arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* folio_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29
30 #include <linux/uprobes.h>
31
32 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
33 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
34
35 static struct rb_root uprobes_tree = RB_ROOT;
36 /*
37  * allows us to skip the uprobe_mmap if there are no uprobe events active
38  * at this time.  Probably a fine grained per inode count is better?
39  */
40 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
41
42 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
43
44 #define UPROBES_HASH_SZ 13
45 /* serialize uprobe->pending_list */
46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
47 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
48
49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
50
51 /* Have a copy of original instruction */
52 #define UPROBE_COPY_INSN        0
53
54 struct uprobe {
55         struct rb_node          rb_node;        /* node in the rb tree */
56         refcount_t              ref;
57         struct rw_semaphore     register_rwsem;
58         struct rw_semaphore     consumer_rwsem;
59         struct list_head        pending_list;
60         struct uprobe_consumer  *consumers;
61         struct inode            *inode;         /* Also hold a ref to inode */
62         loff_t                  offset;
63         loff_t                  ref_ctr_offset;
64         unsigned long           flags;
65
66         /*
67          * The generic code assumes that it has two members of unknown type
68          * owned by the arch-specific code:
69          *
70          *      insn -  copy_insn() saves the original instruction here for
71          *              arch_uprobe_analyze_insn().
72          *
73          *      ixol -  potentially modified instruction to execute out of
74          *              line, copied to xol_area by xol_get_insn_slot().
75          */
76         struct arch_uprobe      arch;
77 };
78
79 struct delayed_uprobe {
80         struct list_head list;
81         struct uprobe *uprobe;
82         struct mm_struct *mm;
83 };
84
85 static DEFINE_MUTEX(delayed_uprobe_lock);
86 static LIST_HEAD(delayed_uprobe_list);
87
88 /*
89  * Execute out of line area: anonymous executable mapping installed
90  * by the probed task to execute the copy of the original instruction
91  * mangled by set_swbp().
92  *
93  * On a breakpoint hit, thread contests for a slot.  It frees the
94  * slot after singlestep. Currently a fixed number of slots are
95  * allocated.
96  */
97 struct xol_area {
98         wait_queue_head_t               wq;             /* if all slots are busy */
99         atomic_t                        slot_count;     /* number of in-use slots */
100         unsigned long                   *bitmap;        /* 0 = free slot */
101
102         struct vm_special_mapping       xol_mapping;
103         struct page                     *pages[2];
104         /*
105          * We keep the vma's vm_start rather than a pointer to the vma
106          * itself.  The probed process or a naughty kernel module could make
107          * the vma go away, and we must handle that reasonably gracefully.
108          */
109         unsigned long                   vaddr;          /* Page(s) of instruction slots */
110 };
111
112 /*
113  * valid_vma: Verify if the specified vma is an executable vma
114  * Relax restrictions while unregistering: vm_flags might have
115  * changed after breakpoint was inserted.
116  *      - is_register: indicates if we are in register context.
117  *      - Return 1 if the specified virtual address is in an
118  *        executable vma.
119  */
120 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
121 {
122         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
123
124         if (is_register)
125                 flags |= VM_WRITE;
126
127         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
128 }
129
130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
131 {
132         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
133 }
134
135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
136 {
137         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
138 }
139
140 /**
141  * __replace_page - replace page in vma by new page.
142  * based on replace_page in mm/ksm.c
143  *
144  * @vma:      vma that holds the pte pointing to page
145  * @addr:     address the old @page is mapped at
146  * @old_page: the page we are replacing by new_page
147  * @new_page: the modified page we replace page by
148  *
149  * If @new_page is NULL, only unmap @old_page.
150  *
151  * Returns 0 on success, negative error code otherwise.
152  */
153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
154                                 struct page *old_page, struct page *new_page)
155 {
156         struct folio *old_folio = page_folio(old_page);
157         struct folio *new_folio;
158         struct mm_struct *mm = vma->vm_mm;
159         DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
160         int err;
161         struct mmu_notifier_range range;
162
163         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
164                                 addr + PAGE_SIZE);
165
166         if (new_page) {
167                 new_folio = page_folio(new_page);
168                 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
169                 if (err)
170                         return err;
171         }
172
173         /* For folio_free_swap() below */
174         folio_lock(old_folio);
175
176         mmu_notifier_invalidate_range_start(&range);
177         err = -EAGAIN;
178         if (!page_vma_mapped_walk(&pvmw))
179                 goto unlock;
180         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
181
182         if (new_page) {
183                 folio_get(new_folio);
184                 page_add_new_anon_rmap(new_page, vma, addr);
185                 folio_add_lru_vma(new_folio, vma);
186         } else
187                 /* no new page, just dec_mm_counter for old_page */
188                 dec_mm_counter(mm, MM_ANONPAGES);
189
190         if (!folio_test_anon(old_folio)) {
191                 dec_mm_counter(mm, mm_counter_file(old_page));
192                 inc_mm_counter(mm, MM_ANONPAGES);
193         }
194
195         flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte)));
196         ptep_clear_flush(vma, addr, pvmw.pte);
197         if (new_page)
198                 set_pte_at_notify(mm, addr, pvmw.pte,
199                                   mk_pte(new_page, vma->vm_page_prot));
200
201         page_remove_rmap(old_page, vma, false);
202         if (!folio_mapped(old_folio))
203                 folio_free_swap(old_folio);
204         page_vma_mapped_walk_done(&pvmw);
205         folio_put(old_folio);
206
207         err = 0;
208  unlock:
209         mmu_notifier_invalidate_range_end(&range);
210         folio_unlock(old_folio);
211         return err;
212 }
213
214 /**
215  * is_swbp_insn - check if instruction is breakpoint instruction.
216  * @insn: instruction to be checked.
217  * Default implementation of is_swbp_insn
218  * Returns true if @insn is a breakpoint instruction.
219  */
220 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
221 {
222         return *insn == UPROBE_SWBP_INSN;
223 }
224
225 /**
226  * is_trap_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_trap_insn
229  * Returns true if @insn is a breakpoint instruction.
230  *
231  * This function is needed for the case where an architecture has multiple
232  * trap instructions (like powerpc).
233  */
234 bool __weak is_trap_insn(uprobe_opcode_t *insn)
235 {
236         return is_swbp_insn(insn);
237 }
238
239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
240 {
241         void *kaddr = kmap_atomic(page);
242         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
243         kunmap_atomic(kaddr);
244 }
245
246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
247 {
248         void *kaddr = kmap_atomic(page);
249         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
250         kunmap_atomic(kaddr);
251 }
252
253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
254 {
255         uprobe_opcode_t old_opcode;
256         bool is_swbp;
257
258         /*
259          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
260          * We do not check if it is any other 'trap variant' which could
261          * be conditional trap instruction such as the one powerpc supports.
262          *
263          * The logic is that we do not care if the underlying instruction
264          * is a trap variant; uprobes always wins over any other (gdb)
265          * breakpoint.
