GNU Linux-libre 6.9.1-gnu
[releases.git] / kernel / futex / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/plist.h>
38 #include <linux/memblock.h>
39 #include <linux/fault-inject.h>
40 #include <linux/slab.h>
41
42 #include "futex.h"
43 #include "../locking/rtmutex_common.h"
44
45 /*
46  * The base of the bucket array and its size are always used together
47  * (after initialization only in futex_hash()), so ensure that they
48  * reside in the same cacheline.
49  */
50 static struct {
51         struct futex_hash_bucket *queues;
52         unsigned long            hashsize;
53 } __futex_data __read_mostly __aligned(2*sizeof(long));
54 #define futex_queues   (__futex_data.queues)
55 #define futex_hashsize (__futex_data.hashsize)
56
57
58 /*
59  * Fault injections for futexes.
60  */
61 #ifdef CONFIG_FAIL_FUTEX
62
63 static struct {
64         struct fault_attr attr;
65
66         bool ignore_private;
67 } fail_futex = {
68         .attr = FAULT_ATTR_INITIALIZER,
69         .ignore_private = false,
70 };
71
72 static int __init setup_fail_futex(char *str)
73 {
74         return setup_fault_attr(&fail_futex.attr, str);
75 }
76 __setup("fail_futex=", setup_fail_futex);
77
78 bool should_fail_futex(bool fshared)
79 {
80         if (fail_futex.ignore_private && !fshared)
81                 return false;
82
83         return should_fail(&fail_futex.attr, 1);
84 }
85
86 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
87
88 static int __init fail_futex_debugfs(void)
89 {
90         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
91         struct dentry *dir;
92
93         dir = fault_create_debugfs_attr("fail_futex", NULL,
94                                         &fail_futex.attr);
95         if (IS_ERR(dir))
96                 return PTR_ERR(dir);
97
98         debugfs_create_bool("ignore-private", mode, dir,
99                             &fail_futex.ignore_private);
100         return 0;
101 }
102
103 late_initcall(fail_futex_debugfs);
104
105 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
106
107 #endif /* CONFIG_FAIL_FUTEX */
108
109 /**
110  * futex_hash - Return the hash bucket in the global hash
111  * @key:        Pointer to the futex key for which the hash is calculated
112  *
113  * We hash on the keys returned from get_futex_key (see below) and return the
114  * corresponding hash bucket in the global hash.
115  */
116 struct futex_hash_bucket *futex_hash(union futex_key *key)
117 {
118         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
119                           key->both.offset);
120
121         return &futex_queues[hash & (futex_hashsize - 1)];
122 }
123
124
125 /**
126  * futex_setup_timer - set up the sleeping hrtimer.
127  * @time:       ptr to the given timeout value
128  * @timeout:    the hrtimer_sleeper structure to be set up
129  * @flags:      futex flags
130  * @range_ns:   optional range in ns
131  *
132  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
133  *         value given
134  */
135 struct hrtimer_sleeper *
136 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
137                   int flags, u64 range_ns)
138 {
139         if (!time)
140                 return NULL;
141
142         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
143                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
144                                       HRTIMER_MODE_ABS);
145         /*
146          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
147          * effectively the same as calling hrtimer_set_expires().
148          */
149         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
150
151         return timeout;
152 }
153
154 /*
155  * Generate a machine wide unique identifier for this inode.
156  *
157  * This relies on u64 not wrapping in the life-time of the machine; which with
158  * 1ns resolution means almost 585 years.
159  *
160  * This further relies on the fact that a well formed program will not unmap
161  * the file while it has a (shared) futex waiting on it. This mapping will have
162  * a file reference which pins the mount and inode.
163  *
164  * If for some reason an inode gets evicted and read back in again, it will get
165  * a new sequence number and will _NOT_ match, even though it is the exact same
166  * file.
167  *
168  * It is important that futex_match() will never have a false-positive, esp.
169  * for PI futexes that can mess up the state. The above argues that false-negatives
170  * are only possible for malformed programs.
171  */
172 static u64 get_inode_sequence_number(struct inode *inode)
173 {
174         static atomic64_t i_seq;
175         u64 old;
176
177         /* Does the inode already have a sequence number? */
178         old = atomic64_read(&inode->i_sequence);
179         if (likely(old))
180                 return old;
181
182         for (;;) {
183                 u64 new = atomic64_add_return(1, &i_seq);
184                 if (WARN_ON_ONCE(!new))
185                         continue;
186
187                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
188                 if (old)
189                         return old;
190                 return new;
191         }
192 }
193
194 /**
195  * get_futex_key() - Get parameters which are the keys for a futex
196  * @uaddr:      virtual address of the futex
197  * @flags:      FLAGS_*
198  * @key:        address where result is stored.
