GNU Linux-libre 5.13.14-gnu1
[releases.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:       the function to be called
136  * @info:       the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144         struct remote_function_call data = {
145                 .p      = NULL,
146                 .func   = func,
147                 .info   = info,
148                 .ret    = -ENXIO, /* No such CPU */
149         };
150
151         smp_call_function_single(cpu, remote_function, &data, 1);
152
153         return data.ret;
154 }
155
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163                           struct perf_event_context *ctx)
164 {
165         raw_spin_lock(&cpuctx->ctx.lock);
166         if (ctx)
167                 raw_spin_lock(&ctx->lock);
168 }
169
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171                             struct perf_event_context *ctx)
172 {
173         if (ctx)
174                 raw_spin_unlock(&ctx->lock);
175         raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177
178 #define TASK_TOMBSTONE ((void *)-1L)
179
180 static bool is_kernel_event(struct perf_event *event)
181 {
182         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205                         struct perf_event_context *, void *);
206
207 struct event_function_struct {
208         struct perf_event *event;
209         event_f func;
210         void *data;
211 };
212
213 static int event_function(void *info)
214 {
215         struct event_function_struct *efs = info;
216         struct perf_event *event = efs->event;
217         struct perf_event_context *ctx = event->ctx;
218         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219         struct perf_event_context *task_ctx = cpuctx->task_ctx;
220         int ret = 0;
221
222         lockdep_assert_irqs_disabled();
223
224         perf_ctx_lock(cpuctx, task_ctx);
225         /*
226          * Since we do the IPI call without holding ctx->lock things can have
227          * changed, double check we hit the task we set out to hit.
228          */
229         if (ctx->task) {
230                 if (ctx->task != current) {
231                         ret = -ESRCH;
232                         goto unlock;
233                 }
234
235                 /*
236                  * We only use event_function_call() on established contexts,
237                  * and event_function() is only ever called when active (or
238                  * rather, we'll have bailed in task_function_call() or the
239                  * above ctx->task != current test), therefore we must have
240                  * ctx->is_active here.
241                  */
242                 WARN_ON_ONCE(!ctx->is_active);
243                 /*
244                  * And since we have ctx->is_active, cpuctx->task_ctx must
245                  * match.
246                  */
247                 WARN_ON_ONCE(task_ctx != ctx);
248         } else {
249                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
250         }
251
252         efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254         perf_ctx_unlock(cpuctx, task_ctx);
255
256         return ret;
257 }
258
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263         struct event_function_struct efs = {
264                 .event = event,
265                 .func = func,
266                 .data = data,
267         };
268
269         if (!event->parent) {
270                 /*
271                  * If this is a !child event, we must hold ctx::mutex to
272                  * stabilize the event->ctx relation. See
273                  * perf_event_ctx_lock().
274                  */
275                 lockdep_assert_held(&ctx->mutex);
276         }
277
278         if (!task) {
279                 cpu_function_call(event->cpu, event_function, &efs);
280                 return;
281         }
282
283         if (task == TASK_TOMBSTONE)
284                 return;
285
286 again:
287         if (!task_function_call(task, event_function, &efs))
288                 return;
289
290         raw_spin_lock_irq(&ctx->lock);
291         /*
292          * Reload the task pointer, it might have been changed by
293          * a concurrent perf_event_context_sched_out().
294          */
295         task = ctx->task;
296         if (task == TASK_TOMBSTONE) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 return;
299         }
300         if (ctx->is_active) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 goto again;
303         }
304         func(event, NULL, ctx, data);
305         raw_spin_unlock_irq(&ctx->lock);
306 }
307
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314         struct perf_event_context *ctx = event->ctx;
315         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316         struct task_struct *task = READ_ONCE(ctx->task);
317         struct perf_event_context *task_ctx = NULL;
318
319         lockdep_assert_irqs_disabled();
320
321         if (task) {
322                 if (task == TASK_TOMBSTONE)
323                         return;
324
325                 task_ctx = ctx;
326         }
327
328         perf_ctx_lock(cpuctx, task_ctx);
329
330         task = ctx->task;
331         if (task == TASK_TOMBSTONE)
332                 goto unlock;
333
334         if (task) {
335                 /*
336                  * We must be either inactive or active and the right task,
337                  * otherwise we're screwed, since we cannot IPI to somewhere
338                  * else.
339                  */
340                 if (ctx->is_active) {
341                         if (WARN_ON_ONCE(task != current))
342                                 goto unlock;
343
344                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345                                 goto unlock;
346                 }
347         } else {
348                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
349         }
350
351         func(event, cpuctx, ctx, data);
352 unlock:
353         perf_ctx_unlock(cpuctx, task_ctx);
354 }
355
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357                        PERF_FLAG_FD_OUTPUT  |\
358                        PERF_FLAG_PID_CGROUP |\
359                        PERF_FLAG_FD_CLOEXEC)
360
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365         (PERF_SAMPLE_BRANCH_KERNEL |\
366          PERF_SAMPLE_BRANCH_HV)
367
368 enum event_type_t {
369         EVENT_FLEXIBLE = 0x1,
370         EVENT_PINNED = 0x2,
371         EVENT_TIME = 0x4,
372         /* see ctx_resched() for details */
373         EVENT_CPU = 0x8,
374         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
409
410 /*
411  * perf event paranoia level:
412  *  -1 - not paranoid at all
413  *   0 - disallow raw tracepoint access for unpriv
414  *   1 - disallow cpu events for unpriv
415  *   2 - disallow kernel profiling for unpriv
416  */
417 int sysctl_perf_event_paranoid __read_mostly = 2;
418
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
421
422 /*
423  * max perf event sample rate
424  */
425 #define DEFAULT_MAX_SAMPLE_RATE         100000
426 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
428
429 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
430
431 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
433
434 static int perf_sample_allowed_ns __read_mostly =
435         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
436
437 static void update_perf_cpu_limits(void)
438 {
439         u64 tmp = perf_sample_period_ns;
440
441         tmp *= sysctl_perf_cpu_time_max_percent;
442         tmp = div_u64(tmp, 100);
443         if (!tmp)
444                 tmp = 1;
445
446         WRITE_ONCE(perf_sample_allowed_ns, tmp);
447 }
448
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
450
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452                 void *buffer, size_t *lenp, loff_t *ppos)
453 {
454         int ret;
455         int perf_cpu = sysctl_perf_cpu_time_max_percent;
456         /*
457          * If throttling is disabled don't allow the write:
458          */
459         if (write && (perf_cpu == 100 || perf_cpu == 0))
460                 return -EINVAL;
461
462         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463         if (ret || !write)
464                 return ret;
465
466         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468         update_perf_cpu_limits();
469
470         return 0;
471 }
472
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476                 void *buffer, size_t *lenp, loff_t *ppos)
477 {
478         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
479
480         if (ret || !write)
481                 return ret;
482
483         if (sysctl_perf_cpu_time_max_percent == 100 ||
484             sysctl_perf_cpu_time_max_percent == 0) {
485                 printk(KERN_WARNING
486                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487                 WRITE_ONCE(perf_sample_allowed_ns, 0);
488         } else {
489                 update_perf_cpu_limits();
490         }
491
492         return 0;
493 }
494
495 /*
496  * perf samples are done in some very critical code paths (NMIs).
497  * If they take too much CPU time, the system can lock up and not
498  * get any real work done.  This will drop the sample rate when
499  * we detect that events are taking too long.
500  */
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
503
504 static u64 __report_avg;
505 static u64 __report_allowed;
506
507 static void perf_duration_warn(struct irq_work *w)
508 {
509         printk_ratelimited(KERN_INFO
510                 "perf: interrupt took too long (%lld > %lld), lowering "
511                 "kernel.perf_event_max_sample_rate to %d\n",
512                 __report_avg, __report_allowed,
513                 sysctl_perf_event_sample_rate);
514 }
515
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517
518 void perf_sample_event_took(u64 sample_len_ns)
519 {
520         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521         u64 running_len;
522         u64 avg_len;
523         u32 max;
524
525         if (max_len == 0)
526                 return;
527
528         /* Decay the counter by 1 average sample. */
529         running_len = __this_cpu_read(running_sample_length);
530         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531         running_len += sample_len_ns;
532         __this_cpu_write(running_sample_length, running_len);
533
534         /*
535          * Note: this will be biased artifically low until we have
536          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537          * from having to maintain a count.
538          */
539         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540         if (avg_len <= max_len)
541                 return;
542
543         __report_avg = avg_len;
544         __report_allowed = max_len;
545
546         /*
547          * Compute a throttle threshold 25% below the current duration.
548          */
549         avg_len += avg_len / 4;
550         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551         if (avg_len < max)
552                 max /= (u32)avg_len;
553         else
554                 max = 1;
555
556         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557         WRITE_ONCE(max_samples_per_tick, max);
558
559         sysctl_perf_event_sample_rate = max * HZ;
560         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
561
562         if (!irq_work_queue(&perf_duration_work)) {
563                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564                              "kernel.perf_event_max_sample_rate to %d\n",
565                              __report_avg, __report_allowed,
566                              sysctl_perf_event_sample_rate);
567         }
568 }
569
570 static atomic64_t perf_event_id;
571
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573                               enum event_type_t event_type);
574
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576                              enum event_type_t event_type,
577                              struct task_struct *task);
578
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581
582 void __weak perf_event_print_debug(void)        { }
583
584 static inline u64 perf_clock(void)
585 {
586         return local_clock();
587 }
588
589 static inline u64 perf_event_clock(struct perf_event *event)
590 {
591         return event->clock();
592 }
593
594 /*
595  * State based event timekeeping...
596  *
597  * The basic idea is to use event->state to determine which (if any) time
598  * fields to increment with the current delta. This means we only need to
599  * update timestamps when we change state or when they are explicitly requested
600  * (read).
601  *
602  * Event groups make things a little more complicated, but not terribly so. The
603  * rules for a group are that if the group leader is OFF the entire group is
604  * OFF, irrespecive of what the group member states are. This results in
605  * __perf_effective_state().
606  *
607  * A futher ramification is that when a group leader flips between OFF and
608  * !OFF, we need to update all group member times.
609  *
610  *
611  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612  * need to make sure the relevant context time is updated before we try and
613  * update our timestamps.
614  */
615
616 static __always_inline enum perf_event_state
617 __perf_effective_state(struct perf_event *event)
618 {
619         struct perf_event *leader = event->group_leader;
620
621         if (leader->state <= PERF_EVENT_STATE_OFF)
622                 return leader->state;
623
624         return event->state;
625 }
626
627 static __always_inline void
628 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
629 {
630         enum perf_event_state state = __perf_effective_state(event);
631         u64 delta = now - event->tstamp;
632
633         *enabled = event->total_time_enabled;
634         if (state >= PERF_EVENT_STATE_INACTIVE)
635                 *enabled += delta;
636
637         *running = event->total_time_running;
638         if (state >= PERF_EVENT_STATE_ACTIVE)
639                 *running += delta;
640 }
641
642 static void perf_event_update_time(struct perf_event *event)
643 {
644         u64 now = perf_event_time(event);
645
646         __perf_update_times(event, now, &event->total_time_enabled,
647                                         &event->total_time_running);
648         event->tstamp = now;
649 }
650
651 static void perf_event_update_sibling_time(struct perf_event *leader)
652 {
653         struct perf_event *sibling;
654
655         for_each_sibling_event(sibling, leader)
656                 perf_event_update_time(sibling);
657 }
658
659 static void
660 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
661 {
662         if (event->state == state)
663                 return;
664
665         perf_event_update_time(event);
666         /*
667          * If a group leader gets enabled/disabled all its siblings
668          * are affected too.
669          */
670         if ((event->state < 0) ^ (state < 0))
671                 perf_event_update_sibling_time(event);
672
673         WRITE_ONCE(event->state, state);
674 }
675
676 #ifdef CONFIG_CGROUP_PERF
677
678 static inline bool
679 perf_cgroup_match(struct perf_event *event)
680 {
681         struct perf_event_context *ctx = event->ctx;
682         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
683
684         /* @event doesn't care about cgroup */
685         if (!event->cgrp)
686                 return true;
687
688         /* wants specific cgroup scope but @cpuctx isn't associated with any */
689         if (!cpuctx->cgrp)
690                 return false;
691
692         /*
693          * Cgroup scoping is recursive.  An event enabled for a cgroup is
694          * also enabled for all its descendant cgroups.  If @cpuctx's
695          * cgroup is a descendant of @event's (the test covers identity
696          * case), it's a match.
697          */
698         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
699                                     event->cgrp->css.cgroup);
700 }
701
702 static inline void perf_detach_cgroup(struct perf_event *event)
703 {
704         css_put(&event->cgrp->css);
705         event->cgrp = NULL;
706 }
707
708 static inline int is_cgroup_event(struct perf_event *event)
709 {
710         return event->cgrp != NULL;
711 }
712
713 static inline u64 perf_cgroup_event_time(struct perf_event *event)
714 {
715         struct perf_cgroup_info *t;
716
717         t = per_cpu_ptr(event->cgrp->info, event->cpu);
718         return t->time;
719 }
720
721 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
722 {
723         struct perf_cgroup_info *info;
724         u64 now;
725
726         now = perf_clock();
727
728         info = this_cpu_ptr(cgrp->info);
729
730         info->time += now - info->timestamp;
731         info->timestamp = now;
732 }
733
734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
735 {
736         struct perf_cgroup *cgrp = cpuctx->cgrp;
737         struct cgroup_subsys_state *css;
738
739         if (cgrp) {
740                 for (css = &cgrp->css; css; css = css->parent) {
741                         cgrp = container_of(css, struct perf_cgroup, css);
742                         __update_cgrp_time(cgrp);
743                 }
744         }
745 }
746
747 static inline void update_cgrp_time_from_event(struct perf_event *event)
748 {
749         struct perf_cgroup *cgrp;
750
751         /*
752          * ensure we access cgroup data only when needed and
753          * when we know the cgroup is pinned (css_get)
754          */
755         if (!is_cgroup_event(event))
756                 return;
757
758         cgrp = perf_cgroup_from_task(current, event->ctx);
759         /*
760          * Do not update time when cgroup is not active
761          */
762         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
763                 __update_cgrp_time(event->cgrp);
764 }
765
766 static inline void
767 perf_cgroup_set_timestamp(struct task_struct *task,
768                           struct perf_event_context *ctx)
769 {
770         struct perf_cgroup *cgrp;
771         struct perf_cgroup_info *info;
772         struct cgroup_subsys_state *css;
773
774         /*
775          * ctx->lock held by caller
776          * ensure we do not access cgroup data
777          * unless we have the cgroup pinned (css_get)
778          */
779         if (!task || !ctx->nr_cgroups)
780                 return;
781
782         cgrp = perf_cgroup_from_task(task, ctx);
783
784         for (css = &cgrp->css; css; css = css->parent) {
785                 cgrp = container_of(css, struct perf_cgroup, css);
786                 info = this_cpu_ptr(cgrp->info);
787                 info->timestamp = ctx->timestamp;
788         }
789 }
790
791 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
792
793 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
795
796 /*
797  * reschedule events based on the cgroup constraint of task.
798  *
799  * mode SWOUT : schedule out everything
800  * mode SWIN : schedule in based on cgroup for next
801  */
802 static void perf_cgroup_switch(struct task_struct *task, int mode)
803 {
804         struct perf_cpu_context *cpuctx;
805         struct list_head *list;
806         unsigned long flags;
807
808         /*
809          * Disable interrupts and preemption to avoid this CPU's
810          * cgrp_cpuctx_entry to change under us.
811          */
812         local_irq_save(flags);
813
814         list = this_cpu_ptr(&cgrp_cpuctx_list);
815         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
816                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
817
818                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
819                 perf_pmu_disable(cpuctx->ctx.pmu);
820
821                 if (mode & PERF_CGROUP_SWOUT) {
822                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
823                         /*
824                          * must not be done before ctxswout due
825                          * to event_filter_match() in event_sched_out()
826                          */
827                         cpuctx->cgrp = NULL;
828                 }
829
830                 if (mode & PERF_CGROUP_SWIN) {
831                         WARN_ON_ONCE(cpuctx->cgrp);
832                         /*
833                          * set cgrp before ctxsw in to allow
834                          * event_filter_match() to not have to pass
835                          * task around
836                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
837                          * because cgorup events are only per-cpu
838                          */
839                         cpuctx->cgrp = perf_cgroup_from_task(task,
840                                                              &cpuctx->ctx);
841                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
842                 }
843                 perf_pmu_enable(cpuctx->ctx.pmu);
844                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
845         }
846
847         local_irq_restore(flags);
848 }
849
850 static inline void perf_cgroup_sched_out(struct task_struct *task,
851                                          struct task_struct *next)
852 {
853         struct perf_cgroup *cgrp1;
854         struct perf_cgroup *cgrp2 = NULL;
855
856         rcu_read_lock();
857         /*
858          * we come here when we know perf_cgroup_events > 0
859          * we do not need to pass the ctx here because we know
860          * we are holding the rcu lock
861          */
862         cgrp1 = perf_cgroup_from_task(task, NULL);
863         cgrp2 = perf_cgroup_from_task(next, NULL);
864
865         /*
866          * only schedule out current cgroup events if we know
867          * that we are switching to a different cgroup. Otherwise,
868          * do no touch the cgroup events.
869          */
870         if (cgrp1 != cgrp2)
871                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
872
873         rcu_read_unlock();
874 }
875
876 static inline void perf_cgroup_sched_in(struct task_struct *prev,
877                                         struct task_struct *task)
878 {
879         struct perf_cgroup *cgrp1;
880         struct perf_cgroup *cgrp2 = NULL;
881
882         rcu_read_lock();
883         /*
884          * we come here when we know perf_cgroup_events > 0
885          * we do not need to pass the ctx here because we know
886          * we are holding the rcu lock
887          */
888         cgrp1 = perf_cgroup_from_task(task, NULL);
889         cgrp2 = perf_cgroup_from_task(prev, NULL);
890
891         /*
892          * only need to schedule in cgroup events if we are changing
893          * cgroup during ctxsw. Cgroup events were not scheduled
894          * out of ctxsw out if that was not the case.
895          */
896         if (cgrp1 != cgrp2)
897                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
898
899         rcu_read_unlock();
900 }
901
902 static int perf_cgroup_ensure_storage(struct perf_event *event,
903                                 struct cgroup_subsys_state *css)
904 {
905         struct perf_cpu_context *cpuctx;
906         struct perf_event **storage;
907         int cpu, heap_size, ret = 0;
908
909         /*
910          * Allow storage to have sufficent space for an iterator for each
911          * possibly nested cgroup plus an iterator for events with no cgroup.
912          */
913         for (heap_size = 1; css; css = css->parent)
914                 heap_size++;
915
916         for_each_possible_cpu(cpu) {
917                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
918                 if (heap_size <= cpuctx->heap_size)
919                         continue;
920
921                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
922                                        GFP_KERNEL, cpu_to_node(cpu));
923                 if (!storage) {
924                         ret = -ENOMEM;
925                         break;
926                 }
927
928                 raw_spin_lock_irq(&cpuctx->ctx.lock);
929                 if (cpuctx->heap_size < heap_size) {
930                         swap(cpuctx->heap, storage);
931                         if (storage == cpuctx->heap_default)
932                                 storage = NULL;
933                         cpuctx->heap_size = heap_size;
934                 }
935                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
936
937                 kfree(storage);
938         }
939
940         return ret;
941 }
942
943 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
944                                       struct perf_event_attr *attr,
945                                       struct perf_event *group_leader)
946 {
947         struct perf_cgroup *cgrp;
948         struct cgroup_subsys_state *css;
949         struct fd f = fdget(fd);
950         int ret = 0;
951
952         if (!f.file)
953                 return -EBADF;
954
955         css = css_tryget_online_from_dir(f.file->f_path.dentry,
956                                          &perf_event_cgrp_subsys);
957         if (IS_ERR(css)) {
958                 ret = PTR_ERR(css);
959                 goto out;
960         }
961
962         ret = perf_cgroup_ensure_storage(event, css);
963         if (ret)
964                 goto out;
965
966         cgrp = container_of(css, struct perf_cgroup, css);
967         event->cgrp = cgrp;
968
969         /*
970          * all events in a group must monitor
971          * the same cgroup because a task belongs
972          * to only one perf cgroup at a time
973          */
974         if (group_leader && group_leader->cgrp != cgrp) {
975                 perf_detach_cgroup(event);
976                 ret = -EINVAL;
977         }
978 out:
979         fdput(f);
980         return ret;
981 }
982
983 static inline void
984 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
985 {
986         struct perf_cgroup_info *t;
987         t = per_cpu_ptr(event->cgrp->info, event->cpu);
988         event->shadow_ctx_time = now - t->timestamp;
989 }
990
991 static inline void
992 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
993 {
994         struct perf_cpu_context *cpuctx;
995
996         if (!is_cgroup_event(event))
997                 return;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         /*
1006          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007          * matching the event's cgroup, we must do this for every new event,
1008          * because if the first would mismatch, the second would not try again
1009          * and we would leave cpuctx->cgrp unset.
1010          */
1011         if (ctx->is_active && !cpuctx->cgrp) {
1012                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1013
1014                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1015                         cpuctx->cgrp = cgrp;
1016         }
1017
1018         if (ctx->nr_cgroups++)
1019                 return;
1020
1021         list_add(&cpuctx->cgrp_cpuctx_entry,
1022                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1023 }
1024
1025 static inline void
1026 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1027 {
1028         struct perf_cpu_context *cpuctx;
1029
1030         if (!is_cgroup_event(event))
1031                 return;
1032
1033         /*
1034          * Because cgroup events are always per-cpu events,
1035          * @ctx == &cpuctx->ctx.
1036          */
1037         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1038
1039         if (--ctx->nr_cgroups)
1040                 return;
1041
1042         if (ctx->is_active && cpuctx->cgrp)
1043                 cpuctx->cgrp = NULL;
1044
1045         list_del(&cpuctx->cgrp_cpuctx_entry);
1046 }
1047
1048 #else /* !CONFIG_CGROUP_PERF */
1049
1050 static inline bool
1051 perf_cgroup_match(struct perf_event *event)
1052 {
1053         return true;
1054 }
1055
1056 static inline void perf_detach_cgroup(struct perf_event *event)
1057 {}
1058
1059 static inline int is_cgroup_event(struct perf_event *event)
1060 {
1061         return 0;
1062 }
1063
1064 static inline void update_cgrp_time_from_event(struct perf_event *event)
1065 {
1066 }
1067
1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1069 {
1070 }
1071
1072 static inline void perf_cgroup_sched_out(struct task_struct *task,
1073                                          struct task_struct *next)
1074 {
1075 }
1076
1077 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1078                                         struct task_struct *task)
1079 {
1080 }
1081
1082 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1083                                       struct perf_event_attr *attr,
1084                                       struct perf_event *group_leader)
1085 {
1086         return -EINVAL;
1087 }
1088
1089 static inline void
1090 perf_cgroup_set_timestamp(struct task_struct *task,
1091                           struct perf_event_context *ctx)
1092 {
1093 }
1094
1095 static inline void
1096 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1097 {
1098 }
1099
1100 static inline void
1101 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1102 {
1103 }
1104
1105 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1106 {
1107         return 0;
1108 }
1109
1110 static inline void
1111 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1112 {
1113 }
1114
1115 static inline void
1116 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119 #endif
1120
1121 /*
1122  * set default to be dependent on timer tick just
1123  * like original code
1124  */
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1126 /*
1127  * function must be called with interrupts disabled
1128  */
1129 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1130 {
1131         struct perf_cpu_context *cpuctx;
1132         bool rotations;
1133
1134         lockdep_assert_irqs_disabled();
1135
1136         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1137         rotations = perf_rotate_context(cpuctx);
1138
1139         raw_spin_lock(&cpuctx->hrtimer_lock);
1140         if (rotations)
1141                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1142         else
1143                 cpuctx->hrtimer_active = 0;
1144         raw_spin_unlock(&cpuctx->hrtimer_lock);
1145
1146         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1147 }
1148
1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1150 {
1151         struct hrtimer *timer = &cpuctx->hrtimer;
1152         struct pmu *pmu = cpuctx->ctx.pmu;
1153         u64 interval;
1154
1155         /* no multiplexing needed for SW PMU */
1156         if (pmu->task_ctx_nr == perf_sw_context)
1157                 return;
1158
1159         /*
1160          * check default is sane, if not set then force to
1161          * default interval (1/tick)
1162          */
1163         interval = pmu->hrtimer_interval_ms;
1164         if (interval < 1)
1165                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1166
1167         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1168
1169         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1170         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1171         timer->function = perf_mux_hrtimer_handler;
1172 }
1173
1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1175 {
1176         struct hrtimer *timer = &cpuctx->hrtimer;
1177         struct pmu *pmu = cpuctx->ctx.pmu;
1178         unsigned long flags;
1179
1180         /* not for SW PMU */
1181         if (pmu->task_ctx_nr == perf_sw_context)
1182                 return 0;
1183
1184         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1185         if (!cpuctx->hrtimer_active) {
1186                 cpuctx->hrtimer_active = 1;
1187                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1188                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1189         }
1190         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1191
1192         return 0;
1193 }
1194
1195 void perf_pmu_disable(struct pmu *pmu)
1196 {
1197         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1198         if (!(*count)++)
1199                 pmu->pmu_disable(pmu);
1200 }
1201
1202 void perf_pmu_enable(struct pmu *pmu)
1203 {
1204         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1205         if (!--(*count))
1206                 pmu->pmu_enable(pmu);
1207 }
1208
1209 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1210
1211 /*
1212  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213  * perf_event_task_tick() are fully serialized because they're strictly cpu
1214  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215  * disabled, while perf_event_task_tick is called from IRQ context.
1216  */
1217 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1218 {
1219         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1220
1221         lockdep_assert_irqs_disabled();
1222
1223         WARN_ON(!list_empty(&ctx->active_ctx_list));
1224
1225         list_add(&ctx->active_ctx_list, head);
1226 }
1227
1228 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1229 {
1230         lockdep_assert_irqs_disabled();
1231
1232         WARN_ON(list_empty(&ctx->active_ctx_list));
1233
1234         list_del_init(&ctx->active_ctx_list);
1235 }
1236
1237 static void get_ctx(struct perf_event_context *ctx)
1238 {
1239         refcount_inc(&ctx->refcount);
1240 }
1241
1242 static void *alloc_task_ctx_data(struct pmu *pmu)
1243 {
1244         if (pmu->task_ctx_cache)
1245                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1246
1247         return NULL;
1248 }
1249
1250 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1251 {
1252         if (pmu->task_ctx_cache && task_ctx_data)
1253                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1254 }
1255
1256 static void free_ctx(struct rcu_head *head)
1257 {
1258         struct perf_event_context *ctx;
1259
1260         ctx = container_of(head, struct perf_event_context, rcu_head);
1261         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1262         kfree(ctx);
1263 }
1264
1265 static void put_ctx(struct perf_event_context *ctx)
1266 {
1267         if (refcount_dec_and_test(&ctx->refcount)) {
1268                 if (ctx->parent_ctx)
1269                         put_ctx(ctx->parent_ctx);
1270                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1271                         put_task_struct(ctx->task);
1272                 call_rcu(&ctx->rcu_head, free_ctx);
1273         }
1274 }
1275
1276 /*
1277  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278  * perf_pmu_migrate_context() we need some magic.
1279  *
1280  * Those places that change perf_event::ctx will hold both
1281  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1282  *
1283  * Lock ordering is by mutex address. There are two other sites where
1284  * perf_event_context::mutex nests and those are:
1285  *
1286  *  - perf_event_exit_task_context()    [ child , 0 ]
1287  *      perf_event_exit_event()
1288  *        put_event()                   [ parent, 1 ]
1289  *
1290  *  - perf_event_init_context()         [ parent, 0 ]
1291  *      inherit_task_group()
1292  *        inherit_group()
1293  *          inherit_event()
1294  *            perf_event_alloc()
1295  *              perf_init_event()
1296  *                perf_try_init_event() [ child , 1 ]
1297  *
1298  * While it appears there is an obvious deadlock here -- the parent and child
1299  * nesting levels are inverted between the two. This is in fact safe because
1300  * life-time rules separate them. That is an exiting task cannot fork, and a
1301  * spawning task cannot (yet) exit.
1302  *
1303  * But remember that these are parent<->child context relations, and
1304  * migration does not affect children, therefore these two orderings should not
1305  * interact.
1306  *
1307  * The change in perf_event::ctx does not affect children (as claimed above)
1308  * because the sys_perf_event_open() case will install a new event and break
1309  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310  * concerned with cpuctx and that doesn't have children.
1311  *
1312  * The places that change perf_event::ctx will issue:
1313  *
1314  *   perf_remove_from_context();
1315  *   synchronize_rcu();
1316  *   perf_install_in_context();
1317  *
1318  * to affect the change. The remove_from_context() + synchronize_rcu() should
1319  * quiesce the event, after which we can install it in the new location. This
1320  * means that only external vectors (perf_fops, prctl) can perturb the event
1321  * while in transit. Therefore all such accessors should also acquire
1322  * perf_event_context::mutex to serialize against this.
1323  *
1324  * However; because event->ctx can change while we're waiting to acquire
1325  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1326  * function.
1327  *
1328  * Lock order:
1329  *    exec_update_lock
1330  *      task_struct::perf_event_mutex
1331  *        perf_event_context::mutex
1332  *          perf_event::child_mutex;
1333  *            perf_event_context::lock
1334  *          perf_event::mmap_mutex
1335  *          mmap_lock
1336  *            perf_addr_filters_head::lock
1337  *
1338  *    cpu_hotplug_lock
1339  *      pmus_lock
1340  *        cpuctx->mutex / perf_event_context::mutex
1341  */
1342 static struct perf_event_context *
1343 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1344 {
1345         struct perf_event_context *ctx;
1346
1347 again:
1348         rcu_read_lock();
1349         ctx = READ_ONCE(event->ctx);
1350         if (!refcount_inc_not_zero(&ctx->refcount)) {
1351                 rcu_read_unlock();
1352                 goto again;
1353         }
1354         rcu_read_unlock();
1355
1356         mutex_lock_nested(&ctx->mutex, nesting);
1357         if (event->ctx != ctx) {
1358                 mutex_unlock(&ctx->mutex);
1359                 put_ctx(ctx);
1360                 goto again;
1361         }
1362
1363         return ctx;
1364 }
1365
1366 static inline struct perf_event_context *
1367 perf_event_ctx_lock(struct perf_event *event)
1368 {
1369         return perf_event_ctx_lock_nested(event, 0);
1370 }
1371
1372 static void perf_event_ctx_unlock(struct perf_event *event,
1373                                   struct perf_event_context *ctx)
1374 {
1375         mutex_unlock(&ctx->mutex);
1376         put_ctx(ctx);
1377 }
1378
1379 /*
1380  * This must be done under the ctx->lock, such as to serialize against
1381  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1382  * calling scheduler related locks and ctx->lock nests inside those.
1383  */
1384 static __must_check struct perf_event_context *
1385 unclone_ctx(struct perf_event_context *ctx)
1386 {
1387         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1388
1389         lockdep_assert_held(&ctx->lock);
1390
1391         if (parent_ctx)
1392                 ctx->parent_ctx = NULL;
1393         ctx->generation++;
1394
1395         return parent_ctx;
1396 }
1397
1398 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1399                                 enum pid_type type)
1400 {
1401         u32 nr;
1402         /*
1403          * only top level events have the pid namespace they were created in
1404          */
1405         if (event->parent)
1406                 event = event->parent;
1407
1408         nr = __task_pid_nr_ns(p, type, event->ns);
1409         /* avoid -1 if it is idle thread or runs in another ns */
1410         if (!nr && !pid_alive(p))
1411                 nr = -1;
1412         return nr;
1413 }
1414
1415 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1416 {
1417         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1418 }
1419
1420 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1421 {
1422         return perf_event_pid_type(event, p, PIDTYPE_PID);
1423 }
1424
1425 /*
1426  * If we inherit events we want to return the parent event id
1427  * to userspace.
1428  */
1429 static u64 primary_event_id(struct perf_event *event)
1430 {
1431         u64 id = event->id;
1432
1433         if (event->parent)
1434                 id = event->parent->id;
1435
1436         return id;
1437 }
1438
1439 /*
1440  * Get the perf_event_context for a task and lock it.
1441  *
1442  * This has to cope with the fact that until it is locked,
1443  * the context could get moved to another task.
1444  */
1445 static struct perf_event_context *
1446 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1447 {
1448         struct perf_event_context *ctx;
1449
1450 retry:
1451         /*
1452          * One of the few rules of preemptible RCU is that one cannot do
1453          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1454          * part of the read side critical section was irqs-enabled -- see
1455          * rcu_read_unlock_special().
1456          *
1457          * Since ctx->lock nests under rq->lock we must ensure the entire read
1458          * side critical section has interrupts disabled.
1459          */
1460         local_irq_save(*flags);
1461         rcu_read_lock();
1462         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1463         if (ctx) {
1464                 /*
1465                  * If this context is a clone of another, it might
1466                  * get swapped for another underneath us by
1467                  * perf_event_task_sched_out, though the
1468                  * rcu_read_lock() protects us from any context
1469                  * getting freed.  Lock the context and check if it
1470                  * got swapped before we could get the lock, and retry
1471                  * if so.  If we locked the right context, then it
1472                  * can't get swapped on us any more.
1473                  */
1474                 raw_spin_lock(&ctx->lock);
1475                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1476                         raw_spin_unlock(&ctx->lock);
1477                         rcu_read_unlock();
1478                         local_irq_restore(*flags);
1479                         goto retry;
1480                 }
1481
1482                 if (ctx->task == TASK_TOMBSTONE ||
1483                     !refcount_inc_not_zero(&ctx->refcount)) {
1484                         raw_spin_unlock(&ctx->lock);
1485                         ctx = NULL;
1486                 } else {
1487                         WARN_ON_ONCE(ctx->task != task);
1488                 }
1489         }
1490         rcu_read_unlock();
1491         if (!ctx)
1492                 local_irq_restore(*flags);
1493         return ctx;
1494 }
1495
1496 /*
1497  * Get the context for a task and increment its pin_count so it
1498  * can't get swapped to another task.  This also increments its
1499  * reference count so that the context can't get freed.
1500  */
1501 static struct perf_event_context *
1502 perf_pin_task_context(struct task_struct *task, int ctxn)
1503 {
1504         struct perf_event_context *ctx;
1505         unsigned long flags;
1506
1507         ctx = perf_lock_task_context(task, ctxn, &flags);
1508         if (ctx) {
1509                 ++ctx->pin_count;
1510                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1511         }
1512         return ctx;
1513 }
1514
1515 static void perf_unpin_context(struct perf_event_context *ctx)
1516 {
1517         unsigned long flags;
1518
1519         raw_spin_lock_irqsave(&ctx->lock, flags);
1520         --ctx->pin_count;
1521         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1522 }
1523
1524 /*
1525  * Update the record of the current time in a context.
1526  */
1527 static void update_context_time(struct perf_event_context *ctx)
1528 {
1529         u64 now = perf_clock();
1530
1531         ctx->time += now - ctx->timestamp;
1532         ctx->timestamp = now;
1533 }
1534
1535 static u64 perf_event_time(struct perf_event *event)
1536 {
1537         struct perf_event_context *ctx = event->ctx;
1538
1539         if (is_cgroup_event(event))
1540                 return perf_cgroup_event_time(event);
1541
1542         return ctx ? ctx->time : 0;
1543 }
1544
1545 static enum event_type_t get_event_type(struct perf_event *event)
1546 {
1547         struct perf_event_context *ctx = event->ctx;
1548         enum event_type_t event_type;
1549
1550         lockdep_assert_held(&ctx->lock);
1551
1552         /*
1553          * It's 'group type', really, because if our group leader is
1554          * pinned, so are we.
1555          */
1556         if (event->group_leader != event)
1557                 event = event->group_leader;
1558
1559         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1560         if (!ctx->task)
1561                 event_type |= EVENT_CPU;
1562
1563         return event_type;
1564 }
1565
1566 /*
1567  * Helper function to initialize event group nodes.
1568  */
1569 static void init_event_group(struct perf_event *event)
1570 {
1571         RB_CLEAR_NODE(&event->group_node);
1572         event->group_index = 0;
1573 }
1574
1575 /*
1576  * Extract pinned or flexible groups from the context
1577  * based on event attrs bits.
1578  */
1579 static struct perf_event_groups *
1580 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1581 {
1582         if (event->attr.pinned)
1583                 return &ctx->pinned_groups;
1584         else
1585                 return &ctx->flexible_groups;
1586 }
1587
1588 /*
1589  * Helper function to initializes perf_event_group trees.
1590  */
1591 static void perf_event_groups_init(struct perf_event_groups *groups)
1592 {
1593         groups->tree = RB_ROOT;
1594         groups->index = 0;
1595 }
1596
1597 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1598 {
1599         struct cgroup *cgroup = NULL;
1600
1601 #ifdef CONFIG_CGROUP_PERF
1602         if (event->cgrp)
1603                 cgroup = event->cgrp->css.cgroup;
1604 #endif
1605
1606         return cgroup;
1607 }
1608
1609 /*
1610  * Compare function for event groups;
1611  *
1612  * Implements complex key that first sorts by CPU and then by virtual index
1613  * which provides ordering when rotating groups for the same CPU.
1614  */
1615 static __always_inline int
1616 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1617                       const u64 left_group_index, const struct perf_event *right)
1618 {
1619         if (left_cpu < right->cpu)
1620                 return -1;
1621         if (left_cpu > right->cpu)
1622                 return 1;
1623
1624 #ifdef CONFIG_CGROUP_PERF
1625         {
1626                 const struct cgroup *right_cgroup = event_cgroup(right);
1627
1628                 if (left_cgroup != right_cgroup) {
1629                         if (!left_cgroup) {
1630                                 /*
1631                                  * Left has no cgroup but right does, no
1632                                  * cgroups come first.
1633                                  */
1634                                 return -1;
1635                         }
1636                         if (!right_cgroup) {
1637                                 /*
1638                                  * Right has no cgroup but left does, no
1639                                  * cgroups come first.
1640                                  */
1641                                 return 1;
1642                         }
1643                         /* Two dissimilar cgroups, order by id. */
1644                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1645                                 return -1;
1646
1647                         return 1;
1648                 }
1649         }
1650 #endif
1651
1652         if (left_group_index < right->group_index)
1653                 return -1;
1654         if (left_group_index > right->group_index)
1655                 return 1;
1656
1657         return 0;
1658 }
1659
1660 #define __node_2_pe(node) \
1661         rb_entry((node), struct perf_event, group_node)
1662
1663 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1664 {
1665         struct perf_event *e = __node_2_pe(a);
1666         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1667                                      __node_2_pe(b)) < 0;
1668 }
1669
1670 struct __group_key {
1671         int cpu;
1672         struct cgroup *cgroup;
1673 };
1674
1675 static inline int __group_cmp(const void *key, const struct rb_node *node)
1676 {
1677         const struct __group_key *a = key;
1678         const struct perf_event *b = __node_2_pe(node);
1679
1680         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1681         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1682 }
1683
1684 /*
1685  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1686  * key (see perf_event_groups_less). This places it last inside the CPU
1687  * subtree.
1688  */
1689 static void
1690 perf_event_groups_insert(struct perf_event_groups *groups,
1691                          struct perf_event *event)
1692 {
1693         event->group_index = ++groups->index;
1694
1695         rb_add(&event->group_node, &groups->tree, __group_less);
1696 }
1697
1698 /*
1699  * Helper function to insert event into the pinned or flexible groups.
1700  */
1701 static void
1702 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1703 {
1704         struct perf_event_groups *groups;
1705
1706         groups = get_event_groups(event, ctx);
1707         perf_event_groups_insert(groups, event);
1708 }
1709
1710 /*
1711  * Delete a group from a tree.
1712  */
1713 static void
1714 perf_event_groups_delete(struct perf_event_groups *groups,
1715                          struct perf_event *event)
1716 {
1717         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1718                      RB_EMPTY_ROOT(&groups->tree));
1719
1720         rb_erase(&event->group_node, &groups->tree);
1721         init_event_group(event);
1722 }
1723
1724 /*
1725  * Helper function to delete event from its groups.
1726  */
1727 static void
1728 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1729 {
1730         struct perf_event_groups *groups;
1731
1732         groups = get_event_groups(event, ctx);
1733         perf_event_groups_delete(groups, event);
1734 }
1735
1736 /*
1737  * Get the leftmost event in the cpu/cgroup subtree.
1738  */
1739 static struct perf_event *
1740 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1741                         struct cgroup *cgrp)
1742 {
1743         struct __group_key key = {
1744                 .cpu = cpu,
1745                 .cgroup = cgrp,
1746         };
1747         struct rb_node *node;
1748
1749         node = rb_find_first(&key, &groups->tree, __group_cmp);
1750         if (node)
1751                 return __node_2_pe(node);
1752
1753         return NULL;
1754 }
1755
1756 /*
1757  * Like rb_entry_next_safe() for the @cpu subtree.
1758  */
1759 static struct perf_event *
1760 perf_event_groups_next(struct perf_event *event)
1761 {
1762         struct __group_key key = {
1763                 .cpu = event->cpu,
1764                 .cgroup = event_cgroup(event),
1765         };
1766         struct rb_node *next;
1767
1768         next = rb_next_match(&key, &event->group_node, __group_cmp);
1769         if (next)
1770                 return __node_2_pe(next);
1771
1772         return NULL;
1773 }
1774
1775 /*
1776  * Iterate through the whole groups tree.
1777  */
1778 #define perf_event_groups_for_each(event, groups)                       \
1779         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1780                                 typeof(*event), group_node); event;     \
1781                 event = rb_entry_safe(rb_next(&event->group_node),      \
1782                                 typeof(*event), group_node))
1783
1784 /*
1785  * Add an event from the lists for its context.
1786  * Must be called with ctx->mutex and ctx->lock held.
1787  */
1788 static void
1789 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1790 {
1791         lockdep_assert_held(&ctx->lock);
1792
1793         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1794         event->attach_state |= PERF_ATTACH_CONTEXT;
1795
1796         event->tstamp = perf_event_time(event);
1797
1798         /*
1799          * If we're a stand alone event or group leader, we go to the context
1800          * list, group events are kept attached to the group so that
1801          * perf_group_detach can, at all times, locate all siblings.
1802          */
1803         if (event->group_leader == event) {
1804                 event->group_caps = event->event_caps;
1805                 add_event_to_groups(event, ctx);
1806         }
1807
1808         list_add_rcu(&event->event_entry, &ctx->event_list);
1809         ctx->nr_events++;
1810         if (event->attr.inherit_stat)
1811                 ctx->nr_stat++;
1812
1813         if (event->state > PERF_EVENT_STATE_OFF)
1814                 perf_cgroup_event_enable(event, ctx);
1815
1816         ctx->generation++;
1817 }
1818
1819 /*
1820  * Initialize event state based on the perf_event_attr::disabled.
1821  */
1822 static inline void perf_event__state_init(struct perf_event *event)
1823 {
1824         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1825                                               PERF_EVENT_STATE_INACTIVE;
1826 }
1827
1828 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1829 {
1830         int entry = sizeof(u64); /* value */
1831         int size = 0;
1832         int nr = 1;
1833
1834         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835                 size += sizeof(u64);
1836
1837         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838                 size += sizeof(u64);
1839
1840         if (event->attr.read_format & PERF_FORMAT_ID)
1841                 entry += sizeof(u64);
1842
1843         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1844                 nr += nr_siblings;
1845                 size += sizeof(u64);
1846         }
1847
1848         size += entry * nr;
1849         event->read_size = size;
1850 }
1851
1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854         struct perf_sample_data *data;
1855         u16 size = 0;
1856
1857         if (sample_type & PERF_SAMPLE_IP)
1858                 size += sizeof(data->ip);
1859
1860         if (sample_type & PERF_SAMPLE_ADDR)
1861                 size += sizeof(data->addr);
1862
1863         if (sample_type & PERF_SAMPLE_PERIOD)
1864                 size += sizeof(data->period);
1865
1866         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867                 size += sizeof(data->weight.full);
1868
1869         if (sample_type & PERF_SAMPLE_READ)
1870                 size += event->read_size;
1871
1872         if (sample_type & PERF_SAMPLE_DATA_SRC)
1873                 size += sizeof(data->data_src.val);
1874
1875         if (sample_type & PERF_SAMPLE_TRANSACTION)
1876                 size += sizeof(data->txn);
1877
1878         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879                 size += sizeof(data->phys_addr);
1880
1881         if (sample_type & PERF_SAMPLE_CGROUP)
1882                 size += sizeof(data->cgroup);
1883
1884         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885                 size += sizeof(data->data_page_size);
1886
1887         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888                 size += sizeof(data->code_page_size);
1889
1890         event->header_size = size;
1891 }
1892
1893 /*
1894  * Called at perf_event creation and when events are attached/detached from a
1895  * group.
1896  */
1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899         __perf_event_read_size(event,
1900                                event->group_leader->nr_siblings);
1901         __perf_event_header_size(event, event->attr.sample_type);
1902 }
1903
1904 static void perf_event__id_header_size(struct perf_event *event)
1905 {
1906         struct perf_sample_data *data;
1907         u64 sample_type = event->attr.sample_type;
1908         u16 size = 0;
1909
1910         if (sample_type & PERF_SAMPLE_TID)
1911                 size += sizeof(data->tid_entry);
1912
1913         if (sample_type & PERF_SAMPLE_TIME)
1914                 size += sizeof(data->time);
1915
1916         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1917                 size += sizeof(data->id);
1918
1919         if (sample_type & PERF_SAMPLE_ID)
1920                 size += sizeof(data->id);
1921
1922         if (sample_type & PERF_SAMPLE_STREAM_ID)
1923                 size += sizeof(data->stream_id);
1924
1925         if (sample_type & PERF_SAMPLE_CPU)
1926                 size += sizeof(data->cpu_entry);
1927
1928         event->id_header_size = size;
1929 }
1930
1931 static bool perf_event_validate_size(struct perf_event *event)
1932 {
1933         /*
1934          * The values computed here will be over-written when we actually
1935          * attach the event.
1936          */
1937         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1938         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1939         perf_event__id_header_size(event);
1940
1941         /*
1942          * Sum the lot; should not exceed the 64k limit we have on records.
1943          * Conservative limit to allow for callchains and other variable fields.
1944          */
1945         if (event->read_size + event->header_size +
1946             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1947                 return false;
1948
1949         return true;
1950 }
1951
1952 static void perf_group_attach(struct perf_event *event)
1953 {
1954         struct perf_event *group_leader = event->group_leader, *pos;
1955
1956         lockdep_assert_held(&event->ctx->lock);
1957
1958         /*
1959          * We can have double attach due to group movement in perf_event_open.
1960          */
1961         if (event->attach_state & PERF_ATTACH_GROUP)
1962                 return;
1963
1964         event->attach_state |= PERF_ATTACH_GROUP;
1965
1966         if (group_leader == event)
1967                 return;
1968
1969         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1970
1971         group_leader->group_caps &= event->event_caps;
1972
1973         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1974         group_leader->nr_siblings++;
1975
1976         perf_event__header_size(group_leader);
1977
1978         for_each_sibling_event(pos, group_leader)
1979                 perf_event__header_size(pos);
1980 }
1981
1982 /*
1983  * Remove an event from the lists for its context.
1984  * Must be called with ctx->mutex and ctx->lock held.
