GNU Linux-libre 5.15.137-gnu
[releases.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72
73 /*
74  * The default value should be high enough to not crash a system that randomly
75  * crashes its kernel from time to time, but low enough to at least not permit
76  * overflowing 32-bit refcounts or the ldsem writer count.
77  */
78 static unsigned int oops_limit = 10000;
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_exit_table[] = {
82         {
83                 .procname       = "oops_limit",
84                 .data           = &oops_limit,
85                 .maxlen         = sizeof(oops_limit),
86                 .mode           = 0644,
87                 .proc_handler   = proc_douintvec,
88         },
89         { }
90 };
91
92 static __init int kernel_exit_sysctls_init(void)
93 {
94         register_sysctl_init("kernel", kern_exit_table);
95         return 0;
96 }
97 late_initcall(kernel_exit_sysctls_init);
98 #endif
99
100 static atomic_t oops_count = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SYSFS
103 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
104                                char *page)
105 {
106         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
107 }
108
109 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
110
111 static __init int kernel_exit_sysfs_init(void)
112 {
113         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
114         return 0;
115 }
116 late_initcall(kernel_exit_sysfs_init);
117 #endif
118
119 static void __unhash_process(struct task_struct *p, bool group_dead)
120 {
121         nr_threads--;
122         detach_pid(p, PIDTYPE_PID);
123         if (group_dead) {
124                 detach_pid(p, PIDTYPE_TGID);
125                 detach_pid(p, PIDTYPE_PGID);
126                 detach_pid(p, PIDTYPE_SID);
127
128                 list_del_rcu(&p->tasks);
129                 list_del_init(&p->sibling);
130                 __this_cpu_dec(process_counts);
131         }
132         list_del_rcu(&p->thread_group);
133         list_del_rcu(&p->thread_node);
134 }
135
136 /*
137  * This function expects the tasklist_lock write-locked.
138  */
139 static void __exit_signal(struct task_struct *tsk)
140 {
141         struct signal_struct *sig = tsk->signal;
142         bool group_dead = thread_group_leader(tsk);
143         struct sighand_struct *sighand;
144         struct tty_struct *tty;
145         u64 utime, stime;
146
147         sighand = rcu_dereference_check(tsk->sighand,
148                                         lockdep_tasklist_lock_is_held());
149         spin_lock(&sighand->siglock);
150
151 #ifdef CONFIG_POSIX_TIMERS
152         posix_cpu_timers_exit(tsk);
153         if (group_dead)
154                 posix_cpu_timers_exit_group(tsk);
155 #endif
156
157         if (group_dead) {
158                 tty = sig->tty;
159                 sig->tty = NULL;
160         } else {
161                 /*
162                  * If there is any task waiting for the group exit
163                  * then notify it:
164                  */
165                 if (sig->notify_count > 0 && !--sig->notify_count)
166                         wake_up_process(sig->group_exit_task);
167
168                 if (tsk == sig->curr_target)
169                         sig->curr_target = next_thread(tsk);
170         }
171
172         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
173                               sizeof(unsigned long long));
174
175         /*
176          * Accumulate here the counters for all threads as they die. We could
177          * skip the group leader because it is the last user of signal_struct,
178          * but we want to avoid the race with thread_group_cputime() which can
179          * see the empty ->thread_head list.
180          */
181         task_cputime(tsk, &utime, &stime);
182         write_seqlock(&sig->stats_lock);
183         sig->utime += utime;
184         sig->stime += stime;
185         sig->gtime += task_gtime(tsk);
186         sig->min_flt += tsk->min_flt;
187         sig->maj_flt += tsk->maj_flt;
188         sig->nvcsw += tsk->nvcsw;
189         sig->nivcsw += tsk->nivcsw;
190         sig->inblock += task_io_get_inblock(tsk);
191         sig->oublock += task_io_get_oublock(tsk);
192         task_io_accounting_add(&sig->ioac, &tsk->ioac);
193         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
194         sig->nr_threads--;
195         __unhash_process(tsk, group_dead);
196         write_sequnlock(&sig->stats_lock);
197
198         /*
199          * Do this under ->siglock, we can race with another thread
200          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
201          */
202         flush_sigqueue(&tsk->pending);
203         tsk->sighand = NULL;
204         spin_unlock(&sighand->siglock);
205
206         __cleanup_sighand(sighand);
207         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
208         if (group_dead) {
209                 flush_sigqueue(&sig->shared_pending);
210                 tty_kref_put(tty);
211         }
212 }
213
214 static void delayed_put_task_struct(struct rcu_head *rhp)
215 {
216         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
217
218         perf_event_delayed_put(tsk);
219         trace_sched_process_free(tsk);
220         put_task_struct(tsk);
221 }
222
223 void put_task_struct_rcu_user(struct task_struct *task)
224 {
225         if (refcount_dec_and_test(&task->rcu_users))
226                 call_rcu(&task->rcu, delayed_put_task_struct);
227 }
228
229 void release_task(struct task_struct *p)
230 {
231         struct task_struct *leader;
232         struct pid *thread_pid;
233         int zap_leader;
234 repeat:
235         /* don't need to get the RCU readlock here - the process is dead and
236          * can't be modifying its own credentials. But shut RCU-lockdep up */
237         rcu_read_lock();
238         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
239         rcu_read_unlock();
240
241         cgroup_release(p);
242
243         write_lock_irq(&tasklist_lock);
244         ptrace_release_task(p);
245         thread_pid = get_pid(p->thread_pid);
246         __exit_signal(p);
247
248         /*
249          * If we are the last non-leader member of the thread
250          * group, and the leader is zombie, then notify the
251          * group leader's parent process. (if it wants notification.)
252          */
253         zap_leader = 0;
254         leader = p->group_leader;
255         if (leader != p && thread_group_empty(leader)
256                         && leader->exit_state == EXIT_ZOMBIE) {
257                 /*
258                  * If we were the last child thread and the leader has
259                  * exited already, and the leader's parent ignores SIGCHLD,
260                  * then we are the one who should release the leader.
261                  */
262                 zap_leader = do_notify_parent(leader, leader->exit_signal);
263                 if (zap_leader)
264                         leader->exit_state = EXIT_DEAD;
265         }
266
267         write_unlock_irq(&tasklist_lock);
268         seccomp_filter_release(p);
269         proc_flush_pid(thread_pid);
270         put_pid(thread_pid);
271         release_thread(p);
272         put_task_struct_rcu_user(p);
273
274         p = leader;
275         if (unlikely(zap_leader))
276                 goto repeat;
277 }
278
279 int rcuwait_wake_up(struct rcuwait *w)
280 {
281         int ret = 0;
282         struct task_struct *task;
283
284         rcu_read_lock();
285
286         /*
287          * Order condition vs @task, such that everything prior to the load
288          * of @task is visible. This is the condition as to why the user called
289          * rcuwait_wake() in the first place. Pairs with set_current_state()
290          * barrier (A) in rcuwait_wait_event().
