GNU Linux-libre 5.4.257-gnu1
[releases.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/sysfs.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/pgtable.h>
71 #include <asm/mmu_context.h>
72
73 /*
74  * The default value should be high enough to not crash a system that randomly
75  * crashes its kernel from time to time, but low enough to at least not permit
76  * overflowing 32-bit refcounts or the ldsem writer count.
77  */
78 static unsigned int oops_limit = 10000;
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_exit_table[] = {
82         {
83                 .procname       = "oops_limit",
84                 .data           = &oops_limit,
85                 .maxlen         = sizeof(oops_limit),
86                 .mode           = 0644,
87                 .proc_handler   = proc_douintvec,
88         },
89         { }
90 };
91
92 static __init int kernel_exit_sysctls_init(void)
93 {
94         register_sysctl_init("kernel", kern_exit_table);
95         return 0;
96 }
97 late_initcall(kernel_exit_sysctls_init);
98 #endif
99
100 static atomic_t oops_count = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SYSFS
103 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
104                                char *page)
105 {
106         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
107 }
108
109 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
110
111 static __init int kernel_exit_sysfs_init(void)
112 {
113         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
114         return 0;
115 }
116 late_initcall(kernel_exit_sysfs_init);
117 #endif
118
119 static void __unhash_process(struct task_struct *p, bool group_dead)
120 {
121         nr_threads--;
122         detach_pid(p, PIDTYPE_PID);
123         if (group_dead) {
124                 detach_pid(p, PIDTYPE_TGID);
125                 detach_pid(p, PIDTYPE_PGID);
126                 detach_pid(p, PIDTYPE_SID);
127
128                 list_del_rcu(&p->tasks);
129                 list_del_init(&p->sibling);
130                 __this_cpu_dec(process_counts);
131         }
132         list_del_rcu(&p->thread_group);
133         list_del_rcu(&p->thread_node);
134 }
135
136 /*
137  * This function expects the tasklist_lock write-locked.
138  */
139 static void __exit_signal(struct task_struct *tsk)
140 {
141         struct signal_struct *sig = tsk->signal;
142         bool group_dead = thread_group_leader(tsk);
143         struct sighand_struct *sighand;
144         struct tty_struct *tty;
145         u64 utime, stime;
146
147         sighand = rcu_dereference_check(tsk->sighand,
148                                         lockdep_tasklist_lock_is_held());
149         spin_lock(&sighand->siglock);
150
151 #ifdef CONFIG_POSIX_TIMERS
152         posix_cpu_timers_exit(tsk);
153         if (group_dead) {
154                 posix_cpu_timers_exit_group(tsk);
155         } else {
156                 /*
157                  * This can only happen if the caller is de_thread().
158                  * FIXME: this is the temporary hack, we should teach
159                  * posix-cpu-timers to handle this case correctly.
160                  */
161                 if (unlikely(has_group_leader_pid(tsk)))
162                         posix_cpu_timers_exit_group(tsk);
163         }
164 #endif
165
166         if (group_dead) {
167                 tty = sig->tty;
168                 sig->tty = NULL;
169         } else {
170                 /*
171                  * If there is any task waiting for the group exit
172                  * then notify it:
173                  */
174                 if (sig->notify_count > 0 && !--sig->notify_count)
175                         wake_up_process(sig->group_exit_task);
176
177                 if (tsk == sig->curr_target)
178                         sig->curr_target = next_thread(tsk);
179         }
180
181         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
182                               sizeof(unsigned long long));
183
184         /*
185          * Accumulate here the counters for all threads as they die. We could
186          * skip the group leader because it is the last user of signal_struct,
187          * but we want to avoid the race with thread_group_cputime() which can
188          * see the empty ->thread_head list.
189          */
190         task_cputime(tsk, &utime, &stime);
191         write_seqlock(&sig->stats_lock);
192         sig->utime += utime;
193         sig->stime += stime;
194         sig->gtime += task_gtime(tsk);
195         sig->min_flt += tsk->min_flt;
196         sig->maj_flt += tsk->maj_flt;
197         sig->nvcsw += tsk->nvcsw;
198         sig->nivcsw += tsk->nivcsw;
199         sig->inblock += task_io_get_inblock(tsk);
200         sig->oublock += task_io_get_oublock(tsk);
201         task_io_accounting_add(&sig->ioac, &tsk->ioac);
202         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
203         sig->nr_threads--;
204         __unhash_process(tsk, group_dead);
205         write_sequnlock(&sig->stats_lock);
206
207         /*
208          * Do this under ->siglock, we can race with another thread
209          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
210          */
211         flush_sigqueue(&tsk->pending);
212         tsk->sighand = NULL;
213         spin_unlock(&sighand->siglock);
214
215         __cleanup_sighand(sighand);
216         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
217         if (group_dead) {
218                 flush_sigqueue(&sig->shared_pending);
219                 tty_kref_put(tty);
220         }
221 }
222
223 static void delayed_put_task_struct(struct rcu_head *rhp)
224 {
225         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226
227         perf_event_delayed_put(tsk);
228         trace_sched_process_free(tsk);
229         put_task_struct(tsk);
230 }
231
232 void put_task_struct_rcu_user(struct task_struct *task)
233 {
234         if (refcount_dec_and_test(&task->rcu_users))
235                 call_rcu(&task->rcu, delayed_put_task_struct);
236 }
237
238 void release_task(struct task_struct *p)
239 {
240         struct task_struct *leader;
241         int zap_leader;
242 repeat:
243         /* don't need to get the RCU readlock here - the process is dead and
244          * can't be modifying its own credentials. But shut RCU-lockdep up */
245         rcu_read_lock();
246         atomic_dec(&__task_cred(p)->user->processes);
247         rcu_read_unlock();
248
249         proc_flush_task(p);
250         cgroup_release(p);
251
252         write_lock_irq(&tasklist_lock);
253         ptrace_release_task(p);
254         __exit_signal(p);
255
256         /*
257          * If we are the last non-leader member of the thread
258          * group, and the leader is zombie, then notify the
259          * group leader's parent process. (if it wants notification.)
260          */
261         zap_leader = 0;
262         leader = p->group_leader;
263         if (leader != p && thread_group_empty(leader)
264                         && leader->exit_state == EXIT_ZOMBIE) {
265                 /*
266                  * If we were the last child thread and the leader has
267                  * exited already, and the leader's parent ignores SIGCHLD,
268                  * then we are the one who should release the leader.
