GNU Linux-libre 5.10.217-gnu1
[releases.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72
73 /*
74  * The default value should be high enough to not crash a system that randomly
75  * crashes its kernel from time to time, but low enough to at least not permit
76  * overflowing 32-bit refcounts or the ldsem writer count.
77  */
78 static unsigned int oops_limit = 10000;
79
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_exit_table[] = {
82         {
83                 .procname       = "oops_limit",
84                 .data           = &oops_limit,
85                 .maxlen         = sizeof(oops_limit),
86                 .mode           = 0644,
87                 .proc_handler   = proc_douintvec,
88         },
89         { }
90 };
91
92 static __init int kernel_exit_sysctls_init(void)
93 {
94         register_sysctl_init("kernel", kern_exit_table);
95         return 0;
96 }
97 late_initcall(kernel_exit_sysctls_init);
98 #endif
99
100 static atomic_t oops_count = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SYSFS
103 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
104                                char *page)
105 {
106         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
107 }
108
109 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
110
111 static __init int kernel_exit_sysfs_init(void)
112 {
113         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
114         return 0;
115 }
116 late_initcall(kernel_exit_sysfs_init);
117 #endif
118
119 static void __unhash_process(struct task_struct *p, bool group_dead)
120 {
121         nr_threads--;
122         detach_pid(p, PIDTYPE_PID);
123         if (group_dead) {
124                 detach_pid(p, PIDTYPE_TGID);
125                 detach_pid(p, PIDTYPE_PGID);
126                 detach_pid(p, PIDTYPE_SID);
127
128                 list_del_rcu(&p->tasks);
129                 list_del_init(&p->sibling);
130                 __this_cpu_dec(process_counts);
131         }
132         list_del_rcu(&p->thread_group);
133         list_del_rcu(&p->thread_node);
134 }
135
136 /*
137  * This function expects the tasklist_lock write-locked.
138  */
139 static void __exit_signal(struct task_struct *tsk)
140 {
141         struct signal_struct *sig = tsk->signal;
142         bool group_dead = thread_group_leader(tsk);
143         struct sighand_struct *sighand;
144         struct tty_struct *tty;
145         u64 utime, stime;
146
147         sighand = rcu_dereference_check(tsk->sighand,
148                                         lockdep_tasklist_lock_is_held());
149         spin_lock(&sighand->siglock);
150
151 #ifdef CONFIG_POSIX_TIMERS
152         posix_cpu_timers_exit(tsk);
153         if (group_dead)
154                 posix_cpu_timers_exit_group(tsk);
155 #endif
156
157         if (group_dead) {
158                 tty = sig->tty;
159                 sig->tty = NULL;
160         } else {
161                 /*
162                  * If there is any task waiting for the group exit
163                  * then notify it:
164                  */
165                 if (sig->notify_count > 0 && !--sig->notify_count)
166                         wake_up_process(sig->group_exit_task);
167
168                 if (tsk == sig->curr_target)
169                         sig->curr_target = next_thread(tsk);
170         }
171
172         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
173                               sizeof(unsigned long long));
174
175         /*
176          * Accumulate here the counters for all threads as they die. We could
177          * skip the group leader because it is the last user of signal_struct,
178          * but we want to avoid the race with thread_group_cputime() which can
179          * see the empty ->thread_head list.
180          */
181         task_cputime(tsk, &utime, &stime);
182         write_seqlock(&sig->stats_lock);
183         sig->utime += utime;
184         sig->stime += stime;
185         sig->gtime += task_gtime(tsk);
186         sig->min_flt += tsk->min_flt;
187         sig->maj_flt += tsk->maj_flt;
188         sig->nvcsw += tsk->nvcsw;
189         sig->nivcsw += tsk->nivcsw;
190         sig->inblock += task_io_get_inblock(tsk);
191         sig->oublock += task_io_get_oublock(tsk);
192         task_io_accounting_add(&sig->ioac, &tsk->ioac);
193         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
194         sig->nr_threads--;
195         __unhash_process(tsk, group_dead);
196         write_sequnlock(&sig->stats_lock);
197
198         /*
199          * Do this under ->siglock, we can race with another thread
200          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
201          */
202         flush_sigqueue(&tsk->pending);
203         tsk->sighand = NULL;
204         spin_unlock(&sighand->siglock);
205
206         __cleanup_sighand(sighand);
207         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
208         if (group_dead) {
209                 flush_sigqueue(&sig->shared_pending);
210                 tty_kref_put(tty);
211         }
212 }
213
214 static void delayed_put_task_struct(struct rcu_head *rhp)
215 {
216         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
217
218         perf_event_delayed_put(tsk);
219         trace_sched_process_free(tsk);
220         put_task_struct(tsk);
221 }
222
223 void put_task_struct_rcu_user(struct task_struct *task)
224 {
225         if (refcount_dec_and_test(&task->rcu_users))
226                 call_rcu(&task->rcu, delayed_put_task_struct);
227 }
228
229 void release_task(struct task_struct *p)
230 {
231         struct task_struct *leader;
232         struct pid *thread_pid;
233         int zap_leader;
234 repeat:
235         /* don't need to get the RCU readlock here - the process is dead and
236          * can't be modifying its own credentials. But shut RCU-lockdep up */
237         rcu_read_lock();
238         atomic_dec(&__task_cred(p)->user->processes);
239         rcu_read_unlock();
240
241         cgroup_release(p);
242
243         write_lock_irq(&tasklist_lock);
244         ptrace_release_task(p);
245         thread_pid = get_pid(p->thread_pid);
246         __exit_signal(p);
247
248         /*
249          * If we are the last non-leader member of the thread
250          * group, and the leader is zombie, then notify the
251          * group leader's parent process. (if it wants notification.)
252          */
253         zap_leader = 0;
254         leader = p->group_leader;
255         if (leader != p && thread_group_empty(leader)
256                         && leader->exit_state == EXIT_ZOMBIE) {
257                 /*
258                  * If we were the last child thread and the leader has
259                  * exited already, and the leader's parent ignores SIGCHLD,
260                  * then we are the one who should release the leader.
261                  */
262                 zap_leader = do_notify_parent(leader, leader->exit_signal);
263                 if (zap_leader)
264                         leader->exit_state = EXIT_DEAD;
265         }
266
267         write_unlock_irq(&tasklist_lock);
268         seccomp_filter_release(p);
269         proc_flush_pid(thread_pid);
270         put_pid(thread_pid);
271         release_thread(p);
272         put_task_struct_rcu_user(p);
273
274         p = leader;
275         if (unlikely(zap_leader))
276                 goto repeat;
277 }
278
279 int rcuwait_wake_up(struct rcuwait *w)
280 {
281         int ret = 0;
282         struct task_struct *task;
283
284         rcu_read_lock();
285
286         /*
287          * Order condition vs @task, such that everything prior to the load
288          * of @task is visible. This is the condition as to why the user called
289          * rcuwait_wake() in the first place. Pairs with set_current_state()
290          * barrier (A) in rcuwait_wait_event().
