GNU Linux-libre 5.4.200-gnu1
[releases.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *uninitialized_var(tty);
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead) {
107                 posix_cpu_timers_exit_group(tsk);
108         } else {
109                 /*
110                  * This can only happen if the caller is de_thread().
111                  * FIXME: this is the temporary hack, we should teach
112                  * posix-cpu-timers to handle this case correctly.
113                  */
114                 if (unlikely(has_group_leader_pid(tsk)))
115                         posix_cpu_timers_exit_group(tsk);
116         }
117 #endif
118
119         if (group_dead) {
120                 tty = sig->tty;
121                 sig->tty = NULL;
122         } else {
123                 /*
124                  * If there is any task waiting for the group exit
125                  * then notify it:
126                  */
127                 if (sig->notify_count > 0 && !--sig->notify_count)
128                         wake_up_process(sig->group_exit_task);
129
130                 if (tsk == sig->curr_target)
131                         sig->curr_target = next_thread(tsk);
132         }
133
134         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135                               sizeof(unsigned long long));
136
137         /*
138          * Accumulate here the counters for all threads as they die. We could
139          * skip the group leader because it is the last user of signal_struct,
140          * but we want to avoid the race with thread_group_cputime() which can
141          * see the empty ->thread_head list.
142          */
143         task_cputime(tsk, &utime, &stime);
144         write_seqlock(&sig->stats_lock);
145         sig->utime += utime;
146         sig->stime += stime;
147         sig->gtime += task_gtime(tsk);
148         sig->min_flt += tsk->min_flt;
149         sig->maj_flt += tsk->maj_flt;
150         sig->nvcsw += tsk->nvcsw;
151         sig->nivcsw += tsk->nivcsw;
152         sig->inblock += task_io_get_inblock(tsk);
153         sig->oublock += task_io_get_oublock(tsk);
154         task_io_accounting_add(&sig->ioac, &tsk->ioac);
155         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156         sig->nr_threads--;
157         __unhash_process(tsk, group_dead);
158         write_sequnlock(&sig->stats_lock);
159
160         /*
161          * Do this under ->siglock, we can race with another thread
162          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163          */
164         flush_sigqueue(&tsk->pending);
165         tsk->sighand = NULL;
166         spin_unlock(&sighand->siglock);
167
168         __cleanup_sighand(sighand);
169         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170         if (group_dead) {
171                 flush_sigqueue(&sig->shared_pending);
172                 tty_kref_put(tty);
173         }
174 }
175
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180         perf_event_delayed_put(tsk);
181         trace_sched_process_free(tsk);
182         put_task_struct(tsk);
183 }
184
185 void put_task_struct_rcu_user(struct task_struct *task)
186 {
187         if (refcount_dec_and_test(&task->rcu_users))
188                 call_rcu(&task->rcu, delayed_put_task_struct);
189 }
190
191 void release_task(struct task_struct *p)
192 {
193         struct task_struct *leader;
194         int zap_leader;
195 repeat:
196         /* don't need to get the RCU readlock here - the process is dead and
197          * can't be modifying its own credentials. But shut RCU-lockdep up */
198         rcu_read_lock();
199         atomic_dec(&__task_cred(p)->user->processes);
200         rcu_read_unlock();
201
202         proc_flush_task(p);
203         cgroup_release(p);
204
205         write_lock_irq(&tasklist_lock);
206         ptrace_release_task(p);
207         __exit_signal(p);
208
209         /*
210          * If we are the last non-leader member of the thread
211          * group, and the leader is zombie, then notify the
212          * group leader's parent process. (if it wants notification.)
213          */
214         zap_leader = 0;
215         leader = p->group_leader;
216         if (leader != p && thread_group_empty(leader)
217                         && leader->exit_state == EXIT_ZOMBIE) {
218                 /*
219                  * If we were the last child thread and the leader has
220                  * exited already, and the leader's parent ignores SIGCHLD,
221                  * then we are the one who should release the leader.
222                  */
223                 zap_leader = do_notify_parent(leader, leader->exit_signal);
224                 if (zap_leader)
225                         leader->exit_state = EXIT_DEAD;
226         }
227
228         write_unlock_irq(&tasklist_lock);
229         release_thread(p);
230         put_task_struct_rcu_user(p);
231
232         p = leader;
233         if (unlikely(zap_leader))
234                 goto repeat;
235 }
236
237 void rcuwait_wake_up(struct rcuwait *w)
238 {
239         struct task_struct *task;
240
241         rcu_read_lock();
242
243         /*
244          * Order condition vs @task, such that everything prior to the load
245          * of @task is visible. This is the condition as to why the user called
246          * rcuwait_trywake() in the first place. Pairs with set_current_state()
247          * barrier (A) in rcuwait_wait_event().
248          *
249          *    WAIT                WAKE
250          *    [S] tsk = current   [S] cond = true
251          *        MB (A)              MB (B)
252          *    [L] cond            [L] tsk
253          */
254         smp_mb(); /* (B) */
255
256         task = rcu_dereference(w->task);
257         if (task)
258                 wake_up_process(task);
259         rcu_read_unlock();
260 }
261
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271                                         struct task_struct *ignored_task)
272 {
273         struct task_struct *p;
274
275         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276                 if ((p == ignored_task) ||
277                     (p->exit_state && thread_group_empty(p)) ||
278                     is_global_init(p->real_parent))
279                         continue;
280
281                 if (task_pgrp(p->real_parent) != pgrp &&
282                     task_session(p->real_parent) == task_session(p))
283                         return 0;
284         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286         return 1;
287 }
288
289 int is_current_pgrp_orphaned(void)
290 {
291         int retval;
292
293         read_lock(&tasklist_lock);
294         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295         read_unlock(&tasklist_lock);
296
297         return retval;
298 }
299
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302         struct task_struct *p;
303
304         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306                         return true;
307         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309         return false;
310 }
311
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320         struct pid *pgrp = task_pgrp(tsk);
321         struct task_struct *ignored_task = tsk;
322
323         if (!parent)
324                 /* exit: our father is in a different pgrp than
325                  * we are and we were the only connection outside.
326                  */
327                 parent = tsk->real_parent;
328         else
329                 /* reparent: our child is in a different pgrp than
330                  * we are, and it was the only connection outside.