269                  */
270                 zap_leader = do_notify_parent(leader, leader->exit_signal);
271                 if (zap_leader)
272                         leader->exit_state = EXIT_DEAD;
273         }
274
275         write_unlock_irq(&tasklist_lock);
276         release_thread(p);
277         put_task_struct_rcu_user(p);
278
279         p = leader;
280         if (unlikely(zap_leader))
281                 goto repeat;
282 }
283
284 void rcuwait_wake_up(struct rcuwait *w)
285 {
286         struct task_struct *task;
287
288         rcu_read_lock();
289
290         /*
291          * Order condition vs @task, such that everything prior to the load
292          * of @task is visible. This is the condition as to why the user called
293          * rcuwait_trywake() in the first place. Pairs with set_current_state()
294          * barrier (A) in rcuwait_wait_event().
295          *
296          *    WAIT                WAKE
297          *    [S] tsk = current   [S] cond = true
298          *        MB (A)              MB (B)
299          *    [L] cond            [L] tsk
300          */
301         smp_mb(); /* (B) */
302
303         task = rcu_dereference(w->task);
304         if (task)
305                 wake_up_process(task);
306         rcu_read_unlock();
307 }
308
309 /*
310  * Determine if a process group is "orphaned", according to the POSIX
311  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
312  * by terminal-generated stop signals.  Newly orphaned process groups are
313  * to receive a SIGHUP and a SIGCONT.
314  *
315  * "I ask you, have you ever known what it is to be an orphan?"
316  */
317 static int will_become_orphaned_pgrp(struct pid *pgrp,
318                                         struct task_struct *ignored_task)
319 {
320         struct task_struct *p;
321
322         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
323                 if ((p == ignored_task) ||
324                     (p->exit_state && thread_group_empty(p)) ||
325                     is_global_init(p->real_parent))
326                         continue;
327
328                 if (task_pgrp(p->real_parent) != pgrp &&
329                     task_session(p->real_parent) == task_session(p))
330                         return 0;
331         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
332
333         return 1;
334 }
335
336 int is_current_pgrp_orphaned(void)
337 {
338         int retval;
339
340         read_lock(&tasklist_lock);
341         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
342         read_unlock(&tasklist_lock);
343
344         return retval;
345 }
346
347 static bool has_stopped_jobs(struct pid *pgrp)
348 {
349         struct task_struct *p;
350
351         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
352                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
353                         return true;
354         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
355
356         return false;
357 }
358
359 /*
360  * Check to see if any process groups have become orphaned as
361  * a result of our exiting, and if they have any stopped jobs,
362  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
363  */
364 static void
365 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
366 {
367         struct pid *pgrp = task_pgrp(tsk);
368         struct task_struct *ignored_task = tsk;
369
370         if (!parent)
371                 /* exit: our father is in a different pgrp than
372                  * we are and we were the only connection outside.
373                  */
374                 parent = tsk->real_parent;
375         else
376                 /* reparent: our child is in a different pgrp than
377                  * we are, and it was the only connection outside.
378                  */
379                 ignored_task = NULL;
380
381         if (task_pgrp(parent) != pgrp &&
382             task_session(parent) == task_session(tsk) &&
383             will_become_orphaned_pgrp(pgrp, ignored_task) &&
384             has_stopped_jobs(pgrp)) {
385                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
386                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
387         }
388 }
389
390 #ifdef CONFIG_MEMCG
391 /*
392  * A task is exiting.   If it owned this mm, find a new owner for the mm.
393  */
394 void mm_update_next_owner(struct mm_struct *mm)
395 {
396         struct task_struct *c, *g, *p = current;
397
398 retry:
399         /*
400          * If the exiting or execing task is not the owner, it's
401          * someone else's problem.
402          */
403         if (mm->owner != p)
404                 return;
405         /*
406          * The current owner is exiting/execing and there are no other
407          * candidates.  Do not leave the mm pointing to a possibly
408          * freed task structure.
409          */
410         if (atomic_read(&mm->mm_users) <= 1) {
411                 WRITE_ONCE(mm->owner, NULL);
412                 return;
413         }
414
415         read_lock(&tasklist_lock);
416         /*
417          * Search in the children
418          */
419         list_for_each_entry(c, &p->children, sibling) {
420                 if (c->mm == mm)
421                         goto assign_new_owner;
422         }
423
424         /*
425          * Search in the siblings
426          */
427         list_for_each_entry(c, &p->real_parent->children, sibling) {
428                 if (c->mm == mm)
429                         goto assign_new_owner;
430         }
431
432         /*
433          * Search through everything else, we should not get here often.
434          */
435         for_each_process(g) {
436                 if (g->flags & PF_KTHREAD)
437                         continue;
438                 for_each_thread(g, c) {
439                         if (c->mm == mm)
440                                 goto assign_new_owner;
441                         if (c->mm)
442                                 break;
443                 }
444         }
445         read_unlock(&tasklist_lock);
446         /*
447          * We found no owner yet mm_users > 1: this implies that we are
448          * most likely racing with swapoff (try_to_unuse()) or /proc or
449          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
450          */
451         WRITE_ONCE(mm->owner, NULL);
452         return;
453
454 assign_new_owner:
455         BUG_ON(c == p);
456         get_task_struct(c);
457         /*
458          * The task_lock protects c->mm from changing.
459          * We always want mm->owner->mm == mm
460          */
461         task_lock(c);
462         /*
463          * Delay read_unlock() till we have the task_lock()
464          * to ensure that c does not slip away underneath us
465          */
466         read_unlock(&tasklist_lock);
467         if (c->mm != mm) {
468                 task_unlock(c);
469                 put_task_struct(c);
470                 goto retry;
471         }
472         WRITE_ONCE(mm->owner, c);
473         task_unlock(c);
474         put_task_struct(c);
475 }
476 #endif /* CONFIG_MEMCG */
477
478 /*
479  * Turn us into a lazy TLB process if we
480  * aren't already..
481  */
482 static void exit_mm(void)
483 {
484         struct mm_struct *mm = current->mm;
485         struct core_state *core_state;
486
487         exit_mm_release(current, mm);
488         if (!mm)
489                 return;
490         sync_mm_rss(mm);
491         /*
492          * Serialize with any possible pending coredump.
493          * We must hold mmap_sem around checking core_state
494          * and clearing tsk->mm.  The core-inducing thread
495          * will increment ->nr_threads for each thread in the
496          * group with ->mm != NULL.
497          */
498         down_read(&mm->mmap_sem);
499         core_state = mm->core_state;
500         if (core_state) {
501                 struct core_thread self;
502
503                 up_read(&mm->mmap_sem);
504
505                 self.task = current;
506                 if (self.task->flags & PF_SIGNALED)
507                         self.next = xchg(&core_state->dumper.next, &self);
508                 else
509                         self.task = NULL;
510                 /*
511                  * Implies mb(), the result of xchg() must be visible
512                  * to core_state->dumper.