1985  */
1986 static void
1987 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1988 {
1989         WARN_ON_ONCE(event->ctx != ctx);
1990         lockdep_assert_held(&ctx->lock);
1991
1992         /*
1993          * We can have double detach due to exit/hot-unplug + close.
1994          */
1995         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1996                 return;
1997
1998         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1999
2000         ctx->nr_events--;
2001         if (event->attr.inherit_stat)
2002                 ctx->nr_stat--;
2003
2004         list_del_rcu(&event->event_entry);
2005
2006         if (event->group_leader == event)
2007                 del_event_from_groups(event, ctx);
2008
2009         /*
2010          * If event was in error state, then keep it
2011          * that way, otherwise bogus counts will be
2012          * returned on read(). The only way to get out
2013          * of error state is by explicit re-enabling
2014          * of the event
2015          */
2016         if (event->state > PERF_EVENT_STATE_OFF) {
2017                 perf_cgroup_event_disable(event, ctx);
2018                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2019         }
2020
2021         ctx->generation++;
2022 }
2023
2024 static int
2025 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2026 {
2027         if (!has_aux(aux_event))
2028                 return 0;
2029
2030         if (!event->pmu->aux_output_match)
2031                 return 0;
2032
2033         return event->pmu->aux_output_match(aux_event);
2034 }
2035
2036 static void put_event(struct perf_event *event);
2037 static void event_sched_out(struct perf_event *event,
2038                             struct perf_cpu_context *cpuctx,
2039                             struct perf_event_context *ctx);
2040
2041 static void perf_put_aux_event(struct perf_event *event)
2042 {
2043         struct perf_event_context *ctx = event->ctx;
2044         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2045         struct perf_event *iter;
2046
2047         /*
2048          * If event uses aux_event tear down the link
2049          */
2050         if (event->aux_event) {
2051                 iter = event->aux_event;
2052                 event->aux_event = NULL;
2053                 put_event(iter);
2054                 return;
2055         }
2056
2057         /*
2058          * If the event is an aux_event, tear down all links to
2059          * it from other events.
2060          */
2061         for_each_sibling_event(iter, event->group_leader) {
2062                 if (iter->aux_event != event)
2063                         continue;
2064
2065                 iter->aux_event = NULL;
2066                 put_event(event);
2067
2068                 /*
2069                  * If it's ACTIVE, schedule it out and put it into ERROR
2070                  * state so that we don't try to schedule it again. Note
2071                  * that perf_event_enable() will clear the ERROR status.
2072                  */
2073                 event_sched_out(iter, cpuctx, ctx);
2074                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2075         }
2076 }
2077
2078 static bool perf_need_aux_event(struct perf_event *event)
2079 {
2080         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2081 }
2082
2083 static int perf_get_aux_event(struct perf_event *event,
2084                               struct perf_event *group_leader)
2085 {
2086         /*
2087          * Our group leader must be an aux event if we want to be
2088          * an aux_output. This way, the aux event will precede its
2089          * aux_output events in the group, and therefore will always
2090          * schedule first.
2091          */
2092         if (!group_leader)
2093                 return 0;
2094
2095         /*
2096          * aux_output and aux_sample_size are mutually exclusive.
2097          */
2098         if (event->attr.aux_output && event->attr.aux_sample_size)
2099                 return 0;
2100
2101         if (event->attr.aux_output &&
2102             !perf_aux_output_match(event, group_leader))
2103                 return 0;
2104
2105         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2106                 return 0;
2107
2108         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2109                 return 0;
2110
2111         /*
2112          * Link aux_outputs to their aux event; this is undone in
2113          * perf_group_detach() by perf_put_aux_event(). When the
2114          * group in torn down, the aux_output events loose their
2115          * link to the aux_event and can't schedule any more.
2116          */
2117         event->aux_event = group_leader;
2118
2119         return 1;
2120 }
2121
2122 static inline struct list_head *get_event_list(struct perf_event *event)
2123 {
2124         struct perf_event_context *ctx = event->ctx;
2125         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2126 }
2127
2128 /*
2129  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2130  * cannot exist on their own, schedule them out and move them into the ERROR
2131  * state. Also see _perf_event_enable(), it will not be able to recover
2132  * this ERROR state.
2133  */
2134 static inline void perf_remove_sibling_event(struct perf_event *event)
2135 {
2136         struct perf_event_context *ctx = event->ctx;
2137         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2138
2139         event_sched_out(event, cpuctx, ctx);
2140         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2141 }
2142
2143 static void perf_group_detach(struct perf_event *event)
2144 {
2145         struct perf_event *leader = event->group_leader;
2146         struct perf_event *sibling, *tmp;
2147         struct perf_event_context *ctx = event->ctx;
2148
2149         lockdep_assert_held(&ctx->lock);
2150
2151         /*
2152          * We can have double detach due to exit/hot-unplug + close.
2153          */
2154         if (!(event->attach_state & PERF_ATTACH_GROUP))
2155                 return;
2156
2157         event->attach_state &= ~PERF_ATTACH_GROUP;
2158
2159         perf_put_aux_event(event);
2160
2161         /*
2162          * If this is a sibling, remove it from its group.
2163          */
2164         if (leader != event) {
2165                 list_del_init(&event->sibling_list);
2166                 event->group_leader->nr_siblings--;
2167                 goto out;
2168         }
2169
2170         /*
2171          * If this was a group event with sibling events then
2172          * upgrade the siblings to singleton events by adding them
2173          * to whatever list we are on.
2174          */
2175         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2176
2177                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2178                         perf_remove_sibling_event(sibling);
2179
2180                 sibling->group_leader = sibling;
2181                 list_del_init(&sibling->sibling_list);
2182
2183                 /* Inherit group flags from the previous leader */
2184                 sibling->group_caps = event->group_caps;
2185
2186                 if (!RB_EMPTY_NODE(&event->group_node)) {
2187                         add_event_to_groups(sibling, event->ctx);
2188
2189                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2190                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2191                 }
2192
2193                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2194         }
2195
2196 out:
2197         for_each_sibling_event(tmp, leader)
2198                 perf_event__header_size(tmp);
2199
2200         perf_event__header_size(leader);
2201 }
2202
2203 static void sync_child_event(struct perf_event *child_event);
2204
2205 static void perf_child_detach(struct perf_event *event)
2206 {
2207         struct perf_event *parent_event = event->parent;
2208
2209         if (!(event->attach_state & PERF_ATTACH_CHILD))
2210                 return;
2211
2212         event->attach_state &= ~PERF_ATTACH_CHILD;
2213
2214         if (WARN_ON_ONCE(!parent_event))
2215                 return;
2216
2217         lockdep_assert_held(&parent_event->child_mutex);
2218
2219         sync_child_event(event);
2220         list_del_init(&event->child_list);
2221 }
2222
2223 static bool is_orphaned_event(struct perf_event *event)
2224 {
2225         return event->state == PERF_EVENT_STATE_DEAD;
2226 }
2227
2228 static inline int __pmu_filter_match(struct perf_event *event)
2229 {
2230         struct pmu *pmu = event->pmu;
2231         return pmu->filter_match ? pmu->filter_match(event) : 1;
2232 }
2233
2234 /*
2235  * Check whether we should attempt to schedule an event group based on
2236  * PMU-specific filtering. An event group can consist of HW and SW events,
2237  * potentially with a SW leader, so we must check all the filters, to
2238  * determine whether a group is schedulable:
2239  */
2240 static inline int pmu_filter_match(struct perf_event *event)
2241 {
2242         struct perf_event *sibling;
2243
2244         if (!__pmu_filter_match(event))
2245                 return 0;
2246
2247         for_each_sibling_event(sibling, event) {
2248                 if (!__pmu_filter_match(sibling))
2249                         return 0;
2250         }
2251
2252         return 1;
2253 }
2254
2255 static inline int
2256 event_filter_match(struct perf_event *event)
2257 {
2258         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2259                perf_cgroup_match(event) && pmu_filter_match(event);
2260 }
2261
2262 static void
2263 event_sched_out(struct perf_event *event,
2264                   struct perf_cpu_context *cpuctx,
2265                   struct perf_event_context *ctx)
2266 {
2267         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2268
2269         WARN_ON_ONCE(event->ctx != ctx);
2270         lockdep_assert_held(&ctx->lock);
2271
2272         if (event->state != PERF_EVENT_STATE_ACTIVE)
2273                 return;
2274
2275         /*
2276          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2277          * we can schedule events _OUT_ individually through things like
2278          * __perf_remove_from_context().
2279          */
2280         list_del_init(&event->active_list);
2281
2282         perf_pmu_disable(event->pmu);
2283
2284         event->pmu->del(event, 0);
2285         event->oncpu = -1;
2286
2287         if (READ_ONCE(event->pending_disable) >= 0) {
2288                 WRITE_ONCE(event->pending_disable, -1);
2289                 perf_cgroup_event_disable(event, ctx);
2290                 state = PERF_EVENT_STATE_OFF;
2291         }
2292         perf_event_set_state(event, state);
2293
2294         if (!is_software_event(event))
2295                 cpuctx->active_oncpu--;
2296         if (!--ctx->nr_active)
2297                 perf_event_ctx_deactivate(ctx);
2298         if (event->attr.freq && event->attr.sample_freq)
2299                 ctx->nr_freq--;
2300         if (event->attr.exclusive || !cpuctx->active_oncpu)
2301                 cpuctx->exclusive = 0;
2302
2303         perf_pmu_enable(event->pmu);
2304 }
2305
2306 static void
2307 group_sched_out(struct perf_event *group_event,
2308                 struct perf_cpu_context *cpuctx,
2309                 struct perf_event_context *ctx)
2310 {
2311         struct perf_event *event;
2312
2313         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2314                 return;
2315
2316         perf_pmu_disable(ctx->pmu);
2317
2318         event_sched_out(group_event, cpuctx, ctx);
2319
2320         /*
2321          * Schedule out siblings (if any):
2322          */
2323         for_each_sibling_event(event, group_event)
2324                 event_sched_out(event, cpuctx, ctx);
2325
2326         perf_pmu_enable(ctx->pmu);
2327 }
2328
2329 #define DETACH_GROUP    0x01UL
2330 #define DETACH_CHILD    0x02UL
2331
2332 /*
2333  * Cross CPU call to remove a performance event
2334  *
2335  * We disable the event on the hardware level first. After that we
2336  * remove it from the context list.
2337  */
2338 static void
2339 __perf_remove_from_context(struct perf_event *event,
2340                            struct perf_cpu_context *cpuctx,
2341                            struct perf_event_context *ctx,
2342                            void *info)
2343 {
2344         unsigned long flags = (unsigned long)info;
2345
2346         if (ctx->is_active & EVENT_TIME) {
2347                 update_context_time(ctx);
2348                 update_cgrp_time_from_cpuctx(cpuctx);
2349         }
2350
2351         event_sched_out(event, cpuctx, ctx);
2352         if (flags & DETACH_GROUP)
2353                 perf_group_detach(event);
2354         if (flags & DETACH_CHILD)
2355                 perf_child_detach(event);
2356         list_del_event(event, ctx);
2357
2358         if (!ctx->nr_events && ctx->is_active) {
2359                 ctx->is_active = 0;
2360                 ctx->rotate_necessary = 0;
2361                 if (ctx->task) {
2362                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2363                         cpuctx->task_ctx = NULL;
2364                 }
2365         }
2366 }
2367
2368 /*
2369  * Remove the event from a task's (or a CPU's) list of events.
2370  *
2371  * If event->ctx is a cloned context, callers must make sure that
2372  * every task struct that event->ctx->task could possibly point to
2373  * remains valid.  This is OK when called from perf_release since
2374  * that only calls us on the top-level context, which can't be a clone.
2375  * When called from perf_event_exit_task, it's OK because the
2376  * context has been detached from its task.
2377  */
2378 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2379 {
2380         struct perf_event_context *ctx = event->ctx;
2381
2382         lockdep_assert_held(&ctx->mutex);
2383
2384         /*
2385          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2386          * to work in the face of TASK_TOMBSTONE, unlike every other
2387          * event_function_call() user.
2388          */
2389         raw_spin_lock_irq(&ctx->lock);
2390         if (!ctx->is_active) {
2391                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2392                                            ctx, (void *)flags);
2393                 raw_spin_unlock_irq(&ctx->lock);
2394                 return;
2395         }
2396         raw_spin_unlock_irq(&ctx->lock);
2397
2398         event_function_call(event, __perf_remove_from_context, (void *)flags);
2399 }
2400
2401 /*
2402  * Cross CPU call to disable a performance event
2403  */
2404 static void __perf_event_disable(struct perf_event *event,
2405                                  struct perf_cpu_context *cpuctx,
2406                                  struct perf_event_context *ctx,
2407                                  void *info)
2408 {
2409         if (event->state < PERF_EVENT_STATE_INACTIVE)
2410                 return;
2411
2412         if (ctx->is_active & EVENT_TIME) {
2413                 update_context_time(ctx);
2414                 update_cgrp_time_from_event(event);
2415         }
2416
2417         if (event == event->group_leader)
2418                 group_sched_out(event, cpuctx, ctx);
2419         else
2420                 event_sched_out(event, cpuctx, ctx);
2421
2422         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2423         perf_cgroup_event_disable(event, ctx);
2424 }
2425
2426 /*
2427  * Disable an event.
2428  *
2429  * If event->ctx is a cloned context, callers must make sure that
2430  * every task struct that event->ctx->task could possibly point to
2431  * remains valid.  This condition is satisfied when called through
2432  * perf_event_for_each_child or perf_event_for_each because they
2433  * hold the top-level event's child_mutex, so any descendant that
2434  * goes to exit will block in perf_event_exit_event().
2435  *
2436  * When called from perf_pending_event it's OK because event->ctx
2437  * is the current context on this CPU and preemption is disabled,
2438  * hence we can't get into perf_event_task_sched_out for this context.
2439  */
2440 static void _perf_event_disable(struct perf_event *event)
2441 {
2442         struct perf_event_context *ctx = event->ctx;
2443
2444         raw_spin_lock_irq(&ctx->lock);
2445         if (event->state <= PERF_EVENT_STATE_OFF) {
2446                 raw_spin_unlock_irq(&ctx->lock);
2447                 return;
2448         }
2449         raw_spin_unlock_irq(&ctx->lock);
2450
2451         event_function_call(event, __perf_event_disable, NULL);
2452 }
2453
2454 void perf_event_disable_local(struct perf_event *event)
2455 {
2456         event_function_local(event, __perf_event_disable, NULL);
2457 }
2458
2459 /*
2460  * Strictly speaking kernel users cannot create groups and therefore this
2461  * interface does not need the perf_event_ctx_lock() magic.
2462  */
2463 void perf_event_disable(struct perf_event *event)
2464 {
2465         struct perf_event_context *ctx;
2466
2467         ctx = perf_event_ctx_lock(event);
2468         _perf_event_disable(event);
2469         perf_event_ctx_unlock(event, ctx);
2470 }
2471 EXPORT_SYMBOL_GPL(perf_event_disable);
2472
2473 void perf_event_disable_inatomic(struct perf_event *event)
2474 {
2475         WRITE_ONCE(event->pending_disable, smp_processor_id());
2476         /* can fail, see perf_pending_event_disable() */
2477         irq_work_queue(&event->pending);
2478 }
2479
2480 static void perf_set_shadow_time(struct perf_event *event,
2481                                  struct perf_event_context *ctx)
2482 {
2483         /*
2484          * use the correct time source for the time snapshot
2485          *
2486          * We could get by without this by leveraging the
2487          * fact that to get to this function, the caller
2488          * has most likely already called update_context_time()
2489          * and update_cgrp_time_xx() and thus both timestamp
2490          * are identical (or very close). Given that tstamp is,
2491          * already adjusted for cgroup, we could say that:
2492          *    tstamp - ctx->timestamp
2493          * is equivalent to
2494          *    tstamp - cgrp->timestamp.
2495          *
2496          * Then, in perf_output_read(), the calculation would
2497          * work with no changes because:
2498          * - event is guaranteed scheduled in
2499          * - no scheduled out in between
2500          * - thus the timestamp would be the same
2501          *
2502          * But this is a bit hairy.
2503          *
2504          * So instead, we have an explicit cgroup call to remain
2505          * within the time source all along. We believe it
2506          * is cleaner and simpler to understand.
2507          */
2508         if (is_cgroup_event(event))
2509                 perf_cgroup_set_shadow_time(event, event->tstamp);
2510         else
2511                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2512 }
2513
2514 #define MAX_INTERRUPTS (~0ULL)
2515
2516 static void perf_log_throttle(struct perf_event *event, int enable);
2517 static void perf_log_itrace_start(struct perf_event *event);
2518
2519 static int
2520 event_sched_in(struct perf_event *event,
2521                  struct perf_cpu_context *cpuctx,
2522                  struct perf_event_context *ctx)
2523 {
2524         int ret = 0;
2525
2526         WARN_ON_ONCE(event->ctx != ctx);
2527
2528         lockdep_assert_held(&ctx->lock);
2529
2530         if (event->state <= PERF_EVENT_STATE_OFF)
2531                 return 0;
2532
2533         WRITE_ONCE(event->oncpu, smp_processor_id());
2534         /*
2535          * Order event::oncpu write to happen before the ACTIVE state is
2536          * visible. This allows perf_event_{stop,read}() to observe the correct
2537          * ->oncpu if it sees ACTIVE.
2538          */
2539         smp_wmb();
2540         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2541
2542         /*
2543          * Unthrottle events, since we scheduled we might have missed several
2544          * ticks already, also for a heavily scheduling task there is little
2545          * guarantee it'll get a tick in a timely manner.
2546          */
2547         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2548                 perf_log_throttle(event, 1);
2549                 event->hw.interrupts = 0;
2550         }
2551
2552         perf_pmu_disable(event->pmu);
2553
2554         perf_set_shadow_time(event, ctx);
2555
2556         perf_log_itrace_start(event);
2557
2558         if (event->pmu->add(event, PERF_EF_START)) {
2559                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2560                 event->oncpu = -1;
2561                 ret = -EAGAIN;
2562                 goto out;
2563         }
2564
2565         if (!is_software_event(event))
2566                 cpuctx->active_oncpu++;
2567         if (!ctx->nr_active++)
2568                 perf_event_ctx_activate(ctx);
2569         if (event->attr.freq && event->attr.sample_freq)
2570                 ctx->nr_freq++;
2571
2572         if (event->attr.exclusive)
2573                 cpuctx->exclusive = 1;
2574
2575 out:
2576         perf_pmu_enable(event->pmu);
2577
2578         return ret;
2579 }
2580
2581 static int
2582 group_sched_in(struct perf_event *group_event,
2583                struct perf_cpu_context *cpuctx,
2584                struct perf_event_context *ctx)
2585 {
2586         struct perf_event *event, *partial_group = NULL;
2587         struct pmu *pmu = ctx->pmu;
2588
2589         if (group_event->state == PERF_EVENT_STATE_OFF)
2590                 return 0;
2591
2592         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2593
2594         if (event_sched_in(group_event, cpuctx, ctx))
2595                 goto error;
2596
2597         /*
2598          * Schedule in siblings as one group (if any):
2599          */
2600         for_each_sibling_event(event, group_event) {
2601                 if (event_sched_in(event, cpuctx, ctx)) {
2602                         partial_group = event;
2603                         goto group_error;
2604                 }
2605         }
2606
2607         if (!pmu->commit_txn(pmu))
2608                 return 0;
2609
2610 group_error:
2611         /*
2612          * Groups can be scheduled in as one unit only, so undo any
2613          * partial group before returning:
2614          * The events up to the failed event are scheduled out normally.
2615          */
2616         for_each_sibling_event(event, group_event) {
2617                 if (event == partial_group)
2618                         break;
2619
2620                 event_sched_out(event, cpuctx, ctx);
2621         }
2622         event_sched_out(group_event, cpuctx, ctx);
2623
2624 error:
2625         pmu->cancel_txn(pmu);
2626         return -EAGAIN;
2627 }
2628
2629 /*
2630  * Work out whether we can put this event group on the CPU now.
2631  */
2632 static int group_can_go_on(struct perf_event *event,
2633                            struct perf_cpu_context *cpuctx,
2634                            int can_add_hw)
2635 {
2636         /*
2637          * Groups consisting entirely of software events can always go on.
2638          */
2639         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2640                 return 1;
2641         /*
2642          * If an exclusive group is already on, no other hardware
2643          * events can go on.
2644          */
2645         if (cpuctx->exclusive)
2646                 return 0;
2647         /*
2648          * If this group is exclusive and there are already
2649          * events on the CPU, it can't go on.
2650          */
2651         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2652                 return 0;
2653         /*
2654          * Otherwise, try to add it if all previous groups were able
2655          * to go on.
2656          */
2657         return can_add_hw;
2658 }
2659
2660 static void add_event_to_ctx(struct perf_event *event,
2661                                struct perf_event_context *ctx)
2662 {
2663         list_add_event(event, ctx);
2664         perf_group_attach(event);
2665 }
2666
2667 static void ctx_sched_out(struct perf_event_context *ctx,
2668                           struct perf_cpu_context *cpuctx,
2669                           enum event_type_t event_type);
2670 static void
2671 ctx_sched_in(struct perf_event_context *ctx,
2672              struct perf_cpu_context *cpuctx,
2673              enum event_type_t event_type,
2674              struct task_struct *task);
2675
2676 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2677                                struct perf_event_context *ctx,
2678                                enum event_type_t event_type)
2679 {
2680         if (!cpuctx->task_ctx)
2681                 return;
2682
2683         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2684                 return;
2685
2686         ctx_sched_out(ctx, cpuctx, event_type);
2687 }
2688
2689 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2690                                 struct perf_event_context *ctx,
2691                                 struct task_struct *task)
2692 {
2693         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2694         if (ctx)
2695                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2696         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2697         if (ctx)
2698                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2699 }
2700
2701 /*
2702  * We want to maintain the following priority of scheduling:
2703  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2704  *  - task pinned (EVENT_PINNED)
2705  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2706  *  - task flexible (EVENT_FLEXIBLE).
2707  *
2708  * In order to avoid unscheduling and scheduling back in everything every
2709  * time an event is added, only do it for the groups of equal priority and
2710  * below.
2711  *
2712  * This can be called after a batch operation on task events, in which case
2713  * event_type is a bit mask of the types of events involved. For CPU events,
2714  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2715  */
2716 static void ctx_resched(struct perf_cpu_context *cpuctx,
2717                         struct perf_event_context *task_ctx,
2718                         enum event_type_t event_type)
2719 {
2720         enum event_type_t ctx_event_type;
2721         bool cpu_event = !!(event_type & EVENT_CPU);
2722
2723         /*
2724          * If pinned groups are involved, flexible groups also need to be
2725          * scheduled out.
2726          */
2727         if (event_type & EVENT_PINNED)
2728                 event_type |= EVENT_FLEXIBLE;
2729
2730         ctx_event_type = event_type & EVENT_ALL;
2731
2732         perf_pmu_disable(cpuctx->ctx.pmu);
2733         if (task_ctx)
2734                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2735
2736         /*
2737          * Decide which cpu ctx groups to schedule out based on the types
2738          * of events that caused rescheduling:
2739          *  - EVENT_CPU: schedule out corresponding groups;
2740          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2741          *  - otherwise, do nothing more.
2742          */
2743         if (cpu_event)
2744                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2745         else if (ctx_event_type & EVENT_PINNED)
2746                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2747
2748         perf_event_sched_in(cpuctx, task_ctx, current);
2749         perf_pmu_enable(cpuctx->ctx.pmu);
2750 }
2751
2752 void perf_pmu_resched(struct pmu *pmu)
2753 {
2754         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2755         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2756
2757         perf_ctx_lock(cpuctx, task_ctx);
2758         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2759         perf_ctx_unlock(cpuctx, task_ctx);
2760 }
2761
2762 /*
2763  * Cross CPU call to install and enable a performance event
2764  *
2765  * Very similar to remote_function() + event_function() but cannot assume that
2766  * things like ctx->is_active and cpuctx->task_ctx are set.
2767  */
2768 static int  __perf_install_in_context(void *info)
2769 {
2770         struct perf_event *event = info;
2771         struct perf_event_context *ctx = event->ctx;
2772         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2773         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2774         bool reprogram = true;
2775         int ret = 0;
2776
2777         raw_spin_lock(&cpuctx->ctx.lock);
2778         if (ctx->task) {
2779                 raw_spin_lock(&ctx->lock);
2780                 task_ctx = ctx;
2781
2782                 reprogram = (ctx->task == current);
2783
2784                 /*
2785                  * If the task is running, it must be running on this CPU,
2786                  * otherwise we cannot reprogram things.
2787                  *
2788                  * If its not running, we don't care, ctx->lock will
2789                  * serialize against it becoming runnable.
2790                  */
2791                 if (task_curr(ctx->task) && !reprogram) {
2792                         ret = -ESRCH;
2793                         goto unlock;
2794                 }
2795
2796                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2797         } else if (task_ctx) {
2798                 raw_spin_lock(&task_ctx->lock);
2799         }
2800
2801 #ifdef CONFIG_CGROUP_PERF
2802         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2803                 /*
2804                  * If the current cgroup doesn't match the event's
2805                  * cgroup, we should not try to schedule it.
2806                  */
2807                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2808                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2809                                         event->cgrp->css.cgroup);
2810         }
2811 #endif
2812
2813         if (reprogram) {
2814                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2815                 add_event_to_ctx(event, ctx);
2816                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2817         } else {
2818                 add_event_to_ctx(event, ctx);
2819         }
2820
2821 unlock:
2822         perf_ctx_unlock(cpuctx, task_ctx);
2823
2824         return ret;
2825 }
2826
2827 static bool exclusive_event_installable(struct perf_event *event,
2828                                         struct perf_event_context *ctx);
2829
2830 /*
2831  * Attach a performance event to a context.
2832  *
2833  * Very similar to event_function_call, see comment there.
2834  */
2835 static void
2836 perf_install_in_context(struct perf_event_context *ctx,
2837                         struct perf_event *event,
2838                         int cpu)
2839 {
2840         struct task_struct *task = READ_ONCE(ctx->task);
2841
2842         lockdep_assert_held(&ctx->mutex);
2843
2844         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2845
2846         if (event->cpu != -1)
2847                 event->cpu = cpu;
2848
2849         /*
2850          * Ensures that if we can observe event->ctx, both the event and ctx
2851          * will be 'complete'. See perf_iterate_sb_cpu().
2852          */
2853         smp_store_release(&event->ctx, ctx);
2854
2855         /*
2856          * perf_event_attr::disabled events will not run and can be initialized
2857          * without IPI. Except when this is the first event for the context, in
2858          * that case we need the magic of the IPI to set ctx->is_active.
2859          *
2860          * The IOC_ENABLE that is sure to follow the creation of a disabled
2861          * event will issue the IPI and reprogram the hardware.
2862          */
2863         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2864                 raw_spin_lock_irq(&ctx->lock);
2865                 if (ctx->task == TASK_TOMBSTONE) {
2866                         raw_spin_unlock_irq(&ctx->lock);
2867                         return;
2868                 }
2869                 add_event_to_ctx(event, ctx);
2870                 raw_spin_unlock_irq(&ctx->lock);
2871                 return;
2872         }
2873
2874         if (!task) {
2875                 cpu_function_call(cpu, __perf_install_in_context, event);
2876                 return;
2877         }
2878
2879         /*
2880          * Should not happen, we validate the ctx is still alive before calling.
2881          */
2882         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2883                 return;
2884
2885         /*
2886          * Installing events is tricky because we cannot rely on ctx->is_active
2887          * to be set in case this is the nr_events 0 -> 1 transition.
2888          *
2889          * Instead we use task_curr(), which tells us if the task is running.
2890          * However, since we use task_curr() outside of rq::lock, we can race
2891          * against the actual state. This means the result can be wrong.
2892          *
2893          * If we get a false positive, we retry, this is harmless.
2894          *
2895          * If we get a false negative, things are complicated. If we are after
2896          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2897          * value must be correct. If we're before, it doesn't matter since
2898          * perf_event_context_sched_in() will program the counter.
2899          *
2900          * However, this hinges on the remote context switch having observed
2901          * our task->perf_event_ctxp[] store, such that it will in fact take
2902          * ctx::lock in perf_event_context_sched_in().
2903          *
2904          * We do this by task_function_call(), if the IPI fails to hit the task
2905          * we know any future context switch of task must see the
2906          * perf_event_ctpx[] store.
2907          */
2908
2909         /*
2910          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2911          * task_cpu() load, such that if the IPI then does not find the task
2912          * running, a future context switch of that task must observe the
2913          * store.
2914          */
2915         smp_mb();
2916 again:
2917         if (!task_function_call(task, __perf_install_in_context, event))
2918                 return;
2919
2920         raw_spin_lock_irq(&ctx->lock);
2921         task = ctx->task;
2922         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2923                 /*
2924                  * Cannot happen because we already checked above (which also
2925                  * cannot happen), and we hold ctx->mutex, which serializes us
2926                  * against perf_event_exit_task_context().
2927                  */
2928                 raw_spin_unlock_irq(&ctx->lock);
2929                 return;
2930         }
2931         /*
2932          * If the task is not running, ctx->lock will avoid it becoming so,
2933          * thus we can safely install the event.
2934          */
2935         if (task_curr(task)) {
2936                 raw_spin_unlock_irq(&ctx->lock);
2937                 goto again;
2938         }
2939         add_event_to_ctx(event, ctx);
2940         raw_spin_unlock_irq(&ctx->lock);
2941 }
2942
2943 /*
2944  * Cross CPU call to enable a performance event
2945  */
2946 static void __perf_event_enable(struct perf_event *event,
2947                                 struct perf_cpu_context *cpuctx,
2948                                 struct perf_event_context *ctx,
2949                                 void *info)
2950 {
2951         struct perf_event *leader = event->group_leader;
2952         struct perf_event_context *task_ctx;
2953
2954         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2955             event->state <= PERF_EVENT_STATE_ERROR)
2956                 return;
2957
2958         if (ctx->is_active)
2959                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2960
2961         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2962         perf_cgroup_event_enable(event, ctx);
2963
2964         if (!ctx->is_active)
2965                 return;
2966
2967         if (!event_filter_match(event)) {
2968                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2969                 return;
2970         }
2971
2972         /*
2973          * If the event is in a group and isn't the group leader,
2974          * then don't put it on unless the group is on.
2975          */
2976         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2977                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2978                 return;
2979         }
2980
2981         task_ctx = cpuctx->task_ctx;
2982         if (ctx->task)
2983                 WARN_ON_ONCE(task_ctx != ctx);
2984
2985         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2986 }
2987
2988 /*
2989  * Enable an event.
2990  *
2991  * If event->ctx is a cloned context, callers must make sure that
2992  * every task struct that event->ctx->task could possibly point to
2993  * remains valid.  This condition is satisfied when called through
2994  * perf_event_for_each_child or perf_event_for_each as described
2995  * for perf_event_disable.
2996  */
2997 static void _perf_event_enable(struct perf_event *event)
2998 {
2999         struct perf_event_context *ctx = event->ctx;
3000
3001         raw_spin_lock_irq(&ctx->lock);
3002         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3003             event->state <  PERF_EVENT_STATE_ERROR) {
3004 out:
3005                 raw_spin_unlock_irq(&ctx->lock);
3006                 return;
3007         }
3008
3009         /*
3010          * If the event is in error state, clear that first.
3011          *
3012          * That way, if we see the event in error state below, we know that it
3013          * has gone back into error state, as distinct from the task having
3014          * been scheduled away before the cross-call arrived.
3015          */
3016         if (event->state == PERF_EVENT_STATE_ERROR) {
3017                 /*
3018                  * Detached SIBLING events cannot leave ERROR state.
3019                  */
3020                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3021                     event->group_leader == event)
3022                         goto out;
3023
3024                 event->state = PERF_EVENT_STATE_OFF;
3025         }
3026         raw_spin_unlock_irq(&ctx->lock);
3027
3028         event_function_call(event, __perf_event_enable, NULL);
3029 }
3030
3031 /*
3032  * See perf_event_disable();
3033  */
3034 void perf_event_enable(struct perf_event *event)
3035 {
3036         struct perf_event_context *ctx;
3037
3038         ctx = perf_event_ctx_lock(event);
3039         _perf_event_enable(event);
3040         perf_event_ctx_unlock(event, ctx);
3041 }
3042 EXPORT_SYMBOL_GPL(perf_event_enable);
3043
3044 struct stop_event_data {
3045         struct perf_event       *event;
3046         unsigned int            restart;
3047 };
3048
3049 static int __perf_event_stop(void *info)
3050 {
3051         struct stop_event_data *sd = info;
3052         struct perf_event *event = sd->event;
3053
3054         /* if it's already INACTIVE, do nothing */
3055         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3056                 return 0;
3057
3058         /* matches smp_wmb() in event_sched_in() */
3059         smp_rmb();
3060
3061         /*
3062          * There is a window with interrupts enabled before we get here,
3063          * so we need to check again lest we try to stop another CPU's event.
3064          */
3065         if (READ_ONCE(event->oncpu) != smp_processor_id())
3066                 return -EAGAIN;
3067
3068         event->pmu->stop(event, PERF_EF_UPDATE);
3069
3070         /*
3071          * May race with the actual stop (through perf_pmu_output_stop()),
3072          * but it is only used for events with AUX ring buffer, and such
3073          * events will refuse to restart because of rb::aux_mmap_count==0,
3074          * see comments in perf_aux_output_begin().
3075          *
3076          * Since this is happening on an event-local CPU, no trace is lost
3077          * while restarting.
3078          */
3079         if (sd->restart)
3080                 event->pmu->start(event, 0);
3081
3082         return 0;
3083 }
3084
3085 static int perf_event_stop(struct perf_event *event, int restart)
3086 {
3087         struct stop_event_data sd = {
3088                 .event          = event,
3089                 .restart        = restart,
3090         };
3091         int ret = 0;
3092
3093         do {
3094                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3095                         return 0;
3096
3097                 /* matches smp_wmb() in event_sched_in() */
3098                 smp_rmb();
3099
3100                 /*
3101                  * We only want to restart ACTIVE events, so if the event goes
3102                  * inactive here (event->oncpu==-1), there's nothing more to do;
3103                  * fall through with ret==-ENXIO.
3104                  */
3105                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3106                                         __perf_event_stop, &sd);
3107         } while (ret == -EAGAIN);
3108
3109         return ret;
3110 }
3111
3112 /*
3113  * In order to contain the amount of racy and tricky in the address filter
3114  * configuration management, it is a two part process:
3115  *
3116  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3117  *      we update the addresses of corresponding vmas in
3118  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3119  * (p2) when an event is scheduled in (pmu::add), it calls
3120  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3121  *      if the generation has changed since the previous call.
3122  *
3123  * If (p1) happens while the event is active, we restart it to force (p2).
3124  *
3125  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3126  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3127  *     ioctl;
3128  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3129  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3130  *     for reading;
3131  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3132  *     of exec.
3133  */
3134 void perf_event_addr_filters_sync(struct perf_event *event)
3135 {
3136         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3137
3138         if (!has_addr_filter(event))
3139                 return;
3140
3141         raw_spin_lock(&ifh->lock);
3142         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3143                 event->pmu->addr_filters_sync(event);
3144                 event->hw.addr_filters_gen = event->addr_filters_gen;
3145         }
3146         raw_spin_unlock(&ifh->lock);
3147 }
3148 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3149
3150 static int _perf_event_refresh(struct perf_event *event, int refresh)
3151 {
3152         /*
3153          * not supported on inherited events
3154          */
3155         if (event->attr.inherit || !is_sampling_event(event))
3156                 return -EINVAL;
3157
3158         atomic_add(refresh, &event->event_limit);
3159         _perf_event_enable(event);
3160
3161         return 0;
3162 }
3163
3164 /*
3165  * See perf_event_disable()
3166  */
3167 int perf_event_refresh(struct perf_event *event, int refresh)
3168 {
3169         struct perf_event_context *ctx;
3170         int ret;
3171
3172         ctx = perf_event_ctx_lock(event);
3173         ret = _perf_event_refresh(event, refresh);
3174         perf_event_ctx_unlock(event, ctx);
3175
3176         return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(perf_event_refresh);
3179
3180 static int perf_event_modify_breakpoint(struct perf_event *bp,
3181                                          struct perf_event_attr *attr)
3182 {
3183         int err;
3184
3185         _perf_event_disable(bp);
3186
3187         err = modify_user_hw_breakpoint_check(bp, attr, true);
3188
3189         if (!bp->attr.disabled)
3190                 _perf_event_enable(bp);
3191
3192         return err;
3193 }
3194
3195 static int perf_event_modify_attr(struct perf_event *event,
3196                                   struct perf_event_attr *attr)
3197 {
3198         int (*func)(struct perf_event *, struct perf_event_attr *);
3199         struct perf_event *child;
3200         int err;
3201
3202         if (event->attr.type != attr->type)
3203                 return -EINVAL;
3204
3205         switch (event->attr.type) {
3206         case PERF_TYPE_BREAKPOINT:
3207                 func = perf_event_modify_breakpoint;
3208                 break;
3209         default:
3210                 /* Place holder for future additions. */
3211                 return -EOPNOTSUPP;
3212         }
3213
3214         WARN_ON_ONCE(event->ctx->parent_ctx);
3215
3216         mutex_lock(&event->child_mutex);
3217         err = func(event, attr);
3218         if (err)
3219                 goto out;
3220         list_for_each_entry(child, &event->child_list, child_list) {
3221                 err = func(child, attr);
3222                 if (err)
3223                         goto out;
3224         }
3225 out:
3226         mutex_unlock(&event->child_mutex);
3227         return err;
3228 }
3229
3230 static void ctx_sched_out(struct perf_event_context *ctx,
3231                           struct perf_cpu_context *cpuctx,
3232                           enum event_type_t event_type)
3233 {
3234         struct perf_event *event, *tmp;
3235         int is_active = ctx->is_active;
3236
3237         lockdep_assert_held(&ctx->lock);
3238
3239         if (likely(!ctx->nr_events)) {
3240                 /*
3241                  * See __perf_remove_from_context().
3242                  */
3243                 WARN_ON_ONCE(ctx->is_active);
3244                 if (ctx->task)
3245                         WARN_ON_ONCE(cpuctx->task_ctx);
3246                 return;
3247         }
3248
3249         ctx->is_active &= ~event_type;
3250         if (!(ctx->is_active & EVENT_ALL))
3251                 ctx->is_active = 0;
3252
3253         if (ctx->task) {
3254                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3255                 if (!ctx->is_active)
3256                         cpuctx->task_ctx = NULL;
3257         }
3258
3259         /*
3260          * Always update time if it was set; not only when it changes.
3261          * Otherwise we can 'forget' to update time for any but the last
3262          * context we sched out. For example:
3263          *
3264          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3265          *   ctx_sched_out(.event_type = EVENT_PINNED)
3266          *
3267          * would only update time for the pinned events.
3268          */
3269         if (is_active & EVENT_TIME) {
3270                 /* update (and stop) ctx time */
3271                 update_context_time(ctx);
3272                 update_cgrp_time_from_cpuctx(cpuctx);
3273         }
3274
3275         is_active ^= ctx->is_active; /* changed bits */
3276
3277         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3278                 return;
3279
3280         perf_pmu_disable(ctx->pmu);
3281         if (is_active & EVENT_PINNED) {
3282                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3283                         group_sched_out(event, cpuctx, ctx);
3284         }
3285
3286         if (is_active & EVENT_FLEXIBLE) {
3287                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3288                         group_sched_out(event, cpuctx, ctx);
3289
3290                 /*
3291                  * Since we cleared EVENT_FLEXIBLE, also clear
3292                  * rotate_necessary, is will be reset by
3293                  * ctx_flexible_sched_in() when needed.
3294                  */
3295                 ctx->rotate_necessary = 0;
3296         }
3297         perf_pmu_enable(ctx->pmu);
3298 }
3299
3300 /*
3301  * Test whether two contexts are equivalent, i.e. whether they have both been
3302  * cloned from the same version of the same context.
3303  *
3304  * Equivalence is measured using a generation number in the context that is
3305  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3306  * and list_del_event().
3307  */
3308 static int context_equiv(struct perf_event_context *ctx1,
3309                          struct perf_event_context *ctx2)
3310 {
3311         lockdep_assert_held(&ctx1->lock);
3312         lockdep_assert_held(&ctx2->lock);
3313
3314         /* Pinning disables the swap optimization */
3315         if (ctx1->pin_count || ctx2->pin_count)
3316                 return 0;
3317
3318         /* If ctx1 is the parent of ctx2 */
3319         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3320                 return 1;
3321
3322         /* If ctx2 is the parent of ctx1 */
3323         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3324                 return 1;
3325
3326         /*
3327          * If ctx1 and ctx2 have the same parent; we flatten the parent
3328          * hierarchy, see perf_event_init_context().
3329          */
3330         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3331                         ctx1->parent_gen == ctx2->parent_gen)
3332                 return 1;
3333
3334         /* Unmatched */
3335         return 0;
3336 }
3337
3338 static void __perf_event_sync_stat(struct perf_event *event,
3339                                      struct perf_event *next_event)
3340 {
3341         u64 value;
3342
3343         if (!event->attr.inherit_stat)
3344                 return;
3345
3346         /*
3347          * Update the event value, we cannot use perf_event_read()
3348          * because we're in the middle of a context switch and have IRQs
3349          * disabled, which upsets smp_call_function_single(), however
3350          * we know the event must be on the current CPU, therefore we
3351          * don't need to use it.
3352          */
3353         if (event->state == PERF_EVENT_STATE_ACTIVE)
3354                 event->pmu->read(event);
3355
3356         perf_event_update_time(event);
3357
3358         /*
3359          * In order to keep per-task stats reliable we need to flip the event
3360          * values when we flip the contexts.
3361          */
3362         value = local64_read(&next_event->count);
3363         value = local64_xchg(&event->count, value);
3364         local64_set(&next_event->count, value);
3365
3366         swap(event->total_time_enabled, next_event->total_time_enabled);
3367         swap(event->total_time_running, next_event->total_time_running);
3368
3369         /*
3370          * Since we swizzled the values, update the user visible data too.
3371          */
3372         perf_event_update_userpage(event);
3373         perf_event_update_userpage(next_event);
3374 }
3375
3376 static void perf_event_sync_stat(struct perf_event_context *ctx,
3377                                    struct perf_event_context *next_ctx)
3378 {
3379         struct perf_event *event, *next_event;
3380
3381         if (!ctx->nr_stat)
3382                 return;
3383
3384         update_context_time(ctx);
3385
3386         event = list_first_entry(&ctx->event_list,
3387                                    struct perf_event, event_entry);
3388
3389         next_event = list_first_entry(&next_ctx->event_list,
3390                                         struct perf_event, event_entry);
3391
3392         while (&event->event_entry != &ctx->event_list &&
3393                &next_event->event_entry != &next_ctx->event_list) {
3394
3395                 __perf_event_sync_stat(event, next_event);
3396
3397                 event = list_next_entry(event, event_entry);
3398                 next_event = list_next_entry(next_event, event_entry);
3399         }
3400 }
3401
3402 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3403                                          struct task_struct *next)
3404 {
3405         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3406         struct perf_event_context *next_ctx;
3407         struct perf_event_context *parent, *next_parent;
3408         struct perf_cpu_context *cpuctx;
3409         int do_switch = 1;
3410         struct pmu *pmu;
3411
3412         if (likely(!ctx))
3413                 return;
3414
3415         pmu = ctx->pmu;
3416         cpuctx = __get_cpu_context(ctx);
3417         if (!cpuctx->task_ctx)
3418                 return;
3419
3420         rcu_read_lock();
3421         next_ctx = next->perf_event_ctxp[ctxn];
3422         if (!next_ctx)
3423                 goto unlock;
3424
3425         parent = rcu_dereference(ctx->parent_ctx);
3426         next_parent = rcu_dereference(next_ctx->parent_ctx);
3427
3428         /* If neither context have a parent context; they cannot be clones. */
3429         if (!parent && !next_parent)
3430                 goto unlock;
3431
3432         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3433                 /*
3434                  * Looks like the two contexts are clones, so we might be
3435                  * able to optimize the context switch.  We lock both
3436                  * contexts and check that they are clones under the
3437                  * lock (including re-checking that neither has been
3438                  * uncloned in the meantime).  It doesn't matter which
3439                  * order we take the locks because no other cpu could
3440                  * be trying to lock both of these tasks.
3441                  */
3442                 raw_spin_lock(&ctx->lock);
3443                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3444                 if (context_equiv(ctx, next_ctx)) {
3445
3446                         WRITE_ONCE(ctx->task, next);
3447                         WRITE_ONCE(next_ctx->task, task);
3448
3449                         perf_pmu_disable(pmu);
3450
3451                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3452                                 pmu->sched_task(ctx, false);
3453
3454                         /*
3455                          * PMU specific parts of task perf context can require
3456                          * additional synchronization. As an example of such
3457                          * synchronization see implementation details of Intel
3458                          * LBR call stack data profiling;
3459                          */
3460                         if (pmu->swap_task_ctx)
3461                                 pmu->swap_task_ctx(ctx, next_ctx);
3462                         else
3463                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3464
3465                         perf_pmu_enable(pmu);
3466
3467                         /*
3468                          * RCU_INIT_POINTER here is safe because we've not
3469                          * modified the ctx and the above modification of
3470                          * ctx->task and ctx->task_ctx_data are immaterial
3471                          * since those values are always verified under
3472                          * ctx->lock which we're now holding.
3473                          */
3474                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3475                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3476
3477                         do_switch = 0;
3478
3479                         perf_event_sync_stat(ctx, next_ctx);
3480                 }
3481                 raw_spin_unlock(&next_ctx->lock);
3482                 raw_spin_unlock(&ctx->lock);
3483         }
3484 unlock:
3485         rcu_read_unlock();
3486
3487         if (do_switch) {
3488                 raw_spin_lock(&ctx->lock);
3489                 perf_pmu_disable(pmu);
3490
3491                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3492                         pmu->sched_task(ctx, false);
3493                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3494
3495                 perf_pmu_enable(pmu);
3496                 raw_spin_unlock(&ctx->lock);
3497         }
3498 }
3499
3500 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3501
3502 void perf_sched_cb_dec(struct pmu *pmu)
3503 {
3504         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3505
3506         this_cpu_dec(perf_sched_cb_usages);
3507
3508         if (!--cpuctx->sched_cb_usage)
3509                 list_del(&cpuctx->sched_cb_entry);
3510 }
3511
3512
3513 void perf_sched_cb_inc(struct pmu *pmu)
3514 {
3515         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3516
3517         if (!cpuctx->sched_cb_usage++)
3518                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3519
3520         this_cpu_inc(perf_sched_cb_usages);
3521 }
3522
3523 /*
3524  * This function provides the context switch callback to the lower code
3525  * layer. It is invoked ONLY when the context switch callback is enabled.
3526  *
3527  * This callback is relevant even to per-cpu events; for example multi event
3528  * PEBS requires this to provide PID/TID information. This requires we flush
3529  * all queued PEBS records before we context switch to a new task.