331                  */
332                 ignored_task = NULL;
333
334         if (task_pgrp(parent) != pgrp &&
335             task_session(parent) == task_session(tsk) &&
336             will_become_orphaned_pgrp(pgrp, ignored_task) &&
337             has_stopped_jobs(pgrp)) {
338                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340         }
341 }
342
343 #ifdef CONFIG_MEMCG
344 /*
345  * A task is exiting.   If it owned this mm, find a new owner for the mm.
346  */
347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349         struct task_struct *c, *g, *p = current;
350
351 retry:
352         /*
353          * If the exiting or execing task is not the owner, it's
354          * someone else's problem.
355          */
356         if (mm->owner != p)
357                 return;
358         /*
359          * The current owner is exiting/execing and there are no other
360          * candidates.  Do not leave the mm pointing to a possibly
361          * freed task structure.
362          */
363         if (atomic_read(&mm->mm_users) <= 1) {
364                 WRITE_ONCE(mm->owner, NULL);
365                 return;
366         }
367
368         read_lock(&tasklist_lock);
369         /*
370          * Search in the children
371          */
372         list_for_each_entry(c, &p->children, sibling) {
373                 if (c->mm == mm)
374                         goto assign_new_owner;
375         }
376
377         /*
378          * Search in the siblings
379          */
380         list_for_each_entry(c, &p->real_parent->children, sibling) {
381                 if (c->mm == mm)
382                         goto assign_new_owner;
383         }
384
385         /*
386          * Search through everything else, we should not get here often.
387          */
388         for_each_process(g) {
389                 if (g->flags & PF_KTHREAD)
390                         continue;
391                 for_each_thread(g, c) {
392                         if (c->mm == mm)
393                                 goto assign_new_owner;
394                         if (c->mm)
395                                 break;
396                 }
397         }
398         read_unlock(&tasklist_lock);
399         /*
400          * We found no owner yet mm_users > 1: this implies that we are
401          * most likely racing with swapoff (try_to_unuse()) or /proc or
402          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
403          */
404         WRITE_ONCE(mm->owner, NULL);
405         return;
406
407 assign_new_owner:
408         BUG_ON(c == p);
409         get_task_struct(c);
410         /*
411          * The task_lock protects c->mm from changing.
412          * We always want mm->owner->mm == mm
413          */
414         task_lock(c);
415         /*
416          * Delay read_unlock() till we have the task_lock()
417          * to ensure that c does not slip away underneath us
418          */
419         read_unlock(&tasklist_lock);
420         if (c->mm != mm) {
421                 task_unlock(c);
422                 put_task_struct(c);
423                 goto retry;
424         }
425         WRITE_ONCE(mm->owner, c);
426         task_unlock(c);
427         put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430
431 /*
432  * Turn us into a lazy TLB process if we
433  * aren't already..
434  */
435 static void exit_mm(void)
436 {
437         struct mm_struct *mm = current->mm;
438         struct core_state *core_state;
439
440         exit_mm_release(current, mm);
441         if (!mm)
442                 return;
443         sync_mm_rss(mm);
444         /*
445          * Serialize with any possible pending coredump.
446          * We must hold mmap_sem around checking core_state
447          * and clearing tsk->mm.  The core-inducing thread
448          * will increment ->nr_threads for each thread in the
449          * group with ->mm != NULL.
450          */
451         down_read(&mm->mmap_sem);
452         core_state = mm->core_state;
453         if (core_state) {
454                 struct core_thread self;
455
456                 up_read(&mm->mmap_sem);
457
458                 self.task = current;
459                 if (self.task->flags & PF_SIGNALED)
460                         self.next = xchg(&core_state->dumper.next, &self);
461                 else
462                         self.task = NULL;
463                 /*
464                  * Implies mb(), the result of xchg() must be visible
465                  * to core_state->dumper.
466                  */
467                 if (atomic_dec_and_test(&core_state->nr_threads))
468                         complete(&core_state->startup);
469
470                 for (;;) {
471                         set_current_state(TASK_UNINTERRUPTIBLE);
472                         if (!self.task) /* see coredump_finish() */
473                                 break;
474                         freezable_schedule();
475                 }
476                 __set_current_state(TASK_RUNNING);
477                 down_read(&mm->mmap_sem);
478         }
479         mmgrab(mm);
480         BUG_ON(mm != current->active_mm);
481         /* more a memory barrier than a real lock */
482         task_lock(current);
483         current->mm = NULL;
484         up_read(&mm->mmap_sem);
485         enter_lazy_tlb(mm, current);
486         task_unlock(current);
487         mm_update_next_owner(mm);
488         mmput(mm);
489         if (test_thread_flag(TIF_MEMDIE))
490                 exit_oom_victim();
491 }
492
493 static struct task_struct *find_alive_thread(struct task_struct *p)
494 {
495         struct task_struct *t;
496
497         for_each_thread(p, t) {
498                 if (!(t->flags & PF_EXITING))
499                         return t;
500         }
501         return NULL;
502 }
503
504 static struct task_struct *find_child_reaper(struct task_struct *father,
505                                                 struct list_head *dead)
506         __releases(&tasklist_lock)
507         __acquires(&tasklist_lock)
508 {
509         struct pid_namespace *pid_ns = task_active_pid_ns(father);
510         struct task_struct *reaper = pid_ns->child_reaper;
511         struct task_struct *p, *n;
512
513         if (likely(reaper != father))
514                 return reaper;
515
516         reaper = find_alive_thread(father);
517         if (reaper) {
518                 pid_ns->child_reaper = reaper;
519                 return reaper;
520         }
521
522         write_unlock_irq(&tasklist_lock);
523
524         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
525                 list_del_init(&p->ptrace_entry);
526                 release_task(p);
527         }
528
529         zap_pid_ns_processes(pid_ns);
530         write_lock_irq(&tasklist_lock);
531
532         return father;
533 }
534
535 /*
536  * When we die, we re-parent all our children, and try to:
537  * 1. give them to another thread in our thread group, if such a member exists
538  * 2. give it to the first ancestor process which prctl'd itself as a
539  *    child_subreaper for its children (like a service manager)
540  * 3. give it to the init process (PID 1) in our pid namespace
541  */
542 static struct task_struct *find_new_reaper(struct task_struct *father,
543                                            struct task_struct *child_reaper)
544 {
545         struct task_struct *thread, *reaper;
546
547         thread = find_alive_thread(father);
548         if (thread)
549                 return thread;
550
551         if (father->signal->has_child_subreaper) {
552                 unsigned int ns_level = task_pid(father)->level;
553                 /*
554                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
555                  * We can't check reaper != child_reaper to ensure we do not
556                  * cross the namespaces, the exiting parent could be injected
557                  * by setns() + fork().