291          *
292          *    WAIT                WAKE
293          *    [S] tsk = current   [S] cond = true
294          *        MB (A)              MB (B)
295          *    [L] cond            [L] tsk
296          */
297         smp_mb(); /* (B) */
298
299         task = rcu_dereference(w->task);
300         if (task)
301                 ret = wake_up_process(task);
302         rcu_read_unlock();
303
304         return ret;
305 }
306 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
307
308 /*
309  * Determine if a process group is "orphaned", according to the POSIX
310  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
311  * by terminal-generated stop signals.  Newly orphaned process groups are
312  * to receive a SIGHUP and a SIGCONT.
313  *
314  * "I ask you, have you ever known what it is to be an orphan?"
315  */
316 static int will_become_orphaned_pgrp(struct pid *pgrp,
317                                         struct task_struct *ignored_task)
318 {
319         struct task_struct *p;
320
321         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
322                 if ((p == ignored_task) ||
323                     (p->exit_state && thread_group_empty(p)) ||
324                     is_global_init(p->real_parent))
325                         continue;
326
327                 if (task_pgrp(p->real_parent) != pgrp &&
328                     task_session(p->real_parent) == task_session(p))
329                         return 0;
330         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
331
332         return 1;
333 }
334
335 int is_current_pgrp_orphaned(void)
336 {
337         int retval;
338
339         read_lock(&tasklist_lock);
340         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
341         read_unlock(&tasklist_lock);
342
343         return retval;
344 }
345
346 static bool has_stopped_jobs(struct pid *pgrp)
347 {
348         struct task_struct *p;
349
350         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
351                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
352                         return true;
353         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
354
355         return false;
356 }
357
358 /*
359  * Check to see if any process groups have become orphaned as
360  * a result of our exiting, and if they have any stopped jobs,
361  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
362  */
363 static void
364 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
365 {
366         struct pid *pgrp = task_pgrp(tsk);
367         struct task_struct *ignored_task = tsk;
368
369         if (!parent)
370                 /* exit: our father is in a different pgrp than
371                  * we are and we were the only connection outside.
372                  */
373                 parent = tsk->real_parent;
374         else
375                 /* reparent: our child is in a different pgrp than
376                  * we are, and it was the only connection outside.
377                  */
378                 ignored_task = NULL;
379
380         if (task_pgrp(parent) != pgrp &&
381             task_session(parent) == task_session(tsk) &&
382             will_become_orphaned_pgrp(pgrp, ignored_task) &&
383             has_stopped_jobs(pgrp)) {
384                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
385                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
386         }
387 }
388
389 #ifdef CONFIG_MEMCG
390 /*
391  * A task is exiting.   If it owned this mm, find a new owner for the mm.
392  */
393 void mm_update_next_owner(struct mm_struct *mm)
394 {
395         struct task_struct *c, *g, *p = current;
396
397 retry:
398         /*
399          * If the exiting or execing task is not the owner, it's
400          * someone else's problem.
401          */
402         if (mm->owner != p)
403                 return;
404         /*
405          * The current owner is exiting/execing and there are no other
406          * candidates.  Do not leave the mm pointing to a possibly
407          * freed task structure.
408          */
409         if (atomic_read(&mm->mm_users) <= 1) {
410                 WRITE_ONCE(mm->owner, NULL);
411                 return;
412         }
413
414         read_lock(&tasklist_lock);
415         /*
416          * Search in the children
417          */
418         list_for_each_entry(c, &p->children, sibling) {
419                 if (c->mm == mm)
420                         goto assign_new_owner;
421         }
422
423         /*
424          * Search in the siblings
425          */
426         list_for_each_entry(c, &p->real_parent->children, sibling) {
427                 if (c->mm == mm)
428                         goto assign_new_owner;
429         }
430
431         /*
432          * Search through everything else, we should not get here often.
433          */
434         for_each_process(g) {
435                 if (g->flags & PF_KTHREAD)
436                         continue;
437                 for_each_thread(g, c) {
438                         if (c->mm == mm)
439                                 goto assign_new_owner;
440                         if (c->mm)
441                                 break;
442                 }
443         }
444         read_unlock(&tasklist_lock);
445         /*
446          * We found no owner yet mm_users > 1: this implies that we are
447          * most likely racing with swapoff (try_to_unuse()) or /proc or
448          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
449          */
450         WRITE_ONCE(mm->owner, NULL);
451         return;
452
453 assign_new_owner:
454         BUG_ON(c == p);
455         get_task_struct(c);
456         /*
457          * The task_lock protects c->mm from changing.
458          * We always want mm->owner->mm == mm
459          */
460         task_lock(c);
461         /*
462          * Delay read_unlock() till we have the task_lock()
463          * to ensure that c does not slip away underneath us
464          */
465         read_unlock(&tasklist_lock);
466         if (c->mm != mm) {
467                 task_unlock(c);
468                 put_task_struct(c);
469                 goto retry;
470         }
471         WRITE_ONCE(mm->owner, c);
472         task_unlock(c);
473         put_task_struct(c);
474 }
475 #endif /* CONFIG_MEMCG */
476
477 /*
478  * Turn us into a lazy TLB process if we
479  * aren't already..
480  */
481 static void exit_mm(void)
482 {
483         struct mm_struct *mm = current->mm;
484         struct core_state *core_state;
485
486         exit_mm_release(current, mm);
487         if (!mm)
488                 return;
489         sync_mm_rss(mm);
490         /*
491          * Serialize with any possible pending coredump.
492          * We must hold mmap_lock around checking core_state
493          * and clearing tsk->mm.  The core-inducing thread
494          * will increment ->nr_threads for each thread in the
495          * group with ->mm != NULL.
496          */
497         mmap_read_lock(mm);
498         core_state = mm->core_state;
499         if (core_state) {
500                 struct core_thread self;
501
502                 mmap_read_unlock(mm);
503
504                 self.task = current;
505                 if (self.task->flags & PF_SIGNALED)
506                         self.next = xchg(&core_state->dumper.next, &self);
507                 else
508                         self.task = NULL;
509                 /*
510                  * Implies mb(), the result of xchg() must be visible
511                  * to core_state->dumper.
512                  */
513                 if (atomic_dec_and_test(&core_state->nr_threads))
514                         complete(&core_state->startup);
515
516                 for (;;) {
517                         set_current_state(TASK_UNINTERRUPTIBLE);
518                         if (!self.task) /* see coredump_finish() */
519                                 break;
520                         freezable_schedule();
521                 }
522                 __set_current_state(TASK_RUNNING);
523                 mmap_read_lock(mm);
524         }
525         mmgrab(mm);
526         BUG_ON(mm != current->active_mm);
527         /* more a memory barrier than a real lock */
528         task_lock(current);
529         /*
530          * When a thread stops operating on an address space, the loop
531          * in membarrier_private_expedited() may not observe that
532          * tsk->mm, and the loop in membarrier_global_expedited() may
533          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
534          * rq->membarrier_state, so those would not issue an IPI.
535          * Membarrier requires a memory barrier after accessing
536          * user-space memory, before clearing tsk->mm or the
537          * rq->membarrier_state.