199  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
200  *              FUTEX_WRITE)
201  *
202  * Return: a negative error code or 0
203  *
204  * The key words are stored in @key on success.
205  *
206  * For shared mappings (when @fshared), the key is:
207  *
208  *   ( inode->i_sequence, page->index, offset_within_page )
209  *
210  * [ also see get_inode_sequence_number() ]
211  *
212  * For private mappings (or when !@fshared), the key is:
213  *
214  *   ( current->mm, address, 0 )
215  *
216  * This allows (cross process, where applicable) identification of the futex
217  * without keeping the page pinned for the duration of the FUTEX_WAIT.
218  *
219  * lock_page() might sleep, the caller should not hold a spinlock.
220  */
221 int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
222                   enum futex_access rw)
223 {
224         unsigned long address = (unsigned long)uaddr;
225         struct mm_struct *mm = current->mm;
226         struct page *page;
227         struct folio *folio;
228         struct address_space *mapping;
229         int err, ro = 0;
230         bool fshared;
231
232         fshared = flags & FLAGS_SHARED;
233
234         /*
235          * The futex address must be "naturally" aligned.
236          */
237         key->both.offset = address % PAGE_SIZE;
238         if (unlikely((address % sizeof(u32)) != 0))
239                 return -EINVAL;
240         address -= key->both.offset;
241
242         if (unlikely(!access_ok(uaddr, sizeof(u32))))
243                 return -EFAULT;
244
245         if (unlikely(should_fail_futex(fshared)))
246                 return -EFAULT;
247
248         /*
249          * PROCESS_PRIVATE futexes are fast.
250          * As the mm cannot disappear under us and the 'key' only needs
251          * virtual address, we dont even have to find the underlying vma.
252          * Note : We do have to check 'uaddr' is a valid user address,
253          *        but access_ok() should be faster than find_vma()
254          */
255         if (!fshared) {
256                 /*
257                  * On no-MMU, shared futexes are treated as private, therefore
258                  * we must not include the current process in the key. Since
259                  * there is only one address space, the address is a unique key
260                  * on its own.
261                  */
262                 if (IS_ENABLED(CONFIG_MMU))
263                         key->private.mm = mm;
264                 else
265                         key->private.mm = NULL;
266
267                 key->private.address = address;
268                 return 0;
269         }
270
271 again:
272         /* Ignore any VERIFY_READ mapping (futex common case) */
273         if (unlikely(should_fail_futex(true)))
274                 return -EFAULT;
275
276         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
277         /*
278          * If write access is not required (eg. FUTEX_WAIT), try
279          * and get read-only access.
280          */
281         if (err == -EFAULT && rw == FUTEX_READ) {
282                 err = get_user_pages_fast(address, 1, 0, &page);
283                 ro = 1;
284         }
285         if (err < 0)
286                 return err;
287         else
288                 err = 0;
289
290         /*
291          * The treatment of mapping from this point on is critical. The folio
292          * lock protects many things but in this context the folio lock
293          * stabilizes mapping, prevents inode freeing in the shared
294          * file-backed region case and guards against movement to swap cache.
295          *
296          * Strictly speaking the folio lock is not needed in all cases being
297          * considered here and folio lock forces unnecessarily serialization.
298          * From this point on, mapping will be re-verified if necessary and
299          * folio lock will be acquired only if it is unavoidable
300          *
301          * Mapping checks require the folio so it is looked up now. For
302          * anonymous pages, it does not matter if the folio is split
303          * in the future as the key is based on the address. For
304          * filesystem-backed pages, the precise page is required as the
305          * index of the page determines the key.
306          */
307         folio = page_folio(page);
308         mapping = READ_ONCE(folio->mapping);
309
310         /*
311          * If folio->mapping is NULL, then it cannot be an anonymous
312          * page; but it might be the ZERO_PAGE or in the gate area or
313          * in a special mapping (all cases which we are happy to fail);
314          * or it may have been a good file page when get_user_pages_fast
315          * found it, but truncated or holepunched or subjected to
316          * invalidate_complete_page2 before we got the folio lock (also
317          * cases which we are happy to fail).  And we hold a reference,
318          * so refcount care in invalidate_inode_page's remove_mapping
319          * prevents drop_caches from setting mapping to NULL beneath us.
