GNU Linux-libre 5.10.217-gnu1
[releases.git] / kernel / futex / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "../locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213         struct plist_node list;
214
215         struct task_struct *task;
216         spinlock_t *lock_ptr;
217         union futex_key key;
218         struct futex_pi_state *pi_state;
219         struct rt_mutex_waiter *rt_waiter;
220         union futex_key *requeue_pi_key;
221         u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225         /* list gets initialized in queue_me()*/
226         .key = FUTEX_KEY_INIT,
227         .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236         atomic_t waiters;
237         spinlock_t lock;
238         struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247         struct futex_hash_bucket *queues;
248         unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260         struct fault_attr attr;
261
262         bool ignore_private;
263 } fail_futex = {
264         .attr = FAULT_ATTR_INITIALIZER,
265         .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270         return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276         if (fail_futex.ignore_private && !fshared)
277                 return false;
278
279         return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287         struct dentry *dir;
288
289         dir = fault_create_debugfs_attr("fail_futex", NULL,
290                                         &fail_futex.attr);
291         if (IS_ERR(dir))
292                 return PTR_ERR(dir);
293
294         debugfs_create_bool("ignore-private", mode, dir,
295                             &fail_futex.ignore_private);
296         return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306         return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #else
313 static inline void compat_exit_robust_list(struct task_struct *curr) { }
314 #endif
315
316 /*
317  * Reflects a new waiter being added to the waitqueue.
318  */
319 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
320 {
321 #ifdef CONFIG_SMP
322         atomic_inc(&hb->waiters);
323         /*
324          * Full barrier (A), see the ordering comment above.
325          */
326         smp_mb__after_atomic();
327 #endif
328 }
329
330 /*
331  * Reflects a waiter being removed from the waitqueue by wakeup
332  * paths.
333  */
334 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
335 {
336 #ifdef CONFIG_SMP
337         atomic_dec(&hb->waiters);
338 #endif
339 }
340
341 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
342 {
343 #ifdef CONFIG_SMP
344         /*
345          * Full barrier (B), see the ordering comment above.
346          */
347         smp_mb();
348         return atomic_read(&hb->waiters);
349 #else
350         return 1;
351 #endif
352 }
353
354 /**
355  * hash_futex - Return the hash bucket in the global hash
356  * @key:        Pointer to the futex key for which the hash is calculated
357  *
358  * We hash on the keys returned from get_futex_key (see below) and return the
359  * corresponding hash bucket in the global hash.
360  */
361 static struct futex_hash_bucket *hash_futex(union futex_key *key)
362 {
363         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
364                           key->both.offset);
365
366         return &futex_queues[hash & (futex_hashsize - 1)];
367 }
368
369
370 /**
371  * match_futex - Check whether two futex keys are equal
372  * @key1:       Pointer to key1
373  * @key2:       Pointer to key2
374  *
375  * Return 1 if two futex_keys are equal, 0 otherwise.
376  */
377 static inline int match_futex(union futex_key *key1, union futex_key *key2)
378 {
379         return (key1 && key2
380                 && key1->both.word == key2->both.word
381                 && key1->both.ptr == key2->both.ptr
382                 && key1->both.offset == key2->both.offset);
383 }
384
385 enum futex_access {
386         FUTEX_READ,
387         FUTEX_WRITE
388 };
389
390 /**
391  * futex_setup_timer - set up the sleeping hrtimer.
392  * @time:       ptr to the given timeout value
393  * @timeout:    the hrtimer_sleeper structure to be set up
394  * @flags:      futex flags
395  * @range_ns:   optional range in ns
396  *
397  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
398  *         value given
399  */
400 static inline struct hrtimer_sleeper *
401 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
402                   int flags, u64 range_ns)
403 {
404         if (!time)
405                 return NULL;
406
407         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
408                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
409                                       HRTIMER_MODE_ABS);
410         /*
411          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
412          * effectively the same as calling hrtimer_set_expires().
413          */
414         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
415
416         return timeout;
417 }
418
419 /*
420  * Generate a machine wide unique identifier for this inode.
421  *
422  * This relies on u64 not wrapping in the life-time of the machine; which with
423  * 1ns resolution means almost 585 years.
424  *
425  * This further relies on the fact that a well formed program will not unmap
426  * the file while it has a (shared) futex waiting on it. This mapping will have
427  * a file reference which pins the mount and inode.
428  *
429  * If for some reason an inode gets evicted and read back in again, it will get
430  * a new sequence number and will _NOT_ match, even though it is the exact same
431  * file.
432  *
433  * It is important that match_futex() will never have a false-positive, esp.
434  * for PI futexes that can mess up the state. The above argues that false-negatives
435  * are only possible for malformed programs.
436  */
437 static u64 get_inode_sequence_number(struct inode *inode)
438 {
439         static atomic64_t i_seq;
440         u64 old;
441
442         /* Does the inode already have a sequence number? */
443         old = atomic64_read(&inode->i_sequence);
444         if (likely(old))
445                 return old;
446
447         for (;;) {
448                 u64 new = atomic64_add_return(1, &i_seq);
449                 if (WARN_ON_ONCE(!new))
450                         continue;
451
452                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
453                 if (old)
454                         return old;
455                 return new;
456         }
457 }
458
459 /**
460  * get_futex_key() - Get parameters which are the keys for a futex
461  * @uaddr:      virtual address of the futex
462  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
463  * @key:        address where result is stored.
464  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
465  *              FUTEX_WRITE)
466  *
467  * Return: a negative error code or 0
468  *
469  * The key words are stored in @key on success.
470  *
471  * For shared mappings (when @fshared), the key is:
472  *
473  *   ( inode->i_sequence, page->index, offset_within_page )
474  *
475  * [ also see get_inode_sequence_number() ]
476  *
477  * For private mappings (or when !@fshared), the key is:
478  *
479  *   ( current->mm, address, 0 )
480  *
481  * This allows (cross process, where applicable) identification of the futex
482  * without keeping the page pinned for the duration of the FUTEX_WAIT.
483  *
484  * lock_page() might sleep, the caller should not hold a spinlock.
485  */
486 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
487                          enum futex_access rw)
488 {
489         unsigned long address = (unsigned long)uaddr;
490         struct mm_struct *mm = current->mm;
491         struct page *page, *tail;
492         struct address_space *mapping;
493         int err, ro = 0;
494
495         /*
496          * The futex address must be "naturally" aligned.
497          */
498         key->both.offset = address % PAGE_SIZE;
499         if (unlikely((address % sizeof(u32)) != 0))
500                 return -EINVAL;
501         address -= key->both.offset;
502
503         if (unlikely(!access_ok(uaddr, sizeof(u32))))
504                 return -EFAULT;
505
506         if (unlikely(should_fail_futex(fshared)))
507                 return -EFAULT;
508
509         /*
510          * PROCESS_PRIVATE futexes are fast.
511          * As the mm cannot disappear under us and the 'key' only needs
512          * virtual address, we dont even have to find the underlying vma.
513          * Note : We do have to check 'uaddr' is a valid user address,
514          *        but access_ok() should be faster than find_vma()
515          */
516         if (!fshared) {
517                 /*
518                  * On no-MMU, shared futexes are treated as private, therefore
519                  * we must not include the current process in the key. Since
520                  * there is only one address space, the address is a unique key
521                  * on its own.
522                  */
523                 if (IS_ENABLED(CONFIG_MMU))
524                         key->private.mm = mm;
525                 else
526                         key->private.mm = NULL;
527
528                 key->private.address = address;
529                 return 0;
530         }
531
532 again:
533         /* Ignore any VERIFY_READ mapping (futex common case) */
534         if (unlikely(should_fail_futex(true)))
535                 return -EFAULT;
536
537         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
538         /*
539          * If write access is not required (eg. FUTEX_WAIT), try
540          * and get read-only access.
541          */
542         if (err == -EFAULT && rw == FUTEX_READ) {
543                 err = get_user_pages_fast(address, 1, 0, &page);
544                 ro = 1;
545         }
546         if (err < 0)
547                 return err;
548         else
549                 err = 0;
550
551         /*
552          * The treatment of mapping from this point on is critical. The page
553          * lock protects many things but in this context the page lock
554          * stabilizes mapping, prevents inode freeing in the shared
555          * file-backed region case and guards against movement to swap cache.
556          *
557          * Strictly speaking the page lock is not needed in all cases being
558          * considered here and page lock forces unnecessarily serialization
559          * From this point on, mapping will be re-verified if necessary and
560          * page lock will be acquired only if it is unavoidable
561          *
562          * Mapping checks require the head page for any compound page so the
563          * head page and mapping is looked up now. For anonymous pages, it
564          * does not matter if the page splits in the future as the key is
565          * based on the address. For filesystem-backed pages, the tail is
566          * required as the index of the page determines the key. For
567          * base pages, there is no tail page and tail == page.
568          */
569         tail = page;
570         page = compound_head(page);
571         mapping = READ_ONCE(page->mapping);
572
573         /*
574          * If page->mapping is NULL, then it cannot be a PageAnon
575          * page; but it might be the ZERO_PAGE or in the gate area or
576          * in a special mapping (all cases which we are happy to fail);
577          * or it may have been a good file page when get_user_pages_fast
578          * found it, but truncated or holepunched or subjected to
579          * invalidate_complete_page2 before we got the page lock (also
580          * cases which we are happy to fail).  And we hold a reference,
581          * so refcount care in invalidate_complete_page's remove_mapping
582          * prevents drop_caches from setting mapping to NULL beneath us.
583          *
584          * The case we do have to guard against is when memory pressure made
585          * shmem_writepage move it from filecache to swapcache beneath us:
586          * an unlikely race, but we do need to retry for page->mapping.
587          */
588         if (unlikely(!mapping)) {
589                 int shmem_swizzled;
590
591                 /*
592                  * Page lock is required to identify which special case above
593                  * applies. If this is really a shmem page then the page lock
594                  * will prevent unexpected transitions.
595                  */
596                 lock_page(page);
597                 shmem_swizzled = PageSwapCache(page) || page->mapping;
598                 unlock_page(page);
599                 put_page(page);
600
601                 if (shmem_swizzled)
602                         goto again;
603
604                 return -EFAULT;
605         }
606
607         /*
608          * Private mappings are handled in a simple way.
609          *
610          * If the futex key is stored on an anonymous page, then the associated
611          * object is the mm which is implicitly pinned by the calling process.
612          *
613          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
614          * it's a read-only handle, it's expected that futexes attach to
615          * the object not the particular process.
616          */
617         if (PageAnon(page)) {
618                 /*
619                  * A RO anonymous page will never change and thus doesn't make
620                  * sense for futex operations.
621                  */
622                 if (unlikely(should_fail_futex(true)) || ro) {
623                         err = -EFAULT;
624                         goto out;
625                 }
626
627                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
628                 key->private.mm = mm;
629                 key->private.address = address;
630
631         } else {
632                 struct inode *inode;
633
634                 /*
635                  * The associated futex object in this case is the inode and
636                  * the page->mapping must be traversed. Ordinarily this should
637                  * be stabilised under page lock but it's not strictly
638                  * necessary in this case as we just want to pin the inode, not
639                  * update the radix tree or anything like that.
640                  *
641                  * The RCU read lock is taken as the inode is finally freed
642                  * under RCU. If the mapping still matches expectations then the
643                  * mapping->host can be safely accessed as being a valid inode.
644                  */
645                 rcu_read_lock();
646
647                 if (READ_ONCE(page->mapping) != mapping) {
648                         rcu_read_unlock();
649                         put_page(page);
650
651                         goto again;
652                 }
653
654                 inode = READ_ONCE(mapping->host);
655                 if (!inode) {
656                         rcu_read_unlock();
657                         put_page(page);
658
659                         goto again;
660                 }
661
662                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
663                 key->shared.i_seq = get_inode_sequence_number(inode);
664                 key->shared.pgoff = page_to_pgoff(tail);
665                 rcu_read_unlock();
666         }
667
668 out:
669         put_page(page);
670         return err;
671 }
672
673 /**
674  * fault_in_user_writeable() - Fault in user address and verify RW access
675  * @uaddr:      pointer to faulting user space address
676  *
677  * Slow path to fixup the fault we just took in the atomic write
678  * access to @uaddr.
679  *
680  * We have no generic implementation of a non-destructive write to the
681  * user address. We know that we faulted in the atomic pagefault
682  * disabled section so we can as well avoid the #PF overhead by
683  * calling get_user_pages() right away.
684  */
685 static int fault_in_user_writeable(u32 __user *uaddr)
686 {
687         struct mm_struct *mm = current->mm;
688         int ret;
689
690         mmap_read_lock(mm);
691         ret = fixup_user_fault(mm, (unsigned long)uaddr,
692                                FAULT_FLAG_WRITE, NULL);
693         mmap_read_unlock(mm);
694
695         return ret < 0 ? ret : 0;
696 }
697
698 /**
699  * futex_top_waiter() - Return the highest priority waiter on a futex
700  * @hb:         the hash bucket the futex_q's reside in
701  * @key:        the futex key (to distinguish it from other futex futex_q's)
702  *
703  * Must be called with the hb lock held.