3530  */
3531 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3532 {
3533         struct pmu *pmu;
3534
3535         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3536
3537         if (WARN_ON_ONCE(!pmu->sched_task))
3538                 return;
3539
3540         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3541         perf_pmu_disable(pmu);
3542
3543         pmu->sched_task(cpuctx->task_ctx, sched_in);
3544
3545         perf_pmu_enable(pmu);
3546         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3547 }
3548
3549 static void perf_pmu_sched_task(struct task_struct *prev,
3550                                 struct task_struct *next,
3551                                 bool sched_in)
3552 {
3553         struct perf_cpu_context *cpuctx;
3554
3555         if (prev == next)
3556                 return;
3557
3558         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3559                 /* will be handled in perf_event_context_sched_in/out */
3560                 if (cpuctx->task_ctx)
3561                         continue;
3562
3563                 __perf_pmu_sched_task(cpuctx, sched_in);
3564         }
3565 }
3566
3567 static void perf_event_switch(struct task_struct *task,
3568                               struct task_struct *next_prev, bool sched_in);
3569
3570 #define for_each_task_context_nr(ctxn)                                  \
3571         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3572
3573 /*
3574  * Called from scheduler to remove the events of the current task,
3575  * with interrupts disabled.
3576  *
3577  * We stop each event and update the event value in event->count.
3578  *
3579  * This does not protect us against NMI, but disable()
3580  * sets the disabled bit in the control field of event _before_
3581  * accessing the event control register. If a NMI hits, then it will
3582  * not restart the event.
3583  */
3584 void __perf_event_task_sched_out(struct task_struct *task,
3585                                  struct task_struct *next)
3586 {
3587         int ctxn;
3588
3589         if (__this_cpu_read(perf_sched_cb_usages))
3590                 perf_pmu_sched_task(task, next, false);
3591
3592         if (atomic_read(&nr_switch_events))
3593                 perf_event_switch(task, next, false);
3594
3595         for_each_task_context_nr(ctxn)
3596                 perf_event_context_sched_out(task, ctxn, next);
3597
3598         /*
3599          * if cgroup events exist on this CPU, then we need
3600          * to check if we have to switch out PMU state.
3601          * cgroup event are system-wide mode only
3602          */
3603         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3604                 perf_cgroup_sched_out(task, next);
3605 }
3606
3607 /*
3608  * Called with IRQs disabled
3609  */
3610 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3611                               enum event_type_t event_type)
3612 {
3613         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3614 }
3615
3616 static bool perf_less_group_idx(const void *l, const void *r)
3617 {
3618         const struct perf_event *le = *(const struct perf_event **)l;
3619         const struct perf_event *re = *(const struct perf_event **)r;
3620
3621         return le->group_index < re->group_index;
3622 }
3623
3624 static void swap_ptr(void *l, void *r)
3625 {
3626         void **lp = l, **rp = r;
3627
3628         swap(*lp, *rp);
3629 }
3630
3631 static const struct min_heap_callbacks perf_min_heap = {
3632         .elem_size = sizeof(struct perf_event *),
3633         .less = perf_less_group_idx,
3634         .swp = swap_ptr,
3635 };
3636
3637 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3638 {
3639         struct perf_event **itrs = heap->data;
3640
3641         if (event) {
3642                 itrs[heap->nr] = event;
3643                 heap->nr++;
3644         }
3645 }
3646
3647 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3648                                 struct perf_event_groups *groups, int cpu,
3649                                 int (*func)(struct perf_event *, void *),
3650                                 void *data)
3651 {
3652 #ifdef CONFIG_CGROUP_PERF
3653         struct cgroup_subsys_state *css = NULL;
3654 #endif
3655         /* Space for per CPU and/or any CPU event iterators. */
3656         struct perf_event *itrs[2];
3657         struct min_heap event_heap;
3658         struct perf_event **evt;
3659         int ret;
3660
3661         if (cpuctx) {
3662                 event_heap = (struct min_heap){
3663                         .data = cpuctx->heap,
3664                         .nr = 0,
3665                         .size = cpuctx->heap_size,
3666                 };
3667
3668                 lockdep_assert_held(&cpuctx->ctx.lock);
3669
3670 #ifdef CONFIG_CGROUP_PERF
3671                 if (cpuctx->cgrp)
3672                         css = &cpuctx->cgrp->css;
3673 #endif
3674         } else {
3675                 event_heap = (struct min_heap){
3676                         .data = itrs,
3677                         .nr = 0,
3678                         .size = ARRAY_SIZE(itrs),
3679                 };
3680                 /* Events not within a CPU context may be on any CPU. */
3681                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3682         }
3683         evt = event_heap.data;
3684
3685         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3686
3687 #ifdef CONFIG_CGROUP_PERF
3688         for (; css; css = css->parent)
3689                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3690 #endif
3691
3692         min_heapify_all(&event_heap, &perf_min_heap);
3693
3694         while (event_heap.nr) {
3695                 ret = func(*evt, data);
3696                 if (ret)
3697                         return ret;
3698
3699                 *evt = perf_event_groups_next(*evt);
3700                 if (*evt)
3701                         min_heapify(&event_heap, 0, &perf_min_heap);
3702                 else
3703                         min_heap_pop(&event_heap, &perf_min_heap);
3704         }
3705
3706         return 0;
3707 }
3708
3709 static int merge_sched_in(struct perf_event *event, void *data)
3710 {
3711         struct perf_event_context *ctx = event->ctx;
3712         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3713         int *can_add_hw = data;
3714
3715         if (event->state <= PERF_EVENT_STATE_OFF)
3716                 return 0;
3717
3718         if (!event_filter_match(event))
3719                 return 0;
3720
3721         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3722                 if (!group_sched_in(event, cpuctx, ctx))
3723                         list_add_tail(&event->active_list, get_event_list(event));
3724         }
3725
3726         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3727                 if (event->attr.pinned) {
3728                         perf_cgroup_event_disable(event, ctx);
3729                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3730                 }
3731
3732                 *can_add_hw = 0;
3733                 ctx->rotate_necessary = 1;
3734                 perf_mux_hrtimer_restart(cpuctx);
3735         }
3736
3737         return 0;
3738 }
3739
3740 static void
3741 ctx_pinned_sched_in(struct perf_event_context *ctx,
3742                     struct perf_cpu_context *cpuctx)
3743 {
3744         int can_add_hw = 1;
3745
3746         if (ctx != &cpuctx->ctx)
3747                 cpuctx = NULL;
3748
3749         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3750                            smp_processor_id(),
3751                            merge_sched_in, &can_add_hw);
3752 }
3753
3754 static void
3755 ctx_flexible_sched_in(struct perf_event_context *ctx,
3756                       struct perf_cpu_context *cpuctx)
3757 {
3758         int can_add_hw = 1;
3759
3760         if (ctx != &cpuctx->ctx)
3761                 cpuctx = NULL;
3762
3763         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3764                            smp_processor_id(),
3765                            merge_sched_in, &can_add_hw);
3766 }
3767
3768 static void
3769 ctx_sched_in(struct perf_event_context *ctx,
3770              struct perf_cpu_context *cpuctx,
3771              enum event_type_t event_type,
3772              struct task_struct *task)
3773 {
3774         int is_active = ctx->is_active;
3775         u64 now;
3776
3777         lockdep_assert_held(&ctx->lock);
3778
3779         if (likely(!ctx->nr_events))
3780                 return;
3781
3782         ctx->is_active |= (event_type | EVENT_TIME);
3783         if (ctx->task) {
3784                 if (!is_active)
3785                         cpuctx->task_ctx = ctx;
3786                 else
3787                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3788         }
3789
3790         is_active ^= ctx->is_active; /* changed bits */
3791
3792         if (is_active & EVENT_TIME) {
3793                 /* start ctx time */
3794                 now = perf_clock();
3795                 ctx->timestamp = now;
3796                 perf_cgroup_set_timestamp(task, ctx);
3797         }
3798
3799         /*
3800          * First go through the list and put on any pinned groups
3801          * in order to give them the best chance of going on.
3802          */
3803         if (is_active & EVENT_PINNED)
3804                 ctx_pinned_sched_in(ctx, cpuctx);
3805
3806         /* Then walk through the lower prio flexible groups */
3807         if (is_active & EVENT_FLEXIBLE)
3808                 ctx_flexible_sched_in(ctx, cpuctx);
3809 }
3810
3811 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3812                              enum event_type_t event_type,
3813                              struct task_struct *task)
3814 {
3815         struct perf_event_context *ctx = &cpuctx->ctx;
3816
3817         ctx_sched_in(ctx, cpuctx, event_type, task);
3818 }
3819
3820 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3821                                         struct task_struct *task)
3822 {
3823         struct perf_cpu_context *cpuctx;
3824         struct pmu *pmu;
3825
3826         cpuctx = __get_cpu_context(ctx);
3827
3828         /*
3829          * HACK: for HETEROGENEOUS the task context might have switched to a
3830          * different PMU, force (re)set the context,
3831          */
3832         pmu = ctx->pmu = cpuctx->ctx.pmu;
3833
3834         if (cpuctx->task_ctx == ctx) {
3835                 if (cpuctx->sched_cb_usage)
3836                         __perf_pmu_sched_task(cpuctx, true);
3837                 return;
3838         }
3839
3840         perf_ctx_lock(cpuctx, ctx);
3841         /*
3842          * We must check ctx->nr_events while holding ctx->lock, such
3843          * that we serialize against perf_install_in_context().
3844          */
3845         if (!ctx->nr_events)
3846                 goto unlock;
3847
3848         perf_pmu_disable(pmu);
3849         /*
3850          * We want to keep the following priority order:
3851          * cpu pinned (that don't need to move), task pinned,
3852          * cpu flexible, task flexible.
3853          *
3854          * However, if task's ctx is not carrying any pinned
3855          * events, no need to flip the cpuctx's events around.
3856          */
3857         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3858                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3859         perf_event_sched_in(cpuctx, ctx, task);
3860
3861         if (cpuctx->sched_cb_usage && pmu->sched_task)
3862                 pmu->sched_task(cpuctx->task_ctx, true);
3863
3864         perf_pmu_enable(pmu);
3865
3866 unlock:
3867         perf_ctx_unlock(cpuctx, ctx);
3868 }
3869
3870 /*
3871  * Called from scheduler to add the events of the current task
3872  * with interrupts disabled.
3873  *
3874  * We restore the event value and then enable it.
3875  *
3876  * This does not protect us against NMI, but enable()
3877  * sets the enabled bit in the control field of event _before_
3878  * accessing the event control register. If a NMI hits, then it will
3879  * keep the event running.
3880  */
3881 void __perf_event_task_sched_in(struct task_struct *prev,
3882                                 struct task_struct *task)
3883 {
3884         struct perf_event_context *ctx;
3885         int ctxn;
3886
3887         /*
3888          * If cgroup events exist on this CPU, then we need to check if we have
3889          * to switch in PMU state; cgroup event are system-wide mode only.
3890          *
3891          * Since cgroup events are CPU events, we must schedule these in before
3892          * we schedule in the task events.
3893          */
3894         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3895                 perf_cgroup_sched_in(prev, task);
3896
3897         for_each_task_context_nr(ctxn) {
3898                 ctx = task->perf_event_ctxp[ctxn];
3899                 if (likely(!ctx))
3900                         continue;
3901
3902                 perf_event_context_sched_in(ctx, task);
3903         }
3904
3905         if (atomic_read(&nr_switch_events))
3906                 perf_event_switch(task, prev, true);
3907
3908         if (__this_cpu_read(perf_sched_cb_usages))
3909                 perf_pmu_sched_task(prev, task, true);
3910 }
3911
3912 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3913 {
3914         u64 frequency = event->attr.sample_freq;
3915         u64 sec = NSEC_PER_SEC;
3916         u64 divisor, dividend;
3917
3918         int count_fls, nsec_fls, frequency_fls, sec_fls;
3919
3920         count_fls = fls64(count);
3921         nsec_fls = fls64(nsec);
3922         frequency_fls = fls64(frequency);
3923         sec_fls = 30;
3924
3925         /*
3926          * We got @count in @nsec, with a target of sample_freq HZ
3927          * the target period becomes:
3928          *
3929          *             @count * 10^9
3930          * period = -------------------
3931          *          @nsec * sample_freq
3932          *
3933          */
3934
3935         /*
3936          * Reduce accuracy by one bit such that @a and @b converge
3937          * to a similar magnitude.
3938          */
3939 #define REDUCE_FLS(a, b)                \
3940 do {                                    \
3941         if (a##_fls > b##_fls) {        \
3942                 a >>= 1;                \
3943                 a##_fls--;              \
3944         } else {                        \
3945                 b >>= 1;                \
3946                 b##_fls--;              \
3947         }                               \
3948 } while (0)
3949
3950         /*
3951          * Reduce accuracy until either term fits in a u64, then proceed with
3952          * the other, so that finally we can do a u64/u64 division.
3953          */
3954         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3955                 REDUCE_FLS(nsec, frequency);
3956                 REDUCE_FLS(sec, count);
3957         }
3958
3959         if (count_fls + sec_fls > 64) {
3960                 divisor = nsec * frequency;
3961
3962                 while (count_fls + sec_fls > 64) {
3963                         REDUCE_FLS(count, sec);
3964                         divisor >>= 1;
3965                 }
3966
3967                 dividend = count * sec;
3968         } else {
3969                 dividend = count * sec;
3970
3971                 while (nsec_fls + frequency_fls > 64) {
3972                         REDUCE_FLS(nsec, frequency);
3973                         dividend >>= 1;
3974                 }
3975
3976                 divisor = nsec * frequency;
3977         }
3978
3979         if (!divisor)
3980                 return dividend;
3981
3982         return div64_u64(dividend, divisor);
3983 }
3984
3985 static DEFINE_PER_CPU(int, perf_throttled_count);
3986 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3987
3988 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3989 {
3990         struct hw_perf_event *hwc = &event->hw;
3991         s64 period, sample_period;
3992         s64 delta;
3993
3994         period = perf_calculate_period(event, nsec, count);
3995
3996         delta = (s64)(period - hwc->sample_period);
3997         delta = (delta + 7) / 8; /* low pass filter */
3998
3999         sample_period = hwc->sample_period + delta;
4000
4001         if (!sample_period)
4002                 sample_period = 1;
4003
4004         hwc->sample_period = sample_period;
4005
4006         if (local64_read(&hwc->period_left) > 8*sample_period) {
4007                 if (disable)
4008                         event->pmu->stop(event, PERF_EF_UPDATE);
4009
4010                 local64_set(&hwc->period_left, 0);
4011
4012                 if (disable)
4013                         event->pmu->start(event, PERF_EF_RELOAD);
4014         }
4015 }
4016
4017 /*
4018  * combine freq adjustment with unthrottling to avoid two passes over the
4019  * events. At the same time, make sure, having freq events does not change
4020  * the rate of unthrottling as that would introduce bias.
4021  */
4022 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4023                                            int needs_unthr)
4024 {
4025         struct perf_event *event;
4026         struct hw_perf_event *hwc;
4027         u64 now, period = TICK_NSEC;
4028         s64 delta;
4029
4030         /*
4031          * only need to iterate over all events iff:
4032          * - context have events in frequency mode (needs freq adjust)
4033          * - there are events to unthrottle on this cpu
4034          */
4035         if (!(ctx->nr_freq || needs_unthr))
4036                 return;
4037
4038         raw_spin_lock(&ctx->lock);
4039         perf_pmu_disable(ctx->pmu);
4040
4041         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4042                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4043                         continue;
4044
4045                 if (!event_filter_match(event))
4046                         continue;
4047
4048                 perf_pmu_disable(event->pmu);
4049
4050                 hwc = &event->hw;
4051
4052                 if (hwc->interrupts == MAX_INTERRUPTS) {
4053                         hwc->interrupts = 0;
4054                         perf_log_throttle(event, 1);
4055                         event->pmu->start(event, 0);
4056                 }
4057
4058                 if (!event->attr.freq || !event->attr.sample_freq)
4059                         goto next;
4060
4061                 /*
4062                  * stop the event and update event->count
4063                  */
4064                 event->pmu->stop(event, PERF_EF_UPDATE);
4065
4066                 now = local64_read(&event->count);
4067                 delta = now - hwc->freq_count_stamp;
4068                 hwc->freq_count_stamp = now;
4069
4070                 /*
4071                  * restart the event
4072                  * reload only if value has changed
4073                  * we have stopped the event so tell that
4074                  * to perf_adjust_period() to avoid stopping it
4075                  * twice.
4076                  */
4077                 if (delta > 0)
4078                         perf_adjust_period(event, period, delta, false);
4079
4080                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4081         next:
4082                 perf_pmu_enable(event->pmu);
4083         }
4084
4085         perf_pmu_enable(ctx->pmu);
4086         raw_spin_unlock(&ctx->lock);
4087 }
4088
4089 /*
4090  * Move @event to the tail of the @ctx's elegible events.
4091  */
4092 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4093 {
4094         /*
4095          * Rotate the first entry last of non-pinned groups. Rotation might be
4096          * disabled by the inheritance code.
4097          */
4098         if (ctx->rotate_disable)
4099                 return;
4100
4101         perf_event_groups_delete(&ctx->flexible_groups, event);
4102         perf_event_groups_insert(&ctx->flexible_groups, event);
4103 }
4104
4105 /* pick an event from the flexible_groups to rotate */
4106 static inline struct perf_event *
4107 ctx_event_to_rotate(struct perf_event_context *ctx)
4108 {
4109         struct perf_event *event;
4110
4111         /* pick the first active flexible event */
4112         event = list_first_entry_or_null(&ctx->flexible_active,
4113                                          struct perf_event, active_list);
4114
4115         /* if no active flexible event, pick the first event */
4116         if (!event) {
4117                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4118                                       typeof(*event), group_node);
4119         }
4120
4121         /*
4122          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4123          * finds there are unschedulable events, it will set it again.
4124          */
4125         ctx->rotate_necessary = 0;
4126
4127         return event;
4128 }
4129
4130 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4131 {
4132         struct perf_event *cpu_event = NULL, *task_event = NULL;
4133         struct perf_event_context *task_ctx = NULL;
4134         int cpu_rotate, task_rotate;
4135
4136         /*
4137          * Since we run this from IRQ context, nobody can install new
4138          * events, thus the event count values are stable.
4139          */
4140
4141         cpu_rotate = cpuctx->ctx.rotate_necessary;
4142         task_ctx = cpuctx->task_ctx;
4143         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4144
4145         if (!(cpu_rotate || task_rotate))
4146                 return false;
4147
4148         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4149         perf_pmu_disable(cpuctx->ctx.pmu);
4150
4151         if (task_rotate)
4152                 task_event = ctx_event_to_rotate(task_ctx);
4153         if (cpu_rotate)
4154                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4155
4156         /*
4157          * As per the order given at ctx_resched() first 'pop' task flexible
4158          * and then, if needed CPU flexible.
4159          */
4160         if (task_event || (task_ctx && cpu_event))
4161                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4162         if (cpu_event)
4163                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4164
4165         if (task_event)
4166                 rotate_ctx(task_ctx, task_event);
4167         if (cpu_event)
4168                 rotate_ctx(&cpuctx->ctx, cpu_event);
4169
4170         perf_event_sched_in(cpuctx, task_ctx, current);
4171
4172         perf_pmu_enable(cpuctx->ctx.pmu);
4173         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4174
4175         return true;
4176 }
4177
4178 void perf_event_task_tick(void)
4179 {
4180         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4181         struct perf_event_context *ctx, *tmp;
4182         int throttled;
4183
4184         lockdep_assert_irqs_disabled();
4185
4186         __this_cpu_inc(perf_throttled_seq);
4187         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4188         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4189
4190         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4191                 perf_adjust_freq_unthr_context(ctx, throttled);
4192 }
4193
4194 static int event_enable_on_exec(struct perf_event *event,
4195                                 struct perf_event_context *ctx)
4196 {
4197         if (!event->attr.enable_on_exec)
4198                 return 0;
4199
4200         event->attr.enable_on_exec = 0;
4201         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4202                 return 0;
4203
4204         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4205
4206         return 1;
4207 }
4208
4209 /*
4210  * Enable all of a task's events that have been marked enable-on-exec.
4211  * This expects task == current.
4212  */
4213 static void perf_event_enable_on_exec(int ctxn)
4214 {
4215         struct perf_event_context *ctx, *clone_ctx = NULL;
4216         enum event_type_t event_type = 0;
4217         struct perf_cpu_context *cpuctx;
4218         struct perf_event *event;
4219         unsigned long flags;
4220         int enabled = 0;
4221
4222         local_irq_save(flags);
4223         ctx = current->perf_event_ctxp[ctxn];
4224         if (!ctx || !ctx->nr_events)
4225                 goto out;
4226
4227         cpuctx = __get_cpu_context(ctx);
4228         perf_ctx_lock(cpuctx, ctx);
4229         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4230         list_for_each_entry(event, &ctx->event_list, event_entry) {
4231                 enabled |= event_enable_on_exec(event, ctx);
4232                 event_type |= get_event_type(event);
4233         }
4234
4235         /*
4236          * Unclone and reschedule this context if we enabled any event.
4237          */
4238         if (enabled) {
4239                 clone_ctx = unclone_ctx(ctx);
4240                 ctx_resched(cpuctx, ctx, event_type);
4241         } else {
4242                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4243         }
4244         perf_ctx_unlock(cpuctx, ctx);
4245
4246 out:
4247         local_irq_restore(flags);
4248
4249         if (clone_ctx)
4250                 put_ctx(clone_ctx);
4251 }
4252
4253 static void perf_remove_from_owner(struct perf_event *event);
4254 static void perf_event_exit_event(struct perf_event *event,
4255                                   struct perf_event_context *ctx);
4256
4257 /*
4258  * Removes all events from the current task that have been marked
4259  * remove-on-exec, and feeds their values back to parent events.
4260  */
4261 static void perf_event_remove_on_exec(int ctxn)
4262 {
4263         struct perf_event_context *ctx, *clone_ctx = NULL;
4264         struct perf_event *event, *next;
4265         LIST_HEAD(free_list);
4266         unsigned long flags;
4267         bool modified = false;
4268
4269         ctx = perf_pin_task_context(current, ctxn);
4270         if (!ctx)
4271                 return;
4272
4273         mutex_lock(&ctx->mutex);
4274
4275         if (WARN_ON_ONCE(ctx->task != current))
4276                 goto unlock;
4277
4278         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4279                 if (!event->attr.remove_on_exec)
4280                         continue;
4281
4282                 if (!is_kernel_event(event))
4283                         perf_remove_from_owner(event);
4284
4285                 modified = true;
4286
4287                 perf_event_exit_event(event, ctx);
4288         }
4289
4290         raw_spin_lock_irqsave(&ctx->lock, flags);
4291         if (modified)
4292                 clone_ctx = unclone_ctx(ctx);
4293         --ctx->pin_count;
4294         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4295
4296 unlock:
4297         mutex_unlock(&ctx->mutex);
4298
4299         put_ctx(ctx);
4300         if (clone_ctx)
4301                 put_ctx(clone_ctx);
4302 }
4303
4304 struct perf_read_data {
4305         struct perf_event *event;
4306         bool group;
4307         int ret;
4308 };
4309
4310 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4311 {
4312         u16 local_pkg, event_pkg;
4313
4314         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4315                 int local_cpu = smp_processor_id();
4316
4317                 event_pkg = topology_physical_package_id(event_cpu);
4318                 local_pkg = topology_physical_package_id(local_cpu);
4319
4320                 if (event_pkg == local_pkg)
4321                         return local_cpu;
4322         }
4323
4324         return event_cpu;
4325 }
4326
4327 /*
4328  * Cross CPU call to read the hardware event
4329  */
4330 static void __perf_event_read(void *info)
4331 {
4332         struct perf_read_data *data = info;
4333         struct perf_event *sub, *event = data->event;
4334         struct perf_event_context *ctx = event->ctx;
4335         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4336         struct pmu *pmu = event->pmu;
4337
4338         /*
4339          * If this is a task context, we need to check whether it is
4340          * the current task context of this cpu.  If not it has been
4341          * scheduled out before the smp call arrived.  In that case
4342          * event->count would have been updated to a recent sample
4343          * when the event was scheduled out.
4344          */
4345         if (ctx->task && cpuctx->task_ctx != ctx)
4346                 return;
4347
4348         raw_spin_lock(&ctx->lock);
4349         if (ctx->is_active & EVENT_TIME) {
4350                 update_context_time(ctx);
4351                 update_cgrp_time_from_event(event);
4352         }
4353
4354         perf_event_update_time(event);
4355         if (data->group)
4356                 perf_event_update_sibling_time(event);
4357
4358         if (event->state != PERF_EVENT_STATE_ACTIVE)
4359                 goto unlock;
4360
4361         if (!data->group) {
4362                 pmu->read(event);
4363                 data->ret = 0;
4364                 goto unlock;
4365         }
4366
4367         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4368
4369         pmu->read(event);
4370
4371         for_each_sibling_event(sub, event) {
4372                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4373                         /*
4374                          * Use sibling's PMU rather than @event's since
4375                          * sibling could be on different (eg: software) PMU.
4376                          */
4377                         sub->pmu->read(sub);
4378                 }
4379         }
4380
4381         data->ret = pmu->commit_txn(pmu);
4382
4383 unlock:
4384         raw_spin_unlock(&ctx->lock);
4385 }
4386
4387 static inline u64 perf_event_count(struct perf_event *event)
4388 {
4389         return local64_read(&event->count) + atomic64_read(&event->child_count);
4390 }
4391
4392 /*
4393  * NMI-safe method to read a local event, that is an event that
4394  * is:
4395  *   - either for the current task, or for this CPU
4396  *   - does not have inherit set, for inherited task events
4397  *     will not be local and we cannot read them atomically
4398  *   - must not have a pmu::count method
4399  */
4400 int perf_event_read_local(struct perf_event *event, u64 *value,
4401                           u64 *enabled, u64 *running)
4402 {
4403         unsigned long flags;
4404         int ret = 0;
4405
4406         /*
4407          * Disabling interrupts avoids all counter scheduling (context
4408          * switches, timer based rotation and IPIs).
4409          */
4410         local_irq_save(flags);
4411
4412         /*
4413          * It must not be an event with inherit set, we cannot read
4414          * all child counters from atomic context.
4415          */
4416         if (event->attr.inherit) {
4417                 ret = -EOPNOTSUPP;
4418                 goto out;
4419         }
4420
4421         /* If this is a per-task event, it must be for current */
4422         if ((event->attach_state & PERF_ATTACH_TASK) &&
4423             event->hw.target != current) {
4424                 ret = -EINVAL;
4425                 goto out;
4426         }
4427
4428         /* If this is a per-CPU event, it must be for this CPU */
4429         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4430             event->cpu != smp_processor_id()) {
4431                 ret = -EINVAL;
4432                 goto out;
4433         }
4434
4435         /* If this is a pinned event it must be running on this CPU */
4436         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4437                 ret = -EBUSY;
4438                 goto out;
4439         }
4440
4441         /*
4442          * If the event is currently on this CPU, its either a per-task event,
4443          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4444          * oncpu == -1).
4445          */
4446         if (event->oncpu == smp_processor_id())
4447                 event->pmu->read(event);
4448
4449         *value = local64_read(&event->count);
4450         if (enabled || running) {
4451                 u64 now = event->shadow_ctx_time + perf_clock();
4452                 u64 __enabled, __running;
4453
4454                 __perf_update_times(event, now, &__enabled, &__running);
4455                 if (enabled)
4456                         *enabled = __enabled;
4457                 if (running)
4458                         *running = __running;
4459         }
4460 out:
4461         local_irq_restore(flags);
4462
4463         return ret;
4464 }
4465
4466 static int perf_event_read(struct perf_event *event, bool group)
4467 {
4468         enum perf_event_state state = READ_ONCE(event->state);
4469         int event_cpu, ret = 0;
4470
4471         /*
4472          * If event is enabled and currently active on a CPU, update the
4473          * value in the event structure:
4474          */
4475 again:
4476         if (state == PERF_EVENT_STATE_ACTIVE) {
4477                 struct perf_read_data data;
4478
4479                 /*
4480                  * Orders the ->state and ->oncpu loads such that if we see
4481                  * ACTIVE we must also see the right ->oncpu.
4482                  *
4483                  * Matches the smp_wmb() from event_sched_in().
4484                  */
4485                 smp_rmb();
4486
4487                 event_cpu = READ_ONCE(event->oncpu);
4488                 if ((unsigned)event_cpu >= nr_cpu_ids)
4489                         return 0;
4490
4491                 data = (struct perf_read_data){
4492                         .event = event,
4493                         .group = group,
4494                         .ret = 0,
4495                 };
4496
4497                 preempt_disable();
4498                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4499
4500                 /*
4501                  * Purposely ignore the smp_call_function_single() return
4502                  * value.
4503                  *
4504                  * If event_cpu isn't a valid CPU it means the event got
4505                  * scheduled out and that will have updated the event count.
4506                  *
4507                  * Therefore, either way, we'll have an up-to-date event count
4508                  * after this.
4509                  */
4510                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4511                 preempt_enable();
4512                 ret = data.ret;
4513
4514         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4515                 struct perf_event_context *ctx = event->ctx;
4516                 unsigned long flags;
4517
4518                 raw_spin_lock_irqsave(&ctx->lock, flags);
4519                 state = event->state;
4520                 if (state != PERF_EVENT_STATE_INACTIVE) {
4521                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4522                         goto again;
4523                 }
4524
4525                 /*
4526                  * May read while context is not active (e.g., thread is
4527                  * blocked), in that case we cannot update context time
4528                  */
4529                 if (ctx->is_active & EVENT_TIME) {
4530                         update_context_time(ctx);
4531                         update_cgrp_time_from_event(event);
4532                 }
4533
4534                 perf_event_update_time(event);
4535                 if (group)
4536                         perf_event_update_sibling_time(event);
4537                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4538         }
4539
4540         return ret;
4541 }
4542
4543 /*
4544  * Initialize the perf_event context in a task_struct:
4545  */
4546 static void __perf_event_init_context(struct perf_event_context *ctx)
4547 {
4548         raw_spin_lock_init(&ctx->lock);
4549         mutex_init(&ctx->mutex);
4550         INIT_LIST_HEAD(&ctx->active_ctx_list);
4551         perf_event_groups_init(&ctx->pinned_groups);
4552         perf_event_groups_init(&ctx->flexible_groups);
4553         INIT_LIST_HEAD(&ctx->event_list);
4554         INIT_LIST_HEAD(&ctx->pinned_active);
4555         INIT_LIST_HEAD(&ctx->flexible_active);
4556         refcount_set(&ctx->refcount, 1);
4557 }
4558
4559 static struct perf_event_context *
4560 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4561 {
4562         struct perf_event_context *ctx;
4563
4564         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4565         if (!ctx)
4566                 return NULL;
4567
4568         __perf_event_init_context(ctx);
4569         if (task)
4570                 ctx->task = get_task_struct(task);
4571         ctx->pmu = pmu;
4572
4573         return ctx;
4574 }
4575
4576 static struct task_struct *
4577 find_lively_task_by_vpid(pid_t vpid)
4578 {
4579         struct task_struct *task;
4580
4581         rcu_read_lock();
4582         if (!vpid)
4583                 task = current;
4584         else
4585                 task = find_task_by_vpid(vpid);
4586         if (task)
4587                 get_task_struct(task);
4588         rcu_read_unlock();
4589
4590         if (!task)
4591                 return ERR_PTR(-ESRCH);
4592
4593         return task;
4594 }
4595
4596 /*
4597  * Returns a matching context with refcount and pincount.
4598  */
4599 static struct perf_event_context *
4600 find_get_context(struct pmu *pmu, struct task_struct *task,
4601                 struct perf_event *event)
4602 {
4603         struct perf_event_context *ctx, *clone_ctx = NULL;
4604         struct perf_cpu_context *cpuctx;
4605         void *task_ctx_data = NULL;
4606         unsigned long flags;
4607         int ctxn, err;
4608         int cpu = event->cpu;
4609
4610         if (!task) {
4611                 /* Must be root to operate on a CPU event: */
4612                 err = perf_allow_cpu(&event->attr);
4613                 if (err)
4614                         return ERR_PTR(err);
4615
4616                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4617                 ctx = &cpuctx->ctx;
4618                 get_ctx(ctx);
4619                 raw_spin_lock_irqsave(&ctx->lock, flags);
4620                 ++ctx->pin_count;
4621                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4622
4623                 return ctx;
4624         }
4625
4626         err = -EINVAL;
4627         ctxn = pmu->task_ctx_nr;
4628         if (ctxn < 0)
4629                 goto errout;
4630
4631         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4632                 task_ctx_data = alloc_task_ctx_data(pmu);
4633                 if (!task_ctx_data) {
4634                         err = -ENOMEM;
4635                         goto errout;
4636                 }
4637         }
4638
4639 retry:
4640         ctx = perf_lock_task_context(task, ctxn, &flags);
4641         if (ctx) {
4642                 clone_ctx = unclone_ctx(ctx);
4643                 ++ctx->pin_count;
4644
4645                 if (task_ctx_data && !ctx->task_ctx_data) {
4646                         ctx->task_ctx_data = task_ctx_data;
4647                         task_ctx_data = NULL;
4648                 }
4649                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4650
4651                 if (clone_ctx)
4652                         put_ctx(clone_ctx);
4653         } else {
4654                 ctx = alloc_perf_context(pmu, task);
4655                 err = -ENOMEM;
4656                 if (!ctx)
4657                         goto errout;
4658
4659                 if (task_ctx_data) {
4660                         ctx->task_ctx_data = task_ctx_data;
4661                         task_ctx_data = NULL;
4662                 }
4663
4664                 err = 0;
4665                 mutex_lock(&task->perf_event_mutex);
4666                 /*
4667                  * If it has already passed perf_event_exit_task().
4668                  * we must see PF_EXITING, it takes this mutex too.
4669                  */
4670                 if (task->flags & PF_EXITING)
4671                         err = -ESRCH;
4672                 else if (task->perf_event_ctxp[ctxn])
4673                         err = -EAGAIN;
4674                 else {
4675                         get_ctx(ctx);
4676                         ++ctx->pin_count;
4677                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4678                 }
4679                 mutex_unlock(&task->perf_event_mutex);
4680
4681                 if (unlikely(err)) {
4682                         put_ctx(ctx);
4683
4684                         if (err == -EAGAIN)
4685                                 goto retry;
4686                         goto errout;
4687                 }
4688         }
4689
4690         free_task_ctx_data(pmu, task_ctx_data);
4691         return ctx;
4692
4693 errout:
4694         free_task_ctx_data(pmu, task_ctx_data);
4695         return ERR_PTR(err);
4696 }
4697
4698 static void perf_event_free_filter(struct perf_event *event);
4699 static void perf_event_free_bpf_prog(struct perf_event *event);
4700
4701 static void free_event_rcu(struct rcu_head *head)
4702 {
4703         struct perf_event *event;
4704
4705         event = container_of(head, struct perf_event, rcu_head);
4706         if (event->ns)
4707                 put_pid_ns(event->ns);
4708         perf_event_free_filter(event);
4709         kmem_cache_free(perf_event_cache, event);
4710 }
4711
4712 static void ring_buffer_attach(struct perf_event *event,
4713                                struct perf_buffer *rb);
4714
4715 static void detach_sb_event(struct perf_event *event)
4716 {
4717         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4718
4719         raw_spin_lock(&pel->lock);
4720         list_del_rcu(&event->sb_list);
4721         raw_spin_unlock(&pel->lock);
4722 }
4723
4724 static bool is_sb_event(struct perf_event *event)
4725 {
4726         struct perf_event_attr *attr = &event->attr;
4727
4728         if (event->parent)
4729                 return false;
4730
4731         if (event->attach_state & PERF_ATTACH_TASK)
4732                 return false;
4733
4734         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4735             attr->comm || attr->comm_exec ||
4736             attr->task || attr->ksymbol ||
4737             attr->context_switch || attr->text_poke ||
4738             attr->bpf_event)
4739                 return true;
4740         return false;
4741 }
4742
4743 static void unaccount_pmu_sb_event(struct perf_event *event)
4744 {
4745         if (is_sb_event(event))
4746                 detach_sb_event(event);
4747 }
4748
4749 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4750 {
4751         if (event->parent)
4752                 return;
4753
4754         if (is_cgroup_event(event))
4755                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4756 }
4757
4758 #ifdef CONFIG_NO_HZ_FULL
4759 static DEFINE_SPINLOCK(nr_freq_lock);
4760 #endif
4761
4762 static void unaccount_freq_event_nohz(void)
4763 {
4764 #ifdef CONFIG_NO_HZ_FULL
4765         spin_lock(&nr_freq_lock);
4766         if (atomic_dec_and_test(&nr_freq_events))
4767                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4768         spin_unlock(&nr_freq_lock);
4769 #endif
4770 }
4771
4772 static void unaccount_freq_event(void)
4773 {
4774         if (tick_nohz_full_enabled())
4775                 unaccount_freq_event_nohz();
4776         else
4777                 atomic_dec(&nr_freq_events);
4778 }
4779
4780 static void unaccount_event(struct perf_event *event)
4781 {
4782         bool dec = false;
4783
4784         if (event->parent)
4785                 return;
4786
4787         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4788                 dec = true;
4789         if (event->attr.mmap || event->attr.mmap_data)
4790                 atomic_dec(&nr_mmap_events);
4791         if (event->attr.build_id)
4792                 atomic_dec(&nr_build_id_events);
4793         if (event->attr.comm)
4794                 atomic_dec(&nr_comm_events);
4795         if (event->attr.namespaces)
4796                 atomic_dec(&nr_namespaces_events);
4797         if (event->attr.cgroup)
4798                 atomic_dec(&nr_cgroup_events);
4799         if (event->attr.task)
4800                 atomic_dec(&nr_task_events);
4801         if (event->attr.freq)
4802                 unaccount_freq_event();
4803         if (event->attr.context_switch) {
4804                 dec = true;
4805                 atomic_dec(&nr_switch_events);
4806         }
4807         if (is_cgroup_event(event))
4808                 dec = true;
4809         if (has_branch_stack(event))
4810                 dec = true;
4811         if (event->attr.ksymbol)
4812                 atomic_dec(&nr_ksymbol_events);
4813         if (event->attr.bpf_event)
4814                 atomic_dec(&nr_bpf_events);
4815         if (event->attr.text_poke)
4816                 atomic_dec(&nr_text_poke_events);
4817
4818         if (dec) {
4819                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4820                         schedule_delayed_work(&perf_sched_work, HZ);
4821         }
4822
4823         unaccount_event_cpu(event, event->cpu);
4824
4825         unaccount_pmu_sb_event(event);
4826 }
4827
4828 static void perf_sched_delayed(struct work_struct *work)
4829 {
4830         mutex_lock(&perf_sched_mutex);
4831         if (atomic_dec_and_test(&perf_sched_count))
4832                 static_branch_disable(&perf_sched_events);
4833         mutex_unlock(&perf_sched_mutex);
4834 }
4835
4836 /*
4837  * The following implement mutual exclusion of events on "exclusive" pmus
4838  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4839  * at a time, so we disallow creating events that might conflict, namely:
4840  *
4841  *  1) cpu-wide events in the presence of per-task events,
4842  *  2) per-task events in the presence of cpu-wide events,
4843  *  3) two matching events on the same context.
4844  *
4845  * The former two cases are handled in the allocation path (perf_event_alloc(),
4846  * _free_event()), the latter -- before the first perf_install_in_context().
4847  */
4848 static int exclusive_event_init(struct perf_event *event)
4849 {
4850         struct pmu *pmu = event->pmu;
4851
4852         if (!is_exclusive_pmu(pmu))
4853                 return 0;
4854
4855         /*
4856          * Prevent co-existence of per-task and cpu-wide events on the
4857          * same exclusive pmu.
4858          *
4859          * Negative pmu::exclusive_cnt means there are cpu-wide
4860          * events on this "exclusive" pmu, positive means there are
4861          * per-task events.
4862          *
4863          * Since this is called in perf_event_alloc() path, event::ctx
4864          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4865          * to mean "per-task event", because unlike other attach states it
4866          * never gets cleared.
4867          */
4868         if (event->attach_state & PERF_ATTACH_TASK) {
4869                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4870                         return -EBUSY;
4871         } else {
4872                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4873                         return -EBUSY;
4874         }
4875
4876         return 0;
4877 }
4878
4879 static void exclusive_event_destroy(struct perf_event *event)
4880 {
4881         struct pmu *pmu = event->pmu;
4882
4883         if (!is_exclusive_pmu(pmu))
4884                 return;
4885
4886         /* see comment in exclusive_event_init() */
4887         if (event->attach_state & PERF_ATTACH_TASK)
4888                 atomic_dec(&pmu->exclusive_cnt);
4889         else
4890                 atomic_inc(&pmu->exclusive_cnt);
4891 }
4892
4893 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4894 {
4895         if ((e1->pmu == e2->pmu) &&
4896             (e1->cpu == e2->cpu ||
4897              e1->cpu == -1 ||
4898              e2->cpu == -1))
4899                 return true;
4900         return false;
4901 }
4902
4903 static bool exclusive_event_installable(struct perf_event *event,
4904                                         struct perf_event_context *ctx)
4905 {
4906         struct perf_event *iter_event;
4907         struct pmu *pmu = event->pmu;
4908
4909         lockdep_assert_held(&ctx->mutex);
4910
4911         if (!is_exclusive_pmu(pmu))
4912                 return true;
4913
4914         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4915                 if (exclusive_event_match(iter_event, event))
4916                         return false;
4917         }
4918
4919         return true;
4920 }
4921
4922 static void perf_addr_filters_splice(struct perf_event *event,
4923                                        struct list_head *head);
4924
4925 static void _free_event(struct perf_event *event)
4926 {
4927         irq_work_sync(&event->pending);
4928
4929         unaccount_event(event);
4930
4931         security_perf_event_free(event);
4932
4933         if (event->rb) {
4934                 /*
4935                  * Can happen when we close an event with re-directed output.
4936                  *
4937                  * Since we have a 0 refcount, perf_mmap_close() will skip
4938                  * over us; possibly making our ring_buffer_put() the last.
4939                  */
4940                 mutex_lock(&event->mmap_mutex);
4941                 ring_buffer_attach(event, NULL);
4942                 mutex_unlock(&event->mmap_mutex);
4943         }
4944
4945         if (is_cgroup_event(event))
4946                 perf_detach_cgroup(event);
4947
4948         if (!event->parent) {
4949                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4950                         put_callchain_buffers();
4951         }
4952
4953         perf_event_free_bpf_prog(event);
4954         perf_addr_filters_splice(event, NULL);
4955         kfree(event->addr_filter_ranges);
4956
4957         if (event->destroy)
4958                 event->destroy(event);
4959
4960         /*
4961          * Must be after ->destroy(), due to uprobe_perf_close() using
4962          * hw.target.
4963          */
4964         if (event->hw.target)
4965                 put_task_struct(event->hw.target);
4966
4967         /*
4968          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4969          * all task references must be cleaned up.
4970          */
4971         if (event->ctx)
4972                 put_ctx(event->ctx);
4973
4974         exclusive_event_destroy(event);
4975         module_put(event->pmu->module);
4976
4977         call_rcu(&event->rcu_head, free_event_rcu);
4978 }
4979
4980 /*
4981  * Used to free events which have a known refcount of 1, such as in error paths
4982  * where the event isn't exposed yet and inherited events.
4983  */
4984 static void free_event(struct perf_event *event)
4985 {
4986         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4987                                 "unexpected event refcount: %ld; ptr=%p\n",
4988                                 atomic_long_read(&event->refcount), event)) {
4989                 /* leak to avoid use-after-free */
4990                 return;
4991         }
4992
4993         _free_event(event);
4994 }
4995
4996 /*
4997  * Remove user event from the owner task.
4998  */
4999 static void perf_remove_from_owner(struct perf_event *event)
5000 {
5001         struct task_struct *owner;
5002
5003         rcu_read_lock();
5004         /*
5005          * Matches the smp_store_release() in perf_event_exit_task(). If we
5006          * observe !owner it means the list deletion is complete and we can
5007          * indeed free this event, otherwise we need to serialize on
5008          * owner->perf_event_mutex.
5009          */
5010         owner = READ_ONCE(event->owner);
5011         if (owner) {
5012                 /*
5013                  * Since delayed_put_task_struct() also drops the last
5014                  * task reference we can safely take a new reference
5015                  * while holding the rcu_read_lock().
5016                  */
5017                 get_task_struct(owner);
5018         }
5019         rcu_read_unlock();
5020
5021         if (owner) {
5022                 /*
5023                  * If we're here through perf_event_exit_task() we're already
5024                  * holding ctx->mutex which would be an inversion wrt. the
5025                  * normal lock order.
5026                  *
5027                  * However we can safely take this lock because its the child
5028                  * ctx->mutex.
5029                  */
5030                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5031
5032                 /*
5033                  * We have to re-check the event->owner field, if it is cleared
5034                  * we raced with perf_event_exit_task(), acquiring the mutex
5035                  * ensured they're done, and we can proceed with freeing the
5036                  * event.
5037                  */
5038                 if (event->owner) {
5039                         list_del_init(&event->owner_entry);
5040                         smp_store_release(&event->owner, NULL);
5041                 }
5042                 mutex_unlock(&owner->perf_event_mutex);
5043                 put_task_struct(owner);
5044         }
5045 }
5046
5047 static void put_event(struct perf_event *event)
5048 {
5049         if (!atomic_long_dec_and_test(&event->refcount))
5050                 return;
5051
5052         _free_event(event);
5053 }
5054
5055 /*
5056  * Kill an event dead; while event:refcount will preserve the event
5057  * object, it will not preserve its functionality. Once the last 'user'
5058  * gives up the object, we'll destroy the thing.
5059  */
5060 int perf_event_release_kernel(struct perf_event *event)
5061 {
5062         struct perf_event_context *ctx = event->ctx;
5063         struct perf_event *child, *tmp;
5064         LIST_HEAD(free_list);
5065
5066         /*
5067          * If we got here through err_file: fput(event_file); we will not have
5068          * attached to a context yet.
5069          */
5070         if (!ctx) {
5071                 WARN_ON_ONCE(event->attach_state &
5072                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5073                 goto no_ctx;
5074         }
5075
5076         if (!is_kernel_event(event))
5077                 perf_remove_from_owner(event);
5078
5079         ctx = perf_event_ctx_lock(event);
5080         WARN_ON_ONCE(ctx->parent_ctx);
5081         perf_remove_from_context(event, DETACH_GROUP);
5082
5083         raw_spin_lock_irq(&ctx->lock);
5084         /*
5085          * Mark this event as STATE_DEAD, there is no external reference to it
5086          * anymore.
5087          *
5088          * Anybody acquiring event->child_mutex after the below loop _must_
5089          * also see this, most importantly inherit_event() which will avoid
5090          * placing more children on the list.
5091          *
5092          * Thus this guarantees that we will in fact observe and kill _ALL_
5093          * child events.
5094          */
5095         event->state = PERF_EVENT_STATE_DEAD;
5096         raw_spin_unlock_irq(&ctx->lock);
5097
5098         perf_event_ctx_unlock(event, ctx);
5099
5100 again:
5101         mutex_lock(&event->child_mutex);
5102         list_for_each_entry(child, &event->child_list, child_list) {
5103
5104                 /*
5105                  * Cannot change, child events are not migrated, see the
5106                  * comment with perf_event_ctx_lock_nested().
5107                  */
5108                 ctx = READ_ONCE(child->ctx);
5109                 /*
5110                  * Since child_mutex nests inside ctx::mutex, we must jump
5111                  * through hoops. We start by grabbing a reference on the ctx.
5112                  *
5113                  * Since the event cannot get freed while we hold the
5114                  * child_mutex, the context must also exist and have a !0
5115                  * reference count.