320          *
321          * The case we do have to guard against is when memory pressure made
322          * shmem_writepage move it from filecache to swapcache beneath us:
323          * an unlikely race, but we do need to retry for folio->mapping.
324          */
325         if (unlikely(!mapping)) {
326                 int shmem_swizzled;
327
328                 /*
329                  * Folio lock is required to identify which special case above
330                  * applies. If this is really a shmem page then the folio lock
331                  * will prevent unexpected transitions.
332                  */
333                 folio_lock(folio);
334                 shmem_swizzled = folio_test_swapcache(folio) || folio->mapping;
335                 folio_unlock(folio);
336                 folio_put(folio);
337
338                 if (shmem_swizzled)
339                         goto again;
340
341                 return -EFAULT;
342         }
343
344         /*
345          * Private mappings are handled in a simple way.
346          *
347          * If the futex key is stored in anonymous memory, then the associated
348          * object is the mm which is implicitly pinned by the calling process.
349          *
350          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
351          * it's a read-only handle, it's expected that futexes attach to
352          * the object not the particular process.
353          */
354         if (folio_test_anon(folio)) {
355                 /*
356                  * A RO anonymous page will never change and thus doesn't make
357                  * sense for futex operations.
358                  */
359                 if (unlikely(should_fail_futex(true)) || ro) {
360                         err = -EFAULT;
361                         goto out;
362                 }
363
364                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
365                 key->private.mm = mm;
366                 key->private.address = address;
367
368         } else {
369                 struct inode *inode;
370
371                 /*
372                  * The associated futex object in this case is the inode and
373                  * the folio->mapping must be traversed. Ordinarily this should
374                  * be stabilised under folio lock but it's not strictly
375                  * necessary in this case as we just want to pin the inode, not
376                  * update i_pages or anything like that.
377                  *
378                  * The RCU read lock is taken as the inode is finally freed
379                  * under RCU. If the mapping still matches expectations then the
380                  * mapping->host can be safely accessed as being a valid inode.
381                  */
382                 rcu_read_lock();
383
384                 if (READ_ONCE(folio->mapping) != mapping) {
385                         rcu_read_unlock();
386                         folio_put(folio);
387
388                         goto again;
389                 }
390
391                 inode = READ_ONCE(mapping->host);
392                 if (!inode) {
393                         rcu_read_unlock();
394                         folio_put(folio);
395
396                         goto again;
397                 }
398
399                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
400                 key->shared.i_seq = get_inode_sequence_number(inode);
401                 key->shared.pgoff = folio->index + folio_page_idx(folio, page);
402                 rcu_read_unlock();
403         }
404
405 out:
406         folio_put(folio);
407         return err;
408 }
409
410 /**
411  * fault_in_user_writeable() - Fault in user address and verify RW access
412  * @uaddr:      pointer to faulting user space address
413  *
414  * Slow path to fixup the fault we just took in the atomic write
415  * access to @uaddr.
416  *
417  * We have no generic implementation of a non-destructive write to the
418  * user address. We know that we faulted in the atomic pagefault
419  * disabled section so we can as well avoid the #PF overhead by
420  * calling get_user_pages() right away.
421  */
422 int fault_in_user_writeable(u32 __user *uaddr)
423 {
424         struct mm_struct *mm = current->mm;
425         int ret;
426
427         mmap_read_lock(mm);
428         ret = fixup_user_fault(mm, (unsigned long)uaddr,
429                                FAULT_FLAG_WRITE, NULL);
430         mmap_read_unlock(mm);
431
432         return ret < 0 ? ret : 0;
433 }
434
435 /**
436  * futex_top_waiter() - Return the highest priority waiter on a futex
437  * @hb:         the hash bucket the futex_q's reside in
438  * @key:        the futex key (to distinguish it from other futex futex_q's)
439  *
440  * Must be called with the hb lock held.
441  */
442 struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
443 {
444         struct futex_q *this;
445
446         plist_for_each_entry(this, &hb->chain, list) {
447                 if (futex_match(&this->key, key))
448                         return this;
449         }
450         return NULL;
451 }
452
453 int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
454 {
455         int ret;
456
457         pagefault_disable();
458         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
459         pagefault_enable();
460
461         return ret;
462 }
463
464 int futex_get_value_locked(u32 *dest, u32 __user *from)
465 {
466         int ret;
467
468         pagefault_disable();
469         ret = __get_user(*dest, from);
470         pagefault_enable();
471
472         return ret ? -EFAULT : 0;
473 }
474
475 /**
476  * wait_for_owner_exiting - Block until the owner has exited
477  * @ret: owner's current futex lock status
478  * @exiting:    Pointer to the exiting task
479  *
480  * Caller must hold a refcount on @exiting.