538          */
539         smp_mb__after_spinlock();
540         local_irq_disable();
541         current->mm = NULL;
542         membarrier_update_current_mm(NULL);
543         enter_lazy_tlb(mm, current);
544         local_irq_enable();
545         task_unlock(current);
546         mmap_read_unlock(mm);
547         mm_update_next_owner(mm);
548         mmput(mm);
549         if (test_thread_flag(TIF_MEMDIE))
550                 exit_oom_victim();
551 }
552
553 static struct task_struct *find_alive_thread(struct task_struct *p)
554 {
555         struct task_struct *t;
556
557         for_each_thread(p, t) {
558                 if (!(t->flags & PF_EXITING))
559                         return t;
560         }
561         return NULL;
562 }
563
564 static struct task_struct *find_child_reaper(struct task_struct *father,
565                                                 struct list_head *dead)
566         __releases(&tasklist_lock)
567         __acquires(&tasklist_lock)
568 {
569         struct pid_namespace *pid_ns = task_active_pid_ns(father);
570         struct task_struct *reaper = pid_ns->child_reaper;
571         struct task_struct *p, *n;
572
573         if (likely(reaper != father))
574                 return reaper;
575
576         reaper = find_alive_thread(father);
577         if (reaper) {
578                 pid_ns->child_reaper = reaper;
579                 return reaper;
580         }
581
582         write_unlock_irq(&tasklist_lock);
583
584         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
585                 list_del_init(&p->ptrace_entry);
586                 release_task(p);
587         }
588
589         zap_pid_ns_processes(pid_ns);
590         write_lock_irq(&tasklist_lock);
591
592         return father;
593 }
594
595 /*
596  * When we die, we re-parent all our children, and try to:
597  * 1. give them to another thread in our thread group, if such a member exists
598  * 2. give it to the first ancestor process which prctl'd itself as a
599  *    child_subreaper for its children (like a service manager)
600  * 3. give it to the init process (PID 1) in our pid namespace
601  */
602 static struct task_struct *find_new_reaper(struct task_struct *father,
603                                            struct task_struct *child_reaper)
604 {
605         struct task_struct *thread, *reaper;
606
607         thread = find_alive_thread(father);
608         if (thread)
609                 return thread;
610
611         if (father->signal->has_child_subreaper) {
612                 unsigned int ns_level = task_pid(father)->level;
613                 /*
614                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
615                  * We can't check reaper != child_reaper to ensure we do not
616                  * cross the namespaces, the exiting parent could be injected
617                  * by setns() + fork().
618                  * We check pid->level, this is slightly more efficient than
619                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
620                  */
621                 for (reaper = father->real_parent;
622                      task_pid(reaper)->level == ns_level;
623                      reaper = reaper->real_parent) {
624                         if (reaper == &init_task)
625                                 break;
626                         if (!reaper->signal->is_child_subreaper)
627                                 continue;
628                         thread = find_alive_thread(reaper);
629                         if (thread)
630                                 return thread;
631                 }
632         }
633
634         return child_reaper;
635 }
636
637 /*
638 * Any that need to be release_task'd are put on the @dead list.
639  */
640 static void reparent_leader(struct task_struct *father, struct task_struct *p,
641                                 struct list_head *dead)
642 {
643         if (unlikely(p->exit_state == EXIT_DEAD))
644                 return;
645
646         /* We don't want people slaying init. */
647         p->exit_signal = SIGCHLD;
648
649         /* If it has exited notify the new parent about this child's death. */
650         if (!p->ptrace &&
651             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
652                 if (do_notify_parent(p, p->exit_signal)) {
653                         p->exit_state = EXIT_DEAD;
654                         list_add(&p->ptrace_entry, dead);
655                 }
656         }
657
658         kill_orphaned_pgrp(p, father);
659 }
660
661 /*
662  * This does two things:
663  *
664  * A.  Make init inherit all the child processes
665  * B.  Check to see if any process groups have become orphaned
666  *      as a result of our exiting, and if they have any stopped
667  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
668  */
669 static void forget_original_parent(struct task_struct *father,
670                                         struct list_head *dead)
671 {
672         struct task_struct *p, *t, *reaper;
673
674         if (unlikely(!list_empty(&father->ptraced)))
675                 exit_ptrace(father, dead);
676
677         /* Can drop and reacquire tasklist_lock */
678         reaper = find_child_reaper(father, dead);
679         if (list_empty(&father->children))
680                 return;
681
682         reaper = find_new_reaper(father, reaper);
683         list_for_each_entry(p, &father->children, sibling) {
684                 for_each_thread(p, t) {
685                         RCU_INIT_POINTER(t->real_parent, reaper);
686                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
687                         if (likely(!t->ptrace))
688                                 t->parent = t->real_parent;
689                         if (t->pdeath_signal)
690                                 group_send_sig_info(t->pdeath_signal,
691                                                     SEND_SIG_NOINFO, t,
692                                                     PIDTYPE_TGID);
693                 }
694                 /*
695                  * If this is a threaded reparent there is no need to
696                  * notify anyone anything has happened.
697                  */
698                 if (!same_thread_group(reaper, father))
699                         reparent_leader(father, p, dead);
700         }
701         list_splice_tail_init(&father->children, &reaper->children);
702 }
703
704 /*
705  * Send signals to all our closest relatives so that they know
706  * to properly mourn us..
707  */
708 static void exit_notify(struct task_struct *tsk, int group_dead)
709 {
710         bool autoreap;
711         struct task_struct *p, *n;
712         LIST_HEAD(dead);
713
714         write_lock_irq(&tasklist_lock);
715         forget_original_parent(tsk, &dead);
716
717         if (group_dead)
718                 kill_orphaned_pgrp(tsk->group_leader, NULL);
719
720         tsk->exit_state = EXIT_ZOMBIE;
721         if (unlikely(tsk->ptrace)) {
722                 int sig = thread_group_leader(tsk) &&
723                                 thread_group_empty(tsk) &&
724                                 !ptrace_reparented(tsk) ?
725                         tsk->exit_signal : SIGCHLD;
726                 autoreap = do_notify_parent(tsk, sig);
727         } else if (thread_group_leader(tsk)) {
728                 autoreap = thread_group_empty(tsk) &&
729                         do_notify_parent(tsk, tsk->exit_signal);
730         } else {
731                 autoreap = true;
732         }
733
734         if (autoreap) {
735                 tsk->exit_state = EXIT_DEAD;
736                 list_add(&tsk->ptrace_entry, &dead);
737         }
738
739         /* mt-exec, de_thread() is waiting for group leader */
740         if (unlikely(tsk->signal->notify_count < 0))
741                 wake_up_process(tsk->signal->group_exit_task);
742         write_unlock_irq(&tasklist_lock);
743
744         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
745                 list_del_init(&p->ptrace_entry);
746                 release_task(p);
747         }
748 }
749
750 #ifdef CONFIG_DEBUG_STACK_USAGE
751 static void check_stack_usage(void)
752 {
753         static DEFINE_SPINLOCK(low_water_lock);
754         static int lowest_to_date = THREAD_SIZE;
755         unsigned long free;
756
757         free = stack_not_used(current);
758
759         if (free >= lowest_to_date)
760                 return;
761
762         spin_lock(&low_water_lock);
763         if (free < lowest_to_date) {
764                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
765                         current->comm, task_pid_nr(current), free);
766                 lowest_to_date = free;
767         }
768         spin_unlock(&low_water_lock);
769 }
770 #else
771 static inline void check_stack_usage(void) {}
772 #endif
773
774 void __noreturn do_exit(long code)
775 {
776         struct task_struct *tsk = current;
777         int group_dead;
778
779         /*
780          * We can get here from a kernel oops, sometimes with preemption off.