513                  */
514                 if (atomic_dec_and_test(&core_state->nr_threads))
515                         complete(&core_state->startup);
516
517                 for (;;) {
518                         set_current_state(TASK_UNINTERRUPTIBLE);
519                         if (!self.task) /* see coredump_finish() */
520                                 break;
521                         freezable_schedule();
522                 }
523                 __set_current_state(TASK_RUNNING);
524                 down_read(&mm->mmap_sem);
525         }
526         mmgrab(mm);
527         BUG_ON(mm != current->active_mm);
528         /* more a memory barrier than a real lock */
529         task_lock(current);
530         current->mm = NULL;
531         up_read(&mm->mmap_sem);
532         enter_lazy_tlb(mm, current);
533         task_unlock(current);
534         mm_update_next_owner(mm);
535         mmput(mm);
536         if (test_thread_flag(TIF_MEMDIE))
537                 exit_oom_victim();
538 }
539
540 static struct task_struct *find_alive_thread(struct task_struct *p)
541 {
542         struct task_struct *t;
543
544         for_each_thread(p, t) {
545                 if (!(t->flags & PF_EXITING))
546                         return t;
547         }
548         return NULL;
549 }
550
551 static struct task_struct *find_child_reaper(struct task_struct *father,
552                                                 struct list_head *dead)
553         __releases(&tasklist_lock)
554         __acquires(&tasklist_lock)
555 {
556         struct pid_namespace *pid_ns = task_active_pid_ns(father);
557         struct task_struct *reaper = pid_ns->child_reaper;
558         struct task_struct *p, *n;
559
560         if (likely(reaper != father))
561                 return reaper;
562
563         reaper = find_alive_thread(father);
564         if (reaper) {
565                 pid_ns->child_reaper = reaper;
566                 return reaper;
567         }
568
569         write_unlock_irq(&tasklist_lock);
570
571         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
572                 list_del_init(&p->ptrace_entry);
573                 release_task(p);
574         }
575
576         zap_pid_ns_processes(pid_ns);
577         write_lock_irq(&tasklist_lock);
578
579         return father;
580 }
581
582 /*
583  * When we die, we re-parent all our children, and try to:
584  * 1. give them to another thread in our thread group, if such a member exists
585  * 2. give it to the first ancestor process which prctl'd itself as a
586  *    child_subreaper for its children (like a service manager)
587  * 3. give it to the init process (PID 1) in our pid namespace
588  */
589 static struct task_struct *find_new_reaper(struct task_struct *father,
590                                            struct task_struct *child_reaper)
591 {
592         struct task_struct *thread, *reaper;
593
594         thread = find_alive_thread(father);
595         if (thread)
596                 return thread;
597
598         if (father->signal->has_child_subreaper) {
599                 unsigned int ns_level = task_pid(father)->level;
600                 /*
601                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
602                  * We can't check reaper != child_reaper to ensure we do not
603                  * cross the namespaces, the exiting parent could be injected
604                  * by setns() + fork().
605                  * We check pid->level, this is slightly more efficient than
606                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
607                  */
608                 for (reaper = father->real_parent;
609                      task_pid(reaper)->level == ns_level;
610                      reaper = reaper->real_parent) {
611                         if (reaper == &init_task)
612                                 break;
613                         if (!reaper->signal->is_child_subreaper)
614                                 continue;
615                         thread = find_alive_thread(reaper);
616                         if (thread)
617                                 return thread;
618                 }
619         }
620
621         return child_reaper;
622 }
623
624 /*
625 * Any that need to be release_task'd are put on the @dead list.
626  */
627 static void reparent_leader(struct task_struct *father, struct task_struct *p,
628                                 struct list_head *dead)
629 {
630         if (unlikely(p->exit_state == EXIT_DEAD))
631                 return;
632
633         /* We don't want people slaying init. */
634         p->exit_signal = SIGCHLD;
635
636         /* If it has exited notify the new parent about this child's death. */
637         if (!p->ptrace &&
638             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
639                 if (do_notify_parent(p, p->exit_signal)) {
640                         p->exit_state = EXIT_DEAD;
641                         list_add(&p->ptrace_entry, dead);
642                 }
643         }
644
645         kill_orphaned_pgrp(p, father);
646 }
647
648 /*
649  * This does two things:
650  *
651  * A.  Make init inherit all the child processes
652  * B.  Check to see if any process groups have become orphaned
653  *      as a result of our exiting, and if they have any stopped
654  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
655  */
656 static void forget_original_parent(struct task_struct *father,
657                                         struct list_head *dead)
658 {
659         struct task_struct *p, *t, *reaper;
660
661         if (unlikely(!list_empty(&father->ptraced)))
662                 exit_ptrace(father, dead);
663
664         /* Can drop and reacquire tasklist_lock */
665         reaper = find_child_reaper(father, dead);
666         if (list_empty(&father->children))
667                 return;
668
669         reaper = find_new_reaper(father, reaper);
670         list_for_each_entry(p, &father->children, sibling) {
671                 for_each_thread(p, t) {
672                         t->real_parent = reaper;
673                         BUG_ON((!t->ptrace) != (t->parent == father));
674                         if (likely(!t->ptrace))
675                                 t->parent = t->real_parent;
676                         if (t->pdeath_signal)
677                                 group_send_sig_info(t->pdeath_signal,
678                                                     SEND_SIG_NOINFO, t,
679                                                     PIDTYPE_TGID);
680                 }
681                 /*
682                  * If this is a threaded reparent there is no need to
683                  * notify anyone anything has happened.
684                  */
685                 if (!same_thread_group(reaper, father))
686                         reparent_leader(father, p, dead);
687         }
688         list_splice_tail_init(&father->children, &reaper->children);
689 }
690
691 /*
692  * Send signals to all our closest relatives so that they know
693  * to properly mourn us..
694  */
695 static void exit_notify(struct task_struct *tsk, int group_dead)
696 {
697         bool autoreap;
698         struct task_struct *p, *n;
699         LIST_HEAD(dead);
700
701         write_lock_irq(&tasklist_lock);
702         forget_original_parent(tsk, &dead);
703
704         if (group_dead)
705                 kill_orphaned_pgrp(tsk->group_leader, NULL);
706
707         tsk->exit_state = EXIT_ZOMBIE;
708         if (unlikely(tsk->ptrace)) {
709                 int sig = thread_group_leader(tsk) &&
710                                 thread_group_empty(tsk) &&
711                                 !ptrace_reparented(tsk) ?