5116                  */
5117                 get_ctx(ctx);
5118
5119                 /*
5120                  * Now that we have a ctx ref, we can drop child_mutex, and
5121                  * acquire ctx::mutex without fear of it going away. Then we
5122                  * can re-acquire child_mutex.
5123                  */
5124                 mutex_unlock(&event->child_mutex);
5125                 mutex_lock(&ctx->mutex);
5126                 mutex_lock(&event->child_mutex);
5127
5128                 /*
5129                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5130                  * state, if child is still the first entry, it didn't get freed
5131                  * and we can continue doing so.
5132                  */
5133                 tmp = list_first_entry_or_null(&event->child_list,
5134                                                struct perf_event, child_list);
5135                 if (tmp == child) {
5136                         perf_remove_from_context(child, DETACH_GROUP);
5137                         list_move(&child->child_list, &free_list);
5138                         /*
5139                          * This matches the refcount bump in inherit_event();
5140                          * this can't be the last reference.
5141                          */
5142                         put_event(event);
5143                 }
5144
5145                 mutex_unlock(&event->child_mutex);
5146                 mutex_unlock(&ctx->mutex);
5147                 put_ctx(ctx);
5148                 goto again;
5149         }
5150         mutex_unlock(&event->child_mutex);
5151
5152         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5153                 void *var = &child->ctx->refcount;
5154
5155                 list_del(&child->child_list);
5156                 free_event(child);
5157
5158                 /*
5159                  * Wake any perf_event_free_task() waiting for this event to be
5160                  * freed.
5161                  */
5162                 smp_mb(); /* pairs with wait_var_event() */
5163                 wake_up_var(var);
5164         }
5165
5166 no_ctx:
5167         put_event(event); /* Must be the 'last' reference */
5168         return 0;
5169 }
5170 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5171
5172 /*
5173  * Called when the last reference to the file is gone.
5174  */
5175 static int perf_release(struct inode *inode, struct file *file)
5176 {
5177         perf_event_release_kernel(file->private_data);
5178         return 0;
5179 }
5180
5181 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5182 {
5183         struct perf_event *child;
5184         u64 total = 0;
5185
5186         *enabled = 0;
5187         *running = 0;
5188
5189         mutex_lock(&event->child_mutex);
5190
5191         (void)perf_event_read(event, false);
5192         total += perf_event_count(event);
5193
5194         *enabled += event->total_time_enabled +
5195                         atomic64_read(&event->child_total_time_enabled);
5196         *running += event->total_time_running +
5197                         atomic64_read(&event->child_total_time_running);
5198
5199         list_for_each_entry(child, &event->child_list, child_list) {
5200                 (void)perf_event_read(child, false);
5201                 total += perf_event_count(child);
5202                 *enabled += child->total_time_enabled;
5203                 *running += child->total_time_running;
5204         }
5205         mutex_unlock(&event->child_mutex);
5206
5207         return total;
5208 }
5209
5210 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5211 {
5212         struct perf_event_context *ctx;
5213         u64 count;
5214
5215         ctx = perf_event_ctx_lock(event);
5216         count = __perf_event_read_value(event, enabled, running);
5217         perf_event_ctx_unlock(event, ctx);
5218
5219         return count;
5220 }
5221 EXPORT_SYMBOL_GPL(perf_event_read_value);
5222
5223 static int __perf_read_group_add(struct perf_event *leader,
5224                                         u64 read_format, u64 *values)
5225 {
5226         struct perf_event_context *ctx = leader->ctx;
5227         struct perf_event *sub;
5228         unsigned long flags;
5229         int n = 1; /* skip @nr */
5230         int ret;
5231
5232         ret = perf_event_read(leader, true);
5233         if (ret)
5234                 return ret;
5235
5236         raw_spin_lock_irqsave(&ctx->lock, flags);
5237
5238         /*
5239          * Since we co-schedule groups, {enabled,running} times of siblings
5240          * will be identical to those of the leader, so we only publish one
5241          * set.
5242          */
5243         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5244                 values[n++] += leader->total_time_enabled +
5245                         atomic64_read(&leader->child_total_time_enabled);
5246         }
5247
5248         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5249                 values[n++] += leader->total_time_running +
5250                         atomic64_read(&leader->child_total_time_running);
5251         }
5252
5253         /*
5254          * Write {count,id} tuples for every sibling.
5255          */
5256         values[n++] += perf_event_count(leader);
5257         if (read_format & PERF_FORMAT_ID)
5258                 values[n++] = primary_event_id(leader);
5259
5260         for_each_sibling_event(sub, leader) {
5261                 values[n++] += perf_event_count(sub);
5262                 if (read_format & PERF_FORMAT_ID)
5263                         values[n++] = primary_event_id(sub);
5264         }
5265
5266         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5267         return 0;
5268 }
5269
5270 static int perf_read_group(struct perf_event *event,
5271                                    u64 read_format, char __user *buf)
5272 {
5273         struct perf_event *leader = event->group_leader, *child;
5274         struct perf_event_context *ctx = leader->ctx;
5275         int ret;
5276         u64 *values;
5277
5278         lockdep_assert_held(&ctx->mutex);
5279
5280         values = kzalloc(event->read_size, GFP_KERNEL);
5281         if (!values)
5282                 return -ENOMEM;
5283
5284         values[0] = 1 + leader->nr_siblings;
5285
5286         /*
5287          * By locking the child_mutex of the leader we effectively
5288          * lock the child list of all siblings.. XXX explain how.
5289          */
5290         mutex_lock(&leader->child_mutex);
5291
5292         ret = __perf_read_group_add(leader, read_format, values);
5293         if (ret)
5294                 goto unlock;
5295
5296         list_for_each_entry(child, &leader->child_list, child_list) {
5297                 ret = __perf_read_group_add(child, read_format, values);
5298                 if (ret)
5299                         goto unlock;
5300         }
5301
5302         mutex_unlock(&leader->child_mutex);
5303
5304         ret = event->read_size;
5305         if (copy_to_user(buf, values, event->read_size))
5306                 ret = -EFAULT;
5307         goto out;
5308
5309 unlock:
5310         mutex_unlock(&leader->child_mutex);
5311 out:
5312         kfree(values);
5313         return ret;
5314 }
5315
5316 static int perf_read_one(struct perf_event *event,
5317                                  u64 read_format, char __user *buf)
5318 {
5319         u64 enabled, running;
5320         u64 values[4];
5321         int n = 0;
5322
5323         values[n++] = __perf_event_read_value(event, &enabled, &running);
5324         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5325                 values[n++] = enabled;
5326         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5327                 values[n++] = running;
5328         if (read_format & PERF_FORMAT_ID)
5329                 values[n++] = primary_event_id(event);
5330
5331         if (copy_to_user(buf, values, n * sizeof(u64)))
5332                 return -EFAULT;
5333
5334         return n * sizeof(u64);
5335 }
5336
5337 static bool is_event_hup(struct perf_event *event)
5338 {
5339         bool no_children;
5340
5341         if (event->state > PERF_EVENT_STATE_EXIT)
5342                 return false;
5343
5344         mutex_lock(&event->child_mutex);
5345         no_children = list_empty(&event->child_list);
5346         mutex_unlock(&event->child_mutex);
5347         return no_children;
5348 }
5349
5350 /*
5351  * Read the performance event - simple non blocking version for now
5352  */
5353 static ssize_t
5354 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5355 {
5356         u64 read_format = event->attr.read_format;
5357         int ret;
5358
5359         /*
5360          * Return end-of-file for a read on an event that is in
5361          * error state (i.e. because it was pinned but it couldn't be
5362          * scheduled on to the CPU at some point).
5363          */
5364         if (event->state == PERF_EVENT_STATE_ERROR)
5365                 return 0;
5366
5367         if (count < event->read_size)
5368                 return -ENOSPC;
5369
5370         WARN_ON_ONCE(event->ctx->parent_ctx);
5371         if (read_format & PERF_FORMAT_GROUP)
5372                 ret = perf_read_group(event, read_format, buf);
5373         else
5374                 ret = perf_read_one(event, read_format, buf);
5375
5376         return ret;
5377 }
5378
5379 static ssize_t
5380 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5381 {
5382         struct perf_event *event = file->private_data;
5383         struct perf_event_context *ctx;
5384         int ret;
5385
5386         ret = security_perf_event_read(event);
5387         if (ret)
5388                 return ret;
5389
5390         ctx = perf_event_ctx_lock(event);
5391         ret = __perf_read(event, buf, count);
5392         perf_event_ctx_unlock(event, ctx);
5393
5394         return ret;
5395 }
5396
5397 static __poll_t perf_poll(struct file *file, poll_table *wait)
5398 {
5399         struct perf_event *event = file->private_data;
5400         struct perf_buffer *rb;
5401         __poll_t events = EPOLLHUP;
5402
5403         poll_wait(file, &event->waitq, wait);
5404
5405         if (is_event_hup(event))
5406                 return events;
5407
5408         /*
5409          * Pin the event->rb by taking event->mmap_mutex; otherwise
5410          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5411          */
5412         mutex_lock(&event->mmap_mutex);
5413         rb = event->rb;
5414         if (rb)
5415                 events = atomic_xchg(&rb->poll, 0);
5416         mutex_unlock(&event->mmap_mutex);
5417         return events;
5418 }
5419
5420 static void _perf_event_reset(struct perf_event *event)
5421 {
5422         (void)perf_event_read(event, false);
5423         local64_set(&event->count, 0);
5424         perf_event_update_userpage(event);
5425 }
5426
5427 /* Assume it's not an event with inherit set. */
5428 u64 perf_event_pause(struct perf_event *event, bool reset)
5429 {
5430         struct perf_event_context *ctx;
5431         u64 count;
5432
5433         ctx = perf_event_ctx_lock(event);
5434         WARN_ON_ONCE(event->attr.inherit);
5435         _perf_event_disable(event);
5436         count = local64_read(&event->count);
5437         if (reset)
5438                 local64_set(&event->count, 0);
5439         perf_event_ctx_unlock(event, ctx);
5440
5441         return count;
5442 }
5443 EXPORT_SYMBOL_GPL(perf_event_pause);
5444
5445 /*
5446  * Holding the top-level event's child_mutex means that any
5447  * descendant process that has inherited this event will block
5448  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5449  * task existence requirements of perf_event_enable/disable.
5450  */
5451 static void perf_event_for_each_child(struct perf_event *event,
5452                                         void (*func)(struct perf_event *))
5453 {
5454         struct perf_event *child;
5455
5456         WARN_ON_ONCE(event->ctx->parent_ctx);
5457
5458         mutex_lock(&event->child_mutex);
5459         func(event);
5460         list_for_each_entry(child, &event->child_list, child_list)
5461                 func(child);
5462         mutex_unlock(&event->child_mutex);
5463 }
5464
5465 static void perf_event_for_each(struct perf_event *event,
5466                                   void (*func)(struct perf_event *))
5467 {
5468         struct perf_event_context *ctx = event->ctx;
5469         struct perf_event *sibling;
5470
5471         lockdep_assert_held(&ctx->mutex);
5472
5473         event = event->group_leader;
5474
5475         perf_event_for_each_child(event, func);
5476         for_each_sibling_event(sibling, event)
5477                 perf_event_for_each_child(sibling, func);
5478 }
5479
5480 static void __perf_event_period(struct perf_event *event,
5481                                 struct perf_cpu_context *cpuctx,
5482                                 struct perf_event_context *ctx,
5483                                 void *info)
5484 {
5485         u64 value = *((u64 *)info);
5486         bool active;
5487
5488         if (event->attr.freq) {
5489                 event->attr.sample_freq = value;
5490         } else {
5491                 event->attr.sample_period = value;
5492                 event->hw.sample_period = value;
5493         }
5494
5495         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5496         if (active) {
5497                 perf_pmu_disable(ctx->pmu);
5498                 /*
5499                  * We could be throttled; unthrottle now to avoid the tick
5500                  * trying to unthrottle while we already re-started the event.
5501                  */
5502                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5503                         event->hw.interrupts = 0;
5504                         perf_log_throttle(event, 1);
5505                 }
5506                 event->pmu->stop(event, PERF_EF_UPDATE);
5507         }
5508
5509         local64_set(&event->hw.period_left, 0);
5510
5511         if (active) {
5512                 event->pmu->start(event, PERF_EF_RELOAD);
5513                 perf_pmu_enable(ctx->pmu);
5514         }
5515 }
5516
5517 static int perf_event_check_period(struct perf_event *event, u64 value)
5518 {
5519         return event->pmu->check_period(event, value);
5520 }
5521
5522 static int _perf_event_period(struct perf_event *event, u64 value)
5523 {
5524         if (!is_sampling_event(event))
5525                 return -EINVAL;
5526
5527         if (!value)
5528                 return -EINVAL;
5529
5530         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5531                 return -EINVAL;
5532
5533         if (perf_event_check_period(event, value))
5534                 return -EINVAL;
5535
5536         if (!event->attr.freq && (value & (1ULL << 63)))
5537                 return -EINVAL;
5538
5539         event_function_call(event, __perf_event_period, &value);
5540
5541         return 0;
5542 }
5543
5544 int perf_event_period(struct perf_event *event, u64 value)
5545 {
5546         struct perf_event_context *ctx;
5547         int ret;
5548
5549         ctx = perf_event_ctx_lock(event);
5550         ret = _perf_event_period(event, value);
5551         perf_event_ctx_unlock(event, ctx);
5552
5553         return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(perf_event_period);
5556
5557 static const struct file_operations perf_fops;
5558
5559 static inline int perf_fget_light(int fd, struct fd *p)
5560 {
5561         struct fd f = fdget(fd);
5562         if (!f.file)
5563                 return -EBADF;
5564
5565         if (f.file->f_op != &perf_fops) {
5566                 fdput(f);
5567                 return -EBADF;
5568         }
5569         *p = f;
5570         return 0;
5571 }
5572
5573 static int perf_event_set_output(struct perf_event *event,
5574                                  struct perf_event *output_event);
5575 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5576 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5577 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5578                           struct perf_event_attr *attr);
5579
5580 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5581 {
5582         void (*func)(struct perf_event *);
5583         u32 flags = arg;
5584
5585         switch (cmd) {
5586         case PERF_EVENT_IOC_ENABLE:
5587                 func = _perf_event_enable;
5588                 break;
5589         case PERF_EVENT_IOC_DISABLE:
5590                 func = _perf_event_disable;
5591                 break;
5592         case PERF_EVENT_IOC_RESET:
5593                 func = _perf_event_reset;
5594                 break;
5595
5596         case PERF_EVENT_IOC_REFRESH:
5597                 return _perf_event_refresh(event, arg);
5598
5599         case PERF_EVENT_IOC_PERIOD:
5600         {
5601                 u64 value;
5602
5603                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5604                         return -EFAULT;
5605
5606                 return _perf_event_period(event, value);
5607         }
5608         case PERF_EVENT_IOC_ID:
5609         {
5610                 u64 id = primary_event_id(event);
5611
5612                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5613                         return -EFAULT;
5614                 return 0;
5615         }
5616
5617         case PERF_EVENT_IOC_SET_OUTPUT:
5618         {
5619                 int ret;
5620                 if (arg != -1) {
5621                         struct perf_event *output_event;
5622                         struct fd output;
5623                         ret = perf_fget_light(arg, &output);
5624                         if (ret)
5625                                 return ret;
5626                         output_event = output.file->private_data;
5627                         ret = perf_event_set_output(event, output_event);
5628                         fdput(output);
5629                 } else {
5630                         ret = perf_event_set_output(event, NULL);
5631                 }
5632                 return ret;
5633         }
5634
5635         case PERF_EVENT_IOC_SET_FILTER:
5636                 return perf_event_set_filter(event, (void __user *)arg);
5637
5638         case PERF_EVENT_IOC_SET_BPF:
5639                 return perf_event_set_bpf_prog(event, arg);
5640
5641         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5642                 struct perf_buffer *rb;
5643
5644                 rcu_read_lock();
5645                 rb = rcu_dereference(event->rb);
5646                 if (!rb || !rb->nr_pages) {
5647                         rcu_read_unlock();
5648                         return -EINVAL;
5649                 }
5650                 rb_toggle_paused(rb, !!arg);
5651                 rcu_read_unlock();
5652                 return 0;
5653         }
5654
5655         case PERF_EVENT_IOC_QUERY_BPF:
5656                 return perf_event_query_prog_array(event, (void __user *)arg);
5657
5658         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5659                 struct perf_event_attr new_attr;
5660                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5661                                          &new_attr);
5662
5663                 if (err)
5664                         return err;
5665
5666                 return perf_event_modify_attr(event,  &new_attr);
5667         }
5668         default:
5669                 return -ENOTTY;
5670         }
5671
5672         if (flags & PERF_IOC_FLAG_GROUP)
5673                 perf_event_for_each(event, func);
5674         else
5675                 perf_event_for_each_child(event, func);
5676
5677         return 0;
5678 }
5679
5680 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5681 {
5682         struct perf_event *event = file->private_data;
5683         struct perf_event_context *ctx;
5684         long ret;
5685
5686         /* Treat ioctl like writes as it is likely a mutating operation. */
5687         ret = security_perf_event_write(event);
5688         if (ret)
5689                 return ret;
5690
5691         ctx = perf_event_ctx_lock(event);
5692         ret = _perf_ioctl(event, cmd, arg);
5693         perf_event_ctx_unlock(event, ctx);
5694
5695         return ret;
5696 }
5697
5698 #ifdef CONFIG_COMPAT
5699 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5700                                 unsigned long arg)
5701 {
5702         switch (_IOC_NR(cmd)) {
5703         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5704         case _IOC_NR(PERF_EVENT_IOC_ID):
5705         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5706         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5707                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5708                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5709                         cmd &= ~IOCSIZE_MASK;
5710                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5711                 }
5712                 break;
5713         }
5714         return perf_ioctl(file, cmd, arg);
5715 }
5716 #else
5717 # define perf_compat_ioctl NULL
5718 #endif
5719
5720 int perf_event_task_enable(void)
5721 {
5722         struct perf_event_context *ctx;
5723         struct perf_event *event;
5724
5725         mutex_lock(&current->perf_event_mutex);
5726         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5727                 ctx = perf_event_ctx_lock(event);
5728                 perf_event_for_each_child(event, _perf_event_enable);
5729                 perf_event_ctx_unlock(event, ctx);
5730         }
5731         mutex_unlock(&current->perf_event_mutex);
5732
5733         return 0;
5734 }
5735
5736 int perf_event_task_disable(void)
5737 {
5738         struct perf_event_context *ctx;
5739         struct perf_event *event;
5740
5741         mutex_lock(&current->perf_event_mutex);
5742         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5743                 ctx = perf_event_ctx_lock(event);
5744                 perf_event_for_each_child(event, _perf_event_disable);
5745                 perf_event_ctx_unlock(event, ctx);
5746         }
5747         mutex_unlock(&current->perf_event_mutex);
5748
5749         return 0;
5750 }
5751
5752 static int perf_event_index(struct perf_event *event)
5753 {
5754         if (event->hw.state & PERF_HES_STOPPED)
5755                 return 0;
5756
5757         if (event->state != PERF_EVENT_STATE_ACTIVE)
5758                 return 0;
5759
5760         return event->pmu->event_idx(event);
5761 }
5762
5763 static void calc_timer_values(struct perf_event *event,
5764                                 u64 *now,
5765                                 u64 *enabled,
5766                                 u64 *running)
5767 {
5768         u64 ctx_time;
5769
5770         *now = perf_clock();
5771         ctx_time = event->shadow_ctx_time + *now;
5772         __perf_update_times(event, ctx_time, enabled, running);
5773 }
5774
5775 static void perf_event_init_userpage(struct perf_event *event)
5776 {
5777         struct perf_event_mmap_page *userpg;
5778         struct perf_buffer *rb;
5779
5780         rcu_read_lock();
5781         rb = rcu_dereference(event->rb);
5782         if (!rb)
5783                 goto unlock;
5784
5785         userpg = rb->user_page;
5786
5787         /* Allow new userspace to detect that bit 0 is deprecated */
5788         userpg->cap_bit0_is_deprecated = 1;
5789         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5790         userpg->data_offset = PAGE_SIZE;
5791         userpg->data_size = perf_data_size(rb);
5792
5793 unlock:
5794         rcu_read_unlock();
5795 }
5796
5797 void __weak arch_perf_update_userpage(
5798         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5799 {
5800 }
5801
5802 /*
5803  * Callers need to ensure there can be no nesting of this function, otherwise
5804  * the seqlock logic goes bad. We can not serialize this because the arch
5805  * code calls this from NMI context.
5806  */
5807 void perf_event_update_userpage(struct perf_event *event)
5808 {
5809         struct perf_event_mmap_page *userpg;
5810         struct perf_buffer *rb;
5811         u64 enabled, running, now;
5812
5813         rcu_read_lock();
5814         rb = rcu_dereference(event->rb);
5815         if (!rb)
5816                 goto unlock;
5817
5818         /*
5819          * compute total_time_enabled, total_time_running
5820          * based on snapshot values taken when the event
5821          * was last scheduled in.
5822          *
5823          * we cannot simply called update_context_time()
5824          * because of locking issue as we can be called in
5825          * NMI context
5826          */
5827         calc_timer_values(event, &now, &enabled, &running);
5828
5829         userpg = rb->user_page;
5830         /*
5831          * Disable preemption to guarantee consistent time stamps are stored to
5832          * the user page.
5833          */
5834         preempt_disable();
5835         ++userpg->lock;
5836         barrier();
5837         userpg->index = perf_event_index(event);
5838         userpg->offset = perf_event_count(event);
5839         if (userpg->index)
5840                 userpg->offset -= local64_read(&event->hw.prev_count);
5841
5842         userpg->time_enabled = enabled +
5843                         atomic64_read(&event->child_total_time_enabled);
5844
5845         userpg->time_running = running +
5846                         atomic64_read(&event->child_total_time_running);
5847
5848         arch_perf_update_userpage(event, userpg, now);
5849
5850         barrier();
5851         ++userpg->lock;
5852         preempt_enable();
5853 unlock:
5854         rcu_read_unlock();
5855 }
5856 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5857
5858 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5859 {
5860         struct perf_event *event = vmf->vma->vm_file->private_data;
5861         struct perf_buffer *rb;
5862         vm_fault_t ret = VM_FAULT_SIGBUS;
5863
5864         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5865                 if (vmf->pgoff == 0)
5866                         ret = 0;
5867                 return ret;
5868         }
5869
5870         rcu_read_lock();
5871         rb = rcu_dereference(event->rb);
5872         if (!rb)
5873                 goto unlock;
5874
5875         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5876                 goto unlock;
5877
5878         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5879         if (!vmf->page)
5880                 goto unlock;
5881
5882         get_page(vmf->page);
5883         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5884         vmf->page->index   = vmf->pgoff;
5885
5886         ret = 0;
5887 unlock:
5888         rcu_read_unlock();
5889
5890         return ret;
5891 }
5892
5893 static void ring_buffer_attach(struct perf_event *event,
5894                                struct perf_buffer *rb)
5895 {
5896         struct perf_buffer *old_rb = NULL;
5897         unsigned long flags;
5898
5899         if (event->rb) {
5900                 /*
5901                  * Should be impossible, we set this when removing
5902                  * event->rb_entry and wait/clear when adding event->rb_entry.
5903                  */
5904                 WARN_ON_ONCE(event->rcu_pending);
5905
5906                 old_rb = event->rb;
5907                 spin_lock_irqsave(&old_rb->event_lock, flags);
5908                 list_del_rcu(&event->rb_entry);
5909                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5910
5911                 event->rcu_batches = get_state_synchronize_rcu();
5912                 event->rcu_pending = 1;
5913         }
5914
5915         if (rb) {
5916                 if (event->rcu_pending) {
5917                         cond_synchronize_rcu(event->rcu_batches);
5918                         event->rcu_pending = 0;
5919                 }
5920
5921                 spin_lock_irqsave(&rb->event_lock, flags);
5922                 list_add_rcu(&event->rb_entry, &rb->event_list);
5923                 spin_unlock_irqrestore(&rb->event_lock, flags);
5924         }
5925
5926         /*
5927          * Avoid racing with perf_mmap_close(AUX): stop the event
5928          * before swizzling the event::rb pointer; if it's getting
5929          * unmapped, its aux_mmap_count will be 0 and it won't
5930          * restart. See the comment in __perf_pmu_output_stop().
5931          *
5932          * Data will inevitably be lost when set_output is done in
5933          * mid-air, but then again, whoever does it like this is
5934          * not in for the data anyway.
5935          */
5936         if (has_aux(event))
5937                 perf_event_stop(event, 0);
5938
5939         rcu_assign_pointer(event->rb, rb);
5940
5941         if (old_rb) {
5942                 ring_buffer_put(old_rb);
5943                 /*
5944                  * Since we detached before setting the new rb, so that we
5945                  * could attach the new rb, we could have missed a wakeup.
5946                  * Provide it now.
5947                  */
5948                 wake_up_all(&event->waitq);
5949         }
5950 }
5951
5952 static void ring_buffer_wakeup(struct perf_event *event)
5953 {
5954         struct perf_buffer *rb;
5955
5956         rcu_read_lock();
5957         rb = rcu_dereference(event->rb);
5958         if (rb) {
5959                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5960                         wake_up_all(&event->waitq);
5961         }
5962         rcu_read_unlock();
5963 }
5964
5965 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5966 {
5967         struct perf_buffer *rb;
5968
5969         rcu_read_lock();
5970         rb = rcu_dereference(event->rb);
5971         if (rb) {
5972                 if (!refcount_inc_not_zero(&rb->refcount))
5973                         rb = NULL;
5974         }
5975         rcu_read_unlock();
5976
5977         return rb;
5978 }
5979
5980 void ring_buffer_put(struct perf_buffer *rb)
5981 {
5982         if (!refcount_dec_and_test(&rb->refcount))
5983                 return;
5984
5985         WARN_ON_ONCE(!list_empty(&rb->event_list));
5986
5987         call_rcu(&rb->rcu_head, rb_free_rcu);
5988 }
5989
5990 static void perf_mmap_open(struct vm_area_struct *vma)
5991 {
5992         struct perf_event *event = vma->vm_file->private_data;
5993
5994         atomic_inc(&event->mmap_count);
5995         atomic_inc(&event->rb->mmap_count);
5996
5997         if (vma->vm_pgoff)
5998                 atomic_inc(&event->rb->aux_mmap_count);
5999
6000         if (event->pmu->event_mapped)
6001                 event->pmu->event_mapped(event, vma->vm_mm);
6002 }
6003
6004 static void perf_pmu_output_stop(struct perf_event *event);
6005
6006 /*
6007  * A buffer can be mmap()ed multiple times; either directly through the same
6008  * event, or through other events by use of perf_event_set_output().
6009  *
6010  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6011  * the buffer here, where we still have a VM context. This means we need
6012  * to detach all events redirecting to us.
6013  */
6014 static void perf_mmap_close(struct vm_area_struct *vma)
6015 {
6016         struct perf_event *event = vma->vm_file->private_data;
6017         struct perf_buffer *rb = ring_buffer_get(event);
6018         struct user_struct *mmap_user = rb->mmap_user;
6019         int mmap_locked = rb->mmap_locked;
6020         unsigned long size = perf_data_size(rb);
6021         bool detach_rest = false;
6022
6023         if (event->pmu->event_unmapped)
6024                 event->pmu->event_unmapped(event, vma->vm_mm);
6025
6026         /*
6027          * rb->aux_mmap_count will always drop before rb->mmap_count and
6028          * event->mmap_count, so it is ok to use event->mmap_mutex to
6029          * serialize with perf_mmap here.
6030          */
6031         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6032             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6033                 /*
6034                  * Stop all AUX events that are writing to this buffer,
6035                  * so that we can free its AUX pages and corresponding PMU
6036                  * data. Note that after rb::aux_mmap_count dropped to zero,
6037                  * they won't start any more (see perf_aux_output_begin()).
6038                  */
6039                 perf_pmu_output_stop(event);
6040
6041                 /* now it's safe to free the pages */
6042                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6043                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6044
6045                 /* this has to be the last one */
6046                 rb_free_aux(rb);
6047                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6048
6049                 mutex_unlock(&event->mmap_mutex);
6050         }
6051
6052         if (atomic_dec_and_test(&rb->mmap_count))
6053                 detach_rest = true;
6054
6055         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6056                 goto out_put;
6057
6058         ring_buffer_attach(event, NULL);
6059         mutex_unlock(&event->mmap_mutex);
6060
6061         /* If there's still other mmap()s of this buffer, we're done. */
6062         if (!detach_rest)
6063                 goto out_put;
6064
6065         /*
6066          * No other mmap()s, detach from all other events that might redirect
6067          * into the now unreachable buffer. Somewhat complicated by the
6068          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6069          */
6070 again:
6071         rcu_read_lock();
6072         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6073                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6074                         /*
6075                          * This event is en-route to free_event() which will
6076                          * detach it and remove it from the list.
6077                          */
6078                         continue;
6079                 }
6080                 rcu_read_unlock();
6081
6082                 mutex_lock(&event->mmap_mutex);
6083                 /*
6084                  * Check we didn't race with perf_event_set_output() which can
6085                  * swizzle the rb from under us while we were waiting to
6086                  * acquire mmap_mutex.
6087                  *
6088                  * If we find a different rb; ignore this event, a next
6089                  * iteration will no longer find it on the list. We have to
6090                  * still restart the iteration to make sure we're not now
6091                  * iterating the wrong list.
6092                  */
6093                 if (event->rb == rb)
6094                         ring_buffer_attach(event, NULL);
6095
6096                 mutex_unlock(&event->mmap_mutex);
6097                 put_event(event);
6098
6099                 /*
6100                  * Restart the iteration; either we're on the wrong list or
6101                  * destroyed its integrity by doing a deletion.
6102                  */
6103                 goto again;
6104         }
6105         rcu_read_unlock();
6106
6107         /*
6108          * It could be there's still a few 0-ref events on the list; they'll
6109          * get cleaned up by free_event() -- they'll also still have their
6110          * ref on the rb and will free it whenever they are done with it.
6111          *
6112          * Aside from that, this buffer is 'fully' detached and unmapped,
6113          * undo the VM accounting.
6114          */
6115
6116         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6117                         &mmap_user->locked_vm);
6118         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6119         free_uid(mmap_user);
6120
6121 out_put:
6122         ring_buffer_put(rb); /* could be last */
6123 }
6124
6125 static const struct vm_operations_struct perf_mmap_vmops = {
6126         .open           = perf_mmap_open,
6127         .close          = perf_mmap_close, /* non mergeable */
6128         .fault          = perf_mmap_fault,
6129         .page_mkwrite   = perf_mmap_fault,
6130 };
6131
6132 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6133 {
6134         struct perf_event *event = file->private_data;
6135         unsigned long user_locked, user_lock_limit;
6136         struct user_struct *user = current_user();
6137         struct perf_buffer *rb = NULL;
6138         unsigned long locked, lock_limit;
6139         unsigned long vma_size;
6140         unsigned long nr_pages;
6141         long user_extra = 0, extra = 0;
6142         int ret = 0, flags = 0;
6143
6144         /*
6145          * Don't allow mmap() of inherited per-task counters. This would
6146          * create a performance issue due to all children writing to the
6147          * same rb.
6148          */
6149         if (event->cpu == -1 && event->attr.inherit)
6150                 return -EINVAL;
6151
6152         if (!(vma->vm_flags & VM_SHARED))
6153                 return -EINVAL;
6154
6155         ret = security_perf_event_read(event);
6156         if (ret)
6157                 return ret;
6158
6159         vma_size = vma->vm_end - vma->vm_start;
6160
6161         if (vma->vm_pgoff == 0) {
6162                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6163         } else {
6164                 /*
6165                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6166                  * mapped, all subsequent mappings should have the same size
6167                  * and offset. Must be above the normal perf buffer.
6168                  */
6169                 u64 aux_offset, aux_size;
6170
6171                 if (!event->rb)
6172                         return -EINVAL;
6173
6174                 nr_pages = vma_size / PAGE_SIZE;
6175
6176                 mutex_lock(&event->mmap_mutex);
6177                 ret = -EINVAL;
6178
6179                 rb = event->rb;
6180                 if (!rb)
6181                         goto aux_unlock;
6182
6183                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6184                 aux_size = READ_ONCE(rb->user_page->aux_size);
6185
6186                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6187                         goto aux_unlock;
6188
6189                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6190                         goto aux_unlock;
6191
6192                 /* already mapped with a different offset */
6193                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6194                         goto aux_unlock;
6195
6196                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6197                         goto aux_unlock;
6198
6199                 /* already mapped with a different size */
6200                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6201                         goto aux_unlock;
6202
6203                 if (!is_power_of_2(nr_pages))
6204                         goto aux_unlock;
6205
6206                 if (!atomic_inc_not_zero(&rb->mmap_count))
6207                         goto aux_unlock;
6208
6209                 if (rb_has_aux(rb)) {
6210                         atomic_inc(&rb->aux_mmap_count);
6211                         ret = 0;
6212                         goto unlock;
6213                 }
6214
6215                 atomic_set(&rb->aux_mmap_count, 1);
6216                 user_extra = nr_pages;
6217
6218                 goto accounting;
6219         }
6220
6221         /*
6222          * If we have rb pages ensure they're a power-of-two number, so we
6223          * can do bitmasks instead of modulo.
6224          */
6225         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6226                 return -EINVAL;
6227
6228         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6229                 return -EINVAL;
6230
6231         WARN_ON_ONCE(event->ctx->parent_ctx);
6232 again:
6233         mutex_lock(&event->mmap_mutex);
6234         if (event->rb) {
6235                 if (event->rb->nr_pages != nr_pages) {
6236                         ret = -EINVAL;
6237                         goto unlock;
6238                 }
6239
6240                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6241                         /*
6242                          * Raced against perf_mmap_close() through
6243                          * perf_event_set_output(). Try again, hope for better
6244                          * luck.
6245                          */
6246                         mutex_unlock(&event->mmap_mutex);
6247                         goto again;
6248                 }
6249
6250                 goto unlock;
6251         }
6252
6253         user_extra = nr_pages + 1;
6254
6255 accounting:
6256         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6257
6258         /*
6259          * Increase the limit linearly with more CPUs:
6260          */
6261         user_lock_limit *= num_online_cpus();
6262
6263         user_locked = atomic_long_read(&user->locked_vm);
6264
6265         /*
6266          * sysctl_perf_event_mlock may have changed, so that
6267          *     user->locked_vm > user_lock_limit
6268          */
6269         if (user_locked > user_lock_limit)
6270                 user_locked = user_lock_limit;
6271         user_locked += user_extra;
6272
6273         if (user_locked > user_lock_limit) {
6274                 /*
6275                  * charge locked_vm until it hits user_lock_limit;
6276                  * charge the rest from pinned_vm
6277                  */
6278                 extra = user_locked - user_lock_limit;
6279                 user_extra -= extra;
6280         }
6281
6282         lock_limit = rlimit(RLIMIT_MEMLOCK);
6283         lock_limit >>= PAGE_SHIFT;
6284         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6285
6286         if ((locked > lock_limit) && perf_is_paranoid() &&
6287                 !capable(CAP_IPC_LOCK)) {
6288                 ret = -EPERM;
6289                 goto unlock;
6290         }
6291
6292         WARN_ON(!rb && event->rb);
6293
6294         if (vma->vm_flags & VM_WRITE)
6295                 flags |= RING_BUFFER_WRITABLE;
6296
6297         if (!rb) {
6298                 rb = rb_alloc(nr_pages,
6299                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6300                               event->cpu, flags);
6301
6302                 if (!rb) {
6303                         ret = -ENOMEM;
6304                         goto unlock;
6305                 }
6306
6307                 atomic_set(&rb->mmap_count, 1);
6308                 rb->mmap_user = get_current_user();
6309                 rb->mmap_locked = extra;
6310
6311                 ring_buffer_attach(event, rb);
6312
6313                 perf_event_init_userpage(event);
6314                 perf_event_update_userpage(event);
6315         } else {
6316                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6317                                    event->attr.aux_watermark, flags);
6318                 if (!ret)
6319                         rb->aux_mmap_locked = extra;
6320         }
6321
6322 unlock:
6323         if (!ret) {
6324                 atomic_long_add(user_extra, &user->locked_vm);
6325                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6326
6327                 atomic_inc(&event->mmap_count);
6328         } else if (rb) {
6329                 atomic_dec(&rb->mmap_count);
6330         }
6331 aux_unlock:
6332         mutex_unlock(&event->mmap_mutex);
6333
6334         /*
6335          * Since pinned accounting is per vm we cannot allow fork() to copy our
6336          * vma.
6337          */
6338         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6339         vma->vm_ops = &perf_mmap_vmops;
6340
6341         if (event->pmu->event_mapped)
6342                 event->pmu->event_mapped(event, vma->vm_mm);
6343
6344         return ret;
6345 }
6346
6347 static int perf_fasync(int fd, struct file *filp, int on)
6348 {
6349         struct inode *inode = file_inode(filp);
6350         struct perf_event *event = filp->private_data;
6351         int retval;
6352
6353         inode_lock(inode);
6354         retval = fasync_helper(fd, filp, on, &event->fasync);
6355         inode_unlock(inode);
6356
6357         if (retval < 0)
6358                 return retval;
6359
6360         return 0;
6361 }
6362
6363 static const struct file_operations perf_fops = {
6364         .llseek                 = no_llseek,
6365         .release                = perf_release,
6366         .read                   = perf_read,
6367         .poll                   = perf_poll,
6368         .unlocked_ioctl         = perf_ioctl,
6369         .compat_ioctl           = perf_compat_ioctl,
6370         .mmap                   = perf_mmap,
6371         .fasync                 = perf_fasync,
6372 };
6373
6374 /*
6375  * Perf event wakeup
6376  *
6377  * If there's data, ensure we set the poll() state and publish everything
6378  * to user-space before waking everybody up.
6379  */
6380
6381 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6382 {
6383         /* only the parent has fasync state */
6384         if (event->parent)
6385                 event = event->parent;
6386         return &event->fasync;
6387 }
6388
6389 void perf_event_wakeup(struct perf_event *event)
6390 {
6391         ring_buffer_wakeup(event);
6392
6393         if (event->pending_kill) {
6394                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6395                 event->pending_kill = 0;
6396         }
6397 }
6398
6399 static void perf_sigtrap(struct perf_event *event)
6400 {
6401         /*
6402          * We'd expect this to only occur if the irq_work is delayed and either
6403          * ctx->task or current has changed in the meantime. This can be the
6404          * case on architectures that do not implement arch_irq_work_raise().
6405          */
6406         if (WARN_ON_ONCE(event->ctx->task != current))
6407                 return;
6408
6409         /*
6410          * perf_pending_event() can race with the task exiting.
6411          */
6412         if (current->flags & PF_EXITING)
6413                 return;
6414
6415         force_sig_perf((void __user *)event->pending_addr,
6416                        event->attr.type, event->attr.sig_data);
6417 }
6418
6419 static void perf_pending_event_disable(struct perf_event *event)
6420 {
6421         int cpu = READ_ONCE(event->pending_disable);
6422
6423         if (cpu < 0)
6424                 return;
6425
6426         if (cpu == smp_processor_id()) {
6427                 WRITE_ONCE(event->pending_disable, -1);
6428
6429                 if (event->attr.sigtrap) {
6430                         perf_sigtrap(event);
6431                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6432                         return;
6433                 }
6434
6435                 perf_event_disable_local(event);
6436                 return;
6437         }
6438
6439         /*
6440          *  CPU-A                       CPU-B
6441          *
6442          *  perf_event_disable_inatomic()
6443          *    @pending_disable = CPU-A;
6444          *    irq_work_queue();
6445          *
6446          *  sched-out
6447          *    @pending_disable = -1;
6448          *
6449          *                              sched-in
6450          *                              perf_event_disable_inatomic()
6451          *                                @pending_disable = CPU-B;
6452          *                                irq_work_queue(); // FAILS
6453          *
6454          *  irq_work_run()
6455          *    perf_pending_event()
6456          *
6457          * But the event runs on CPU-B and wants disabling there.
6458          */
6459         irq_work_queue_on(&event->pending, cpu);
6460 }
6461
6462 static void perf_pending_event(struct irq_work *entry)
6463 {
6464         struct perf_event *event = container_of(entry, struct perf_event, pending);
6465         int rctx;
6466
6467         rctx = perf_swevent_get_recursion_context();
6468         /*
6469          * If we 'fail' here, that's OK, it means recursion is already disabled
6470          * and we won't recurse 'further'.
6471          */
6472
6473         perf_pending_event_disable(event);
6474
6475         if (event->pending_wakeup) {
6476                 event->pending_wakeup = 0;
6477                 perf_event_wakeup(event);
6478         }
6479
6480         if (rctx >= 0)
6481                 perf_swevent_put_recursion_context(rctx);
6482 }
6483
6484 /*
6485  * We assume there is only KVM supporting the callbacks.
6486  * Later on, we might change it to a list if there is
6487  * another virtualization implementation supporting the callbacks.
6488  */
6489 struct perf_guest_info_callbacks *perf_guest_cbs;
6490
6491 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6492 {
6493         perf_guest_cbs = cbs;
6494         return 0;
6495 }
6496 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6497
6498 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6499 {
6500         perf_guest_cbs = NULL;
6501         return 0;
6502 }
6503 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6504
6505 static void
6506 perf_output_sample_regs(struct perf_output_handle *handle,
6507                         struct pt_regs *regs, u64 mask)
6508 {
6509         int bit;
6510         DECLARE_BITMAP(_mask, 64);
6511
6512         bitmap_from_u64(_mask, mask);
6513         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6514                 u64 val;
6515
6516                 val = perf_reg_value(regs, bit);
6517                 perf_output_put(handle, val);
6518         }
6519 }
6520
6521 static void perf_sample_regs_user(struct perf_regs *regs_user,
6522                                   struct pt_regs *regs)
6523 {
6524         if (user_mode(regs)) {
6525                 regs_user->abi = perf_reg_abi(current);
6526                 regs_user->regs = regs;
6527         } else if (!(current->flags & PF_KTHREAD)) {
6528                 perf_get_regs_user(regs_user, regs);
6529         } else {
6530                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6531                 regs_user->regs = NULL;
6532         }
6533 }
6534
6535 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6536                                   struct pt_regs *regs)
6537 {
6538         regs_intr->regs = regs;
6539         regs_intr->abi  = perf_reg_abi(current);
6540 }
6541
6542
6543 /*
6544  * Get remaining task size from user stack pointer.
6545  *
6546  * It'd be better to take stack vma map and limit this more
6547  * precisely, but there's no way to get it safely under interrupt,
6548  * so using TASK_SIZE as limit.
6549  */
6550 static u64 perf_ustack_task_size(struct pt_regs *regs)
6551 {
6552         unsigned long addr = perf_user_stack_pointer(regs);
6553
6554         if (!addr || addr >= TASK_SIZE)
6555                 return 0;
6556
6557         return TASK_SIZE - addr;
6558 }
6559
6560 static u16
6561 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6562                         struct pt_regs *regs)
6563 {
6564         u64 task_size;
6565
6566         /* No regs, no stack pointer, no dump. */
6567         if (!regs)
6568                 return 0;
6569
6570         /*
6571          * Check if we fit in with the requested stack size into the:
6572          * - TASK_SIZE
6573          *   If we don't, we limit the size to the TASK_SIZE.
6574          *
6575          * - remaining sample size
6576          *   If we don't, we customize the stack size to
6577          *   fit in to the remaining sample size.
6578          */
6579
6580         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6581         stack_size = min(stack_size, (u16) task_size);
6582
6583         /* Current header size plus static size and dynamic size. */
6584         header_size += 2 * sizeof(u64);
6585
6586         /* Do we fit in with the current stack dump size? */
6587         if ((u16) (header_size + stack_size) < header_size) {
6588                 /*
6589                  * If we overflow the maximum size for the sample,
6590                  * we customize the stack dump size to fit in.
6591                  */
6592                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6593                 stack_size = round_up(stack_size, sizeof(u64));
6594         }
6595
6596         return stack_size;
6597 }
6598
6599 static void
6600 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6601                           struct pt_regs *regs)
6602 {
6603         /* Case of a kernel thread, nothing to dump */
6604         if (!regs) {
6605                 u64 size = 0;
6606                 perf_output_put(handle, size);
6607         } else {
6608                 unsigned long sp;
6609                 unsigned int rem;
6610                 u64 dyn_size;
6611                 mm_segment_t fs;
6612
6613                 /*
6614                  * We dump:
6615                  * static size
6616                  *   - the size requested by user or the best one we can fit
6617                  *     in to the sample max size
6618                  * data
6619                  *   - user stack dump data
6620                  * dynamic size
6621                  *   - the actual dumped size
6622                  */
6623
6624                 /* Static size. */
6625                 perf_output_put(handle, dump_size);
6626
6627                 /* Data. */
6628                 sp = perf_user_stack_pointer(regs);
6629                 fs = force_uaccess_begin();
6630                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6631                 force_uaccess_end(fs);
6632                 dyn_size = dump_size - rem;
6633
6634                 perf_output_skip(handle, rem);
6635
6636                 /* Dynamic size. */
6637                 perf_output_put(handle, dyn_size);
6638         }
6639 }
6640
6641 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6642                                           struct perf_sample_data *data,
6643                                           size_t size)
6644 {
6645         struct perf_event *sampler = event->aux_event;
6646         struct perf_buffer *rb;
6647
6648         data->aux_size = 0;
6649
6650         if (!sampler)
6651                 goto out;
6652
6653         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6654                 goto out;
6655
6656         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6657                 goto out;
6658
6659         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6660         if (!rb)
6661                 goto out;
6662
6663         /*
6664          * If this is an NMI hit inside sampling code, don't take
6665          * the sample. See also perf_aux_sample_output().
6666          */
6667         if (READ_ONCE(rb->aux_in_sampling)) {
6668                 data->aux_size = 0;
6669         } else {
6670                 size = min_t(size_t, size, perf_aux_size(rb));
6671                 data->aux_size = ALIGN(size, sizeof(u64));
6672         }
6673         ring_buffer_put(rb);
6674
6675 out:
6676         return data->aux_size;
6677 }
6678
6679 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6680                            struct perf_event *event,
6681                            struct perf_output_handle *handle,
6682                            unsigned long size)
6683 {
6684         unsigned long flags;
6685         long ret;
6686
6687         /*
6688          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6689          * paths. If we start calling them in NMI context, they may race with
6690          * the IRQ ones, that is, for example, re-starting an event that's just
6691          * been stopped, which is why we're using a separate callback that
6692          * doesn't change the event state.
6693          *
6694          * IRQs need to be disabled to prevent IPIs from racing with us.
6695          */
6696         local_irq_save(flags);
6697         /*
6698          * Guard against NMI hits inside the critical section;
6699          * see also perf_prepare_sample_aux().
6700          */
6701         WRITE_ONCE(rb->aux_in_sampling, 1);
6702         barrier();
6703
6704         ret = event->pmu->snapshot_aux(event, handle, size);
6705
6706         barrier();
6707         WRITE_ONCE(rb->aux_in_sampling, 0);
6708         local_irq_restore(flags);
6709
6710         return ret;
6711 }
6712
6713 static void perf_aux_sample_output(struct perf_event *event,
6714                                    struct perf_output_handle *handle,
6715                                    struct perf_sample_data *data)
6716 {
6717         struct perf_event *sampler = event->aux_event;
6718         struct perf_buffer *rb;
6719         unsigned long pad;
6720         long size;
6721
6722         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6723                 return;
6724
6725         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6726         if (!rb)
6727                 return;
6728
6729         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6730
6731         /*
6732          * An error here means that perf_output_copy() failed (returned a
6733          * non-zero surplus that it didn't copy), which in its current
6734          * enlightened implementation is not possible. If that changes, we'd
6735          * like to know.