558                  * We check pid->level, this is slightly more efficient than
559                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
560                  */
561                 for (reaper = father->real_parent;
562                      task_pid(reaper)->level == ns_level;
563                      reaper = reaper->real_parent) {
564                         if (reaper == &init_task)
565                                 break;
566                         if (!reaper->signal->is_child_subreaper)
567                                 continue;
568                         thread = find_alive_thread(reaper);
569                         if (thread)
570                                 return thread;
571                 }
572         }
573
574         return child_reaper;
575 }
576
577 /*
578 * Any that need to be release_task'd are put on the @dead list.
579  */
580 static void reparent_leader(struct task_struct *father, struct task_struct *p,
581                                 struct list_head *dead)
582 {
583         if (unlikely(p->exit_state == EXIT_DEAD))
584                 return;
585
586         /* We don't want people slaying init. */
587         p->exit_signal = SIGCHLD;
588
589         /* If it has exited notify the new parent about this child's death. */
590         if (!p->ptrace &&
591             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
592                 if (do_notify_parent(p, p->exit_signal)) {
593                         p->exit_state = EXIT_DEAD;
594                         list_add(&p->ptrace_entry, dead);
595                 }
596         }
597
598         kill_orphaned_pgrp(p, father);
599 }
600
601 /*
602  * This does two things:
603  *
604  * A.  Make init inherit all the child processes
605  * B.  Check to see if any process groups have become orphaned
606  *      as a result of our exiting, and if they have any stopped
607  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
608  */
609 static void forget_original_parent(struct task_struct *father,
610                                         struct list_head *dead)
611 {
612         struct task_struct *p, *t, *reaper;
613
614         if (unlikely(!list_empty(&father->ptraced)))
615                 exit_ptrace(father, dead);
616
617         /* Can drop and reacquire tasklist_lock */
618         reaper = find_child_reaper(father, dead);
619         if (list_empty(&father->children))
620                 return;
621
622         reaper = find_new_reaper(father, reaper);
623         list_for_each_entry(p, &father->children, sibling) {
624                 for_each_thread(p, t) {
625                         t->real_parent = reaper;
626                         BUG_ON((!t->ptrace) != (t->parent == father));
627                         if (likely(!t->ptrace))
628                                 t->parent = t->real_parent;
629                         if (t->pdeath_signal)
630                                 group_send_sig_info(t->pdeath_signal,
631                                                     SEND_SIG_NOINFO, t,
632                                                     PIDTYPE_TGID);
633                 }
634                 /*
635                  * If this is a threaded reparent there is no need to
636                  * notify anyone anything has happened.
637                  */
638                 if (!same_thread_group(reaper, father))
639                         reparent_leader(father, p, dead);
640         }
641         list_splice_tail_init(&father->children, &reaper->children);
642 }
643
644 /*
645  * Send signals to all our closest relatives so that they know
646  * to properly mourn us..
647  */
648 static void exit_notify(struct task_struct *tsk, int group_dead)
649 {
650         bool autoreap;
651         struct task_struct *p, *n;
652         LIST_HEAD(dead);
653
654         write_lock_irq(&tasklist_lock);
655         forget_original_parent(tsk, &dead);
656
657         if (group_dead)
658                 kill_orphaned_pgrp(tsk->group_leader, NULL);
659
660         tsk->exit_state = EXIT_ZOMBIE;
661         if (unlikely(tsk->ptrace)) {
662                 int sig = thread_group_leader(tsk) &&
663                                 thread_group_empty(tsk) &&
664                                 !ptrace_reparented(tsk) ?
665                         tsk->exit_signal : SIGCHLD;
666                 autoreap = do_notify_parent(tsk, sig);
667         } else if (thread_group_leader(tsk)) {
668                 autoreap = thread_group_empty(tsk) &&
669                         do_notify_parent(tsk, tsk->exit_signal);
670         } else {
671                 autoreap = true;
672         }
673
674         if (autoreap) {
675                 tsk->exit_state = EXIT_DEAD;
676                 list_add(&tsk->ptrace_entry, &dead);
677         }
678
679         /* mt-exec, de_thread() is waiting for group leader */
680         if (unlikely(tsk->signal->notify_count < 0))
681                 wake_up_process(tsk->signal->group_exit_task);
682         write_unlock_irq(&tasklist_lock);
683
684         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
685                 list_del_init(&p->ptrace_entry);
686                 release_task(p);
687         }
688 }
689
690 #ifdef CONFIG_DEBUG_STACK_USAGE
691 static void check_stack_usage(void)
692 {
693         static DEFINE_SPINLOCK(low_water_lock);
694         static int lowest_to_date = THREAD_SIZE;
695         unsigned long free;
696
697         free = stack_not_used(current);
698
699         if (free >= lowest_to_date)
700                 return;
701
702         spin_lock(&low_water_lock);
703         if (free < lowest_to_date) {
704                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
705                         current->comm, task_pid_nr(current), free);
706                 lowest_to_date = free;
707         }
708         spin_unlock(&low_water_lock);
709 }
710 #else
711 static inline void check_stack_usage(void) {}
712 #endif
713
714 void __noreturn do_exit(long code)
715 {
716         struct task_struct *tsk = current;
717         int group_dead;
718
719         /*
720          * We can get here from a kernel oops, sometimes with preemption off.
721          * Start by checking for critical errors.
722          * Then fix up important state like USER_DS and preemption.
723          * Then do everything else.