712                         tsk->exit_signal : SIGCHLD;
713                 autoreap = do_notify_parent(tsk, sig);
714         } else if (thread_group_leader(tsk)) {
715                 autoreap = thread_group_empty(tsk) &&
716                         do_notify_parent(tsk, tsk->exit_signal);
717         } else {
718                 autoreap = true;
719         }
720
721         if (autoreap) {
722                 tsk->exit_state = EXIT_DEAD;
723                 list_add(&tsk->ptrace_entry, &dead);
724         }
725
726         /* mt-exec, de_thread() is waiting for group leader */
727         if (unlikely(tsk->signal->notify_count < 0))
728                 wake_up_process(tsk->signal->group_exit_task);
729         write_unlock_irq(&tasklist_lock);
730
731         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
732                 list_del_init(&p->ptrace_entry);
733                 release_task(p);
734         }
735 }
736
737 #ifdef CONFIG_DEBUG_STACK_USAGE
738 static void check_stack_usage(void)
739 {
740         static DEFINE_SPINLOCK(low_water_lock);
741         static int lowest_to_date = THREAD_SIZE;
742         unsigned long free;
743
744         free = stack_not_used(current);
745
746         if (free >= lowest_to_date)
747                 return;
748
749         spin_lock(&low_water_lock);
750         if (free < lowest_to_date) {
751                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
752                         current->comm, task_pid_nr(current), free);
753                 lowest_to_date = free;
754         }
755         spin_unlock(&low_water_lock);
756 }
757 #else
758 static inline void check_stack_usage(void) {}
759 #endif
760
761 void __noreturn do_exit(long code)
762 {
763         struct task_struct *tsk = current;
764         int group_dead;
765
766         /*
767          * We can get here from a kernel oops, sometimes with preemption off.
768          * Start by checking for critical errors.
769          * Then fix up important state like USER_DS and preemption.
770          * Then do everything else.
771          */
772
773         WARN_ON(blk_needs_flush_plug(tsk));
774
775         if (unlikely(in_interrupt()))
776                 panic("Aiee, killing interrupt handler!");
777         if (unlikely(!tsk->pid))
778                 panic("Attempted to kill the idle task!");
779
780         /*
781          * If do_exit is called because this processes oopsed, it's possible
782          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
783          * continuing. Amongst other possible reasons, this is to prevent
784          * mm_release()->clear_child_tid() from writing to a user-controlled
785          * kernel address.
786          */
787         set_fs(USER_DS);
788
789         if (unlikely(in_atomic())) {
790                 pr_info("note: %s[%d] exited with preempt_count %d\n",
791                         current->comm, task_pid_nr(current),
792                         preempt_count());
793                 preempt_count_set(PREEMPT_ENABLED);
794         }
795
796         profile_task_exit(tsk);
797         kcov_task_exit(tsk);
798
799         ptrace_event(PTRACE_EVENT_EXIT, code);
800
801         validate_creds_for_do_exit(tsk);
802
803         /*
804          * We're taking recursive faults here in do_exit. Safest is to just
805          * leave this task alone and wait for reboot.
806          */
807         if (unlikely(tsk->flags & PF_EXITING)) {
808                 pr_alert("Fixing recursive fault but reboot is needed!\n");
809                 futex_exit_recursive(tsk);
810                 set_current_state(TASK_UNINTERRUPTIBLE);
811                 schedule();
812         }
813
814         exit_signals(tsk);  /* sets PF_EXITING */
815
816         /* sync mm's RSS info before statistics gathering */
817         if (tsk->mm)
818                 sync_mm_rss(tsk->mm);
819         acct_update_integrals(tsk);
820         group_dead = atomic_dec_and_test(&tsk->signal->live);
821         if (group_dead) {
822                 /*
823                  * If the last thread of global init has exited, panic
824                  * immediately to get a useable coredump.
825                  */
826                 if (unlikely(is_global_init(tsk)))
827                         panic("Attempted to kill init! exitcode=0x%08x\n",
828                                 tsk->signal->group_exit_code ?: (int)code);
829
830 #ifdef CONFIG_POSIX_TIMERS
831                 hrtimer_cancel(&tsk->signal->real_timer);
832                 exit_itimers(tsk->signal);
833 #endif
834                 if (tsk->mm)
835                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
836         }
837         acct_collect(code, group_dead);
838         if (group_dead)
839                 tty_audit_exit();
840         audit_free(tsk);
841
842         tsk->exit_code = code;
843         taskstats_exit(tsk, group_dead);
844
845         exit_mm();
846
847         if (group_dead)
848                 acct_process();
849         trace_sched_process_exit(tsk);
850
851         exit_sem(tsk);
852         exit_shm(tsk);
853         exit_files(tsk);
854         exit_fs(tsk);
855         if (group_dead)
856                 disassociate_ctty(1);
857         exit_task_namespaces(tsk);
858         exit_task_work(tsk);
859         exit_thread(tsk);
860         exit_umh(tsk);
861
862         /*
863          * Flush inherited counters to the parent - before the parent
864          * gets woken up by child-exit notifications.
865          *
866          * because of cgroup mode, must be called before cgroup_exit()
867          */
868         perf_event_exit_task(tsk);
869
870         sched_autogroup_exit_task(tsk);
871         cgroup_exit(tsk);
872
873         /*
874          * FIXME: do that only when needed, using sched_exit tracepoint
875          */
876         flush_ptrace_hw_breakpoint(tsk);
877
878         exit_tasks_rcu_start();
879         exit_notify(tsk, group_dead);
880         proc_exit_connector(tsk);
881         mpol_put_task_policy(tsk);
882 #ifdef CONFIG_FUTEX
883         if (unlikely(current->pi_state_cache))
884                 kfree(current->pi_state_cache);
885 #endif
886         /*
887          * Make sure we are holding no locks:
888          */
889         debug_check_no_locks_held();
890
891         if (tsk->io_context)
892                 exit_io_context(tsk);
893
894         if (tsk->splice_pipe)
895                 free_pipe_info(tsk->splice_pipe);
896
897         if (tsk->task_frag.page)
898                 put_page(tsk->task_frag.page);
899
900         validate_creds_for_do_exit(tsk);
901
902         check_stack_usage();
903         preempt_disable();
904         if (tsk->nr_dirtied)
905                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
906         exit_rcu();
907         exit_tasks_rcu_finish();
908
909         lockdep_free_task(tsk);
910         do_task_dead();
911 }
912 EXPORT_SYMBOL_GPL(do_exit);
913
914 void __noreturn make_task_dead(int signr)
915 {
916         /*
917          * Take the task off the cpu after something catastrophic has
918          * happened.
919          */
920         unsigned int limit;
921
922         /*
923          * Every time the system oopses, if the oops happens while a reference
924          * to an object was held, the reference leaks.
925          * If the oops doesn't also leak memory, repeated oopsing can cause
926          * reference counters to wrap around (if they're not using refcount_t).
927          * This means that repeated oopsing can make unexploitable-looking bugs
928          * exploitable through repeated oopsing.