266          */
267         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
268         is_swbp = is_swbp_insn(&old_opcode);
269
270         if (is_swbp_insn(new_opcode)) {
271                 if (is_swbp)            /* register: already installed? */
272                         return 0;
273         } else {
274                 if (!is_swbp)           /* unregister: was it changed by us? */
275                         return 0;
276         }
277
278         return 1;
279 }
280
281 static struct delayed_uprobe *
282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
283 {
284         struct delayed_uprobe *du;
285
286         list_for_each_entry(du, &delayed_uprobe_list, list)
287                 if (du->uprobe == uprobe && du->mm == mm)
288                         return du;
289         return NULL;
290 }
291
292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
293 {
294         struct delayed_uprobe *du;
295
296         if (delayed_uprobe_check(uprobe, mm))
297                 return 0;
298
299         du  = kzalloc(sizeof(*du), GFP_KERNEL);
300         if (!du)
301                 return -ENOMEM;
302
303         du->uprobe = uprobe;
304         du->mm = mm;
305         list_add(&du->list, &delayed_uprobe_list);
306         return 0;
307 }
308
309 static void delayed_uprobe_delete(struct delayed_uprobe *du)
310 {
311         if (WARN_ON(!du))
312                 return;
313         list_del(&du->list);
314         kfree(du);
315 }
316
317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
318 {
319         struct list_head *pos, *q;
320         struct delayed_uprobe *du;
321
322         if (!uprobe && !mm)
323                 return;
324
325         list_for_each_safe(pos, q, &delayed_uprobe_list) {
326                 du = list_entry(pos, struct delayed_uprobe, list);
327
328                 if (uprobe && du->uprobe != uprobe)
329                         continue;
330                 if (mm && du->mm != mm)
331                         continue;
332
333                 delayed_uprobe_delete(du);
334         }
335 }
336
337 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
338                               struct vm_area_struct *vma)
339 {
340         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
341
342         return uprobe->ref_ctr_offset &&
343                 vma->vm_file &&
344                 file_inode(vma->vm_file) == uprobe->inode &&
345                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
346                 vma->vm_start <= vaddr &&
347                 vma->vm_end > vaddr;
348 }
349
350 static struct vm_area_struct *
351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
352 {
353         VMA_ITERATOR(vmi, mm, 0);
354         struct vm_area_struct *tmp;
355
356         for_each_vma(vmi, tmp)
357                 if (valid_ref_ctr_vma(uprobe, tmp))
358                         return tmp;
359
360         return NULL;
361 }
362
363 static int
364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
365 {
366         void *kaddr;
367         struct page *page;
368         int ret;
369         short *ptr;
370
371         if (!vaddr || !d)
372                 return -EINVAL;
373
374         ret = get_user_pages_remote(mm, vaddr, 1,
375                                     FOLL_WRITE, &page, NULL);
376         if (unlikely(ret <= 0)) {
377                 /*
378                  * We are asking for 1 page. If get_user_pages_remote() fails,
379                  * it may return 0, in that case we have to return error.
380                  */
381                 return ret == 0 ? -EBUSY : ret;
382         }
383
384         kaddr = kmap_atomic(page);
385         ptr = kaddr + (vaddr & ~PAGE_MASK);
386
387         if (unlikely(*ptr + d < 0)) {
388                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
389                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
390                 ret = -EINVAL;
391                 goto out;
392         }
393
394         *ptr += d;
395         ret = 0;
396 out:
397         kunmap_atomic(kaddr);
398         put_page(page);
399         return ret;
400 }
401
402 static void update_ref_ctr_warn(struct uprobe *uprobe,
403                                 struct mm_struct *mm, short d)
404 {
405         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
406                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
407                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
408                 (unsigned long long) uprobe->offset,
409                 (unsigned long long) uprobe->ref_ctr_offset, mm);
410 }
411
412 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
413                           short d)
414 {
415         struct vm_area_struct *rc_vma;
416         unsigned long rc_vaddr;
417         int ret = 0;
418
419         rc_vma = find_ref_ctr_vma(uprobe, mm);
420
421         if (rc_vma) {
422                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
423                 ret = __update_ref_ctr(mm, rc_vaddr, d);
424                 if (ret)
425                         update_ref_ctr_warn(uprobe, mm, d);
426
427                 if (d > 0)
428                         return ret;
429         }
430
431         mutex_lock(&delayed_uprobe_lock);
432         if (d > 0)
433                 ret = delayed_uprobe_add(uprobe, mm);
434         else
435                 delayed_uprobe_remove(uprobe, mm);
436         mutex_unlock(&delayed_uprobe_lock);
437
438         return ret;
439 }
440
441 /*
442  * NOTE:
443  * Expect the breakpoint instruction to be the smallest size instruction for
444  * the architecture. If an arch has variable length instruction and the
445  * breakpoint instruction is not of the smallest length instruction
446  * supported by that architecture then we need to modify is_trap_at_addr and
447  * uprobe_write_opcode accordingly. This would never be a problem for archs
448  * that have fixed length instructions.
449  *
450  * uprobe_write_opcode - write the opcode at a given virtual address.
451  * @auprobe: arch specific probepoint information.
452  * @mm: the probed process address space.
453  * @vaddr: the virtual address to store the opcode.
454  * @opcode: opcode to be written at @vaddr.
455  *
456  * Called with mm->mmap_lock held for write.
457  * Return 0 (success) or a negative errno.
458  */
459 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
460                         unsigned long vaddr, uprobe_opcode_t opcode)
461 {
462         struct uprobe *uprobe;
463         struct page *old_page, *new_page;
464         struct vm_area_struct *vma;
465         int ret, is_register, ref_ctr_updated = 0;
466         bool orig_page_huge = false;
467         unsigned int gup_flags = FOLL_FORCE;
468
469         is_register = is_swbp_insn(&opcode);
470         uprobe = container_of(auprobe, struct uprobe, arch);
471
472 retry:
473         if (is_register)
474                 gup_flags |= FOLL_SPLIT_PMD;
475         /* Read the page with vaddr into memory */
476         old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
477         if (IS_ERR(old_page))
478                 return PTR_ERR(old_page);
479
480         ret = verify_opcode(old_page, vaddr, &opcode);
481         if (ret <= 0)
482                 goto put_old;
483
484         if (WARN(!is_register && PageCompound(old_page),
485                  "uprobe unregister should never work on compound page\n")) {
486                 ret = -EINVAL;
487                 goto put_old;
488         }
489
490         /* We are going to replace instruction, update ref_ctr. */
491         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
492                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
493                 if (ret)
494                         goto put_old;
495
496                 ref_ctr_updated = 1;
497         }
498
499         ret = 0;
500         if (!is_register && !PageAnon(old_page))
501                 goto put_old;
502
503         ret = anon_vma_prepare(vma);
504         if (ret)
505                 goto put_old;
506
507         ret = -ENOMEM;
508         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509         if (!new_page)
510                 goto put_old;
511
512         __SetPageUptodate(new_page);
513         copy_highpage(new_page, old_page);
514         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515
516         if (!is_register) {
517                 struct page *orig_page;
518                 pgoff_t index;
519
520                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
521
522                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
523                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
524                                           index);
525
526                 if (orig_page) {
527                         if (PageUptodate(orig_page) &&
528                             pages_identical(new_page, orig_page)) {
529                                 /* let go new_page */
530                                 put_page(new_page);
531                                 new_page = NULL;
532
533                                 if (PageCompound(orig_page))
534                                         orig_page_huge = true;
535                         }
536                         put_page(orig_page);
537                 }
538         }
539
540         ret = __replace_page(vma, vaddr, old_page, new_page);
541         if (new_page)
542                 put_page(new_page);
543 put_old:
544         put_page(old_page);
545
546         if (unlikely(ret == -EAGAIN))
547                 goto retry;
548
549         /* Revert back reference counter if instruction update failed. */
550         if (ret && is_register && ref_ctr_updated)
551                 update_ref_ctr(uprobe, mm, -1);
552
553         /* try collapse pmd for compound page */
554         if (!ret && orig_page_huge)
555                 collapse_pte_mapped_thp(mm, vaddr, false);
556
557         return ret;
558 }
559
560 /**
561  * set_swbp - store breakpoint at a given address.
562  * @auprobe: arch specific probepoint information.
563  * @mm: the probed process address space.
564  * @vaddr: the virtual address to insert the opcode.
565  *
566  * For mm @mm, store the breakpoint instruction at @vaddr.
567  * Return 0 (success) or a negative errno.
568  */
569 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
570 {
571         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
572 }
573
574 /**
575  * set_orig_insn - Restore the original instruction.
576  * @mm: the probed process address space.
577  * @auprobe: arch specific probepoint information.
578  * @vaddr: the virtual address to insert the opcode.
579  *
580  * For mm @mm, restore the original opcode (opcode) at @vaddr.
581  * Return 0 (success) or a negative errno.