6736          */
6737         if (WARN_ON_ONCE(size < 0))
6738                 goto out_put;
6739
6740         /*
6741          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6742          * perf_prepare_sample_aux(), so should not be more than that.
6743          */
6744         pad = data->aux_size - size;
6745         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6746                 pad = 8;
6747
6748         if (pad) {
6749                 u64 zero = 0;
6750                 perf_output_copy(handle, &zero, pad);
6751         }
6752
6753 out_put:
6754         ring_buffer_put(rb);
6755 }
6756
6757 static void __perf_event_header__init_id(struct perf_event_header *header,
6758                                          struct perf_sample_data *data,
6759                                          struct perf_event *event)
6760 {
6761         u64 sample_type = event->attr.sample_type;
6762
6763         data->type = sample_type;
6764         header->size += event->id_header_size;
6765
6766         if (sample_type & PERF_SAMPLE_TID) {
6767                 /* namespace issues */
6768                 data->tid_entry.pid = perf_event_pid(event, current);
6769                 data->tid_entry.tid = perf_event_tid(event, current);
6770         }
6771
6772         if (sample_type & PERF_SAMPLE_TIME)
6773                 data->time = perf_event_clock(event);
6774
6775         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6776                 data->id = primary_event_id(event);
6777
6778         if (sample_type & PERF_SAMPLE_STREAM_ID)
6779                 data->stream_id = event->id;
6780
6781         if (sample_type & PERF_SAMPLE_CPU) {
6782                 data->cpu_entry.cpu      = raw_smp_processor_id();
6783                 data->cpu_entry.reserved = 0;
6784         }
6785 }
6786
6787 void perf_event_header__init_id(struct perf_event_header *header,
6788                                 struct perf_sample_data *data,
6789                                 struct perf_event *event)
6790 {
6791         if (event->attr.sample_id_all)
6792                 __perf_event_header__init_id(header, data, event);
6793 }
6794
6795 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6796                                            struct perf_sample_data *data)
6797 {
6798         u64 sample_type = data->type;
6799
6800         if (sample_type & PERF_SAMPLE_TID)
6801                 perf_output_put(handle, data->tid_entry);
6802
6803         if (sample_type & PERF_SAMPLE_TIME)
6804                 perf_output_put(handle, data->time);
6805
6806         if (sample_type & PERF_SAMPLE_ID)
6807                 perf_output_put(handle, data->id);
6808
6809         if (sample_type & PERF_SAMPLE_STREAM_ID)
6810                 perf_output_put(handle, data->stream_id);
6811
6812         if (sample_type & PERF_SAMPLE_CPU)
6813                 perf_output_put(handle, data->cpu_entry);
6814
6815         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6816                 perf_output_put(handle, data->id);
6817 }
6818
6819 void perf_event__output_id_sample(struct perf_event *event,
6820                                   struct perf_output_handle *handle,
6821                                   struct perf_sample_data *sample)
6822 {
6823         if (event->attr.sample_id_all)
6824                 __perf_event__output_id_sample(handle, sample);
6825 }
6826
6827 static void perf_output_read_one(struct perf_output_handle *handle,
6828                                  struct perf_event *event,
6829                                  u64 enabled, u64 running)
6830 {
6831         u64 read_format = event->attr.read_format;
6832         u64 values[4];
6833         int n = 0;
6834
6835         values[n++] = perf_event_count(event);
6836         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6837                 values[n++] = enabled +
6838                         atomic64_read(&event->child_total_time_enabled);
6839         }
6840         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6841                 values[n++] = running +
6842                         atomic64_read(&event->child_total_time_running);
6843         }
6844         if (read_format & PERF_FORMAT_ID)
6845                 values[n++] = primary_event_id(event);
6846
6847         __output_copy(handle, values, n * sizeof(u64));
6848 }
6849
6850 static void perf_output_read_group(struct perf_output_handle *handle,
6851                             struct perf_event *event,
6852                             u64 enabled, u64 running)
6853 {
6854         struct perf_event *leader = event->group_leader, *sub;
6855         u64 read_format = event->attr.read_format;
6856         u64 values[5];
6857         int n = 0;
6858
6859         values[n++] = 1 + leader->nr_siblings;
6860
6861         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6862                 values[n++] = enabled;
6863
6864         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6865                 values[n++] = running;
6866
6867         if ((leader != event) &&
6868             (leader->state == PERF_EVENT_STATE_ACTIVE))
6869                 leader->pmu->read(leader);
6870
6871         values[n++] = perf_event_count(leader);
6872         if (read_format & PERF_FORMAT_ID)
6873                 values[n++] = primary_event_id(leader);
6874
6875         __output_copy(handle, values, n * sizeof(u64));
6876
6877         for_each_sibling_event(sub, leader) {
6878                 n = 0;
6879
6880                 if ((sub != event) &&
6881                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6882                         sub->pmu->read(sub);
6883
6884                 values[n++] = perf_event_count(sub);
6885                 if (read_format & PERF_FORMAT_ID)
6886                         values[n++] = primary_event_id(sub);
6887
6888                 __output_copy(handle, values, n * sizeof(u64));
6889         }
6890 }
6891
6892 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6893                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6894
6895 /*
6896  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6897  *
6898  * The problem is that its both hard and excessively expensive to iterate the
6899  * child list, not to mention that its impossible to IPI the children running
6900  * on another CPU, from interrupt/NMI context.
6901  */
6902 static void perf_output_read(struct perf_output_handle *handle,
6903                              struct perf_event *event)
6904 {
6905         u64 enabled = 0, running = 0, now;
6906         u64 read_format = event->attr.read_format;
6907
6908         /*
6909          * compute total_time_enabled, total_time_running
6910          * based on snapshot values taken when the event
6911          * was last scheduled in.
6912          *
6913          * we cannot simply called update_context_time()
6914          * because of locking issue as we are called in
6915          * NMI context
6916          */
6917         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6918                 calc_timer_values(event, &now, &enabled, &running);
6919
6920         if (event->attr.read_format & PERF_FORMAT_GROUP)
6921                 perf_output_read_group(handle, event, enabled, running);
6922         else
6923                 perf_output_read_one(handle, event, enabled, running);
6924 }
6925
6926 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6927 {
6928         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6929 }
6930
6931 void perf_output_sample(struct perf_output_handle *handle,
6932                         struct perf_event_header *header,
6933                         struct perf_sample_data *data,
6934                         struct perf_event *event)
6935 {
6936         u64 sample_type = data->type;
6937
6938         perf_output_put(handle, *header);
6939
6940         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6941                 perf_output_put(handle, data->id);
6942
6943         if (sample_type & PERF_SAMPLE_IP)
6944                 perf_output_put(handle, data->ip);
6945
6946         if (sample_type & PERF_SAMPLE_TID)
6947                 perf_output_put(handle, data->tid_entry);
6948
6949         if (sample_type & PERF_SAMPLE_TIME)
6950                 perf_output_put(handle, data->time);
6951
6952         if (sample_type & PERF_SAMPLE_ADDR)
6953                 perf_output_put(handle, data->addr);
6954
6955         if (sample_type & PERF_SAMPLE_ID)
6956                 perf_output_put(handle, data->id);
6957
6958         if (sample_type & PERF_SAMPLE_STREAM_ID)
6959                 perf_output_put(handle, data->stream_id);
6960
6961         if (sample_type & PERF_SAMPLE_CPU)
6962                 perf_output_put(handle, data->cpu_entry);
6963
6964         if (sample_type & PERF_SAMPLE_PERIOD)
6965                 perf_output_put(handle, data->period);
6966
6967         if (sample_type & PERF_SAMPLE_READ)
6968                 perf_output_read(handle, event);
6969
6970         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6971                 int size = 1;
6972
6973                 size += data->callchain->nr;
6974                 size *= sizeof(u64);
6975                 __output_copy(handle, data->callchain, size);
6976         }
6977
6978         if (sample_type & PERF_SAMPLE_RAW) {
6979                 struct perf_raw_record *raw = data->raw;
6980
6981                 if (raw) {
6982                         struct perf_raw_frag *frag = &raw->frag;
6983
6984                         perf_output_put(handle, raw->size);
6985                         do {
6986                                 if (frag->copy) {
6987                                         __output_custom(handle, frag->copy,
6988                                                         frag->data, frag->size);
6989                                 } else {
6990                                         __output_copy(handle, frag->data,
6991                                                       frag->size);
6992                                 }
6993                                 if (perf_raw_frag_last(frag))
6994                                         break;
6995                                 frag = frag->next;
6996                         } while (1);
6997                         if (frag->pad)
6998                                 __output_skip(handle, NULL, frag->pad);
6999                 } else {
7000                         struct {
7001                                 u32     size;
7002                                 u32     data;
7003                         } raw = {
7004                                 .size = sizeof(u32),
7005                                 .data = 0,
7006                         };
7007                         perf_output_put(handle, raw);
7008                 }
7009         }
7010
7011         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7012                 if (data->br_stack) {
7013                         size_t size;
7014
7015                         size = data->br_stack->nr
7016                              * sizeof(struct perf_branch_entry);
7017
7018                         perf_output_put(handle, data->br_stack->nr);
7019                         if (perf_sample_save_hw_index(event))
7020                                 perf_output_put(handle, data->br_stack->hw_idx);
7021                         perf_output_copy(handle, data->br_stack->entries, size);
7022                 } else {
7023                         /*
7024                          * we always store at least the value of nr
7025                          */
7026                         u64 nr = 0;
7027                         perf_output_put(handle, nr);
7028                 }
7029         }
7030
7031         if (sample_type & PERF_SAMPLE_REGS_USER) {
7032                 u64 abi = data->regs_user.abi;
7033
7034                 /*
7035                  * If there are no regs to dump, notice it through
7036                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7037                  */
7038                 perf_output_put(handle, abi);
7039
7040                 if (abi) {
7041                         u64 mask = event->attr.sample_regs_user;
7042                         perf_output_sample_regs(handle,
7043                                                 data->regs_user.regs,
7044                                                 mask);
7045                 }
7046         }
7047
7048         if (sample_type & PERF_SAMPLE_STACK_USER) {
7049                 perf_output_sample_ustack(handle,
7050                                           data->stack_user_size,
7051                                           data->regs_user.regs);
7052         }
7053
7054         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7055                 perf_output_put(handle, data->weight.full);
7056
7057         if (sample_type & PERF_SAMPLE_DATA_SRC)
7058                 perf_output_put(handle, data->data_src.val);
7059
7060         if (sample_type & PERF_SAMPLE_TRANSACTION)
7061                 perf_output_put(handle, data->txn);
7062
7063         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7064                 u64 abi = data->regs_intr.abi;
7065                 /*
7066                  * If there are no regs to dump, notice it through
7067                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7068                  */
7069                 perf_output_put(handle, abi);
7070
7071                 if (abi) {
7072                         u64 mask = event->attr.sample_regs_intr;
7073
7074                         perf_output_sample_regs(handle,
7075                                                 data->regs_intr.regs,
7076                                                 mask);
7077                 }
7078         }
7079
7080         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7081                 perf_output_put(handle, data->phys_addr);
7082
7083         if (sample_type & PERF_SAMPLE_CGROUP)
7084                 perf_output_put(handle, data->cgroup);
7085
7086         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7087                 perf_output_put(handle, data->data_page_size);
7088
7089         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7090                 perf_output_put(handle, data->code_page_size);
7091
7092         if (sample_type & PERF_SAMPLE_AUX) {
7093                 perf_output_put(handle, data->aux_size);
7094
7095                 if (data->aux_size)
7096                         perf_aux_sample_output(event, handle, data);
7097         }
7098
7099         if (!event->attr.watermark) {
7100                 int wakeup_events = event->attr.wakeup_events;
7101
7102                 if (wakeup_events) {
7103                         struct perf_buffer *rb = handle->rb;
7104                         int events = local_inc_return(&rb->events);
7105
7106                         if (events >= wakeup_events) {
7107                                 local_sub(wakeup_events, &rb->events);
7108                                 local_inc(&rb->wakeup);
7109                         }
7110                 }
7111         }
7112 }
7113
7114 static u64 perf_virt_to_phys(u64 virt)
7115 {
7116         u64 phys_addr = 0;
7117         struct page *p = NULL;
7118
7119         if (!virt)
7120                 return 0;
7121
7122         if (virt >= TASK_SIZE) {
7123                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7124                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7125                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7126                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7127         } else {
7128                 /*
7129                  * Walking the pages tables for user address.
7130                  * Interrupts are disabled, so it prevents any tear down
7131                  * of the page tables.
7132                  * Try IRQ-safe get_user_page_fast_only first.
7133                  * If failed, leave phys_addr as 0.
7134                  */
7135                 if (current->mm != NULL) {
7136                         pagefault_disable();
7137                         if (get_user_page_fast_only(virt, 0, &p))
7138                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7139                         pagefault_enable();
7140                 }
7141
7142                 if (p)
7143                         put_page(p);
7144         }
7145
7146         return phys_addr;
7147 }
7148
7149 /*
7150  * Return the pagetable size of a given virtual address.
7151  */
7152 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7153 {
7154         u64 size = 0;
7155
7156 #ifdef CONFIG_HAVE_FAST_GUP
7157         pgd_t *pgdp, pgd;
7158         p4d_t *p4dp, p4d;
7159         pud_t *pudp, pud;
7160         pmd_t *pmdp, pmd;
7161         pte_t *ptep, pte;
7162
7163         pgdp = pgd_offset(mm, addr);
7164         pgd = READ_ONCE(*pgdp);
7165         if (pgd_none(pgd))
7166                 return 0;
7167
7168         if (pgd_leaf(pgd))
7169                 return pgd_leaf_size(pgd);
7170
7171         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7172         p4d = READ_ONCE(*p4dp);
7173         if (!p4d_present(p4d))
7174                 return 0;
7175
7176         if (p4d_leaf(p4d))
7177                 return p4d_leaf_size(p4d);
7178
7179         pudp = pud_offset_lockless(p4dp, p4d, addr);
7180         pud = READ_ONCE(*pudp);
7181         if (!pud_present(pud))
7182                 return 0;
7183
7184         if (pud_leaf(pud))
7185                 return pud_leaf_size(pud);
7186
7187         pmdp = pmd_offset_lockless(pudp, pud, addr);
7188         pmd = READ_ONCE(*pmdp);
7189         if (!pmd_present(pmd))
7190                 return 0;
7191
7192         if (pmd_leaf(pmd))
7193                 return pmd_leaf_size(pmd);
7194
7195         ptep = pte_offset_map(&pmd, addr);
7196         pte = ptep_get_lockless(ptep);
7197         if (pte_present(pte))
7198                 size = pte_leaf_size(pte);
7199         pte_unmap(ptep);
7200 #endif /* CONFIG_HAVE_FAST_GUP */
7201
7202         return size;
7203 }
7204
7205 static u64 perf_get_page_size(unsigned long addr)
7206 {
7207         struct mm_struct *mm;
7208         unsigned long flags;
7209         u64 size;
7210
7211         if (!addr)
7212                 return 0;
7213
7214         /*
7215          * Software page-table walkers must disable IRQs,
7216          * which prevents any tear down of the page tables.
7217          */
7218         local_irq_save(flags);
7219
7220         mm = current->mm;
7221         if (!mm) {
7222                 /*
7223                  * For kernel threads and the like, use init_mm so that
7224                  * we can find kernel memory.
7225                  */
7226                 mm = &init_mm;
7227         }
7228
7229         size = perf_get_pgtable_size(mm, addr);
7230
7231         local_irq_restore(flags);
7232
7233         return size;
7234 }
7235
7236 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7237
7238 struct perf_callchain_entry *
7239 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7240 {
7241         bool kernel = !event->attr.exclude_callchain_kernel;
7242         bool user   = !event->attr.exclude_callchain_user;
7243         /* Disallow cross-task user callchains. */
7244         bool crosstask = event->ctx->task && event->ctx->task != current;
7245         const u32 max_stack = event->attr.sample_max_stack;
7246         struct perf_callchain_entry *callchain;
7247
7248         if (!kernel && !user)
7249                 return &__empty_callchain;
7250
7251         callchain = get_perf_callchain(regs, 0, kernel, user,
7252                                        max_stack, crosstask, true);
7253         return callchain ?: &__empty_callchain;
7254 }
7255
7256 void perf_prepare_sample(struct perf_event_header *header,
7257                          struct perf_sample_data *data,
7258                          struct perf_event *event,
7259                          struct pt_regs *regs)
7260 {
7261         u64 sample_type = event->attr.sample_type;
7262
7263         header->type = PERF_RECORD_SAMPLE;
7264         header->size = sizeof(*header) + event->header_size;
7265
7266         header->misc = 0;
7267         header->misc |= perf_misc_flags(regs);
7268
7269         __perf_event_header__init_id(header, data, event);
7270
7271         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7272                 data->ip = perf_instruction_pointer(regs);
7273
7274         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7275                 int size = 1;
7276
7277                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7278                         data->callchain = perf_callchain(event, regs);
7279
7280                 size += data->callchain->nr;
7281
7282                 header->size += size * sizeof(u64);
7283         }
7284
7285         if (sample_type & PERF_SAMPLE_RAW) {
7286                 struct perf_raw_record *raw = data->raw;
7287                 int size;
7288
7289                 if (raw) {
7290                         struct perf_raw_frag *frag = &raw->frag;
7291                         u32 sum = 0;
7292
7293                         do {
7294                                 sum += frag->size;
7295                                 if (perf_raw_frag_last(frag))
7296                                         break;
7297                                 frag = frag->next;
7298                         } while (1);
7299
7300                         size = round_up(sum + sizeof(u32), sizeof(u64));
7301                         raw->size = size - sizeof(u32);
7302                         frag->pad = raw->size - sum;
7303                 } else {
7304                         size = sizeof(u64);
7305                 }
7306
7307                 header->size += size;
7308         }
7309
7310         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7311                 int size = sizeof(u64); /* nr */
7312                 if (data->br_stack) {
7313                         if (perf_sample_save_hw_index(event))
7314                                 size += sizeof(u64);
7315
7316                         size += data->br_stack->nr
7317                               * sizeof(struct perf_branch_entry);
7318                 }
7319                 header->size += size;
7320         }
7321
7322         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7323                 perf_sample_regs_user(&data->regs_user, regs);
7324
7325         if (sample_type & PERF_SAMPLE_REGS_USER) {
7326                 /* regs dump ABI info */
7327                 int size = sizeof(u64);
7328
7329                 if (data->regs_user.regs) {
7330                         u64 mask = event->attr.sample_regs_user;
7331                         size += hweight64(mask) * sizeof(u64);
7332                 }
7333
7334                 header->size += size;
7335         }
7336
7337         if (sample_type & PERF_SAMPLE_STACK_USER) {
7338                 /*
7339                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7340                  * processed as the last one or have additional check added
7341                  * in case new sample type is added, because we could eat
7342                  * up the rest of the sample size.
7343                  */
7344                 u16 stack_size = event->attr.sample_stack_user;
7345                 u16 size = sizeof(u64);
7346
7347                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7348                                                      data->regs_user.regs);
7349
7350                 /*
7351                  * If there is something to dump, add space for the dump
7352                  * itself and for the field that tells the dynamic size,
7353                  * which is how many have been actually dumped.
7354                  */
7355                 if (stack_size)
7356                         size += sizeof(u64) + stack_size;
7357
7358                 data->stack_user_size = stack_size;
7359                 header->size += size;
7360         }
7361
7362         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7363                 /* regs dump ABI info */
7364                 int size = sizeof(u64);
7365
7366                 perf_sample_regs_intr(&data->regs_intr, regs);
7367
7368                 if (data->regs_intr.regs) {
7369                         u64 mask = event->attr.sample_regs_intr;
7370
7371                         size += hweight64(mask) * sizeof(u64);
7372                 }
7373
7374                 header->size += size;
7375         }
7376
7377         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7378                 data->phys_addr = perf_virt_to_phys(data->addr);
7379
7380 #ifdef CONFIG_CGROUP_PERF
7381         if (sample_type & PERF_SAMPLE_CGROUP) {
7382                 struct cgroup *cgrp;
7383
7384                 /* protected by RCU */
7385                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7386                 data->cgroup = cgroup_id(cgrp);
7387         }
7388 #endif
7389
7390         /*
7391          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7392          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7393          * but the value will not dump to the userspace.
7394          */
7395         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7396                 data->data_page_size = perf_get_page_size(data->addr);
7397
7398         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7399                 data->code_page_size = perf_get_page_size(data->ip);
7400
7401         if (sample_type & PERF_SAMPLE_AUX) {
7402                 u64 size;
7403
7404                 header->size += sizeof(u64); /* size */
7405
7406                 /*
7407                  * Given the 16bit nature of header::size, an AUX sample can
7408                  * easily overflow it, what with all the preceding sample bits.
7409                  * Make sure this doesn't happen by using up to U16_MAX bytes
7410                  * per sample in total (rounded down to 8 byte boundary).
7411                  */
7412                 size = min_t(size_t, U16_MAX - header->size,
7413                              event->attr.aux_sample_size);
7414                 size = rounddown(size, 8);
7415                 size = perf_prepare_sample_aux(event, data, size);
7416
7417                 WARN_ON_ONCE(size + header->size > U16_MAX);
7418                 header->size += size;
7419         }
7420         /*
7421          * If you're adding more sample types here, you likely need to do
7422          * something about the overflowing header::size, like repurpose the
7423          * lowest 3 bits of size, which should be always zero at the moment.
7424          * This raises a more important question, do we really need 512k sized
7425          * samples and why, so good argumentation is in order for whatever you
7426          * do here next.
7427          */
7428         WARN_ON_ONCE(header->size & 7);
7429 }
7430
7431 static __always_inline int
7432 __perf_event_output(struct perf_event *event,
7433                     struct perf_sample_data *data,
7434                     struct pt_regs *regs,
7435                     int (*output_begin)(struct perf_output_handle *,
7436                                         struct perf_sample_data *,
7437                                         struct perf_event *,
7438                                         unsigned int))
7439 {
7440         struct perf_output_handle handle;
7441         struct perf_event_header header;
7442         int err;
7443
7444         /* protect the callchain buffers */
7445         rcu_read_lock();
7446
7447         perf_prepare_sample(&header, data, event, regs);
7448
7449         err = output_begin(&handle, data, event, header.size);
7450         if (err)
7451                 goto exit;
7452
7453         perf_output_sample(&handle, &header, data, event);
7454
7455         perf_output_end(&handle);
7456
7457 exit:
7458         rcu_read_unlock();
7459         return err;
7460 }
7461
7462 void
7463 perf_event_output_forward(struct perf_event *event,
7464                          struct perf_sample_data *data,
7465                          struct pt_regs *regs)
7466 {
7467         __perf_event_output(event, data, regs, perf_output_begin_forward);
7468 }
7469
7470 void
7471 perf_event_output_backward(struct perf_event *event,
7472                            struct perf_sample_data *data,
7473                            struct pt_regs *regs)
7474 {
7475         __perf_event_output(event, data, regs, perf_output_begin_backward);
7476 }
7477
7478 int
7479 perf_event_output(struct perf_event *event,
7480                   struct perf_sample_data *data,
7481                   struct pt_regs *regs)
7482 {
7483         return __perf_event_output(event, data, regs, perf_output_begin);
7484 }
7485
7486 /*
7487  * read event_id
7488  */
7489
7490 struct perf_read_event {
7491         struct perf_event_header        header;
7492
7493         u32                             pid;
7494         u32                             tid;
7495 };
7496
7497 static void
7498 perf_event_read_event(struct perf_event *event,
7499                         struct task_struct *task)
7500 {
7501         struct perf_output_handle handle;
7502         struct perf_sample_data sample;
7503         struct perf_read_event read_event = {
7504                 .header = {
7505                         .type = PERF_RECORD_READ,
7506                         .misc = 0,
7507                         .size = sizeof(read_event) + event->read_size,
7508                 },
7509                 .pid = perf_event_pid(event, task),
7510                 .tid = perf_event_tid(event, task),
7511         };
7512         int ret;
7513
7514         perf_event_header__init_id(&read_event.header, &sample, event);
7515         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7516         if (ret)
7517                 return;
7518
7519         perf_output_put(&handle, read_event);
7520         perf_output_read(&handle, event);
7521         perf_event__output_id_sample(event, &handle, &sample);
7522
7523         perf_output_end(&handle);
7524 }
7525
7526 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7527
7528 static void
7529 perf_iterate_ctx(struct perf_event_context *ctx,
7530                    perf_iterate_f output,
7531                    void *data, bool all)
7532 {
7533         struct perf_event *event;
7534
7535         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7536                 if (!all) {
7537                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7538                                 continue;
7539                         if (!event_filter_match(event))
7540                                 continue;
7541                 }
7542
7543                 output(event, data);
7544         }
7545 }
7546
7547 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7548 {
7549         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7550         struct perf_event *event;
7551
7552         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7553                 /*
7554                  * Skip events that are not fully formed yet; ensure that
7555                  * if we observe event->ctx, both event and ctx will be
7556                  * complete enough. See perf_install_in_context().
7557                  */
7558                 if (!smp_load_acquire(&event->ctx))
7559                         continue;
7560
7561                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7562                         continue;
7563                 if (!event_filter_match(event))
7564                         continue;
7565                 output(event, data);
7566         }
7567 }
7568
7569 /*
7570  * Iterate all events that need to receive side-band events.
7571  *
7572  * For new callers; ensure that account_pmu_sb_event() includes
7573  * your event, otherwise it might not get delivered.
7574  */
7575 static void
7576 perf_iterate_sb(perf_iterate_f output, void *data,
7577                struct perf_event_context *task_ctx)
7578 {
7579         struct perf_event_context *ctx;
7580         int ctxn;
7581
7582         rcu_read_lock();
7583         preempt_disable();
7584
7585         /*
7586          * If we have task_ctx != NULL we only notify the task context itself.
7587          * The task_ctx is set only for EXIT events before releasing task
7588          * context.
7589          */
7590         if (task_ctx) {
7591                 perf_iterate_ctx(task_ctx, output, data, false);
7592                 goto done;
7593         }
7594
7595         perf_iterate_sb_cpu(output, data);
7596
7597         for_each_task_context_nr(ctxn) {
7598                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7599                 if (ctx)
7600                         perf_iterate_ctx(ctx, output, data, false);
7601         }
7602 done:
7603         preempt_enable();
7604         rcu_read_unlock();
7605 }
7606
7607 /*
7608  * Clear all file-based filters at exec, they'll have to be
7609  * re-instated when/if these objects are mmapped again.
7610  */
7611 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7612 {
7613         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7614         struct perf_addr_filter *filter;
7615         unsigned int restart = 0, count = 0;
7616         unsigned long flags;
7617
7618         if (!has_addr_filter(event))
7619                 return;
7620
7621         raw_spin_lock_irqsave(&ifh->lock, flags);
7622         list_for_each_entry(filter, &ifh->list, entry) {
7623                 if (filter->path.dentry) {
7624                         event->addr_filter_ranges[count].start = 0;
7625                         event->addr_filter_ranges[count].size = 0;
7626                         restart++;
7627                 }
7628
7629                 count++;
7630         }
7631
7632         if (restart)
7633                 event->addr_filters_gen++;
7634         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7635
7636         if (restart)
7637                 perf_event_stop(event, 1);
7638 }
7639
7640 void perf_event_exec(void)
7641 {
7642         struct perf_event_context *ctx;
7643         int ctxn;
7644
7645         for_each_task_context_nr(ctxn) {
7646                 perf_event_enable_on_exec(ctxn);
7647                 perf_event_remove_on_exec(ctxn);
7648
7649                 rcu_read_lock();
7650                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7651                 if (ctx) {
7652                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7653                                          NULL, true);
7654                 }
7655                 rcu_read_unlock();
7656         }
7657 }
7658
7659 struct remote_output {
7660         struct perf_buffer      *rb;
7661         int                     err;
7662 };
7663
7664 static void __perf_event_output_stop(struct perf_event *event, void *data)
7665 {
7666         struct perf_event *parent = event->parent;
7667         struct remote_output *ro = data;
7668         struct perf_buffer *rb = ro->rb;
7669         struct stop_event_data sd = {
7670                 .event  = event,
7671         };
7672
7673         if (!has_aux(event))
7674                 return;
7675
7676         if (!parent)
7677                 parent = event;
7678
7679         /*
7680          * In case of inheritance, it will be the parent that links to the
7681          * ring-buffer, but it will be the child that's actually using it.
7682          *
7683          * We are using event::rb to determine if the event should be stopped,
7684          * however this may race with ring_buffer_attach() (through set_output),
7685          * which will make us skip the event that actually needs to be stopped.
7686          * So ring_buffer_attach() has to stop an aux event before re-assigning
7687          * its rb pointer.
7688          */
7689         if (rcu_dereference(parent->rb) == rb)
7690                 ro->err = __perf_event_stop(&sd);
7691 }
7692
7693 static int __perf_pmu_output_stop(void *info)
7694 {
7695         struct perf_event *event = info;
7696         struct pmu *pmu = event->ctx->pmu;
7697         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7698         struct remote_output ro = {
7699                 .rb     = event->rb,
7700         };
7701
7702         rcu_read_lock();
7703         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7704         if (cpuctx->task_ctx)
7705                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7706                                    &ro, false);
7707         rcu_read_unlock();
7708
7709         return ro.err;
7710 }
7711
7712 static void perf_pmu_output_stop(struct perf_event *event)
7713 {
7714         struct perf_event *iter;
7715         int err, cpu;
7716
7717 restart:
7718         rcu_read_lock();
7719         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7720                 /*
7721                  * For per-CPU events, we need to make sure that neither they
7722                  * nor their children are running; for cpu==-1 events it's
7723                  * sufficient to stop the event itself if it's active, since
7724                  * it can't have children.
7725                  */
7726                 cpu = iter->cpu;
7727                 if (cpu == -1)
7728                         cpu = READ_ONCE(iter->oncpu);
7729
7730                 if (cpu == -1)
7731                         continue;
7732
7733                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7734                 if (err == -EAGAIN) {
7735                         rcu_read_unlock();
7736                         goto restart;
7737                 }
7738         }
7739         rcu_read_unlock();
7740 }
7741
7742 /*
7743  * task tracking -- fork/exit
7744  *
7745  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7746  */
7747
7748 struct perf_task_event {
7749         struct task_struct              *task;
7750         struct perf_event_context       *task_ctx;
7751
7752         struct {
7753                 struct perf_event_header        header;
7754
7755                 u32                             pid;
7756                 u32                             ppid;
7757                 u32                             tid;
7758                 u32                             ptid;
7759                 u64                             time;
7760         } event_id;
7761 };
7762
7763 static int perf_event_task_match(struct perf_event *event)
7764 {
7765         return event->attr.comm  || event->attr.mmap ||
7766                event->attr.mmap2 || event->attr.mmap_data ||
7767                event->attr.task;
7768 }
7769
7770 static void perf_event_task_output(struct perf_event *event,
7771                                    void *data)
7772 {
7773         struct perf_task_event *task_event = data;
7774         struct perf_output_handle handle;
7775         struct perf_sample_data sample;
7776         struct task_struct *task = task_event->task;
7777         int ret, size = task_event->event_id.header.size;
7778
7779         if (!perf_event_task_match(event))
7780                 return;
7781
7782         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7783
7784         ret = perf_output_begin(&handle, &sample, event,
7785                                 task_event->event_id.header.size);
7786         if (ret)
7787                 goto out;
7788
7789         task_event->event_id.pid = perf_event_pid(event, task);
7790         task_event->event_id.tid = perf_event_tid(event, task);
7791
7792         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7793                 task_event->event_id.ppid = perf_event_pid(event,
7794                                                         task->real_parent);
7795                 task_event->event_id.ptid = perf_event_pid(event,
7796                                                         task->real_parent);
7797         } else {  /* PERF_RECORD_FORK */
7798                 task_event->event_id.ppid = perf_event_pid(event, current);
7799                 task_event->event_id.ptid = perf_event_tid(event, current);
7800         }
7801
7802         task_event->event_id.time = perf_event_clock(event);
7803
7804         perf_output_put(&handle, task_event->event_id);
7805
7806         perf_event__output_id_sample(event, &handle, &sample);
7807
7808         perf_output_end(&handle);
7809 out:
7810         task_event->event_id.header.size = size;
7811 }
7812
7813 static void perf_event_task(struct task_struct *task,
7814                               struct perf_event_context *task_ctx,
7815                               int new)
7816 {
7817         struct perf_task_event task_event;
7818
7819         if (!atomic_read(&nr_comm_events) &&
7820             !atomic_read(&nr_mmap_events) &&
7821             !atomic_read(&nr_task_events))
7822                 return;
7823
7824         task_event = (struct perf_task_event){
7825                 .task     = task,
7826                 .task_ctx = task_ctx,
7827                 .event_id    = {
7828                         .header = {
7829                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7830                                 .misc = 0,
7831                                 .size = sizeof(task_event.event_id),
7832                         },
7833                         /* .pid  */
7834                         /* .ppid */
7835                         /* .tid  */
7836                         /* .ptid */
7837                         /* .time */
7838                 },
7839         };
7840
7841         perf_iterate_sb(perf_event_task_output,
7842                        &task_event,
7843                        task_ctx);
7844 }
7845
7846 void perf_event_fork(struct task_struct *task)
7847 {
7848         perf_event_task(task, NULL, 1);
7849         perf_event_namespaces(task);
7850 }
7851
7852 /*
7853  * comm tracking
7854  */
7855
7856 struct perf_comm_event {
7857         struct task_struct      *task;
7858         char                    *comm;
7859         int                     comm_size;
7860
7861         struct {
7862                 struct perf_event_header        header;
7863
7864                 u32                             pid;
7865                 u32                             tid;
7866         } event_id;
7867 };
7868
7869 static int perf_event_comm_match(struct perf_event *event)
7870 {
7871         return event->attr.comm;
7872 }
7873
7874 static void perf_event_comm_output(struct perf_event *event,
7875                                    void *data)
7876 {
7877         struct perf_comm_event *comm_event = data;
7878         struct perf_output_handle handle;
7879         struct perf_sample_data sample;
7880         int size = comm_event->event_id.header.size;
7881         int ret;
7882
7883         if (!perf_event_comm_match(event))
7884                 return;
7885
7886         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7887         ret = perf_output_begin(&handle, &sample, event,
7888                                 comm_event->event_id.header.size);
7889
7890         if (ret)
7891                 goto out;
7892
7893         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7894         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7895
7896         perf_output_put(&handle, comm_event->event_id);
7897         __output_copy(&handle, comm_event->comm,
7898                                    comm_event->comm_size);
7899
7900         perf_event__output_id_sample(event, &handle, &sample);
7901
7902         perf_output_end(&handle);
7903 out:
7904         comm_event->event_id.header.size = size;
7905 }
7906
7907 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7908 {
7909         char comm[TASK_COMM_LEN];
7910         unsigned int size;
7911
7912         memset(comm, 0, sizeof(comm));
7913         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7914         size = ALIGN(strlen(comm)+1, sizeof(u64));
7915
7916         comm_event->comm = comm;
7917         comm_event->comm_size = size;
7918
7919         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7920
7921         perf_iterate_sb(perf_event_comm_output,
7922                        comm_event,
7923                        NULL);
7924 }
7925
7926 void perf_event_comm(struct task_struct *task, bool exec)
7927 {
7928         struct perf_comm_event comm_event;
7929
7930         if (!atomic_read(&nr_comm_events))
7931                 return;
7932
7933         comm_event = (struct perf_comm_event){
7934                 .task   = task,
7935                 /* .comm      */
7936                 /* .comm_size */
7937                 .event_id  = {
7938                         .header = {
7939                                 .type = PERF_RECORD_COMM,
7940                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7941                                 /* .size */
7942                         },
7943                         /* .pid */
7944                         /* .tid */
7945                 },
7946         };
7947
7948         perf_event_comm_event(&comm_event);
7949 }
7950
7951 /*
7952  * namespaces tracking
7953  */
7954
7955 struct perf_namespaces_event {
7956         struct task_struct              *task;
7957
7958         struct {
7959                 struct perf_event_header        header;
7960
7961                 u32                             pid;
7962                 u32                             tid;
7963                 u64                             nr_namespaces;
7964                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7965         } event_id;
7966 };
7967
7968 static int perf_event_namespaces_match(struct perf_event *event)
7969 {
7970         return event->attr.namespaces;
7971 }
7972
7973 static void perf_event_namespaces_output(struct perf_event *event,
7974                                          void *data)
7975 {
7976         struct perf_namespaces_event *namespaces_event = data;
7977         struct perf_output_handle handle;
7978         struct perf_sample_data sample;
7979         u16 header_size = namespaces_event->event_id.header.size;
7980         int ret;
7981
7982         if (!perf_event_namespaces_match(event))
7983                 return;
7984
7985         perf_event_header__init_id(&namespaces_event->event_id.header,
7986                                    &sample, event);
7987         ret = perf_output_begin(&handle, &sample, event,
7988                                 namespaces_event->event_id.header.size);
7989         if (ret)
7990                 goto out;
7991
7992         namespaces_event->event_id.pid = perf_event_pid(event,
7993                                                         namespaces_event->task);
7994         namespaces_event->event_id.tid = perf_event_tid(event,
7995                                                         namespaces_event->task);
7996
7997         perf_output_put(&handle, namespaces_event->event_id);
7998
7999         perf_event__output_id_sample(event, &handle, &sample);
8000
8001         perf_output_end(&handle);
8002 out:
8003         namespaces_event->event_id.header.size = header_size;
8004 }
8005
8006 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8007                                    struct task_struct *task,
8008                                    const struct proc_ns_operations *ns_ops)
8009 {
8010         struct path ns_path;
8011         struct inode *ns_inode;
8012         int error;
8013
8014         error = ns_get_path(&ns_path, task, ns_ops);
8015         if (!error) {
8016                 ns_inode = ns_path.dentry->d_inode;
8017                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8018                 ns_link_info->ino = ns_inode->i_ino;
8019                 path_put(&ns_path);
8020         }
8021 }
8022
8023 void perf_event_namespaces(struct task_struct *task)
8024 {
8025         struct perf_namespaces_event namespaces_event;
8026         struct perf_ns_link_info *ns_link_info;
8027
8028         if (!atomic_read(&nr_namespaces_events))
8029                 return;
8030
8031         namespaces_event = (struct perf_namespaces_event){
8032                 .task   = task,
8033                 .event_id  = {
8034                         .header = {
8035                                 .type = PERF_RECORD_NAMESPACES,
8036                                 .misc = 0,
8037                                 .size = sizeof(namespaces_event.event_id),
8038                         },
8039                         /* .pid */
8040                         /* .tid */
8041                         .nr_namespaces = NR_NAMESPACES,
8042                         /* .link_info[NR_NAMESPACES] */
8043                 },
8044         };
8045
8046         ns_link_info = namespaces_event.event_id.link_info;
8047
8048         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8049                                task, &mntns_operations);
8050
8051 #ifdef CONFIG_USER_NS
8052         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8053                                task, &userns_operations);
8054 #endif
8055 #ifdef CONFIG_NET_NS
8056         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8057                                task, &netns_operations);
8058 #endif
8059 #ifdef CONFIG_UTS_NS
8060         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8061                                task, &utsns_operations);
8062 #endif
8063 #ifdef CONFIG_IPC_NS
8064         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8065                                task, &ipcns_operations);
8066 #endif
8067 #ifdef CONFIG_PID_NS
8068         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8069                                task, &pidns_operations);
8070 #endif
8071 #ifdef CONFIG_CGROUPS
8072         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8073                                task, &cgroupns_operations);
8074 #endif
8075
8076         perf_iterate_sb(perf_event_namespaces_output,
8077                         &namespaces_event,
8078                         NULL);
8079 }
8080
8081 /*
8082  * cgroup tracking
8083  */
8084 #ifdef CONFIG_CGROUP_PERF
8085
8086 struct perf_cgroup_event {
8087         char                            *path;
8088         int                             path_size;
8089         struct {
8090                 struct perf_event_header        header;
8091                 u64                             id;
8092                 char                            path[];
8093         } event_id;
8094 };
8095
8096 static int perf_event_cgroup_match(struct perf_event *event)
8097 {
8098         return event->attr.cgroup;
8099 }
8100
8101 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8102 {
8103         struct perf_cgroup_event *cgroup_event = data;
8104         struct perf_output_handle handle;
8105         struct perf_sample_data sample;
8106         u16 header_size = cgroup_event->event_id.header.size;
8107         int ret;
8108
8109         if (!perf_event_cgroup_match(event))
8110                 return;
8111
8112         perf_event_header__init_id(&cgroup_event->event_id.header,
8113                                    &sample, event);
8114         ret = perf_output_begin(&handle, &sample, event,
8115                                 cgroup_event->event_id.header.size);
8116         if (ret)
8117                 goto out;
8118
8119         perf_output_put(&handle, cgroup_event->event_id);
8120         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8121
8122         perf_event__output_id_sample(event, &handle, &sample);
8123
8124         perf_output_end(&handle);
8125 out:
8126         cgroup_event->event_id.header.size = header_size;
8127 }
8128
8129 static void perf_event_cgroup(struct cgroup *cgrp)
8130 {
8131         struct perf_cgroup_event cgroup_event;
8132         char path_enomem[16] = "//enomem";
8133         char *pathname;
8134         size_t size;
8135
8136         if (!atomic_read(&nr_cgroup_events))
8137                 return;
8138
8139         cgroup_event = (struct perf_cgroup_event){
8140                 .event_id  = {
8141                         .header = {
8142                                 .type = PERF_RECORD_CGROUP,
8143                                 .misc = 0,
8144                                 .size = sizeof(cgroup_event.event_id),
8145                         },
8146                         .id = cgroup_id(cgrp),
8147                 },
8148         };
8149
8150         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8151         if (pathname == NULL) {
8152                 cgroup_event.path = path_enomem;
8153         } else {
8154                 /* just to be sure to have enough space for alignment */
8155                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8156                 cgroup_event.path = pathname;
8157         }
8158
8159         /*
8160          * Since our buffer works in 8 byte units we need to align our string
8161          * size to a multiple of 8. However, we must guarantee the tail end is
8162          * zero'd out to avoid leaking random bits to userspace.
8163          */
8164         size = strlen(cgroup_event.path) + 1;
8165         while (!IS_ALIGNED(size, sizeof(u64)))
8166                 cgroup_event.path[size++] = '\0';
8167
8168         cgroup_event.event_id.header.size += size;
8169         cgroup_event.path_size = size;
8170
8171         perf_iterate_sb(perf_event_cgroup_output,
8172                         &cgroup_event,
8173                         NULL);
8174
8175         kfree(pathname);
8176 }
8177
8178 #endif
8179
8180 /*
8181  * mmap tracking
8182  */
8183
8184 struct perf_mmap_event {
8185         struct vm_area_struct   *vma;
8186
8187         const char              *file_name;
8188         int                     file_size;
8189         int                     maj, min;
8190         u64                     ino;
8191         u64                     ino_generation;
8192         u32                     prot, flags;
8193         u8                      build_id[BUILD_ID_SIZE_MAX];
8194         u32                     build_id_size;
8195
8196         struct {
8197                 struct perf_event_header        header;
8198
8199                 u32                             pid;
8200                 u32                             tid;
8201                 u64                             start;
8202                 u64                             len;
8203                 u64                             pgoff;
8204         } event_id;
8205 };
8206
8207 static int perf_event_mmap_match(struct perf_event *event,
8208                                  void *data)
8209 {
8210         struct perf_mmap_event *mmap_event = data;
8211         struct vm_area_struct *vma = mmap_event->vma;
8212         int executable = vma->vm_flags & VM_EXEC;
8213
8214         return (!executable && event->attr.mmap_data) ||
8215                (executable && (event->attr.mmap || event->attr.mmap2));
8216 }
8217
8218 static void perf_event_mmap_output(struct perf_event *event,
8219                                    void *data)
8220 {
8221         struct perf_mmap_event *mmap_event = data;
8222         struct perf_output_handle handle;
8223         struct perf_sample_data sample;
8224         int size = mmap_event->event_id.header.size;
8225         u32 type = mmap_event->event_id.header.type;
8226         bool use_build_id;
8227         int ret;
8228
8229         if (!perf_event_mmap_match(event, data))
8230                 return;
8231
8232         if (event->attr.mmap2) {
8233                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8234                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8235                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8236                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8237                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8238                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8239                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8240         }
8241
8242         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8243         ret = perf_output_begin(&handle, &sample, event,
8244                                 mmap_event->event_id.header.size);
8245         if (ret)
8246                 goto out;
8247
8248         mmap_event->event_id.pid = perf_event_pid(event, current);
8249         mmap_event->event_id.tid = perf_event_tid(event, current);
8250
8251         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8252
8253         if (event->attr.mmap2 && use_build_id)
8254                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8255
8256         perf_output_put(&handle, mmap_event->event_id);
8257
8258         if (event->attr.mmap2) {
8259                 if (use_build_id) {
8260                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8261
8262                         __output_copy(&handle, size, 4);
8263                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8264                 } else {
8265                         perf_output_put(&handle, mmap_event->maj);
8266                         perf_output_put(&handle, mmap_event->min);
8267                         perf_output_put(&handle, mmap_event->ino);
8268                         perf_output_put(&handle, mmap_event->ino_generation);
8269                 }
8270                 perf_output_put(&handle, mmap_event->prot);
8271                 perf_output_put(&handle, mmap_event->flags);
8272         }
8273
8274         __output_copy(&handle, mmap_event->file_name,
8275                                    mmap_event->file_size);
8276
8277         perf_event__output_id_sample(event, &handle, &sample);
8278
8279         perf_output_end(&handle);
8280 out:
8281         mmap_event->event_id.header.size = size;
8282         mmap_event->event_id.header.type = type;
8283 }
8284
8285 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8286 {
8287         struct vm_area_struct *vma = mmap_event->vma;
8288         struct file *file = vma->vm_file;
8289         int maj = 0, min = 0;
8290         u64 ino = 0, gen = 0;
8291         u32 prot = 0, flags = 0;
8292         unsigned int size;
8293         char tmp[16];
8294         char *buf = NULL;
8295         char *name;
8296
8297         if (vma->vm_flags & VM_READ)
8298                 prot |= PROT_READ;
8299         if (vma->vm_flags & VM_WRITE)
8300                 prot |= PROT_WRITE;
8301         if (vma->vm_flags & VM_EXEC)
8302                 prot |= PROT_EXEC;
8303
8304         if (vma->vm_flags & VM_MAYSHARE)
8305                 flags = MAP_SHARED;
8306         else
8307                 flags = MAP_PRIVATE;
8308
8309         if (vma->vm_flags & VM_DENYWRITE)
8310                 flags |= MAP_DENYWRITE;
8311         if (vma->vm_flags & VM_MAYEXEC)
8312                 flags |= MAP_EXECUTABLE;
8313         if (vma->vm_flags & VM_LOCKED)
8314                 flags |= MAP_LOCKED;
8315         if (is_vm_hugetlb_page(vma))
8316                 flags |= MAP_HUGETLB;
8317
8318         if (file) {
8319                 struct inode *inode;
8320                 dev_t dev;
8321
8322                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8323                 if (!buf) {
8324                         name = "//enomem";
8325                         goto cpy_name;
8326                 }
8327                 /*
8328                  * d_path() works from the end of the rb backwards, so we
8329                  * need to add enough zero bytes after the string to handle
8330                  * the 64bit alignment we do later.