929          * To make sure this can't happen, place an upper bound on how often the
930          * kernel may oops without panic().
931          */
932         limit = READ_ONCE(oops_limit);
933         if (atomic_inc_return(&oops_count) >= limit && limit)
934                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
935
936         do_exit(signr);
937 }
938
939 void complete_and_exit(struct completion *comp, long code)
940 {
941         if (comp)
942                 complete(comp);
943
944         do_exit(code);
945 }
946 EXPORT_SYMBOL(complete_and_exit);
947
948 SYSCALL_DEFINE1(exit, int, error_code)
949 {
950         do_exit((error_code&0xff)<<8);
951 }
952
953 /*
954  * Take down every thread in the group.  This is called by fatal signals
955  * as well as by sys_exit_group (below).
956  */
957 void
958 do_group_exit(int exit_code)
959 {
960         struct signal_struct *sig = current->signal;
961
962         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
963
964         if (signal_group_exit(sig))
965                 exit_code = sig->group_exit_code;
966         else if (!thread_group_empty(current)) {
967                 struct sighand_struct *const sighand = current->sighand;
968
969                 spin_lock_irq(&sighand->siglock);
970                 if (signal_group_exit(sig))
971                         /* Another thread got here before we took the lock.  */
972                         exit_code = sig->group_exit_code;
973                 else {
974                         sig->group_exit_code = exit_code;
975                         sig->flags = SIGNAL_GROUP_EXIT;
976                         zap_other_threads(current);
977                 }
978                 spin_unlock_irq(&sighand->siglock);
979         }
980
981         do_exit(exit_code);
982         /* NOTREACHED */
983 }
984
985 /*
986  * this kills every thread in the thread group. Note that any externally
987  * wait4()-ing process will get the correct exit code - even if this
988  * thread is not the thread group leader.
989  */
990 SYSCALL_DEFINE1(exit_group, int, error_code)
991 {
992         do_group_exit((error_code & 0xff) << 8);
993         /* NOTREACHED */
994         return 0;
995 }
996
997 struct waitid_info {
998         pid_t pid;
999         uid_t uid;
1000         int status;
1001         int cause;
1002 };
1003
1004 struct wait_opts {
1005         enum pid_type           wo_type;
1006         int                     wo_flags;
1007         struct pid              *wo_pid;
1008
1009         struct waitid_info      *wo_info;
1010         int                     wo_stat;
1011         struct rusage           *wo_rusage;
1012
1013         wait_queue_entry_t              child_wait;
1014         int                     notask_error;
1015 };
1016
1017 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1018 {
1019         return  wo->wo_type == PIDTYPE_MAX ||
1020                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1021 }
1022
1023 static int
1024 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1025 {
1026         if (!eligible_pid(wo, p))
1027                 return 0;
1028
1029         /*
1030          * Wait for all children (clone and not) if __WALL is set or
1031          * if it is traced by us.
1032          */
1033         if (ptrace || (wo->wo_flags & __WALL))
1034                 return 1;
1035
1036         /*
1037          * Otherwise, wait for clone children *only* if __WCLONE is set;
1038          * otherwise, wait for non-clone children *only*.
1039          *
1040          * Note: a "clone" child here is one that reports to its parent
1041          * using a signal other than SIGCHLD, or a non-leader thread which
1042          * we can only see if it is traced by us.
1043          */
1044         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1045                 return 0;
1046
1047         return 1;
1048 }
1049
1050 /*
1051  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1052  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1053  * the lock and this task is uninteresting.  If we return nonzero, we have
1054  * released the lock and the system call should return.
1055  */
1056 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1057 {
1058         int state, status;
1059         pid_t pid = task_pid_vnr(p);
1060         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1061         struct waitid_info *infop;
1062
1063         if (!likely(wo->wo_flags & WEXITED))
1064                 return 0;
1065
1066         if (unlikely(wo->wo_flags & WNOWAIT)) {
1067                 status = p->exit_code;
1068                 get_task_struct(p);
1069                 read_unlock(&tasklist_lock);
1070                 sched_annotate_sleep();
1071                 if (wo->wo_rusage)
1072                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1073                 put_task_struct(p);
1074                 goto out_info;
1075         }
1076         /*
1077          * Move the task's state to DEAD/TRACE, only one thread can do this.
1078          */
1079         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1080                 EXIT_TRACE : EXIT_DEAD;
1081         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1082                 return 0;
1083         /*
1084          * We own this thread, nobody else can reap it.
1085          */
1086         read_unlock(&tasklist_lock);
1087         sched_annotate_sleep();
1088
1089         /*
1090          * Check thread_group_leader() to exclude the traced sub-threads.
1091          */
1092         if (state == EXIT_DEAD && thread_group_leader(p)) {
1093                 struct signal_struct *sig = p->signal;
1094                 struct signal_struct *psig = current->signal;
1095                 unsigned long maxrss;
1096                 u64 tgutime, tgstime;
1097
1098                 /*
1099                  * The resource counters for the group leader are in its
1100                  * own task_struct.  Those for dead threads in the group
1101                  * are in its signal_struct, as are those for the child
1102                  * processes it has previously reaped.  All these
1103                  * accumulate in the parent's signal_struct c* fields.
1104                  *
1105                  * We don't bother to take a lock here to protect these
1106                  * p->signal fields because the whole thread group is dead
1107                  * and nobody can change them.
1108                  *
1109                  * psig->stats_lock also protects us from our sub-theads
1110                  * which can reap other children at the same time. Until
1111                  * we change k_getrusage()-like users to rely on this lock
1112                  * we have to take ->siglock as well.
1113                  *
1114                  * We use thread_group_cputime_adjusted() to get times for
1115                  * the thread group, which consolidates times for all threads
1116                  * in the group including the group leader.