291          *
292          *    WAIT                WAKE
293          *    [S] tsk = current   [S] cond = true
294          *        MB (A)              MB (B)
295          *    [L] cond            [L] tsk
296          */
297         smp_mb(); /* (B) */
298
299         task = rcu_dereference(w->task);
300         if (task)
301                 ret = wake_up_process(task);
302         rcu_read_unlock();
303
304         return ret;
305 }
306 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
307
308 /*
309  * Determine if a process group is "orphaned", according to the POSIX
310  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
311  * by terminal-generated stop signals.  Newly orphaned process groups are
312  * to receive a SIGHUP and a SIGCONT.
313  *
314  * "I ask you, have you ever known what it is to be an orphan?"
315  */
316 static int will_become_orphaned_pgrp(struct pid *pgrp,
317                                         struct task_struct *ignored_task)
318 {
319         struct task_struct *p;
320
321         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
322                 if ((p == ignored_task) ||
323                     (p->exit_state && thread_group_empty(p)) ||
324                     is_global_init(p->real_parent))
325                         continue;
326
327                 if (task_pgrp(p->real_parent) != pgrp &&
328                     task_session(p->real_parent) == task_session(p))
329                         return 0;
330         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
331
332         return 1;
333 }
334
335 int is_current_pgrp_orphaned(void)
336 {
337         int retval;
338
339         read_lock(&tasklist_lock);
340         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
341         read_unlock(&tasklist_lock);
342
343         return retval;
344 }
345
346 static bool has_stopped_jobs(struct pid *pgrp)
347 {
348         struct task_struct *p;
349
350         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
351                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
352                         return true;
353         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
354
355         return false;
356 }
357
358 /*
359  * Check to see if any process groups have become orphaned as
360  * a result of our exiting, and if they have any stopped jobs,
361  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
362  */
363 static void
364 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
365 {
366         struct pid *pgrp = task_pgrp(tsk);
367         struct task_struct *ignored_task = tsk;
368
369         if (!parent)
370                 /* exit: our father is in a different pgrp than
371                  * we are and we were the only connection outside.
372                  */
373                 parent = tsk->real_parent;
374         else
375                 /* reparent: our child is in a different pgrp than
376                  * we are, and it was the only connection outside.
377                  */
378                 ignored_task = NULL;
379
380         if (task_pgrp(parent) != pgrp &&
381             task_session(parent) == task_session(tsk) &&
382             will_become_orphaned_pgrp(pgrp, ignored_task) &&
383             has_stopped_jobs(pgrp)) {
384                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
385                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
386         }
387 }
388
389 #ifdef CONFIG_MEMCG
390 /*
391  * A task is exiting.   If it owned this mm, find a new owner for the mm.
392  */
393 void mm_update_next_owner(struct mm_struct *mm)
394 {
395         struct task_struct *c, *g, *p = current;
396
397 retry:
398         /*
399          * If the exiting or execing task is not the owner, it's
400          * someone else's problem.
401          */
402         if (mm->owner != p)
403                 return;
404         /*
405          * The current owner is exiting/execing and there are no other
406          * candidates.  Do not leave the mm pointing to a possibly
407          * freed task structure.
408          */
409         if (atomic_read(&mm->mm_users) <= 1) {
410                 WRITE_ONCE(mm->owner, NULL);
411                 return;
412         }
413
414         read_lock(&tasklist_lock);
415         /*
416          * Search in the children
417          */
418         list_for_each_entry(c, &p->children, sibling) {
419                 if (c->mm == mm)
420                         goto assign_new_owner;
421         }
422
423         /*
424          * Search in the siblings
425          */
426         list_for_each_entry(c, &p->real_parent->children, sibling) {
427                 if (c->mm == mm)
428                         goto assign_new_owner;
429         }
430
431         /*
432          * Search through everything else, we should not get here often.
433          */
434         for_each_process(g) {
435                 if (g->flags & PF_KTHREAD)
436                         continue;
437                 for_each_thread(g, c) {
438                         if (c->mm == mm)
439                                 goto assign_new_owner;
440                         if (c->mm)
441                                 break;
442                 }
443         }
444         read_unlock(&tasklist_lock);
445         /*
446          * We found no owner yet mm_users > 1: this implies that we are
447          * most likely racing with swapoff (try_to_unuse()) or /proc or
448          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
449          */
450         WRITE_ONCE(mm->owner, NULL);
451         return;
452
453 assign_new_owner:
454         BUG_ON(c == p);
455         get_task_struct(c);
456         /*
457          * The task_lock protects c->mm from changing.
458          * We always want mm->owner->mm == mm
459          */
460         task_lock(c);
461         /*
462          * Delay read_unlock() till we have the task_lock()
463          * to ensure that c does not slip away underneath us
464          */
465         read_unlock(&tasklist_lock);
466         if (c->mm != mm) {
467                 task_unlock(c);
468                 put_task_struct(c);
469                 goto retry;
470         }
471         WRITE_ONCE(mm->owner, c);
472         task_unlock(c);
473         put_task_struct(c);
474 }
475 #endif /* CONFIG_MEMCG */
476
477 /*
478  * Turn us into a lazy TLB process if we
479  * aren't already..
480  */
481 static void exit_mm(void)
482 {
483         struct mm_struct *mm = current->mm;
484         struct core_state *core_state;
485
486         exit_mm_release(current, mm);
487         if (!mm)
488                 return;
489         sync_mm_rss(mm);
490         /*
491          * Serialize with any possible pending coredump.
492          * We must hold mmap_lock around checking core_state
493          * and clearing tsk->mm.  The core-inducing thread
494          * will increment ->nr_threads for each thread in the
495          * group with ->mm != NULL.
496          */
497         mmap_read_lock(mm);
498         core_state = mm->core_state;
499         if (core_state) {
500                 struct core_thread self;
501
502                 mmap_read_unlock(mm);
503
504                 self.task = current;
505                 if (self.task->flags & PF_SIGNALED)
506                         self.next = xchg(&core_state->dumper.next, &self);
507                 else
508                         self.task = NULL;
509                 /*
510                  * Implies mb(), the result of xchg() must be visible
511                  * to core_state->dumper.