8331                  */
8332                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8333                 if (IS_ERR(name)) {
8334                         name = "//toolong";
8335                         goto cpy_name;
8336                 }
8337                 inode = file_inode(vma->vm_file);
8338                 dev = inode->i_sb->s_dev;
8339                 ino = inode->i_ino;
8340                 gen = inode->i_generation;
8341                 maj = MAJOR(dev);
8342                 min = MINOR(dev);
8343
8344                 goto got_name;
8345         } else {
8346                 if (vma->vm_ops && vma->vm_ops->name) {
8347                         name = (char *) vma->vm_ops->name(vma);
8348                         if (name)
8349                                 goto cpy_name;
8350                 }
8351
8352                 name = (char *)arch_vma_name(vma);
8353                 if (name)
8354                         goto cpy_name;
8355
8356                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8357                                 vma->vm_end >= vma->vm_mm->brk) {
8358                         name = "[heap]";
8359                         goto cpy_name;
8360                 }
8361                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8362                                 vma->vm_end >= vma->vm_mm->start_stack) {
8363                         name = "[stack]";
8364                         goto cpy_name;
8365                 }
8366
8367                 name = "//anon";
8368                 goto cpy_name;
8369         }
8370
8371 cpy_name:
8372         strlcpy(tmp, name, sizeof(tmp));
8373         name = tmp;
8374 got_name:
8375         /*
8376          * Since our buffer works in 8 byte units we need to align our string
8377          * size to a multiple of 8. However, we must guarantee the tail end is
8378          * zero'd out to avoid leaking random bits to userspace.
8379          */
8380         size = strlen(name)+1;
8381         while (!IS_ALIGNED(size, sizeof(u64)))
8382                 name[size++] = '\0';
8383
8384         mmap_event->file_name = name;
8385         mmap_event->file_size = size;
8386         mmap_event->maj = maj;
8387         mmap_event->min = min;
8388         mmap_event->ino = ino;
8389         mmap_event->ino_generation = gen;
8390         mmap_event->prot = prot;
8391         mmap_event->flags = flags;
8392
8393         if (!(vma->vm_flags & VM_EXEC))
8394                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8395
8396         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8397
8398         if (atomic_read(&nr_build_id_events))
8399                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8400
8401         perf_iterate_sb(perf_event_mmap_output,
8402                        mmap_event,
8403                        NULL);
8404
8405         kfree(buf);
8406 }
8407
8408 /*
8409  * Check whether inode and address range match filter criteria.
8410  */
8411 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8412                                      struct file *file, unsigned long offset,
8413                                      unsigned long size)
8414 {
8415         /* d_inode(NULL) won't be equal to any mapped user-space file */
8416         if (!filter->path.dentry)
8417                 return false;
8418
8419         if (d_inode(filter->path.dentry) != file_inode(file))
8420                 return false;
8421
8422         if (filter->offset > offset + size)
8423                 return false;
8424
8425         if (filter->offset + filter->size < offset)
8426                 return false;
8427
8428         return true;
8429 }
8430
8431 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8432                                         struct vm_area_struct *vma,
8433                                         struct perf_addr_filter_range *fr)
8434 {
8435         unsigned long vma_size = vma->vm_end - vma->vm_start;
8436         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8437         struct file *file = vma->vm_file;
8438
8439         if (!perf_addr_filter_match(filter, file, off, vma_size))
8440                 return false;
8441
8442         if (filter->offset < off) {
8443                 fr->start = vma->vm_start;
8444                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8445         } else {
8446                 fr->start = vma->vm_start + filter->offset - off;
8447                 fr->size = min(vma->vm_end - fr->start, filter->size);
8448         }
8449
8450         return true;
8451 }
8452
8453 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8454 {
8455         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8456         struct vm_area_struct *vma = data;
8457         struct perf_addr_filter *filter;
8458         unsigned int restart = 0, count = 0;
8459         unsigned long flags;
8460
8461         if (!has_addr_filter(event))
8462                 return;
8463
8464         if (!vma->vm_file)
8465                 return;
8466
8467         raw_spin_lock_irqsave(&ifh->lock, flags);
8468         list_for_each_entry(filter, &ifh->list, entry) {
8469                 if (perf_addr_filter_vma_adjust(filter, vma,
8470                                                 &event->addr_filter_ranges[count]))
8471                         restart++;
8472
8473                 count++;
8474         }
8475
8476         if (restart)
8477                 event->addr_filters_gen++;
8478         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8479
8480         if (restart)
8481                 perf_event_stop(event, 1);
8482 }
8483
8484 /*
8485  * Adjust all task's events' filters to the new vma
8486  */
8487 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8488 {
8489         struct perf_event_context *ctx;
8490         int ctxn;
8491
8492         /*
8493          * Data tracing isn't supported yet and as such there is no need
8494          * to keep track of anything that isn't related to executable code:
8495          */
8496         if (!(vma->vm_flags & VM_EXEC))
8497                 return;
8498
8499         rcu_read_lock();
8500         for_each_task_context_nr(ctxn) {
8501                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8502                 if (!ctx)
8503                         continue;
8504
8505                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8506         }
8507         rcu_read_unlock();
8508 }
8509
8510 void perf_event_mmap(struct vm_area_struct *vma)
8511 {
8512         struct perf_mmap_event mmap_event;
8513
8514         if (!atomic_read(&nr_mmap_events))
8515                 return;
8516
8517         mmap_event = (struct perf_mmap_event){
8518                 .vma    = vma,
8519                 /* .file_name */
8520                 /* .file_size */
8521                 .event_id  = {
8522                         .header = {
8523                                 .type = PERF_RECORD_MMAP,
8524                                 .misc = PERF_RECORD_MISC_USER,
8525                                 /* .size */
8526                         },
8527                         /* .pid */
8528                         /* .tid */
8529                         .start  = vma->vm_start,
8530                         .len    = vma->vm_end - vma->vm_start,
8531                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8532                 },
8533                 /* .maj (attr_mmap2 only) */
8534                 /* .min (attr_mmap2 only) */
8535                 /* .ino (attr_mmap2 only) */
8536                 /* .ino_generation (attr_mmap2 only) */
8537                 /* .prot (attr_mmap2 only) */
8538                 /* .flags (attr_mmap2 only) */
8539         };
8540
8541         perf_addr_filters_adjust(vma);
8542         perf_event_mmap_event(&mmap_event);
8543 }
8544
8545 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8546                           unsigned long size, u64 flags)
8547 {
8548         struct perf_output_handle handle;
8549         struct perf_sample_data sample;
8550         struct perf_aux_event {
8551                 struct perf_event_header        header;
8552                 u64                             offset;
8553                 u64                             size;
8554                 u64                             flags;
8555         } rec = {
8556                 .header = {
8557                         .type = PERF_RECORD_AUX,
8558                         .misc = 0,
8559                         .size = sizeof(rec),
8560                 },
8561                 .offset         = head,
8562                 .size           = size,
8563                 .flags          = flags,
8564         };
8565         int ret;
8566
8567         perf_event_header__init_id(&rec.header, &sample, event);
8568         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8569
8570         if (ret)
8571                 return;
8572
8573         perf_output_put(&handle, rec);
8574         perf_event__output_id_sample(event, &handle, &sample);
8575
8576         perf_output_end(&handle);
8577 }
8578
8579 /*
8580  * Lost/dropped samples logging
8581  */
8582 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8583 {
8584         struct perf_output_handle handle;
8585         struct perf_sample_data sample;
8586         int ret;
8587
8588         struct {
8589                 struct perf_event_header        header;
8590                 u64                             lost;
8591         } lost_samples_event = {
8592                 .header = {
8593                         .type = PERF_RECORD_LOST_SAMPLES,
8594                         .misc = 0,
8595                         .size = sizeof(lost_samples_event),
8596                 },
8597                 .lost           = lost,
8598         };
8599
8600         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8601
8602         ret = perf_output_begin(&handle, &sample, event,
8603                                 lost_samples_event.header.size);
8604         if (ret)
8605                 return;
8606
8607         perf_output_put(&handle, lost_samples_event);
8608         perf_event__output_id_sample(event, &handle, &sample);
8609         perf_output_end(&handle);
8610 }
8611
8612 /*
8613  * context_switch tracking
8614  */
8615
8616 struct perf_switch_event {
8617         struct task_struct      *task;
8618         struct task_struct      *next_prev;
8619
8620         struct {
8621                 struct perf_event_header        header;
8622                 u32                             next_prev_pid;
8623                 u32                             next_prev_tid;
8624         } event_id;
8625 };
8626
8627 static int perf_event_switch_match(struct perf_event *event)
8628 {
8629         return event->attr.context_switch;
8630 }
8631
8632 static void perf_event_switch_output(struct perf_event *event, void *data)
8633 {
8634         struct perf_switch_event *se = data;
8635         struct perf_output_handle handle;
8636         struct perf_sample_data sample;
8637         int ret;
8638
8639         if (!perf_event_switch_match(event))
8640                 return;
8641
8642         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8643         if (event->ctx->task) {
8644                 se->event_id.header.type = PERF_RECORD_SWITCH;
8645                 se->event_id.header.size = sizeof(se->event_id.header);
8646         } else {
8647                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8648                 se->event_id.header.size = sizeof(se->event_id);
8649                 se->event_id.next_prev_pid =
8650                                         perf_event_pid(event, se->next_prev);
8651                 se->event_id.next_prev_tid =
8652                                         perf_event_tid(event, se->next_prev);
8653         }
8654
8655         perf_event_header__init_id(&se->event_id.header, &sample, event);
8656
8657         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8658         if (ret)
8659                 return;
8660
8661         if (event->ctx->task)
8662                 perf_output_put(&handle, se->event_id.header);
8663         else
8664                 perf_output_put(&handle, se->event_id);
8665
8666         perf_event__output_id_sample(event, &handle, &sample);
8667
8668         perf_output_end(&handle);
8669 }
8670
8671 static void perf_event_switch(struct task_struct *task,
8672                               struct task_struct *next_prev, bool sched_in)
8673 {
8674         struct perf_switch_event switch_event;
8675
8676         /* N.B. caller checks nr_switch_events != 0 */
8677
8678         switch_event = (struct perf_switch_event){
8679                 .task           = task,
8680                 .next_prev      = next_prev,
8681                 .event_id       = {
8682                         .header = {
8683                                 /* .type */
8684                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8685                                 /* .size */
8686                         },
8687                         /* .next_prev_pid */
8688                         /* .next_prev_tid */
8689                 },
8690         };
8691
8692         if (!sched_in && task->state == TASK_RUNNING)
8693                 switch_event.event_id.header.misc |=
8694                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8695
8696         perf_iterate_sb(perf_event_switch_output,
8697                        &switch_event,
8698                        NULL);
8699 }
8700
8701 /*
8702  * IRQ throttle logging
8703  */
8704
8705 static void perf_log_throttle(struct perf_event *event, int enable)
8706 {
8707         struct perf_output_handle handle;
8708         struct perf_sample_data sample;
8709         int ret;
8710
8711         struct {
8712                 struct perf_event_header        header;
8713                 u64                             time;
8714                 u64                             id;
8715                 u64                             stream_id;
8716         } throttle_event = {
8717                 .header = {
8718                         .type = PERF_RECORD_THROTTLE,
8719                         .misc = 0,
8720                         .size = sizeof(throttle_event),
8721                 },
8722                 .time           = perf_event_clock(event),
8723                 .id             = primary_event_id(event),
8724                 .stream_id      = event->id,
8725         };
8726
8727         if (enable)
8728                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8729
8730         perf_event_header__init_id(&throttle_event.header, &sample, event);
8731
8732         ret = perf_output_begin(&handle, &sample, event,
8733                                 throttle_event.header.size);
8734         if (ret)
8735                 return;
8736
8737         perf_output_put(&handle, throttle_event);
8738         perf_event__output_id_sample(event, &handle, &sample);
8739         perf_output_end(&handle);
8740 }
8741
8742 /*
8743  * ksymbol register/unregister tracking
8744  */
8745
8746 struct perf_ksymbol_event {
8747         const char      *name;
8748         int             name_len;
8749         struct {
8750                 struct perf_event_header        header;
8751                 u64                             addr;
8752                 u32                             len;
8753                 u16                             ksym_type;
8754                 u16                             flags;
8755         } event_id;
8756 };
8757
8758 static int perf_event_ksymbol_match(struct perf_event *event)
8759 {
8760         return event->attr.ksymbol;
8761 }
8762
8763 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8764 {
8765         struct perf_ksymbol_event *ksymbol_event = data;
8766         struct perf_output_handle handle;
8767         struct perf_sample_data sample;
8768         int ret;
8769
8770         if (!perf_event_ksymbol_match(event))
8771                 return;
8772
8773         perf_event_header__init_id(&ksymbol_event->event_id.header,
8774                                    &sample, event);
8775         ret = perf_output_begin(&handle, &sample, event,
8776                                 ksymbol_event->event_id.header.size);
8777         if (ret)
8778                 return;
8779
8780         perf_output_put(&handle, ksymbol_event->event_id);
8781         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8782         perf_event__output_id_sample(event, &handle, &sample);
8783
8784         perf_output_end(&handle);
8785 }
8786
8787 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8788                         const char *sym)
8789 {
8790         struct perf_ksymbol_event ksymbol_event;
8791         char name[KSYM_NAME_LEN];
8792         u16 flags = 0;
8793         int name_len;
8794
8795         if (!atomic_read(&nr_ksymbol_events))
8796                 return;
8797
8798         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8799             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8800                 goto err;
8801
8802         strlcpy(name, sym, KSYM_NAME_LEN);
8803         name_len = strlen(name) + 1;
8804         while (!IS_ALIGNED(name_len, sizeof(u64)))
8805                 name[name_len++] = '\0';
8806         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8807
8808         if (unregister)
8809                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8810
8811         ksymbol_event = (struct perf_ksymbol_event){
8812                 .name = name,
8813                 .name_len = name_len,
8814                 .event_id = {
8815                         .header = {
8816                                 .type = PERF_RECORD_KSYMBOL,
8817                                 .size = sizeof(ksymbol_event.event_id) +
8818                                         name_len,
8819                         },
8820                         .addr = addr,
8821                         .len = len,
8822                         .ksym_type = ksym_type,
8823                         .flags = flags,
8824                 },
8825         };
8826
8827         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8828         return;
8829 err:
8830         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8831 }
8832
8833 /*
8834  * bpf program load/unload tracking
8835  */
8836
8837 struct perf_bpf_event {
8838         struct bpf_prog *prog;
8839         struct {
8840                 struct perf_event_header        header;
8841                 u16                             type;
8842                 u16                             flags;
8843                 u32                             id;
8844                 u8                              tag[BPF_TAG_SIZE];
8845         } event_id;
8846 };
8847
8848 static int perf_event_bpf_match(struct perf_event *event)
8849 {
8850         return event->attr.bpf_event;
8851 }
8852
8853 static void perf_event_bpf_output(struct perf_event *event, void *data)
8854 {
8855         struct perf_bpf_event *bpf_event = data;
8856         struct perf_output_handle handle;
8857         struct perf_sample_data sample;
8858         int ret;
8859
8860         if (!perf_event_bpf_match(event))
8861                 return;
8862
8863         perf_event_header__init_id(&bpf_event->event_id.header,
8864                                    &sample, event);
8865         ret = perf_output_begin(&handle, data, event,
8866                                 bpf_event->event_id.header.size);
8867         if (ret)
8868                 return;
8869
8870         perf_output_put(&handle, bpf_event->event_id);
8871         perf_event__output_id_sample(event, &handle, &sample);
8872
8873         perf_output_end(&handle);
8874 }
8875
8876 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8877                                          enum perf_bpf_event_type type)
8878 {
8879         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8880         int i;
8881
8882         if (prog->aux->func_cnt == 0) {
8883                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8884                                    (u64)(unsigned long)prog->bpf_func,
8885                                    prog->jited_len, unregister,
8886                                    prog->aux->ksym.name);
8887         } else {
8888                 for (i = 0; i < prog->aux->func_cnt; i++) {
8889                         struct bpf_prog *subprog = prog->aux->func[i];
8890
8891                         perf_event_ksymbol(
8892                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8893                                 (u64)(unsigned long)subprog->bpf_func,
8894                                 subprog->jited_len, unregister,
8895                                 prog->aux->ksym.name);
8896                 }
8897         }
8898 }
8899
8900 void perf_event_bpf_event(struct bpf_prog *prog,
8901                           enum perf_bpf_event_type type,
8902                           u16 flags)
8903 {
8904         struct perf_bpf_event bpf_event;
8905
8906         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8907             type >= PERF_BPF_EVENT_MAX)
8908                 return;
8909
8910         switch (type) {
8911         case PERF_BPF_EVENT_PROG_LOAD:
8912         case PERF_BPF_EVENT_PROG_UNLOAD:
8913                 if (atomic_read(&nr_ksymbol_events))
8914                         perf_event_bpf_emit_ksymbols(prog, type);
8915                 break;
8916         default:
8917                 break;
8918         }
8919
8920         if (!atomic_read(&nr_bpf_events))
8921                 return;
8922
8923         bpf_event = (struct perf_bpf_event){
8924                 .prog = prog,
8925                 .event_id = {
8926                         .header = {
8927                                 .type = PERF_RECORD_BPF_EVENT,
8928                                 .size = sizeof(bpf_event.event_id),
8929                         },
8930                         .type = type,
8931                         .flags = flags,
8932                         .id = prog->aux->id,
8933                 },
8934         };
8935
8936         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8937
8938         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8939         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8940 }
8941
8942 struct perf_text_poke_event {
8943         const void              *old_bytes;
8944         const void              *new_bytes;
8945         size_t                  pad;
8946         u16                     old_len;
8947         u16                     new_len;
8948
8949         struct {
8950                 struct perf_event_header        header;
8951
8952                 u64                             addr;
8953         } event_id;
8954 };
8955
8956 static int perf_event_text_poke_match(struct perf_event *event)
8957 {
8958         return event->attr.text_poke;
8959 }
8960
8961 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8962 {
8963         struct perf_text_poke_event *text_poke_event = data;
8964         struct perf_output_handle handle;
8965         struct perf_sample_data sample;
8966         u64 padding = 0;
8967         int ret;
8968
8969         if (!perf_event_text_poke_match(event))
8970                 return;
8971
8972         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8973
8974         ret = perf_output_begin(&handle, &sample, event,
8975                                 text_poke_event->event_id.header.size);
8976         if (ret)
8977                 return;
8978
8979         perf_output_put(&handle, text_poke_event->event_id);
8980         perf_output_put(&handle, text_poke_event->old_len);
8981         perf_output_put(&handle, text_poke_event->new_len);
8982
8983         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8984         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8985
8986         if (text_poke_event->pad)
8987                 __output_copy(&handle, &padding, text_poke_event->pad);
8988
8989         perf_event__output_id_sample(event, &handle, &sample);
8990
8991         perf_output_end(&handle);
8992 }
8993
8994 void perf_event_text_poke(const void *addr, const void *old_bytes,
8995                           size_t old_len, const void *new_bytes, size_t new_len)
8996 {
8997         struct perf_text_poke_event text_poke_event;
8998         size_t tot, pad;
8999
9000         if (!atomic_read(&nr_text_poke_events))
9001                 return;
9002
9003         tot  = sizeof(text_poke_event.old_len) + old_len;
9004         tot += sizeof(text_poke_event.new_len) + new_len;
9005         pad  = ALIGN(tot, sizeof(u64)) - tot;
9006
9007         text_poke_event = (struct perf_text_poke_event){
9008                 .old_bytes    = old_bytes,
9009                 .new_bytes    = new_bytes,
9010                 .pad          = pad,
9011                 .old_len      = old_len,
9012                 .new_len      = new_len,
9013                 .event_id  = {
9014                         .header = {
9015                                 .type = PERF_RECORD_TEXT_POKE,
9016                                 .misc = PERF_RECORD_MISC_KERNEL,
9017                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9018                         },
9019                         .addr = (unsigned long)addr,
9020                 },
9021         };
9022
9023         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9024 }
9025
9026 void perf_event_itrace_started(struct perf_event *event)
9027 {
9028         event->attach_state |= PERF_ATTACH_ITRACE;
9029 }
9030
9031 static void perf_log_itrace_start(struct perf_event *event)
9032 {
9033         struct perf_output_handle handle;
9034         struct perf_sample_data sample;
9035         struct perf_aux_event {
9036                 struct perf_event_header        header;
9037                 u32                             pid;
9038                 u32                             tid;
9039         } rec;
9040         int ret;
9041
9042         if (event->parent)
9043                 event = event->parent;
9044
9045         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9046             event->attach_state & PERF_ATTACH_ITRACE)
9047                 return;
9048
9049         rec.header.type = PERF_RECORD_ITRACE_START;
9050         rec.header.misc = 0;
9051         rec.header.size = sizeof(rec);
9052         rec.pid = perf_event_pid(event, current);
9053         rec.tid = perf_event_tid(event, current);
9054
9055         perf_event_header__init_id(&rec.header, &sample, event);
9056         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9057
9058         if (ret)
9059                 return;
9060
9061         perf_output_put(&handle, rec);
9062         perf_event__output_id_sample(event, &handle, &sample);
9063
9064         perf_output_end(&handle);
9065 }
9066
9067 static int
9068 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9069 {
9070         struct hw_perf_event *hwc = &event->hw;
9071         int ret = 0;
9072         u64 seq;
9073
9074         seq = __this_cpu_read(perf_throttled_seq);
9075         if (seq != hwc->interrupts_seq) {
9076                 hwc->interrupts_seq = seq;
9077                 hwc->interrupts = 1;
9078         } else {
9079                 hwc->interrupts++;
9080                 if (unlikely(throttle
9081                              && hwc->interrupts >= max_samples_per_tick)) {
9082                         __this_cpu_inc(perf_throttled_count);
9083                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9084                         hwc->interrupts = MAX_INTERRUPTS;
9085                         perf_log_throttle(event, 0);
9086                         ret = 1;
9087                 }
9088         }
9089
9090         if (event->attr.freq) {
9091                 u64 now = perf_clock();
9092                 s64 delta = now - hwc->freq_time_stamp;
9093
9094                 hwc->freq_time_stamp = now;
9095
9096                 if (delta > 0 && delta < 2*TICK_NSEC)
9097                         perf_adjust_period(event, delta, hwc->last_period, true);
9098         }
9099
9100         return ret;
9101 }
9102
9103 int perf_event_account_interrupt(struct perf_event *event)
9104 {
9105         return __perf_event_account_interrupt(event, 1);
9106 }
9107
9108 /*
9109  * Generic event overflow handling, sampling.
9110  */
9111
9112 static int __perf_event_overflow(struct perf_event *event,
9113                                    int throttle, struct perf_sample_data *data,
9114                                    struct pt_regs *regs)
9115 {
9116         int events = atomic_read(&event->event_limit);
9117         int ret = 0;
9118
9119         /*
9120          * Non-sampling counters might still use the PMI to fold short
9121          * hardware counters, ignore those.
9122          */
9123         if (unlikely(!is_sampling_event(event)))
9124                 return 0;
9125
9126         ret = __perf_event_account_interrupt(event, throttle);
9127
9128         /*
9129          * XXX event_limit might not quite work as expected on inherited
9130          * events
9131          */
9132
9133         event->pending_kill = POLL_IN;
9134         if (events && atomic_dec_and_test(&event->event_limit)) {
9135                 ret = 1;
9136                 event->pending_kill = POLL_HUP;
9137                 event->pending_addr = data->addr;
9138
9139                 perf_event_disable_inatomic(event);
9140         }
9141
9142         READ_ONCE(event->overflow_handler)(event, data, regs);
9143
9144         if (*perf_event_fasync(event) && event->pending_kill) {
9145                 event->pending_wakeup = 1;
9146                 irq_work_queue(&event->pending);
9147         }
9148
9149         return ret;
9150 }
9151
9152 int perf_event_overflow(struct perf_event *event,
9153                           struct perf_sample_data *data,
9154                           struct pt_regs *regs)
9155 {
9156         return __perf_event_overflow(event, 1, data, regs);
9157 }
9158
9159 /*
9160  * Generic software event infrastructure
9161  */
9162
9163 struct swevent_htable {
9164         struct swevent_hlist            *swevent_hlist;
9165         struct mutex                    hlist_mutex;
9166         int                             hlist_refcount;
9167
9168         /* Recursion avoidance in each contexts */
9169         int                             recursion[PERF_NR_CONTEXTS];
9170 };
9171
9172 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9173
9174 /*
9175  * We directly increment event->count and keep a second value in
9176  * event->hw.period_left to count intervals. This period event
9177  * is kept in the range [-sample_period, 0] so that we can use the
9178  * sign as trigger.
9179  */
9180
9181 u64 perf_swevent_set_period(struct perf_event *event)
9182 {
9183         struct hw_perf_event *hwc = &event->hw;
9184         u64 period = hwc->last_period;
9185         u64 nr, offset;
9186         s64 old, val;
9187
9188         hwc->last_period = hwc->sample_period;
9189
9190 again:
9191         old = val = local64_read(&hwc->period_left);
9192         if (val < 0)
9193                 return 0;
9194
9195         nr = div64_u64(period + val, period);
9196         offset = nr * period;
9197         val -= offset;
9198         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9199                 goto again;
9200
9201         return nr;
9202 }
9203
9204 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9205                                     struct perf_sample_data *data,
9206                                     struct pt_regs *regs)
9207 {
9208         struct hw_perf_event *hwc = &event->hw;
9209         int throttle = 0;
9210
9211         if (!overflow)
9212                 overflow = perf_swevent_set_period(event);
9213
9214         if (hwc->interrupts == MAX_INTERRUPTS)
9215                 return;
9216
9217         for (; overflow; overflow--) {
9218                 if (__perf_event_overflow(event, throttle,
9219                                             data, regs)) {
9220                         /*
9221                          * We inhibit the overflow from happening when
9222                          * hwc->interrupts == MAX_INTERRUPTS.
9223                          */
9224                         break;
9225                 }
9226                 throttle = 1;
9227         }
9228 }
9229
9230 static void perf_swevent_event(struct perf_event *event, u64 nr,
9231                                struct perf_sample_data *data,
9232                                struct pt_regs *regs)
9233 {
9234         struct hw_perf_event *hwc = &event->hw;
9235
9236         local64_add(nr, &event->count);
9237
9238         if (!regs)
9239                 return;
9240
9241         if (!is_sampling_event(event))
9242                 return;
9243
9244         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9245                 data->period = nr;
9246                 return perf_swevent_overflow(event, 1, data, regs);
9247         } else
9248                 data->period = event->hw.last_period;
9249
9250         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9251                 return perf_swevent_overflow(event, 1, data, regs);
9252
9253         if (local64_add_negative(nr, &hwc->period_left))
9254                 return;
9255
9256         perf_swevent_overflow(event, 0, data, regs);
9257 }
9258
9259 static int perf_exclude_event(struct perf_event *event,
9260                               struct pt_regs *regs)
9261 {
9262         if (event->hw.state & PERF_HES_STOPPED)
9263                 return 1;
9264
9265         if (regs) {
9266                 if (event->attr.exclude_user && user_mode(regs))
9267                         return 1;
9268
9269                 if (event->attr.exclude_kernel && !user_mode(regs))
9270                         return 1;
9271         }
9272
9273         return 0;
9274 }
9275
9276 static int perf_swevent_match(struct perf_event *event,
9277                                 enum perf_type_id type,
9278                                 u32 event_id,
9279                                 struct perf_sample_data *data,
9280                                 struct pt_regs *regs)
9281 {
9282         if (event->attr.type != type)
9283                 return 0;
9284
9285         if (event->attr.config != event_id)
9286                 return 0;
9287
9288         if (perf_exclude_event(event, regs))
9289                 return 0;
9290
9291         return 1;
9292 }
9293
9294 static inline u64 swevent_hash(u64 type, u32 event_id)
9295 {
9296         u64 val = event_id | (type << 32);
9297
9298         return hash_64(val, SWEVENT_HLIST_BITS);
9299 }
9300
9301 static inline struct hlist_head *
9302 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9303 {
9304         u64 hash = swevent_hash(type, event_id);
9305
9306         return &hlist->heads[hash];
9307 }
9308
9309 /* For the read side: events when they trigger */
9310 static inline struct hlist_head *
9311 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9312 {
9313         struct swevent_hlist *hlist;
9314
9315         hlist = rcu_dereference(swhash->swevent_hlist);
9316         if (!hlist)
9317                 return NULL;
9318
9319         return __find_swevent_head(hlist, type, event_id);
9320 }
9321
9322 /* For the event head insertion and removal in the hlist */
9323 static inline struct hlist_head *
9324 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9325 {
9326         struct swevent_hlist *hlist;
9327         u32 event_id = event->attr.config;
9328         u64 type = event->attr.type;
9329
9330         /*
9331          * Event scheduling is always serialized against hlist allocation
9332          * and release. Which makes the protected version suitable here.
9333          * The context lock guarantees that.
9334          */
9335         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9336                                           lockdep_is_held(&event->ctx->lock));
9337         if (!hlist)
9338                 return NULL;
9339
9340         return __find_swevent_head(hlist, type, event_id);
9341 }
9342
9343 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9344                                     u64 nr,
9345                                     struct perf_sample_data *data,
9346                                     struct pt_regs *regs)
9347 {
9348         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9349         struct perf_event *event;
9350         struct hlist_head *head;
9351
9352         rcu_read_lock();
9353         head = find_swevent_head_rcu(swhash, type, event_id);
9354         if (!head)
9355                 goto end;
9356
9357         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9358                 if (perf_swevent_match(event, type, event_id, data, regs))
9359                         perf_swevent_event(event, nr, data, regs);
9360         }
9361 end:
9362         rcu_read_unlock();
9363 }
9364
9365 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9366
9367 int perf_swevent_get_recursion_context(void)
9368 {
9369         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9370
9371         return get_recursion_context(swhash->recursion);
9372 }
9373 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9374
9375 void perf_swevent_put_recursion_context(int rctx)
9376 {
9377         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9378
9379         put_recursion_context(swhash->recursion, rctx);
9380 }
9381
9382 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9383 {
9384         struct perf_sample_data data;
9385
9386         if (WARN_ON_ONCE(!regs))
9387                 return;
9388
9389         perf_sample_data_init(&data, addr, 0);
9390         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9391 }
9392
9393 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9394 {
9395         int rctx;
9396
9397         preempt_disable_notrace();
9398         rctx = perf_swevent_get_recursion_context();
9399         if (unlikely(rctx < 0))
9400                 goto fail;
9401
9402         ___perf_sw_event(event_id, nr, regs, addr);
9403
9404         perf_swevent_put_recursion_context(rctx);
9405 fail:
9406         preempt_enable_notrace();
9407 }
9408
9409 static void perf_swevent_read(struct perf_event *event)
9410 {
9411 }
9412
9413 static int perf_swevent_add(struct perf_event *event, int flags)
9414 {
9415         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9416         struct hw_perf_event *hwc = &event->hw;
9417         struct hlist_head *head;
9418
9419         if (is_sampling_event(event)) {
9420                 hwc->last_period = hwc->sample_period;
9421                 perf_swevent_set_period(event);
9422         }
9423
9424         hwc->state = !(flags & PERF_EF_START);
9425
9426         head = find_swevent_head(swhash, event);
9427         if (WARN_ON_ONCE(!head))
9428                 return -EINVAL;
9429
9430         hlist_add_head_rcu(&event->hlist_entry, head);
9431         perf_event_update_userpage(event);
9432
9433         return 0;
9434 }
9435
9436 static void perf_swevent_del(struct perf_event *event, int flags)
9437 {
9438         hlist_del_rcu(&event->hlist_entry);
9439 }
9440
9441 static void perf_swevent_start(struct perf_event *event, int flags)
9442 {
9443         event->hw.state = 0;
9444 }
9445
9446 static void perf_swevent_stop(struct perf_event *event, int flags)
9447 {
9448         event->hw.state = PERF_HES_STOPPED;
9449 }
9450
9451 /* Deref the hlist from the update side */
9452 static inline struct swevent_hlist *
9453 swevent_hlist_deref(struct swevent_htable *swhash)
9454 {
9455         return rcu_dereference_protected(swhash->swevent_hlist,
9456                                          lockdep_is_held(&swhash->hlist_mutex));
9457 }
9458
9459 static void swevent_hlist_release(struct swevent_htable *swhash)
9460 {
9461         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9462
9463         if (!hlist)
9464                 return;
9465
9466         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9467         kfree_rcu(hlist, rcu_head);
9468 }
9469
9470 static void swevent_hlist_put_cpu(int cpu)
9471 {
9472         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9473
9474         mutex_lock(&swhash->hlist_mutex);
9475
9476         if (!--swhash->hlist_refcount)
9477                 swevent_hlist_release(swhash);
9478
9479         mutex_unlock(&swhash->hlist_mutex);
9480 }
9481
9482 static void swevent_hlist_put(void)
9483 {
9484         int cpu;
9485
9486         for_each_possible_cpu(cpu)
9487                 swevent_hlist_put_cpu(cpu);
9488 }
9489
9490 static int swevent_hlist_get_cpu(int cpu)
9491 {
9492         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9493         int err = 0;
9494
9495         mutex_lock(&swhash->hlist_mutex);
9496         if (!swevent_hlist_deref(swhash) &&
9497             cpumask_test_cpu(cpu, perf_online_mask)) {
9498                 struct swevent_hlist *hlist;
9499
9500                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9501                 if (!hlist) {
9502                         err = -ENOMEM;
9503                         goto exit;
9504                 }
9505                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9506         }
9507         swhash->hlist_refcount++;
9508 exit:
9509         mutex_unlock(&swhash->hlist_mutex);
9510
9511         return err;
9512 }
9513
9514 static int swevent_hlist_get(void)
9515 {
9516         int err, cpu, failed_cpu;
9517
9518         mutex_lock(&pmus_lock);
9519         for_each_possible_cpu(cpu) {
9520                 err = swevent_hlist_get_cpu(cpu);
9521                 if (err) {
9522                         failed_cpu = cpu;
9523                         goto fail;
9524                 }
9525         }
9526         mutex_unlock(&pmus_lock);
9527         return 0;
9528 fail:
9529         for_each_possible_cpu(cpu) {
9530                 if (cpu == failed_cpu)
9531                         break;
9532                 swevent_hlist_put_cpu(cpu);
9533         }
9534         mutex_unlock(&pmus_lock);
9535         return err;
9536 }
9537
9538 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9539
9540 static void sw_perf_event_destroy(struct perf_event *event)
9541 {
9542         u64 event_id = event->attr.config;
9543
9544         WARN_ON(event->parent);
9545
9546         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9547         swevent_hlist_put();
9548 }
9549
9550 static int perf_swevent_init(struct perf_event *event)
9551 {
9552         u64 event_id = event->attr.config;
9553
9554         if (event->attr.type != PERF_TYPE_SOFTWARE)
9555                 return -ENOENT;
9556
9557         /*
9558          * no branch sampling for software events
9559          */
9560         if (has_branch_stack(event))
9561                 return -EOPNOTSUPP;
9562
9563         switch (event_id) {
9564         case PERF_COUNT_SW_CPU_CLOCK:
9565         case PERF_COUNT_SW_TASK_CLOCK:
9566                 return -ENOENT;
9567
9568         default:
9569                 break;
9570         }
9571
9572         if (event_id >= PERF_COUNT_SW_MAX)
9573                 return -ENOENT;
9574
9575         if (!event->parent) {
9576                 int err;
9577
9578                 err = swevent_hlist_get();
9579                 if (err)
9580                         return err;
9581
9582                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9583                 event->destroy = sw_perf_event_destroy;
9584         }
9585
9586         return 0;
9587 }
9588
9589 static struct pmu perf_swevent = {
9590         .task_ctx_nr    = perf_sw_context,
9591
9592         .capabilities   = PERF_PMU_CAP_NO_NMI,
9593
9594         .event_init     = perf_swevent_init,
9595         .add            = perf_swevent_add,
9596         .del            = perf_swevent_del,
9597         .start          = perf_swevent_start,
9598         .stop           = perf_swevent_stop,
9599         .read           = perf_swevent_read,
9600 };
9601
9602 #ifdef CONFIG_EVENT_TRACING
9603
9604 static int perf_tp_filter_match(struct perf_event *event,
9605                                 struct perf_sample_data *data)
9606 {
9607         void *record = data->raw->frag.data;
9608
9609         /* only top level events have filters set */
9610         if (event->parent)
9611                 event = event->parent;
9612
9613         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9614                 return 1;
9615         return 0;
9616 }
9617
9618 static int perf_tp_event_match(struct perf_event *event,
9619                                 struct perf_sample_data *data,
9620                                 struct pt_regs *regs)
9621 {
9622         if (event->hw.state & PERF_HES_STOPPED)
9623                 return 0;
9624         /*
9625          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9626          */
9627         if (event->attr.exclude_kernel && !user_mode(regs))
9628                 return 0;
9629
9630         if (!perf_tp_filter_match(event, data))
9631                 return 0;
9632
9633         return 1;
9634 }
9635
9636 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9637                                struct trace_event_call *call, u64 count,
9638                                struct pt_regs *regs, struct hlist_head *head,
9639                                struct task_struct *task)
9640 {
9641         if (bpf_prog_array_valid(call)) {
9642                 *(struct pt_regs **)raw_data = regs;
9643                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9644                         perf_swevent_put_recursion_context(rctx);
9645                         return;
9646                 }
9647         }
9648         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9649                       rctx, task);
9650 }
9651 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9652
9653 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9654                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9655                    struct task_struct *task)
9656 {
9657         struct perf_sample_data data;
9658         struct perf_event *event;
9659
9660         struct perf_raw_record raw = {
9661                 .frag = {
9662                         .size = entry_size,
9663                         .data = record,
9664                 },
9665         };
9666
9667         perf_sample_data_init(&data, 0, 0);
9668         data.raw = &raw;
9669
9670         perf_trace_buf_update(record, event_type);
9671
9672         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9673                 if (perf_tp_event_match(event, &data, regs))
9674                         perf_swevent_event(event, count, &data, regs);
9675         }
9676
9677         /*
9678          * If we got specified a target task, also iterate its context and
9679          * deliver this event there too.
9680          */
9681         if (task && task != current) {
9682                 struct perf_event_context *ctx;
9683                 struct trace_entry *entry = record;
9684
9685                 rcu_read_lock();
9686                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9687                 if (!ctx)
9688                         goto unlock;
9689
9690                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9691                         if (event->cpu != smp_processor_id())
9692                                 continue;
9693                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9694                                 continue;
9695                         if (event->attr.config != entry->type)
9696                                 continue;
9697                         if (perf_tp_event_match(event, &data, regs))
9698                                 perf_swevent_event(event, count, &data, regs);
9699                 }
9700 unlock:
9701                 rcu_read_unlock();
9702         }
9703
9704         perf_swevent_put_recursion_context(rctx);
9705 }
9706 EXPORT_SYMBOL_GPL(perf_tp_event);
9707
9708 static void tp_perf_event_destroy(struct perf_event *event)
9709 {
9710         perf_trace_destroy(event);
9711 }
9712
9713 static int perf_tp_event_init(struct perf_event *event)
9714 {
9715         int err;
9716
9717         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9718                 return -ENOENT;
9719
9720         /*
9721          * no branch sampling for tracepoint events
9722          */
9723         if (has_branch_stack(event))
9724                 return -EOPNOTSUPP;
9725
9726         err = perf_trace_init(event);
9727         if (err)
9728                 return err;
9729
9730         event->destroy = tp_perf_event_destroy;
9731
9732         return 0;
9733 }
9734
9735 static struct pmu perf_tracepoint = {
9736         .task_ctx_nr    = perf_sw_context,
9737
9738         .event_init     = perf_tp_event_init,
9739         .add            = perf_trace_add,
9740         .del            = perf_trace_del,
9741         .start          = perf_swevent_start,
9742         .stop           = perf_swevent_stop,
9743         .read           = perf_swevent_read,
9744 };
9745
9746 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9747 /*
9748  * Flags in config, used by dynamic PMU kprobe and uprobe
9749  * The flags should match following PMU_FORMAT_ATTR().
9750  *
9751  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9752  *                               if not set, create kprobe/uprobe
9753  *
9754  * The following values specify a reference counter (or semaphore in the
9755  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9756  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9757  *
9758  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9759  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9760  */
9761 enum perf_probe_config {
9762         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9763         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9764         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9765 };
9766
9767 PMU_FORMAT_ATTR(retprobe, "config:0");
9768 #endif
9769
9770 #ifdef CONFIG_KPROBE_EVENTS
9771 static struct attribute *kprobe_attrs[] = {
9772         &format_attr_retprobe.attr,
9773         NULL,
9774 };
9775
9776 static struct attribute_group kprobe_format_group = {
9777         .name = "format",
9778         .attrs = kprobe_attrs,
9779 };
9780
9781 static const struct attribute_group *kprobe_attr_groups[] = {
9782         &kprobe_format_group,
9783         NULL,
9784 };
9785
9786 static int perf_kprobe_event_init(struct perf_event *event);
9787 static struct pmu perf_kprobe = {
9788         .task_ctx_nr    = perf_sw_context,
9789         .event_init     = perf_kprobe_event_init,
9790         .add            = perf_trace_add,
9791         .del            = perf_trace_del,
9792         .start          = perf_swevent_start,
9793         .stop           = perf_swevent_stop,
9794         .read           = perf_swevent_read,
9795         .attr_groups    = kprobe_attr_groups,
9796 };
9797
9798 static int perf_kprobe_event_init(struct perf_event *event)
9799 {
9800         int err;
9801         bool is_retprobe;
9802
9803         if (event->attr.type != perf_kprobe.type)
9804                 return -ENOENT;
9805
9806         if (!perfmon_capable())
9807                 return -EACCES;
9808
9809         /*
9810          * no branch sampling for probe events
9811          */
9812         if (has_branch_stack(event))
9813                 return -EOPNOTSUPP;
9814
9815         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9816         err = perf_kprobe_init(event, is_retprobe);
9817         if (err)
9818                 return err;
9819
9820         event->destroy = perf_kprobe_destroy;
9821
9822         return 0;
9823 }
9824 #endif /* CONFIG_KPROBE_EVENTS */
9825
9826 #ifdef CONFIG_UPROBE_EVENTS
9827 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9828
9829 static struct attribute *uprobe_attrs[] = {
9830         &format_attr_retprobe.attr,
9831         &format_attr_ref_ctr_offset.attr,
9832         NULL,
9833 };
9834
9835 static struct attribute_group uprobe_format_group = {
9836         .name = "format",
9837         .attrs = uprobe_attrs,
9838 };
9839
9840 static const struct attribute_group *uprobe_attr_groups[] = {
9841         &uprobe_format_group,
9842         NULL,
9843 };
9844
9845 static int perf_uprobe_event_init(struct perf_event *event);
9846 static struct pmu perf_uprobe = {
9847         .task_ctx_nr    = perf_sw_context,
9848         .event_init     = perf_uprobe_event_init,
9849         .add            = perf_trace_add,
9850         .del            = perf_trace_del,
9851         .start          = perf_swevent_start,
9852         .stop           = perf_swevent_stop,
9853         .read           = perf_swevent_read,
9854         .attr_groups    = uprobe_attr_groups,
9855 };
9856
9857 static int perf_uprobe_event_init(struct perf_event *event)
9858 {
9859         int err;
9860         unsigned long ref_ctr_offset;
9861         bool is_retprobe;
9862
9863         if (event->attr.type != perf_uprobe.type)
9864                 return -ENOENT;
9865
9866         if (!perfmon_capable())
9867                 return -EACCES;
9868
9869         /*
9870          * no branch sampling for probe events
9871          */
9872         if (has_branch_stack(event))
9873                 return -EOPNOTSUPP;
9874
9875         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9876         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9877         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9878         if (err)
9879                 return err;
9880
9881         event->destroy = perf_uprobe_destroy;
9882
9883         return 0;
9884 }
9885 #endif /* CONFIG_UPROBE_EVENTS */
9886
9887 static inline void perf_tp_register(void)
9888 {
9889         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9890 #ifdef CONFIG_KPROBE_EVENTS
9891         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9892 #endif
9893 #ifdef CONFIG_UPROBE_EVENTS
9894         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9895 #endif
9896 }
9897
9898 static void perf_event_free_filter(struct perf_event *event)
9899 {
9900         ftrace_profile_free_filter(event);
9901 }
9902
9903 #ifdef CONFIG_BPF_SYSCALL
9904 static void bpf_overflow_handler(struct perf_event *event,
9905                                  struct perf_sample_data *data,
9906                                  struct pt_regs *regs)
9907 {
9908         struct bpf_perf_event_data_kern ctx = {
9909                 .data = data,
9910                 .event = event,
9911         };
9912         int ret = 0;
9913
9914         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9915         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9916                 goto out;
9917         rcu_read_lock();
9918         ret = BPF_PROG_RUN(event->prog, &ctx);
9919         rcu_read_unlock();
9920 out:
9921         __this_cpu_dec(bpf_prog_active);
9922         if (!ret)
9923                 return;
9924
9925         event->orig_overflow_handler(event, data, regs);
9926 }
9927
9928 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9929 {
9930         struct bpf_prog *prog;
9931
9932         if (event->overflow_handler_context)
9933                 /* hw breakpoint or kernel counter */
9934                 return -EINVAL;
9935
9936         if (event->prog)
9937                 return -EEXIST;
9938
9939         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9940         if (IS_ERR(prog))
9941                 return PTR_ERR(prog);
9942
9943         if (event->attr.precise_ip &&
9944             prog->call_get_stack &&
9945             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9946              event->attr.exclude_callchain_kernel ||
9947              event->attr.exclude_callchain_user)) {
9948                 /*
9949                  * On perf_event with precise_ip, calling bpf_get_stack()
9950                  * may trigger unwinder warnings and occasional crashes.
9951                  * bpf_get_[stack|stackid] works around this issue by using
9952                  * callchain attached to perf_sample_data. If the
9953                  * perf_event does not full (kernel and user) callchain
9954                  * attached to perf_sample_data, do not allow attaching BPF
9955                  * program that calls bpf_get_[stack|stackid].