582  */
583 int __weak
584 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
585 {
586         return uprobe_write_opcode(auprobe, mm, vaddr,
587                         *(uprobe_opcode_t *)&auprobe->insn);
588 }
589
590 static struct uprobe *get_uprobe(struct uprobe *uprobe)
591 {
592         refcount_inc(&uprobe->ref);
593         return uprobe;
594 }
595
596 static void put_uprobe(struct uprobe *uprobe)
597 {
598         if (refcount_dec_and_test(&uprobe->ref)) {
599                 /*
600                  * If application munmap(exec_vma) before uprobe_unregister()
601                  * gets called, we don't get a chance to remove uprobe from
602                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
603                  */
604                 mutex_lock(&delayed_uprobe_lock);
605                 delayed_uprobe_remove(uprobe, NULL);
606                 mutex_unlock(&delayed_uprobe_lock);
607                 kfree(uprobe);
608         }
609 }
610
611 static __always_inline
612 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
613                const struct uprobe *r)
614 {
615         if (l_inode < r->inode)
616                 return -1;
617
618         if (l_inode > r->inode)
619                 return 1;
620
621         if (l_offset < r->offset)
622                 return -1;
623
624         if (l_offset > r->offset)
625                 return 1;
626
627         return 0;
628 }
629
630 #define __node_2_uprobe(node) \
631         rb_entry((node), struct uprobe, rb_node)
632
633 struct __uprobe_key {
634         struct inode *inode;
635         loff_t offset;
636 };
637
638 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
639 {
640         const struct __uprobe_key *a = key;
641         return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
642 }
643
644 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
645 {
646         struct uprobe *u = __node_2_uprobe(a);
647         return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
648 }
649
650 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
651 {
652         struct __uprobe_key key = {
653                 .inode = inode,
654                 .offset = offset,
655         };
656         struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
657
658         if (node)
659                 return get_uprobe(__node_2_uprobe(node));
660
661         return NULL;
662 }
663
664 /*
665  * Find a uprobe corresponding to a given inode:offset
666  * Acquires uprobes_treelock
667  */
668 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
669 {
670         struct uprobe *uprobe;
671
672         spin_lock(&uprobes_treelock);
673         uprobe = __find_uprobe(inode, offset);
674         spin_unlock(&uprobes_treelock);
675
676         return uprobe;
677 }
678
679 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
680 {
681         struct rb_node *node;
682
683         node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
684         if (node)
685                 return get_uprobe(__node_2_uprobe(node));
686
687         /* get access + creation ref */
688         refcount_set(&uprobe->ref, 2);
689         return NULL;
690 }
691
692 /*
693  * Acquire uprobes_treelock.
694  * Matching uprobe already exists in rbtree;
695  *      increment (access refcount) and return the matching uprobe.
696  *
697  * No matching uprobe; insert the uprobe in rb_tree;
698  *      get a double refcount (access + creation) and return NULL.
699  */
700 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
701 {
702         struct uprobe *u;
703
704         spin_lock(&uprobes_treelock);
705         u = __insert_uprobe(uprobe);
706         spin_unlock(&uprobes_treelock);
707
708         return u;
709 }
710
711 static void
712 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
713 {
714         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
715                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
716                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
717                 (unsigned long long) cur_uprobe->ref_ctr_offset,
718                 (unsigned long long) uprobe->ref_ctr_offset);
719 }
720
721 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
722                                    loff_t ref_ctr_offset)
723 {
724         struct uprobe *uprobe, *cur_uprobe;
725
726         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
727         if (!uprobe)
728                 return NULL;
729
730         uprobe->inode = inode;
731         uprobe->offset = offset;
732         uprobe->ref_ctr_offset = ref_ctr_offset;
733         init_rwsem(&uprobe->register_rwsem);
734         init_rwsem(&uprobe->consumer_rwsem);
735
736         /* add to uprobes_tree, sorted on inode:offset */
737         cur_uprobe = insert_uprobe(uprobe);
738         /* a uprobe exists for this inode:offset combination */
739         if (cur_uprobe) {
740                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
741                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
742                         put_uprobe(cur_uprobe);
743                         kfree(uprobe);
744                         return ERR_PTR(-EINVAL);
745                 }
746                 kfree(uprobe);
747                 uprobe = cur_uprobe;
748         }
749
750         return uprobe;
751 }
752
753 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
754 {
755         down_write(&uprobe->consumer_rwsem);
756         uc->next = uprobe->consumers;
757         uprobe->consumers = uc;
758         up_write(&uprobe->consumer_rwsem);
759 }
760
761 /*
762  * For uprobe @uprobe, delete the consumer @uc.
763  * Return true if the @uc is deleted successfully
764  * or return false.
765  */
766 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
767 {
768         struct uprobe_consumer **con;
769         bool ret = false;
770
771         down_write(&uprobe->consumer_rwsem);
772         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
773                 if (*con == uc) {
774                         *con = uc->next;
775                         ret = true;
776                         break;
777                 }
778         }
779         up_write(&uprobe->consumer_rwsem);
780
781         return ret;
782 }
783
784 static int __copy_insn(struct address_space *mapping, struct file *filp,
785                         void *insn, int nbytes, loff_t offset)
786 {
787         struct page *page;
788         /*
789          * Ensure that the page that has the original instruction is populated
790          * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
791          * see uprobe_register().
792          */
793         if (mapping->a_ops->read_folio)
794                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
795         else
796                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
797         if (IS_ERR(page))
798                 return PTR_ERR(page);
799
800         copy_from_page(page, offset, insn, nbytes);
801         put_page(page);
802
803         return 0;
804 }
805
806 static int copy_insn(struct uprobe *uprobe, struct file *filp)
807 {
808         struct address_space *mapping = uprobe->inode->i_mapping;
809         loff_t offs = uprobe->offset;
810         void *insn = &uprobe->arch.insn;
811         int size = sizeof(uprobe->arch.insn);
812         int len, err = -EIO;
813
814         /* Copy only available bytes, -EIO if nothing was read */
815         do {
816                 if (offs >= i_size_read(uprobe->inode))
817                         break;
818
819                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
820                 err = __copy_insn(mapping, filp, insn, len, offs);
821                 if (err)
822                         break;
823
824                 insn += len;
825                 offs += len;
826                 size -= len;
827         } while (size);
828
829         return err;
830 }
831
832 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
833                                 struct mm_struct *mm, unsigned long vaddr)
834 {
835         int ret = 0;
836
837         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
838                 return ret;
839
840         /* TODO: move this into _register, until then we abuse this sem. */
841         down_write(&uprobe->consumer_rwsem);
842         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
843                 goto out;
844
845         ret = copy_insn(uprobe, file);
846         if (ret)
847                 goto out;
848
849         ret = -ENOTSUPP;
850         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
851                 goto out;
852
853         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
854         if (ret)
855                 goto out;
856
857         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
858         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
859
860  out:
861         up_write(&uprobe->consumer_rwsem);
862
863         return ret;
864 }
865
866 static inline bool consumer_filter(struct uprobe_consumer *uc,
867                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
868 {
869         return !uc->filter || uc->filter(uc, ctx, mm);
870 }
871
872 static bool filter_chain(struct uprobe *uprobe,
873                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
874 {
875         struct uprobe_consumer *uc;
876         bool ret = false;
877
878         down_read(&uprobe->consumer_rwsem);
879         for (uc = uprobe->consumers; uc; uc = uc->next) {
880                 ret = consumer_filter(uc, ctx, mm);
881                 if (ret)
882                         break;
883         }
884         up_read(&uprobe->consumer_rwsem);
885
886         return ret;
887 }
888
889 static int
890 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
891                         struct vm_area_struct *vma, unsigned long vaddr)
892 {
893         bool first_uprobe;
894         int ret;
895
896         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
897         if (ret)
898                 return ret;
899
900         /*
901          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
902          * the task can hit this breakpoint right after __replace_page().
903          */
904         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
905         if (first_uprobe)
906                 set_bit(MMF_HAS_UPROBES, &mm->flags);
907
908         ret = set_swbp(&uprobe->arch, mm, vaddr);
909         if (!ret)
910                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
911         else if (first_uprobe)
912                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
913
914         return ret;
915 }
916
917 static int
918 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
919 {
920         set_bit(MMF_RECALC_UPROBES, &mm->flags);
921         return set_orig_insn(&uprobe->arch, mm, vaddr);
922 }
923
924 static inline bool uprobe_is_active(struct uprobe *uprobe)
925 {
926         return !RB_EMPTY_NODE(&uprobe->rb_node);
927 }
928 /*
929  * There could be threads that have already hit the breakpoint. They
930  * will recheck the current insn and restart if find_uprobe() fails.