781          * Start by checking for critical errors.
782          * Then fix up important state like USER_DS and preemption.
783          * Then do everything else.
784          */
785
786         WARN_ON(blk_needs_flush_plug(tsk));
787
788         if (unlikely(in_interrupt()))
789                 panic("Aiee, killing interrupt handler!");
790         if (unlikely(!tsk->pid))
791                 panic("Attempted to kill the idle task!");
792
793         /*
794          * If do_exit is called because this processes oopsed, it's possible
795          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
796          * continuing. Amongst other possible reasons, this is to prevent
797          * mm_release()->clear_child_tid() from writing to a user-controlled
798          * kernel address.
799          */
800         force_uaccess_begin();
801
802         if (unlikely(in_atomic())) {
803                 pr_info("note: %s[%d] exited with preempt_count %d\n",
804                         current->comm, task_pid_nr(current),
805                         preempt_count());
806                 preempt_count_set(PREEMPT_ENABLED);
807         }
808
809         profile_task_exit(tsk);
810         kcov_task_exit(tsk);
811
812         ptrace_event(PTRACE_EVENT_EXIT, code);
813
814         validate_creds_for_do_exit(tsk);
815
816         /*
817          * We're taking recursive faults here in do_exit. Safest is to just
818          * leave this task alone and wait for reboot.
819          */
820         if (unlikely(tsk->flags & PF_EXITING)) {
821                 pr_alert("Fixing recursive fault but reboot is needed!\n");
822                 futex_exit_recursive(tsk);
823                 set_current_state(TASK_UNINTERRUPTIBLE);
824                 schedule();
825         }
826
827         io_uring_files_cancel();
828         exit_signals(tsk);  /* sets PF_EXITING */
829
830         /* sync mm's RSS info before statistics gathering */
831         if (tsk->mm)
832                 sync_mm_rss(tsk->mm);
833         acct_update_integrals(tsk);
834         group_dead = atomic_dec_and_test(&tsk->signal->live);
835         if (group_dead) {
836                 /*
837                  * If the last thread of global init has exited, panic
838                  * immediately to get a useable coredump.
839                  */
840                 if (unlikely(is_global_init(tsk)))
841                         panic("Attempted to kill init! exitcode=0x%08x\n",
842                                 tsk->signal->group_exit_code ?: (int)code);
843
844 #ifdef CONFIG_POSIX_TIMERS
845                 hrtimer_cancel(&tsk->signal->real_timer);
846                 exit_itimers(tsk);
847 #endif
848                 if (tsk->mm)
849                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
850         }
851         acct_collect(code, group_dead);
852         if (group_dead)
853                 tty_audit_exit();
854         audit_free(tsk);
855
856         tsk->exit_code = code;
857         taskstats_exit(tsk, group_dead);
858
859         exit_mm();
860
861         if (group_dead)
862                 acct_process();
863         trace_sched_process_exit(tsk);
864
865         exit_sem(tsk);
866         exit_shm(tsk);
867         exit_files(tsk);
868         exit_fs(tsk);
869         if (group_dead)
870                 disassociate_ctty(1);
871         exit_task_namespaces(tsk);
872         exit_task_work(tsk);
873         exit_thread(tsk);
874
875         /*
876          * Flush inherited counters to the parent - before the parent
877          * gets woken up by child-exit notifications.
878          *
879          * because of cgroup mode, must be called before cgroup_exit()
880          */
881         perf_event_exit_task(tsk);
882
883         sched_autogroup_exit_task(tsk);
884         cgroup_exit(tsk);
885
886         /*
887          * FIXME: do that only when needed, using sched_exit tracepoint
888          */
889         flush_ptrace_hw_breakpoint(tsk);
890
891         exit_tasks_rcu_start();
892         exit_notify(tsk, group_dead);
893         proc_exit_connector(tsk);
894         mpol_put_task_policy(tsk);
895 #ifdef CONFIG_FUTEX
896         if (unlikely(current->pi_state_cache))
897                 kfree(current->pi_state_cache);
898 #endif
899         /*
900          * Make sure we are holding no locks:
901          */
902         debug_check_no_locks_held();
903
904         if (tsk->io_context)
905                 exit_io_context(tsk);
906
907         if (tsk->splice_pipe)
908                 free_pipe_info(tsk->splice_pipe);
909
910         if (tsk->task_frag.page)
911                 put_page(tsk->task_frag.page);
912
913         validate_creds_for_do_exit(tsk);
914
915         check_stack_usage();
916         preempt_disable();
917         if (tsk->nr_dirtied)
918                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
919         exit_rcu();
920         exit_tasks_rcu_finish();
921
922         lockdep_free_task(tsk);
923         do_task_dead();
924 }
925 EXPORT_SYMBOL_GPL(do_exit);
926
927 void __noreturn make_task_dead(int signr)
928 {
929         /*
930          * Take the task off the cpu after something catastrophic has
931          * happened.
932          */
933         unsigned int limit;
934
935         /*
936          * Every time the system oopses, if the oops happens while a reference
937          * to an object was held, the reference leaks.
938          * If the oops doesn't also leak memory, repeated oopsing can cause
939          * reference counters to wrap around (if they're not using refcount_t).
940          * This means that repeated oopsing can make unexploitable-looking bugs
941          * exploitable through repeated oopsing.
942          * To make sure this can't happen, place an upper bound on how often the
943          * kernel may oops without panic().
944          */
945         limit = READ_ONCE(oops_limit);
946         if (atomic_inc_return(&oops_count) >= limit && limit)
947                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
948
949         do_exit(signr);
950 }
951
952 void complete_and_exit(struct completion *comp, long code)
953 {
954         if (comp)
955                 complete(comp);
956
957         do_exit(code);
958 }
959 EXPORT_SYMBOL(complete_and_exit);
960
961 SYSCALL_DEFINE1(exit, int, error_code)
962 {
963         do_exit((error_code&0xff)<<8);
964 }
965
966 /*
967  * Take down every thread in the group.  This is called by fatal signals
968  * as well as by sys_exit_group (below).