704  */
705 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
706                                         union futex_key *key)
707 {
708         struct futex_q *this;
709
710         plist_for_each_entry(this, &hb->chain, list) {
711                 if (match_futex(&this->key, key))
712                         return this;
713         }
714         return NULL;
715 }
716
717 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
718                                       u32 uval, u32 newval)
719 {
720         int ret;
721
722         pagefault_disable();
723         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
724         pagefault_enable();
725
726         return ret;
727 }
728
729 static int get_futex_value_locked(u32 *dest, u32 __user *from)
730 {
731         int ret;
732
733         pagefault_disable();
734         ret = __get_user(*dest, from);
735         pagefault_enable();
736
737         return ret ? -EFAULT : 0;
738 }
739
740
741 /*
742  * PI code:
743  */
744 static int refill_pi_state_cache(void)
745 {
746         struct futex_pi_state *pi_state;
747
748         if (likely(current->pi_state_cache))
749                 return 0;
750
751         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
752
753         if (!pi_state)
754                 return -ENOMEM;
755
756         INIT_LIST_HEAD(&pi_state->list);
757         /* pi_mutex gets initialized later */
758         pi_state->owner = NULL;
759         refcount_set(&pi_state->refcount, 1);
760         pi_state->key = FUTEX_KEY_INIT;
761
762         current->pi_state_cache = pi_state;
763
764         return 0;
765 }
766
767 static struct futex_pi_state *alloc_pi_state(void)
768 {
769         struct futex_pi_state *pi_state = current->pi_state_cache;
770
771         WARN_ON(!pi_state);
772         current->pi_state_cache = NULL;
773
774         return pi_state;
775 }
776
777 static void pi_state_update_owner(struct futex_pi_state *pi_state,
778                                   struct task_struct *new_owner)
779 {
780         struct task_struct *old_owner = pi_state->owner;
781
782         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
783
784         if (old_owner) {
785                 raw_spin_lock(&old_owner->pi_lock);
786                 WARN_ON(list_empty(&pi_state->list));
787                 list_del_init(&pi_state->list);
788                 raw_spin_unlock(&old_owner->pi_lock);
789         }
790
791         if (new_owner) {
792                 raw_spin_lock(&new_owner->pi_lock);
793                 WARN_ON(!list_empty(&pi_state->list));
794                 list_add(&pi_state->list, &new_owner->pi_state_list);
795                 pi_state->owner = new_owner;
796                 raw_spin_unlock(&new_owner->pi_lock);
797         }
798 }
799
800 static void get_pi_state(struct futex_pi_state *pi_state)
801 {
802         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
803 }
804
805 /*
806  * Drops a reference to the pi_state object and frees or caches it
807  * when the last reference is gone.
808  */
809 static void put_pi_state(struct futex_pi_state *pi_state)
810 {
811         if (!pi_state)
812                 return;
813
814         if (!refcount_dec_and_test(&pi_state->refcount))
815                 return;
816
817         /*
818          * If pi_state->owner is NULL, the owner is most probably dying
819          * and has cleaned up the pi_state already
820          */
821         if (pi_state->owner) {
822                 unsigned long flags;
823
824                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
825                 pi_state_update_owner(pi_state, NULL);
826                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
827                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
828         }
829
830         if (current->pi_state_cache) {
831                 kfree(pi_state);
832         } else {
833                 /*
834                  * pi_state->list is already empty.
835                  * clear pi_state->owner.
836                  * refcount is at 0 - put it back to 1.
837                  */
838                 pi_state->owner = NULL;
839                 refcount_set(&pi_state->refcount, 1);
840                 current->pi_state_cache = pi_state;
841         }
842 }
843
844 #ifdef CONFIG_FUTEX_PI
845
846 /*
847  * This task is holding PI mutexes at exit time => bad.
848  * Kernel cleans up PI-state, but userspace is likely hosed.
849  * (Robust-futex cleanup is separate and might save the day for userspace.)
850  */
851 static void exit_pi_state_list(struct task_struct *curr)
852 {
853         struct list_head *next, *head = &curr->pi_state_list;
854         struct futex_pi_state *pi_state;
855         struct futex_hash_bucket *hb;
856         union futex_key key = FUTEX_KEY_INIT;
857
858         if (!futex_cmpxchg_enabled)
859                 return;
860         /*
861          * We are a ZOMBIE and nobody can enqueue itself on
862          * pi_state_list anymore, but we have to be careful
863          * versus waiters unqueueing themselves:
864          */
865         raw_spin_lock_irq(&curr->pi_lock);
866         while (!list_empty(head)) {
867                 next = head->next;
868                 pi_state = list_entry(next, struct futex_pi_state, list);
869                 key = pi_state->key;
870                 hb = hash_futex(&key);
871
872                 /*
873                  * We can race against put_pi_state() removing itself from the
874                  * list (a waiter going away). put_pi_state() will first
875                  * decrement the reference count and then modify the list, so
876                  * its possible to see the list entry but fail this reference
877                  * acquire.
878                  *
879                  * In that case; drop the locks to let put_pi_state() make
880                  * progress and retry the loop.
881                  */
882                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
883                         raw_spin_unlock_irq(&curr->pi_lock);
884                         cpu_relax();
885                         raw_spin_lock_irq(&curr->pi_lock);
886                         continue;
887                 }
888                 raw_spin_unlock_irq(&curr->pi_lock);
889
890                 spin_lock(&hb->lock);
891                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
892                 raw_spin_lock(&curr->pi_lock);
893                 /*
894                  * We dropped the pi-lock, so re-check whether this
895                  * task still owns the PI-state:
896                  */
897                 if (head->next != next) {
898                         /* retain curr->pi_lock for the loop invariant */
899                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
900                         spin_unlock(&hb->lock);
901                         put_pi_state(pi_state);
902                         continue;
903                 }
904
905                 WARN_ON(pi_state->owner != curr);
906                 WARN_ON(list_empty(&pi_state->list));
907                 list_del_init(&pi_state->list);
908                 pi_state->owner = NULL;
909
910                 raw_spin_unlock(&curr->pi_lock);
911                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
912                 spin_unlock(&hb->lock);
913
914                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
915                 put_pi_state(pi_state);
916
917                 raw_spin_lock_irq(&curr->pi_lock);
918         }
919         raw_spin_unlock_irq(&curr->pi_lock);
920 }
921 #else
922 static inline void exit_pi_state_list(struct task_struct *curr) { }
923 #endif
924
925 /*
926  * We need to check the following states:
927  *
928  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
929  *
930  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
931  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
932  *
933  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
934  *
935  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
936  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
937  *
938  * [6]  Found  | Found    | task      | 0         | 1      | Valid
939  *
940  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
941  *
942  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
943  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
944  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
945  *
946  * [1]  Indicates that the kernel can acquire the futex atomically. We
947  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
948  *
949  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
950  *      thread is found then it indicates that the owner TID has died.
951  *
952  * [3]  Invalid. The waiter is queued on a non PI futex
953  *
954  * [4]  Valid state after exit_robust_list(), which sets the user space
955  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
956  *
957  * [5]  The user space value got manipulated between exit_robust_list()
958  *      and exit_pi_state_list()
959  *
960  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
961  *      the pi_state but cannot access the user space value.
962  *
963  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
964  *
965  * [8]  Owner and user space value match
966  *
967  * [9]  There is no transient state which sets the user space TID to 0
968  *      except exit_robust_list(), but this is indicated by the
969  *      FUTEX_OWNER_DIED bit. See [4]
970  *
971  * [10] There is no transient state which leaves owner and user space
972  *      TID out of sync. Except one error case where the kernel is denied
973  *      write access to the user address, see fixup_pi_state_owner().
974  *
975  *
976  * Serialization and lifetime rules:
977  *
978  * hb->lock:
979  *
980  *      hb -> futex_q, relation
981  *      futex_q -> pi_state, relation
982  *
983  *      (cannot be raw because hb can contain arbitrary amount
984  *       of futex_q's)
985  *
986  * pi_mutex->wait_lock:
987  *
988  *      {uval, pi_state}
989  *
990  *      (and pi_mutex 'obviously')
991  *
992  * p->pi_lock:
993  *
994  *      p->pi_state_list -> pi_state->list, relation
995  *
996  * pi_state->refcount:
997  *
998  *      pi_state lifetime
999  *
1000  *
1001  * Lock order:
1002  *
1003  *   hb->lock
1004  *     pi_mutex->wait_lock
1005  *       p->pi_lock
1006  *
1007  */
1008
1009 /*
1010  * Validate that the existing waiter has a pi_state and sanity check
1011  * the pi_state against the user space value. If correct, attach to
1012  * it.
1013  */
1014 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1015                               struct futex_pi_state *pi_state,
1016                               struct futex_pi_state **ps)
1017 {
1018         pid_t pid = uval & FUTEX_TID_MASK;
1019         u32 uval2;
1020         int ret;
1021
1022         /*
1023          * Userspace might have messed up non-PI and PI futexes [3]
1024          */
1025         if (unlikely(!pi_state))
1026                 return -EINVAL;
1027
1028         /*
1029          * We get here with hb->lock held, and having found a
1030          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1031          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1032          * which in turn means that futex_lock_pi() still has a reference on
1033          * our pi_state.
1034          *
1035          * The waiter holding a reference on @pi_state also protects against
1036          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1037          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1038          * free pi_state before we can take a reference ourselves.
1039          */
1040         WARN_ON(!refcount_read(&pi_state->refcount));
1041
1042         /*
1043          * Now that we have a pi_state, we can acquire wait_lock
1044          * and do the state validation.
1045          */
1046         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1047
1048         /*
1049          * Since {uval, pi_state} is serialized by wait_lock, and our current
1050          * uval was read without holding it, it can have changed. Verify it
1051          * still is what we expect it to be, otherwise retry the entire
1052          * operation.
1053          */
1054         if (get_futex_value_locked(&uval2, uaddr))
1055                 goto out_efault;
1056
1057         if (uval != uval2)
1058                 goto out_eagain;
1059
1060         /*
1061          * Handle the owner died case:
1062          */
1063         if (uval & FUTEX_OWNER_DIED) {
1064                 /*
1065                  * exit_pi_state_list sets owner to NULL and wakes the
1066                  * topmost waiter. The task which acquires the
1067                  * pi_state->rt_mutex will fixup owner.
1068                  */
1069                 if (!pi_state->owner) {
1070                         /*
1071                          * No pi state owner, but the user space TID
1072                          * is not 0. Inconsistent state. [5]
1073                          */
1074                         if (pid)
1075                                 goto out_einval;
1076                         /*
1077                          * Take a ref on the state and return success. [4]
1078                          */
1079                         goto out_attach;
1080                 }
1081
1082                 /*
1083                  * If TID is 0, then either the dying owner has not
1084                  * yet executed exit_pi_state_list() or some waiter
1085                  * acquired the rtmutex in the pi state, but did not
1086                  * yet fixup the TID in user space.
1087                  *
1088                  * Take a ref on the state and return success. [6]
1089                  */
1090                 if (!pid)
1091                         goto out_attach;
1092         } else {
1093                 /*
1094                  * If the owner died bit is not set, then the pi_state
1095                  * must have an owner. [7]
1096                  */
1097                 if (!pi_state->owner)
1098                         goto out_einval;
1099         }
1100
1101         /*
1102          * Bail out if user space manipulated the futex value. If pi
1103          * state exists then the owner TID must be the same as the
1104          * user space TID. [9/10]
1105          */
1106         if (pid != task_pid_vnr(pi_state->owner))
1107                 goto out_einval;
1108
1109 out_attach:
1110         get_pi_state(pi_state);
1111         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1112         *ps = pi_state;
1113         return 0;
1114
1115 out_einval:
1116         ret = -EINVAL;
1117         goto out_error;
1118
1119 out_eagain:
1120         ret = -EAGAIN;
1121         goto out_error;
1122
1123 out_efault:
1124         ret = -EFAULT;
1125         goto out_error;
1126
1127 out_error:
1128         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1129         return ret;
1130 }
1131
1132 /**
1133  * wait_for_owner_exiting - Block until the owner has exited
1134  * @ret: owner's current futex lock status
1135  * @exiting:    Pointer to the exiting task
1136  *
1137  * Caller must hold a refcount on @exiting.
1138  */
1139 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1140 {
1141         if (ret != -EBUSY) {
1142                 WARN_ON_ONCE(exiting);
1143                 return;
1144         }
1145
1146         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1147                 return;
1148
1149         mutex_lock(&exiting->futex_exit_mutex);
1150         /*
1151          * No point in doing state checking here. If the waiter got here
1152          * while the task was in exec()->exec_futex_release() then it can
1153          * have any FUTEX_STATE_* value when the waiter has acquired the
1154          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1155          * already. Highly unlikely and not a problem. Just one more round
1156          * through the futex maze.
1157          */
1158         mutex_unlock(&exiting->futex_exit_mutex);
1159
1160         put_task_struct(exiting);
1161 }
1162
1163 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1164                             struct task_struct *tsk)
1165 {
1166         u32 uval2;
1167
1168         /*
1169          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1170          * caller that the alleged owner is busy.
1171          */
1172         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1173                 return -EBUSY;
1174
1175         /*
1176          * Reread the user space value to handle the following situation:
1177          *
1178          * CPU0                         CPU1
1179          *
1180          * sys_exit()                   sys_futex()
1181          *  do_exit()                    futex_lock_pi()
1182          *                                futex_lock_pi_atomic()
1183          *   exit_signals(tsk)              No waiters:
1184          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1185          *  mm_release(tsk)                 Set waiter bit
1186          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1187          *      Set owner died              attach_to_pi_owner() {
1188          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1189          *   }                               if (!tsk->flags & PF_EXITING) {
1190          *  ...                                attach();
1191          *  tsk->futex_state =               } else {
1192          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1193          *                                        FUTEX_STATE_DEAD)
1194          *                                       return -EAGAIN;
1195          *                                     return -ESRCH; <--- FAIL
1196          *                                   }
1197          *
1198          * Returning ESRCH unconditionally is wrong here because the
1199          * user space value has been changed by the exiting task.
1200          *
1201          * The same logic applies to the case where the exiting task is
1202          * already gone.
1203          */
1204         if (get_futex_value_locked(&uval2, uaddr))
1205                 return -EFAULT;
1206
1207         /* If the user space value has changed, try again. */
1208         if (uval2 != uval)
1209                 return -EAGAIN;
1210
1211         /*
1212          * The exiting task did not have a robust list, the robust list was
1213          * corrupted or the user space value in *uaddr is simply bogus.
1214          * Give up and tell user space.
1215          */
1216         return -ESRCH;
1217 }
1218
1219 /*
1220  * Lookup the task for the TID provided from user space and attach to
1221  * it after doing proper sanity checks.
1222  */
1223 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1224                               struct futex_pi_state **ps,
1225                               struct task_struct **exiting)
1226 {
1227         pid_t pid = uval & FUTEX_TID_MASK;
1228         struct futex_pi_state *pi_state;
1229         struct task_struct *p;
1230
1231         /*
1232          * We are the first waiter - try to look up the real owner and attach
1233          * the new pi_state to it, but bail out when TID = 0 [1]
1234          *
1235          * The !pid check is paranoid. None of the call sites should end up
1236          * with pid == 0, but better safe than sorry. Let the caller retry
1237          */
1238         if (!pid)
1239                 return -EAGAIN;
1240         p = find_get_task_by_vpid(pid);
1241         if (!p)
1242                 return handle_exit_race(uaddr, uval, NULL);
1243
1244         if (unlikely(p->flags & PF_KTHREAD)) {
1245                 put_task_struct(p);
1246                 return -EPERM;
1247         }
1248
1249         /*
1250          * We need to look at the task state to figure out, whether the
1251          * task is exiting. To protect against the change of the task state
1252          * in futex_exit_release(), we do this protected by p->pi_lock:
1253          */
1254         raw_spin_lock_irq(&p->pi_lock);
1255         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1256                 /*
1257                  * The task is on the way out. When the futex state is
1258                  * FUTEX_STATE_DEAD, we know that the task has finished
1259                  * the cleanup:
1260                  */
1261                 int ret = handle_exit_race(uaddr, uval, p);
1262
1263                 raw_spin_unlock_irq(&p->pi_lock);
1264                 /*
1265                  * If the owner task is between FUTEX_STATE_EXITING and
1266                  * FUTEX_STATE_DEAD then store the task pointer and keep
1267                  * the reference on the task struct. The calling code will
1268                  * drop all locks, wait for the task to reach
1269                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1270                  * required to prevent a live lock when the current task
1271                  * preempted the exiting task between the two states.