931  * See find_active_uprobe().
932  */
933 static void delete_uprobe(struct uprobe *uprobe)
934 {
935         if (WARN_ON(!uprobe_is_active(uprobe)))
936                 return;
937
938         spin_lock(&uprobes_treelock);
939         rb_erase(&uprobe->rb_node, &uprobes_tree);
940         spin_unlock(&uprobes_treelock);
941         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
942         put_uprobe(uprobe);
943 }
944
945 struct map_info {
946         struct map_info *next;
947         struct mm_struct *mm;
948         unsigned long vaddr;
949 };
950
951 static inline struct map_info *free_map_info(struct map_info *info)
952 {
953         struct map_info *next = info->next;
954         kfree(info);
955         return next;
956 }
957
958 static struct map_info *
959 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
960 {
961         unsigned long pgoff = offset >> PAGE_SHIFT;
962         struct vm_area_struct *vma;
963         struct map_info *curr = NULL;
964         struct map_info *prev = NULL;
965         struct map_info *info;
966         int more = 0;
967
968  again:
969         i_mmap_lock_read(mapping);
970         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
971                 if (!valid_vma(vma, is_register))
972                         continue;
973
974                 if (!prev && !more) {
975                         /*
976                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
977                          * reclaim. This is optimistic, no harm done if it fails.
978                          */
979                         prev = kmalloc(sizeof(struct map_info),
980                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
981                         if (prev)
982                                 prev->next = NULL;
983                 }
984                 if (!prev) {
985                         more++;
986                         continue;
987                 }
988
989                 if (!mmget_not_zero(vma->vm_mm))
990                         continue;
991
992                 info = prev;
993                 prev = prev->next;
994                 info->next = curr;
995                 curr = info;
996
997                 info->mm = vma->vm_mm;
998                 info->vaddr = offset_to_vaddr(vma, offset);
999         }
1000         i_mmap_unlock_read(mapping);
1001
1002         if (!more)
1003                 goto out;
1004
1005         prev = curr;
1006         while (curr) {
1007                 mmput(curr->mm);
1008                 curr = curr->next;
1009         }
1010
1011         do {
1012                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1013                 if (!info) {
1014                         curr = ERR_PTR(-ENOMEM);
1015                         goto out;
1016                 }
1017                 info->next = prev;
1018                 prev = info;
1019         } while (--more);
1020
1021         goto again;
1022  out:
1023         while (prev)
1024                 prev = free_map_info(prev);
1025         return curr;
1026 }
1027
1028 static int
1029 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1030 {
1031         bool is_register = !!new;
1032         struct map_info *info;
1033         int err = 0;
1034
1035         percpu_down_write(&dup_mmap_sem);
1036         info = build_map_info(uprobe->inode->i_mapping,
1037                                         uprobe->offset, is_register);
1038         if (IS_ERR(info)) {
1039                 err = PTR_ERR(info);
1040                 goto out;
1041         }
1042
1043         while (info) {
1044                 struct mm_struct *mm = info->mm;
1045                 struct vm_area_struct *vma;
1046
1047                 if (err && is_register)
1048                         goto free;
1049
1050                 mmap_write_lock(mm);
1051                 vma = find_vma(mm, info->vaddr);
1052                 if (!vma || !valid_vma(vma, is_register) ||
1053                     file_inode(vma->vm_file) != uprobe->inode)
1054                         goto unlock;
1055
1056                 if (vma->vm_start > info->vaddr ||
1057                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1058                         goto unlock;
1059
1060                 if (is_register) {
1061                         /* consult only the "caller", new consumer. */
1062                         if (consumer_filter(new,
1063                                         UPROBE_FILTER_REGISTER, mm))
1064                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1065                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1066                         if (!filter_chain(uprobe,
1067                                         UPROBE_FILTER_UNREGISTER, mm))
1068                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1069                 }
1070
1071  unlock:
1072                 mmap_write_unlock(mm);
1073  free:
1074                 mmput(mm);
1075                 info = free_map_info(info);
1076         }
1077  out:
1078         percpu_up_write(&dup_mmap_sem);
1079         return err;
1080 }
1081
1082 static void
1083 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1084 {
1085         int err;
1086
1087         if (WARN_ON(!consumer_del(uprobe, uc)))
1088                 return;
1089
1090         err = register_for_each_vma(uprobe, NULL);
1091         /* TODO : cant unregister? schedule a worker thread */
1092         if (!uprobe->consumers && !err)
1093                 delete_uprobe(uprobe);
1094 }
1095
1096 /*
1097  * uprobe_unregister - unregister an already registered probe.
1098  * @inode: the file in which the probe has to be removed.
1099  * @offset: offset from the start of the file.
1100  * @uc: identify which probe if multiple probes are colocated.
1101  */
1102 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1103 {
1104         struct uprobe *uprobe;
1105
1106         uprobe = find_uprobe(inode, offset);
1107         if (WARN_ON(!uprobe))
1108                 return;
1109
1110         down_write(&uprobe->register_rwsem);
1111         __uprobe_unregister(uprobe, uc);
1112         up_write(&uprobe->register_rwsem);
1113         put_uprobe(uprobe);
1114 }
1115 EXPORT_SYMBOL_GPL(uprobe_unregister);
1116
1117 /*
1118  * __uprobe_register - register a probe
1119  * @inode: the file in which the probe has to be placed.
1120  * @offset: offset from the start of the file.
1121  * @uc: information on howto handle the probe..
1122  *
1123  * Apart from the access refcount, __uprobe_register() takes a creation
1124  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1125  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1126  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1127  * @uprobe even before the register operation is complete. Creation
1128  * refcount is released when the last @uc for the @uprobe
1129  * unregisters. Caller of __uprobe_register() is required to keep @inode
1130  * (and the containing mount) referenced.
1131  *
1132  * Return errno if it cannot successully install probes
1133  * else return 0 (success)
1134  */
1135 static int __uprobe_register(struct inode *inode, loff_t offset,
1136                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1137 {
1138         struct uprobe *uprobe;
1139         int ret;
1140
1141         /* Uprobe must have at least one set consumer */
1142         if (!uc->handler && !uc->ret_handler)
1143                 return -EINVAL;
1144
1145         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1146         if (!inode->i_mapping->a_ops->read_folio &&
1147             !shmem_mapping(inode->i_mapping))
1148                 return -EIO;
1149         /* Racy, just to catch the obvious mistakes */
1150         if (offset > i_size_read(inode))
1151                 return -EINVAL;
1152
1153         /*
1154          * This ensures that copy_from_page(), copy_to_page() and
1155          * __update_ref_ctr() can't cross page boundary.
1156          */
1157         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1158                 return -EINVAL;
1159         if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1160                 return -EINVAL;
1161
1162  retry:
1163         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1164         if (!uprobe)
1165                 return -ENOMEM;
1166         if (IS_ERR(uprobe))
1167                 return PTR_ERR(uprobe);
1168
1169         /*
1170          * We can race with uprobe_unregister()->delete_uprobe().
1171          * Check uprobe_is_active() and retry if it is false.
1172          */
1173         down_write(&uprobe->register_rwsem);
1174         ret = -EAGAIN;
1175         if (likely(uprobe_is_active(uprobe))) {
1176                 consumer_add(uprobe, uc);
1177                 ret = register_for_each_vma(uprobe, uc);
1178                 if (ret)
1179                         __uprobe_unregister(uprobe, uc);
1180         }
1181         up_write(&uprobe->register_rwsem);
1182         put_uprobe(uprobe);
1183
1184         if (unlikely(ret == -EAGAIN))
1185                 goto retry;
1186         return ret;
1187 }
1188
1189 int uprobe_register(struct inode *inode, loff_t offset,
1190                     struct uprobe_consumer *uc)
1191 {
1192         return __uprobe_register(inode, offset, 0, uc);
1193 }
1194 EXPORT_SYMBOL_GPL(uprobe_register);
1195
1196 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1197                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1198 {
1199         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1200 }
1201 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1202
1203 /*
1204  * uprobe_apply - unregister an already registered probe.