969  */
970 void
971 do_group_exit(int exit_code)
972 {
973         struct signal_struct *sig = current->signal;
974
975         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
976
977         if (signal_group_exit(sig))
978                 exit_code = sig->group_exit_code;
979         else if (!thread_group_empty(current)) {
980                 struct sighand_struct *const sighand = current->sighand;
981
982                 spin_lock_irq(&sighand->siglock);
983                 if (signal_group_exit(sig))
984                         /* Another thread got here before we took the lock.  */
985                         exit_code = sig->group_exit_code;
986                 else {
987                         sig->group_exit_code = exit_code;
988                         sig->flags = SIGNAL_GROUP_EXIT;
989                         zap_other_threads(current);
990                 }
991                 spin_unlock_irq(&sighand->siglock);
992         }
993
994         do_exit(exit_code);
995         /* NOTREACHED */
996 }
997
998 /*
999  * this kills every thread in the thread group. Note that any externally
1000  * wait4()-ing process will get the correct exit code - even if this
1001  * thread is not the thread group leader.
1002  */
1003 SYSCALL_DEFINE1(exit_group, int, error_code)
1004 {
1005         do_group_exit((error_code & 0xff) << 8);
1006         /* NOTREACHED */
1007         return 0;
1008 }
1009
1010 struct waitid_info {
1011         pid_t pid;
1012         uid_t uid;
1013         int status;
1014         int cause;
1015 };
1016
1017 struct wait_opts {
1018         enum pid_type           wo_type;
1019         int                     wo_flags;
1020         struct pid              *wo_pid;
1021
1022         struct waitid_info      *wo_info;
1023         int                     wo_stat;
1024         struct rusage           *wo_rusage;
1025
1026         wait_queue_entry_t              child_wait;
1027         int                     notask_error;
1028 };
1029
1030 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1031 {
1032         return  wo->wo_type == PIDTYPE_MAX ||
1033                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1034 }
1035
1036 static int
1037 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1038 {
1039         if (!eligible_pid(wo, p))
1040                 return 0;
1041
1042         /*
1043          * Wait for all children (clone and not) if __WALL is set or
1044          * if it is traced by us.
1045          */
1046         if (ptrace || (wo->wo_flags & __WALL))
1047                 return 1;
1048
1049         /*
1050          * Otherwise, wait for clone children *only* if __WCLONE is set;
1051          * otherwise, wait for non-clone children *only*.
1052          *
1053          * Note: a "clone" child here is one that reports to its parent
1054          * using a signal other than SIGCHLD, or a non-leader thread which
1055          * we can only see if it is traced by us.
1056          */
1057         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1058                 return 0;
1059
1060         return 1;
1061 }
1062
1063 /*
1064  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1065  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1066  * the lock and this task is uninteresting.  If we return nonzero, we have
1067  * released the lock and the system call should return.
1068  */
1069 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1070 {
1071         int state, status;
1072         pid_t pid = task_pid_vnr(p);
1073         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1074         struct waitid_info *infop;
1075
1076         if (!likely(wo->wo_flags & WEXITED))
1077                 return 0;
1078
1079         if (unlikely(wo->wo_flags & WNOWAIT)) {
1080                 status = p->exit_code;
1081                 get_task_struct(p);
1082                 read_unlock(&tasklist_lock);
1083                 sched_annotate_sleep();
1084                 if (wo->wo_rusage)
1085                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1086                 put_task_struct(p);
1087                 goto out_info;
1088         }
1089         /*
1090          * Move the task's state to DEAD/TRACE, only one thread can do this.
1091          */
1092         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1093                 EXIT_TRACE : EXIT_DEAD;
1094         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1095                 return 0;
1096         /*
1097          * We own this thread, nobody else can reap it.
1098          */
1099         read_unlock(&tasklist_lock);
1100         sched_annotate_sleep();
1101
1102         /*
1103          * Check thread_group_leader() to exclude the traced sub-threads.
1104          */
1105         if (state == EXIT_DEAD && thread_group_leader(p)) {
1106                 struct signal_struct *sig = p->signal;
1107                 struct signal_struct *psig = current->signal;
1108                 unsigned long maxrss;
1109                 u64 tgutime, tgstime;
1110
1111                 /*
1112                  * The resource counters for the group leader are in its
1113                  * own task_struct.  Those for dead threads in the group
1114                  * are in its signal_struct, as are those for the child
1115                  * processes it has previously reaped.  All these
1116                  * accumulate in the parent's signal_struct c* fields.
1117                  *
1118                  * We don't bother to take a lock here to protect these
1119                  * p->signal fields because the whole thread group is dead
1120                  * and nobody can change them.
1121                  *
1122                  * psig->stats_lock also protects us from our sub-theads
1123                  * which can reap other children at the same time. Until
1124                  * we change k_getrusage()-like users to rely on this lock
1125                  * we have to take ->siglock as well.
1126                  *
1127                  * We use thread_group_cputime_adjusted() to get times for
1128                  * the thread group, which consolidates times for all threads
1129                  * in the group including the group leader.
1130                  */
1131                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1132                 spin_lock_irq(&current->sighand->siglock);
1133                 write_seqlock(&psig->stats_lock);
1134                 psig->cutime += tgutime + sig->cutime;
1135                 psig->cstime += tgstime + sig->cstime;
1136                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1137                 psig->cmin_flt +=
1138                         p->min_flt + sig->min_flt + sig->cmin_flt;
1139                 psig->cmaj_flt +=
1140                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1141                 psig->cnvcsw +=
1142                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1143                 psig->cnivcsw +=
1144                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1145                 psig->cinblock +=
1146                         task_io_get_inblock(p) +
1147                         sig->inblock + sig->cinblock;
1148                 psig->coublock +=
1149                         task_io_get_oublock(p) +
1150                         sig->oublock + sig->coublock;
1151                 maxrss = max(sig->maxrss, sig->cmaxrss);
1152                 if (psig->cmaxrss < maxrss)
1153                         psig->cmaxrss = maxrss;
1154                 task_io_accounting_add(&psig->ioac, &p->ioac);
1155                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1156                 write_sequnlock(&psig->stats_lock);
1157                 spin_unlock_irq(&current->sighand->siglock);
1158         }
1159
1160         if (wo->wo_rusage)
1161                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1162         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1163                 ? p->signal->group_exit_code : p->exit_code;
1164         wo->wo_stat = status;
1165
1166         if (state == EXIT_TRACE) {
1167                 write_lock_irq(&tasklist_lock);
1168                 /* We dropped tasklist, ptracer could die and untrace */
1169                 ptrace_unlink(p);
1170
1171                 /* If parent wants a zombie, don't release it now */
1172                 state = EXIT_ZOMBIE;
1173                 if (do_notify_parent(p, p->exit_signal))
1174                         state = EXIT_DEAD;
1175                 p->exit_state = state;
1176                 write_unlock_irq(&tasklist_lock);
1177         }
1178         if (state == EXIT_DEAD)
1179                 release_task(p);
1180
1181 out_info:
1182         infop = wo->wo_info;
1183         if (infop) {
1184                 if ((status & 0x7f) == 0) {
1185                         infop->cause = CLD_EXITED;
1186                         infop->status = status >> 8;
1187                 } else {
1188                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1189                         infop->status = status & 0x7f;
1190                 }
1191                 infop->pid = pid;
1192                 infop->uid = uid;
1193         }
1194
1195         return pid;
1196 }
1197
1198 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1199 {
1200         if (ptrace) {
1201                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1202                         return &p->exit_code;
1203         } else {
1204                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1205                         return &p->signal->group_exit_code;
1206         }
1207         return NULL;
1208 }
1209
1210 /**
1211  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1212  * @wo: wait options
1213  * @ptrace: is the wait for ptrace
1214  * @p: task to wait for
1215  *
1216  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1217  *
1218  * CONTEXT:
1219  * read_lock(&tasklist_lock), which is released if return value is
1220  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1221  *
1222  * RETURNS:
1223  * 0 if wait condition didn't exist and search for other wait conditions
1224  * should continue.  Non-zero return, -errno on failure and @p's pid on
1225  * success, implies that tasklist_lock is released and wait condition
1226  * search should terminate.