512                  */
513                 if (atomic_dec_and_test(&core_state->nr_threads))
514                         complete(&core_state->startup);
515
516                 for (;;) {
517                         set_current_state(TASK_UNINTERRUPTIBLE);
518                         if (!self.task) /* see coredump_finish() */
519                                 break;
520                         freezable_schedule();
521                 }
522                 __set_current_state(TASK_RUNNING);
523                 mmap_read_lock(mm);
524         }
525         mmgrab(mm);
526         BUG_ON(mm != current->active_mm);
527         /* more a memory barrier than a real lock */
528         task_lock(current);
529         current->mm = NULL;
530         mmap_read_unlock(mm);
531         enter_lazy_tlb(mm, current);
532         task_unlock(current);
533         mm_update_next_owner(mm);
534         mmput(mm);
535         if (test_thread_flag(TIF_MEMDIE))
536                 exit_oom_victim();
537 }
538
539 static struct task_struct *find_alive_thread(struct task_struct *p)
540 {
541         struct task_struct *t;
542
543         for_each_thread(p, t) {
544                 if (!(t->flags & PF_EXITING))
545                         return t;
546         }
547         return NULL;
548 }
549
550 static struct task_struct *find_child_reaper(struct task_struct *father,
551                                                 struct list_head *dead)
552         __releases(&tasklist_lock)
553         __acquires(&tasklist_lock)
554 {
555         struct pid_namespace *pid_ns = task_active_pid_ns(father);
556         struct task_struct *reaper = pid_ns->child_reaper;
557         struct task_struct *p, *n;
558
559         if (likely(reaper != father))
560                 return reaper;
561
562         reaper = find_alive_thread(father);
563         if (reaper) {
564                 pid_ns->child_reaper = reaper;
565                 return reaper;
566         }
567
568         write_unlock_irq(&tasklist_lock);
569
570         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
571                 list_del_init(&p->ptrace_entry);
572                 release_task(p);
573         }
574
575         zap_pid_ns_processes(pid_ns);
576         write_lock_irq(&tasklist_lock);
577
578         return father;
579 }
580
581 /*
582  * When we die, we re-parent all our children, and try to:
583  * 1. give them to another thread in our thread group, if such a member exists
584  * 2. give it to the first ancestor process which prctl'd itself as a
585  *    child_subreaper for its children (like a service manager)
586  * 3. give it to the init process (PID 1) in our pid namespace
587  */
588 static struct task_struct *find_new_reaper(struct task_struct *father,
589                                            struct task_struct *child_reaper)
590 {
591         struct task_struct *thread, *reaper;
592
593         thread = find_alive_thread(father);
594         if (thread)
595                 return thread;
596
597         if (father->signal->has_child_subreaper) {
598                 unsigned int ns_level = task_pid(father)->level;
599                 /*
600                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
601                  * We can't check reaper != child_reaper to ensure we do not
602                  * cross the namespaces, the exiting parent could be injected
603                  * by setns() + fork().
604                  * We check pid->level, this is slightly more efficient than
605                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
606                  */
607                 for (reaper = father->real_parent;
608                      task_pid(reaper)->level == ns_level;
609                      reaper = reaper->real_parent) {
610                         if (reaper == &init_task)
611                                 break;
612                         if (!reaper->signal->is_child_subreaper)
613                                 continue;
614                         thread = find_alive_thread(reaper);
615                         if (thread)
616                                 return thread;
617                 }
618         }
619
620         return child_reaper;
621 }
622
623 /*
624 * Any that need to be release_task'd are put on the @dead list.
625  */
626 static void reparent_leader(struct task_struct *father, struct task_struct *p,
627                                 struct list_head *dead)
628 {
629         if (unlikely(p->exit_state == EXIT_DEAD))
630                 return;
631
632         /* We don't want people slaying init. */
633         p->exit_signal = SIGCHLD;
634
635         /* If it has exited notify the new parent about this child's death. */
636         if (!p->ptrace &&
637             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
638                 if (do_notify_parent(p, p->exit_signal)) {
639                         p->exit_state = EXIT_DEAD;
640                         list_add(&p->ptrace_entry, dead);
641                 }
642         }
643
644         kill_orphaned_pgrp(p, father);
645 }
646
647 /*
648  * This does two things:
649  *
650  * A.  Make init inherit all the child processes
651  * B.  Check to see if any process groups have become orphaned
652  *      as a result of our exiting, and if they have any stopped
653  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
654  */
655 static void forget_original_parent(struct task_struct *father,
656                                         struct list_head *dead)
657 {
658         struct task_struct *p, *t, *reaper;
659
660         if (unlikely(!list_empty(&father->ptraced)))
661                 exit_ptrace(father, dead);
662
663         /* Can drop and reacquire tasklist_lock */
664         reaper = find_child_reaper(father, dead);
665         if (list_empty(&father->children))
666                 return;
667
668         reaper = find_new_reaper(father, reaper);
669         list_for_each_entry(p, &father->children, sibling) {
670                 for_each_thread(p, t) {
671                         RCU_INIT_POINTER(t->real_parent, reaper);
672                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
673                         if (likely(!t->ptrace))
674                                 t->parent = t->real_parent;
675                         if (t->pdeath_signal)
676                                 group_send_sig_info(t->pdeath_signal,
677                                                     SEND_SIG_NOINFO, t,
678                                                     PIDTYPE_TGID);
679                 }
680                 /*
681                  * If this is a threaded reparent there is no need to
682                  * notify anyone anything has happened.
683                  */
684                 if (!same_thread_group(reaper, father))
685                         reparent_leader(father, p, dead);
686         }
687         list_splice_tail_init(&father->children, &reaper->children);
688 }
689
690 /*
691  * Send signals to all our closest relatives so that they know
692  * to properly mourn us..
693  */
694 static void exit_notify(struct task_struct *tsk, int group_dead)
695 {
696         bool autoreap;
697         struct task_struct *p, *n;
698         LIST_HEAD(dead);
699
700         write_lock_irq(&tasklist_lock);
701         forget_original_parent(tsk, &dead);
702
703         if (group_dead)
704                 kill_orphaned_pgrp(tsk->group_leader, NULL);
705
706         tsk->exit_state = EXIT_ZOMBIE;
707         if (unlikely(tsk->ptrace)) {
708                 int sig = thread_group_leader(tsk) &&
709                                 thread_group_empty(tsk) &&
710                                 !ptrace_reparented(tsk) ?
