex_lock_pi_atomic() did not acquire the user space
336                  * futex, but managed to establish the proxy lock and pi
337                  * state. top_waiter::requeue_state cannot be fixed up here
338                  * because the waiter is not enqueued on the rtmutex
339                  * yet. This is handled at the callsite depending on the
340                  * result of rt_mutex_start_proxy_lock() which is
341                  * guaranteed to be reached with this function returning 0.
342                  */
343         }
344         return ret;
345 }
346
347 /**
348  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
349  * @uaddr1:     source futex user address
350  * @flags1:     futex flags (FLAGS_SHARED, etc.)
351  * @uaddr2:     target futex user address
352  * @flags2:     futex flags (FLAGS_SHARED, etc.)
353  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
354  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
355  * @cmpval:     @uaddr1 expected value (or %NULL)
356  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
357  *              pi futex (pi to pi requeue is not supported)
358  *
359  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
360  * uaddr2 atomically on behalf of the top waiter.
361  *
362  * Return:
363  *  - >=0 - on success, the number of tasks requeued or woken;
364  *  -  <0 - on error
365  */
366 int futex_requeue(u32 __user *uaddr1, unsigned int flags1,
367                   u32 __user *uaddr2, unsigned int flags2,
368                   int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi)
369 {
370         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
371         int task_count = 0, ret;
372         struct futex_pi_state *pi_state = NULL;
373         struct futex_hash_bucket *hb1, *hb2;
374         struct futex_q *this, *next;
375         DEFINE_WAKE_Q(wake_q);
376
377         if (nr_wake < 0 || nr_requeue < 0)
378                 return -EINVAL;
379
380         /*
381          * When PI not supported: return -ENOSYS if requeue_pi is true,
382          * consequently the compiler knows requeue_pi is always false past
383          * this point which will optimize away all the conditional code
384          * further down.
385          */
386         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
387                 return -ENOSYS;
388
389         if (requeue_pi) {
390                 /*
391                  * Requeue PI only works on two distinct uaddrs. This
392                  * check is only valid for private futexes. See below.
393                  */
394                 if (uaddr1 == uaddr2)
395                         return -EINVAL;
396
397                 /*
398                  * futex_requeue() allows the caller to define the number
399                  * of waiters to wake up via the @nr_wake argument. With
400                  * REQUEUE_PI, waking up more than one waiter is creating
401                  * more problems than it solves. Waking up a waiter makes
402                  * only sense if the PI futex @uaddr2 is uncontended as
403                  * this allows the requeue code to acquire the futex
404                  * @uaddr2 before waking the waiter. The waiter can then
405                  * return to user space without further action. A secondary
406                  * wakeup would just make the futex_wait_requeue_pi()
407                  * handling more complex, because that code would have to
408                  * look up pi_state and do more or less all the handling
409                  * which the requeue code has to do for the to be requeued
410                  * waiters. So restrict the number of waiters to wake to
411                  * one, and only wake it up when the PI futex is
412                  * uncontended. Otherwise requeue it and let the unlock of
413                  * the PI futex handle the wakeup.
414                  *
415                  * All REQUEUE_PI users, e.g. pthread_cond_signal() and
416                  * pthread_cond_broadcast() must use nr_wake=1.
417                  */
418                 if (nr_wake != 1)
419                         return -EINVAL;
420
421                 /*
422                  * requeue_pi requires a pi_state, try to allocate it now
423                  * without any locks in case it fails.
424                  */
425                 if (refill_pi_state_cache())
426                         return -ENOMEM;
427         }
428
429 retry:
430         ret = get_futex_key(uaddr1, flags1, &key1, FUTEX_READ);
431         if (unlikely(ret != 0))
432                 return ret;
433         ret = get_futex_key(uaddr2, flags2, &key2,
434                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
435         if (unlikely(ret != 0))
436                 return ret;
437
438         /*
439          * The check above which compares uaddrs is not sufficient for
440          * shared futexes. We need to compare the keys:
441          */
442         if (requeue_pi && futex_match(&key1, &key2))
443                 return -EINVAL;
444
445         hb1 = futex_hash(&key1);
446         hb2 = futex_hash(&key2);
447
448 retry_private:
449         futex_hb_waiters_inc(hb2);
450         double_lock_hb(hb1, hb2);
451
452         if (likely(cmpval != NULL)) {
453                 u32 curval;
454
455                 ret = futex_get_value_locked(&curval, uaddr1);
456
457                 if (unlikely(ret)) {
458                         double_unlock_hb(hb1, hb2);
459                         futex_hb_waiters_dec(hb2);
460
461                         ret = get_user(curval, uaddr1);
462                         if (ret)
463                                 return ret;
464
465                         if (!(flags1 & FLAGS_SHARED))
466                                 goto retry_private;
467
468                         goto retry;
469                 }
470                 if (curval != *cmpval) {
471                         ret = -EAGAIN;
472                         goto out_unlock;
473                 }
474         }
475
476         if (requeue_pi) {
477                 struct task_struct *exiting = NULL;
478
479                 /*
480                  * Attempt to acquire uaddr2 and wake the top waiter. If we
481                  * intend to requeue waiters, force setting the FUTEX_WAITERS
482                  * bit.  We force this here where we are able to easily handle
483                  * faults rather in the requeue loop below.