481  */
482 void wait_for_owner_exiting(int ret, struct task_struct *exiting)
483 {
484         if (ret != -EBUSY) {
485                 WARN_ON_ONCE(exiting);
486                 return;
487         }
488
489         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
490                 return;
491
492         mutex_lock(&exiting->futex_exit_mutex);
493         /*
494          * No point in doing state checking here. If the waiter got here
495          * while the task was in exec()->exec_futex_release() then it can
496          * have any FUTEX_STATE_* value when the waiter has acquired the
497          * mutex. OK, if running, EXITING or DEAD if it reached exit()
498          * already. Highly unlikely and not a problem. Just one more round
499          * through the futex maze.
500          */
501         mutex_unlock(&exiting->futex_exit_mutex);
502
503         put_task_struct(exiting);
504 }
505
506 /**
507  * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
508  * @q:  The futex_q to unqueue
509  *
510  * The q->lock_ptr must not be NULL and must be held by the caller.
511  */
512 void __futex_unqueue(struct futex_q *q)
513 {
514         struct futex_hash_bucket *hb;
515
516         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
517                 return;
518         lockdep_assert_held(q->lock_ptr);
519
520         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
521         plist_del(&q->list, &hb->chain);
522         futex_hb_waiters_dec(hb);
523 }
524
525 /* The key must be already stored in q->key. */
526 struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
527         __acquires(&hb->lock)
528 {
529         struct futex_hash_bucket *hb;
530
531         hb = futex_hash(&q->key);
532
533         /*
534          * Increment the counter before taking the lock so that
535          * a potential waker won't miss a to-be-slept task that is
536          * waiting for the spinlock. This is safe as all futex_q_lock()
537          * users end up calling futex_queue(). Similarly, for housekeeping,
538          * decrement the counter at futex_q_unlock() when some error has
539          * occurred and we don't end up adding the task to the list.
540          */
541         futex_hb_waiters_inc(hb); /* implies smp_mb(); (A) */
542
543         q->lock_ptr = &hb->lock;
544
545         spin_lock(&hb->lock);
546         return hb;
547 }
548
549 void futex_q_unlock(struct futex_hash_bucket *hb)
550         __releases(&hb->lock)
551 {
552         spin_unlock(&hb->lock);
553         futex_hb_waiters_dec(hb);
554 }
555
556 void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
557 {
558         int prio;
559
560         /*
561          * The priority used to register this element is
562          * - either the real thread-priority for the real-time threads
563          * (i.e. threads with a priority lower than MAX_RT_PRIO)
564          * - or MAX_RT_PRIO for non-RT threads.
565          * Thus, all RT-threads are woken first in priority order, and
566          * the others are woken last, in FIFO order.
567          */
568         prio = min(current->normal_prio, MAX_RT_PRIO);
569
570         plist_node_init(&q->list, prio);
571         plist_add(&q->list, &hb->chain);
572         q->task = current;
573 }
574
575 /**
576  * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
577  * @q:  The futex_q to unqueue
578  *
579  * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
580  * be paired with exactly one earlier call to futex_queue().
581  *
582  * Return:
583  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
584  *  - 0 - if the futex_q was already removed by the waking thread
585  */
586 int futex_unqueue(struct futex_q *q)
587 {
588         spinlock_t *lock_ptr;
589         int ret = 0;
590
591         /* In the common case we don't take the spinlock, which is nice. */
592 retry:
593         /*
594          * q->lock_ptr can change between this read and the following spin_lock.
595          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
596          * optimizing lock_ptr out of the logic below.
597          */
598         lock_ptr = READ_ONCE(q->lock_ptr);
599         if (lock_ptr != NULL) {
600                 spin_lock(lock_ptr);
601                 /*
602                  * q->lock_ptr can change between reading it and
603                  * spin_lock(), causing us to take the wrong lock.  This
604                  * corrects the race condition.
605                  *
606                  * Reasoning goes like this: if we have the wrong lock,
607                  * q->lock_ptr must have changed (maybe several times)
608                  * between reading it and the spin_lock().  It can
609                  * change again after the spin_lock() but only if it was
610                  * already changed before the spin_lock().  It cannot,
611                  * however, change back to the original value.  Therefore
612                  * we can detect whether we acquired the correct lock.