1272                  */
1273                 if (ret == -EBUSY)
1274                         *exiting = p;
1275                 else
1276                         put_task_struct(p);
1277                 return ret;
1278         }
1279
1280         /*
1281          * No existing pi state. First waiter. [2]
1282          *
1283          * This creates pi_state, we have hb->lock held, this means nothing can
1284          * observe this state, wait_lock is irrelevant.
1285          */
1286         pi_state = alloc_pi_state();
1287
1288         /*
1289          * Initialize the pi_mutex in locked state and make @p
1290          * the owner of it:
1291          */
1292         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1293
1294         /* Store the key for possible exit cleanups: */
1295         pi_state->key = *key;
1296
1297         WARN_ON(!list_empty(&pi_state->list));
1298         list_add(&pi_state->list, &p->pi_state_list);
1299         /*
1300          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1301          * because there is no concurrency as the object is not published yet.
1302          */
1303         pi_state->owner = p;
1304         raw_spin_unlock_irq(&p->pi_lock);
1305
1306         put_task_struct(p);
1307
1308         *ps = pi_state;
1309
1310         return 0;
1311 }
1312
1313 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1314                            struct futex_hash_bucket *hb,
1315                            union futex_key *key, struct futex_pi_state **ps,
1316                            struct task_struct **exiting)
1317 {
1318         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1319
1320         /*
1321          * If there is a waiter on that futex, validate it and
1322          * attach to the pi_state when the validation succeeds.
1323          */
1324         if (top_waiter)
1325                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1326
1327         /*
1328          * We are the first waiter - try to look up the owner based on
1329          * @uval and attach to it.
1330          */
1331         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1332 }
1333
1334 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1335 {
1336         int err;
1337         u32 curval;
1338
1339         if (unlikely(should_fail_futex(true)))
1340                 return -EFAULT;
1341
1342         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1343         if (unlikely(err))
1344                 return err;
1345
1346         /* If user space value changed, let the caller retry */
1347         return curval != uval ? -EAGAIN : 0;
1348 }
1349
1350 /**
1351  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1352  * @uaddr:              the pi futex user address
1353  * @hb:                 the pi futex hash bucket
1354  * @key:                the futex key associated with uaddr and hb
1355  * @ps:                 the pi_state pointer where we store the result of the
1356  *                      lookup
1357  * @task:               the task to perform the atomic lock work for.  This will
1358  *                      be "current" except in the case of requeue pi.
1359  * @exiting:            Pointer to store the task pointer of the owner task
1360  *                      which is in the middle of exiting
1361  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1362  *
1363  * Return:
1364  *  -  0 - ready to wait;
1365  *  -  1 - acquired the lock;
1366  *  - <0 - error
1367  *
1368  * The hb->lock and futex_key refs shall be held by the caller.
1369  *
1370  * @exiting is only set when the return value is -EBUSY. If so, this holds
1371  * a refcount on the exiting task on return and the caller needs to drop it
1372  * after waiting for the exit to complete.
1373  */
1374 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1375                                 union futex_key *key,
1376                                 struct futex_pi_state **ps,
1377                                 struct task_struct *task,
1378                                 struct task_struct **exiting,
1379                                 int set_waiters)
1380 {
1381         u32 uval, newval, vpid = task_pid_vnr(task);
1382         struct futex_q *top_waiter;
1383         int ret;
1384
1385         /*
1386          * Read the user space value first so we can validate a few
1387          * things before proceeding further.
1388          */
1389         if (get_futex_value_locked(&uval, uaddr))
1390                 return -EFAULT;
1391
1392         if (unlikely(should_fail_futex(true)))
1393                 return -EFAULT;
1394
1395         /*
1396          * Detect deadlocks.
1397          */
1398         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1399                 return -EDEADLK;
1400
1401         if ((unlikely(should_fail_futex(true))))
1402                 return -EDEADLK;
1403
1404         /*
1405          * Lookup existing state first. If it exists, try to attach to
1406          * its pi_state.
1407          */
1408         top_waiter = futex_top_waiter(hb, key);
1409         if (top_waiter)
1410                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1411
1412         /*
1413          * No waiter and user TID is 0. We are here because the
1414          * waiters or the owner died bit is set or called from
1415          * requeue_cmp_pi or for whatever reason something took the
1416          * syscall.
1417          */
1418         if (!(uval & FUTEX_TID_MASK)) {
1419                 /*
1420                  * We take over the futex. No other waiters and the user space
1421                  * TID is 0. We preserve the owner died bit.
1422                  */
1423                 newval = uval & FUTEX_OWNER_DIED;
1424                 newval |= vpid;
1425
1426                 /* The futex requeue_pi code can enforce the waiters bit */
1427                 if (set_waiters)
1428                         newval |= FUTEX_WAITERS;
1429
1430                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1431                 /* If the take over worked, return 1 */
1432                 return ret < 0 ? ret : 1;
1433         }
1434
1435         /*
1436          * First waiter. Set the waiters bit before attaching ourself to
1437          * the owner. If owner tries to unlock, it will be forced into
1438          * the kernel and blocked on hb->lock.
1439          */
1440         newval = uval | FUTEX_WAITERS;
1441         ret = lock_pi_update_atomic(uaddr, uval, newval);
1442         if (ret)
1443                 return ret;
1444         /*
1445          * If the update of the user space value succeeded, we try to
1446          * attach to the owner. If that fails, no harm done, we only
1447          * set the FUTEX_WAITERS bit in the user space variable.
1448          */
1449         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1450 }
1451
1452 /**
1453  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1454  * @q:  The futex_q to unqueue
1455  *
1456  * The q->lock_ptr must not be NULL and must be held by the caller.
1457  */
1458 static void __unqueue_futex(struct futex_q *q)
1459 {
1460         struct futex_hash_bucket *hb;
1461
1462         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1463                 return;
1464         lockdep_assert_held(q->lock_ptr);
1465
1466         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1467         plist_del(&q->list, &hb->chain);
1468         hb_waiters_dec(hb);
1469 }
1470
1471 /*
1472  * The hash bucket lock must be held when this is called.
1473  * Afterwards, the futex_q must not be accessed. Callers
1474  * must ensure to later call wake_up_q() for the actual
1475  * wakeups to occur.
1476  */
1477 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1478 {
1479         struct task_struct *p = q->task;
1480
1481         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1482                 return;
1483
1484         get_task_struct(p);
1485         __unqueue_futex(q);
1486         /*
1487          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1488          * is written, without taking any locks. This is possible in the event
1489          * of a spurious wakeup, for example. A memory barrier is required here
1490          * to prevent the following store to lock_ptr from getting ahead of the
1491          * plist_del in __unqueue_futex().
1492          */
1493         smp_store_release(&q->lock_ptr, NULL);
1494
1495         /*
1496          * Queue the task for later wakeup for after we've released
1497          * the hb->lock.
1498          */
1499         wake_q_add_safe(wake_q, p);
1500 }
1501
1502 /*
1503  * Caller must hold a reference on @pi_state.
1504  */
1505 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1506 {
1507         u32 curval, newval;
1508         struct task_struct *new_owner;
1509         bool postunlock = false;
1510         DEFINE_WAKE_Q(wake_q);
1511         int ret = 0;
1512
1513         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1514         if (WARN_ON_ONCE(!new_owner)) {
1515                 /*
1516                  * As per the comment in futex_unlock_pi() this should not happen.
1517                  *
1518                  * When this happens, give up our locks and try again, giving
1519                  * the futex_lock_pi() instance time to complete, either by
1520                  * waiting on the rtmutex or removing itself from the futex
1521                  * queue.
1522                  */
1523                 ret = -EAGAIN;
1524                 goto out_unlock;
1525         }
1526
1527         /*
1528          * We pass it to the next owner. The WAITERS bit is always kept
1529          * enabled while there is PI state around. We cleanup the owner
1530          * died bit, because we are the owner.
1531          */
1532         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1533
1534         if (unlikely(should_fail_futex(true))) {
1535                 ret = -EFAULT;
1536                 goto out_unlock;
1537         }
1538
1539         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1540         if (!ret && (curval != uval)) {
1541                 /*
1542                  * If a unconditional UNLOCK_PI operation (user space did not
1543                  * try the TID->0 transition) raced with a waiter setting the
1544                  * FUTEX_WAITERS flag between get_user() and locking the hash
1545                  * bucket lock, retry the operation.
1546                  */
1547                 if ((FUTEX_TID_MASK & curval) == uval)
1548                         ret = -EAGAIN;
1549                 else
1550                         ret = -EINVAL;
1551         }
1552
1553         if (!ret) {
1554                 /*
1555                  * This is a point of no return; once we modified the uval
1556                  * there is no going back and subsequent operations must
1557                  * not fail.
1558                  */
1559                 pi_state_update_owner(pi_state, new_owner);
1560                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1561         }
1562
1563 out_unlock:
1564         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1565
1566         if (postunlock)
1567                 rt_mutex_postunlock(&wake_q);
1568
1569         return ret;
1570 }
1571
1572 /*
1573  * Express the locking dependencies for lockdep:
1574  */
1575 static inline void
1576 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1577 {
1578         if (hb1 <= hb2) {
1579                 spin_lock(&hb1->lock);
1580                 if (hb1 < hb2)
1581                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1582         } else { /* hb1 > hb2 */
1583                 spin_lock(&hb2->lock);
1584                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1585         }
1586 }
1587
1588 static inline void
1589 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1590 {
1591         spin_unlock(&hb1->lock);
1592         if (hb1 != hb2)
1593                 spin_unlock(&hb2->lock);
1594 }
1595
1596 /*
1597  * Wake up waiters matching bitset queued on this futex (uaddr).
1598  */
1599 static int
1600 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1601 {
1602         struct futex_hash_bucket *hb;
1603         struct futex_q *this, *next;
1604         union futex_key key = FUTEX_KEY_INIT;
1605         int ret;
1606         DEFINE_WAKE_Q(wake_q);
1607
1608         if (!bitset)
1609                 return -EINVAL;
1610
1611         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1612         if (unlikely(ret != 0))
1613                 return ret;
1614
1615         hb = hash_futex(&key);
1616
1617         /* Make sure we really have tasks to wakeup */
1618         if (!hb_waiters_pending(hb))
1619                 return ret;
1620
1621         spin_lock(&hb->lock);
1622
1623         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1624                 if (match_futex (&this->key, &key)) {
1625                         if (this->pi_state || this->rt_waiter) {
1626                                 ret = -EINVAL;
1627                                 break;
1628                         }
1629
1630                         /* Check if one of the bits is set in both bitsets */
1631                         if (!(this->bitset & bitset))
1632                                 continue;
1633
1634                         mark_wake_futex(&wake_q, this);
1635                         if (++ret >= nr_wake)
1636                                 break;
1637                 }
1638         }
1639
1640         spin_unlock(&hb->lock);
1641         wake_up_q(&wake_q);
1642         return ret;
1643 }
1644
1645 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1646 {
1647         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1648         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1649         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1650         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1651         int oldval, ret;
1652
1653         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1654                 if (oparg < 0 || oparg > 31) {
1655                         char comm[sizeof(current->comm)];
1656                         /*
1657                          * kill this print and return -EINVAL when userspace
1658                          * is sane again
1659                          */
1660                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1661                                         get_task_comm(comm, current), oparg);
1662                         oparg &= 31;
1663                 }
1664                 oparg = 1 << oparg;
1665         }
1666
1667         pagefault_disable();
1668         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1669         pagefault_enable();
1670         if (ret)
1671                 return ret;
1672
1673         switch (cmp) {
1674         case FUTEX_OP_CMP_EQ:
1675                 return oldval == cmparg;
1676         case FUTEX_OP_CMP_NE:
1677                 return oldval != cmparg;
1678         case FUTEX_OP_CMP_LT:
1679                 return oldval < cmparg;
1680         case FUTEX_OP_CMP_GE:
1681                 return oldval >= cmparg;
1682         case FUTEX_OP_CMP_LE:
1683                 return oldval <= cmparg;
1684         case FUTEX_OP_CMP_GT:
1685                 return oldval > cmparg;
1686         default:
1687                 return -ENOSYS;
1688         }
1689 }
1690
1691 /*
1692  * Wake up all waiters hashed on the physical page that is mapped
1693  * to this virtual address:
1694  */
1695 static int
1696 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1697               int nr_wake, int nr_wake2, int op)
1698 {
1699         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1700         struct futex_hash_bucket *hb1, *hb2;
1701         struct futex_q *this, *next;
1702         int ret, op_ret;
1703         DEFINE_WAKE_Q(wake_q);
1704
1705 retry:
1706         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1707         if (unlikely(ret != 0))
1708                 return ret;
1709         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1710         if (unlikely(ret != 0))
1711                 return ret;
1712
1713         hb1 = hash_futex(&key1);
1714         hb2 = hash_futex(&key2);
1715
1716 retry_private:
1717         double_lock_hb(hb1, hb2);
1718         op_ret = futex_atomic_op_inuser(op, uaddr2);
1719         if (unlikely(op_ret < 0)) {
1720                 double_unlock_hb(hb1, hb2);
1721
1722                 if (!IS_ENABLED(CONFIG_MMU) ||
1723                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1724                         /*
1725                          * we don't get EFAULT from MMU faults if we don't have
1726                          * an MMU, but we might get them from range checking
1727                          */
1728                         ret = op_ret;
1729                         return ret;
1730                 }
1731
1732                 if (op_ret == -EFAULT) {
1733                         ret = fault_in_user_writeable(uaddr2);
1734                         if (ret)
1735                                 return ret;
1736                 }
1737
1738                 if (!(flags & FLAGS_SHARED)) {
1739                         cond_resched();
1740                         goto retry_private;
1741                 }
1742
1743                 cond_resched();
1744                 goto retry;
1745         }
1746
1747         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1748                 if (match_futex (&this->key, &key1)) {
1749                         if (this->pi_state || this->rt_waiter) {
1750                                 ret = -EINVAL;
1751                                 goto out_unlock;
1752                         }
1753                         mark_wake_futex(&wake_q, this);
1754                         if (++ret >= nr_wake)
1755                                 break;
1756                 }
1757         }
1758
1759         if (op_ret > 0) {
1760                 op_ret = 0;
1761                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1762                         if (match_futex (&this->key, &key2)) {
1763                                 if (this->pi_state || this->rt_waiter) {
1764                                         ret = -EINVAL;
1765                                         goto out_unlock;
1766                                 }
1767                                 mark_wake_futex(&wake_q, this);
1768                                 if (++op_ret >= nr_wake2)
1769                                         break;
1770                         }
1771                 }
1772                 ret += op_ret;
1773         }
1774
1775 out_unlock:
1776         double_unlock_hb(hb1, hb2);
1777         wake_up_q(&wake_q);
1778         return ret;
1779 }
1780
1781 /**
1782  * requeue_futex() - Requeue a futex_q from one hb to another
1783  * @q:          the futex_q to requeue
1784  * @hb1:        the source hash_bucket
1785  * @hb2:        the target hash_bucket
1786  * @key2:       the new key for the requeued futex_q
1787  */
1788 static inline
1789 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1790                    struct futex_hash_bucket *hb2, union futex_key *key2)
1791 {
1792
1793         /*
1794          * If key1 and key2 hash to the same bucket, no need to
1795          * requeue.