711                         tsk->exit_signal : SIGCHLD;
712                 autoreap = do_notify_parent(tsk, sig);
713         } else if (thread_group_leader(tsk)) {
714                 autoreap = thread_group_empty(tsk) &&
715                         do_notify_parent(tsk, tsk->exit_signal);
716         } else {
717                 autoreap = true;
718         }
719
720         if (autoreap) {
721                 tsk->exit_state = EXIT_DEAD;
722                 list_add(&tsk->ptrace_entry, &dead);
723         }
724
725         /* mt-exec, de_thread() is waiting for group leader */
726         if (unlikely(tsk->signal->notify_count < 0))
727                 wake_up_process(tsk->signal->group_exit_task);
728         write_unlock_irq(&tasklist_lock);
729
730         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
731                 list_del_init(&p->ptrace_entry);
732                 release_task(p);
733         }
734 }
735
736 #ifdef CONFIG_DEBUG_STACK_USAGE
737 static void check_stack_usage(void)
738 {
739         static DEFINE_SPINLOCK(low_water_lock);
740         static int lowest_to_date = THREAD_SIZE;
741         unsigned long free;
742
743         free = stack_not_used(current);
744
745         if (free >= lowest_to_date)
746                 return;
747
748         spin_lock(&low_water_lock);
749         if (free < lowest_to_date) {
750                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
751                         current->comm, task_pid_nr(current), free);
752                 lowest_to_date = free;
753         }
754         spin_unlock(&low_water_lock);
755 }
756 #else
757 static inline void check_stack_usage(void) {}
758 #endif
759
760 void __noreturn do_exit(long code)
761 {
762         struct task_struct *tsk = current;
763         int group_dead;
764
765         /*
766          * We can get here from a kernel oops, sometimes with preemption off.
767          * Start by checking for critical errors.
768          * Then fix up important state like USER_DS and preemption.
769          * Then do everything else.
770          */
771
772         WARN_ON(blk_needs_flush_plug(tsk));
773
774         if (unlikely(in_interrupt()))
775                 panic("Aiee, killing interrupt handler!");
776         if (unlikely(!tsk->pid))
777                 panic("Attempted to kill the idle task!");
778
779         /*
780          * If do_exit is called because this processes oopsed, it's possible
781          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
782          * continuing. Amongst other possible reasons, this is to prevent
783          * mm_release()->clear_child_tid() from writing to a user-controlled
784          * kernel address.
785          */
786         force_uaccess_begin();
787
788         if (unlikely(in_atomic())) {
789                 pr_info("note: %s[%d] exited with preempt_count %d\n",
790                         current->comm, task_pid_nr(current),
791                         preempt_count());
792                 preempt_count_set(PREEMPT_ENABLED);
793         }
794
795         profile_task_exit(tsk);
796         kcov_task_exit(tsk);
797
798         ptrace_event(PTRACE_EVENT_EXIT, code);
799
800         validate_creds_for_do_exit(tsk);
801
802         /*
803          * We're taking recursive faults here in do_exit. Safest is to just
804          * leave this task alone and wait for reboot.
805          */
806         if (unlikely(tsk->flags & PF_EXITING)) {
807                 pr_alert("Fixing recursive fault but reboot is needed!\n");
808                 futex_exit_recursive(tsk);
809                 set_current_state(TASK_UNINTERRUPTIBLE);
810                 schedule();
811         }
812
813         io_uring_files_cancel();
814         exit_signals(tsk);  /* sets PF_EXITING */
815
816         /* sync mm's RSS info before statistics gathering */
817         if (tsk->mm)
818                 sync_mm_rss(tsk->mm);
819         acct_update_integrals(tsk);
820         group_dead = atomic_dec_and_test(&tsk->signal->live);
821         if (group_dead) {
822                 /*
823                  * If the last thread of global init has exited, panic
824                  * immediately to get a useable coredump.
825                  */
826                 if (unlikely(is_global_init(tsk)))
827                         panic("Attempted to kill init! exitcode=0x%08x\n",
828                                 tsk->signal->group_exit_code ?: (int)code);
829
830 #ifdef CONFIG_POSIX_TIMERS
831                 hrtimer_cancel(&tsk->signal->real_timer);
832                 exit_itimers(tsk);
833 #endif
834                 if (tsk->mm)
835                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
836         }
837         acct_collect(code, group_dead);
838         if (group_dead)
839                 tty_audit_exit();
840         audit_free(tsk);
841
842         tsk->exit_code = code;
843         taskstats_exit(tsk, group_dead);
844
845         exit_mm();
846
847         if (group_dead)
848                 acct_process();
849         trace_sched_process_exit(tsk);
850
851         exit_sem(tsk);
852         exit_shm(tsk);
853         exit_files(tsk);
854         exit_fs(tsk);
855         if (group_dead)
856                 disassociate_ctty(1);
857         exit_task_namespaces(tsk);
858         exit_task_work(tsk);
859         exit_thread(tsk);
860
861         /*
862          * Flush inherited counters to the parent - before the parent
863          * gets woken up by child-exit notifications.
864          *
865          * because of cgroup mode, must be called before cgroup_exit()
866          */
867         perf_event_exit_task(tsk);
868
869         sched_autogroup_exit_task(tsk);
870         cgroup_exit(tsk);
871
872         /*
873          * FIXME: do that only when needed, using sched_exit tracepoint
874          */
875         flush_ptrace_hw_breakpoint(tsk);
876
877         exit_tasks_rcu_start();
878         exit_notify(tsk, group_dead);
879         proc_exit_connector(tsk);
880         mpol_put_task_policy(tsk);
881 #ifdef CONFIG_FUTEX
882         if (unlikely(current->pi_state_cache))
883                 kfree(current->pi_state_cache);
884 #endif
885         /*
886          * Make sure we are holding no locks:
887          */
888         debug_check_no_locks_held();
889
890         if (tsk->io_context)
891                 exit_io_context(tsk);
892
893         if (tsk->splice_pipe)
894                 free_pipe_info(tsk->splice_pipe);
895
896         if (tsk->task_frag.page)
897                 put_page(tsk->task_frag.page);
898
899         validate_creds_for_do_exit(tsk);
900
901         check_stack_usage();
902         preempt_disable();
903         if (tsk->nr_dirtied)
904                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
905         exit_rcu();
906         exit_tasks_rcu_finish();
907
908         lockdep_free_task(tsk);
909         do_task_dead();
910 }
911 EXPORT_SYMBOL_GPL(do_exit);
912
913 void __noreturn make_task_dead(int signr)
914 {
915         /*
916          * Take the task off the cpu after something catastrophic has
917          * happened.
918          */
919         unsigned int limit;
920
921         /*
922          * Every time the system oopses, if the oops happens while a reference
923          * to an object was held, the reference leaks.
924          * If the oops doesn't also leak memory, repeated oopsing can cause
925          * reference counters to wrap around (if they're not using refcount_t).
926          * This means that repeated oopsing can make unexploitable-looking bugs
927          * exploitable through repeated oopsing.
928          * To make sure this can't happen, place an upper bound on how often the
929          * kernel may oops without panic().
930          */
931         limit = READ_ONCE(oops_limit);
932         if (atomic_inc_return(&oops_count) >= limit && limit)
933                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
934
935         do_exit(signr);
936 }
937
938 void complete_and_exit(struct completion *comp, long code)
939 {
940         if (comp)
941                 complete(comp);
942
943         do_exit(code);
944 }
945 EXPORT_SYMBOL(complete_and_exit);
946
947 SYSCALL_DEFINE1(exit, int, error_code)
948 {
949         do_exit((error_code&0xff)<<8);
950 }
951
952 /*
953  * Take down every thread in the group.  This is called by fatal signals
954  * as well as by sys_exit_group (below).