613                  */
614                 if (unlikely(lock_ptr != q->lock_ptr)) {
615                         spin_unlock(lock_ptr);
616                         goto retry;
617                 }
618                 __futex_unqueue(q);
619
620                 BUG_ON(q->pi_state);
621
622                 spin_unlock(lock_ptr);
623                 ret = 1;
624         }
625
626         return ret;
627 }
628
629 /*
630  * PI futexes can not be requeued and must remove themselves from the hash
631  * bucket. The hash bucket lock (i.e. lock_ptr) is held.
632  */
633 void futex_unqueue_pi(struct futex_q *q)
634 {
635         /*
636          * If the lock was not acquired (due to timeout or signal) then the
637          * rt_waiter is removed before futex_q is. If this is observed by
638          * an unlocker after dropping the rtmutex wait lock and before
639          * acquiring the hash bucket lock, then the unlocker dequeues the
640          * futex_q from the hash bucket list to guarantee consistent state
641          * vs. userspace. Therefore the dequeue here must be conditional.
642          */
643         if (!plist_node_empty(&q->list))
644                 __futex_unqueue(q);
645
646         BUG_ON(!q->pi_state);
647         put_pi_state(q->pi_state);
648         q->pi_state = NULL;
649 }
650
651 /* Constants for the pending_op argument of handle_futex_death */
652 #define HANDLE_DEATH_PENDING    true
653 #define HANDLE_DEATH_LIST       false
654
655 /*
656  * Process a futex-list entry, check whether it's owned by the
657  * dying task, and do notification if so:
658  */
659 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
660                               bool pi, bool pending_op)
661 {
662         u32 uval, nval, mval;
663         pid_t owner;
664         int err;
665
666         /* Futex address must be 32bit aligned */
667         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
668                 return -1;
669
670 retry:
671         if (get_user(uval, uaddr))
672                 return -1;
673
674         /*
675          * Special case for regular (non PI) futexes. The unlock path in
676          * user space has two race scenarios:
677          *
678          * 1. The unlock path releases the user space futex value and
679          *    before it can execute the futex() syscall to wake up
680          *    waiters it is killed.
681          *
682          * 2. A woken up waiter is killed before it can acquire the
683          *    futex in user space.
684          *
685          * In the second case, the wake up notification could be generated
686          * by the unlock path in user space after setting the futex value
687          * to zero or by the kernel after setting the OWNER_DIED bit below.
688          *
689          * In both cases the TID validation below prevents a wakeup of
690          * potential waiters which can cause these waiters to block
691          * forever.
692          *
693          * In both cases the following conditions are met:
694          *
695          *      1) task->robust_list->list_op_pending != NULL
696          *         @pending_op == true
697          *      2) The owner part of user space futex value == 0
698          *      3) Regular futex: @pi == false
699          *
700          * If these conditions are met, it is safe to attempt waking up a
701          * potential waiter without touching the user space futex value and
702          * trying to set the OWNER_DIED bit. If the futex value is zero,
703          * the rest of the user space mutex state is consistent, so a woken
704          * waiter will just take over the uncontended futex. Setting the
705          * OWNER_DIED bit would create inconsistent state and malfunction
706          * of the user space owner died handling. Otherwise, the OWNER_DIED
707          * bit is already set, and the woken waiter is expected to deal with
708          * this.
709          */
710         owner = uval & FUTEX_TID_MASK;
711
712         if (pending_op && !pi && !owner) {
713                 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
714                            FUTEX_BITSET_MATCH_ANY);
715                 return 0;
716         }
717
718         if (owner != task_pid_vnr(curr))
719                 return 0;
720
721         /*
722          * Ok, this dying thread is truly holding a futex
723          * of interest. Set the OWNER_DIED bit atomically
724          * via cmpxchg, and if the value had FUTEX_WAITERS
725          * set, wake up a waiter (if any). (We have to do a
726          * futex_wake() even if OWNER_DIED is already set -
727          * to handle the rare but possible case of recursive
728          * thread-death.) The rest of the cleanup is done in
729          * userspace.
730          */
731         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
732
733         /*
734          * We are not holding a lock here, but we want to have
735          * the pagefault_disable/enable() protection because
736          * we want to handle the fault gracefully. If the
737          * access fails we try to fault in the futex with R/W
738          * verification via get_user_pages. get_user() above
739          * does not guarantee R/W access. If that fails we
740          * give up and leave the futex locked.