484                  *
485                  * Updates topwaiter::requeue_state if a top waiter exists.
486                  */
487                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
488                                                  &key2, &pi_state,
489                                                  &exiting, nr_requeue);
490
491                 /*
492                  * At this point the top_waiter has either taken uaddr2 or
493                  * is waiting on it. In both cases pi_state has been
494                  * established and an initial refcount on it. In case of an
495                  * error there's nothing.
496                  *
497                  * The top waiter's requeue_state is up to date:
498                  *
499                  *  - If the lock was acquired atomically (ret == 1), then
500                  *    the state is Q_REQUEUE_PI_LOCKED.
501                  *
502                  *    The top waiter has been dequeued and woken up and can
503                  *    return to user space immediately. The kernel/user
504                  *    space state is consistent. In case that there must be
505                  *    more waiters requeued the WAITERS bit in the user
506                  *    space futex is set so the top waiter task has to go
507                  *    into the syscall slowpath to unlock the futex. This
508                  *    will block until this requeue operation has been
509                  *    completed and the hash bucket locks have been
510                  *    dropped.
511                  *
512                  *  - If the trylock failed with an error (ret < 0) then
513                  *    the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
514                  *    happened", or Q_REQUEUE_PI_IGNORE when there was an
515                  *    interleaved early wakeup.
516                  *
517                  *  - If the trylock did not succeed (ret == 0) then the
518                  *    state is either Q_REQUEUE_PI_IN_PROGRESS or
519                  *    Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
520                  *    This will be cleaned up in the loop below, which
521                  *    cannot fail because futex_proxy_trylock_atomic() did
522                  *    the same sanity checks for requeue_pi as the loop
523                  *    below does.
524                  */
525                 switch (ret) {
526                 case 0:
527                         /* We hold a reference on the pi state. */
528                         break;
529
530                 case 1:
531                         /*
532                          * futex_proxy_trylock_atomic() acquired the user space
533                          * futex. Adjust task_count.
534                          */
535                         task_count++;
536                         ret = 0;
537                         break;
538
539                 /*
540                  * If the above failed, then pi_state is NULL and
541                  * waiter::requeue_state is correct.
542                  */
543                 case -EFAULT:
544                         double_unlock_hb(hb1, hb2);
545                         futex_hb_waiters_dec(hb2);
546                         ret = fault_in_user_writeable(uaddr2);
547                         if (!ret)
548                                 goto retry;
549                         return ret;
550                 case -EBUSY:
551                 case -EAGAIN:
552                         /*
553                          * Two reasons for this:
554                          * - EBUSY: Owner is exiting and we just wait for the
555                          *   exit to complete.
556                          * - EAGAIN: The user space value changed.
557                          */
558                         double_unlock_hb(hb1, hb2);
559                         futex_hb_waiters_dec(hb2);
560                         /*
561                          * Handle the case where the owner is in the middle of
562                          * exiting. Wait for the exit to complete otherwise
563                          * this task might loop forever, aka. live lock.
564                          */
565                         wait_for_owner_exiting(ret, exiting);
566                         cond_resched();
567                         goto retry;
568                 default:
569                         goto out_unlock;
570                 }
571         }
572
573         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
574                 if (task_count - nr_wake >= nr_requeue)
575                         break;
576
577                 if (!futex_match(&this->key, &key1))
578                         continue;
579
580                 /*
581                  * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
582                  * be paired with each other and no other futex ops.
583                  *
584                  * We should never be requeueing a futex_q with a pi_state,
585                  * which is awaiting a futex_unlock_pi().
586                  */
587                 if ((requeue_pi && !this->rt_waiter) ||
588                     (!requeue_pi && this->rt_waiter) ||
589                     this->pi_state) {
590                         ret = -EINVAL;
591                         break;
592                 }
593
594                 /* Plain futexes just wake or requeue and are done */
595                 if (!requeue_pi) {
596                         if (++task_count <= nr_wake)
597                                 this->wake(&wake_q, this);
598                         else
599                                 requeue_futex(this, hb1, hb2, &key2);
600                         continue;
601                 }
602
603                 /* Ensure we requeue to the expected futex for requeue_pi. */
604                 if (!futex_match(this->requeue_pi_key, &key2)) {
605                         ret = -EINVAL;
606                         break;
607                 }
608
609                 /*
610                  * Requeue nr_requeue waiters and possibly one more in the case
611                  * of requeue_pi if we couldn't acquire the lock atomically.