1227  */
1228 static int wait_task_stopped(struct wait_opts *wo,
1229                                 int ptrace, struct task_struct *p)
1230 {
1231         struct waitid_info *infop;
1232         int exit_code, *p_code, why;
1233         uid_t uid = 0; /* unneeded, required by compiler */
1234         pid_t pid;
1235
1236         /*
1237          * Traditionally we see ptrace'd stopped tasks regardless of options.
1238          */
1239         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1240                 return 0;
1241
1242         if (!task_stopped_code(p, ptrace))
1243                 return 0;
1244
1245         exit_code = 0;
1246         spin_lock_irq(&p->sighand->siglock);
1247
1248         p_code = task_stopped_code(p, ptrace);
1249         if (unlikely(!p_code))
1250                 goto unlock_sig;
1251
1252         exit_code = *p_code;
1253         if (!exit_code)
1254                 goto unlock_sig;
1255
1256         if (!unlikely(wo->wo_flags & WNOWAIT))
1257                 *p_code = 0;
1258
1259         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1260 unlock_sig:
1261         spin_unlock_irq(&p->sighand->siglock);
1262         if (!exit_code)
1263                 return 0;
1264
1265         /*
1266          * Now we are pretty sure this task is interesting.
1267          * Make sure it doesn't get reaped out from under us while we
1268          * give up the lock and then examine it below.  We don't want to
1269          * keep holding onto the tasklist_lock while we call getrusage and
1270          * possibly take page faults for user memory.
1271          */
1272         get_task_struct(p);
1273         pid = task_pid_vnr(p);
1274         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1275         read_unlock(&tasklist_lock);
1276         sched_annotate_sleep();
1277         if (wo->wo_rusage)
1278                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1279         put_task_struct(p);
1280
1281         if (likely(!(wo->wo_flags & WNOWAIT)))
1282                 wo->wo_stat = (exit_code << 8) | 0x7f;
1283
1284         infop = wo->wo_info;
1285         if (infop) {
1286                 infop->cause = why;
1287                 infop->status = exit_code;
1288                 infop->pid = pid;
1289                 infop->uid = uid;
1290         }
1291         return pid;
1292 }
1293
1294 /*
1295  * Handle do_wait work for one task in a live, non-stopped state.
1296  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1297  * the lock and this task is uninteresting.  If we return nonzero, we have
1298  * released the lock and the system call should return.
1299  */
1300 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1301 {
1302         struct waitid_info *infop;
1303         pid_t pid;
1304         uid_t uid;
1305
1306         if (!unlikely(wo->wo_flags & WCONTINUED))
1307                 return 0;
1308
1309         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1310                 return 0;
1311
1312         spin_lock_irq(&p->sighand->siglock);
1313         /* Re-check with the lock held.  */
1314         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1315                 spin_unlock_irq(&p->sighand->siglock);
1316                 return 0;
1317         }
1318         if (!unlikely(wo->wo_flags & WNOWAIT))
1319                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1320         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1321         spin_unlock_irq(&p->sighand->siglock);
1322
1323         pid = task_pid_vnr(p);
1324         get_task_struct(p);
1325         read_unlock(&tasklist_lock);
1326         sched_annotate_sleep();
1327         if (wo->wo_rusage)
1328                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1329         put_task_struct(p);
1330
1331         infop = wo->wo_info;
1332         if (!infop) {
1333                 wo->wo_stat = 0xffff;
1334         } else {
1335                 infop->cause = CLD_CONTINUED;
1336                 infop->pid = pid;
1337                 infop->uid = uid;
1338                 infop->status = SIGCONT;
1339         }
1340         return pid;
1341 }
1342
1343 /*
1344  * Consider @p for a wait by @parent.
1345  *
1346  * -ECHILD should be in ->notask_error before the first call.
1347  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1348  * Returns zero if the search for a child should continue;
1349  * then ->notask_error is 0 if @p is an eligible child,
1350  * or still -ECHILD.
1351  */
1352 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1353                                 struct task_struct *p)
1354 {
1355         /*
1356          * We can race with wait_task_zombie() from another thread.
1357          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1358          * can't confuse the checks below.
1359          */
1360         int exit_state = READ_ONCE(p->exit_state);
1361         int ret;
1362
1363         if (unlikely(exit_state == EXIT_DEAD))
1364                 return 0;
1365
1366         ret = eligible_child(wo, ptrace, p);
1367         if (!ret)
1368                 return ret;
1369
1370         if (unlikely(exit_state == EXIT_TRACE)) {
1371                 /*
1372                  * ptrace == 0 means we are the natural parent. In this case
1373                  * we should clear notask_error, debugger will notify us.
1374                  */
1375                 if (likely(!ptrace))
1376                         wo->notask_error = 0;
1377                 return 0;
1378         }
1379
1380         if (likely(!ptrace) && unlikely(p->ptrace)) {
1381                 /*
1382                  * If it is traced by its real parent's group, just pretend
1383                  * the caller is ptrace_do_wait() and reap this child if it
1384                  * is zombie.
1385                  *
1386                  * This also hides group stop state from real parent; otherwise
1387                  * a single stop can be reported twice as group and ptrace stop.
1388                  * If a ptracer wants to distinguish these two events for its
1389                  * own children it should create a separate process which takes
1390                  * the role of real parent.
1391                  */
1392                 if (!ptrace_reparented(p))
1393                         ptrace = 1;
1394         }
1395
1396         /* slay zombie? */
1397         if (exit_state == EXIT_ZOMBIE) {
1398                 /* we don't reap group leaders with subthreads */
1399                 if (!delay_group_leader(p)) {
1400                         /*
1401                          * A zombie ptracee is only visible to its ptracer.
1402                          * Notification and reaping will be cascaded to the
1403                          * real parent when the ptracer detaches.
1404                          */
1405                         if (unlikely(ptrace) || likely(!p->ptrace))
1406                                 return wait_task_zombie(wo, p);
1407                 }
1408
1409                 /*
1410                  * Allow access to stopped/continued state via zombie by
1411                  * falling through.  Clearing of notask_error is complex.