1117                  */
1118                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1119                 spin_lock_irq(&current->sighand->siglock);
1120                 write_seqlock(&psig->stats_lock);
1121                 psig->cutime += tgutime + sig->cutime;
1122                 psig->cstime += tgstime + sig->cstime;
1123                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1124                 psig->cmin_flt +=
1125                         p->min_flt + sig->min_flt + sig->cmin_flt;
1126                 psig->cmaj_flt +=
1127                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128                 psig->cnvcsw +=
1129                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130                 psig->cnivcsw +=
1131                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1132                 psig->cinblock +=
1133                         task_io_get_inblock(p) +
1134                         sig->inblock + sig->cinblock;
1135                 psig->coublock +=
1136                         task_io_get_oublock(p) +
1137                         sig->oublock + sig->coublock;
1138                 maxrss = max(sig->maxrss, sig->cmaxrss);
1139                 if (psig->cmaxrss < maxrss)
1140                         psig->cmaxrss = maxrss;
1141                 task_io_accounting_add(&psig->ioac, &p->ioac);
1142                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1143                 write_sequnlock(&psig->stats_lock);
1144                 spin_unlock_irq(&current->sighand->siglock);
1145         }
1146
1147         if (wo->wo_rusage)
1148                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1149         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1150                 ? p->signal->group_exit_code : p->exit_code;
1151         wo->wo_stat = status;
1152
1153         if (state == EXIT_TRACE) {
1154                 write_lock_irq(&tasklist_lock);
1155                 /* We dropped tasklist, ptracer could die and untrace */
1156                 ptrace_unlink(p);
1157
1158                 /* If parent wants a zombie, don't release it now */
1159                 state = EXIT_ZOMBIE;
1160                 if (do_notify_parent(p, p->exit_signal))
1161                         state = EXIT_DEAD;
1162                 p->exit_state = state;
1163                 write_unlock_irq(&tasklist_lock);
1164         }
1165         if (state == EXIT_DEAD)
1166                 release_task(p);
1167
1168 out_info:
1169         infop = wo->wo_info;
1170         if (infop) {
1171                 if ((status & 0x7f) == 0) {
1172                         infop->cause = CLD_EXITED;
1173                         infop->status = status >> 8;
1174                 } else {
1175                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1176                         infop->status = status & 0x7f;
1177                 }
1178                 infop->pid = pid;
1179                 infop->uid = uid;
1180         }
1181
1182         return pid;
1183 }
1184
1185 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1186 {
1187         if (ptrace) {
1188                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1189                         return &p->exit_code;
1190         } else {
1191                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1192                         return &p->signal->group_exit_code;
1193         }
1194         return NULL;
1195 }
1196
1197 /**
1198  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199  * @wo: wait options
1200  * @ptrace: is the wait for ptrace
1201  * @p: task to wait for
1202  *
1203  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1204  *
1205  * CONTEXT:
1206  * read_lock(&tasklist_lock), which is released if return value is
1207  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1208  *
1209  * RETURNS:
1210  * 0 if wait condition didn't exist and search for other wait conditions
1211  * should continue.  Non-zero return, -errno on failure and @p's pid on
1212  * success, implies that tasklist_lock is released and wait condition
1213  * search should terminate.
1214  */
1215 static int wait_task_stopped(struct wait_opts *wo,
1216                                 int ptrace, struct task_struct *p)
1217 {
1218         struct waitid_info *infop;
1219         int exit_code, *p_code, why;
1220         uid_t uid = 0; /* unneeded, required by compiler */
1221         pid_t pid;
1222
1223         /*
1224          * Traditionally we see ptrace'd stopped tasks regardless of options.
1225          */
1226         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1227                 return 0;
1228
1229         if (!task_stopped_code(p, ptrace))
1230                 return 0;
1231
1232         exit_code = 0;
1233         spin_lock_irq(&p->sighand->siglock);
1234
1235         p_code = task_stopped_code(p, ptrace);
1236         if (unlikely(!p_code))
1237                 goto unlock_sig;
1238
1239         exit_code = *p_code;
1240         if (!exit_code)
1241                 goto unlock_sig;
1242
1243         if (!unlikely(wo->wo_flags & WNOWAIT))
1244                 *p_code = 0;
1245
1246         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1247 unlock_sig:
1248         spin_unlock_irq(&p->sighand->siglock);
1249         if (!exit_code)
1250                 return 0;
1251
1252         /*
1253          * Now we are pretty sure this task is interesting.
1254          * Make sure it doesn't get reaped out from under us while we
1255          * give up the lock and then examine it below.  We don't want to
1256          * keep holding onto the tasklist_lock while we call getrusage and
1257          * possibly take page faults for user memory.
1258          */
1259         get_task_struct(p);
1260         pid = task_pid_vnr(p);
1261         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1262         read_unlock(&tasklist_lock);
1263         sched_annotate_sleep();
1264         if (wo->wo_rusage)
1265                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1266         put_task_struct(p);
1267
1268         if (likely(!(wo->wo_flags & WNOWAIT)))
1269                 wo->wo_stat = (exit_code << 8) | 0x7f;
1270
1271         infop = wo->wo_info;
1272         if (infop) {
1273                 infop->cause = why;
1274                 infop->status = exit_code;
1275                 infop->pid = pid;
1276                 infop->uid = uid;
1277         }
1278         return pid;
1279 }
1280
1281 /*
1282  * Handle do_wait work for one task in a live, non-stopped state.
1283  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1284  * the lock and this task is uninteresting.  If we return nonzero, we have
1285  * released the lock and the system call should return.
1286  */
1287 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1288 {
1289         struct waitid_info *infop;
1290         pid_t pid;
1291         uid_t uid;
1292
1293         if (!unlikely(wo->wo_flags & WCONTINUED))
1294                 return 0;
1295
1296         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1297                 return 0;
1298
1299         spin_lock_irq(&p->sighand->siglock);
1300         /* Re-check with the lock held.  */
1301         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1302                 spin_unlock_irq(&p->sighand->siglock);
1303                 return 0;
1304         }
1305         if (!unlikely(wo->wo_flags & WNOWAIT))
1306                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1307         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1308         spin_unlock_irq(&p->sighand->siglock);
1309
1310         pid = task_pid_vnr(p);
1311         get_task_struct(p);
1312         read_unlock(&tasklist_lock);
1313         sched_annotate_sleep();
1314         if (wo->wo_rusage)
1315                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1316         put_task_struct(p);
1317
1318         infop = wo->wo_info;
1319         if (!infop) {
1320                 wo->wo_stat = 0xffff;
1321         } else {
1322                 infop->cause = CLD_CONTINUED;
1323                 infop->pid = pid;
1324                 infop->uid = uid;
1325                 infop->status = SIGCONT;
1326         }
1327         return pid;
1328 }
1329
1330 /*
1331  * Consider @p for a wait by @parent.
1332  *
1333  * -ECHILD should be in ->notask_error before the first call.
1334  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1335  * Returns zero if the search for a child should continue;
1336  * then ->notask_error is 0 if @p is an eligible child,
1337  * or still -ECHILD.
1338  */
1339 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1340                                 struct task_struct *p)
1341 {
1342         /*
1343          * We can race with wait_task_zombie() from another thread.
1344          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1345          * can't confuse the checks below.
1346          */
1347         int exit_state = READ_ONCE(p->exit_state);
1348         int ret;
1349
1350         if (unlikely(exit_state == EXIT_DEAD))
1351                 return 0;
1352
1353         ret = eligible_child(wo, ptrace, p);
1354         if (!ret)
1355                 return ret;
1356
1357         if (unlikely(exit_state == EXIT_TRACE)) {
1358                 /*
1359                  * ptrace == 0 means we are the natural parent. In this case
1360                  * we should clear notask_error, debugger will notify us.