612                  *
613                  * Prepare the waiter to take the rt_mutex. Take a refcount
614                  * on the pi_state and store the pointer in the futex_q
615                  * object of the waiter.
616                  */
617                 get_pi_state(pi_state);
618
619                 /* Don't requeue when the waiter is already on the way out. */
620                 if (!futex_requeue_pi_prepare(this, pi_state)) {
621                         /*
622                          * Early woken waiter signaled that it is on the
623                          * way out. Drop the pi_state reference and try the
624                          * next waiter. @this->pi_state is still NULL.
625                          */
626                         put_pi_state(pi_state);
627                         continue;
628                 }
629
630                 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
631                                                 this->rt_waiter,
632                                                 this->task);
633
634                 if (ret == 1) {
635                         /*
636                          * We got the lock. We do neither drop the refcount
637                          * on pi_state nor clear this->pi_state because the
638                          * waiter needs the pi_state for cleaning up the
639                          * user space value. It will drop the refcount
640                          * after doing so. this::requeue_state is updated
641                          * in the wakeup as well.
642                          */
643                         requeue_pi_wake_futex(this, &key2, hb2);
644                         task_count++;
645                 } else if (!ret) {
646                         /* Waiter is queued, move it to hb2 */
647                         requeue_futex(this, hb1, hb2, &key2);
648                         futex_requeue_pi_complete(this, 0);
649                         task_count++;
650                 } else {
651                         /*
652                          * rt_mutex_start_proxy_lock() detected a potential
653                          * deadlock when we tried to queue that waiter.
654                          * Drop the pi_state reference which we took above
655                          * and remove the pointer to the state from the
656                          * waiters futex_q object.
657                          */
658                         this->pi_state = NULL;
659                         put_pi_state(pi_state);
660                         futex_requeue_pi_complete(this, ret);
661                         /*
662                          * We stop queueing more waiters and let user space
663                          * deal with the mess.
664                          */
665                         break;
666                 }
667         }
668
669         /*
670          * We took an extra initial reference to the pi_state in
671          * futex_proxy_trylock_atomic(). We need to drop it here again.
672          */
673         put_pi_state(pi_state);
674
675 out_unlock:
676         double_unlock_hb(hb1, hb2);
677         wake_up_q(&wake_q);
678         futex_hb_waiters_dec(hb2);
679         return ret ? ret : task_count;
680 }
681
682 /**
683  * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
684  * @hb:         the hash_bucket futex_q was original enqueued on
685  * @q:          the futex_q woken while waiting to be requeued
686  * @timeout:    the timeout associated with the wait (NULL if none)
687  *
688  * Determine the cause for the early wakeup.
689  *
690  * Return:
691  *  -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
692  */
693 static inline
694 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
695                                    struct futex_q *q,
696                                    struct hrtimer_sleeper *timeout)
697 {
698         int ret;
699
700         /*
701          * With the hb lock held, we avoid races while we process the wakeup.
702          * We only need to hold hb (and not hb2) to ensure atomicity as the
703          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
704          * It can't be requeued from uaddr2 to something else since we don't
705          * support a PI aware source futex for requeue.
706          */
707         WARN_ON_ONCE(&hb->lock != q->lock_ptr);
708
709         /*
710          * We were woken prior to requeue by a timeout or a signal.
711          * Unqueue the futex_q and determine which it was.
712          */
713         plist_del(&q->list, &hb->chain);
714         futex_hb_waiters_dec(hb);
715
716         /* Handle spurious wakeups gracefully */
717         ret = -EWOULDBLOCK;
718         if (timeout && !timeout->task)
719                 ret = -ETIMEDOUT;
720         else if (signal_pending(current))
721                 ret = -ERESTARTNOINTR;
722         return ret;
723 }
724
725 /**
726  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
727  * @uaddr:      the futex we initially wait on (non-pi)
728  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
729  *              the same type, no requeueing from private to shared, etc.
730  * @val:        the expected value of uaddr
731  * @abs_time:   absolute timeout
732  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
733  * @uaddr2:     the pi futex we will take prior to returning to user-space
734  *
735  * The caller will wait on uaddr and will be requeued by futex_requeue() to
736  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
737  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
738  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
739  * without one, the pi logic would not know which task to boost/deboost, if
740  * there was a need to.
741  *
742  * We call schedule in futex_wait_queue() when we enqueue and return there
743  * via the following--
744  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
745  * 2) wakeup on uaddr2 after a requeue
746  * 3) signal
747  * 4) timeout
748  *
749  * If 3, cleanup and return -ERESTARTNOINTR.