1205  * @inode: the file in which the probe has to be removed.
1206  * @offset: offset from the start of the file.
1207  * @uc: consumer which wants to add more or remove some breakpoints
1208  * @add: add or remove the breakpoints
1209  */
1210 int uprobe_apply(struct inode *inode, loff_t offset,
1211                         struct uprobe_consumer *uc, bool add)
1212 {
1213         struct uprobe *uprobe;
1214         struct uprobe_consumer *con;
1215         int ret = -ENOENT;
1216
1217         uprobe = find_uprobe(inode, offset);
1218         if (WARN_ON(!uprobe))
1219                 return ret;
1220
1221         down_write(&uprobe->register_rwsem);
1222         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1223                 ;
1224         if (con)
1225                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1226         up_write(&uprobe->register_rwsem);
1227         put_uprobe(uprobe);
1228
1229         return ret;
1230 }
1231
1232 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1233 {
1234         VMA_ITERATOR(vmi, mm, 0);
1235         struct vm_area_struct *vma;
1236         int err = 0;
1237
1238         mmap_read_lock(mm);
1239         for_each_vma(vmi, vma) {
1240                 unsigned long vaddr;
1241                 loff_t offset;
1242
1243                 if (!valid_vma(vma, false) ||
1244                     file_inode(vma->vm_file) != uprobe->inode)
1245                         continue;
1246
1247                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1248                 if (uprobe->offset <  offset ||
1249                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1250                         continue;
1251
1252                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1253                 err |= remove_breakpoint(uprobe, mm, vaddr);
1254         }
1255         mmap_read_unlock(mm);
1256
1257         return err;
1258 }
1259
1260 static struct rb_node *
1261 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1262 {
1263         struct rb_node *n = uprobes_tree.rb_node;
1264
1265         while (n) {
1266                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1267
1268                 if (inode < u->inode) {
1269                         n = n->rb_left;
1270                 } else if (inode > u->inode) {
1271                         n = n->rb_right;
1272                 } else {
1273                         if (max < u->offset)
1274                                 n = n->rb_left;
1275                         else if (min > u->offset)
1276                                 n = n->rb_right;
1277                         else
1278                                 break;
1279                 }
1280         }
1281
1282         return n;
1283 }
1284
1285 /*
1286  * For a given range in vma, build a list of probes that need to be inserted.
1287  */
1288 static void build_probe_list(struct inode *inode,
1289                                 struct vm_area_struct *vma,
1290                                 unsigned long start, unsigned long end,
1291                                 struct list_head *head)
1292 {
1293         loff_t min, max;
1294         struct rb_node *n, *t;
1295         struct uprobe *u;
1296
1297         INIT_LIST_HEAD(head);
1298         min = vaddr_to_offset(vma, start);
1299         max = min + (end - start) - 1;
1300
1301         spin_lock(&uprobes_treelock);
1302         n = find_node_in_range(inode, min, max);
1303         if (n) {
1304                 for (t = n; t; t = rb_prev(t)) {
1305                         u = rb_entry(t, struct uprobe, rb_node);
1306                         if (u->inode != inode || u->offset < min)
1307                                 break;
1308                         list_add(&u->pending_list, head);
1309                         get_uprobe(u);
1310                 }
1311                 for (t = n; (t = rb_next(t)); ) {
1312                         u = rb_entry(t, struct uprobe, rb_node);
1313                         if (u->inode != inode || u->offset > max)
1314                                 break;
1315                         list_add(&u->pending_list, head);
1316                         get_uprobe(u);
1317                 }
1318         }
1319         spin_unlock(&uprobes_treelock);
1320 }
1321
1322 /* @vma contains reference counter, not the probed instruction. */
1323 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1324 {
1325         struct list_head *pos, *q;
1326         struct delayed_uprobe *du;
1327         unsigned long vaddr;
1328         int ret = 0, err = 0;
1329
1330         mutex_lock(&delayed_uprobe_lock);
1331         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1332                 du = list_entry(pos, struct delayed_uprobe, list);
1333
1334                 if (du->mm != vma->vm_mm ||
1335                     !valid_ref_ctr_vma(du->uprobe, vma))
1336                         continue;
1337
1338                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1339                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1340                 if (ret) {
1341                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1342                         if (!err)
1343                                 err = ret;
1344                 }
1345                 delayed_uprobe_delete(du);
1346         }
1347         mutex_unlock(&delayed_uprobe_lock);
1348         return err;
1349 }
1350
1351 /*
1352  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1353  *
1354  * Currently we ignore all errors and always return 0, the callers
1355  * can't handle the failure anyway.
1356  */
1357 int uprobe_mmap(struct vm_area_struct *vma)
1358 {
1359         struct list_head tmp_list;
1360         struct uprobe *uprobe, *u;
1361         struct inode *inode;
1362
1363         if (no_uprobe_events())
1364                 return 0;
1365
1366         if (vma->vm_file &&
1367             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1368             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1369                 delayed_ref_ctr_inc(vma);
1370
1371         if (!valid_vma(vma, true))
1372                 return 0;
1373
1374         inode = file_inode(vma->vm_file);
1375         if (!inode)
1376                 return 0;
1377
1378         mutex_lock(uprobes_mmap_hash(inode));
1379         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1380         /*
1381          * We can race with uprobe_unregister(), this uprobe can be already
1382          * removed. But in this case filter_chain() must return false, all
1383          * consumers have gone away.
1384          */
1385         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1386                 if (!fatal_signal_pending(current) &&
1387                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1388                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1389                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1390                 }
1391                 put_uprobe(uprobe);
1392         }
1393         mutex_unlock(uprobes_mmap_hash(inode));
1394
1395         return 0;
1396 }
1397
1398 static bool
1399 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1400 {
1401         loff_t min, max;
1402         struct inode *inode;
1403         struct rb_node *n;
1404
1405         inode = file_inode(vma->vm_file);
1406
1407         min = vaddr_to_offset(vma, start);
1408         max = min + (end - start) - 1;
1409
1410         spin_lock(&uprobes_treelock);
1411         n = find_node_in_range(inode, min, max);
1412         spin_unlock(&uprobes_treelock);
1413
1414         return !!n;
1415 }
1416
1417 /*
1418  * Called in context of a munmap of a vma.
1419  */
1420 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1421 {
1422         if (no_uprobe_events() || !valid_vma(vma, false))
1423                 return;
1424
1425         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1426                 return;
1427
1428         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1429              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1430                 return;
1431
1432         if (vma_has_uprobes(vma, start, end))
1433                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1434 }
1435
1436 /* Slot allocation for XOL */
1437 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1438 {
1439         struct vm_area_struct *vma;
1440         int ret;
1441
1442         if (mmap_write_lock_killable(mm))
1443                 return -EINTR;
1444
1445         if (mm->uprobes_state.xol_area) {
1446                 ret = -EALREADY;
1447                 goto fail;
1448         }
1449
1450         if (!area->vaddr) {
1451                 /* Try to map as high as possible, this is only a hint. */
1452                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1453                                                 PAGE_SIZE, 0, 0);
1454                 if (IS_ERR_VALUE(area->vaddr)) {
1455                         ret = area->vaddr;
1456                         goto fail;
1457                 }
1458         }
1459
1460         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1461                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1462                                 &area->xol_mapping);
1463         if (IS_ERR(vma)) {
1464                 ret = PTR_ERR(vma);
1465                 goto fail;
1466         }
1467
1468         ret = 0;
1469         /* pairs with get_xol_area() */
1470         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1471  fail:
1472         mmap_write_unlock(mm);
1473
1474         return ret;
1475 }
1476
1477 static struct xol_area *__create_xol_area(unsigned long vaddr)
1478 {
1479         struct mm_struct *mm = current->mm;
1480         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1481         struct xol_area *area;
1482
1483         area = kmalloc(sizeof(*area), GFP_KERNEL);
1484         if (unlikely(!area))
1485                 goto out;
1486
1487         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1488                                GFP_KERNEL);
1489         if (!area->bitmap)
1490                 goto free_area;
1491
1492         area->xol_mapping.name = "[uprobes]";
1493         area->xol_mapping.fault = NULL;
1494         area->xol_mapping.pages = area->pages;
1495         area->pages[0] = alloc_page(GFP_HIGHUSER);
1496         if (!area->pages[0])
1497                 goto free_bitmap;
1498         area->pages[1] = NULL;
1499
1500         area->vaddr = vaddr;
1501         init_waitqueue_head(&area->wq);
1502         /* Reserve the 1st slot for get_trampoline_vaddr() */
1503         set_bit(0, area->bitmap);
1504         atomic_set(&area->slot_count, 1);
1505         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1506
1507         if (!xol_add_vma(mm, area))
1508                 return area;
1509
1510         __free_page(area->pages[0]);
1511  free_bitmap:
1512         kfree(area->bitmap);
1513  free_area:
1514         kfree(area);
1515  out:
1516         return NULL;
1517 }
1518
1519 /*
1520  * get_xol_area - Allocate process's xol_area if necessary.