1361                  */
1362                 if (likely(!ptrace))
1363                         wo->notask_error = 0;
1364                 return 0;
1365         }
1366
1367         if (likely(!ptrace) && unlikely(p->ptrace)) {
1368                 /*
1369                  * If it is traced by its real parent's group, just pretend
1370                  * the caller is ptrace_do_wait() and reap this child if it
1371                  * is zombie.
1372                  *
1373                  * This also hides group stop state from real parent; otherwise
1374                  * a single stop can be reported twice as group and ptrace stop.
1375                  * If a ptracer wants to distinguish these two events for its
1376                  * own children it should create a separate process which takes
1377                  * the role of real parent.
1378                  */
1379                 if (!ptrace_reparented(p))
1380                         ptrace = 1;
1381         }
1382
1383         /* slay zombie? */
1384         if (exit_state == EXIT_ZOMBIE) {
1385                 /* we don't reap group leaders with subthreads */
1386                 if (!delay_group_leader(p)) {
1387                         /*
1388                          * A zombie ptracee is only visible to its ptracer.
1389                          * Notification and reaping will be cascaded to the
1390                          * real parent when the ptracer detaches.
1391                          */
1392                         if (unlikely(ptrace) || likely(!p->ptrace))
1393                                 return wait_task_zombie(wo, p);
1394                 }
1395
1396                 /*
1397                  * Allow access to stopped/continued state via zombie by
1398                  * falling through.  Clearing of notask_error is complex.
1399                  *
1400                  * When !@ptrace:
1401                  *
1402                  * If WEXITED is set, notask_error should naturally be
1403                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1404                  * so, if there are live subthreads, there are events to
1405                  * wait for.  If all subthreads are dead, it's still safe
1406                  * to clear - this function will be called again in finite
1407                  * amount time once all the subthreads are released and
1408                  * will then return without clearing.
1409                  *
1410                  * When @ptrace:
1411                  *
1412                  * Stopped state is per-task and thus can't change once the
1413                  * target task dies.  Only continued and exited can happen.
1414                  * Clear notask_error if WCONTINUED | WEXITED.
1415                  */
1416                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1417                         wo->notask_error = 0;
1418         } else {
1419                 /*
1420                  * @p is alive and it's gonna stop, continue or exit, so
1421                  * there always is something to wait for.
1422                  */
1423                 wo->notask_error = 0;
1424         }
1425
1426         /*
1427          * Wait for stopped.  Depending on @ptrace, different stopped state
1428          * is used and the two don't interact with each other.
1429          */
1430         ret = wait_task_stopped(wo, ptrace, p);
1431         if (ret)
1432                 return ret;
1433
1434         /*
1435          * Wait for continued.  There's only one continued state and the
1436          * ptracer can consume it which can confuse the real parent.  Don't
1437          * use WCONTINUED from ptracer.  You don't need or want it.
1438          */
1439         return wait_task_continued(wo, p);
1440 }
1441
1442 /*
1443  * Do the work of do_wait() for one thread in the group, @tsk.
1444  *
1445  * -ECHILD should be in ->notask_error before the first call.
1446  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1447  * Returns zero if the search for a child should continue; then
1448  * ->notask_error is 0 if there were any eligible children,
1449  * or still -ECHILD.
1450  */
1451 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1452 {
1453         struct task_struct *p;
1454
1455         list_for_each_entry(p, &tsk->children, sibling) {
1456                 int ret = wait_consider_task(wo, 0, p);
1457
1458                 if (ret)
1459                         return ret;
1460         }
1461
1462         return 0;
1463 }
1464
1465 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1466 {
1467         struct task_struct *p;
1468
1469         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1470                 int ret = wait_consider_task(wo, 1, p);
1471
1472                 if (ret)
1473                         return ret;
1474         }
1475
1476         return 0;
1477 }
1478
1479 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1480                                 int sync, void *key)
1481 {
1482         struct wait_opts *wo = container_of(wait, struct wait_opts,
1483                                                 child_wait);
1484         struct task_struct *p = key;
1485
1486         if (!eligible_pid(wo, p))
1487                 return 0;
1488
1489         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1490                 return 0;
1491
1492         return default_wake_function(wait, mode, sync, key);
1493 }
1494
1495 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1496 {
1497         __wake_up_sync_key(&parent->signal->wait_chldexit,
1498                                 TASK_INTERRUPTIBLE, 1, p);
1499 }
1500
1501 static long do_wait(struct wait_opts *wo)
1502 {
1503         struct task_struct *tsk;
1504         int retval;
1505
1506         trace_sched_process_wait(wo->wo_pid);
1507
1508         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1509         wo->child_wait.private = current;
1510         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1511 repeat:
1512         /*
1513          * If there is nothing that can match our criteria, just get out.
1514          * We will clear ->notask_error to zero if we see any child that
1515          * might later match our criteria, even if we are not able to reap
1516          * it yet.