724          */
725
726         WARN_ON(blk_needs_flush_plug(tsk));
727
728         if (unlikely(in_interrupt()))
729                 panic("Aiee, killing interrupt handler!");
730         if (unlikely(!tsk->pid))
731                 panic("Attempted to kill the idle task!");
732
733         /*
734          * If do_exit is called because this processes oopsed, it's possible
735          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
736          * continuing. Amongst other possible reasons, this is to prevent
737          * mm_release()->clear_child_tid() from writing to a user-controlled
738          * kernel address.
739          */
740         set_fs(USER_DS);
741
742         if (unlikely(in_atomic())) {
743                 pr_info("note: %s[%d] exited with preempt_count %d\n",
744                         current->comm, task_pid_nr(current),
745                         preempt_count());
746                 preempt_count_set(PREEMPT_ENABLED);
747         }
748
749         profile_task_exit(tsk);
750         kcov_task_exit(tsk);
751
752         ptrace_event(PTRACE_EVENT_EXIT, code);
753
754         validate_creds_for_do_exit(tsk);
755
756         /*
757          * We're taking recursive faults here in do_exit. Safest is to just
758          * leave this task alone and wait for reboot.
759          */
760         if (unlikely(tsk->flags & PF_EXITING)) {
761                 pr_alert("Fixing recursive fault but reboot is needed!\n");
762                 futex_exit_recursive(tsk);
763                 set_current_state(TASK_UNINTERRUPTIBLE);
764                 schedule();
765         }
766
767         exit_signals(tsk);  /* sets PF_EXITING */
768
769         /* sync mm's RSS info before statistics gathering */
770         if (tsk->mm)
771                 sync_mm_rss(tsk->mm);
772         acct_update_integrals(tsk);
773         group_dead = atomic_dec_and_test(&tsk->signal->live);
774         if (group_dead) {
775                 /*
776                  * If the last thread of global init has exited, panic
777                  * immediately to get a useable coredump.
778                  */
779                 if (unlikely(is_global_init(tsk)))
780                         panic("Attempted to kill init! exitcode=0x%08x\n",
781                                 tsk->signal->group_exit_code ?: (int)code);
782
783 #ifdef CONFIG_POSIX_TIMERS
784                 hrtimer_cancel(&tsk->signal->real_timer);
785                 exit_itimers(tsk->signal);
786 #endif
787                 if (tsk->mm)
788                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
789         }
790         acct_collect(code, group_dead);
791         if (group_dead)
792                 tty_audit_exit();
793         audit_free(tsk);
794
795         tsk->exit_code = code;
796         taskstats_exit(tsk, group_dead);
797
798         exit_mm();
799
800         if (group_dead)
801                 acct_process();
802         trace_sched_process_exit(tsk);
803
804         exit_sem(tsk);
805         exit_shm(tsk);
806         exit_files(tsk);
807         exit_fs(tsk);
808         if (group_dead)
809                 disassociate_ctty(1);
810         exit_task_namespaces(tsk);
811         exit_task_work(tsk);
812         exit_thread(tsk);
813         exit_umh(tsk);
814
815         /*
816          * Flush inherited counters to the parent - before the parent
817          * gets woken up by child-exit notifications.
818          *
819          * because of cgroup mode, must be called before cgroup_exit()
820          */
821         perf_event_exit_task(tsk);
822
823         sched_autogroup_exit_task(tsk);
824         cgroup_exit(tsk);
825
826         /*
827          * FIXME: do that only when needed, using sched_exit tracepoint
828          */
829         flush_ptrace_hw_breakpoint(tsk);
830
831         exit_tasks_rcu_start();
832         exit_notify(tsk, group_dead);
833         proc_exit_connector(tsk);
834         mpol_put_task_policy(tsk);
835 #ifdef CONFIG_FUTEX
836         if (unlikely(current->pi_state_cache))
837                 kfree(current->pi_state_cache);
838 #endif
839         /*
840          * Make sure we are holding no locks:
841          */
842         debug_check_no_locks_held();
843
844         if (tsk->io_context)
845                 exit_io_context(tsk);
846
847         if (tsk->splice_pipe)
848                 free_pipe_info(tsk->splice_pipe);
849
850         if (tsk->task_frag.page)
851                 put_page(tsk->task_frag.page);
852
853         validate_creds_for_do_exit(tsk);
854
855         check_stack_usage();
856         preempt_disable();
857         if (tsk->nr_dirtied)
858                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
859         exit_rcu();
860         exit_tasks_rcu_finish();
861
862         lockdep_free_task(tsk);
863         do_task_dead();
864 }
865 EXPORT_SYMBOL_GPL(do_exit);
866
867 void complete_and_exit(struct completion *comp, long code)
868 {
869         if (comp)
870                 complete(comp);
871
872         do_exit(code);
873 }
874 EXPORT_SYMBOL(complete_and_exit);
875
876 SYSCALL_DEFINE1(exit, int, error_code)
877 {
878         do_exit((error_code&0xff)<<8);
879 }
880
881 /*
882  * Take down every thread in the group.  This is called by fatal signals
883  * as well as by sys_exit_group (below).
884  */
885 void
886 do_group_exit(int exit_code)
887 {
888         struct signal_struct *sig = current->signal;
889
890         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
891
892         if (signal_group_exit(sig))
893                 exit_code = sig->group_exit_code;
894         else if (!thread_group_empty(current)) {
895                 struct sighand_struct *const sighand = current->sighand;
896
897                 spin_lock_irq(&sighand->siglock);
898                 if (signal_group_exit(sig))
899                         /* Another thread got here before we took the lock.  */
900                         exit_code = sig->group_exit_code;
901                 else {
902                         sig->group_exit_code = exit_code;
903                         sig->flags = SIGNAL_GROUP_EXIT;
904                         zap_other_threads(current);
905                 }
906                 spin_unlock_irq(&sighand->siglock);
907         }
908
909         do_exit(exit_code);
910         /* NOTREACHED */
911 }
912
913 /*
914  * this kills every thread in the thread group. Note that any externally
915  * wait4()-ing process will get the correct exit code - even if this
916  * thread is not the thread group leader.