955  */
956 void
957 do_group_exit(int exit_code)
958 {
959         struct signal_struct *sig = current->signal;
960
961         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
962
963         if (signal_group_exit(sig))
964                 exit_code = sig->group_exit_code;
965         else if (!thread_group_empty(current)) {
966                 struct sighand_struct *const sighand = current->sighand;
967
968                 spin_lock_irq(&sighand->siglock);
969                 if (signal_group_exit(sig))
970                         /* Another thread got here before we took the lock.  */
971                         exit_code = sig->group_exit_code;
972                 else {
973                         sig->group_exit_code = exit_code;
974                         sig->flags = SIGNAL_GROUP_EXIT;
975                         zap_other_threads(current);
976                 }
977                 spin_unlock_irq(&sighand->siglock);
978         }
979
980         do_exit(exit_code);
981         /* NOTREACHED */
982 }
983
984 /*
985  * this kills every thread in the thread group. Note that any externally
986  * wait4()-ing process will get the correct exit code - even if this
987  * thread is not the thread group leader.
988  */
989 SYSCALL_DEFINE1(exit_group, int, error_code)
990 {
991         do_group_exit((error_code & 0xff) << 8);
992         /* NOTREACHED */
993         return 0;
994 }
995
996 struct waitid_info {
997         pid_t pid;
998         uid_t uid;
999         int status;
1000         int cause;
1001 };
1002
1003 struct wait_opts {
1004         enum pid_type           wo_type;
1005         int                     wo_flags;
1006         struct pid              *wo_pid;
1007
1008         struct waitid_info      *wo_info;
1009         int                     wo_stat;
1010         struct rusage           *wo_rusage;
1011
1012         wait_queue_entry_t              child_wait;
1013         int                     notask_error;
1014 };
1015
1016 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1017 {
1018         return  wo->wo_type == PIDTYPE_MAX ||
1019                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1020 }
1021
1022 static int
1023 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1024 {
1025         if (!eligible_pid(wo, p))
1026                 return 0;
1027
1028         /*
1029          * Wait for all children (clone and not) if __WALL is set or
1030          * if it is traced by us.
1031          */
1032         if (ptrace || (wo->wo_flags & __WALL))
1033                 return 1;
1034
1035         /*
1036          * Otherwise, wait for clone children *only* if __WCLONE is set;
1037          * otherwise, wait for non-clone children *only*.
1038          *
1039          * Note: a "clone" child here is one that reports to its parent
1040          * using a signal other than SIGCHLD, or a non-leader thread which
1041          * we can only see if it is traced by us.
1042          */
1043         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1044                 return 0;
1045
1046         return 1;
1047 }
1048
1049 /*
1050  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1051  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1052  * the lock and this task is uninteresting.  If we return nonzero, we have
1053  * released the lock and the system call should return.
1054  */
1055 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1056 {
1057         int state, status;
1058         pid_t pid = task_pid_vnr(p);
1059         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1060         struct waitid_info *infop;
1061
1062         if (!likely(wo->wo_flags & WEXITED))
1063                 return 0;
1064
1065         if (unlikely(wo->wo_flags & WNOWAIT)) {
1066                 status = p->exit_code;
1067                 get_task_struct(p);
1068                 read_unlock(&tasklist_lock);
1069                 sched_annotate_sleep();
1070                 if (wo->wo_rusage)
1071                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1072                 put_task_struct(p);
1073                 goto out_info;
1074         }
1075         /*
1076          * Move the task's state to DEAD/TRACE, only one thread can do this.
1077          */
1078         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1079                 EXIT_TRACE : EXIT_DEAD;
1080         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1081                 return 0;
1082         /*
1083          * We own this thread, nobody else can reap it.
1084          */
1085         read_unlock(&tasklist_lock);
1086         sched_annotate_sleep();
1087
1088         /*
1089          * Check thread_group_leader() to exclude the traced sub-threads.
1090          */
1091         if (state == EXIT_DEAD && thread_group_leader(p)) {
1092                 struct signal_struct *sig = p->signal;
1093                 struct signal_struct *psig = current->signal;
1094                 unsigned long maxrss;
1095                 u64 tgutime, tgstime;
1096
1097                 /*
1098                  * The resource counters for the group leader are in its
1099                  * own task_struct.  Those for dead threads in the group
1100                  * are in its signal_struct, as are those for the child
1101                  * processes it has previously reaped.  All these
1102                  * accumulate in the parent's signal_struct c* fields.
1103                  *
1104                  * We don't bother to take a lock here to protect these
1105                  * p->signal fields because the whole thread group is dead
1106                  * and nobody can change them.
1107                  *
1108                  * psig->stats_lock also protects us from our sub-theads
1109                  * which can reap other children at the same time. Until
1110                  * we change k_getrusage()-like users to rely on this lock
1111                  * we have to take ->siglock as well.
1112                  *
1113                  * We use thread_group_cputime_adjusted() to get times for
1114                  * the thread group, which consolidates times for all threads
1115                  * in the group including the group leader.
1116                  */
1117                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1118                 spin_lock_irq(&current->sighand->siglock);
1119                 write_seqlock(&psig->stats_lock);
1120                 psig->cutime += tgutime + sig->cutime;
1121                 psig->cstime += tgstime + sig->cstime;
1122                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1123                 psig->cmin_flt +=
1124                         p->min_flt + sig->min_flt + sig->cmin_flt;
1125                 psig->cmaj_flt +=
1126                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1127                 psig->cnvcsw +=
1128                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1129                 psig->cnivcsw +=
1130                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1131                 psig->cinblock +=
1132                         task_io_get_inblock(p) +
1133                         sig->inblock + sig->cinblock;
1134                 psig->coublock +=
1135                         task_io_get_oublock(p) +
1136                         sig->oublock + sig->coublock;
1137                 maxrss = max(sig->maxrss, sig->cmaxrss);
1138                 if (psig->cmaxrss < maxrss)
1139                         psig->cmaxrss = maxrss;
1140                 task_io_accounting_add(&psig->ioac, &p->ioac);
1141                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1142                 write_sequnlock(&psig->stats_lock);
1143                 spin_unlock_irq(&current->sighand->siglock);
1144         }
1145
1146         if (wo->wo_rusage)
1147                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1148         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1149                 ? p->signal->group_exit_code : p->exit_code;
1150         wo->wo_stat = status;
1151
1152         if (state == EXIT_TRACE) {
1153                 write_lock_irq(&tasklist_lock);
1154                 /* We dropped tasklist, ptracer could die and untrace */
1155                 ptrace_unlink(p);
1156
1157                 /* If parent wants a zombie, don't release it now */
1158                 state = EXIT_ZOMBIE;
1159                 if (do_notify_parent(p, p->exit_signal))
1160                         state = EXIT_DEAD;
1161                 p->exit_state = state;
1162                 write_unlock_irq(&tasklist_lock);
1163         }
1164         if (state == EXIT_DEAD)
1165                 release_task(p);
1166
1167 out_info:
1168         infop = wo->wo_info;
1169         if (infop) {
1170                 if ((status & 0x7f) == 0) {
1171                         infop->cause = CLD_EXITED;
1172                         infop->status = status >> 8;
1173                 } else {
1174                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1175                         infop->status = status & 0x7f;
1176                 }
1177                 infop->pid = pid;
1178                 infop->uid = uid;
1179         }
1180
1181         return pid;
1182 }
1183
1184 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1185 {
1186         if (ptrace) {
1187                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1188                         return &p->exit_code;
1189         } else {
1190                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1191                         return &p->signal->group_exit_code;
1192         }
1193         return NULL;
1194 }
1195
1196 /**
1197  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1198  * @wo: wait options
1199  * @ptrace: is the wait for ptrace
1200  * @p: task to wait for
1201  *
1202  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1203  *
1204  * CONTEXT:
1205  * read_lock(&tasklist_lock), which is released if return value is
1206  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1207  *
1208  * RETURNS:
1209  * 0 if wait condition didn't exist and search for other wait conditions
1210  * should continue.  Non-zero return, -errno on failure and @p's pid on
1211  * success, implies that tasklist_lock is released and wait condition
1212  * search should terminate.