741          */
742         if ((err = futex_cmpxchg_value_locked(&nval, uaddr, uval, mval))) {
743                 switch (err) {
744                 case -EFAULT:
745                         if (fault_in_user_writeable(uaddr))
746                                 return -1;
747                         goto retry;
748
749                 case -EAGAIN:
750                         cond_resched();
751                         goto retry;
752
753                 default:
754                         WARN_ON_ONCE(1);
755                         return err;
756                 }
757         }
758
759         if (nval != uval)
760                 goto retry;
761
762         /*
763          * Wake robust non-PI futexes here. The wakeup of
764          * PI futexes happens in exit_pi_state():
765          */
766         if (!pi && (uval & FUTEX_WAITERS)) {
767                 futex_wake(uaddr, FLAGS_SIZE_32 | FLAGS_SHARED, 1,
768                            FUTEX_BITSET_MATCH_ANY);
769         }
770
771         return 0;
772 }
773
774 /*
775  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
776  */
777 static inline int fetch_robust_entry(struct robust_list __user **entry,
778                                      struct robust_list __user * __user *head,
779                                      unsigned int *pi)
780 {
781         unsigned long uentry;
782
783         if (get_user(uentry, (unsigned long __user *)head))
784                 return -EFAULT;
785
786         *entry = (void __user *)(uentry & ~1UL);
787         *pi = uentry & 1;
788
789         return 0;
790 }
791
792 /*
793  * Walk curr->robust_list (very carefully, it's a userspace list!)
794  * and mark any locks found there dead, and notify any waiters.
795  *
796  * We silently return on any sign of list-walking problem.
797  */
798 static void exit_robust_list(struct task_struct *curr)
799 {
800         struct robust_list_head __user *head = curr->robust_list;
801         struct robust_list __user *entry, *next_entry, *pending;
802         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
803         unsigned int next_pi;
804         unsigned long futex_offset;
805         int rc;
806
807         /*
808          * Fetch the list head (which was registered earlier, via
809          * sys_set_robust_list()):
810          */
811         if (fetch_robust_entry(&entry, &head->list.next, &pi))
812                 return;
813         /*
814          * Fetch the relative futex offset:
815          */
816         if (get_user(futex_offset, &head->futex_offset))
817                 return;
818         /*
819          * Fetch any possibly pending lock-add first, and handle it
820          * if it exists:
821          */
822         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
823                 return;
824
825         next_entry = NULL;      /* avoid warning with gcc */
826         while (entry != &head->list) {
827                 /*
828                  * Fetch the next entry in the list before calling
829                  * handle_futex_death:
830                  */
831                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
832                 /*
833                  * A pending lock might already be on the list, so
834                  * don't process it twice:
835                  */
836                 if (entry != pending) {
837                         if (handle_futex_death((void __user *)entry + futex_offset,
838                                                 curr, pi, HANDLE_DEATH_LIST))
839                                 return;
840                 }
841                 if (rc)
842                         return;
843                 entry = next_entry;
844                 pi = next_pi;
845                 /*
846                  * Avoid excessively long or circular lists:
847                  */
848                 if (!--limit)
849                         break;
850
851                 cond_resched();
852         }
853
854         if (pending) {
855                 handle_futex_death((void __user *)pending + futex_offset,
856                                    curr, pip, HANDLE_DEATH_PENDING);
857         }
858 }
859
860 #ifdef CONFIG_COMPAT
861 static void __user *futex_uaddr(struct robust_list __user *entry,
862                                 compat_long_t futex_offset)
863 {
864         compat_uptr_t base = ptr_to_compat(entry);
865         void __user *uaddr = compat_ptr(base + futex_offset);
866
867         return uaddr;
868 }
869
870 /*
871  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
872  */
873 static inline int
874 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
875                    compat_uptr_t __user *head, unsigned int *pi)
876 {
877         if (get_user(*uentry, head))
878                 return -EFAULT;
879
880         *entry = compat_ptr((*uentry) & ~1);
881         *pi = (unsigned int)(*uentry) & 1;
882
883         return 0;
884 }
885
886 /*
887  * Walk curr->robust_list (very carefully, it's a userspace list!)
888  * and mark any locks found there dead, and notify any waiters.
889  *
890  * We silently return on any sign of list-walking problem.