917  */
918 SYSCALL_DEFINE1(exit_group, int, error_code)
919 {
920         do_group_exit((error_code & 0xff) << 8);
921         /* NOTREACHED */
922         return 0;
923 }
924
925 struct waitid_info {
926         pid_t pid;
927         uid_t uid;
928         int status;
929         int cause;
930 };
931
932 struct wait_opts {
933         enum pid_type           wo_type;
934         int                     wo_flags;
935         struct pid              *wo_pid;
936
937         struct waitid_info      *wo_info;
938         int                     wo_stat;
939         struct rusage           *wo_rusage;
940
941         wait_queue_entry_t              child_wait;
942         int                     notask_error;
943 };
944
945 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
946 {
947         return  wo->wo_type == PIDTYPE_MAX ||
948                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
949 }
950
951 static int
952 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
953 {
954         if (!eligible_pid(wo, p))
955                 return 0;
956
957         /*
958          * Wait for all children (clone and not) if __WALL is set or
959          * if it is traced by us.
960          */
961         if (ptrace || (wo->wo_flags & __WALL))
962                 return 1;
963
964         /*
965          * Otherwise, wait for clone children *only* if __WCLONE is set;
966          * otherwise, wait for non-clone children *only*.
967          *
968          * Note: a "clone" child here is one that reports to its parent
969          * using a signal other than SIGCHLD, or a non-leader thread which
970          * we can only see if it is traced by us.
971          */
972         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
973                 return 0;
974
975         return 1;
976 }
977
978 /*
979  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
980  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
981  * the lock and this task is uninteresting.  If we return nonzero, we have
982  * released the lock and the system call should return.
983  */
984 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
985 {
986         int state, status;
987         pid_t pid = task_pid_vnr(p);
988         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
989         struct waitid_info *infop;
990
991         if (!likely(wo->wo_flags & WEXITED))
992                 return 0;
993
994         if (unlikely(wo->wo_flags & WNOWAIT)) {
995                 status = p->exit_code;
996                 get_task_struct(p);
997                 read_unlock(&tasklist_lock);
998                 sched_annotate_sleep();
999                 if (wo->wo_rusage)
1000                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1001                 put_task_struct(p);
1002                 goto out_info;
1003         }
1004         /*
1005          * Move the task's state to DEAD/TRACE, only one thread can do this.
1006          */
1007         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1008                 EXIT_TRACE : EXIT_DEAD;
1009         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1010                 return 0;
1011         /*
1012          * We own this thread, nobody else can reap it.
1013          */
1014         read_unlock(&tasklist_lock);
1015         sched_annotate_sleep();
1016
1017         /*
1018          * Check thread_group_leader() to exclude the traced sub-threads.
1019          */
1020         if (state == EXIT_DEAD && thread_group_leader(p)) {
1021                 struct signal_struct *sig = p->signal;
1022                 struct signal_struct *psig = current->signal;
1023                 unsigned long maxrss;
1024                 u64 tgutime, tgstime;
1025
1026                 /*
1027                  * The resource counters for the group leader are in its
1028                  * own task_struct.  Those for dead threads in the group
1029                  * are in its signal_struct, as are those for the child
1030                  * processes it has previously reaped.  All these
1031                  * accumulate in the parent's signal_struct c* fields.
1032                  *
1033                  * We don't bother to take a lock here to protect these
1034                  * p->signal fields because the whole thread group is dead
1035                  * and nobody can change them.
1036                  *
1037                  * psig->stats_lock also protects us from our sub-theads
1038                  * which can reap other children at the same time. Until
1039                  * we change k_getrusage()-like users to rely on this lock
1040                  * we have to take ->siglock as well.
1041                  *
1042                  * We use thread_group_cputime_adjusted() to get times for
1043                  * the thread group, which consolidates times for all threads
1044                  * in the group including the group leader.
1045                  */
1046                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1047                 spin_lock_irq(&current->sighand->siglock);
1048                 write_seqlock(&psig->stats_lock);
1049                 psig->cutime += tgutime + sig->cutime;
1050                 psig->cstime += tgstime + sig->cstime;
1051                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1052                 psig->cmin_flt +=
1053                         p->min_flt + sig->min_flt + sig->cmin_flt;
1054                 psig->cmaj_flt +=
1055                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1056                 psig->cnvcsw +=
1057                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1058                 psig->cnivcsw +=
1059                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1060                 psig->cinblock +=
1061                         task_io_get_inblock(p) +
1062                         sig->inblock + sig->cinblock;
1063                 psig->coublock +=
1064                         task_io_get_oublock(p) +
1065                         sig->oublock + sig->coublock;
1066                 maxrss = max(sig->maxrss, sig->cmaxrss);
1067                 if (psig->cmaxrss < maxrss)
1068                         psig->cmaxrss = maxrss;
1069                 task_io_accounting_add(&psig->ioac, &p->ioac);
1070                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1071                 write_sequnlock(&psig->stats_lock);
1072                 spin_unlock_irq(&current->sighand->siglock);
1073         }
1074
1075         if (wo->wo_rusage)
1076                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1077         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1078                 ? p->signal->group_exit_code : p->exit_code;
1079         wo->wo_stat = status;
1080
1081         if (state == EXIT_TRACE) {
1082                 write_lock_irq(&tasklist_lock);
1083                 /* We dropped tasklist, ptracer could die and untrace */
1084                 ptrace_unlink(p);
1085
1086                 /* If parent wants a zombie, don't release it now */
1087                 state = EXIT_ZOMBIE;
1088                 if (do_notify_parent(p, p->exit_signal))
1089                         state = EXIT_DEAD;
1090                 p->exit_state = state;
1091                 write_unlock_irq(&tasklist_lock);
1092         }
1093         if (state == EXIT_DEAD)
1094                 release_task(p);
1095
1096 out_info:
1097         infop = wo->wo_info;
1098         if (infop) {
1099                 if ((status & 0x7f) == 0) {
1100                         infop->cause = CLD_EXITED;
1101                         infop->status = status >> 8;
1102                 } else {
1103                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1104                         infop->status = status & 0x7f;
1105                 }
1106                 infop->pid = pid;
1107                 infop->uid = uid;
1108         }
1109
1110         return pid;
1111 }
1112
1113 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1114 {
1115         if (ptrace) {
1116                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1117                         return &p->exit_code;
1118         } else {
1119                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1120                         return &p->signal->group_exit_code;
1121         }
1122         return NULL;
1123 }
1124
1125 /**
1126  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1127  * @wo: wait options
1128  * @ptrace: is the wait for ptrace
1129  * @p: task to wait for
1130  *
1131  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1132  *
1133  * CONTEXT:
1134  * read_lock(&tasklist_lock), which is released if return value is
1135  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1136  *
1137  * RETURNS:
1138  * 0 if wait condition didn't exist and search for other wait conditions
1139  * should continue.  Non-zero return, -errno on failure and @p's pid on
1140  * success, implies that tasklist_lock is released and wait condition
1141  * search should terminate.