1213  */
1214 static int wait_task_stopped(struct wait_opts *wo,
1215                                 int ptrace, struct task_struct *p)
1216 {
1217         struct waitid_info *infop;
1218         int exit_code, *p_code, why;
1219         uid_t uid = 0; /* unneeded, required by compiler */
1220         pid_t pid;
1221
1222         /*
1223          * Traditionally we see ptrace'd stopped tasks regardless of options.
1224          */
1225         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1226                 return 0;
1227
1228         if (!task_stopped_code(p, ptrace))
1229                 return 0;
1230
1231         exit_code = 0;
1232         spin_lock_irq(&p->sighand->siglock);
1233
1234         p_code = task_stopped_code(p, ptrace);
1235         if (unlikely(!p_code))
1236                 goto unlock_sig;
1237
1238         exit_code = *p_code;
1239         if (!exit_code)
1240                 goto unlock_sig;
1241
1242         if (!unlikely(wo->wo_flags & WNOWAIT))
1243                 *p_code = 0;
1244
1245         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1246 unlock_sig:
1247         spin_unlock_irq(&p->sighand->siglock);
1248         if (!exit_code)
1249                 return 0;
1250
1251         /*
1252          * Now we are pretty sure this task is interesting.
1253          * Make sure it doesn't get reaped out from under us while we
1254          * give up the lock and then examine it below.  We don't want to
1255          * keep holding onto the tasklist_lock while we call getrusage and
1256          * possibly take page faults for user memory.
1257          */
1258         get_task_struct(p);
1259         pid = task_pid_vnr(p);
1260         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1261         read_unlock(&tasklist_lock);
1262         sched_annotate_sleep();
1263         if (wo->wo_rusage)
1264                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1265         put_task_struct(p);
1266
1267         if (likely(!(wo->wo_flags & WNOWAIT)))
1268                 wo->wo_stat = (exit_code << 8) | 0x7f;
1269
1270         infop = wo->wo_info;
1271         if (infop) {
1272                 infop->cause = why;
1273                 infop->status = exit_code;
1274                 infop->pid = pid;
1275                 infop->uid = uid;
1276         }
1277         return pid;
1278 }
1279
1280 /*
1281  * Handle do_wait work for one task in a live, non-stopped state.
1282  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1283  * the lock and this task is uninteresting.  If we return nonzero, we have
1284  * released the lock and the system call should return.
1285  */
1286 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1287 {
1288         struct waitid_info *infop;
1289         pid_t pid;
1290         uid_t uid;
1291
1292         if (!unlikely(wo->wo_flags & WCONTINUED))
1293                 return 0;
1294
1295         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1296                 return 0;
1297
1298         spin_lock_irq(&p->sighand->siglock);
1299         /* Re-check with the lock held.  */
1300         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1301                 spin_unlock_irq(&p->sighand->siglock);
1302                 return 0;
1303         }
1304         if (!unlikely(wo->wo_flags & WNOWAIT))
1305                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1306         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1307         spin_unlock_irq(&p->sighand->siglock);
1308
1309         pid = task_pid_vnr(p);
1310         get_task_struct(p);
1311         read_unlock(&tasklist_lock);
1312         sched_annotate_sleep();
1313         if (wo->wo_rusage)
1314                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1315         put_task_struct(p);
1316
1317         infop = wo->wo_info;
1318         if (!infop) {
1319                 wo->wo_stat = 0xffff;
1320         } else {
1321                 infop->cause = CLD_CONTINUED;
1322                 infop->pid = pid;
1323                 infop->uid = uid;
1324                 infop->status = SIGCONT;
1325         }
1326         return pid;
1327 }
1328
1329 /*
1330  * Consider @p for a wait by @parent.
1331  *
1332  * -ECHILD should be in ->notask_error before the first call.
1333  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1334  * Returns zero if the search for a child should continue;
1335  * then ->notask_error is 0 if @p is an eligible child,
1336  * or still -ECHILD.
1337  */
1338 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1339                                 struct task_struct *p)
1340 {
1341         /*
1342          * We can race with wait_task_zombie() from another thread.
1343          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1344          * can't confuse the checks below.
1345          */
1346         int exit_state = READ_ONCE(p->exit_state);
1347         int ret;
1348
1349         if (unlikely(exit_state == EXIT_DEAD))
1350                 return 0;
1351
1352         ret = eligible_child(wo, ptrace, p);
1353         if (!ret)
1354                 return ret;
1355
1356         if (unlikely(exit_state == EXIT_TRACE)) {
1357                 /*
1358                  * ptrace == 0 means we are the natural parent. In this case
1359                  * we should clear notask_error, debugger will notify us.
1360                  */
1361                 if (likely(!ptrace))
1362                         wo->notask_error = 0;
1363                 return 0;
1364         }
1365
1366         if (likely(!ptrace) && unlikely(p->ptrace)) {
1367                 /*
1368                  * If it is traced by its real parent's group, just pretend
1369                  * the caller is ptrace_do_wait() and reap this child if it
1370                  * is zombie.
1371                  *
1372                  * This also hides group stop state from real parent; otherwise
1373                  * a single stop can be reported twice as group and ptrace stop.
1374                  * If a ptracer wants to distinguish these two events for its
1375                  * own children it should create a separate process which takes
1376                  * the role of real parent.