9956                  */
9957                 bpf_prog_put(prog);
9958                 return -EPROTO;
9959         }
9960
9961         event->prog = prog;
9962         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9963         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9964         return 0;
9965 }
9966
9967 static void perf_event_free_bpf_handler(struct perf_event *event)
9968 {
9969         struct bpf_prog *prog = event->prog;
9970
9971         if (!prog)
9972                 return;
9973
9974         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9975         event->prog = NULL;
9976         bpf_prog_put(prog);
9977 }
9978 #else
9979 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9980 {
9981         return -EOPNOTSUPP;
9982 }
9983 static void perf_event_free_bpf_handler(struct perf_event *event)
9984 {
9985 }
9986 #endif
9987
9988 /*
9989  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9990  * with perf_event_open()
9991  */
9992 static inline bool perf_event_is_tracing(struct perf_event *event)
9993 {
9994         if (event->pmu == &perf_tracepoint)
9995                 return true;
9996 #ifdef CONFIG_KPROBE_EVENTS
9997         if (event->pmu == &perf_kprobe)
9998                 return true;
9999 #endif
10000 #ifdef CONFIG_UPROBE_EVENTS
10001         if (event->pmu == &perf_uprobe)
10002                 return true;
10003 #endif
10004         return false;
10005 }
10006
10007 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10008 {
10009         bool is_kprobe, is_tracepoint, is_syscall_tp;
10010         struct bpf_prog *prog;
10011         int ret;
10012
10013         if (!perf_event_is_tracing(event))
10014                 return perf_event_set_bpf_handler(event, prog_fd);
10015
10016         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10017         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10018         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10019         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10020                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10021                 return -EINVAL;
10022
10023         prog = bpf_prog_get(prog_fd);
10024         if (IS_ERR(prog))
10025                 return PTR_ERR(prog);
10026
10027         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10028             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10029             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10030                 /* valid fd, but invalid bpf program type */
10031                 bpf_prog_put(prog);
10032                 return -EINVAL;
10033         }
10034
10035         /* Kprobe override only works for kprobes, not uprobes. */
10036         if (prog->kprobe_override &&
10037             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10038                 bpf_prog_put(prog);
10039                 return -EINVAL;
10040         }
10041
10042         if (is_tracepoint || is_syscall_tp) {
10043                 int off = trace_event_get_offsets(event->tp_event);
10044
10045                 if (prog->aux->max_ctx_offset > off) {
10046                         bpf_prog_put(prog);
10047                         return -EACCES;
10048                 }
10049         }
10050
10051         ret = perf_event_attach_bpf_prog(event, prog);
10052         if (ret)
10053                 bpf_prog_put(prog);
10054         return ret;
10055 }
10056
10057 static void perf_event_free_bpf_prog(struct perf_event *event)
10058 {
10059         if (!perf_event_is_tracing(event)) {
10060                 perf_event_free_bpf_handler(event);
10061                 return;
10062         }
10063         perf_event_detach_bpf_prog(event);
10064 }
10065
10066 #else
10067
10068 static inline void perf_tp_register(void)
10069 {
10070 }
10071
10072 static void perf_event_free_filter(struct perf_event *event)
10073 {
10074 }
10075
10076 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10077 {
10078         return -ENOENT;
10079 }
10080
10081 static void perf_event_free_bpf_prog(struct perf_event *event)
10082 {
10083 }
10084 #endif /* CONFIG_EVENT_TRACING */
10085
10086 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10087 void perf_bp_event(struct perf_event *bp, void *data)
10088 {
10089         struct perf_sample_data sample;
10090         struct pt_regs *regs = data;
10091
10092         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10093
10094         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10095                 perf_swevent_event(bp, 1, &sample, regs);
10096 }
10097 #endif
10098
10099 /*
10100  * Allocate a new address filter
10101  */
10102 static struct perf_addr_filter *
10103 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10104 {
10105         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10106         struct perf_addr_filter *filter;
10107
10108         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10109         if (!filter)
10110                 return NULL;
10111
10112         INIT_LIST_HEAD(&filter->entry);
10113         list_add_tail(&filter->entry, filters);
10114
10115         return filter;
10116 }
10117
10118 static void free_filters_list(struct list_head *filters)
10119 {
10120         struct perf_addr_filter *filter, *iter;
10121
10122         list_for_each_entry_safe(filter, iter, filters, entry) {
10123                 path_put(&filter->path);
10124                 list_del(&filter->entry);
10125                 kfree(filter);
10126         }
10127 }
10128
10129 /*
10130  * Free existing address filters and optionally install new ones
10131  */
10132 static void perf_addr_filters_splice(struct perf_event *event,
10133                                      struct list_head *head)
10134 {
10135         unsigned long flags;
10136         LIST_HEAD(list);
10137
10138         if (!has_addr_filter(event))
10139                 return;
10140
10141         /* don't bother with children, they don't have their own filters */
10142         if (event->parent)
10143                 return;
10144
10145         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10146
10147         list_splice_init(&event->addr_filters.list, &list);
10148         if (head)
10149                 list_splice(head, &event->addr_filters.list);
10150
10151         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10152
10153         free_filters_list(&list);
10154 }
10155
10156 /*
10157  * Scan through mm's vmas and see if one of them matches the
10158  * @filter; if so, adjust filter's address range.
10159  * Called with mm::mmap_lock down for reading.
10160  */
10161 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10162                                    struct mm_struct *mm,
10163                                    struct perf_addr_filter_range *fr)
10164 {
10165         struct vm_area_struct *vma;
10166
10167         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10168                 if (!vma->vm_file)
10169                         continue;
10170
10171                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10172                         return;
10173         }
10174 }
10175
10176 /*
10177  * Update event's address range filters based on the
10178  * task's existing mappings, if any.
10179  */
10180 static void perf_event_addr_filters_apply(struct perf_event *event)
10181 {
10182         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10183         struct task_struct *task = READ_ONCE(event->ctx->task);
10184         struct perf_addr_filter *filter;
10185         struct mm_struct *mm = NULL;
10186         unsigned int count = 0;
10187         unsigned long flags;
10188
10189         /*
10190          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10191          * will stop on the parent's child_mutex that our caller is also holding
10192          */
10193         if (task == TASK_TOMBSTONE)
10194                 return;
10195
10196         if (ifh->nr_file_filters) {
10197                 mm = get_task_mm(event->ctx->task);
10198                 if (!mm)
10199                         goto restart;
10200
10201                 mmap_read_lock(mm);
10202         }
10203
10204         raw_spin_lock_irqsave(&ifh->lock, flags);
10205         list_for_each_entry(filter, &ifh->list, entry) {
10206                 if (filter->path.dentry) {
10207                         /*
10208                          * Adjust base offset if the filter is associated to a
10209                          * binary that needs to be mapped:
10210                          */
10211                         event->addr_filter_ranges[count].start = 0;
10212                         event->addr_filter_ranges[count].size = 0;
10213
10214                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10215                 } else {
10216                         event->addr_filter_ranges[count].start = filter->offset;
10217                         event->addr_filter_ranges[count].size  = filter->size;
10218                 }
10219
10220                 count++;
10221         }
10222
10223         event->addr_filters_gen++;
10224         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10225
10226         if (ifh->nr_file_filters) {
10227                 mmap_read_unlock(mm);
10228
10229                 mmput(mm);
10230         }
10231
10232 restart:
10233         perf_event_stop(event, 1);
10234 }
10235
10236 /*
10237  * Address range filtering: limiting the data to certain
10238  * instruction address ranges. Filters are ioctl()ed to us from
10239  * userspace as ascii strings.
10240  *
10241  * Filter string format:
10242  *
10243  * ACTION RANGE_SPEC
10244  * where ACTION is one of the
10245  *  * "filter": limit the trace to this region
10246  *  * "start": start tracing from this address
10247  *  * "stop": stop tracing at this address/region;
10248  * RANGE_SPEC is
10249  *  * for kernel addresses: <start address>[/<size>]
10250  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10251  *
10252  * if <size> is not specified or is zero, the range is treated as a single
10253  * address; not valid for ACTION=="filter".
10254  */
10255 enum {
10256         IF_ACT_NONE = -1,
10257         IF_ACT_FILTER,
10258         IF_ACT_START,
10259         IF_ACT_STOP,
10260         IF_SRC_FILE,
10261         IF_SRC_KERNEL,
10262         IF_SRC_FILEADDR,
10263         IF_SRC_KERNELADDR,
10264 };
10265
10266 enum {
10267         IF_STATE_ACTION = 0,
10268         IF_STATE_SOURCE,
10269         IF_STATE_END,
10270 };
10271
10272 static const match_table_t if_tokens = {
10273         { IF_ACT_FILTER,        "filter" },
10274         { IF_ACT_START,         "start" },
10275         { IF_ACT_STOP,          "stop" },
10276         { IF_SRC_FILE,          "%u/%u@%s" },
10277         { IF_SRC_KERNEL,        "%u/%u" },
10278         { IF_SRC_FILEADDR,      "%u@%s" },
10279         { IF_SRC_KERNELADDR,    "%u" },
10280         { IF_ACT_NONE,          NULL },
10281 };
10282
10283 /*
10284  * Address filter string parser
10285  */
10286 static int
10287 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10288                              struct list_head *filters)
10289 {
10290         struct perf_addr_filter *filter = NULL;
10291         char *start, *orig, *filename = NULL;
10292         substring_t args[MAX_OPT_ARGS];
10293         int state = IF_STATE_ACTION, token;
10294         unsigned int kernel = 0;
10295         int ret = -EINVAL;
10296
10297         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10298         if (!fstr)
10299                 return -ENOMEM;
10300
10301         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10302                 static const enum perf_addr_filter_action_t actions[] = {
10303                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10304                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10305                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10306                 };
10307                 ret = -EINVAL;
10308
10309                 if (!*start)
10310                         continue;
10311
10312                 /* filter definition begins */
10313                 if (state == IF_STATE_ACTION) {
10314                         filter = perf_addr_filter_new(event, filters);
10315                         if (!filter)
10316                                 goto fail;
10317                 }
10318
10319                 token = match_token(start, if_tokens, args);
10320                 switch (token) {
10321                 case IF_ACT_FILTER:
10322                 case IF_ACT_START:
10323                 case IF_ACT_STOP:
10324                         if (state != IF_STATE_ACTION)
10325                                 goto fail;
10326
10327                         filter->action = actions[token];
10328                         state = IF_STATE_SOURCE;
10329                         break;
10330
10331                 case IF_SRC_KERNELADDR:
10332                 case IF_SRC_KERNEL:
10333                         kernel = 1;
10334                         fallthrough;
10335
10336                 case IF_SRC_FILEADDR:
10337                 case IF_SRC_FILE:
10338                         if (state != IF_STATE_SOURCE)
10339                                 goto fail;
10340
10341                         *args[0].to = 0;
10342                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10343                         if (ret)
10344                                 goto fail;
10345
10346                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10347                                 *args[1].to = 0;
10348                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10349                                 if (ret)
10350                                         goto fail;
10351                         }
10352
10353                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10354                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10355
10356                                 kfree(filename);
10357                                 filename = match_strdup(&args[fpos]);
10358                                 if (!filename) {
10359                                         ret = -ENOMEM;
10360                                         goto fail;
10361                                 }
10362                         }
10363
10364                         state = IF_STATE_END;
10365                         break;
10366
10367                 default:
10368                         goto fail;
10369                 }
10370
10371                 /*
10372                  * Filter definition is fully parsed, validate and install it.
10373                  * Make sure that it doesn't contradict itself or the event's
10374                  * attribute.
10375                  */
10376                 if (state == IF_STATE_END) {
10377                         ret = -EINVAL;
10378                         if (kernel && event->attr.exclude_kernel)
10379                                 goto fail;
10380
10381                         /*
10382                          * ACTION "filter" must have a non-zero length region
10383                          * specified.
10384                          */
10385                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10386                             !filter->size)
10387                                 goto fail;
10388
10389                         if (!kernel) {
10390                                 if (!filename)
10391                                         goto fail;
10392
10393                                 /*
10394                                  * For now, we only support file-based filters
10395                                  * in per-task events; doing so for CPU-wide
10396                                  * events requires additional context switching
10397                                  * trickery, since same object code will be
10398                                  * mapped at different virtual addresses in
10399                                  * different processes.
10400                                  */
10401                                 ret = -EOPNOTSUPP;
10402                                 if (!event->ctx->task)
10403                                         goto fail;
10404
10405                                 /* look up the path and grab its inode */
10406                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10407                                                 &filter->path);
10408                                 if (ret)
10409                                         goto fail;
10410
10411                                 ret = -EINVAL;
10412                                 if (!filter->path.dentry ||
10413                                     !S_ISREG(d_inode(filter->path.dentry)
10414                                              ->i_mode))
10415                                         goto fail;
10416
10417                                 event->addr_filters.nr_file_filters++;
10418                         }
10419
10420                         /* ready to consume more filters */
10421                         state = IF_STATE_ACTION;
10422                         filter = NULL;
10423                 }
10424         }
10425
10426         if (state != IF_STATE_ACTION)
10427                 goto fail;
10428
10429         kfree(filename);
10430         kfree(orig);
10431
10432         return 0;
10433
10434 fail:
10435         kfree(filename);
10436         free_filters_list(filters);
10437         kfree(orig);
10438
10439         return ret;
10440 }
10441
10442 static int
10443 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10444 {
10445         LIST_HEAD(filters);
10446         int ret;
10447
10448         /*
10449          * Since this is called in perf_ioctl() path, we're already holding
10450          * ctx::mutex.
10451          */
10452         lockdep_assert_held(&event->ctx->mutex);
10453
10454         if (WARN_ON_ONCE(event->parent))
10455                 return -EINVAL;
10456
10457         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10458         if (ret)
10459                 goto fail_clear_files;
10460
10461         ret = event->pmu->addr_filters_validate(&filters);
10462         if (ret)
10463                 goto fail_free_filters;
10464
10465         /* remove existing filters, if any */
10466         perf_addr_filters_splice(event, &filters);
10467
10468         /* install new filters */
10469         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10470
10471         return ret;
10472
10473 fail_free_filters:
10474         free_filters_list(&filters);
10475
10476 fail_clear_files:
10477         event->addr_filters.nr_file_filters = 0;
10478
10479         return ret;
10480 }
10481
10482 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10483 {
10484         int ret = -EINVAL;
10485         char *filter_str;
10486
10487         filter_str = strndup_user(arg, PAGE_SIZE);
10488         if (IS_ERR(filter_str))
10489                 return PTR_ERR(filter_str);
10490
10491 #ifdef CONFIG_EVENT_TRACING
10492         if (perf_event_is_tracing(event)) {
10493                 struct perf_event_context *ctx = event->ctx;
10494
10495                 /*
10496                  * Beware, here be dragons!!
10497                  *
10498                  * the tracepoint muck will deadlock against ctx->mutex, but
10499                  * the tracepoint stuff does not actually need it. So
10500                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10501                  * already have a reference on ctx.
10502                  *
10503                  * This can result in event getting moved to a different ctx,
10504                  * but that does not affect the tracepoint state.
10505                  */
10506                 mutex_unlock(&ctx->mutex);
10507                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10508                 mutex_lock(&ctx->mutex);
10509         } else
10510 #endif
10511         if (has_addr_filter(event))
10512                 ret = perf_event_set_addr_filter(event, filter_str);
10513
10514         kfree(filter_str);
10515         return ret;
10516 }
10517
10518 /*
10519  * hrtimer based swevent callback
10520  */
10521
10522 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10523 {
10524         enum hrtimer_restart ret = HRTIMER_RESTART;
10525         struct perf_sample_data data;
10526         struct pt_regs *regs;
10527         struct perf_event *event;
10528         u64 period;
10529
10530         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10531
10532         if (event->state != PERF_EVENT_STATE_ACTIVE)
10533                 return HRTIMER_NORESTART;
10534
10535         event->pmu->read(event);
10536
10537         perf_sample_data_init(&data, 0, event->hw.last_period);
10538         regs = get_irq_regs();
10539
10540         if (regs && !perf_exclude_event(event, regs)) {
10541                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10542                         if (__perf_event_overflow(event, 1, &data, regs))
10543                                 ret = HRTIMER_NORESTART;
10544         }
10545
10546         period = max_t(u64, 10000, event->hw.sample_period);
10547         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10548
10549         return ret;
10550 }
10551
10552 static void perf_swevent_start_hrtimer(struct perf_event *event)
10553 {
10554         struct hw_perf_event *hwc = &event->hw;
10555         s64 period;
10556
10557         if (!is_sampling_event(event))
10558                 return;
10559
10560         period = local64_read(&hwc->period_left);
10561         if (period) {
10562                 if (period < 0)
10563                         period = 10000;
10564
10565                 local64_set(&hwc->period_left, 0);
10566         } else {
10567                 period = max_t(u64, 10000, hwc->sample_period);
10568         }
10569         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10570                       HRTIMER_MODE_REL_PINNED_HARD);
10571 }
10572
10573 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10574 {
10575         struct hw_perf_event *hwc = &event->hw;
10576
10577         if (is_sampling_event(event)) {
10578                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10579                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10580
10581                 hrtimer_cancel(&hwc->hrtimer);
10582         }
10583 }
10584
10585 static void perf_swevent_init_hrtimer(struct perf_event *event)
10586 {
10587         struct hw_perf_event *hwc = &event->hw;
10588
10589         if (!is_sampling_event(event))
10590                 return;
10591
10592         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10593         hwc->hrtimer.function = perf_swevent_hrtimer;
10594
10595         /*
10596          * Since hrtimers have a fixed rate, we can do a static freq->period
10597          * mapping and avoid the whole period adjust feedback stuff.
10598          */
10599         if (event->attr.freq) {
10600                 long freq = event->attr.sample_freq;
10601
10602                 event->attr.sample_period = NSEC_PER_SEC / freq;
10603                 hwc->sample_period = event->attr.sample_period;
10604                 local64_set(&hwc->period_left, hwc->sample_period);
10605                 hwc->last_period = hwc->sample_period;
10606                 event->attr.freq = 0;
10607         }
10608 }
10609
10610 /*
10611  * Software event: cpu wall time clock
10612  */
10613
10614 static void cpu_clock_event_update(struct perf_event *event)
10615 {
10616         s64 prev;
10617         u64 now;
10618
10619         now = local_clock();
10620         prev = local64_xchg(&event->hw.prev_count, now);
10621         local64_add(now - prev, &event->count);
10622 }
10623
10624 static void cpu_clock_event_start(struct perf_event *event, int flags)
10625 {
10626         local64_set(&event->hw.prev_count, local_clock());
10627         perf_swevent_start_hrtimer(event);
10628 }
10629
10630 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10631 {
10632         perf_swevent_cancel_hrtimer(event);
10633         cpu_clock_event_update(event);
10634 }
10635
10636 static int cpu_clock_event_add(struct perf_event *event, int flags)
10637 {
10638         if (flags & PERF_EF_START)
10639                 cpu_clock_event_start(event, flags);
10640         perf_event_update_userpage(event);
10641
10642         return 0;
10643 }
10644
10645 static void cpu_clock_event_del(struct perf_event *event, int flags)
10646 {
10647         cpu_clock_event_stop(event, flags);
10648 }
10649
10650 static void cpu_clock_event_read(struct perf_event *event)
10651 {
10652         cpu_clock_event_update(event);
10653 }
10654
10655 static int cpu_clock_event_init(struct perf_event *event)
10656 {
10657         if (event->attr.type != PERF_TYPE_SOFTWARE)
10658                 return -ENOENT;
10659
10660         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10661                 return -ENOENT;
10662
10663         /*
10664          * no branch sampling for software events
10665          */
10666         if (has_branch_stack(event))
10667                 return -EOPNOTSUPP;
10668
10669         perf_swevent_init_hrtimer(event);
10670
10671         return 0;
10672 }
10673
10674 static struct pmu perf_cpu_clock = {
10675         .task_ctx_nr    = perf_sw_context,
10676
10677         .capabilities   = PERF_PMU_CAP_NO_NMI,
10678
10679         .event_init     = cpu_clock_event_init,
10680         .add            = cpu_clock_event_add,
10681         .del            = cpu_clock_event_del,
10682         .start          = cpu_clock_event_start,
10683         .stop           = cpu_clock_event_stop,
10684         .read           = cpu_clock_event_read,
10685 };
10686
10687 /*
10688  * Software event: task time clock
10689  */
10690
10691 static void task_clock_event_update(struct perf_event *event, u64 now)
10692 {
10693         u64 prev;
10694         s64 delta;
10695
10696         prev = local64_xchg(&event->hw.prev_count, now);
10697         delta = now - prev;
10698         local64_add(delta, &event->count);
10699 }
10700
10701 static void task_clock_event_start(struct perf_event *event, int flags)
10702 {
10703         local64_set(&event->hw.prev_count, event->ctx->time);
10704         perf_swevent_start_hrtimer(event);
10705 }
10706
10707 static void task_clock_event_stop(struct perf_event *event, int flags)
10708 {
10709         perf_swevent_cancel_hrtimer(event);
10710         task_clock_event_update(event, event->ctx->time);
10711 }
10712
10713 static int task_clock_event_add(struct perf_event *event, int flags)
10714 {
10715         if (flags & PERF_EF_START)
10716                 task_clock_event_start(event, flags);
10717         perf_event_update_userpage(event);
10718
10719         return 0;
10720 }
10721
10722 static void task_clock_event_del(struct perf_event *event, int flags)
10723 {
10724         task_clock_event_stop(event, PERF_EF_UPDATE);
10725 }
10726
10727 static void task_clock_event_read(struct perf_event *event)
10728 {
10729         u64 now = perf_clock();
10730         u64 delta = now - event->ctx->timestamp;
10731         u64 time = event->ctx->time + delta;
10732
10733         task_clock_event_update(event, time);
10734 }
10735
10736 static int task_clock_event_init(struct perf_event *event)
10737 {
10738         if (event->attr.type != PERF_TYPE_SOFTWARE)
10739                 return -ENOENT;
10740
10741         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10742                 return -ENOENT;
10743
10744         /*
10745          * no branch sampling for software events
10746          */
10747         if (has_branch_stack(event))
10748                 return -EOPNOTSUPP;
10749
10750         perf_swevent_init_hrtimer(event);
10751
10752         return 0;
10753 }
10754
10755 static struct pmu perf_task_clock = {
10756         .task_ctx_nr    = perf_sw_context,
10757
10758         .capabilities   = PERF_PMU_CAP_NO_NMI,
10759
10760         .event_init     = task_clock_event_init,
10761         .add            = task_clock_event_add,
10762         .del            = task_clock_event_del,
10763         .start          = task_clock_event_start,
10764         .stop           = task_clock_event_stop,
10765         .read           = task_clock_event_read,
10766 };
10767
10768 static void perf_pmu_nop_void(struct pmu *pmu)
10769 {
10770 }
10771
10772 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10773 {
10774 }
10775
10776 static int perf_pmu_nop_int(struct pmu *pmu)
10777 {
10778         return 0;
10779 }
10780
10781 static int perf_event_nop_int(struct perf_event *event, u64 value)
10782 {
10783         return 0;
10784 }
10785
10786 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10787
10788 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10789 {
10790         __this_cpu_write(nop_txn_flags, flags);
10791
10792         if (flags & ~PERF_PMU_TXN_ADD)
10793                 return;
10794
10795         perf_pmu_disable(pmu);
10796 }
10797
10798 static int perf_pmu_commit_txn(struct pmu *pmu)
10799 {
10800         unsigned int flags = __this_cpu_read(nop_txn_flags);
10801
10802         __this_cpu_write(nop_txn_flags, 0);
10803
10804         if (flags & ~PERF_PMU_TXN_ADD)
10805                 return 0;
10806
10807         perf_pmu_enable(pmu);
10808         return 0;
10809 }
10810
10811 static void perf_pmu_cancel_txn(struct pmu *pmu)
10812 {
10813         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10814
10815         __this_cpu_write(nop_txn_flags, 0);
10816
10817         if (flags & ~PERF_PMU_TXN_ADD)
10818                 return;
10819
10820         perf_pmu_enable(pmu);
10821 }
10822
10823 static int perf_event_idx_default(struct perf_event *event)
10824 {
10825         return 0;
10826 }
10827
10828 /*
10829  * Ensures all contexts with the same task_ctx_nr have the same
10830  * pmu_cpu_context too.
10831  */
10832 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10833 {
10834         struct pmu *pmu;
10835
10836         if (ctxn < 0)
10837                 return NULL;
10838
10839         list_for_each_entry(pmu, &pmus, entry) {
10840                 if (pmu->task_ctx_nr == ctxn)
10841                         return pmu->pmu_cpu_context;
10842         }
10843
10844         return NULL;
10845 }
10846
10847 static void free_pmu_context(struct pmu *pmu)
10848 {
10849         /*
10850          * Static contexts such as perf_sw_context have a global lifetime
10851          * and may be shared between different PMUs. Avoid freeing them
10852          * when a single PMU is going away.
10853          */
10854         if (pmu->task_ctx_nr > perf_invalid_context)
10855                 return;
10856
10857         free_percpu(pmu->pmu_cpu_context);
10858 }
10859
10860 /*
10861  * Let userspace know that this PMU supports address range filtering:
10862  */
10863 static ssize_t nr_addr_filters_show(struct device *dev,
10864                                     struct device_attribute *attr,
10865                                     char *page)
10866 {
10867         struct pmu *pmu = dev_get_drvdata(dev);
10868
10869         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10870 }
10871 DEVICE_ATTR_RO(nr_addr_filters);
10872
10873 static struct idr pmu_idr;
10874
10875 static ssize_t
10876 type_show(struct device *dev, struct device_attribute *attr, char *page)
10877 {
10878         struct pmu *pmu = dev_get_drvdata(dev);
10879
10880         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10881 }
10882 static DEVICE_ATTR_RO(type);
10883
10884 static ssize_t
10885 perf_event_mux_interval_ms_show(struct device *dev,
10886                                 struct device_attribute *attr,
10887                                 char *page)
10888 {
10889         struct pmu *pmu = dev_get_drvdata(dev);
10890
10891         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10892 }
10893
10894 static DEFINE_MUTEX(mux_interval_mutex);
10895
10896 static ssize_t
10897 perf_event_mux_interval_ms_store(struct device *dev,
10898                                  struct device_attribute *attr,
10899                                  const char *buf, size_t count)
10900 {
10901         struct pmu *pmu = dev_get_drvdata(dev);
10902         int timer, cpu, ret;
10903
10904         ret = kstrtoint(buf, 0, &timer);
10905         if (ret)
10906                 return ret;
10907
10908         if (timer < 1)
10909                 return -EINVAL;
10910
10911         /* same value, noting to do */
10912         if (timer == pmu->hrtimer_interval_ms)
10913                 return count;
10914
10915         mutex_lock(&mux_interval_mutex);
10916         pmu->hrtimer_interval_ms = timer;
10917
10918         /* update all cpuctx for this PMU */
10919         cpus_read_lock();
10920         for_each_online_cpu(cpu) {
10921                 struct perf_cpu_context *cpuctx;
10922                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10923                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10924
10925                 cpu_function_call(cpu,
10926                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10927         }
10928         cpus_read_unlock();
10929         mutex_unlock(&mux_interval_mutex);
10930
10931         return count;
10932 }
10933 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10934
10935 static struct attribute *pmu_dev_attrs[] = {
10936         &dev_attr_type.attr,
10937         &dev_attr_perf_event_mux_interval_ms.attr,
10938         NULL,
10939 };
10940 ATTRIBUTE_GROUPS(pmu_dev);
10941
10942 static int pmu_bus_running;
10943 static struct bus_type pmu_bus = {
10944         .name           = "event_source",
10945         .dev_groups     = pmu_dev_groups,
10946 };
10947
10948 static void pmu_dev_release(struct device *dev)
10949 {
10950         kfree(dev);
10951 }
10952
10953 static int pmu_dev_alloc(struct pmu *pmu)
10954 {
10955         int ret = -ENOMEM;
10956
10957         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10958         if (!pmu->dev)
10959                 goto out;
10960
10961         pmu->dev->groups = pmu->attr_groups;
10962         device_initialize(pmu->dev);
10963         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10964         if (ret)
10965                 goto free_dev;
10966
10967         dev_set_drvdata(pmu->dev, pmu);
10968         pmu->dev->bus = &pmu_bus;
10969         pmu->dev->release = pmu_dev_release;
10970         ret = device_add(pmu->dev);
10971         if (ret)
10972                 goto free_dev;
10973
10974         /* For PMUs with address filters, throw in an extra attribute: */
10975         if (pmu->nr_addr_filters)
10976                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10977
10978         if (ret)
10979                 goto del_dev;
10980
10981         if (pmu->attr_update)
10982                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10983
10984         if (ret)
10985                 goto del_dev;
10986
10987 out:
10988         return ret;
10989
10990 del_dev:
10991         device_del(pmu->dev);
10992
10993 free_dev:
10994         put_device(pmu->dev);
10995         goto out;
10996 }
10997
10998 static struct lock_class_key cpuctx_mutex;
10999 static struct lock_class_key cpuctx_lock;
11000
11001 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11002 {
11003         int cpu, ret, max = PERF_TYPE_MAX;
11004
11005         mutex_lock(&pmus_lock);
11006         ret = -ENOMEM;
11007         pmu->pmu_disable_count = alloc_percpu(int);
11008         if (!pmu->pmu_disable_count)
11009                 goto unlock;
11010
11011         pmu->type = -1;
11012         if (!name)
11013                 goto skip_type;
11014         pmu->name = name;
11015
11016         if (type != PERF_TYPE_SOFTWARE) {
11017                 if (type >= 0)
11018                         max = type;
11019
11020                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11021                 if (ret < 0)
11022                         goto free_pdc;
11023
11024                 WARN_ON(type >= 0 && ret != type);
11025
11026                 type = ret;
11027         }
11028         pmu->type = type;
11029
11030         if (pmu_bus_running) {
11031                 ret = pmu_dev_alloc(pmu);
11032                 if (ret)
11033                         goto free_idr;
11034         }
11035
11036 skip_type:
11037         if (pmu->task_ctx_nr == perf_hw_context) {
11038                 static int hw_context_taken = 0;
11039
11040                 /*
11041                  * Other than systems with heterogeneous CPUs, it never makes
11042                  * sense for two PMUs to share perf_hw_context. PMUs which are
11043                  * uncore must use perf_invalid_context.
11044                  */
11045                 if (WARN_ON_ONCE(hw_context_taken &&
11046                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11047                         pmu->task_ctx_nr = perf_invalid_context;
11048
11049                 hw_context_taken = 1;
11050         }
11051
11052         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11053         if (pmu->pmu_cpu_context)
11054                 goto got_cpu_context;
11055
11056         ret = -ENOMEM;
11057         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11058         if (!pmu->pmu_cpu_context)
11059                 goto free_dev;
11060
11061         for_each_possible_cpu(cpu) {
11062                 struct perf_cpu_context *cpuctx;
11063
11064                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11065                 __perf_event_init_context(&cpuctx->ctx);
11066                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11067                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11068                 cpuctx->ctx.pmu = pmu;
11069                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11070
11071                 __perf_mux_hrtimer_init(cpuctx, cpu);
11072
11073                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11074                 cpuctx->heap = cpuctx->heap_default;
11075         }
11076
11077 got_cpu_context:
11078         if (!pmu->start_txn) {
11079                 if (pmu->pmu_enable) {
11080                         /*
11081                          * If we have pmu_enable/pmu_disable calls, install
11082                          * transaction stubs that use that to try and batch
11083                          * hardware accesses.
11084                          */
11085                         pmu->start_txn  = perf_pmu_start_txn;
11086                         pmu->commit_txn = perf_pmu_commit_txn;
11087                         pmu->cancel_txn = perf_pmu_cancel_txn;
11088                 } else {
11089                         pmu->start_txn  = perf_pmu_nop_txn;
11090                         pmu->commit_txn = perf_pmu_nop_int;
11091                         pmu->cancel_txn = perf_pmu_nop_void;
11092                 }
11093         }
11094
11095         if (!pmu->pmu_enable) {
11096                 pmu->pmu_enable  = perf_pmu_nop_void;
11097                 pmu->pmu_disable = perf_pmu_nop_void;
11098         }
11099
11100         if (!pmu->check_period)
11101                 pmu->check_period = perf_event_nop_int;
11102
11103         if (!pmu->event_idx)
11104                 pmu->event_idx = perf_event_idx_default;
11105
11106         /*
11107          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11108          * since these cannot be in the IDR. This way the linear search
11109          * is fast, provided a valid software event is provided.
11110          */
11111         if (type == PERF_TYPE_SOFTWARE || !name)
11112                 list_add_rcu(&pmu->entry, &pmus);
11113         else
11114                 list_add_tail_rcu(&pmu->entry, &pmus);
11115
11116         atomic_set(&pmu->exclusive_cnt, 0);
11117         ret = 0;
11118 unlock:
11119         mutex_unlock(&pmus_lock);
11120
11121         return ret;
11122
11123 free_dev:
11124         device_del(pmu->dev);
11125         put_device(pmu->dev);
11126
11127 free_idr:
11128         if (pmu->type != PERF_TYPE_SOFTWARE)
11129                 idr_remove(&pmu_idr, pmu->type);
11130
11131 free_pdc:
11132         free_percpu(pmu->pmu_disable_count);
11133         goto unlock;
11134 }
11135 EXPORT_SYMBOL_GPL(perf_pmu_register);
11136
11137 void perf_pmu_unregister(struct pmu *pmu)
11138 {
11139         mutex_lock(&pmus_lock);
11140         list_del_rcu(&pmu->entry);
11141
11142         /*
11143          * We dereference the pmu list under both SRCU and regular RCU, so
11144          * synchronize against both of those.
11145          */
11146         synchronize_srcu(&pmus_srcu);
11147         synchronize_rcu();
11148
11149         free_percpu(pmu->pmu_disable_count);
11150         if (pmu->type != PERF_TYPE_SOFTWARE)
11151                 idr_remove(&pmu_idr, pmu->type);
11152         if (pmu_bus_running) {
11153                 if (pmu->nr_addr_filters)
11154                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11155                 device_del(pmu->dev);
11156                 put_device(pmu->dev);
11157         }
11158         free_pmu_context(pmu);
11159         mutex_unlock(&pmus_lock);
11160 }
11161 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11162
11163 static inline bool has_extended_regs(struct perf_event *event)
11164 {
11165         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11166                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11167 }
11168
11169 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11170 {
11171         struct perf_event_context *ctx = NULL;
11172         int ret;
11173
11174         if (!try_module_get(pmu->module))
11175                 return -ENODEV;
11176
11177         /*
11178          * A number of pmu->event_init() methods iterate the sibling_list to,
11179          * for example, validate if the group fits on the PMU. Therefore,
11180          * if this is a sibling event, acquire the ctx->mutex to protect
11181          * the sibling_list.
11182          */
11183         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11184                 /*
11185                  * This ctx->mutex can nest when we're called through
11186                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11187                  */
11188                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11189                                                  SINGLE_DEPTH_NESTING);
11190                 BUG_ON(!ctx);
11191         }
11192
11193         event->pmu = pmu;
11194         ret = pmu->event_init(event);
11195
11196         if (ctx)
11197                 perf_event_ctx_unlock(event->group_leader, ctx);
11198
11199         if (!ret) {
11200                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11201                     has_extended_regs(event))
11202                         ret = -EOPNOTSUPP;
11203
11204                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11205                     event_has_any_exclude_flag(event))
11206                         ret = -EINVAL;
11207
11208                 if (ret && event->destroy)
11209                         event->destroy(event);
11210         }
11211
11212         if (ret)
11213                 module_put(pmu->module);
11214
11215         return ret;
11216 }
11217
11218 static struct pmu *perf_init_event(struct perf_event *event)
11219 {
11220         bool extended_type = false;
11221         int idx, type, ret;
11222         struct pmu *pmu;
11223
11224         idx = srcu_read_lock(&pmus_srcu);
11225
11226         /* Try parent's PMU first: */
11227         if (event->parent && event->parent->pmu) {
11228                 pmu = event->parent->pmu;
11229                 ret = perf_try_init_event(pmu, event);
11230                 if (!ret)
11231                         goto unlock;
11232         }
11233
11234         /*
11235          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11236          * are often aliases for PERF_TYPE_RAW.
11237          */
11238         type = event->attr.type;
11239         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11240                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11241                 if (!type) {
11242                         type = PERF_TYPE_RAW;
11243                 } else {
11244                         extended_type = true;
11245                         event->attr.config &= PERF_HW_EVENT_MASK;
11246                 }
11247         }
11248
11249 again:
11250         rcu_read_lock();
11251         pmu = idr_find(&pmu_idr, type);
11252         rcu_read_unlock();
11253         if (pmu) {
11254                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11255                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11256                         goto fail;
11257
11258                 ret = perf_try_init_event(pmu, event);
11259                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11260                         type = event->attr.type;
11261                         goto again;
11262                 }
11263
11264                 if (ret)
11265                         pmu = ERR_PTR(ret);
11266
11267                 goto unlock;
11268         }
11269
11270         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11271                 ret = perf_try_init_event(pmu, event);
11272                 if (!ret)
11273                         goto unlock;
11274
11275                 if (ret != -ENOENT) {
11276                         pmu = ERR_PTR(ret);
11277                         goto unlock;
11278                 }
11279         }
11280 fail:
11281         pmu = ERR_PTR(-ENOENT);
11282 unlock:
11283         srcu_read_unlock(&pmus_srcu, idx);
11284
11285         return pmu;
11286 }
11287
11288 static void attach_sb_event(struct perf_event *event)
11289 {
11290         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11291
11292         raw_spin_lock(&pel->lock);
11293         list_add_rcu(&event->sb_list, &pel->list);
11294         raw_spin_unlock(&pel->lock);
11295 }
11296
11297 /*
11298  * We keep a list of all !task (and therefore per-cpu) events
11299  * that need to receive side-band records.
11300  *
11301  * This avoids having to scan all the various PMU per-cpu contexts
11302  * looking for them.
11303  */
11304 static void account_pmu_sb_event(struct perf_event *event)
11305 {
11306         if (is_sb_event(event))
11307                 attach_sb_event(event);
11308 }
11309
11310 static void account_event_cpu(struct perf_event *event, int cpu)
11311 {
11312         if (event->parent)
11313                 return;
11314
11315         if (is_cgroup_event(event))
11316                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11317 }
11318
11319 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11320 static void account_freq_event_nohz(void)
11321 {
11322 #ifdef CONFIG_NO_HZ_FULL
11323         /* Lock so we don't race with concurrent unaccount */
11324         spin_lock(&nr_freq_lock);
11325         if (atomic_inc_return(&nr_freq_events) == 1)
11326                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11327         spin_unlock(&nr_freq_lock);
11328 #endif
11329 }
11330
11331 static void account_freq_event(void)
11332 {
11333         if (tick_nohz_full_enabled())
11334                 account_freq_event_nohz();
11335         else
11336                 atomic_inc(&nr_freq_events);
11337 }
11338
11339
11340 static void account_event(struct perf_event *event)
11341 {
11342         bool inc = false;
11343
11344         if (event->parent)
11345                 return;
11346
11347         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11348                 inc = true;
11349         if (event->attr.mmap || event->attr.mmap_data)
11350                 atomic_inc(&nr_mmap_events);
11351         if (event->attr.build_id)
11352                 atomic_inc(&nr_build_id_events);
11353         if (event->attr.comm)
11354                 atomic_inc(&nr_comm_events);
11355         if (event->attr.namespaces)
11356                 atomic_inc(&nr_namespaces_events);
11357         if (event->attr.cgroup)
11358                 atomic_inc(&nr_cgroup_events);
11359         if (event->attr.task)
11360                 atomic_inc(&nr_task_events);
11361         if (event->attr.freq)
11362                 account_freq_event();
11363         if (event->attr.context_switch) {
11364                 atomic_inc(&nr_switch_events);
11365                 inc = true;
11366         }
11367         if (has_branch_stack(event))
11368                 inc = true;
11369         if (is_cgroup_event(event))
11370                 inc = true;
11371         if (event->attr.ksymbol)
11372                 atomic_inc(&nr_ksymbol_events);
11373         if (event->attr.bpf_event)
11374                 atomic_inc(&nr_bpf_events);
11375         if (event->attr.text_poke)
11376                 atomic_inc(&nr_text_poke_events);
11377
11378         if (inc) {
11379                 /*
11380                  * We need the mutex here because static_branch_enable()
11381                  * must complete *before* the perf_sched_count increment
11382                  * becomes visible.
11383                  */
11384                 if (atomic_inc_not_zero(&perf_sched_count))
11385                         goto enabled;
11386
11387                 mutex_lock(&perf_sched_mutex);
11388                 if (!atomic_read(&perf_sched_count)) {
11389                         static_branch_enable(&perf_sched_events);
11390                         /*
11391                          * Guarantee that all CPUs observe they key change and
11392                          * call the perf scheduling hooks before proceeding to
11393                          * install events that need them.
11394                          */
11395                         synchronize_rcu();
11396                 }
11397                 /*
11398                  * Now that we have waited for the sync_sched(), allow further
11399                  * increments to by-pass the mutex.
11400                  */
11401                 atomic_inc(&perf_sched_count);
11402                 mutex_unlock(&perf_sched_mutex);
11403         }
11404 enabled:
11405
11406         account_event_cpu(event, event->cpu);
11407
11408         account_pmu_sb_event(event);
11409 }
11410
11411 /*
11412  * Allocate and initialize an event structure
11413  */
11414 static struct perf_event *
11415 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11416                  struct task_struct *task,
11417                  struct perf_event *group_leader,
11418                  struct perf_event *parent_event,
11419                  perf_overflow_handler_t overflow_handler,
11420                  void *context, int cgroup_fd)
11421 {
11422         struct pmu *pmu;
11423         struct perf_event *event;
11424         struct hw_perf_event *hwc;
11425         long err = -EINVAL;
11426         int node;
11427
11428         if ((unsigned)cpu >= nr_cpu_ids) {
11429                 if (!task || cpu != -1)
11430                         return ERR_PTR(-EINVAL);
11431         }
11432         if (attr->sigtrap && !task) {
11433                 /* Requires a task: avoid signalling random tasks. */
11434                 return ERR_PTR(-EINVAL);
11435         }
11436
11437         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11438         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11439                                       node);
11440         if (!event)
11441                 return ERR_PTR(-ENOMEM);
11442
11443         /*
11444          * Single events are their own group leaders, with an
11445          * empty sibling list:
11446          */
11447         if (!group_leader)
11448                 group_leader = event;
11449
11450         mutex_init(&event->child_mutex);
11451         INIT_LIST_HEAD(&event->child_list);
11452
11453         INIT_LIST_HEAD(&event->event_entry);
11454         INIT_LIST_HEAD(&event->sibling_list);
11455         INIT_LIST_HEAD(&event->active_list);
11456         init_event_group(event);
11457         INIT_LIST_HEAD(&event->rb_entry);
11458         INIT_LIST_HEAD(&event->active_entry);
11459         INIT_LIST_HEAD(&event->addr_filters.list);
11460         INIT_HLIST_NODE(&event->hlist_entry);
11461
11462
11463         init_waitqueue_head(&event->waitq);
11464         event->pending_disable = -1;
11465         init_irq_work(&event->pending, perf_pending_event);
11466
11467         mutex_init(&event->mmap_mutex);
11468         raw_spin_lock_init(&event->addr_filters.lock);
11469
11470         atomic_long_set(&event->refcount, 1);
11471         event->cpu              = cpu;
11472         event->attr             = *attr;
11473         event->group_leader     = group_leader;
11474         event->pmu              = NULL;
11475         event->oncpu            = -1;
11476
11477         event->parent           = parent_event;
11478
11479         event->ns               = get_pid_ns(task_active_pid_ns(current));
11480         event->id               = atomic64_inc_return(&perf_event_id);
11481
11482         event->state            = PERF_EVENT_STATE_INACTIVE;
11483
11484         if (event->attr.sigtrap)
11485                 atomic_set(&event->event_limit, 1);
11486
11487         if (task) {
11488                 event->attach_state = PERF_ATTACH_TASK;
11489                 /*
11490                  * XXX pmu::event_init needs to know what task to account to
11491                  * and we cannot use the ctx information because we need the
11492                  * pmu before we get a ctx.
11493                  */
11494                 event->hw.target = get_task_struct(task);
11495         }
11496
11497         event->clock = &local_clock;
11498         if (parent_event)
11499                 event->clock = parent_event->clock;
11500
11501         if (!overflow_handler && parent_event) {
11502                 overflow_handler = parent_event->overflow_handler;
11503                 context = parent_event->overflow_handler_context;
11504 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11505                 if (overflow_handler == bpf_overflow_handler) {
11506                         struct bpf_prog *prog = parent_event->prog;
11507
11508                         bpf_prog_inc(prog);
11509                         event->prog = prog;
11510                         event->orig_overflow_handler =
11511                                 parent_event->orig_overflow_handler;
11512                 }
11513 #endif
11514         }
11515
11516         if (overflow_handler) {
11517                 event->overflow_handler = overflow_handler;
11518                 event->overflow_handler_context = context;
11519         } else if (is_write_backward(event)){
11520                 event->overflow_handler = perf_event_output_backward;
11521                 event->overflow_handler_context = NULL;
11522         } else {
11523                 event->overflow_handler = perf_event_output_forward;
11524                 event->overflow_handler_context = NULL;
11525         }
11526
11527         perf_event__state_init(event);
11528
11529         pmu = NULL;
11530
11531         hwc = &event->hw;
11532         hwc->sample_period = attr->sample_period;
11533         if (attr->freq && attr->sample_freq)
11534                 hwc->sample_period = 1;
11535         hwc->last_period = hwc->sample_period;
11536
11537         local64_set(&hwc->period_left, hwc->sample_period);
11538
11539         /*
11540          * We currently do not support PERF_SAMPLE_READ on inherited events.
11541          * See perf_output_read().
11542          */
11543         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11544                 goto err_ns;
11545
11546         if (!has_branch_stack(event))
11547                 event->attr.branch_sample_type = 0;
11548
11549         pmu = perf_init_event(event);
11550         if (IS_ERR(pmu)) {
11551                 err = PTR_ERR(pmu);
11552                 goto err_ns;
11553         }
11554
11555         /*
11556          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11557          * be different on other CPUs in the uncore mask.
11558          */
11559         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11560                 err = -EINVAL;
11561                 goto err_pmu;
11562         }
11563
11564         if (event->attr.aux_output &&
11565             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11566                 err = -EOPNOTSUPP;
11567                 goto err_pmu;
11568         }
11569
11570         if (cgroup_fd != -1) {
11571                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11572                 if (err)
11573                         goto err_pmu;
11574         }
11575
11576         err = exclusive_event_init(event);
11577         if (err)
11578                 goto err_pmu;
11579
11580         if (has_addr_filter(event)) {
11581                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11582                                                     sizeof(struct perf_addr_filter_range),
11583                                                     GFP_KERNEL);
11584                 if (!event->addr_filter_ranges) {
11585                         err = -ENOMEM;
11586                         goto err_per_task;
11587                 }
11588
11589                 /*
11590                  * Clone the parent's vma offsets: they are valid until exec()
11591                  * even if the mm is not shared with the parent.