1796          */
1797         if (likely(&hb1->chain != &hb2->chain)) {
1798                 plist_del(&q->list, &hb1->chain);
1799                 hb_waiters_dec(hb1);
1800                 hb_waiters_inc(hb2);
1801                 plist_add(&q->list, &hb2->chain);
1802                 q->lock_ptr = &hb2->lock;
1803         }
1804         q->key = *key2;
1805 }
1806
1807 /**
1808  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1809  * @q:          the futex_q
1810  * @key:        the key of the requeue target futex
1811  * @hb:         the hash_bucket of the requeue target futex
1812  *
1813  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1814  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1815  * to the requeue target futex so the waiter can detect the wakeup on the right
1816  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1817  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1818  * to protect access to the pi_state to fixup the owner later.  Must be called
1819  * with both q->lock_ptr and hb->lock held.
1820  */
1821 static inline
1822 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1823                            struct futex_hash_bucket *hb)
1824 {
1825         q->key = *key;
1826
1827         __unqueue_futex(q);
1828
1829         WARN_ON(!q->rt_waiter);
1830         q->rt_waiter = NULL;
1831
1832         q->lock_ptr = &hb->lock;
1833
1834         wake_up_state(q->task, TASK_NORMAL);
1835 }
1836
1837 /**
1838  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1839  * @pifutex:            the user address of the to futex
1840  * @hb1:                the from futex hash bucket, must be locked by the caller
1841  * @hb2:                the to futex hash bucket, must be locked by the caller
1842  * @key1:               the from futex key
1843  * @key2:               the to futex key
1844  * @ps:                 address to store the pi_state pointer
1845  * @exiting:            Pointer to store the task pointer of the owner task
1846  *                      which is in the middle of exiting
1847  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1848  *
1849  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1850  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1851  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1852  * hb1 and hb2 must be held by the caller.
1853  *
1854  * @exiting is only set when the return value is -EBUSY. If so, this holds
1855  * a refcount on the exiting task on return and the caller needs to drop it
1856  * after waiting for the exit to complete.
1857  *
1858  * Return:
1859  *  -  0 - failed to acquire the lock atomically;
1860  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1861  *  - <0 - error
1862  */
1863 static int
1864 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1865                            struct futex_hash_bucket *hb2, union futex_key *key1,
1866                            union futex_key *key2, struct futex_pi_state **ps,
1867                            struct task_struct **exiting, int set_waiters)
1868 {
1869         struct futex_q *top_waiter = NULL;
1870         u32 curval;
1871         int ret, vpid;
1872
1873         if (get_futex_value_locked(&curval, pifutex))
1874                 return -EFAULT;
1875
1876         if (unlikely(should_fail_futex(true)))
1877                 return -EFAULT;
1878
1879         /*
1880          * Find the top_waiter and determine if there are additional waiters.
1881          * If the caller intends to requeue more than 1 waiter to pifutex,
1882          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1883          * as we have means to handle the possible fault.  If not, don't set
1884          * the bit unecessarily as it will force the subsequent unlock to enter
1885          * the kernel.
1886          */
1887         top_waiter = futex_top_waiter(hb1, key1);
1888
1889         /* There are no waiters, nothing for us to do. */
1890         if (!top_waiter)
1891                 return 0;
1892
1893         /* Ensure we requeue to the expected futex. */
1894         if (!match_futex(top_waiter->requeue_pi_key, key2))
1895                 return -EINVAL;
1896
1897         /*
1898          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1899          * the contended case or if set_waiters is 1.  The pi_state is returned
1900          * in ps in contended cases.
1901          */
1902         vpid = task_pid_vnr(top_waiter->task);
1903         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1904                                    exiting, set_waiters);
1905         if (ret == 1) {
1906                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1907                 return vpid;
1908         }
1909         return ret;
1910 }
1911
1912 /**
1913  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1914  * @uaddr1:     source futex user address
1915  * @flags:      futex flags (FLAGS_SHARED, etc.)
1916  * @uaddr2:     target futex user address
1917  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1918  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1919  * @cmpval:     @uaddr1 expected value (or %NULL)
1920  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1921  *              pi futex (pi to pi requeue is not supported)
1922  *
1923  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1924  * uaddr2 atomically on behalf of the top waiter.
1925  *
1926  * Return:
1927  *  - >=0 - on success, the number of tasks requeued or woken;
1928  *  -  <0 - on error
1929  */
1930 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1931                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1932                          u32 *cmpval, int requeue_pi)
1933 {
1934         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1935         int task_count = 0, ret;
1936         struct futex_pi_state *pi_state = NULL;
1937         struct futex_hash_bucket *hb1, *hb2;
1938         struct futex_q *this, *next;
1939         DEFINE_WAKE_Q(wake_q);
1940
1941         if (nr_wake < 0 || nr_requeue < 0)
1942                 return -EINVAL;
1943
1944         /*
1945          * When PI not supported: return -ENOSYS if requeue_pi is true,
1946          * consequently the compiler knows requeue_pi is always false past
1947          * this point which will optimize away all the conditional code
1948          * further down.
1949          */
1950         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1951                 return -ENOSYS;
1952
1953         if (requeue_pi) {
1954                 /*
1955                  * Requeue PI only works on two distinct uaddrs. This
1956                  * check is only valid for private futexes. See below.
1957                  */
1958                 if (uaddr1 == uaddr2)
1959                         return -EINVAL;
1960
1961                 /*
1962                  * requeue_pi requires a pi_state, try to allocate it now
1963                  * without any locks in case it fails.
1964                  */
1965                 if (refill_pi_state_cache())
1966                         return -ENOMEM;
1967                 /*
1968                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1969                  * + nr_requeue, since it acquires the rt_mutex prior to
1970                  * returning to userspace, so as to not leave the rt_mutex with
1971                  * waiters and no owner.  However, second and third wake-ups
1972                  * cannot be predicted as they involve race conditions with the
1973                  * first wake and a fault while looking up the pi_state.  Both
1974                  * pthread_cond_signal() and pthread_cond_broadcast() should
1975                  * use nr_wake=1.
1976                  */
1977                 if (nr_wake != 1)
1978                         return -EINVAL;
1979         }
1980
1981 retry:
1982         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1983         if (unlikely(ret != 0))
1984                 return ret;
1985         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1986                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1987         if (unlikely(ret != 0))
1988                 return ret;
1989
1990         /*
1991          * The check above which compares uaddrs is not sufficient for
1992          * shared futexes. We need to compare the keys:
1993          */
1994         if (requeue_pi && match_futex(&key1, &key2))
1995                 return -EINVAL;
1996
1997         hb1 = hash_futex(&key1);
1998         hb2 = hash_futex(&key2);
1999
2000 retry_private:
2001         hb_waiters_inc(hb2);
2002         double_lock_hb(hb1, hb2);
2003
2004         if (likely(cmpval != NULL)) {
2005                 u32 curval;
2006
2007                 ret = get_futex_value_locked(&curval, uaddr1);
2008
2009                 if (unlikely(ret)) {
2010                         double_unlock_hb(hb1, hb2);
2011                         hb_waiters_dec(hb2);
2012
2013                         ret = get_user(curval, uaddr1);
2014                         if (ret)
2015                                 return ret;
2016
2017                         if (!(flags & FLAGS_SHARED))
2018                                 goto retry_private;
2019
2020                         goto retry;
2021                 }
2022                 if (curval != *cmpval) {
2023                         ret = -EAGAIN;
2024                         goto out_unlock;
2025                 }
2026         }
2027
2028         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2029                 struct task_struct *exiting = NULL;
2030
2031                 /*
2032                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2033                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2034                  * bit.  We force this here where we are able to easily handle
2035                  * faults rather in the requeue loop below.
2036                  */
2037                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2038                                                  &key2, &pi_state,
2039                                                  &exiting, nr_requeue);
2040
2041                 /*
2042                  * At this point the top_waiter has either taken uaddr2 or is
2043                  * waiting on it.  If the former, then the pi_state will not
2044                  * exist yet, look it up one more time to ensure we have a
2045                  * reference to it. If the lock was taken, ret contains the
2046                  * vpid of the top waiter task.
2047                  * If the lock was not taken, we have pi_state and an initial
2048                  * refcount on it. In case of an error we have nothing.
2049                  */
2050                 if (ret > 0) {
2051                         WARN_ON(pi_state);
2052                         task_count++;
2053                         /*
2054                          * If we acquired the lock, then the user space value
2055                          * of uaddr2 should be vpid. It cannot be changed by
2056                          * the top waiter as it is blocked on hb2 lock if it
2057                          * tries to do so. If something fiddled with it behind
2058                          * our back the pi state lookup might unearth it. So
2059                          * we rather use the known value than rereading and
2060                          * handing potential crap to lookup_pi_state.
2061                          *
2062                          * If that call succeeds then we have pi_state and an
2063                          * initial refcount on it.
2064                          */
2065                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2066                                               &pi_state, &exiting);
2067                 }
2068
2069                 switch (ret) {
2070                 case 0:
2071                         /* We hold a reference on the pi state. */
2072                         break;
2073
2074                         /* If the above failed, then pi_state is NULL */
2075                 case -EFAULT:
2076                         double_unlock_hb(hb1, hb2);
2077                         hb_waiters_dec(hb2);
2078                         ret = fault_in_user_writeable(uaddr2);
2079                         if (!ret)
2080                                 goto retry;
2081                         return ret;
2082                 case -EBUSY:
2083                 case -EAGAIN:
2084                         /*
2085                          * Two reasons for this:
2086                          * - EBUSY: Owner is exiting and we just wait for the
2087                          *   exit to complete.
2088                          * - EAGAIN: The user space value changed.
2089                          */
2090                         double_unlock_hb(hb1, hb2);
2091                         hb_waiters_dec(hb2);
2092                         /*
2093                          * Handle the case where the owner is in the middle of
2094                          * exiting. Wait for the exit to complete otherwise
2095                          * this task might loop forever, aka. live lock.
2096                          */
2097                         wait_for_owner_exiting(ret, exiting);
2098                         cond_resched();
2099                         goto retry;
2100                 default:
2101                         goto out_unlock;
2102                 }
2103         }
2104
2105         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2106                 if (task_count - nr_wake >= nr_requeue)
2107                         break;
2108
2109                 if (!match_futex(&this->key, &key1))
2110                         continue;
2111
2112                 /*
2113                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2114                  * be paired with each other and no other futex ops.
2115                  *
2116                  * We should never be requeueing a futex_q with a pi_state,
2117                  * which is awaiting a futex_unlock_pi().
2118                  */
2119                 if ((requeue_pi && !this->rt_waiter) ||
2120                     (!requeue_pi && this->rt_waiter) ||
2121                     this->pi_state) {
2122                         ret = -EINVAL;
2123                         break;
2124                 }
2125
2126                 /*
2127                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2128                  * lock, we already woke the top_waiter.  If not, it will be
2129                  * woken by futex_unlock_pi().
2130                  */
2131                 if (++task_count <= nr_wake && !requeue_pi) {
2132                         mark_wake_futex(&wake_q, this);
2133                         continue;
2134                 }
2135
2136                 /* Ensure we requeue to the expected futex for requeue_pi. */
2137                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2138                         ret = -EINVAL;
2139                         break;
2140                 }
2141
2142                 /*
2143                  * Requeue nr_requeue waiters and possibly one more in the case
2144                  * of requeue_pi if we couldn't acquire the lock atomically.
2145                  */
2146                 if (requeue_pi) {
2147                         /*
2148                          * Prepare the waiter to take the rt_mutex. Take a
2149                          * refcount on the pi_state and store the pointer in
2150                          * the futex_q object of the waiter.
2151                          */
2152                         get_pi_state(pi_state);
2153                         this->pi_state = pi_state;
2154                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2155                                                         this->rt_waiter,
2156                                                         this->task);
2157                         if (ret == 1) {
2158                                 /*
2159                                  * We got the lock. We do neither drop the
2160                                  * refcount on pi_state nor clear
2161                                  * this->pi_state because the waiter needs the
2162                                  * pi_state for cleaning up the user space
2163                                  * value. It will drop the refcount after
2164                                  * doing so.
2165                                  */
2166                                 requeue_pi_wake_futex(this, &key2, hb2);
2167                                 continue;
2168                         } else if (ret) {
2169                                 /*
2170                                  * rt_mutex_start_proxy_lock() detected a
2171                                  * potential deadlock when we tried to queue
2172                                  * that waiter. Drop the pi_state reference
2173                                  * which we took above and remove the pointer
2174                                  * to the state from the waiters futex_q
2175                                  * object.