1377                  */
1378                 if (!ptrace_reparented(p))
1379                         ptrace = 1;
1380         }
1381
1382         /* slay zombie? */
1383         if (exit_state == EXIT_ZOMBIE) {
1384                 /* we don't reap group leaders with subthreads */
1385                 if (!delay_group_leader(p)) {
1386                         /*
1387                          * A zombie ptracee is only visible to its ptracer.
1388                          * Notification and reaping will be cascaded to the
1389                          * real parent when the ptracer detaches.
1390                          */
1391                         if (unlikely(ptrace) || likely(!p->ptrace))
1392                                 return wait_task_zombie(wo, p);
1393                 }
1394
1395                 /*
1396                  * Allow access to stopped/continued state via zombie by
1397                  * falling through.  Clearing of notask_error is complex.
1398                  *
1399                  * When !@ptrace:
1400                  *
1401                  * If WEXITED is set, notask_error should naturally be
1402                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1403                  * so, if there are live subthreads, there are events to
1404                  * wait for.  If all subthreads are dead, it's still safe
1405                  * to clear - this function will be called again in finite
1406                  * amount time once all the subthreads are released and
1407                  * will then return without clearing.
1408                  *
1409                  * When @ptrace:
1410                  *
1411                  * Stopped state is per-task and thus can't change once the
1412                  * target task dies.  Only continued and exited can happen.
1413                  * Clear notask_error if WCONTINUED | WEXITED.
1414                  */
1415                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1416                         wo->notask_error = 0;
1417         } else {
1418                 /*
1419                  * @p is alive and it's gonna stop, continue or exit, so
1420                  * there always is something to wait for.
1421                  */
1422                 wo->notask_error = 0;
1423         }
1424
1425         /*
1426          * Wait for stopped.  Depending on @ptrace, different stopped state
1427          * is used and the two don't interact with each other.
1428          */
1429         ret = wait_task_stopped(wo, ptrace, p);
1430         if (ret)
1431                 return ret;
1432
1433         /*
1434          * Wait for continued.  There's only one continued state and the
1435          * ptracer can consume it which can confuse the real parent.  Don't
1436          * use WCONTINUED from ptracer.  You don't need or want it.
1437          */
1438         return wait_task_continued(wo, p);
1439 }
1440
1441 /*
1442  * Do the work of do_wait() for one thread in the group, @tsk.
1443  *
1444  * -ECHILD should be in ->notask_error before the first call.
1445  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1446  * Returns zero if the search for a child should continue; then
1447  * ->notask_error is 0 if there were any eligible children,
1448  * or still -ECHILD.
1449  */
1450 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1451 {
1452         struct task_struct *p;
1453
1454         list_for_each_entry(p, &tsk->children, sibling) {
1455                 int ret = wait_consider_task(wo, 0, p);
1456
1457                 if (ret)
1458                         return ret;
1459         }
1460
1461         return 0;
1462 }
1463
1464 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1465 {
1466         struct task_struct *p;
1467
1468         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1469                 int ret = wait_consider_task(wo, 1, p);
1470
1471                 if (ret)
1472                         return ret;
1473         }
1474
1475         return 0;
1476 }
1477
1478 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1479                                 int sync, void *key)
1480 {
1481         struct wait_opts *wo = container_of(wait, struct wait_opts,
1482                                                 child_wait);
1483         struct task_struct *p = key;
1484
1485         if (!eligible_pid(wo, p))
1486                 return 0;
1487
1488         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1489                 return 0;
1490
1491         return default_wake_function(wait, mode, sync, key);
1492 }
1493
1494 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1495 {
1496         __wake_up_sync_key(&parent->signal->wait_chldexit,
1497                            TASK_INTERRUPTIBLE, p);
1498 }
1499
1500 static long do_wait(struct wait_opts *wo)
1501 {
1502         struct task_struct *tsk;
1503         int retval;
1504
1505         trace_sched_process_wait(wo->wo_pid);
1506
1507         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1508         wo->child_wait.private = current;
1509         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1510 repeat:
1511         /*
1512          * If there is nothing that can match our criteria, just get out.
1513          * We will clear ->notask_error to zero if we see any child that
1514          * might later match our criteria, even if we are not able to reap
1515          * it yet.
1516          */
1517         wo->notask_error = -ECHILD;
1518         if ((wo->wo_type < PIDTYPE_MAX) &&
1519            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1520                 goto notask;
1521
1522         set_current_state(TASK_INTERRUPTIBLE);
1523         read_lock(&tasklist_lock);
1524         tsk = current;
1525         do {
1526                 retval = do_wait_thread(wo, tsk);
1527                 if (retval)
1528                         goto end;
1529
1530                 retval = ptrace_do_wait(wo, tsk);
1531                 if (retval)
1532                         goto end;
1533
1534                 if (wo->wo_flags & __WNOTHREAD)
1535                         break;
1536         } while_each_thread(current, tsk);
1537         read_unlock(&tasklist_lock);
1538
1539 notask:
1540         retval = wo->notask_error;
1541         if (!retval && !(wo->wo_flags & WNOHANG)) {
1542                 retval = -ERESTARTSYS;
1543                 if (!signal_pending(current)) {
1544                         schedule();
1545                         goto repeat;
1546                 }
1547         }
1548 end:
1549         __set_current_state(TASK_RUNNING);
1550         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1551         return retval;
1552 }
1553
1554 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1555                           int options, struct rusage *ru)
1556 {
1557         struct wait_opts wo;
1558         struct pid *pid = NULL;
1559         enum pid_type type;
1560         long ret;
1561         unsigned int f_flags = 0;
1562
1563         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1564                         __WNOTHREAD|__WCLONE|__WALL))
1565                 return -EINVAL;
1566         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1567                 return -EINVAL;
1568
1569         switch (which) {
1570         case P_ALL:
1571                 type = PIDTYPE_MAX;
1572                 break;
1573         case P_PID:
1574                 type = PIDTYPE_PID;
1575                 if (upid <= 0)
1576                         return -EINVAL;
1577
1578                 pid = find_get_pid(upid);
1579                 break;
1580         case P_PGID:
1581                 type = PIDTYPE_PGID;
1582                 if (upid < 0)
1583                         return -EINVAL;
1584
1585                 if (upid)
1586                         pid = find_get_pid(upid);
1587                 else
1588                         pid = get_task_pid(current, PIDTYPE_PGID);
1589                 break;