1517          */
1518         wo->notask_error = -ECHILD;
1519         if ((wo->wo_type < PIDTYPE_MAX) &&
1520            (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1521                 goto notask;
1522
1523         set_current_state(TASK_INTERRUPTIBLE);
1524         read_lock(&tasklist_lock);
1525         tsk = current;
1526         do {
1527                 retval = do_wait_thread(wo, tsk);
1528                 if (retval)
1529                         goto end;
1530
1531                 retval = ptrace_do_wait(wo, tsk);
1532                 if (retval)
1533                         goto end;
1534
1535                 if (wo->wo_flags & __WNOTHREAD)
1536                         break;
1537         } while_each_thread(current, tsk);
1538         read_unlock(&tasklist_lock);
1539
1540 notask:
1541         retval = wo->notask_error;
1542         if (!retval && !(wo->wo_flags & WNOHANG)) {
1543                 retval = -ERESTARTSYS;
1544                 if (!signal_pending(current)) {
1545                         schedule();
1546                         goto repeat;
1547                 }
1548         }
1549 end:
1550         __set_current_state(TASK_RUNNING);
1551         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1552         return retval;
1553 }
1554
1555 static struct pid *pidfd_get_pid(unsigned int fd)
1556 {
1557         struct fd f;
1558         struct pid *pid;
1559
1560         f = fdget(fd);
1561         if (!f.file)
1562                 return ERR_PTR(-EBADF);
1563
1564         pid = pidfd_pid(f.file);
1565         if (!IS_ERR(pid))
1566                 get_pid(pid);
1567
1568         fdput(f);
1569         return pid;
1570 }
1571
1572 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1573                           int options, struct rusage *ru)
1574 {
1575         struct wait_opts wo;
1576         struct pid *pid = NULL;
1577         enum pid_type type;
1578         long ret;
1579
1580         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1581                         __WNOTHREAD|__WCLONE|__WALL))
1582                 return -EINVAL;
1583         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1584                 return -EINVAL;
1585
1586         switch (which) {
1587         case P_ALL:
1588                 type = PIDTYPE_MAX;
1589                 break;
1590         case P_PID:
1591                 type = PIDTYPE_PID;
1592                 if (upid <= 0)
1593                         return -EINVAL;
1594
1595                 pid = find_get_pid(upid);
1596                 break;
1597         case P_PGID:
1598                 type = PIDTYPE_PGID;
1599                 if (upid < 0)
1600                         return -EINVAL;
1601
1602                 if (upid)
1603                         pid = find_get_pid(upid);
1604                 else
1605                         pid = get_task_pid(current, PIDTYPE_PGID);
1606                 break;
1607         case P_PIDFD:
1608                 type = PIDTYPE_PID;
1609                 if (upid < 0)
1610                         return -EINVAL;
1611
1612                 pid = pidfd_get_pid(upid);
1613                 if (IS_ERR(pid))
1614                         return PTR_ERR(pid);
1615                 break;
1616         default:
1617                 return -EINVAL;
1618         }
1619
1620         wo.wo_type      = type;
1621         wo.wo_pid       = pid;
1622         wo.wo_flags     = options;
1623         wo.wo_info      = infop;
1624         wo.wo_rusage    = ru;
1625         ret = do_wait(&wo);
1626
1627         put_pid(pid);
1628         return ret;
1629 }
1630
1631 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1632                 infop, int, options, struct rusage __user *, ru)
1633 {
1634         struct rusage r;
1635         struct waitid_info info = {.status = 0};
1636         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1637         int signo = 0;
1638
1639         if (err > 0) {
1640                 signo = SIGCHLD;
1641                 err = 0;
1642                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1643                         return -EFAULT;
1644         }
1645         if (!infop)
1646                 return err;
1647
1648         if (!user_access_begin(infop, sizeof(*infop)))
1649                 return -EFAULT;
1650
1651         unsafe_put_user(signo, &infop->si_signo, Efault);
1652         unsafe_put_user(0, &infop->si_errno, Efault);
1653         unsafe_put_user(info.cause, &infop->si_code, Efault);
1654         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1655         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1656         unsafe_put_user(info.status, &infop->si_status, Efault);
1657         user_access_end();
1658         return err;
1659 Efault:
1660         user_access_end();
1661         return -EFAULT;
1662 }
1663
1664 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1665                   struct rusage *ru)
1666 {
1667         struct wait_opts wo;
1668         struct pid *pid = NULL;
1669         enum pid_type type;
1670         long ret;
1671
1672         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1673                         __WNOTHREAD|__WCLONE|__WALL))
1674                 return -EINVAL;
1675
1676         /* -INT_MIN is not defined */
1677         if (upid == INT_MIN)
1678                 return -ESRCH;
1679
1680         if (upid == -1)
1681                 type = PIDTYPE_MAX;
1682         else if (upid < 0) {
1683                 type = PIDTYPE_PGID;
1684                 pid = find_get_pid(-upid);
1685         } else if (upid == 0) {
1686                 type = PIDTYPE_PGID;
1687                 pid = get_task_pid(current, PIDTYPE_PGID);
1688         } else /* upid > 0 */ {
1689                 type = PIDTYPE_PID;
1690                 pid = find_get_pid(upid);
1691         }
1692
1693         wo.wo_type      = type;
1694         wo.wo_pid       = pid;
1695         wo.wo_flags     = options | WEXITED;
1696         wo.wo_info      = NULL;
1697         wo.wo_stat      = 0;
1698         wo.wo_rusage    = ru;
1699         ret = do_wait(&wo);
1700         put_pid(pid);
1701         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1702                 ret = -EFAULT;
1703
1704         return ret;
1705 }
1706
1707 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1708                 int, options, struct rusage __user *, ru)
1709 {
1710         struct rusage r;
1711         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1712
1713         if (err > 0) {
1714                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1715                         return -EFAULT;
1716         }
1717         return err;
1718 }
1719
1720 #ifdef __ARCH_WANT_SYS_WAITPID
1721
1722 /*
1723  * sys_waitpid() remains for compatibility. waitpid() should be
1724  * implemented by calling sys_wait4() from libc.a.
1725  */
1726 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1727 {
1728         return kernel_wait4(pid, stat_addr, options, NULL);
1729 }
1730
1731 #endif
1732
1733 #ifdef CONFIG_COMPAT
1734 COMPAT_SYSCALL_DEFINE4(wait4,
1735         compat_pid_t, pid,
1736         compat_uint_t __user *, stat_addr,
1737         int, options,
1738         struct compat_rusage __user *, ru)
1739 {
1740         struct rusage r;
1741         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1742         if (err > 0) {
1743                 if (ru && put_compat_rusage(&r, ru))
1744                         return -EFAULT;
1745         }
1746         return err;
1747 }
1748
1749 COMPAT_SYSCALL_DEFINE5(waitid,
1750                 int, which, compat_pid_t, pid,
1751                 struct compat_siginfo __user *, infop, int, options,
1752                 struct compat_rusage __user *, uru)
1753 {
1754         struct rusage ru;
1755         struct waitid_info info = {.status = 0};
1756         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1757         int signo = 0;
1758         if (err > 0) {
1759                 signo = SIGCHLD;
1760                 err = 0;
1761                 if (uru) {
1762                         /* kernel_waitid() overwrites everything in ru */
1763                         if (COMPAT_USE_64BIT_TIME)
1764                                 err = copy_to_user(uru, &ru, sizeof(ru));
1765                         else
1766                                 err = put_compat_rusage(&ru, uru);
1767                         if (err)
1768                                 return -EFAULT;
1769                 }
1770         }
1771
1772         if (!infop)
1773                 return err;
1774
1775         if (!user_access_begin(infop, sizeof(*infop)))
1776                 return -EFAULT;
1777
1778         unsafe_put_user(signo, &infop->si_signo, Efault);
1779         unsafe_put_user(0, &infop->si_errno, Efault);
1780         unsafe_put_user(info.cause, &infop->si_code, Efault);
1781         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1782         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1783         unsafe_put_user(info.status, &infop->si_status, Efault);
1784         user_access_end();
1785         return err;
1786 Efault:
1787         user_access_end();
1788         return -EFAULT;
1789 }
1790 #endif
1791
1792 __weak void abort(void)
1793 {
1794         BUG();
1795
1796         /* if that doesn't kill us, halt */
1797         panic("Oops failed to kill thread");
1798 }
1799 EXPORT_SYMBOL(abort);