1412                  *
1413                  * When !@ptrace:
1414                  *
1415                  * If WEXITED is set, notask_error should naturally be
1416                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1417                  * so, if there are live subthreads, there are events to
1418                  * wait for.  If all subthreads are dead, it's still safe
1419                  * to clear - this function will be called again in finite
1420                  * amount time once all the subthreads are released and
1421                  * will then return without clearing.
1422                  *
1423                  * When @ptrace:
1424                  *
1425                  * Stopped state is per-task and thus can't change once the
1426                  * target task dies.  Only continued and exited can happen.
1427                  * Clear notask_error if WCONTINUED | WEXITED.
1428                  */
1429                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1430                         wo->notask_error = 0;
1431         } else {
1432                 /*
1433                  * @p is alive and it's gonna stop, continue or exit, so
1434                  * there always is something to wait for.
1435                  */
1436                 wo->notask_error = 0;
1437         }
1438
1439         /*
1440          * Wait for stopped.  Depending on @ptrace, different stopped state
1441          * is used and the two don't interact with each other.
1442          */
1443         ret = wait_task_stopped(wo, ptrace, p);
1444         if (ret)
1445                 return ret;
1446
1447         /*
1448          * Wait for continued.  There's only one continued state and the
1449          * ptracer can consume it which can confuse the real parent.  Don't
1450          * use WCONTINUED from ptracer.  You don't need or want it.
1451          */
1452         return wait_task_continued(wo, p);
1453 }
1454
1455 /*
1456  * Do the work of do_wait() for one thread in the group, @tsk.
1457  *
1458  * -ECHILD should be in ->notask_error before the first call.
1459  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1460  * Returns zero if the search for a child should continue; then
1461  * ->notask_error is 0 if there were any eligible children,
1462  * or still -ECHILD.
1463  */
1464 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1465 {
1466         struct task_struct *p;
1467
1468         list_for_each_entry(p, &tsk->children, sibling) {
1469                 int ret = wait_consider_task(wo, 0, p);
1470
1471                 if (ret)
1472                         return ret;
1473         }
1474
1475         return 0;
1476 }
1477
1478 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1479 {
1480         struct task_struct *p;
1481
1482         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1483                 int ret = wait_consider_task(wo, 1, p);
1484
1485                 if (ret)
1486                         return ret;
1487         }
1488
1489         return 0;
1490 }
1491
1492 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1493                                 int sync, void *key)
1494 {
1495         struct wait_opts *wo = container_of(wait, struct wait_opts,
1496                                                 child_wait);
1497         struct task_struct *p = key;
1498
1499         if (!eligible_pid(wo, p))
1500                 return 0;
1501
1502         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1503                 return 0;
1504
1505         return default_wake_function(wait, mode, sync, key);
1506 }
1507
1508 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1509 {
1510         __wake_up_sync_key(&parent->signal->wait_chldexit,
1511                            TASK_INTERRUPTIBLE, p);
1512 }
1513
1514 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1515                                  struct task_struct *target)
1516 {
1517         struct task_struct *parent =
1518                 !ptrace ? target->real_parent : target->parent;
1519
1520         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1521                                      same_thread_group(current, parent));
1522 }
1523
1524 /*
1525  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1526  * and tracee lists to find the target task.
1527  */
1528 static int do_wait_pid(struct wait_opts *wo)
1529 {
1530         bool ptrace;
1531         struct task_struct *target;
1532         int retval;
1533
1534         ptrace = false;
1535         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1536         if (target && is_effectively_child(wo, ptrace, target)) {
1537                 retval = wait_consider_task(wo, ptrace, target);
1538                 if (retval)
1539                         return retval;
1540         }
1541
1542         ptrace = true;
1543         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1544         if (target && target->ptrace &&
1545             is_effectively_child(wo, ptrace, target)) {
1546                 retval = wait_consider_task(wo, ptrace, target);
1547                 if (retval)
1548                         return retval;
1549         }
1550
1551         return 0;
1552 }
1553
1554 static long do_wait(struct wait_opts *wo)
1555 {
1556         int retval;
1557
1558         trace_sched_process_wait(wo->wo_pid);
1559
1560         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1561         wo->child_wait.private = current;
1562         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1563 repeat:
1564         /*
1565          * If there is nothing that can match our criteria, just get out.
1566          * We will clear ->notask_error to zero if we see any child that
1567          * might later match our criteria, even if we are not able to reap
1568          * it yet.
1569          */
1570         wo->notask_error = -ECHILD;
1571         if ((wo->wo_type < PIDTYPE_MAX) &&
1572            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1573                 goto notask;
1574
1575         set_current_state(TASK_INTERRUPTIBLE);
1576         read_lock(&tasklist_lock);
1577
1578         if (wo->wo_type == PIDTYPE_PID) {
1579                 retval = do_wait_pid(wo);
1580                 if (retval)
1581                         goto end;
1582         } else {
1583                 struct task_struct *tsk = current;
1584
1585                 do {
1586                         retval = do_wait_thread(wo, tsk);
1587                         if (retval)
1588                                 goto end;
1589
1590                         retval = ptrace_do_wait(wo, tsk);
1591                         if (retval)
1592                                 goto end;
1593
1594                         if (wo->wo_flags & __WNOTHREAD)
1595                                 break;
1596                 } while_each_thread(current, tsk);
1597         }
1598         read_unlock(&tasklist_lock);
1599
1600 notask:
1601         retval = wo->notask_error;
1602         if (!retval && !(wo->wo_flags & WNOHANG)) {
1603                 retval = -ERESTARTSYS;
1604                 if (!signal_pending(current)) {
1605                         schedule();
1606                         goto repeat;
1607                 }
1608         }
1609 end:
1610         __set_current_state(TASK_RUNNING);
1611         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1612         return retval;
1613 }
1614
1615 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1616                           int options, struct rusage *ru)
1617 {
1618         struct wait_opts wo;
1619         struct pid *pid = NULL;
1620         enum pid_type type;
1621         long ret;
1622         unsigned int f_flags = 0;
1623
1624         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1625                         __WNOTHREAD|__WCLONE|__WALL))
1626                 return -EINVAL;
1627         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1628                 return -EINVAL;
1629
1630         switch (which) {
1631         case P_ALL:
1632                 type = PIDTYPE_MAX;
1633                 break;
1634         case P_PID:
1635                 type = PIDTYPE_PID;
1636                 if (upid <= 0)
1637                         return -EINVAL;
1638
1639                 pid = find_get_pid(upid);
1640                 break;