2176                                  */
2177                                 this->pi_state = NULL;
2178                                 put_pi_state(pi_state);
2179                                 /*
2180                                  * We stop queueing more waiters and let user
2181                                  * space deal with the mess.
2182                                  */
2183                                 break;
2184                         }
2185                 }
2186                 requeue_futex(this, hb1, hb2, &key2);
2187         }
2188
2189         /*
2190          * We took an extra initial reference to the pi_state either
2191          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2192          * need to drop it here again.
2193          */
2194         put_pi_state(pi_state);
2195
2196 out_unlock:
2197         double_unlock_hb(hb1, hb2);
2198         wake_up_q(&wake_q);
2199         hb_waiters_dec(hb2);
2200         return ret ? ret : task_count;
2201 }
2202
2203 /* The key must be already stored in q->key. */
2204 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2205         __acquires(&hb->lock)
2206 {
2207         struct futex_hash_bucket *hb;
2208
2209         hb = hash_futex(&q->key);
2210
2211         /*
2212          * Increment the counter before taking the lock so that
2213          * a potential waker won't miss a to-be-slept task that is
2214          * waiting for the spinlock. This is safe as all queue_lock()
2215          * users end up calling queue_me(). Similarly, for housekeeping,
2216          * decrement the counter at queue_unlock() when some error has
2217          * occurred and we don't end up adding the task to the list.
2218          */
2219         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2220
2221         q->lock_ptr = &hb->lock;
2222
2223         spin_lock(&hb->lock);
2224         return hb;
2225 }
2226
2227 static inline void
2228 queue_unlock(struct futex_hash_bucket *hb)
2229         __releases(&hb->lock)
2230 {
2231         spin_unlock(&hb->lock);
2232         hb_waiters_dec(hb);
2233 }
2234
2235 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2236 {
2237         int prio;
2238
2239         /*
2240          * The priority used to register this element is
2241          * - either the real thread-priority for the real-time threads
2242          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2243          * - or MAX_RT_PRIO for non-RT threads.
2244          * Thus, all RT-threads are woken first in priority order, and
2245          * the others are woken last, in FIFO order.
2246          */
2247         prio = min(current->normal_prio, MAX_RT_PRIO);
2248
2249         plist_node_init(&q->list, prio);
2250         plist_add(&q->list, &hb->chain);
2251         q->task = current;
2252 }
2253
2254 /**
2255  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2256  * @q:  The futex_q to enqueue
2257  * @hb: The destination hash bucket
2258  *
2259  * The hb->lock must be held by the caller, and is released here. A call to
2260  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2261  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2262  * or nothing if the unqueue is done as part of the wake process and the unqueue
2263  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2264  * an example).
2265  */
2266 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2267         __releases(&hb->lock)
2268 {
2269         __queue_me(q, hb);
2270         spin_unlock(&hb->lock);
2271 }
2272
2273 /**
2274  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2275  * @q:  The futex_q to unqueue
2276  *
2277  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2278  * be paired with exactly one earlier call to queue_me().
2279  *
2280  * Return:
2281  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2282  *  - 0 - if the futex_q was already removed by the waking thread
2283  */
2284 static int unqueue_me(struct futex_q *q)
2285 {
2286         spinlock_t *lock_ptr;
2287         int ret = 0;
2288
2289         /* In the common case we don't take the spinlock, which is nice. */
2290 retry:
2291         /*
2292          * q->lock_ptr can change between this read and the following spin_lock.
2293          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2294          * optimizing lock_ptr out of the logic below.
2295          */
2296         lock_ptr = READ_ONCE(q->lock_ptr);
2297         if (lock_ptr != NULL) {
2298                 spin_lock(lock_ptr);
2299                 /*
2300                  * q->lock_ptr can change between reading it and
2301                  * spin_lock(), causing us to take the wrong lock.  This
2302                  * corrects the race condition.
2303                  *
2304                  * Reasoning goes like this: if we have the wrong lock,
2305                  * q->lock_ptr must have changed (maybe several times)
2306                  * between reading it and the spin_lock().  It can
2307                  * change again after the spin_lock() but only if it was
2308                  * already changed before the spin_lock().  It cannot,
2309                  * however, change back to the original value.  Therefore
2310                  * we can detect whether we acquired the correct lock.
2311                  */
2312                 if (unlikely(lock_ptr != q->lock_ptr)) {
2313                         spin_unlock(lock_ptr);
2314                         goto retry;
2315                 }
2316                 __unqueue_futex(q);
2317
2318                 BUG_ON(q->pi_state);
2319
2320                 spin_unlock(lock_ptr);
2321                 ret = 1;
2322         }
2323
2324         return ret;
2325 }
2326
2327 /*
2328  * PI futexes can not be requeued and must remove themself from the
2329  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2330  * and dropped here.
2331  */
2332 static void unqueue_me_pi(struct futex_q *q)
2333         __releases(q->lock_ptr)
2334 {
2335         __unqueue_futex(q);
2336
2337         BUG_ON(!q->pi_state);
2338         put_pi_state(q->pi_state);
2339         q->pi_state = NULL;
2340
2341         spin_unlock(q->lock_ptr);
2342 }
2343
2344 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2345                                   struct task_struct *argowner)
2346 {
2347         struct futex_pi_state *pi_state = q->pi_state;
2348         struct task_struct *oldowner, *newowner;
2349         u32 uval, curval, newval, newtid;
2350         int err = 0;
2351
2352         oldowner = pi_state->owner;
2353
2354         /*
2355          * We are here because either:
2356          *
2357          *  - we stole the lock and pi_state->owner needs updating to reflect
2358          *    that (@argowner == current),
2359          *
2360          * or:
2361          *
2362          *  - someone stole our lock and we need to fix things to point to the
2363          *    new owner (@argowner == NULL).
2364          *
2365          * Either way, we have to replace the TID in the user space variable.
2366          * This must be atomic as we have to preserve the owner died bit here.
2367          *
2368          * Note: We write the user space value _before_ changing the pi_state
2369          * because we can fault here. Imagine swapped out pages or a fork
2370          * that marked all the anonymous memory readonly for cow.
2371          *
2372          * Modifying pi_state _before_ the user space value would leave the
2373          * pi_state in an inconsistent state when we fault here, because we
2374          * need to drop the locks to handle the fault. This might be observed
2375          * in the PID check in lookup_pi_state.
2376          */
2377 retry:
2378         if (!argowner) {
2379                 if (oldowner != current) {
2380                         /*
2381                          * We raced against a concurrent self; things are
2382                          * already fixed up. Nothing to do.
2383                          */
2384                         return 0;
2385                 }
2386
2387                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2388                         /* We got the lock. pi_state is correct. Tell caller. */
2389                         return 1;
2390                 }
2391
2392                 /*
2393                  * The trylock just failed, so either there is an owner or
2394                  * there is a higher priority waiter than this one.
2395                  */
2396                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2397                 /*
2398                  * If the higher priority waiter has not yet taken over the
2399                  * rtmutex then newowner is NULL. We can't return here with
2400                  * that state because it's inconsistent vs. the user space
2401                  * state. So drop the locks and try again. It's a valid
2402                  * situation and not any different from the other retry
2403                  * conditions.
2404                  */
2405                 if (unlikely(!newowner)) {
2406                         err = -EAGAIN;
2407                         goto handle_err;
2408                 }
2409         } else {
2410                 WARN_ON_ONCE(argowner != current);
2411                 if (oldowner == current) {
2412                         /*
2413                          * We raced against a concurrent self; things are
2414                          * already fixed up. Nothing to do.
2415                          */
2416                         return 1;
2417                 }
2418                 newowner = argowner;
2419         }
2420
2421         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2422         /* Owner died? */
2423         if (!pi_state->owner)
2424                 newtid |= FUTEX_OWNER_DIED;
2425
2426         err = get_futex_value_locked(&uval, uaddr);
2427         if (err)
2428                 goto handle_err;
2429
2430         for (;;) {
2431                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2432
2433                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2434                 if (err)
2435                         goto handle_err;
2436
2437                 if (curval == uval)
2438                         break;
2439                 uval = curval;
2440         }
2441
2442         /*
2443          * We fixed up user space. Now we need to fix the pi_state
2444          * itself.
2445          */
2446         pi_state_update_owner(pi_state, newowner);
2447
2448         return argowner == current;
2449
2450         /*
2451          * In order to reschedule or handle a page fault, we need to drop the
2452          * locks here. In the case of a fault, this gives the other task
2453          * (either the highest priority waiter itself or the task which stole
2454          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2455          * are back from handling the fault we need to check the pi_state after
2456          * reacquiring the locks and before trying to do another fixup. When
2457          * the fixup has been done already we simply return.
2458          *
2459          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2460          * drop hb->lock since the caller owns the hb -> futex_q relation.
2461          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2462          */
2463 handle_err:
2464         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2465         spin_unlock(q->lock_ptr);
2466
2467         switch (err) {
2468         case -EFAULT:
2469                 err = fault_in_user_writeable(uaddr);
2470                 break;
2471
2472         case -EAGAIN:
2473                 cond_resched();
2474                 err = 0;
2475                 break;
2476
2477         default:
2478                 WARN_ON_ONCE(1);
2479                 break;
2480         }
2481
2482         spin_lock(q->lock_ptr);
2483         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2484
2485         /*
2486          * Check if someone else fixed it for us:
2487          */
2488         if (pi_state->owner != oldowner)
2489                 return argowner == current;
2490
2491         /* Retry if err was -EAGAIN or the fault in succeeded */
2492         if (!err)
2493                 goto retry;
2494
2495         /*
2496          * fault_in_user_writeable() failed so user state is immutable. At
2497          * best we can make the kernel state consistent but user state will
2498          * be most likely hosed and any subsequent unlock operation will be
2499          * rejected due to PI futex rule [10].
2500          *
2501          * Ensure that the rtmutex owner is also the pi_state owner despite
2502          * the user space value claiming something different. There is no
2503          * point in unlocking the rtmutex if current is the owner as it
2504          * would need to wait until the next waiter has taken the rtmutex
2505          * to guarantee consistent state. Keep it simple. Userspace asked
2506          * for this wreckaged state.
2507          *
2508          * The rtmutex has an owner - either current or some other
2509          * task. See the EAGAIN loop above.
2510          */
2511         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2512
2513         return err;
2514 }
2515
2516 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2517                                 struct task_struct *argowner)
2518 {
2519         struct futex_pi_state *pi_state = q->pi_state;
2520         int ret;
2521
2522         lockdep_assert_held(q->lock_ptr);
2523
2524         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2525         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2526         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2527         return ret;
2528 }
2529
2530 static long futex_wait_restart(struct restart_block *restart);
2531
2532 /**
2533  * fixup_owner() - Post lock pi_state and corner case management
2534  * @uaddr:      user address of the futex
2535  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2536  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2537  *
2538  * After attempting to lock an rt_mutex, this function is called to cleanup
2539  * the pi_state owner as well as handle race conditions that may allow us to
2540  * acquire the lock. Must be called with the hb lock held.
2541  *
2542  * Return:
2543  *  -  1 - success, lock taken;
2544  *  -  0 - success, lock not taken;
2545  *  - <0 - on error (-EFAULT)
2546  */
2547 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2548 {
2549         if (locked) {
2550                 /*
2551                  * Got the lock. We might not be the anticipated owner if we
2552                  * did a lock-steal - fix up the PI-state in that case:
2553                  *
2554                  * Speculative pi_state->owner read (we don't hold wait_lock);
2555                  * since we own the lock pi_state->owner == current is the
2556                  * stable state, anything else needs more attention.
2557                  */
2558                 if (q->pi_state->owner != current)
2559                         return fixup_pi_state_owner(uaddr, q, current);
2560                 return 1;
2561         }
2562
2563         /*
2564          * If we didn't get the lock; check if anybody stole it from us. In
2565          * that case, we need to fix up the uval to point to them instead of
2566          * us, otherwise bad things happen. [10]
2567          *
2568          * Another speculative read; pi_state->owner == current is unstable
2569          * but needs our attention.
2570          */
2571         if (q->pi_state->owner == current)
2572                 return fixup_pi_state_owner(uaddr, q, NULL);
2573
2574         /*
2575          * Paranoia check. If we did not take the lock, then we should not be
2576          * the owner of the rt_mutex. Warn and establish consistent state.
2577          */
2578         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2579                 return fixup_pi_state_owner(uaddr, q, current);
2580
2581         return 0;
2582 }
2583
2584 /**
2585  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2586  * @hb:         the futex hash bucket, must be locked by the caller
2587  * @q:          the futex_q to queue up on
2588  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2589  */
2590 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2591                                 struct hrtimer_sleeper *timeout)
2592 {
2593         /*
2594          * The task state is guaranteed to be set before another task can
2595          * wake it. set_current_state() is implemented using smp_store_mb() and
2596          * queue_me() calls spin_unlock() upon completion, both serializing
2597          * access to the hash list and forcing another memory barrier.
2598          */
2599         set_current_state(TASK_INTERRUPTIBLE);
2600         queue_me(q, hb);
2601
2602         /* Arm the timer */
2603         if (timeout)
2604                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2605
2606         /*
2607          * If we have been removed from the hash list, then another task
2608          * has tried to wake us, and we can skip the call to schedule().
2609          */
2610         if (likely(!plist_node_empty(&q->list))) {
2611                 /*
2612                  * If the timer has already expired, current will already be
2613                  * flagged for rescheduling. Only call schedule if there
2614                  * is no timeout, or if it has yet to expire.
2615                  */
2616                 if (!timeout || timeout->task)
2617                         freezable_schedule();
2618         }
2619         __set_current_state(TASK_RUNNING);
2620 }
2621
2622 /**
2623  * futex_wait_setup() - Prepare to wait on a futex
2624  * @uaddr:      the futex userspace address
2625  * @val:        the expected value
2626  * @flags:      futex flags (FLAGS_SHARED, etc.)
2627  * @q:          the associated futex_q
2628  * @hb:         storage for hash_bucket pointer to be returned to caller
2629  *
2630  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2631  * compare it with the expected value.  Handle atomic faults internally.
2632  * Return with the hb lock held and a q.key reference on success, and unlocked
2633  * with no q.key reference on failure.
2634  *
2635  * Return:
2636  *  -  0 - uaddr contains val and hb has been locked;
2637  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2638  */
2639 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2640                            struct futex_q *q, struct futex_hash_bucket **hb)
2641 {
2642         u32 uval;
2643         int ret;
2644
2645         /*
2646          * Access the page AFTER the hash-bucket is locked.