750  *
751  * If 2, we may then block on trying to take the rt_mutex and return via:
752  * 5) successful lock
753  * 6) signal
754  * 7) timeout
755  * 8) other lock acquisition failure
756  *
757  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
758  *
759  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
760  *
761  * Return:
762  *  -  0 - On success;
763  *  - <0 - On error
764  */
765 int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
766                           u32 val, ktime_t *abs_time, u32 bitset,
767                           u32 __user *uaddr2)
768 {
769         struct hrtimer_sleeper timeout, *to;
770         struct rt_mutex_waiter rt_waiter;
771         struct futex_hash_bucket *hb;
772         union futex_key key2 = FUTEX_KEY_INIT;
773         struct futex_q q = futex_q_init;
774         struct rt_mutex_base *pi_mutex;
775         int res, ret;
776
777         if (!IS_ENABLED(CONFIG_FUTEX_PI))
778                 return -ENOSYS;
779
780         if (uaddr == uaddr2)
781                 return -EINVAL;
782
783         if (!bitset)
784                 return -EINVAL;
785
786         to = futex_setup_timer(abs_time, &timeout, flags,
787                                current->timer_slack_ns);
788
789         /*
790          * The waiter is allocated on our stack, manipulated by the requeue
791          * code while we sleep on uaddr.
792          */
793         rt_mutex_init_waiter(&rt_waiter);
794
795         ret = get_futex_key(uaddr2, flags, &key2, FUTEX_WRITE);
796         if (unlikely(ret != 0))
797                 goto out;
798
799         q.bitset = bitset;
800         q.rt_waiter = &rt_waiter;
801         q.requeue_pi_key = &key2;
802
803         /*
804          * Prepare to wait on uaddr. On success, it holds hb->lock and q
805          * is initialized.
806          */
807         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
808         if (ret)
809                 goto out;
810
811         /*
812          * The check above which compares uaddrs is not sufficient for
813          * shared futexes. We need to compare the keys:
814          */
815         if (futex_match(&q.key, &key2)) {
816                 futex_q_unlock(hb);
817                 ret = -EINVAL;
818                 goto out;
819         }
820
821         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
822         futex_wait_queue(hb, &q, to);
823
824         switch (futex_requeue_pi_wakeup_sync(&q)) {
825         case Q_REQUEUE_PI_IGNORE:
826                 /* The waiter is still on uaddr1 */
827                 spin_lock(&hb->lock);
828                 ret = handle_early_requeue_pi_wakeup(hb, &q, to);
829                 spin_unlock(&hb->lock);
830                 break;
831
832         case Q_REQUEUE_PI_LOCKED:
833                 /* The requeue acquired the lock */
834                 if (q.pi_state && (q.pi_state->owner != current)) {
835                         spin_lock(q.lock_ptr);
836                         ret = fixup_pi_owner(uaddr2, &q, true);
837                         /*
838                          * Drop the reference to the pi state which the
839                          * requeue_pi() code acquired for us.
840                          */
841                         put_pi_state(q.pi_state);
842                         spin_unlock(q.lock_ptr);
843                         /*
844                          * Adjust the return value. It's either -EFAULT or
845                          * success (1) but the caller expects 0 for success.
846                          */
847                         ret = ret < 0 ? ret : 0;
848                 }
849                 break;
850
851         case Q_REQUEUE_PI_DONE:
852                 /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
853                 pi_mutex = &q.pi_state->pi_mutex;
854                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
855
856                 /*
857                  * See futex_unlock_pi()'s cleanup: comment.
858                  */
859                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
860                         ret = 0;
861
862                 spin_lock(q.lock_ptr);
863                 debug_rt_mutex_free_waiter(&rt_waiter);
864                 /*
865                  * Fixup the pi_state owner and possibly acquire the lock if we
866                  * haven't already.
867                  */
868                 res = fixup_pi_owner(uaddr2, &q, !ret);
869                 /*
870                  * If fixup_pi_owner() returned an error, propagate that.  If it
871                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
872                  */
873                 if (res)
874                         ret = (res < 0) ? res : 0;
875
876                 futex_unqueue_pi(&q);
877                 spin_unlock(q.lock_ptr);
878
879                 if (ret == -EINTR) {
880                         /*
881                          * We've already been requeued, but cannot restart
882                          * by calling futex_lock_pi() directly. We could
883                          * restart this syscall, but it would detect that
884                          * the user space "val" changed and return
885                          * -EWOULDBLOCK.  Save the overhead of the restart
886                          * and return -EWOULDBLOCK directly.
887                          */
888                         ret = -EWOULDBLOCK;
889                 }
890                 break;
891         default:
892                 BUG();
893         }
894
895 out:
896         if (to) {
897                 hrtimer_cancel(&to->timer);
898                 destroy_hrtimer_on_stack(&to->timer);
899         }
900         return ret;
901 }
902