1521  * This area will be used for storing instructions for execution out of line.
1522  *
1523  * Returns the allocated area or NULL.
1524  */
1525 static struct xol_area *get_xol_area(void)
1526 {
1527         struct mm_struct *mm = current->mm;
1528         struct xol_area *area;
1529
1530         if (!mm->uprobes_state.xol_area)
1531                 __create_xol_area(0);
1532
1533         /* Pairs with xol_add_vma() smp_store_release() */
1534         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1535         return area;
1536 }
1537
1538 /*
1539  * uprobe_clear_state - Free the area allocated for slots.
1540  */
1541 void uprobe_clear_state(struct mm_struct *mm)
1542 {
1543         struct xol_area *area = mm->uprobes_state.xol_area;
1544
1545         mutex_lock(&delayed_uprobe_lock);
1546         delayed_uprobe_remove(NULL, mm);
1547         mutex_unlock(&delayed_uprobe_lock);
1548
1549         if (!area)
1550                 return;
1551
1552         put_page(area->pages[0]);
1553         kfree(area->bitmap);
1554         kfree(area);
1555 }
1556
1557 void uprobe_start_dup_mmap(void)
1558 {
1559         percpu_down_read(&dup_mmap_sem);
1560 }
1561
1562 void uprobe_end_dup_mmap(void)
1563 {
1564         percpu_up_read(&dup_mmap_sem);
1565 }
1566
1567 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1568 {
1569         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1570                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1571                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1572                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1573         }
1574 }
1575
1576 /*
1577  *  - search for a free slot.
1578  */
1579 static unsigned long xol_take_insn_slot(struct xol_area *area)
1580 {
1581         unsigned long slot_addr;
1582         int slot_nr;
1583
1584         do {
1585                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1586                 if (slot_nr < UINSNS_PER_PAGE) {
1587                         if (!test_and_set_bit(slot_nr, area->bitmap))
1588                                 break;
1589
1590                         slot_nr = UINSNS_PER_PAGE;
1591                         continue;
1592                 }
1593                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1594         } while (slot_nr >= UINSNS_PER_PAGE);
1595
1596         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1597         atomic_inc(&area->slot_count);
1598
1599         return slot_addr;
1600 }
1601
1602 /*
1603  * xol_get_insn_slot - allocate a slot for xol.
1604  * Returns the allocated slot address or 0.
1605  */
1606 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1607 {
1608         struct xol_area *area;
1609         unsigned long xol_vaddr;
1610
1611         area = get_xol_area();
1612         if (!area)
1613                 return 0;
1614
1615         xol_vaddr = xol_take_insn_slot(area);
1616         if (unlikely(!xol_vaddr))
1617                 return 0;
1618
1619         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1620                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1621
1622         return xol_vaddr;
1623 }
1624
1625 /*
1626  * xol_free_insn_slot - If slot was earlier allocated by
1627  * @xol_get_insn_slot(), make the slot available for
1628  * subsequent requests.
1629  */
1630 static void xol_free_insn_slot(struct task_struct *tsk)
1631 {
1632         struct xol_area *area;
1633         unsigned long vma_end;
1634         unsigned long slot_addr;
1635
1636         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1637                 return;
1638
1639         slot_addr = tsk->utask->xol_vaddr;
1640         if (unlikely(!slot_addr))
1641                 return;
1642
1643         area = tsk->mm->uprobes_state.xol_area;
1644         vma_end = area->vaddr + PAGE_SIZE;
1645         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1646                 unsigned long offset;
1647                 int slot_nr;
1648
1649                 offset = slot_addr - area->vaddr;
1650                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1651                 if (slot_nr >= UINSNS_PER_PAGE)
1652                         return;
1653
1654                 clear_bit(slot_nr, area->bitmap);
1655                 atomic_dec(&area->slot_count);
1656                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1657                 if (waitqueue_active(&area->wq))
1658                         wake_up(&area->wq);
1659
1660                 tsk->utask->xol_vaddr = 0;
1661         }
1662 }
1663
1664 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1665                                   void *src, unsigned long len)
1666 {
1667         /* Initialize the slot */
1668         copy_to_page(page, vaddr, src, len);
1669
1670         /*
1671          * We probably need flush_icache_user_page() but it needs vma.
1672          * This should work on most of architectures by default. If
1673          * architecture needs to do something different it can define
1674          * its own version of the function.
1675          */
1676         flush_dcache_page(page);
1677 }
1678
1679 /**
1680  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1681  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1682  * instruction.
1683  * Return the address of the breakpoint instruction.
1684  */
1685 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1686 {
1687         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1688 }
1689
1690 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1691 {
1692         struct uprobe_task *utask = current->utask;
1693
1694         if (unlikely(utask && utask->active_uprobe))
1695                 return utask->vaddr;
1696
1697         return instruction_pointer(regs);
1698 }
1699
1700 static struct return_instance *free_ret_instance(struct return_instance *ri)
1701 {
1702         struct return_instance *next = ri->next;
1703         put_uprobe(ri->uprobe);
1704         kfree(ri);
1705         return next;
1706 }
1707
1708 /*
1709  * Called with no locks held.
1710  * Called in context of an exiting or an exec-ing thread.
1711  */
1712 void uprobe_free_utask(struct task_struct *t)
1713 {
1714         struct uprobe_task *utask = t->utask;
1715         struct return_instance *ri;
1716
1717         if (!utask)
1718                 return;
1719
1720         if (utask->active_uprobe)
1721                 put_uprobe(utask->active_uprobe);
1722
1723         ri = utask->return_instances;
1724         while (ri)
1725                 ri = free_ret_instance(ri);
1726
1727         xol_free_insn_slot(t);
1728         kfree(utask);
1729         t->utask = NULL;
1730 }
1731
1732 /*
1733  * Allocate a uprobe_task object for the task if necessary.
1734  * Called when the thread hits a breakpoint.
1735  *
1736  * Returns:
1737  * - pointer to new uprobe_task on success
1738  * - NULL otherwise
1739  */
1740 static struct uprobe_task *get_utask(void)
1741 {
1742         if (!current->utask)
1743                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1744         return current->utask;
1745 }
1746
1747 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1748 {
1749         struct uprobe_task *n_utask;
1750         struct return_instance **p, *o, *n;
1751
1752         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1753         if (!n_utask)
1754                 return -ENOMEM;
1755         t->utask = n_utask;
1756
1757         p = &n_utask->return_instances;
1758         for (o = o_utask->return_instances; o; o = o->next) {
1759                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1760                 if (!n)
1761                         return -ENOMEM;
1762
1763                 *n = *o;
1764                 get_uprobe(n->uprobe);
1765                 n->next = NULL;
1766
1767                 *p = n;
1768                 p = &n->next;
1769                 n_utask->depth++;
1770         }
1771
1772         return 0;
1773 }
1774
1775 static void uprobe_warn(struct task_struct *t, const char *msg)
1776 {
1777         pr_warn("uprobe: %s:%d failed to %s\n",
1778                         current->comm, current->pid, msg);
1779 }
1780
1781 static void dup_xol_work(struct callback_head *work)
1782 {
1783         if (current->flags & PF_EXITING)
1784                 return;
1785
1786         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1787                         !fatal_signal_pending(current))
1788                 uprobe_warn(current, "dup xol area");
1789 }
1790
1791 /*
1792  * Called in context of a new clone/fork from copy_process.