1590         case P_PIDFD:
1591                 type = PIDTYPE_PID;
1592                 if (upid < 0)
1593                         return -EINVAL;
1594
1595                 pid = pidfd_get_pid(upid, &f_flags);
1596                 if (IS_ERR(pid))
1597                         return PTR_ERR(pid);
1598
1599                 break;
1600         default:
1601                 return -EINVAL;
1602         }
1603
1604         wo.wo_type      = type;
1605         wo.wo_pid       = pid;
1606         wo.wo_flags     = options;
1607         wo.wo_info      = infop;
1608         wo.wo_rusage    = ru;
1609         if (f_flags & O_NONBLOCK)
1610                 wo.wo_flags |= WNOHANG;
1611
1612         ret = do_wait(&wo);
1613         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1614                 ret = -EAGAIN;
1615
1616         put_pid(pid);
1617         return ret;
1618 }
1619
1620 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1621                 infop, int, options, struct rusage __user *, ru)
1622 {
1623         struct rusage r;
1624         struct waitid_info info = {.status = 0};
1625         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1626         int signo = 0;
1627
1628         if (err > 0) {
1629                 signo = SIGCHLD;
1630                 err = 0;
1631                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1632                         return -EFAULT;
1633         }
1634         if (!infop)
1635                 return err;
1636
1637         if (!user_write_access_begin(infop, sizeof(*infop)))
1638                 return -EFAULT;
1639
1640         unsafe_put_user(signo, &infop->si_signo, Efault);
1641         unsafe_put_user(0, &infop->si_errno, Efault);
1642         unsafe_put_user(info.cause, &infop->si_code, Efault);
1643         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1644         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1645         unsafe_put_user(info.status, &infop->si_status, Efault);
1646         user_write_access_end();
1647         return err;
1648 Efault:
1649         user_write_access_end();
1650         return -EFAULT;
1651 }
1652
1653 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1654                   struct rusage *ru)
1655 {
1656         struct wait_opts wo;
1657         struct pid *pid = NULL;
1658         enum pid_type type;
1659         long ret;
1660
1661         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1662                         __WNOTHREAD|__WCLONE|__WALL))
1663                 return -EINVAL;
1664
1665         /* -INT_MIN is not defined */
1666         if (upid == INT_MIN)
1667                 return -ESRCH;
1668
1669         if (upid == -1)
1670                 type = PIDTYPE_MAX;
1671         else if (upid < 0) {
1672                 type = PIDTYPE_PGID;
1673                 pid = find_get_pid(-upid);
1674         } else if (upid == 0) {
1675                 type = PIDTYPE_PGID;
1676                 pid = get_task_pid(current, PIDTYPE_PGID);
1677         } else /* upid > 0 */ {
1678                 type = PIDTYPE_PID;
1679                 pid = find_get_pid(upid);
1680         }
1681
1682         wo.wo_type      = type;
1683         wo.wo_pid       = pid;
1684         wo.wo_flags     = options | WEXITED;
1685         wo.wo_info      = NULL;
1686         wo.wo_stat      = 0;
1687         wo.wo_rusage    = ru;
1688         ret = do_wait(&wo);
1689         put_pid(pid);
1690         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1691                 ret = -EFAULT;
1692
1693         return ret;
1694 }
1695
1696 int kernel_wait(pid_t pid, int *stat)
1697 {
1698         struct wait_opts wo = {
1699                 .wo_type        = PIDTYPE_PID,
1700                 .wo_pid         = find_get_pid(pid),
1701                 .wo_flags       = WEXITED,
1702         };
1703         int ret;
1704
1705         ret = do_wait(&wo);
1706         if (ret > 0 && wo.wo_stat)
1707                 *stat = wo.wo_stat;
1708         put_pid(wo.wo_pid);
1709         return ret;
1710 }
1711
1712 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1713                 int, options, struct rusage __user *, ru)
1714 {
1715         struct rusage r;
1716         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1717
1718         if (err > 0) {
1719                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1720                         return -EFAULT;
1721         }
1722         return err;
1723 }
1724
1725 #ifdef __ARCH_WANT_SYS_WAITPID
1726
1727 /*
1728  * sys_waitpid() remains for compatibility. waitpid() should be
1729  * implemented by calling sys_wait4() from libc.a.
1730  */
1731 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1732 {
1733         return kernel_wait4(pid, stat_addr, options, NULL);
1734 }
1735
1736 #endif
1737
1738 #ifdef CONFIG_COMPAT
1739 COMPAT_SYSCALL_DEFINE4(wait4,
1740         compat_pid_t, pid,
1741         compat_uint_t __user *, stat_addr,
1742         int, options,
1743         struct compat_rusage __user *, ru)
1744 {
1745         struct rusage r;
1746         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1747         if (err > 0) {
1748                 if (ru && put_compat_rusage(&r, ru))
1749                         return -EFAULT;
1750         }
1751         return err;
1752 }
1753
1754 COMPAT_SYSCALL_DEFINE5(waitid,
1755                 int, which, compat_pid_t, pid,
1756                 struct compat_siginfo __user *, infop, int, options,
1757                 struct compat_rusage __user *, uru)
1758 {
1759         struct rusage ru;
1760         struct waitid_info info = {.status = 0};
1761         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1762         int signo = 0;
1763         if (err > 0) {
1764                 signo = SIGCHLD;
1765                 err = 0;
1766                 if (uru) {
1767                         /* kernel_waitid() overwrites everything in ru */
1768                         if (COMPAT_USE_64BIT_TIME)
1769                                 err = copy_to_user(uru, &ru, sizeof(ru));
1770                         else
1771                                 err = put_compat_rusage(&ru, uru);
1772                         if (err)
1773                                 return -EFAULT;
1774                 }
1775         }
1776
1777         if (!infop)
1778                 return err;
1779
1780         if (!user_write_access_begin(infop, sizeof(*infop)))
1781                 return -EFAULT;
1782
1783         unsafe_put_user(signo, &infop->si_signo, Efault);
1784         unsafe_put_user(0, &infop->si_errno, Efault);
1785         unsafe_put_user(info.cause, &infop->si_code, Efault);
1786         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1787         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1788         unsafe_put_user(info.status, &infop->si_status, Efault);
1789         user_write_access_end();
1790         return err;
1791 Efault:
1792         user_write_access_end();
1793         return -EFAULT;
1794 }
1795 #endif
1796
1797 /**
1798  * thread_group_exited - check that a thread group has exited
1799  * @pid: tgid of thread group to be checked.
1800  *
1801  * Test if the thread group represented by tgid has exited (all
1802  * threads are zombies, dead or completely gone).
1803  *
1804  * Return: true if the thread group has exited. false otherwise.
1805  */
1806 bool thread_group_exited(struct pid *pid)
1807 {
1808         struct task_struct *task;
1809         bool exited;
1810
1811         rcu_read_lock();
1812         task = pid_task(pid, PIDTYPE_PID);
1813         exited = !task ||
1814                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1815         rcu_read_unlock();
1816
1817         return exited;
1818 }
1819 EXPORT_SYMBOL(thread_group_exited);
1820
1821 __weak void abort(void)
1822 {
1823         BUG();
1824
1825         /* if that doesn't kill us, halt */
1826         panic("Oops failed to kill thread");
1827 }
1828 EXPORT_SYMBOL(abort);