2647          * Order is important:
2648          *
2649          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2650          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2651          *
2652          * The basic logical guarantee of a futex is that it blocks ONLY
2653          * if cond(var) is known to be true at the time of blocking, for
2654          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2655          * would open a race condition where we could block indefinitely with
2656          * cond(var) false, which would violate the guarantee.
2657          *
2658          * On the other hand, we insert q and release the hash-bucket only
2659          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2660          * absorb a wakeup if *uaddr does not match the desired values
2661          * while the syscall executes.
2662          */
2663 retry:
2664         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2665         if (unlikely(ret != 0))
2666                 return ret;
2667
2668 retry_private:
2669         *hb = queue_lock(q);
2670
2671         ret = get_futex_value_locked(&uval, uaddr);
2672
2673         if (ret) {
2674                 queue_unlock(*hb);
2675
2676                 ret = get_user(uval, uaddr);
2677                 if (ret)
2678                         return ret;
2679
2680                 if (!(flags & FLAGS_SHARED))
2681                         goto retry_private;
2682
2683                 goto retry;
2684         }
2685
2686         if (uval != val) {
2687                 queue_unlock(*hb);
2688                 ret = -EWOULDBLOCK;
2689         }
2690
2691         return ret;
2692 }
2693
2694 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2695                       ktime_t *abs_time, u32 bitset)
2696 {
2697         struct hrtimer_sleeper timeout, *to;
2698         struct restart_block *restart;
2699         struct futex_hash_bucket *hb;
2700         struct futex_q q = futex_q_init;
2701         int ret;
2702
2703         if (!bitset)
2704                 return -EINVAL;
2705         q.bitset = bitset;
2706
2707         to = futex_setup_timer(abs_time, &timeout, flags,
2708                                current->timer_slack_ns);
2709 retry:
2710         /*
2711          * Prepare to wait on uaddr. On success, holds hb lock and increments
2712          * q.key refs.
2713          */
2714         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2715         if (ret)
2716                 goto out;
2717
2718         /* queue_me and wait for wakeup, timeout, or a signal. */
2719         futex_wait_queue_me(hb, &q, to);
2720
2721         /* If we were woken (and unqueued), we succeeded, whatever. */
2722         ret = 0;
2723         /* unqueue_me() drops q.key ref */
2724         if (!unqueue_me(&q))
2725                 goto out;
2726         ret = -ETIMEDOUT;
2727         if (to && !to->task)
2728                 goto out;
2729
2730         /*
2731          * We expect signal_pending(current), but we might be the
2732          * victim of a spurious wakeup as well.
2733          */
2734         if (!signal_pending(current))
2735                 goto retry;
2736
2737         ret = -ERESTARTSYS;
2738         if (!abs_time)
2739                 goto out;
2740
2741         restart = &current->restart_block;
2742         restart->futex.uaddr = uaddr;
2743         restart->futex.val = val;
2744         restart->futex.time = *abs_time;
2745         restart->futex.bitset = bitset;
2746         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2747
2748         ret = set_restart_fn(restart, futex_wait_restart);
2749
2750 out:
2751         if (to) {
2752                 hrtimer_cancel(&to->timer);
2753                 destroy_hrtimer_on_stack(&to->timer);
2754         }
2755         return ret;
2756 }
2757
2758
2759 static long futex_wait_restart(struct restart_block *restart)
2760 {
2761         u32 __user *uaddr = restart->futex.uaddr;
2762         ktime_t t, *tp = NULL;
2763
2764         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2765                 t = restart->futex.time;
2766                 tp = &t;
2767         }
2768         restart->fn = do_no_restart_syscall;
2769
2770         return (long)futex_wait(uaddr, restart->futex.flags,
2771                                 restart->futex.val, tp, restart->futex.bitset);
2772 }
2773
2774
2775 /*
2776  * Userspace tried a 0 -> TID atomic transition of the futex value
2777  * and failed. The kernel side here does the whole locking operation:
2778  * if there are waiters then it will block as a consequence of relying
2779  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2780  * a 0 value of the futex too.).
2781  *
2782  * Also serves as futex trylock_pi()'ing, and due semantics.
2783  */
2784 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2785                          ktime_t *time, int trylock)
2786 {
2787         struct hrtimer_sleeper timeout, *to;
2788         struct task_struct *exiting = NULL;
2789         struct rt_mutex_waiter rt_waiter;
2790         struct futex_hash_bucket *hb;
2791         struct futex_q q = futex_q_init;
2792         int res, ret;
2793
2794         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2795                 return -ENOSYS;
2796
2797         if (refill_pi_state_cache())
2798                 return -ENOMEM;
2799
2800         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2801
2802 retry:
2803         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2804         if (unlikely(ret != 0))
2805                 goto out;
2806
2807 retry_private:
2808         hb = queue_lock(&q);
2809
2810         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2811                                    &exiting, 0);
2812         if (unlikely(ret)) {
2813                 /*
2814                  * Atomic work succeeded and we got the lock,
2815                  * or failed. Either way, we do _not_ block.
2816                  */
2817                 switch (ret) {
2818                 case 1:
2819                         /* We got the lock. */
2820                         ret = 0;
2821                         goto out_unlock_put_key;
2822                 case -EFAULT:
2823                         goto uaddr_faulted;
2824                 case -EBUSY:
2825                 case -EAGAIN:
2826                         /*
2827                          * Two reasons for this:
2828                          * - EBUSY: Task is exiting and we just wait for the
2829                          *   exit to complete.
2830                          * - EAGAIN: The user space value changed.
2831                          */
2832                         queue_unlock(hb);
2833                         /*
2834                          * Handle the case where the owner is in the middle of
2835                          * exiting. Wait for the exit to complete otherwise
2836                          * this task might loop forever, aka. live lock.
2837                          */
2838                         wait_for_owner_exiting(ret, exiting);
2839                         cond_resched();
2840                         goto retry;
2841                 default:
2842                         goto out_unlock_put_key;
2843                 }
2844         }
2845
2846         WARN_ON(!q.pi_state);
2847
2848         /*
2849          * Only actually queue now that the atomic ops are done:
2850          */
2851         __queue_me(&q, hb);
2852
2853         if (trylock) {
2854                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2855                 /* Fixup the trylock return value: */
2856                 ret = ret ? 0 : -EWOULDBLOCK;
2857                 goto no_block;
2858         }
2859
2860         rt_mutex_init_waiter(&rt_waiter);
2861
2862         /*
2863          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2864          * hold it while doing rt_mutex_start_proxy(), because then it will
2865          * include hb->lock in the blocking chain, even through we'll not in
2866          * fact hold it while blocking. This will lead it to report -EDEADLK
2867          * and BUG when futex_unlock_pi() interleaves with this.
2868          *
2869          * Therefore acquire wait_lock while holding hb->lock, but drop the
2870          * latter before calling __rt_mutex_start_proxy_lock(). This
2871          * interleaves with futex_unlock_pi() -- which does a similar lock
2872          * handoff -- such that the latter can observe the futex_q::pi_state
2873          * before __rt_mutex_start_proxy_lock() is done.
2874          */
2875         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2876         spin_unlock(q.lock_ptr);
2877         /*
2878          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2879          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2880          * it sees the futex_q::pi_state.
2881          */
2882         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2883         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2884
2885         if (ret) {
2886                 if (ret == 1)
2887                         ret = 0;
2888                 goto cleanup;
2889         }
2890
2891         if (unlikely(to))
2892                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2893
2894         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2895
2896 cleanup:
2897         spin_lock(q.lock_ptr);
2898         /*
2899          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2900          * first acquire the hb->lock before removing the lock from the
2901          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2902          * lists consistent.
2903          *
2904          * In particular; it is important that futex_unlock_pi() can not
2905          * observe this inconsistency.
2906          */
2907         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2908                 ret = 0;
2909
2910 no_block:
2911         /*
2912          * Fixup the pi_state owner and possibly acquire the lock if we
2913          * haven't already.
2914          */
2915         res = fixup_owner(uaddr, &q, !ret);
2916         /*
2917          * If fixup_owner() returned an error, proprogate that.  If it acquired
2918          * the lock, clear our -ETIMEDOUT or -EINTR.
2919          */
2920         if (res)
2921                 ret = (res < 0) ? res : 0;
2922
2923         /* Unqueue and drop the lock */
2924         unqueue_me_pi(&q);
2925         goto out;
2926
2927 out_unlock_put_key:
2928         queue_unlock(hb);
2929
2930 out:
2931         if (to) {
2932                 hrtimer_cancel(&to->timer);
2933                 destroy_hrtimer_on_stack(&to->timer);
2934         }
2935         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2936
2937 uaddr_faulted:
2938         queue_unlock(hb);
2939
2940         ret = fault_in_user_writeable(uaddr);
2941         if (ret)
2942                 goto out;
2943
2944         if (!(flags & FLAGS_SHARED))
2945                 goto retry_private;
2946
2947         goto retry;
2948 }
2949
2950 /*
2951  * Userspace attempted a TID -> 0 atomic transition, and failed.
2952  * This is the in-kernel slowpath: we look up the PI state (if any),
2953  * and do the rt-mutex unlock.
2954  */
2955 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2956 {
2957         u32 curval, uval, vpid = task_pid_vnr(current);
2958         union futex_key key = FUTEX_KEY_INIT;
2959         struct futex_hash_bucket *hb;
2960         struct futex_q *top_waiter;
2961         int ret;
2962
2963         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2964                 return -ENOSYS;
2965
2966 retry:
2967         if (get_user(uval, uaddr))
2968                 return -EFAULT;
2969         /*
2970          * We release only a lock we actually own:
2971          */
2972         if ((uval & FUTEX_TID_MASK) != vpid)
2973                 return -EPERM;
2974
2975         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2976         if (ret)
2977                 return ret;
2978
2979         hb = hash_futex(&key);
2980         spin_lock(&hb->lock);
2981
2982         /*
2983          * Check waiters first. We do not trust user space values at
2984          * all and we at least want to know if user space fiddled
2985          * with the futex value instead of blindly unlocking.
2986          */
2987         top_waiter = futex_top_waiter(hb, &key);
2988         if (top_waiter) {
2989                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2990
2991                 ret = -EINVAL;
2992                 if (!pi_state)
2993                         goto out_unlock;
2994
2995                 /*
2996                  * If current does not own the pi_state then the futex is
2997                  * inconsistent and user space fiddled with the futex value.
2998                  */
2999                 if (pi_state->owner != current)
3000                         goto out_unlock;
3001
3002                 get_pi_state(pi_state);
3003                 /*
3004                  * By taking wait_lock while still holding hb->lock, we ensure
3005                  * there is no point where we hold neither; and therefore
3006                  * wake_futex_pi() must observe a state consistent with what we
3007                  * observed.
3008                  *
3009                  * In particular; this forces __rt_mutex_start_proxy() to
3010                  * complete such that we're guaranteed to observe the
3011                  * rt_waiter. Also see the WARN in wake_futex_pi().
3012                  */
3013                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3014                 spin_unlock(&hb->lock);
3015
3016                 /* drops pi_state->pi_mutex.wait_lock */
3017                 ret = wake_futex_pi(uaddr, uval, pi_state);
3018
3019                 put_pi_state(pi_state);
3020
3021                 /*
3022                  * Success, we're done! No tricky corner cases.
3023                  */
3024                 if (!ret)
3025                         goto out_putkey;
3026                 /*
3027                  * The atomic access to the futex value generated a
3028                  * pagefault, so retry the user-access and the wakeup:
3029                  */
3030                 if (ret == -EFAULT)
3031                         goto pi_faulted;
3032                 /*
3033                  * A unconditional UNLOCK_PI op raced against a waiter
3034                  * setting the FUTEX_WAITERS bit. Try again.
3035                  */
3036                 if (ret == -EAGAIN)
3037                         goto pi_retry;
3038                 /*
3039                  * wake_futex_pi has detected invalid state. Tell user
3040                  * space.
3041                  */
3042                 goto out_putkey;
3043         }
3044
3045         /*
3046          * We have no kernel internal state, i.e. no waiters in the
3047          * kernel. Waiters which are about to queue themselves are stuck
3048          * on hb->lock. So we can safely ignore them. We do neither
3049          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3050          * owner.
3051          */
3052         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3053                 spin_unlock(&hb->lock);
3054                 switch (ret) {
3055                 case -EFAULT:
3056                         goto pi_faulted;
3057
3058                 case -EAGAIN:
3059                         goto pi_retry;
3060
3061                 default:
3062                         WARN_ON_ONCE(1);
3063                         goto out_putkey;
3064                 }
3065         }
3066
3067         /*
3068          * If uval has changed, let user space handle it.
3069          */
3070         ret = (curval == uval) ? 0 : -EAGAIN;
3071
3072 out_unlock:
3073         spin_unlock(&hb->lock);
3074 out_putkey:
3075         return ret;
3076
3077 pi_retry:
3078         cond_resched();
3079         goto retry;
3080
3081 pi_faulted:
3082
3083         ret = fault_in_user_writeable(uaddr);
3084         if (!ret)
3085                 goto retry;
3086
3087         return ret;
3088 }
3089
3090 /**
3091  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3092  * @hb:         the hash_bucket futex_q was original enqueued on
3093  * @q:          the futex_q woken while waiting to be requeued
3094  * @key2:       the futex_key of the requeue target futex
3095  * @timeout:    the timeout associated with the wait (NULL if none)
3096  *
3097  * Detect if the task was woken on the initial futex as opposed to the requeue
3098  * target futex.  If so, determine if it was a timeout or a signal that caused
3099  * the wakeup and return the appropriate error code to the caller.  Must be
3100  * called with the hb lock held.
3101  *
3102  * Return:
3103  *  -  0 = no early wakeup detected;
3104  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3105  */
3106 static inline
3107 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3108                                    struct futex_q *q, union futex_key *key2,
3109                                    struct hrtimer_sleeper *timeout)
3110 {
3111         int ret = 0;
3112
3113         /*
3114          * With the hb lock held, we avoid races while we process the wakeup.
3115          * We only need to hold hb (and not hb2) to ensure atomicity as the
3116          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3117          * It can't be requeued from uaddr2 to something else since we don't
3118          * support a PI aware source futex for requeue.
3119          */
3120         if (!match_futex(&q->key, key2)) {
3121                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3122                 /*
3123                  * We were woken prior to requeue by a timeout or a signal.
3124                  * Unqueue the futex_q and determine which it was.