1793  */
1794 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1795 {
1796         struct uprobe_task *utask = current->utask;
1797         struct mm_struct *mm = current->mm;
1798         struct xol_area *area;
1799
1800         t->utask = NULL;
1801
1802         if (!utask || !utask->return_instances)
1803                 return;
1804
1805         if (mm == t->mm && !(flags & CLONE_VFORK))
1806                 return;
1807
1808         if (dup_utask(t, utask))
1809                 return uprobe_warn(t, "dup ret instances");
1810
1811         /* The task can fork() after dup_xol_work() fails */
1812         area = mm->uprobes_state.xol_area;
1813         if (!area)
1814                 return uprobe_warn(t, "dup xol area");
1815
1816         if (mm == t->mm)
1817                 return;
1818
1819         t->utask->dup_xol_addr = area->vaddr;
1820         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1821         task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1822 }
1823
1824 /*
1825  * Current area->vaddr notion assume the trampoline address is always
1826  * equal area->vaddr.
1827  *
1828  * Returns -1 in case the xol_area is not allocated.
1829  */
1830 static unsigned long get_trampoline_vaddr(void)
1831 {
1832         struct xol_area *area;
1833         unsigned long trampoline_vaddr = -1;
1834
1835         /* Pairs with xol_add_vma() smp_store_release() */
1836         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1837         if (area)
1838                 trampoline_vaddr = area->vaddr;
1839
1840         return trampoline_vaddr;
1841 }
1842
1843 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1844                                         struct pt_regs *regs)
1845 {
1846         struct return_instance *ri = utask->return_instances;
1847         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1848
1849         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1850                 ri = free_ret_instance(ri);
1851                 utask->depth--;
1852         }
1853         utask->return_instances = ri;
1854 }
1855
1856 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1857 {
1858         struct return_instance *ri;
1859         struct uprobe_task *utask;
1860         unsigned long orig_ret_vaddr, trampoline_vaddr;
1861         bool chained;
1862
1863         if (!get_xol_area())
1864                 return;
1865
1866         utask = get_utask();
1867         if (!utask)
1868                 return;
1869
1870         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1871                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1872                                 " nestedness limit pid/tgid=%d/%d\n",
1873                                 current->pid, current->tgid);
1874                 return;
1875         }
1876
1877         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1878         if (!ri)
1879                 return;
1880
1881         trampoline_vaddr = get_trampoline_vaddr();
1882         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1883         if (orig_ret_vaddr == -1)
1884                 goto fail;
1885
1886         /* drop the entries invalidated by longjmp() */
1887         chained = (orig_ret_vaddr == trampoline_vaddr);
1888         cleanup_return_instances(utask, chained, regs);
1889
1890         /*
1891          * We don't want to keep trampoline address in stack, rather keep the
1892          * original return address of first caller thru all the consequent
1893          * instances. This also makes breakpoint unwrapping easier.
1894          */
1895         if (chained) {
1896                 if (!utask->return_instances) {
1897                         /*
1898                          * This situation is not possible. Likely we have an
1899                          * attack from user-space.
1900                          */
1901                         uprobe_warn(current, "handle tail call");
1902                         goto fail;
1903                 }
1904                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1905         }
1906
1907         ri->uprobe = get_uprobe(uprobe);
1908         ri->func = instruction_pointer(regs);
1909         ri->stack = user_stack_pointer(regs);
1910         ri->orig_ret_vaddr = orig_ret_vaddr;
1911         ri->chained = chained;
1912
1913         utask->depth++;
1914         ri->next = utask->return_instances;
1915         utask->return_instances = ri;
1916
1917         return;
1918  fail:
1919         kfree(ri);
1920 }
1921
1922 /* Prepare to single-step probed instruction out of line. */
1923 static int
1924 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1925 {
1926         struct uprobe_task *utask;
1927         unsigned long xol_vaddr;
1928         int err;
1929
1930         utask = get_utask();
1931         if (!utask)
1932                 return -ENOMEM;
1933
1934         xol_vaddr = xol_get_insn_slot(uprobe);
1935         if (!xol_vaddr)
1936                 return -ENOMEM;
1937
1938         utask->xol_vaddr = xol_vaddr;
1939         utask->vaddr = bp_vaddr;
1940
1941         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1942         if (unlikely(err)) {
1943                 xol_free_insn_slot(current);
1944                 return err;
1945         }
1946
1947         utask->active_uprobe = uprobe;
1948         utask->state = UTASK_SSTEP;
1949         return 0;
1950 }
1951
1952 /*
1953  * If we are singlestepping, then ensure this thread is not connected to
1954  * non-fatal signals until completion of singlestep.  When xol insn itself
1955  * triggers the signal,  restart the original insn even if the task is
1956  * already SIGKILL'ed (since coredump should report the correct ip).  This
1957  * is even more important if the task has a handler for SIGSEGV/etc, The
1958  * _same_ instruction should be repeated again after return from the signal
1959  * handler, and SSTEP can never finish in this case.
1960  */
1961 bool uprobe_deny_signal(void)
1962 {
1963         struct task_struct *t = current;
1964         struct uprobe_task *utask = t->utask;
1965
1966         if (likely(!utask || !utask->active_uprobe))
1967                 return false;
1968
1969         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1970
1971         if (task_sigpending(t)) {
1972                 spin_lock_irq(&t->sighand->siglock);
1973                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1974                 spin_unlock_irq(&t->sighand->siglock);
1975
1976                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1977                         utask->state = UTASK_SSTEP_TRAPPED;
1978                         set_tsk_thread_flag(t, TIF_UPROBE);
1979                 }
1980         }
1981
1982         return true;
1983 }
1984
1985 static void mmf_recalc_uprobes(struct mm_struct *mm)
1986 {
1987         VMA_ITERATOR(vmi, mm, 0);
1988         struct vm_area_struct *vma;
1989
1990         for_each_vma(vmi, vma) {
1991                 if (!valid_vma(vma, false))
1992                         continue;
1993                 /*
1994                  * This is not strictly accurate, we can race with
1995                  * uprobe_unregister() and see the already removed
1996                  * uprobe if delete_uprobe() was not yet called.
1997                  * Or this uprobe can be filtered out.
1998                  */
1999                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2000                         return;
2001         }
2002
2003         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2004 }
2005
2006 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2007 {
2008         struct page *page;
2009         uprobe_opcode_t opcode;
2010         int result;
2011
2012         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2013                 return -EINVAL;
2014
2015         pagefault_disable();
2016         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2017         pagefault_enable();
2018
2019         if (likely(result == 0))
2020                 goto out;
2021
2022         /*
2023          * The NULL 'tsk' here ensures that any faults that occur here
2024          * will not be accounted to the task.  'mm' *is* current->mm,
2025          * but we treat this as a 'remote' access since it is
2026          * essentially a kernel access to the memory.