1142  */
1143 static int wait_task_stopped(struct wait_opts *wo,
1144                                 int ptrace, struct task_struct *p)
1145 {
1146         struct waitid_info *infop;
1147         int exit_code, *p_code, why;
1148         uid_t uid = 0; /* unneeded, required by compiler */
1149         pid_t pid;
1150
1151         /*
1152          * Traditionally we see ptrace'd stopped tasks regardless of options.
1153          */
1154         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1155                 return 0;
1156
1157         if (!task_stopped_code(p, ptrace))
1158                 return 0;
1159
1160         exit_code = 0;
1161         spin_lock_irq(&p->sighand->siglock);
1162
1163         p_code = task_stopped_code(p, ptrace);
1164         if (unlikely(!p_code))
1165                 goto unlock_sig;
1166
1167         exit_code = *p_code;
1168         if (!exit_code)
1169                 goto unlock_sig;
1170
1171         if (!unlikely(wo->wo_flags & WNOWAIT))
1172                 *p_code = 0;
1173
1174         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1175 unlock_sig:
1176         spin_unlock_irq(&p->sighand->siglock);
1177         if (!exit_code)
1178                 return 0;
1179
1180         /*
1181          * Now we are pretty sure this task is interesting.
1182          * Make sure it doesn't get reaped out from under us while we
1183          * give up the lock and then examine it below.  We don't want to
1184          * keep holding onto the tasklist_lock while we call getrusage and
1185          * possibly take page faults for user memory.
1186          */
1187         get_task_struct(p);
1188         pid = task_pid_vnr(p);
1189         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1190         read_unlock(&tasklist_lock);
1191         sched_annotate_sleep();
1192         if (wo->wo_rusage)
1193                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1194         put_task_struct(p);
1195
1196         if (likely(!(wo->wo_flags & WNOWAIT)))
1197                 wo->wo_stat = (exit_code << 8) | 0x7f;
1198
1199         infop = wo->wo_info;
1200         if (infop) {
1201                 infop->cause = why;
1202                 infop->status = exit_code;
1203                 infop->pid = pid;
1204                 infop->uid = uid;
1205         }
1206         return pid;
1207 }
1208
1209 /*
1210  * Handle do_wait work for one task in a live, non-stopped state.
1211  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1212  * the lock and this task is uninteresting.  If we return nonzero, we have
1213  * released the lock and the system call should return.
1214  */
1215 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1216 {
1217         struct waitid_info *infop;
1218         pid_t pid;
1219         uid_t uid;
1220
1221         if (!unlikely(wo->wo_flags & WCONTINUED))
1222                 return 0;
1223
1224         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1225                 return 0;
1226
1227         spin_lock_irq(&p->sighand->siglock);
1228         /* Re-check with the lock held.  */
1229         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1230                 spin_unlock_irq(&p->sighand->siglock);
1231                 return 0;
1232         }
1233         if (!unlikely(wo->wo_flags & WNOWAIT))
1234                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1235         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1236         spin_unlock_irq(&p->sighand->siglock);
1237
1238         pid = task_pid_vnr(p);
1239         get_task_struct(p);
1240         read_unlock(&tasklist_lock);
1241         sched_annotate_sleep();
1242         if (wo->wo_rusage)
1243                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1244         put_task_struct(p);
1245
1246         infop = wo->wo_info;
1247         if (!infop) {
1248                 wo->wo_stat = 0xffff;
1249         } else {
1250                 infop->cause = CLD_CONTINUED;
1251                 infop->pid = pid;
1252                 infop->uid = uid;
1253                 infop->status = SIGCONT;
1254         }
1255         return pid;
1256 }
1257
1258 /*
1259  * Consider @p for a wait by @parent.
1260  *
1261  * -ECHILD should be in ->notask_error before the first call.
1262  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1263  * Returns zero if the search for a child should continue;
1264  * then ->notask_error is 0 if @p is an eligible child,
1265  * or still -ECHILD.
1266  */
1267 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1268                                 struct task_struct *p)
1269 {
1270         /*
1271          * We can race with wait_task_zombie() from another thread.
1272          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1273          * can't confuse the checks below.
1274          */
1275         int exit_state = READ_ONCE(p->exit_state);
1276         int ret;
1277
1278         if (unlikely(exit_state == EXIT_DEAD))
1279                 return 0;
1280
1281         ret = eligible_child(wo, ptrace, p);
1282         if (!ret)
1283                 return ret;
1284
1285         if (unlikely(exit_state == EXIT_TRACE)) {
1286                 /*
1287                  * ptrace == 0 means we are the natural parent. In this case
1288                  * we should clear notask_error, debugger will notify us.
1289                  */
1290                 if (likely(!ptrace))
1291                         wo->notask_error = 0;
1292                 return 0;
1293         }
1294
1295         if (likely(!ptrace) && unlikely(p->ptrace)) {
1296                 /*
1297                  * If it is traced by its real parent's group, just pretend
1298                  * the caller is ptrace_do_wait() and reap this child if it
1299                  * is zombie.
1300                  *
1301                  * This also hides group stop state from real parent; otherwise
1302                  * a single stop can be reported twice as group and ptrace stop.
1303                  * If a ptracer wants to distinguish these two events for its
1304                  * own children it should create a separate process which takes
1305                  * the role of real parent.
1306                  */
1307                 if (!ptrace_reparented(p))
1308                         ptrace = 1;
1309         }
1310
1311         /* slay zombie? */
1312         if (exit_state == EXIT_ZOMBIE) {
1313                 /* we don't reap group leaders with subthreads */
1314                 if (!delay_group_leader(p)) {
1315                         /*
1316                          * A zombie ptracee is only visible to its ptracer.