1641         case P_PGID:
1642                 type = PIDTYPE_PGID;
1643                 if (upid < 0)
1644                         return -EINVAL;
1645
1646                 if (upid)
1647                         pid = find_get_pid(upid);
1648                 else
1649                         pid = get_task_pid(current, PIDTYPE_PGID);
1650                 break;
1651         case P_PIDFD:
1652                 type = PIDTYPE_PID;
1653                 if (upid < 0)
1654                         return -EINVAL;
1655
1656                 pid = pidfd_get_pid(upid, &f_flags);
1657                 if (IS_ERR(pid))
1658                         return PTR_ERR(pid);
1659
1660                 break;
1661         default:
1662                 return -EINVAL;
1663         }
1664
1665         wo.wo_type      = type;
1666         wo.wo_pid       = pid;
1667         wo.wo_flags     = options;
1668         wo.wo_info      = infop;
1669         wo.wo_rusage    = ru;
1670         if (f_flags & O_NONBLOCK)
1671                 wo.wo_flags |= WNOHANG;
1672
1673         ret = do_wait(&wo);
1674         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1675                 ret = -EAGAIN;
1676
1677         put_pid(pid);
1678         return ret;
1679 }
1680
1681 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1682                 infop, int, options, struct rusage __user *, ru)
1683 {
1684         struct rusage r;
1685         struct waitid_info info = {.status = 0};
1686         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1687         int signo = 0;
1688
1689         if (err > 0) {
1690                 signo = SIGCHLD;
1691                 err = 0;
1692                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1693                         return -EFAULT;
1694         }
1695         if (!infop)
1696                 return err;
1697
1698         if (!user_write_access_begin(infop, sizeof(*infop)))
1699                 return -EFAULT;
1700
1701         unsafe_put_user(signo, &infop->si_signo, Efault);
1702         unsafe_put_user(0, &infop->si_errno, Efault);
1703         unsafe_put_user(info.cause, &infop->si_code, Efault);
1704         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1705         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1706         unsafe_put_user(info.status, &infop->si_status, Efault);
1707         user_write_access_end();
1708         return err;
1709 Efault:
1710         user_write_access_end();
1711         return -EFAULT;
1712 }
1713
1714 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1715                   struct rusage *ru)
1716 {
1717         struct wait_opts wo;
1718         struct pid *pid = NULL;
1719         enum pid_type type;
1720         long ret;
1721
1722         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1723                         __WNOTHREAD|__WCLONE|__WALL))
1724                 return -EINVAL;
1725
1726         /* -INT_MIN is not defined */
1727         if (upid == INT_MIN)
1728                 return -ESRCH;
1729
1730         if (upid == -1)
1731                 type = PIDTYPE_MAX;
1732         else if (upid < 0) {
1733                 type = PIDTYPE_PGID;
1734                 pid = find_get_pid(-upid);
1735         } else if (upid == 0) {
1736                 type = PIDTYPE_PGID;
1737                 pid = get_task_pid(current, PIDTYPE_PGID);
1738         } else /* upid > 0 */ {
1739                 type = PIDTYPE_PID;
1740                 pid = find_get_pid(upid);
1741         }
1742
1743         wo.wo_type      = type;
1744         wo.wo_pid       = pid;
1745         wo.wo_flags     = options | WEXITED;
1746         wo.wo_info      = NULL;
1747         wo.wo_stat      = 0;
1748         wo.wo_rusage    = ru;
1749         ret = do_wait(&wo);
1750         put_pid(pid);
1751         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1752                 ret = -EFAULT;
1753
1754         return ret;
1755 }
1756
1757 int kernel_wait(pid_t pid, int *stat)
1758 {
1759         struct wait_opts wo = {
1760                 .wo_type        = PIDTYPE_PID,
1761                 .wo_pid         = find_get_pid(pid),
1762                 .wo_flags       = WEXITED,
1763         };
1764         int ret;
1765
1766         ret = do_wait(&wo);
1767         if (ret > 0 && wo.wo_stat)
1768                 *stat = wo.wo_stat;
1769         put_pid(wo.wo_pid);
1770         return ret;
1771 }
1772
1773 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1774                 int, options, struct rusage __user *, ru)
1775 {
1776         struct rusage r;
1777         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1778
1779         if (err > 0) {
1780                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1781                         return -EFAULT;
1782         }
1783         return err;
1784 }
1785
1786 #ifdef __ARCH_WANT_SYS_WAITPID
1787
1788 /*
1789  * sys_waitpid() remains for compatibility. waitpid() should be
1790  * implemented by calling sys_wait4() from libc.a.
1791  */
1792 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1793 {
1794         return kernel_wait4(pid, stat_addr, options, NULL);
1795 }
1796
1797 #endif
1798
1799 #ifdef CONFIG_COMPAT
1800 COMPAT_SYSCALL_DEFINE4(wait4,
1801         compat_pid_t, pid,
1802         compat_uint_t __user *, stat_addr,
1803         int, options,
1804         struct compat_rusage __user *, ru)
1805 {
1806         struct rusage r;
1807         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1808         if (err > 0) {
1809                 if (ru && put_compat_rusage(&r, ru))
1810                         return -EFAULT;
1811         }
1812         return err;
1813 }
1814
1815 COMPAT_SYSCALL_DEFINE5(waitid,
1816                 int, which, compat_pid_t, pid,
1817                 struct compat_siginfo __user *, infop, int, options,
1818                 struct compat_rusage __user *, uru)
1819 {
1820         struct rusage ru;
1821         struct waitid_info info = {.status = 0};
1822         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1823         int signo = 0;
1824         if (err > 0) {
1825                 signo = SIGCHLD;
1826                 err = 0;
1827                 if (uru) {
1828                         /* kernel_waitid() overwrites everything in ru */
1829                         if (COMPAT_USE_64BIT_TIME)
1830                                 err = copy_to_user(uru, &ru, sizeof(ru));
1831                         else
1832                                 err = put_compat_rusage(&ru, uru);
1833                         if (err)
1834                                 return -EFAULT;
1835                 }
1836         }
1837
1838         if (!infop)
1839                 return err;
1840
1841         if (!user_write_access_begin(infop, sizeof(*infop)))
1842                 return -EFAULT;
1843
1844         unsafe_put_user(signo, &infop->si_signo, Efault);
1845         unsafe_put_user(0, &infop->si_errno, Efault);
1846         unsafe_put_user(info.cause, &infop->si_code, Efault);
1847         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1848         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1849         unsafe_put_user(info.status, &infop->si_status, Efault);
1850         user_write_access_end();
1851         return err;
1852 Efault:
1853         user_write_access_end();
1854         return -EFAULT;
1855 }
1856 #endif
1857
1858 /**
1859  * thread_group_exited - check that a thread group has exited
1860  * @pid: tgid of thread group to be checked.
1861  *
1862  * Test if the thread group represented by tgid has exited (all
1863  * threads are zombies, dead or completely gone).
1864  *
1865  * Return: true if the thread group has exited. false otherwise.
1866  */
1867 bool thread_group_exited(struct pid *pid)
1868 {
1869         struct task_struct *task;
1870         bool exited;
1871
1872         rcu_read_lock();
1873         task = pid_task(pid, PIDTYPE_PID);
1874         exited = !task ||
1875                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1876         rcu_read_unlock();
1877
1878         return exited;
1879 }
1880 EXPORT_SYMBOL(thread_group_exited);
1881
1882 __weak void abort(void)
1883 {
1884         BUG();
1885
1886         /* if that doesn't kill us, halt */
1887         panic("Oops failed to kill thread");
1888 }
1889 EXPORT_SYMBOL(abort);