2027          */
2028         result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, NULL);
2029         if (result < 0)
2030                 return result;
2031
2032         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2033         put_page(page);
2034  out:
2035         /* This needs to return true for any variant of the trap insn */
2036         return is_trap_insn(&opcode);
2037 }
2038
2039 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2040 {
2041         struct mm_struct *mm = current->mm;
2042         struct uprobe *uprobe = NULL;
2043         struct vm_area_struct *vma;
2044
2045         mmap_read_lock(mm);
2046         vma = vma_lookup(mm, bp_vaddr);
2047         if (vma) {
2048                 if (valid_vma(vma, false)) {
2049                         struct inode *inode = file_inode(vma->vm_file);
2050                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2051
2052                         uprobe = find_uprobe(inode, offset);
2053                 }
2054
2055                 if (!uprobe)
2056                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2057         } else {
2058                 *is_swbp = -EFAULT;
2059         }
2060
2061         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2062                 mmf_recalc_uprobes(mm);
2063         mmap_read_unlock(mm);
2064
2065         return uprobe;
2066 }
2067
2068 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2069 {
2070         struct uprobe_consumer *uc;
2071         int remove = UPROBE_HANDLER_REMOVE;
2072         bool need_prep = false; /* prepare return uprobe, when needed */
2073
2074         down_read(&uprobe->register_rwsem);
2075         for (uc = uprobe->consumers; uc; uc = uc->next) {
2076                 int rc = 0;
2077
2078                 if (uc->handler) {
2079                         rc = uc->handler(uc, regs);
2080                         WARN(rc & ~UPROBE_HANDLER_MASK,
2081                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2082                 }
2083
2084                 if (uc->ret_handler)
2085                         need_prep = true;
2086
2087                 remove &= rc;
2088         }
2089
2090         if (need_prep && !remove)
2091                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2092
2093         if (remove && uprobe->consumers) {
2094                 WARN_ON(!uprobe_is_active(uprobe));
2095                 unapply_uprobe(uprobe, current->mm);
2096         }
2097         up_read(&uprobe->register_rwsem);
2098 }
2099
2100 static void
2101 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2102 {
2103         struct uprobe *uprobe = ri->uprobe;
2104         struct uprobe_consumer *uc;
2105
2106         down_read(&uprobe->register_rwsem);
2107         for (uc = uprobe->consumers; uc; uc = uc->next) {
2108                 if (uc->ret_handler)
2109                         uc->ret_handler(uc, ri->func, regs);
2110         }
2111         up_read(&uprobe->register_rwsem);
2112 }
2113
2114 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2115 {
2116         bool chained;
2117
2118         do {
2119                 chained = ri->chained;
2120                 ri = ri->next;  /* can't be NULL if chained */
2121         } while (chained);
2122
2123         return ri;
2124 }
2125
2126 static void handle_trampoline(struct pt_regs *regs)
2127 {
2128         struct uprobe_task *utask;
2129         struct return_instance *ri, *next;
2130         bool valid;
2131
2132         utask = current->utask;
2133         if (!utask)
2134                 goto sigill;
2135
2136         ri = utask->return_instances;
2137         if (!ri)
2138                 goto sigill;
2139
2140         do {
2141                 /*
2142                  * We should throw out the frames invalidated by longjmp().
2143                  * If this chain is valid, then the next one should be alive
2144                  * or NULL; the latter case means that nobody but ri->func
2145                  * could hit this trampoline on return. TODO: sigaltstack().
2146                  */
2147                 next = find_next_ret_chain(ri);
2148                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2149
2150                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2151                 do {
2152                         if (valid)
2153                                 handle_uretprobe_chain(ri, regs);
2154                         ri = free_ret_instance(ri);
2155                         utask->depth--;
2156                 } while (ri != next);
2157         } while (!valid);
2158
2159         utask->return_instances = ri;
2160         return;
2161
2162  sigill:
2163         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2164         force_sig(SIGILL);
2165
2166 }
2167
2168 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2169 {
2170         return false;
2171 }
2172
2173 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2174                                         struct pt_regs *regs)
2175 {
2176         return true;
2177 }
2178
2179 /*
2180  * Run handler and ask thread to singlestep.
2181  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2182  */
2183 static void handle_swbp(struct pt_regs *regs)
2184 {
2185         struct uprobe *uprobe;
2186         unsigned long bp_vaddr;
2187         int is_swbp;
2188
2189         bp_vaddr = uprobe_get_swbp_addr(regs);
2190         if (bp_vaddr == get_trampoline_vaddr())
2191                 return handle_trampoline(regs);
2192
2193         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2194         if (!uprobe) {
2195                 if (is_swbp > 0) {
2196                         /* No matching uprobe; signal SIGTRAP. */
2197                         force_sig(SIGTRAP);
2198                 } else {
2199                         /*
2200                          * Either we raced with uprobe_unregister() or we can't
2201                          * access this memory. The latter is only possible if
2202                          * another thread plays with our ->mm. In both cases
2203                          * we can simply restart. If this vma was unmapped we
2204                          * can pretend this insn was not executed yet and get
2205                          * the (correct) SIGSEGV after restart.
2206                          */
2207                         instruction_pointer_set(regs, bp_vaddr);
2208                 }
2209                 return;
2210         }
2211
2212         /* change it in advance for ->handler() and restart */
2213         instruction_pointer_set(regs, bp_vaddr);
2214
2215         /*
2216          * TODO: move copy_insn/etc into _register and remove this hack.
2217          * After we hit the bp, _unregister + _register can install the
2218          * new and not-yet-analyzed uprobe at the same address, restart.
2219          */
2220         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2221                 goto out;
2222
2223         /*
2224          * Pairs with the smp_wmb() in prepare_uprobe().
2225          *
2226          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2227          * we must also see the stores to &uprobe->arch performed by the
2228          * prepare_uprobe() call.
2229          */
2230         smp_rmb();
2231
2232         /* Tracing handlers use ->utask to communicate with fetch methods */
2233         if (!get_utask())
2234                 goto out;
2235
2236         if (arch_uprobe_ignore(&uprobe->arch, regs))
2237                 goto out;
2238
2239         handler_chain(uprobe, regs);
2240
2241         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2242                 goto out;
2243
2244         if (!pre_ssout(uprobe, regs, bp_vaddr))
2245                 return;
2246
2247         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2248 out:
2249         put_uprobe(uprobe);
2250 }
2251
2252 /*
2253  * Perform required fix-ups and disable singlestep.
2254  * Allow pending signals to take effect.
2255  */
2256 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2257 {
2258         struct uprobe *uprobe;
2259         int err = 0;
2260
2261         uprobe = utask->active_uprobe;
2262         if (utask->state == UTASK_SSTEP_ACK)
2263                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2264         else if (utask->state == UTASK_SSTEP_TRAPPED)
2265                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2266         else
2267                 WARN_ON_ONCE(1);
2268
2269         put_uprobe(uprobe);
2270         utask->active_uprobe = NULL;
2271         utask->state = UTASK_RUNNING;
2272         xol_free_insn_slot(current);
2273
2274         spin_lock_irq(&current->sighand->siglock);
2275         recalc_sigpending(); /* see uprobe_deny_signal() */
2276         spin_unlock_irq(&current->sighand->siglock);
2277
2278         if (unlikely(err)) {
2279                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2280                 force_sig(SIGILL);
2281         }
2282 }
2283
2284 /*
2285  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2286  * allows the thread to return from interrupt. After that handle_swbp()
2287  * sets utask->active_uprobe.
2288  *
2289  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2290  * and allows the thread to return from interrupt.
2291  *
2292  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2293  * uprobe_notify_resume().
2294  */
2295 void uprobe_notify_resume(struct pt_regs *regs)
2296 {
2297         struct uprobe_task *utask;
2298
2299         clear_thread_flag(TIF_UPROBE);
2300
2301         utask = current->utask;
2302         if (utask && utask->active_uprobe)
2303                 handle_singlestep(utask, regs);
2304         else
2305                 handle_swbp(regs);
2306 }
2307
2308 /*
2309  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2310  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2311  */
2312 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2313 {
2314         if (!current->mm)
2315                 return 0;
2316
2317         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2318             (!current->utask || !current->utask->return_instances))
2319                 return 0;
2320
2321         set_thread_flag(TIF_UPROBE);
2322         return 1;
2323 }
2324
2325 /*
2326  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2327  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2328  */
2329 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2330 {
2331         struct uprobe_task *utask = current->utask;
2332
2333         if (!current->mm || !utask || !utask->active_uprobe)
2334                 /* task is currently not uprobed */
2335                 return 0;
2336
2337         utask->state = UTASK_SSTEP_ACK;
2338         set_thread_flag(TIF_UPROBE);
2339         return 1;
2340 }
2341
2342 static struct notifier_block uprobe_exception_nb = {
2343         .notifier_call          = arch_uprobe_exception_notify,
2344         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2345 };
2346
2347 void __init uprobes_init(void)
2348 {
2349         int i;
2350
2351         for (i = 0; i < UPROBES_HASH_SZ; i++)
2352                 mutex_init(&uprobes_mmap_mutex[i]);
2353
2354         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2355 }