891  */
892 static void compat_exit_robust_list(struct task_struct *curr)
893 {
894         struct compat_robust_list_head __user *head = curr->compat_robust_list;
895         struct robust_list __user *entry, *next_entry, *pending;
896         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
897         unsigned int next_pi;
898         compat_uptr_t uentry, next_uentry, upending;
899         compat_long_t futex_offset;
900         int rc;
901
902         /*
903          * Fetch the list head (which was registered earlier, via
904          * sys_set_robust_list()):
905          */
906         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
907                 return;
908         /*
909          * Fetch the relative futex offset:
910          */
911         if (get_user(futex_offset, &head->futex_offset))
912                 return;
913         /*
914          * Fetch any possibly pending lock-add first, and handle it
915          * if it exists:
916          */
917         if (compat_fetch_robust_entry(&upending, &pending,
918                                &head->list_op_pending, &pip))
919                 return;
920
921         next_entry = NULL;      /* avoid warning with gcc */
922         while (entry != (struct robust_list __user *) &head->list) {
923                 /*
924                  * Fetch the next entry in the list before calling
925                  * handle_futex_death:
926                  */
927                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
928                         (compat_uptr_t __user *)&entry->next, &next_pi);
929                 /*
930                  * A pending lock might already be on the list, so
931                  * dont process it twice:
932                  */
933                 if (entry != pending) {
934                         void __user *uaddr = futex_uaddr(entry, futex_offset);
935
936                         if (handle_futex_death(uaddr, curr, pi,
937                                                HANDLE_DEATH_LIST))
938                                 return;
939                 }
940                 if (rc)
941                         return;
942                 uentry = next_uentry;
943                 entry = next_entry;
944                 pi = next_pi;
945                 /*
946                  * Avoid excessively long or circular lists:
947                  */
948                 if (!--limit)
949                         break;
950
951                 cond_resched();
952         }
953         if (pending) {
954                 void __user *uaddr = futex_uaddr(pending, futex_offset);
955
956                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
957         }
958 }
959 #endif
960
961 #ifdef CONFIG_FUTEX_PI
962
963 /*
964  * This task is holding PI mutexes at exit time => bad.
965  * Kernel cleans up PI-state, but userspace is likely hosed.
966  * (Robust-futex cleanup is separate and might save the day for userspace.)
967  */
968 static void exit_pi_state_list(struct task_struct *curr)
969 {
970         struct list_head *next, *head = &curr->pi_state_list;
971         struct futex_pi_state *pi_state;
972         struct futex_hash_bucket *hb;
973         union futex_key key = FUTEX_KEY_INIT;
974
975         /*
976          * We are a ZOMBIE and nobody can enqueue itself on
977          * pi_state_list anymore, but we have to be careful
978          * versus waiters unqueueing themselves:
979          */
980         raw_spin_lock_irq(&curr->pi_lock);
981         while (!list_empty(head)) {
982                 next = head->next;
983                 pi_state = list_entry(next, struct futex_pi_state, list);
984                 key = pi_state->key;
985                 hb = futex_hash(&key);
986
987                 /*
988                  * We can race against put_pi_state() removing itself from the
989                  * list (a waiter going away). put_pi_state() will first
990                  * decrement the reference count and then modify the list, so
991                  * its possible to see the list entry but fail this reference
992                  * acquire.
993                  *
994                  * In that case; drop the locks to let put_pi_state() make
995                  * progress and retry the loop.
996                  */
997                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
998                         raw_spin_unlock_irq(&curr->pi_lock);
999                         cpu_relax();
1000                         raw_spin_lock_irq(&curr->pi_lock);
1001                         continue;
1002                 }
1003                 raw_spin_unlock_irq(&curr->pi_lock);
1004
1005                 spin_lock(&hb->lock);
1006                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1007                 raw_spin_lock(&curr->pi_lock);
1008                 /*
1009                  * We dropped the pi-lock, so re-check whether this
1010                  * task still owns the PI-state:
1011                  */
1012                 if (head->next != next) {
1013                         /* retain curr->pi_lock for the loop invariant */
1014                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1015                         spin_unlock(&hb->lock);
1016                         put_pi_state(pi_state);
1017                         continue;
1018                 }
1019
1020                 WARN_ON(pi_state->owner != curr);
1021                 WARN_ON(list_empty(&pi_state->list));
1022                 list_del_init(&pi_state->list);
1023                 pi_state->owner = NULL;
1024
1025                 raw_spin_unlock(&curr->pi_lock);
1026                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1027                 spin_unlock(&hb->lock);
1028
1029                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
1030                 put_pi_state(pi_state);
1031
1032                 raw_spin_lock_irq(&curr->pi_lock);
1033         }
1034         raw_spin_unlock_irq(&curr->pi_lock);
1035 }
1036 #else
1037 static inline void exit_pi_state_list(struct task_struct *curr) { }
1038 #endif
1039
1040 static void futex_cleanup(struct task_struct *tsk)
1041 {
1042         if (unlikely(tsk->robust_list)) {
1043                 exit_robust_list(tsk);
1044                 tsk->robust_list = NULL;
1045         }
1046
1047 #ifdef CONFIG_COMPAT
1048         if (unlikely(tsk->compat_robust_list)) {
1049                 compat_exit_robust_list(tsk);
1050                 tsk->compat_robust_list = NULL;
1051         }
1052 #endif
1053
1054         if (unlikely(!list_empty(&tsk->pi_state_list)))
1055                 exit_pi_state_list(tsk);
1056 }
1057
1058 /**
1059  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
1060  * @tsk:        task to set the state on
1061  *
1062  * Set the futex exit state of the task lockless. The futex waiter code
1063  * observes that state when a task is exiting and loops until the task has
1064  * actually finished the futex cleanup. The worst case for this is that the
1065  * waiter runs through the wait loop until the state becomes visible.