3125                  */
3126                 plist_del(&q->list, &hb->chain);
3127                 hb_waiters_dec(hb);
3128
3129                 /* Handle spurious wakeups gracefully */
3130                 ret = -EWOULDBLOCK;
3131                 if (timeout && !timeout->task)
3132                         ret = -ETIMEDOUT;
3133                 else if (signal_pending(current))
3134                         ret = -ERESTARTNOINTR;
3135         }
3136         return ret;
3137 }
3138
3139 /**
3140  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3141  * @uaddr:      the futex we initially wait on (non-pi)
3142  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3143  *              the same type, no requeueing from private to shared, etc.
3144  * @val:        the expected value of uaddr
3145  * @abs_time:   absolute timeout
3146  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3147  * @uaddr2:     the pi futex we will take prior to returning to user-space
3148  *
3149  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3150  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3151  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3152  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3153  * without one, the pi logic would not know which task to boost/deboost, if
3154  * there was a need to.
3155  *
3156  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3157  * via the following--
3158  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3159  * 2) wakeup on uaddr2 after a requeue
3160  * 3) signal
3161  * 4) timeout
3162  *
3163  * If 3, cleanup and return -ERESTARTNOINTR.
3164  *
3165  * If 2, we may then block on trying to take the rt_mutex and return via:
3166  * 5) successful lock
3167  * 6) signal
3168  * 7) timeout
3169  * 8) other lock acquisition failure
3170  *
3171  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3172  *
3173  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3174  *
3175  * Return:
3176  *  -  0 - On success;
3177  *  - <0 - On error
3178  */
3179 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3180                                  u32 val, ktime_t *abs_time, u32 bitset,
3181                                  u32 __user *uaddr2)
3182 {
3183         struct hrtimer_sleeper timeout, *to;
3184         struct rt_mutex_waiter rt_waiter;
3185         struct futex_hash_bucket *hb;
3186         union futex_key key2 = FUTEX_KEY_INIT;
3187         struct futex_q q = futex_q_init;
3188         int res, ret;
3189
3190         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3191                 return -ENOSYS;
3192
3193         if (uaddr == uaddr2)
3194                 return -EINVAL;
3195
3196         if (!bitset)
3197                 return -EINVAL;
3198
3199         to = futex_setup_timer(abs_time, &timeout, flags,
3200                                current->timer_slack_ns);
3201
3202         /*
3203          * The waiter is allocated on our stack, manipulated by the requeue
3204          * code while we sleep on uaddr.
3205          */
3206         rt_mutex_init_waiter(&rt_waiter);
3207
3208         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3209         if (unlikely(ret != 0))
3210                 goto out;
3211
3212         q.bitset = bitset;
3213         q.rt_waiter = &rt_waiter;
3214         q.requeue_pi_key = &key2;
3215
3216         /*
3217          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3218          * count.
3219          */
3220         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3221         if (ret)
3222                 goto out;
3223
3224         /*
3225          * The check above which compares uaddrs is not sufficient for
3226          * shared futexes. We need to compare the keys:
3227          */
3228         if (match_futex(&q.key, &key2)) {
3229                 queue_unlock(hb);
3230                 ret = -EINVAL;
3231                 goto out;
3232         }
3233
3234         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3235         futex_wait_queue_me(hb, &q, to);
3236
3237         spin_lock(&hb->lock);
3238         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3239         spin_unlock(&hb->lock);
3240         if (ret)
3241                 goto out;
3242
3243         /*
3244          * In order for us to be here, we know our q.key == key2, and since
3245          * we took the hb->lock above, we also know that futex_requeue() has
3246          * completed and we no longer have to concern ourselves with a wakeup
3247          * race with the atomic proxy lock acquisition by the requeue code. The
3248          * futex_requeue dropped our key1 reference and incremented our key2
3249          * reference count.
3250          */
3251
3252         /* Check if the requeue code acquired the second futex for us. */
3253         if (!q.rt_waiter) {
3254                 /*
3255                  * Got the lock. We might not be the anticipated owner if we
3256                  * did a lock-steal - fix up the PI-state in that case.
3257                  */
3258                 if (q.pi_state && (q.pi_state->owner != current)) {
3259                         spin_lock(q.lock_ptr);
3260                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3261                         /*
3262                          * Drop the reference to the pi state which
3263                          * the requeue_pi() code acquired for us.
3264                          */
3265                         put_pi_state(q.pi_state);
3266                         spin_unlock(q.lock_ptr);
3267                         /*
3268                          * Adjust the return value. It's either -EFAULT or
3269                          * success (1) but the caller expects 0 for success.
3270                          */
3271                         ret = ret < 0 ? ret : 0;
3272                 }
3273         } else {
3274                 struct rt_mutex *pi_mutex;
3275
3276                 /*
3277                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3278                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3279                  * the pi_state.
3280                  */
3281                 WARN_ON(!q.pi_state);
3282                 pi_mutex = &q.pi_state->pi_mutex;
3283                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3284
3285                 spin_lock(q.lock_ptr);
3286                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3287                         ret = 0;
3288
3289                 debug_rt_mutex_free_waiter(&rt_waiter);
3290                 /*
3291                  * Fixup the pi_state owner and possibly acquire the lock if we
3292                  * haven't already.
3293                  */
3294                 res = fixup_owner(uaddr2, &q, !ret);
3295                 /*
3296                  * If fixup_owner() returned an error, proprogate that.  If it
3297                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3298                  */
3299                 if (res)
3300                         ret = (res < 0) ? res : 0;
3301
3302                 /* Unqueue and drop the lock. */
3303                 unqueue_me_pi(&q);
3304         }
3305
3306         if (ret == -EINTR) {
3307                 /*
3308                  * We've already been requeued, but cannot restart by calling
3309                  * futex_lock_pi() directly. We could restart this syscall, but
3310                  * it would detect that the user space "val" changed and return
3311                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3312                  * -EWOULDBLOCK directly.
3313                  */
3314                 ret = -EWOULDBLOCK;
3315         }
3316
3317 out:
3318         if (to) {
3319                 hrtimer_cancel(&to->timer);
3320                 destroy_hrtimer_on_stack(&to->timer);
3321         }
3322         return ret;
3323 }
3324
3325 /*
3326  * Support for robust futexes: the kernel cleans up held futexes at
3327  * thread exit time.
3328  *
3329  * Implementation: user-space maintains a per-thread list of locks it
3330  * is holding. Upon do_exit(), the kernel carefully walks this list,
3331  * and marks all locks that are owned by this thread with the
3332  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3333  * always manipulated with the lock held, so the list is private and
3334  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3335  * field, to allow the kernel to clean up if the thread dies after
3336  * acquiring the lock, but just before it could have added itself to
3337  * the list. There can only be one such pending lock.
3338  */
3339
3340 /**
3341  * sys_set_robust_list() - Set the robust-futex list head of a task
3342  * @head:       pointer to the list-head
3343  * @len:        length of the list-head, as userspace expects
3344  */
3345 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3346                 size_t, len)
3347 {
3348         if (!futex_cmpxchg_enabled)
3349                 return -ENOSYS;
3350         /*
3351          * The kernel knows only one size for now:
3352          */
3353         if (unlikely(len != sizeof(*head)))
3354                 return -EINVAL;
3355
3356         current->robust_list = head;
3357
3358         return 0;
3359 }
3360
3361 /**
3362  * sys_get_robust_list() - Get the robust-futex list head of a task
3363  * @pid:        pid of the process [zero for current task]
3364  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3365  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3366  */
3367 SYSCALL_DEFINE3(get_robust_list, int, pid,
3368                 struct robust_list_head __user * __user *, head_ptr,
3369                 size_t __user *, len_ptr)
3370 {
3371         struct robust_list_head __user *head;
3372         unsigned long ret;
3373         struct task_struct *p;
3374
3375         if (!futex_cmpxchg_enabled)
3376                 return -ENOSYS;
3377
3378         rcu_read_lock();
3379
3380         ret = -ESRCH;
3381         if (!pid)
3382                 p = current;
3383         else {
3384                 p = find_task_by_vpid(pid);
3385                 if (!p)
3386                         goto err_unlock;
3387         }
3388
3389         ret = -EPERM;
3390         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3391                 goto err_unlock;
3392
3393         head = p->robust_list;
3394         rcu_read_unlock();
3395
3396         if (put_user(sizeof(*head), len_ptr))
3397                 return -EFAULT;
3398         return put_user(head, head_ptr);
3399
3400 err_unlock:
3401         rcu_read_unlock();
3402
3403         return ret;
3404 }
3405
3406 /* Constants for the pending_op argument of handle_futex_death */
3407 #define HANDLE_DEATH_PENDING    true
3408 #define HANDLE_DEATH_LIST       false
3409
3410 /*
3411  * Process a futex-list entry, check whether it's owned by the
3412  * dying task, and do notification if so:
3413  */
3414 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3415                               bool pi, bool pending_op)
3416 {
3417         u32 uval, nval, mval;
3418         pid_t owner;
3419         int err;
3420
3421         /* Futex address must be 32bit aligned */
3422         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3423                 return -1;
3424
3425 retry:
3426         if (get_user(uval, uaddr))
3427                 return -1;
3428
3429         /*
3430          * Special case for regular (non PI) futexes. The unlock path in
3431          * user space has two race scenarios:
3432          *
3433          * 1. The unlock path releases the user space futex value and
3434          *    before it can execute the futex() syscall to wake up
3435          *    waiters it is killed.
3436          *
3437          * 2. A woken up waiter is killed before it can acquire the
3438          *    futex in user space.
3439          *
3440          * In the second case, the wake up notification could be generated
3441          * by the unlock path in user space after setting the futex value
3442          * to zero or by the kernel after setting the OWNER_DIED bit below.
3443          *
3444          * In both cases the TID validation below prevents a wakeup of
3445          * potential waiters which can cause these waiters to block
3446          * forever.
3447          *
3448          * In both cases the following conditions are met:
3449          *
3450          *      1) task->robust_list->list_op_pending != NULL
3451          *         @pending_op == true
3452          *      2) The owner part of user space futex value == 0
3453          *      3) Regular futex: @pi == false
3454          *
3455          * If these conditions are met, it is safe to attempt waking up a
3456          * potential waiter without touching the user space futex value and
3457          * trying to set the OWNER_DIED bit. If the futex value is zero,
3458          * the rest of the user space mutex state is consistent, so a woken
3459          * waiter will just take over the uncontended futex. Setting the
3460          * OWNER_DIED bit would create inconsistent state and malfunction
3461          * of the user space owner died handling. Otherwise, the OWNER_DIED
3462          * bit is already set, and the woken waiter is expected to deal with
3463          * this.
3464          */
3465         owner = uval & FUTEX_TID_MASK;
3466
3467         if (pending_op && !pi && !owner) {
3468                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3469                 return 0;
3470         }
3471
3472         if (owner != task_pid_vnr(curr))
3473                 return 0;
3474
3475         /*
3476          * Ok, this dying thread is truly holding a futex
3477          * of interest. Set the OWNER_DIED bit atomically
3478          * via cmpxchg, and if the value had FUTEX_WAITERS
3479          * set, wake up a waiter (if any). (We have to do a
3480          * futex_wake() even if OWNER_DIED is already set -
3481          * to handle the rare but possible case of recursive
3482          * thread-death.) The rest of the cleanup is done in
3483          * userspace.
3484          */
3485         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3486
3487         /*
3488          * We are not holding a lock here, but we want to have
3489          * the pagefault_disable/enable() protection because
3490          * we want to handle the fault gracefully. If the
3491          * access fails we try to fault in the futex with R/W
3492          * verification via get_user_pages. get_user() above
3493          * does not guarantee R/W access. If that fails we
3494          * give up and leave the futex locked.
3495          */
3496         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3497                 switch (err) {
3498                 case -EFAULT:
3499                         if (fault_in_user_writeable(uaddr))
3500                                 return -1;
3501                         goto retry;
3502
3503                 case -EAGAIN:
3504                         cond_resched();
3505                         goto retry;
3506
3507                 default:
3508                         WARN_ON_ONCE(1);
3509                         return err;
3510                 }
3511         }
3512
3513         if (nval != uval)
3514                 goto retry;
3515
3516         /*
3517          * Wake robust non-PI futexes here. The wakeup of
3518          * PI futexes happens in exit_pi_state():
3519          */
3520         if (!pi && (uval & FUTEX_WAITERS))
3521                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3522
3523         return 0;
3524 }
3525
3526 /*
3527  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3528  */
3529 static inline int fetch_robust_entry(struct robust_list __user **entry,
3530                                      struct robust_list __user * __user *head,
3531                                      unsigned int *pi)
3532 {
3533         unsigned long uentry;
3534
3535         if (get_user(uentry, (unsigned long __user *)head))
3536                 return -EFAULT;
3537
3538         *entry = (void __user *)(uentry & ~1UL);
3539         *pi = uentry & 1;
3540
3541         return 0;
3542 }
3543
3544 /*
3545  * Walk curr->robust_list (very carefully, it's a userspace list!)
3546  * and mark any locks found there dead, and notify any waiters.
3547  *
3548  * We silently return on any sign of list-walking problem.