1317                          * Notification and reaping will be cascaded to the
1318                          * real parent when the ptracer detaches.
1319                          */
1320                         if (unlikely(ptrace) || likely(!p->ptrace))
1321                                 return wait_task_zombie(wo, p);
1322                 }
1323
1324                 /*
1325                  * Allow access to stopped/continued state via zombie by
1326                  * falling through.  Clearing of notask_error is complex.
1327                  *
1328                  * When !@ptrace:
1329                  *
1330                  * If WEXITED is set, notask_error should naturally be
1331                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1332                  * so, if there are live subthreads, there are events to
1333                  * wait for.  If all subthreads are dead, it's still safe
1334                  * to clear - this function will be called again in finite
1335                  * amount time once all the subthreads are released and
1336                  * will then return without clearing.
1337                  *
1338                  * When @ptrace:
1339                  *
1340                  * Stopped state is per-task and thus can't change once the
1341                  * target task dies.  Only continued and exited can happen.
1342                  * Clear notask_error if WCONTINUED | WEXITED.
1343                  */
1344                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1345                         wo->notask_error = 0;
1346         } else {
1347                 /*
1348                  * @p is alive and it's gonna stop, continue or exit, so
1349                  * there always is something to wait for.
1350                  */
1351                 wo->notask_error = 0;
1352         }
1353
1354         /*
1355          * Wait for stopped.  Depending on @ptrace, different stopped state
1356          * is used and the two don't interact with each other.
1357          */
1358         ret = wait_task_stopped(wo, ptrace, p);
1359         if (ret)
1360                 return ret;
1361
1362         /*
1363          * Wait for continued.  There's only one continued state and the
1364          * ptracer can consume it which can confuse the real parent.  Don't
1365          * use WCONTINUED from ptracer.  You don't need or want it.
1366          */
1367         return wait_task_continued(wo, p);
1368 }
1369
1370 /*
1371  * Do the work of do_wait() for one thread in the group, @tsk.
1372  *
1373  * -ECHILD should be in ->notask_error before the first call.
1374  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1375  * Returns zero if the search for a child should continue; then
1376  * ->notask_error is 0 if there were any eligible children,
1377  * or still -ECHILD.
1378  */
1379 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1380 {
1381         struct task_struct *p;
1382
1383         list_for_each_entry(p, &tsk->children, sibling) {
1384                 int ret = wait_consider_task(wo, 0, p);
1385
1386                 if (ret)
1387                         return ret;
1388         }
1389
1390         return 0;
1391 }
1392
1393 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1394 {
1395         struct task_struct *p;
1396
1397         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1398                 int ret = wait_consider_task(wo, 1, p);
1399
1400                 if (ret)
1401                         return ret;
1402         }
1403
1404         return 0;
1405 }
1406
1407 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1408                                 int sync, void *key)
1409 {
1410         struct wait_opts *wo = container_of(wait, struct wait_opts,
1411                                                 child_wait);
1412         struct task_struct *p = key;
1413
1414         if (!eligible_pid(wo, p))
1415                 return 0;
1416
1417         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1418                 return 0;
1419
1420         return default_wake_function(wait, mode, sync, key);
1421 }
1422
1423 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1424 {
1425         __wake_up_sync_key(&parent->signal->wait_chldexit,
1426                                 TASK_INTERRUPTIBLE, 1, p);
1427 }
1428
1429 static long do_wait(struct wait_opts *wo)
1430 {
1431         struct task_struct *tsk;
1432         int retval;
1433
1434         trace_sched_process_wait(wo->wo_pid);
1435
1436         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1437         wo->child_wait.private = current;
1438         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1439 repeat:
1440         /*
1441          * If there is nothing that can match our criteria, just get out.
1442          * We will clear ->notask_error to zero if we see any child that
1443          * might later match our criteria, even if we are not able to reap
1444          * it yet.
1445          */
1446         wo->notask_error = -ECHILD;
1447         if ((wo->wo_type < PIDTYPE_MAX) &&
1448            (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1449                 goto notask;
1450
1451         set_current_state(TASK_INTERRUPTIBLE);
1452         read_lock(&tasklist_lock);
1453         tsk = current;
1454         do {
1455                 retval = do_wait_thread(wo, tsk);
1456                 if (retval)
1457                         goto end;
1458
1459                 retval = ptrace_do_wait(wo, tsk);
1460                 if (retval)
1461                         goto end;
1462
1463                 if (wo->wo_flags & __WNOTHREAD)
1464                         break;
1465         } while_each_thread(current, tsk);
1466         read_unlock(&tasklist_lock);
1467
1468 notask:
1469         retval = wo->notask_error;
1470         if (!retval && !(wo->wo_flags & WNOHANG)) {
1471                 retval = -ERESTARTSYS;
1472                 if (!signal_pending(current)) {
1473                         schedule();
1474                         goto repeat;
1475                 }
1476         }
1477 end:
1478         __set_current_state(TASK_RUNNING);
1479         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1480         return retval;
1481 }
1482
1483 static struct pid *pidfd_get_pid(unsigned int fd)
1484 {
1485         struct fd f;
1486         struct pid *pid;
1487
1488         f = fdget(fd);
1489         if (!f.file)
1490                 return ERR_PTR(-EBADF);
1491
1492         pid = pidfd_pid(f.file);
1493         if (!IS_ERR(pid))
1494                 get_pid(pid);
1495
1496         fdput(f);
1497         return pid;
1498 }
1499
1500 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1501                           int options, struct rusage *ru)
1502 {
1503         struct wait_opts wo;
1504         struct pid *pid = NULL;
1505         enum pid_type type;
1506         long ret;
1507
1508         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1509                         __WNOTHREAD|__WCLONE|__WALL))
1510                 return -EINVAL;
1511         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1512                 return -EINVAL;
1513