1066  *
1067  * This is called from the recursive fault handling path in make_task_dead().
1068  *
1069  * This is best effort. Either the futex exit code has run already or
1070  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
1071  * take it over. If not, the problem is pushed back to user space. If the
1072  * futex exit code did not run yet, then an already queued waiter might
1073  * block forever, but there is nothing which can be done about that.
1074  */
1075 void futex_exit_recursive(struct task_struct *tsk)
1076 {
1077         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
1078         if (tsk->futex_state == FUTEX_STATE_EXITING)
1079                 mutex_unlock(&tsk->futex_exit_mutex);
1080         tsk->futex_state = FUTEX_STATE_DEAD;
1081 }
1082
1083 static void futex_cleanup_begin(struct task_struct *tsk)
1084 {
1085         /*
1086          * Prevent various race issues against a concurrent incoming waiter
1087          * including live locks by forcing the waiter to block on
1088          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
1089          * attach_to_pi_owner().
1090          */
1091         mutex_lock(&tsk->futex_exit_mutex);
1092
1093         /*
1094          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
1095          *
1096          * This ensures that all subsequent checks of tsk->futex_state in
1097          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
1098          * tsk->pi_lock held.
1099          *
1100          * It guarantees also that a pi_state which was queued right before
1101          * the state change under tsk->pi_lock by a concurrent waiter must
1102          * be observed in exit_pi_state_list().
1103          */
1104         raw_spin_lock_irq(&tsk->pi_lock);
1105         tsk->futex_state = FUTEX_STATE_EXITING;
1106         raw_spin_unlock_irq(&tsk->pi_lock);
1107 }
1108
1109 static void futex_cleanup_end(struct task_struct *tsk, int state)
1110 {
1111         /*
1112          * Lockless store. The only side effect is that an observer might
1113          * take another loop until it becomes visible.
1114          */
1115         tsk->futex_state = state;
1116         /*
1117          * Drop the exit protection. This unblocks waiters which observed
1118          * FUTEX_STATE_EXITING to reevaluate the state.
1119          */
1120         mutex_unlock(&tsk->futex_exit_mutex);
1121 }
1122
1123 void futex_exec_release(struct task_struct *tsk)
1124 {
1125         /*
1126          * The state handling is done for consistency, but in the case of
1127          * exec() there is no way to prevent further damage as the PID stays
1128          * the same. But for the unlikely and arguably buggy case that a
1129          * futex is held on exec(), this provides at least as much state
1130          * consistency protection which is possible.
1131          */
1132         futex_cleanup_begin(tsk);
1133         futex_cleanup(tsk);
1134         /*
1135          * Reset the state to FUTEX_STATE_OK. The task is alive and about
1136          * exec a new binary.
1137          */
1138         futex_cleanup_end(tsk, FUTEX_STATE_OK);
1139 }
1140
1141 void futex_exit_release(struct task_struct *tsk)
1142 {
1143         futex_cleanup_begin(tsk);
1144         futex_cleanup(tsk);
1145         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
1146 }
1147
1148 static int __init futex_init(void)
1149 {
1150         unsigned int futex_shift;
1151         unsigned long i;
1152
1153 #if CONFIG_BASE_SMALL
1154         futex_hashsize = 16;
1155 #else
1156         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
1157 #endif
1158
1159         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
1160                                                futex_hashsize, 0, 0,
1161                                                &futex_shift, NULL,
1162                                                futex_hashsize, futex_hashsize);
1163         futex_hashsize = 1UL << futex_shift;
1164
1165         for (i = 0; i < futex_hashsize; i++) {
1166                 atomic_set(&futex_queues[i].waiters, 0);
1167                 plist_head_init(&futex_queues[i].chain);
1168                 spin_lock_init(&futex_queues[i].lock);
1169         }
1170
1171         return 0;
1172 }
1173 core_initcall(futex_init);