3549  */
3550 static void exit_robust_list(struct task_struct *curr)
3551 {
3552         struct robust_list_head __user *head = curr->robust_list;
3553         struct robust_list __user *entry, *next_entry, *pending;
3554         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3555         unsigned int next_pi;
3556         unsigned long futex_offset;
3557         int rc;
3558
3559         if (!futex_cmpxchg_enabled)
3560                 return;
3561
3562         /*
3563          * Fetch the list head (which was registered earlier, via
3564          * sys_set_robust_list()):
3565          */
3566         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3567                 return;
3568         /*
3569          * Fetch the relative futex offset:
3570          */
3571         if (get_user(futex_offset, &head->futex_offset))
3572                 return;
3573         /*
3574          * Fetch any possibly pending lock-add first, and handle it
3575          * if it exists:
3576          */
3577         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3578                 return;
3579
3580         next_entry = NULL;      /* avoid warning with gcc */
3581         while (entry != &head->list) {
3582                 /*
3583                  * Fetch the next entry in the list before calling
3584                  * handle_futex_death:
3585                  */
3586                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3587                 /*
3588                  * A pending lock might already be on the list, so
3589                  * don't process it twice:
3590                  */
3591                 if (entry != pending) {
3592                         if (handle_futex_death((void __user *)entry + futex_offset,
3593                                                 curr, pi, HANDLE_DEATH_LIST))
3594                                 return;
3595                 }
3596                 if (rc)
3597                         return;
3598                 entry = next_entry;
3599                 pi = next_pi;
3600                 /*
3601                  * Avoid excessively long or circular lists:
3602                  */
3603                 if (!--limit)
3604                         break;
3605
3606                 cond_resched();
3607         }
3608
3609         if (pending) {
3610                 handle_futex_death((void __user *)pending + futex_offset,
3611                                    curr, pip, HANDLE_DEATH_PENDING);
3612         }
3613 }
3614
3615 static void futex_cleanup(struct task_struct *tsk)
3616 {
3617         if (unlikely(tsk->robust_list)) {
3618                 exit_robust_list(tsk);
3619                 tsk->robust_list = NULL;
3620         }
3621
3622 #ifdef CONFIG_COMPAT
3623         if (unlikely(tsk->compat_robust_list)) {
3624                 compat_exit_robust_list(tsk);
3625                 tsk->compat_robust_list = NULL;
3626         }
3627 #endif
3628
3629         if (unlikely(!list_empty(&tsk->pi_state_list)))
3630                 exit_pi_state_list(tsk);
3631 }
3632
3633 /**
3634  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3635  * @tsk:        task to set the state on
3636  *
3637  * Set the futex exit state of the task lockless. The futex waiter code
3638  * observes that state when a task is exiting and loops until the task has
3639  * actually finished the futex cleanup. The worst case for this is that the
3640  * waiter runs through the wait loop until the state becomes visible.
3641  *
3642  * This is called from the recursive fault handling path in do_exit().
3643  *
3644  * This is best effort. Either the futex exit code has run already or
3645  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3646  * take it over. If not, the problem is pushed back to user space. If the
3647  * futex exit code did not run yet, then an already queued waiter might
3648  * block forever, but there is nothing which can be done about that.
3649  */
3650 void futex_exit_recursive(struct task_struct *tsk)
3651 {
3652         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3653         if (tsk->futex_state == FUTEX_STATE_EXITING)
3654                 mutex_unlock(&tsk->futex_exit_mutex);
3655         tsk->futex_state = FUTEX_STATE_DEAD;
3656 }
3657
3658 static void futex_cleanup_begin(struct task_struct *tsk)
3659 {
3660         /*
3661          * Prevent various race issues against a concurrent incoming waiter
3662          * including live locks by forcing the waiter to block on
3663          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3664          * attach_to_pi_owner().
3665          */
3666         mutex_lock(&tsk->futex_exit_mutex);
3667
3668         /*
3669          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3670          *
3671          * This ensures that all subsequent checks of tsk->futex_state in
3672          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3673          * tsk->pi_lock held.
3674          *
3675          * It guarantees also that a pi_state which was queued right before
3676          * the state change under tsk->pi_lock by a concurrent waiter must
3677          * be observed in exit_pi_state_list().
3678          */
3679         raw_spin_lock_irq(&tsk->pi_lock);
3680         tsk->futex_state = FUTEX_STATE_EXITING;
3681         raw_spin_unlock_irq(&tsk->pi_lock);
3682 }
3683
3684 static void futex_cleanup_end(struct task_struct *tsk, int state)
3685 {
3686         /*
3687          * Lockless store. The only side effect is that an observer might
3688          * take another loop until it becomes visible.
3689          */
3690         tsk->futex_state = state;
3691         /*
3692          * Drop the exit protection. This unblocks waiters which observed
3693          * FUTEX_STATE_EXITING to reevaluate the state.
3694          */
3695         mutex_unlock(&tsk->futex_exit_mutex);
3696 }
3697
3698 void futex_exec_release(struct task_struct *tsk)
3699 {
3700         /*
3701          * The state handling is done for consistency, but in the case of
3702          * exec() there is no way to prevent futher damage as the PID stays
3703          * the same. But for the unlikely and arguably buggy case that a
3704          * futex is held on exec(), this provides at least as much state
3705          * consistency protection which is possible.
3706          */
3707         futex_cleanup_begin(tsk);
3708         futex_cleanup(tsk);
3709         /*
3710          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3711          * exec a new binary.
3712          */
3713         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3714 }
3715
3716 void futex_exit_release(struct task_struct *tsk)
3717 {
3718         futex_cleanup_begin(tsk);
3719         futex_cleanup(tsk);
3720         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3721 }
3722
3723 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3724                 u32 __user *uaddr2, u32 val2, u32 val3)
3725 {
3726         int cmd = op & FUTEX_CMD_MASK;
3727         unsigned int flags = 0;
3728
3729         if (!(op & FUTEX_PRIVATE_FLAG))
3730                 flags |= FLAGS_SHARED;
3731
3732         if (op & FUTEX_CLOCK_REALTIME) {
3733                 flags |= FLAGS_CLOCKRT;
3734                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3735                         return -ENOSYS;
3736         }
3737
3738         switch (cmd) {
3739         case FUTEX_LOCK_PI:
3740         case FUTEX_UNLOCK_PI:
3741         case FUTEX_TRYLOCK_PI:
3742         case FUTEX_WAIT_REQUEUE_PI:
3743         case FUTEX_CMP_REQUEUE_PI:
3744                 if (!futex_cmpxchg_enabled)
3745                         return -ENOSYS;
3746         }
3747
3748         switch (cmd) {
3749         case FUTEX_WAIT:
3750                 val3 = FUTEX_BITSET_MATCH_ANY;
3751                 fallthrough;
3752         case FUTEX_WAIT_BITSET:
3753                 return futex_wait(uaddr, flags, val, timeout, val3);
3754         case FUTEX_WAKE:
3755                 val3 = FUTEX_BITSET_MATCH_ANY;
3756                 fallthrough;
3757         case FUTEX_WAKE_BITSET:
3758                 return futex_wake(uaddr, flags, val, val3);
3759         case FUTEX_REQUEUE:
3760                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3761         case FUTEX_CMP_REQUEUE:
3762                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3763         case FUTEX_WAKE_OP:
3764                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3765         case FUTEX_LOCK_PI:
3766                 return futex_lock_pi(uaddr, flags, timeout, 0);
3767         case FUTEX_UNLOCK_PI:
3768                 return futex_unlock_pi(uaddr, flags);
3769         case FUTEX_TRYLOCK_PI:
3770                 return futex_lock_pi(uaddr, flags, NULL, 1);
3771         case FUTEX_WAIT_REQUEUE_PI:
3772                 val3 = FUTEX_BITSET_MATCH_ANY;
3773                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3774                                              uaddr2);
3775         case FUTEX_CMP_REQUEUE_PI:
3776                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3777         }
3778         return -ENOSYS;
3779 }
3780
3781
3782 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3783                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3784                 u32, val3)
3785 {
3786         struct timespec64 ts;
3787         ktime_t t, *tp = NULL;
3788         u32 val2 = 0;
3789         int cmd = op & FUTEX_CMD_MASK;
3790
3791         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3792                       cmd == FUTEX_WAIT_BITSET ||
3793                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3794                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3795                         return -EFAULT;
3796                 if (get_timespec64(&ts, utime))
3797                         return -EFAULT;
3798                 if (!timespec64_valid(&ts))
3799                         return -EINVAL;
3800
3801                 t = timespec64_to_ktime(ts);
3802                 if (cmd == FUTEX_WAIT)
3803                         t = ktime_add_safe(ktime_get(), t);
3804                 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3805                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3806                 tp = &t;
3807         }
3808         /*
3809          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3810          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3811          */
3812         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3813             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3814                 val2 = (u32) (unsigned long) utime;
3815
3816         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3817 }
3818
3819 #ifdef CONFIG_COMPAT
3820 /*
3821  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3822  */
3823 static inline int
3824 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3825                    compat_uptr_t __user *head, unsigned int *pi)
3826 {
3827         if (get_user(*uentry, head))
3828                 return -EFAULT;
3829
3830         *entry = compat_ptr((*uentry) & ~1);
3831         *pi = (unsigned int)(*uentry) & 1;
3832
3833         return 0;
3834 }
3835
3836 static void __user *futex_uaddr(struct robust_list __user *entry,
3837                                 compat_long_t futex_offset)
3838 {
3839         compat_uptr_t base = ptr_to_compat(entry);
3840         void __user *uaddr = compat_ptr(base + futex_offset);
3841
3842         return uaddr;
3843 }
3844
3845 /*
3846  * Walk curr->robust_list (very carefully, it's a userspace list!)
3847  * and mark any locks found there dead, and notify any waiters.
3848  *
3849  * We silently return on any sign of list-walking problem.
3850  */
3851 static void compat_exit_robust_list(struct task_struct *curr)
3852 {
3853         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3854         struct robust_list __user *entry, *next_entry, *pending;
3855         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3856         unsigned int next_pi;
3857         compat_uptr_t uentry, next_uentry, upending;
3858         compat_long_t futex_offset;
3859         int rc;
3860
3861         if (!futex_cmpxchg_enabled)
3862                 return;
3863
3864         /*
3865          * Fetch the list head (which was registered earlier, via
3866          * sys_set_robust_list()):
3867          */
3868         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3869                 return;
3870         /*
3871          * Fetch the relative futex offset:
3872          */
3873         if (get_user(futex_offset, &head->futex_offset))
3874                 return;
3875         /*
3876          * Fetch any possibly pending lock-add first, and handle it
3877          * if it exists:
3878          */
3879         if (compat_fetch_robust_entry(&upending, &pending,
3880                                &head->list_op_pending, &pip))
3881                 return;
3882
3883         next_entry = NULL;      /* avoid warning with gcc */
3884         while (entry != (struct robust_list __user *) &head->list) {
3885                 /*
3886                  * Fetch the next entry in the list before calling
3887                  * handle_futex_death:
3888                  */
3889                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3890                         (compat_uptr_t __user *)&entry->next, &next_pi);
3891                 /*
3892                  * A pending lock might already be on the list, so
3893                  * dont process it twice:
3894                  */
3895                 if (entry != pending) {
3896                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3897
3898                         if (handle_futex_death(uaddr, curr, pi,
3899                                                HANDLE_DEATH_LIST))
3900                                 return;
3901                 }
3902                 if (rc)
3903                         return;
3904                 uentry = next_uentry;
3905                 entry = next_entry;
3906                 pi = next_pi;
3907                 /*
3908                  * Avoid excessively long or circular lists:
3909                  */
3910                 if (!--limit)
3911                         break;
3912
3913                 cond_resched();
3914         }
3915         if (pending) {
3916                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3917
3918                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3919         }
3920 }
3921
3922 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3923                 struct compat_robust_list_head __user *, head,
3924                 compat_size_t, len)
3925 {
3926         if (!futex_cmpxchg_enabled)
3927                 return -ENOSYS;
3928
3929         if (unlikely(len != sizeof(*head)))
3930                 return -EINVAL;
3931
3932         current->compat_robust_list = head;
3933
3934         return 0;
3935 }
3936
3937 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3938                         compat_uptr_t __user *, head_ptr,
3939                         compat_size_t __user *, len_ptr)
3940 {
3941         struct compat_robust_list_head __user *head;
3942         unsigned long ret;
3943         struct task_struct *p;
3944
3945         if (!futex_cmpxchg_enabled)
3946                 return -ENOSYS;
3947
3948         rcu_read_lock();
3949
3950         ret = -ESRCH;
3951         if (!pid)
3952                 p = current;
3953         else {
3954                 p = find_task_by_vpid(pid);
3955                 if (!p)
3956                         goto err_unlock;
3957         }
3958
3959         ret = -EPERM;
3960         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3961                 goto err_unlock;
3962
3963         head = p->compat_robust_list;
3964         rcu_read_unlock();
3965
3966         if (put_user(sizeof(*head), len_ptr))
3967                 return -EFAULT;
3968         return put_user(ptr_to_compat(head), head_ptr);
3969
3970 err_unlock:
3971         rcu_read_unlock();
3972
3973         return ret;
3974 }
3975 #endif /* CONFIG_COMPAT */
3976
3977 #ifdef CONFIG_COMPAT_32BIT_TIME
3978 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3979                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3980                 u32, val3)
3981 {
3982         struct timespec64 ts;
3983         ktime_t t, *tp = NULL;
3984         int val2 = 0;
3985         int cmd = op & FUTEX_CMD_MASK;
3986
3987         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3988                       cmd == FUTEX_WAIT_BITSET ||
3989                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3990                 if (get_old_timespec32(&ts, utime))
3991                         return -EFAULT;
3992                 if (!timespec64_valid(&ts))
3993                         return -EINVAL;
3994
3995                 t = timespec64_to_ktime(ts);
3996                 if (cmd == FUTEX_WAIT)
3997                         t = ktime_add_safe(ktime_get(), t);
3998                 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3999                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
4000                 tp = &t;
4001         }
4002         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4003             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4004                 val2 = (int) (unsigned long) utime;
4005
4006         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4007 }
4008 #endif /* CONFIG_COMPAT_32BIT_TIME */
4009
4010 static void __init futex_detect_cmpxchg(void)
4011 {
4012 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4013         u32 curval;
4014
4015         /*
4016          * This will fail and we want it. Some arch implementations do
4017          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4018          * functionality. We want to know that before we call in any
4019          * of the complex code paths. Also we want to prevent
4020          * registration of robust lists in that case. NULL is
4021          * guaranteed to fault and we get -EFAULT on functional
4022          * implementation, the non-functional ones will return
4023          * -ENOSYS.
4024          */
4025         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4026                 futex_cmpxchg_enabled = 1;
4027 #endif
4028 }
4029
4030 static int __init futex_init(void)
4031 {
4032         unsigned int futex_shift;
4033         unsigned long i;
4034
4035 #if CONFIG_BASE_SMALL
4036         futex_hashsize = 16;
4037 #else
4038         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4039 #endif
4040
4041         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4042                                                futex_hashsize, 0,
4043                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4044                                                &futex_shift, NULL,
4045                                                futex_hashsize, futex_hashsize);
4046         futex_hashsize = 1UL << futex_shift;
4047
4048         futex_detect_cmpxchg();
4049
4050         for (i = 0; i < futex_hashsize; i++) {
4051                 atomic_set(&futex_queues[i].waiters, 0);
4052                 plist_head_init(&futex_queues[i].chain);
4053                 spin_lock_init(&futex_queues[i].lock);
4054         }
4055
4056         return 0;
4057 }
4058 core_initcall(futex_init);