1514         switch (which) {
1515         case P_ALL:
1516                 type = PIDTYPE_MAX;
1517                 break;
1518         case P_PID:
1519                 type = PIDTYPE_PID;
1520                 if (upid <= 0)
1521                         return -EINVAL;
1522
1523                 pid = find_get_pid(upid);
1524                 break;
1525         case P_PGID:
1526                 type = PIDTYPE_PGID;
1527                 if (upid < 0)
1528                         return -EINVAL;
1529
1530                 if (upid)
1531                         pid = find_get_pid(upid);
1532                 else
1533                         pid = get_task_pid(current, PIDTYPE_PGID);
1534                 break;
1535         case P_PIDFD:
1536                 type = PIDTYPE_PID;
1537                 if (upid < 0)
1538                         return -EINVAL;
1539
1540                 pid = pidfd_get_pid(upid);
1541                 if (IS_ERR(pid))
1542                         return PTR_ERR(pid);
1543                 break;
1544         default:
1545                 return -EINVAL;
1546         }
1547
1548         wo.wo_type      = type;
1549         wo.wo_pid       = pid;
1550         wo.wo_flags     = options;
1551         wo.wo_info      = infop;
1552         wo.wo_rusage    = ru;
1553         ret = do_wait(&wo);
1554
1555         put_pid(pid);
1556         return ret;
1557 }
1558
1559 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1560                 infop, int, options, struct rusage __user *, ru)
1561 {
1562         struct rusage r;
1563         struct waitid_info info = {.status = 0};
1564         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1565         int signo = 0;
1566
1567         if (err > 0) {
1568                 signo = SIGCHLD;
1569                 err = 0;
1570                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1571                         return -EFAULT;
1572         }
1573         if (!infop)
1574                 return err;
1575
1576         if (!user_access_begin(infop, sizeof(*infop)))
1577                 return -EFAULT;
1578
1579         unsafe_put_user(signo, &infop->si_signo, Efault);
1580         unsafe_put_user(0, &infop->si_errno, Efault);
1581         unsafe_put_user(info.cause, &infop->si_code, Efault);
1582         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1583         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1584         unsafe_put_user(info.status, &infop->si_status, Efault);
1585         user_access_end();
1586         return err;
1587 Efault:
1588         user_access_end();
1589         return -EFAULT;
1590 }
1591
1592 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1593                   struct rusage *ru)
1594 {
1595         struct wait_opts wo;
1596         struct pid *pid = NULL;
1597         enum pid_type type;
1598         long ret;
1599
1600         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1601                         __WNOTHREAD|__WCLONE|__WALL))
1602                 return -EINVAL;
1603
1604         /* -INT_MIN is not defined */
1605         if (upid == INT_MIN)
1606                 return -ESRCH;
1607
1608         if (upid == -1)
1609                 type = PIDTYPE_MAX;
1610         else if (upid < 0) {
1611                 type = PIDTYPE_PGID;
1612                 pid = find_get_pid(-upid);
1613         } else if (upid == 0) {
1614                 type = PIDTYPE_PGID;
1615                 pid = get_task_pid(current, PIDTYPE_PGID);
1616         } else /* upid > 0 */ {
1617                 type = PIDTYPE_PID;
1618                 pid = find_get_pid(upid);
1619         }
1620
1621         wo.wo_type      = type;
1622         wo.wo_pid       = pid;
1623         wo.wo_flags     = options | WEXITED;
1624         wo.wo_info      = NULL;
1625         wo.wo_stat      = 0;
1626         wo.wo_rusage    = ru;
1627         ret = do_wait(&wo);
1628         put_pid(pid);
1629         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1630                 ret = -EFAULT;
1631
1632         return ret;
1633 }
1634
1635 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1636                 int, options, struct rusage __user *, ru)
1637 {
1638         struct rusage r;
1639         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1640
1641         if (err > 0) {
1642                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1643                         return -EFAULT;
1644         }
1645         return err;
1646 }
1647
1648 #ifdef __ARCH_WANT_SYS_WAITPID
1649
1650 /*
1651  * sys_waitpid() remains for compatibility. waitpid() should be
1652  * implemented by calling sys_wait4() from libc.a.
1653  */
1654 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1655 {
1656         return kernel_wait4(pid, stat_addr, options, NULL);
1657 }
1658
1659 #endif
1660
1661 #ifdef CONFIG_COMPAT
1662 COMPAT_SYSCALL_DEFINE4(wait4,
1663         compat_pid_t, pid,
1664         compat_uint_t __user *, stat_addr,
1665         int, options,
1666         struct compat_rusage __user *, ru)
1667 {
1668         struct rusage r;
1669         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1670         if (err > 0) {
1671                 if (ru && put_compat_rusage(&r, ru))
1672                         return -EFAULT;
1673         }
1674         return err;
1675 }
1676
1677 COMPAT_SYSCALL_DEFINE5(waitid,
1678                 int, which, compat_pid_t, pid,
1679                 struct compat_siginfo __user *, infop, int, options,
1680                 struct compat_rusage __user *, uru)
1681 {
1682         struct rusage ru;
1683         struct waitid_info info = {.status = 0};
1684         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1685         int signo = 0;
1686         if (err > 0) {
1687                 signo = SIGCHLD;
1688                 err = 0;
1689                 if (uru) {
1690                         /* kernel_waitid() overwrites everything in ru */
1691                         if (COMPAT_USE_64BIT_TIME)
1692                                 err = copy_to_user(uru, &ru, sizeof(ru));
1693                         else
1694                                 err = put_compat_rusage(&ru, uru);
1695                         if (err)
1696                                 return -EFAULT;
1697                 }
1698         }
1699
1700         if (!infop)
1701                 return err;
1702
1703         if (!user_access_begin(infop, sizeof(*infop)))
1704                 return -EFAULT;
1705
1706         unsafe_put_user(signo, &infop->si_signo, Efault);
1707         unsafe_put_user(0, &infop->si_errno, Efault);
1708         unsafe_put_user(info.cause, &infop->si_code, Efault);
1709         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1710         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1711         unsafe_put_user(info.status, &infop->si_status, Efault);
1712         user_access_end();
1713         return err;
1714 Efault:
1715         user_access_end();
1716         return -EFAULT;
1717 }
1718 #endif
1719
1720 __weak void abort(void)
1721 {
1722         BUG();
1723
1724         /* if that doesn't kill us, halt */
1725         panic("Oops failed to kill thread");
1726 }
1727 EXPORT_SYMBOL(abort);