11592                  */
11593                 if (event->parent) {
11594                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11595
11596                         raw_spin_lock_irq(&ifh->lock);
11597                         memcpy(event->addr_filter_ranges,
11598                                event->parent->addr_filter_ranges,
11599                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11600                         raw_spin_unlock_irq(&ifh->lock);
11601                 }
11602
11603                 /* force hw sync on the address filters */
11604                 event->addr_filters_gen = 1;
11605         }
11606
11607         if (!event->parent) {
11608                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11609                         err = get_callchain_buffers(attr->sample_max_stack);
11610                         if (err)
11611                                 goto err_addr_filters;
11612                 }
11613         }
11614
11615         err = security_perf_event_alloc(event);
11616         if (err)
11617                 goto err_callchain_buffer;
11618
11619         /* symmetric to unaccount_event() in _free_event() */
11620         account_event(event);
11621
11622         return event;
11623
11624 err_callchain_buffer:
11625         if (!event->parent) {
11626                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11627                         put_callchain_buffers();
11628         }
11629 err_addr_filters:
11630         kfree(event->addr_filter_ranges);
11631
11632 err_per_task:
11633         exclusive_event_destroy(event);
11634
11635 err_pmu:
11636         if (is_cgroup_event(event))
11637                 perf_detach_cgroup(event);
11638         if (event->destroy)
11639                 event->destroy(event);
11640         module_put(pmu->module);
11641 err_ns:
11642         if (event->ns)
11643                 put_pid_ns(event->ns);
11644         if (event->hw.target)
11645                 put_task_struct(event->hw.target);
11646         kmem_cache_free(perf_event_cache, event);
11647
11648         return ERR_PTR(err);
11649 }
11650
11651 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11652                           struct perf_event_attr *attr)
11653 {
11654         u32 size;
11655         int ret;
11656
11657         /* Zero the full structure, so that a short copy will be nice. */
11658         memset(attr, 0, sizeof(*attr));
11659
11660         ret = get_user(size, &uattr->size);
11661         if (ret)
11662                 return ret;
11663
11664         /* ABI compatibility quirk: */
11665         if (!size)
11666                 size = PERF_ATTR_SIZE_VER0;
11667         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11668                 goto err_size;
11669
11670         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11671         if (ret) {
11672                 if (ret == -E2BIG)
11673                         goto err_size;
11674                 return ret;
11675         }
11676
11677         attr->size = size;
11678
11679         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11680                 return -EINVAL;
11681
11682         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11683                 return -EINVAL;
11684
11685         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11686                 return -EINVAL;
11687
11688         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11689                 u64 mask = attr->branch_sample_type;
11690
11691                 /* only using defined bits */
11692                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11693                         return -EINVAL;
11694
11695                 /* at least one branch bit must be set */
11696                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11697                         return -EINVAL;
11698
11699                 /* propagate priv level, when not set for branch */
11700                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11701
11702                         /* exclude_kernel checked on syscall entry */
11703                         if (!attr->exclude_kernel)
11704                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11705
11706                         if (!attr->exclude_user)
11707                                 mask |= PERF_SAMPLE_BRANCH_USER;
11708
11709                         if (!attr->exclude_hv)
11710                                 mask |= PERF_SAMPLE_BRANCH_HV;
11711                         /*
11712                          * adjust user setting (for HW filter setup)
11713                          */
11714                         attr->branch_sample_type = mask;
11715                 }
11716                 /* privileged levels capture (kernel, hv): check permissions */
11717                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11718                         ret = perf_allow_kernel(attr);
11719                         if (ret)
11720                                 return ret;
11721                 }
11722         }
11723
11724         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11725                 ret = perf_reg_validate(attr->sample_regs_user);
11726                 if (ret)
11727                         return ret;
11728         }
11729
11730         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11731                 if (!arch_perf_have_user_stack_dump())
11732                         return -ENOSYS;
11733
11734                 /*
11735                  * We have __u32 type for the size, but so far
11736                  * we can only use __u16 as maximum due to the
11737                  * __u16 sample size limit.
11738                  */
11739                 if (attr->sample_stack_user >= USHRT_MAX)
11740                         return -EINVAL;
11741                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11742                         return -EINVAL;
11743         }
11744
11745         if (!attr->sample_max_stack)
11746                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11747
11748         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11749                 ret = perf_reg_validate(attr->sample_regs_intr);
11750
11751 #ifndef CONFIG_CGROUP_PERF
11752         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11753                 return -EINVAL;
11754 #endif
11755         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11756             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11757                 return -EINVAL;
11758
11759         if (!attr->inherit && attr->inherit_thread)
11760                 return -EINVAL;
11761
11762         if (attr->remove_on_exec && attr->enable_on_exec)
11763                 return -EINVAL;
11764
11765         if (attr->sigtrap && !attr->remove_on_exec)
11766                 return -EINVAL;
11767
11768 out:
11769         return ret;
11770
11771 err_size:
11772         put_user(sizeof(*attr), &uattr->size);
11773         ret = -E2BIG;
11774         goto out;
11775 }
11776
11777 static int
11778 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11779 {
11780         struct perf_buffer *rb = NULL;
11781         int ret = -EINVAL;
11782
11783         if (!output_event)
11784                 goto set;
11785
11786         /* don't allow circular references */
11787         if (event == output_event)
11788                 goto out;
11789
11790         /*
11791          * Don't allow cross-cpu buffers
11792          */
11793         if (output_event->cpu != event->cpu)
11794                 goto out;
11795
11796         /*
11797          * If its not a per-cpu rb, it must be the same task.
11798          */
11799         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11800                 goto out;
11801
11802         /*
11803          * Mixing clocks in the same buffer is trouble you don't need.
11804          */
11805         if (output_event->clock != event->clock)
11806                 goto out;
11807
11808         /*
11809          * Either writing ring buffer from beginning or from end.
11810          * Mixing is not allowed.
11811          */
11812         if (is_write_backward(output_event) != is_write_backward(event))
11813                 goto out;
11814
11815         /*
11816          * If both events generate aux data, they must be on the same PMU
11817          */
11818         if (has_aux(event) && has_aux(output_event) &&
11819             event->pmu != output_event->pmu)
11820                 goto out;
11821
11822 set:
11823         mutex_lock(&event->mmap_mutex);
11824         /* Can't redirect output if we've got an active mmap() */
11825         if (atomic_read(&event->mmap_count))
11826                 goto unlock;
11827
11828         if (output_event) {
11829                 /* get the rb we want to redirect to */
11830                 rb = ring_buffer_get(output_event);
11831                 if (!rb)
11832                         goto unlock;
11833         }
11834
11835         ring_buffer_attach(event, rb);
11836
11837         ret = 0;
11838 unlock:
11839         mutex_unlock(&event->mmap_mutex);
11840
11841 out:
11842         return ret;
11843 }
11844
11845 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11846 {
11847         if (b < a)
11848                 swap(a, b);
11849
11850         mutex_lock(a);
11851         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11852 }
11853
11854 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11855 {
11856         bool nmi_safe = false;
11857
11858         switch (clk_id) {
11859         case CLOCK_MONOTONIC:
11860                 event->clock = &ktime_get_mono_fast_ns;
11861                 nmi_safe = true;
11862                 break;
11863
11864         case CLOCK_MONOTONIC_RAW:
11865                 event->clock = &ktime_get_raw_fast_ns;
11866                 nmi_safe = true;
11867                 break;
11868
11869         case CLOCK_REALTIME:
11870                 event->clock = &ktime_get_real_ns;
11871                 break;
11872
11873         case CLOCK_BOOTTIME:
11874                 event->clock = &ktime_get_boottime_ns;
11875                 break;
11876
11877         case CLOCK_TAI:
11878                 event->clock = &ktime_get_clocktai_ns;
11879                 break;
11880
11881         default:
11882                 return -EINVAL;
11883         }
11884
11885         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11886                 return -EINVAL;
11887
11888         return 0;
11889 }
11890
11891 /*
11892  * Variation on perf_event_ctx_lock_nested(), except we take two context
11893  * mutexes.
11894  */
11895 static struct perf_event_context *
11896 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11897                              struct perf_event_context *ctx)
11898 {
11899         struct perf_event_context *gctx;
11900
11901 again:
11902         rcu_read_lock();
11903         gctx = READ_ONCE(group_leader->ctx);
11904         if (!refcount_inc_not_zero(&gctx->refcount)) {
11905                 rcu_read_unlock();
11906                 goto again;
11907         }
11908         rcu_read_unlock();
11909
11910         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11911
11912         if (group_leader->ctx != gctx) {
11913                 mutex_unlock(&ctx->mutex);
11914                 mutex_unlock(&gctx->mutex);
11915                 put_ctx(gctx);
11916                 goto again;
11917         }
11918
11919         return gctx;
11920 }
11921
11922 /**
11923  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11924  *
11925  * @attr_uptr:  event_id type attributes for monitoring/sampling
11926  * @pid:                target pid
11927  * @cpu:                target cpu
11928  * @group_fd:           group leader event fd
11929  */
11930 SYSCALL_DEFINE5(perf_event_open,
11931                 struct perf_event_attr __user *, attr_uptr,
11932                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11933 {
11934         struct perf_event *group_leader = NULL, *output_event = NULL;
11935         struct perf_event *event, *sibling;
11936         struct perf_event_attr attr;
11937         struct perf_event_context *ctx, *gctx;
11938         struct file *event_file = NULL;
11939         struct fd group = {NULL, 0};
11940         struct task_struct *task = NULL;
11941         struct pmu *pmu;
11942         int event_fd;
11943         int move_group = 0;
11944         int err;
11945         int f_flags = O_RDWR;
11946         int cgroup_fd = -1;
11947
11948         /* for future expandability... */
11949         if (flags & ~PERF_FLAG_ALL)
11950                 return -EINVAL;
11951
11952         /* Do we allow access to perf_event_open(2) ? */
11953         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11954         if (err)
11955                 return err;
11956
11957         err = perf_copy_attr(attr_uptr, &attr);
11958         if (err)
11959                 return err;
11960
11961         if (!attr.exclude_kernel) {
11962                 err = perf_allow_kernel(&attr);
11963                 if (err)
11964                         return err;
11965         }
11966
11967         if (attr.namespaces) {
11968                 if (!perfmon_capable())
11969                         return -EACCES;
11970         }
11971
11972         if (attr.freq) {
11973                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11974                         return -EINVAL;
11975         } else {
11976                 if (attr.sample_period & (1ULL << 63))
11977                         return -EINVAL;
11978         }
11979
11980         /* Only privileged users can get physical addresses */
11981         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11982                 err = perf_allow_kernel(&attr);
11983                 if (err)
11984                         return err;
11985         }
11986
11987         /* REGS_INTR can leak data, lockdown must prevent this */
11988         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11989                 err = security_locked_down(LOCKDOWN_PERF);
11990                 if (err)
11991                         return err;
11992         }
11993
11994         /*
11995          * In cgroup mode, the pid argument is used to pass the fd
11996          * opened to the cgroup directory in cgroupfs. The cpu argument
11997          * designates the cpu on which to monitor threads from that
11998          * cgroup.
11999          */
12000         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12001                 return -EINVAL;
12002
12003         if (flags & PERF_FLAG_FD_CLOEXEC)
12004                 f_flags |= O_CLOEXEC;
12005
12006         event_fd = get_unused_fd_flags(f_flags);
12007         if (event_fd < 0)
12008                 return event_fd;
12009
12010         if (group_fd != -1) {
12011                 err = perf_fget_light(group_fd, &group);
12012                 if (err)
12013                         goto err_fd;
12014                 group_leader = group.file->private_data;
12015                 if (flags & PERF_FLAG_FD_OUTPUT)
12016                         output_event = group_leader;
12017                 if (flags & PERF_FLAG_FD_NO_GROUP)
12018                         group_leader = NULL;
12019         }
12020
12021         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12022                 task = find_lively_task_by_vpid(pid);
12023                 if (IS_ERR(task)) {
12024                         err = PTR_ERR(task);
12025                         goto err_group_fd;
12026                 }
12027         }
12028
12029         if (task && group_leader &&
12030             group_leader->attr.inherit != attr.inherit) {
12031                 err = -EINVAL;
12032                 goto err_task;
12033         }
12034
12035         if (flags & PERF_FLAG_PID_CGROUP)
12036                 cgroup_fd = pid;
12037
12038         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12039                                  NULL, NULL, cgroup_fd);
12040         if (IS_ERR(event)) {
12041                 err = PTR_ERR(event);
12042                 goto err_task;
12043         }
12044
12045         if (is_sampling_event(event)) {
12046                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12047                         err = -EOPNOTSUPP;
12048                         goto err_alloc;
12049                 }
12050         }
12051
12052         /*
12053          * Special case software events and allow them to be part of
12054          * any hardware group.
12055          */
12056         pmu = event->pmu;
12057
12058         if (attr.use_clockid) {
12059                 err = perf_event_set_clock(event, attr.clockid);
12060                 if (err)
12061                         goto err_alloc;
12062         }
12063
12064         if (pmu->task_ctx_nr == perf_sw_context)
12065                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12066
12067         if (group_leader) {
12068                 if (is_software_event(event) &&
12069                     !in_software_context(group_leader)) {
12070                         /*
12071                          * If the event is a sw event, but the group_leader
12072                          * is on hw context.
12073                          *
12074                          * Allow the addition of software events to hw
12075                          * groups, this is safe because software events
12076                          * never fail to schedule.
12077                          */
12078                         pmu = group_leader->ctx->pmu;
12079                 } else if (!is_software_event(event) &&
12080                            is_software_event(group_leader) &&
12081                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12082                         /*
12083                          * In case the group is a pure software group, and we
12084                          * try to add a hardware event, move the whole group to
12085                          * the hardware context.
12086                          */
12087                         move_group = 1;
12088                 }
12089         }
12090
12091         /*
12092          * Get the target context (task or percpu):
12093          */
12094         ctx = find_get_context(pmu, task, event);
12095         if (IS_ERR(ctx)) {
12096                 err = PTR_ERR(ctx);
12097                 goto err_alloc;
12098         }
12099
12100         /*
12101          * Look up the group leader (we will attach this event to it):
12102          */
12103         if (group_leader) {
12104                 err = -EINVAL;
12105
12106                 /*
12107                  * Do not allow a recursive hierarchy (this new sibling
12108                  * becoming part of another group-sibling):
12109                  */
12110                 if (group_leader->group_leader != group_leader)
12111                         goto err_context;
12112
12113                 /* All events in a group should have the same clock */
12114                 if (group_leader->clock != event->clock)
12115                         goto err_context;
12116
12117                 /*
12118                  * Make sure we're both events for the same CPU;
12119                  * grouping events for different CPUs is broken; since
12120                  * you can never concurrently schedule them anyhow.
12121                  */
12122                 if (group_leader->cpu != event->cpu)
12123                         goto err_context;
12124
12125                 /*
12126                  * Make sure we're both on the same task, or both
12127                  * per-CPU events.
12128                  */
12129                 if (group_leader->ctx->task != ctx->task)
12130                         goto err_context;
12131
12132                 /*
12133                  * Do not allow to attach to a group in a different task
12134                  * or CPU context. If we're moving SW events, we'll fix
12135                  * this up later, so allow that.
12136                  */
12137                 if (!move_group && group_leader->ctx != ctx)
12138                         goto err_context;
12139
12140                 /*
12141                  * Only a group leader can be exclusive or pinned
12142                  */
12143                 if (attr.exclusive || attr.pinned)
12144                         goto err_context;
12145         }
12146
12147         if (output_event) {
12148                 err = perf_event_set_output(event, output_event);
12149                 if (err)
12150                         goto err_context;
12151         }
12152
12153         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12154                                         f_flags);
12155         if (IS_ERR(event_file)) {
12156                 err = PTR_ERR(event_file);
12157                 event_file = NULL;
12158                 goto err_context;
12159         }
12160
12161         if (task) {
12162                 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12163                 bool is_capable;
12164
12165                 err = down_read_interruptible(&task->signal->exec_update_lock);
12166                 if (err)
12167                         goto err_file;
12168
12169                 is_capable = perfmon_capable();
12170                 if (attr.sigtrap) {
12171                         /*
12172                          * perf_event_attr::sigtrap sends signals to the other
12173                          * task. Require the current task to also have
12174                          * CAP_KILL.
12175                          */
12176                         rcu_read_lock();
12177                         is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12178                         rcu_read_unlock();
12179
12180                         /*
12181                          * If the required capabilities aren't available, checks
12182                          * for ptrace permissions: upgrade to ATTACH, since
12183                          * sending signals can effectively change the target
12184                          * task.
12185                          */
12186                         ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12187                 }
12188
12189                 /*
12190                  * Preserve ptrace permission check for backwards compatibility.
12191                  *
12192                  * We must hold exec_update_lock across this and any potential
12193                  * perf_install_in_context() call for this new event to
12194                  * serialize against exec() altering our credentials (and the
12195                  * perf_event_exit_task() that could imply).
12196                  */
12197                 err = -EACCES;
12198                 if (!is_capable && !ptrace_may_access(task, ptrace_mode))
12199                         goto err_cred;
12200         }
12201
12202         if (move_group) {
12203                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12204
12205                 if (gctx->task == TASK_TOMBSTONE) {
12206                         err = -ESRCH;
12207                         goto err_locked;
12208                 }
12209
12210                 /*
12211                  * Check if we raced against another sys_perf_event_open() call
12212                  * moving the software group underneath us.
12213                  */
12214                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12215                         /*
12216                          * If someone moved the group out from under us, check
12217                          * if this new event wound up on the same ctx, if so
12218                          * its the regular !move_group case, otherwise fail.
12219                          */
12220                         if (gctx != ctx) {
12221                                 err = -EINVAL;
12222                                 goto err_locked;
12223                         } else {
12224                                 perf_event_ctx_unlock(group_leader, gctx);
12225                                 move_group = 0;
12226                         }
12227                 }
12228
12229                 /*
12230                  * Failure to create exclusive events returns -EBUSY.
12231                  */
12232                 err = -EBUSY;
12233                 if (!exclusive_event_installable(group_leader, ctx))
12234                         goto err_locked;
12235
12236                 for_each_sibling_event(sibling, group_leader) {
12237                         if (!exclusive_event_installable(sibling, ctx))
12238                                 goto err_locked;
12239                 }
12240         } else {
12241                 mutex_lock(&ctx->mutex);
12242         }
12243
12244         if (ctx->task == TASK_TOMBSTONE) {
12245                 err = -ESRCH;
12246                 goto err_locked;
12247         }
12248
12249         if (!perf_event_validate_size(event)) {
12250                 err = -E2BIG;
12251                 goto err_locked;
12252         }
12253
12254         if (!task) {
12255                 /*
12256                  * Check if the @cpu we're creating an event for is online.
12257                  *
12258                  * We use the perf_cpu_context::ctx::mutex to serialize against
12259                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12260                  */
12261                 struct perf_cpu_context *cpuctx =
12262                         container_of(ctx, struct perf_cpu_context, ctx);
12263
12264                 if (!cpuctx->online) {
12265                         err = -ENODEV;
12266                         goto err_locked;
12267                 }
12268         }
12269
12270         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12271                 err = -EINVAL;
12272                 goto err_locked;
12273         }
12274
12275         /*
12276          * Must be under the same ctx::mutex as perf_install_in_context(),
12277          * because we need to serialize with concurrent event creation.
12278          */
12279         if (!exclusive_event_installable(event, ctx)) {
12280                 err = -EBUSY;
12281                 goto err_locked;
12282         }
12283
12284         WARN_ON_ONCE(ctx->parent_ctx);
12285
12286         /*
12287          * This is the point on no return; we cannot fail hereafter. This is
12288          * where we start modifying current state.
12289          */
12290
12291         if (move_group) {
12292                 /*
12293                  * See perf_event_ctx_lock() for comments on the details
12294                  * of swizzling perf_event::ctx.
12295                  */
12296                 perf_remove_from_context(group_leader, 0);
12297                 put_ctx(gctx);
12298
12299                 for_each_sibling_event(sibling, group_leader) {
12300                         perf_remove_from_context(sibling, 0);
12301                         put_ctx(gctx);
12302                 }
12303
12304                 /*
12305                  * Wait for everybody to stop referencing the events through
12306                  * the old lists, before installing it on new lists.
12307                  */
12308                 synchronize_rcu();
12309
12310                 /*
12311                  * Install the group siblings before the group leader.
12312                  *
12313                  * Because a group leader will try and install the entire group
12314                  * (through the sibling list, which is still in-tact), we can
12315                  * end up with siblings installed in the wrong context.
12316                  *
12317                  * By installing siblings first we NO-OP because they're not
12318                  * reachable through the group lists.
12319                  */
12320                 for_each_sibling_event(sibling, group_leader) {
12321                         perf_event__state_init(sibling);
12322                         perf_install_in_context(ctx, sibling, sibling->cpu);
12323                         get_ctx(ctx);
12324                 }
12325
12326                 /*
12327                  * Removing from the context ends up with disabled
12328                  * event. What we want here is event in the initial
12329                  * startup state, ready to be add into new context.
12330                  */
12331                 perf_event__state_init(group_leader);
12332                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12333                 get_ctx(ctx);
12334         }
12335
12336         /*
12337          * Precalculate sample_data sizes; do while holding ctx::mutex such
12338          * that we're serialized against further additions and before
12339          * perf_install_in_context() which is the point the event is active and
12340          * can use these values.
12341          */
12342         perf_event__header_size(event);
12343         perf_event__id_header_size(event);
12344
12345         event->owner = current;
12346
12347         perf_install_in_context(ctx, event, event->cpu);
12348         perf_unpin_context(ctx);
12349
12350         if (move_group)
12351                 perf_event_ctx_unlock(group_leader, gctx);
12352         mutex_unlock(&ctx->mutex);
12353
12354         if (task) {
12355                 up_read(&task->signal->exec_update_lock);
12356                 put_task_struct(task);
12357         }
12358
12359         mutex_lock(&current->perf_event_mutex);
12360         list_add_tail(&event->owner_entry, &current->perf_event_list);
12361         mutex_unlock(&current->perf_event_mutex);
12362
12363         /*
12364          * Drop the reference on the group_event after placing the
12365          * new event on the sibling_list. This ensures destruction
12366          * of the group leader will find the pointer to itself in
12367          * perf_group_detach().
12368          */
12369         fdput(group);
12370         fd_install(event_fd, event_file);
12371         return event_fd;
12372
12373 err_locked:
12374         if (move_group)
12375                 perf_event_ctx_unlock(group_leader, gctx);
12376         mutex_unlock(&ctx->mutex);
12377 err_cred:
12378         if (task)
12379                 up_read(&task->signal->exec_update_lock);
12380 err_file:
12381         fput(event_file);
12382 err_context:
12383         perf_unpin_context(ctx);
12384         put_ctx(ctx);
12385 err_alloc:
12386         /*
12387          * If event_file is set, the fput() above will have called ->release()
12388          * and that will take care of freeing the event.
12389          */
12390         if (!event_file)
12391                 free_event(event);
12392 err_task:
12393         if (task)
12394                 put_task_struct(task);
12395 err_group_fd:
12396         fdput(group);
12397 err_fd:
12398         put_unused_fd(event_fd);
12399         return err;
12400 }
12401
12402 /**
12403  * perf_event_create_kernel_counter
12404  *
12405  * @attr: attributes of the counter to create
12406  * @cpu: cpu in which the counter is bound
12407  * @task: task to profile (NULL for percpu)
12408  */
12409 struct perf_event *
12410 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12411                                  struct task_struct *task,
12412                                  perf_overflow_handler_t overflow_handler,
12413                                  void *context)
12414 {
12415         struct perf_event_context *ctx;
12416         struct perf_event *event;
12417         int err;
12418
12419         /*
12420          * Grouping is not supported for kernel events, neither is 'AUX',
12421          * make sure the caller's intentions are adjusted.
12422          */
12423         if (attr->aux_output)
12424                 return ERR_PTR(-EINVAL);
12425
12426         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12427                                  overflow_handler, context, -1);
12428         if (IS_ERR(event)) {
12429                 err = PTR_ERR(event);
12430                 goto err;
12431         }
12432
12433         /* Mark owner so we could distinguish it from user events. */
12434         event->owner = TASK_TOMBSTONE;
12435
12436         /*
12437          * Get the target context (task or percpu):
12438          */
12439         ctx = find_get_context(event->pmu, task, event);
12440         if (IS_ERR(ctx)) {
12441                 err = PTR_ERR(ctx);
12442                 goto err_free;
12443         }
12444
12445         WARN_ON_ONCE(ctx->parent_ctx);
12446         mutex_lock(&ctx->mutex);
12447         if (ctx->task == TASK_TOMBSTONE) {
12448                 err = -ESRCH;
12449                 goto err_unlock;
12450         }
12451
12452         if (!task) {
12453                 /*
12454                  * Check if the @cpu we're creating an event for is online.
12455                  *
12456                  * We use the perf_cpu_context::ctx::mutex to serialize against
12457                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12458                  */
12459                 struct perf_cpu_context *cpuctx =
12460                         container_of(ctx, struct perf_cpu_context, ctx);
12461                 if (!cpuctx->online) {
12462                         err = -ENODEV;
12463                         goto err_unlock;
12464                 }
12465         }
12466
12467         if (!exclusive_event_installable(event, ctx)) {
12468                 err = -EBUSY;
12469                 goto err_unlock;
12470         }
12471
12472         perf_install_in_context(ctx, event, event->cpu);
12473         perf_unpin_context(ctx);
12474         mutex_unlock(&ctx->mutex);
12475
12476         return event;
12477
12478 err_unlock:
12479         mutex_unlock(&ctx->mutex);
12480         perf_unpin_context(ctx);
12481         put_ctx(ctx);
12482 err_free:
12483         free_event(event);
12484 err:
12485         return ERR_PTR(err);
12486 }
12487 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12488
12489 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12490 {
12491         struct perf_event_context *src_ctx;
12492         struct perf_event_context *dst_ctx;
12493         struct perf_event *event, *tmp;
12494         LIST_HEAD(events);
12495
12496         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12497         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12498
12499         /*
12500          * See perf_event_ctx_lock() for comments on the details
12501          * of swizzling perf_event::ctx.
12502          */
12503         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12504         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12505                                  event_entry) {
12506                 perf_remove_from_context(event, 0);
12507                 unaccount_event_cpu(event, src_cpu);
12508                 put_ctx(src_ctx);
12509                 list_add(&event->migrate_entry, &events);
12510         }
12511
12512         /*
12513          * Wait for the events to quiesce before re-instating them.
12514          */
12515         synchronize_rcu();
12516
12517         /*
12518          * Re-instate events in 2 passes.
12519          *
12520          * Skip over group leaders and only install siblings on this first
12521          * pass, siblings will not get enabled without a leader, however a
12522          * leader will enable its siblings, even if those are still on the old
12523          * context.
12524          */
12525         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12526                 if (event->group_leader == event)
12527                         continue;
12528
12529                 list_del(&event->migrate_entry);
12530                 if (event->state >= PERF_EVENT_STATE_OFF)
12531                         event->state = PERF_EVENT_STATE_INACTIVE;
12532                 account_event_cpu(event, dst_cpu);
12533                 perf_install_in_context(dst_ctx, event, dst_cpu);
12534                 get_ctx(dst_ctx);
12535         }
12536
12537         /*
12538          * Once all the siblings are setup properly, install the group leaders
12539          * to make it go.
12540          */
12541         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12542                 list_del(&event->migrate_entry);
12543                 if (event->state >= PERF_EVENT_STATE_OFF)
12544                         event->state = PERF_EVENT_STATE_INACTIVE;
12545                 account_event_cpu(event, dst_cpu);
12546                 perf_install_in_context(dst_ctx, event, dst_cpu);
12547                 get_ctx(dst_ctx);
12548         }
12549         mutex_unlock(&dst_ctx->mutex);
12550         mutex_unlock(&src_ctx->mutex);
12551 }
12552 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12553
12554 static void sync_child_event(struct perf_event *child_event)
12555 {
12556         struct perf_event *parent_event = child_event->parent;
12557         u64 child_val;
12558
12559         if (child_event->attr.inherit_stat) {
12560                 struct task_struct *task = child_event->ctx->task;
12561
12562                 if (task && task != TASK_TOMBSTONE)
12563                         perf_event_read_event(child_event, task);
12564         }
12565
12566         child_val = perf_event_count(child_event);
12567
12568         /*
12569          * Add back the child's count to the parent's count:
12570          */
12571         atomic64_add(child_val, &parent_event->child_count);
12572         atomic64_add(child_event->total_time_enabled,
12573                      &parent_event->child_total_time_enabled);
12574         atomic64_add(child_event->total_time_running,
12575                      &parent_event->child_total_time_running);
12576 }
12577
12578 static void
12579 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12580 {
12581         struct perf_event *parent_event = event->parent;
12582         unsigned long detach_flags = 0;
12583
12584         if (parent_event) {
12585                 /*
12586                  * Do not destroy the 'original' grouping; because of the
12587                  * context switch optimization the original events could've
12588                  * ended up in a random child task.
12589                  *
12590                  * If we were to destroy the original group, all group related
12591                  * operations would cease to function properly after this
12592                  * random child dies.
12593                  *
12594                  * Do destroy all inherited groups, we don't care about those
12595                  * and being thorough is better.
12596                  */
12597                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12598                 mutex_lock(&parent_event->child_mutex);
12599         }
12600
12601         perf_remove_from_context(event, detach_flags);
12602
12603         raw_spin_lock_irq(&ctx->lock);
12604         if (event->state > PERF_EVENT_STATE_EXIT)
12605                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12606         raw_spin_unlock_irq(&ctx->lock);
12607
12608         /*
12609          * Child events can be freed.
12610          */
12611         if (parent_event) {
12612                 mutex_unlock(&parent_event->child_mutex);
12613                 /*
12614                  * Kick perf_poll() for is_event_hup();
12615                  */
12616                 perf_event_wakeup(parent_event);
12617                 free_event(event);
12618                 put_event(parent_event);
12619                 return;
12620         }
12621
12622         /*
12623          * Parent events are governed by their filedesc, retain them.
12624          */
12625         perf_event_wakeup(event);
12626 }
12627
12628 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12629 {
12630         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12631         struct perf_event *child_event, *next;
12632
12633         WARN_ON_ONCE(child != current);
12634
12635         child_ctx = perf_pin_task_context(child, ctxn);
12636         if (!child_ctx)
12637                 return;
12638
12639         /*
12640          * In order to reduce the amount of tricky in ctx tear-down, we hold
12641          * ctx::mutex over the entire thing. This serializes against almost
12642          * everything that wants to access the ctx.
12643          *
12644          * The exception is sys_perf_event_open() /
12645          * perf_event_create_kernel_count() which does find_get_context()
12646          * without ctx::mutex (it cannot because of the move_group double mutex
12647          * lock thing). See the comments in perf_install_in_context().
12648          */
12649         mutex_lock(&child_ctx->mutex);
12650
12651         /*
12652          * In a single ctx::lock section, de-schedule the events and detach the
12653          * context from the task such that we cannot ever get it scheduled back
12654          * in.
12655          */
12656         raw_spin_lock_irq(&child_ctx->lock);
12657         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12658
12659         /*
12660          * Now that the context is inactive, destroy the task <-> ctx relation
12661          * and mark the context dead.
12662          */
12663         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12664         put_ctx(child_ctx); /* cannot be last */
12665         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12666         put_task_struct(current); /* cannot be last */
12667
12668         clone_ctx = unclone_ctx(child_ctx);
12669         raw_spin_unlock_irq(&child_ctx->lock);
12670
12671         if (clone_ctx)
12672                 put_ctx(clone_ctx);
12673
12674         /*
12675          * Report the task dead after unscheduling the events so that we
12676          * won't get any samples after PERF_RECORD_EXIT. We can however still
12677          * get a few PERF_RECORD_READ events.
12678          */
12679         perf_event_task(child, child_ctx, 0);
12680
12681         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12682                 perf_event_exit_event(child_event, child_ctx);
12683
12684         mutex_unlock(&child_ctx->mutex);
12685
12686         put_ctx(child_ctx);
12687 }
12688
12689 /*
12690  * When a child task exits, feed back event values to parent events.
12691  *
12692  * Can be called with exec_update_lock held when called from
12693  * setup_new_exec().
12694  */
12695 void perf_event_exit_task(struct task_struct *child)
12696 {
12697         struct perf_event *event, *tmp;
12698         int ctxn;
12699
12700         mutex_lock(&child->perf_event_mutex);
12701         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12702                                  owner_entry) {
12703                 list_del_init(&event->owner_entry);
12704
12705                 /*
12706                  * Ensure the list deletion is visible before we clear
12707                  * the owner, closes a race against perf_release() where
12708                  * we need to serialize on the owner->perf_event_mutex.
12709                  */
12710                 smp_store_release(&event->owner, NULL);
12711         }
12712         mutex_unlock(&child->perf_event_mutex);
12713
12714         for_each_task_context_nr(ctxn)
12715                 perf_event_exit_task_context(child, ctxn);
12716
12717         /*
12718          * The perf_event_exit_task_context calls perf_event_task
12719          * with child's task_ctx, which generates EXIT events for
12720          * child contexts and sets child->perf_event_ctxp[] to NULL.
12721          * At this point we need to send EXIT events to cpu contexts.
12722          */
12723         perf_event_task(child, NULL, 0);
12724 }
12725
12726 static void perf_free_event(struct perf_event *event,
12727                             struct perf_event_context *ctx)
12728 {
12729         struct perf_event *parent = event->parent;
12730
12731         if (WARN_ON_ONCE(!parent))
12732                 return;
12733
12734         mutex_lock(&parent->child_mutex);
12735         list_del_init(&event->child_list);
12736         mutex_unlock(&parent->child_mutex);
12737
12738         put_event(parent);
12739
12740         raw_spin_lock_irq(&ctx->lock);
12741         perf_group_detach(event);
12742         list_del_event(event, ctx);
12743         raw_spin_unlock_irq(&ctx->lock);
12744         free_event(event);
12745 }
12746
12747 /*
12748  * Free a context as created by inheritance by perf_event_init_task() below,
12749  * used by fork() in case of fail.
12750  *
12751  * Even though the task has never lived, the context and events have been
12752  * exposed through the child_list, so we must take care tearing it all down.
12753  */
12754 void perf_event_free_task(struct task_struct *task)
12755 {
12756         struct perf_event_context *ctx;
12757         struct perf_event *event, *tmp;
12758         int ctxn;
12759
12760         for_each_task_context_nr(ctxn) {
12761                 ctx = task->perf_event_ctxp[ctxn];
12762                 if (!ctx)
12763                         continue;
12764
12765                 mutex_lock(&ctx->mutex);
12766                 raw_spin_lock_irq(&ctx->lock);
12767                 /*
12768                  * Destroy the task <-> ctx relation and mark the context dead.
12769                  *
12770                  * This is important because even though the task hasn't been
12771                  * exposed yet the context has been (through child_list).
12772                  */
12773                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12774                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12775                 put_task_struct(task); /* cannot be last */
12776                 raw_spin_unlock_irq(&ctx->lock);
12777
12778                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12779                         perf_free_event(event, ctx);
12780
12781                 mutex_unlock(&ctx->mutex);
12782
12783                 /*
12784                  * perf_event_release_kernel() could've stolen some of our
12785                  * child events and still have them on its free_list. In that
12786                  * case we must wait for these events to have been freed (in
12787                  * particular all their references to this task must've been
12788                  * dropped).
12789                  *
12790                  * Without this copy_process() will unconditionally free this
12791                  * task (irrespective of its reference count) and
12792                  * _free_event()'s put_task_struct(event->hw.target) will be a
12793                  * use-after-free.
12794                  *
12795                  * Wait for all events to drop their context reference.
12796                  */
12797                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12798                 put_ctx(ctx); /* must be last */
12799         }
12800 }
12801
12802 void perf_event_delayed_put(struct task_struct *task)
12803 {
12804         int ctxn;
12805
12806         for_each_task_context_nr(ctxn)
12807                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12808 }
12809
12810 struct file *perf_event_get(unsigned int fd)
12811 {
12812         struct file *file = fget(fd);
12813         if (!file)
12814                 return ERR_PTR(-EBADF);
12815
12816         if (file->f_op != &perf_fops) {
12817                 fput(file);
12818                 return ERR_PTR(-EBADF);
12819         }
12820
12821         return file;
12822 }
12823
12824 const struct perf_event *perf_get_event(struct file *file)
12825 {
12826         if (file->f_op != &perf_fops)
12827                 return ERR_PTR(-EINVAL);
12828
12829         return file->private_data;
12830 }
12831
12832 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12833 {
12834         if (!event)
12835                 return ERR_PTR(-EINVAL);
12836
12837         return &event->attr;
12838 }
12839
12840 /*
12841  * Inherit an event from parent task to child task.
12842  *
12843  * Returns:
12844  *  - valid pointer on success
12845  *  - NULL for orphaned events
12846  *  - IS_ERR() on error
12847  */
12848 static struct perf_event *
12849 inherit_event(struct perf_event *parent_event,
12850               struct task_struct *parent,
12851               struct perf_event_context *parent_ctx,
12852               struct task_struct *child,
12853               struct perf_event *group_leader,
12854               struct perf_event_context *child_ctx)
12855 {
12856         enum perf_event_state parent_state = parent_event->state;
12857         struct perf_event *child_event;
12858         unsigned long flags;
12859
12860         /*
12861          * Instead of creating recursive hierarchies of events,
12862          * we link inherited events back to the original parent,
12863          * which has a filp for sure, which we use as the reference
12864          * count:
12865          */
12866         if (parent_event->parent)
12867                 parent_event = parent_event->parent;
12868
12869         child_event = perf_event_alloc(&parent_event->attr,
12870                                            parent_event->cpu,
12871                                            child,
12872                                            group_leader, parent_event,
12873                                            NULL, NULL, -1);
12874         if (IS_ERR(child_event))
12875                 return child_event;
12876
12877
12878         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12879             !child_ctx->task_ctx_data) {
12880                 struct pmu *pmu = child_event->pmu;
12881
12882                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12883                 if (!child_ctx->task_ctx_data) {
12884                         free_event(child_event);
12885                         return ERR_PTR(-ENOMEM);
12886                 }
12887         }
12888
12889         /*
12890          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12891          * must be under the same lock in order to serialize against
12892          * perf_event_release_kernel(), such that either we must observe
12893          * is_orphaned_event() or they will observe us on the child_list.
12894          */
12895         mutex_lock(&parent_event->child_mutex);
12896         if (is_orphaned_event(parent_event) ||
12897             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12898                 mutex_unlock(&parent_event->child_mutex);
12899                 /* task_ctx_data is freed with child_ctx */
12900                 free_event(child_event);
12901                 return NULL;
12902         }
12903
12904         get_ctx(child_ctx);
12905
12906         /*
12907          * Make the child state follow the state of the parent event,
12908          * not its attr.disabled bit.  We hold the parent's mutex,
12909          * so we won't race with perf_event_{en, dis}able_family.
12910          */
12911         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12912                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12913         else
12914                 child_event->state = PERF_EVENT_STATE_OFF;
12915
12916         if (parent_event->attr.freq) {
12917                 u64 sample_period = parent_event->hw.sample_period;
12918                 struct hw_perf_event *hwc = &child_event->hw;
12919
12920                 hwc->sample_period = sample_period;
12921                 hwc->last_period   = sample_period;
12922
12923                 local64_set(&hwc->period_left, sample_period);
12924         }
12925
12926         child_event->ctx = child_ctx;
12927         child_event->overflow_handler = parent_event->overflow_handler;
12928         child_event->overflow_handler_context
12929                 = parent_event->overflow_handler_context;
12930
12931         /*
12932          * Precalculate sample_data sizes
12933          */
12934         perf_event__header_size(child_event);
12935         perf_event__id_header_size(child_event);
12936
12937         /*
12938          * Link it up in the child's context:
12939          */
12940         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12941         add_event_to_ctx(child_event, child_ctx);
12942         child_event->attach_state |= PERF_ATTACH_CHILD;
12943         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12944
12945         /*
12946          * Link this into the parent event's child list
12947          */
12948         list_add_tail(&child_event->child_list, &parent_event->child_list);
12949         mutex_unlock(&parent_event->child_mutex);
12950
12951         return child_event;
12952 }
12953
12954 /*
12955  * Inherits an event group.
12956  *
12957  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12958  * This matches with perf_event_release_kernel() removing all child events.
12959  *
12960  * Returns:
12961  *  - 0 on success
12962  *  - <0 on error
12963  */
12964 static int inherit_group(struct perf_event *parent_event,
12965               struct task_struct *parent,
12966               struct perf_event_context *parent_ctx,
12967               struct task_struct *child,
12968               struct perf_event_context *child_ctx)
12969 {
12970         struct perf_event *leader;
12971         struct perf_event *sub;
12972         struct perf_event *child_ctr;
12973
12974         leader = inherit_event(parent_event, parent, parent_ctx,
12975                                  child, NULL, child_ctx);
12976         if (IS_ERR(leader))
12977                 return PTR_ERR(leader);
12978         /*
12979          * @leader can be NULL here because of is_orphaned_event(). In this
12980          * case inherit_event() will create individual events, similar to what
12981          * perf_group_detach() would do anyway.
12982          */
12983         for_each_sibling_event(sub, parent_event) {
12984                 child_ctr = inherit_event(sub, parent, parent_ctx,
12985                                             child, leader, child_ctx);
12986                 if (IS_ERR(child_ctr))
12987                         return PTR_ERR(child_ctr);
12988
12989                 if (sub->aux_event == parent_event && child_ctr &&
12990                     !perf_get_aux_event(child_ctr, leader))
12991                         return -EINVAL;
12992         }
12993         return 0;
12994 }
12995
12996 /*
12997  * Creates the child task context and tries to inherit the event-group.
12998  *
12999  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13000  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13001  * consistent with perf_event_release_kernel() removing all child events.
13002  *
13003  * Returns:
13004  *  - 0 on success
13005  *  - <0 on error
13006  */
13007 static int
13008 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13009                    struct perf_event_context *parent_ctx,
13010                    struct task_struct *child, int ctxn,
13011                    u64 clone_flags, int *inherited_all)
13012 {
13013         int ret;
13014         struct perf_event_context *child_ctx;
13015
13016         if (!event->attr.inherit ||
13017             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13018             /* Do not inherit if sigtrap and signal handlers were cleared. */
13019             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13020                 *inherited_all = 0;
13021                 return 0;
13022         }
13023
13024         child_ctx = child->perf_event_ctxp[ctxn];
13025         if (!child_ctx) {
13026                 /*
13027                  * This is executed from the parent task context, so
13028                  * inherit events that have been marked for cloning.
13029                  * First allocate and initialize a context for the
13030                  * child.
13031                  */
13032                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13033                 if (!child_ctx)
13034                         return -ENOMEM;
13035
13036                 child->perf_event_ctxp[ctxn] = child_ctx;
13037         }
13038
13039         ret = inherit_group(event, parent, parent_ctx,
13040                             child, child_ctx);
13041
13042         if (ret)
13043                 *inherited_all = 0;
13044
13045         return ret;
13046 }
13047
13048 /*
13049  * Initialize the perf_event context in task_struct
13050  */
13051 static int perf_event_init_context(struct task_struct *child, int ctxn,
13052                                    u64 clone_flags)
13053 {
13054         struct perf_event_context *child_ctx, *parent_ctx;
13055         struct perf_event_context *cloned_ctx;
13056         struct perf_event *event;
13057         struct task_struct *parent = current;
13058         int inherited_all = 1;
13059         unsigned long flags;
13060         int ret = 0;
13061
13062         if (likely(!parent->perf_event_ctxp[ctxn]))
13063                 return 0;
13064
13065         /*
13066          * If the parent's context is a clone, pin it so it won't get
13067          * swapped under us.
13068          */
13069         parent_ctx = perf_pin_task_context(parent, ctxn);
13070         if (!parent_ctx)
13071                 return 0;
13072
13073         /*
13074          * No need to check if parent_ctx != NULL here; since we saw
13075          * it non-NULL earlier, the only reason for it to become NULL
13076          * is if we exit, and since we're currently in the middle of
13077          * a fork we can't be exiting at the same time.
13078          */
13079
13080         /*
13081          * Lock the parent list. No need to lock the child - not PID
13082          * hashed yet and not running, so nobody can access it.
13083          */
13084         mutex_lock(&parent_ctx->mutex);
13085
13086         /*
13087          * We dont have to disable NMIs - we are only looking at
13088          * the list, not manipulating it:
13089          */
13090         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13091                 ret = inherit_task_group(event, parent, parent_ctx,
13092                                          child, ctxn, clone_flags,
13093                                          &inherited_all);
13094                 if (ret)
13095                         goto out_unlock;
13096         }
13097
13098         /*
13099          * We can't hold ctx->lock when iterating the ->flexible_group list due
13100          * to allocations, but we need to prevent rotation because
13101          * rotate_ctx() will change the list from interrupt context.
13102          */
13103         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13104         parent_ctx->rotate_disable = 1;
13105         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13106
13107         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13108                 ret = inherit_task_group(event, parent, parent_ctx,
13109                                          child, ctxn, clone_flags,
13110                                          &inherited_all);
13111                 if (ret)
13112                         goto out_unlock;
13113         }
13114
13115         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13116         parent_ctx->rotate_disable = 0;
13117
13118         child_ctx = child->perf_event_ctxp[ctxn];
13119
13120         if (child_ctx && inherited_all) {
13121                 /*
13122                  * Mark the child context as a clone of the parent
13123                  * context, or of whatever the parent is a clone of.
13124                  *
13125                  * Note that if the parent is a clone, the holding of
13126                  * parent_ctx->lock avoids it from being uncloned.
13127                  */
13128                 cloned_ctx = parent_ctx->parent_ctx;
13129                 if (cloned_ctx) {
13130                         child_ctx->parent_ctx = cloned_ctx;
13131                         child_ctx->parent_gen = parent_ctx->parent_gen;
13132                 } else {
13133                         child_ctx->parent_ctx = parent_ctx;
13134                         child_ctx->parent_gen = parent_ctx->generation;
13135                 }
13136                 get_ctx(child_ctx->parent_ctx);
13137         }
13138
13139         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13140 out_unlock:
13141         mutex_unlock(&parent_ctx->mutex);
13142
13143         perf_unpin_context(parent_ctx);
13144         put_ctx(parent_ctx);
13145
13146         return ret;
13147 }
13148
13149 /*
13150  * Initialize the perf_event context in task_struct
13151  */
13152 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13153 {
13154         int ctxn, ret;
13155
13156         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13157         mutex_init(&child->perf_event_mutex);
13158         INIT_LIST_HEAD(&child->perf_event_list);
13159
13160         for_each_task_context_nr(ctxn) {
13161                 ret = perf_event_init_context(child, ctxn, clone_flags);
13162                 if (ret) {
13163                         perf_event_free_task(child);
13164                         return ret;
13165                 }
13166         }
13167
13168         return 0;
13169 }
13170
13171 static void __init perf_event_init_all_cpus(void)
13172 {
13173         struct swevent_htable *swhash;
13174         int cpu;
13175
13176         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13177
13178         for_each_possible_cpu(cpu) {
13179                 swhash = &per_cpu(swevent_htable, cpu);
13180                 mutex_init(&swhash->hlist_mutex);
13181                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13182
13183                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13184                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13185
13186 #ifdef CONFIG_CGROUP_PERF
13187                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13188 #endif
13189                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13190         }
13191 }
13192
13193 static void perf_swevent_init_cpu(unsigned int cpu)
13194 {
13195         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13196
13197         mutex_lock(&swhash->hlist_mutex);
13198         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13199                 struct swevent_hlist *hlist;
13200
13201                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13202                 WARN_ON(!hlist);
13203                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13204         }
13205         mutex_unlock(&swhash->hlist_mutex);
13206 }
13207
13208 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13209 static void __perf_event_exit_context(void *__info)
13210 {
13211         struct perf_event_context *ctx = __info;
13212         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13213         struct perf_event *event;
13214
13215         raw_spin_lock(&ctx->lock);
13216         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13217         list_for_each_entry(event, &ctx->event_list, event_entry)
13218                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13219         raw_spin_unlock(&ctx->lock);
13220 }
13221
13222 static void perf_event_exit_cpu_context(int cpu)
13223 {
13224         struct perf_cpu_context *cpuctx;
13225         struct perf_event_context *ctx;
13226         struct pmu *pmu;
13227
13228         mutex_lock(&pmus_lock);
13229         list_for_each_entry(pmu, &pmus, entry) {
13230                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13231                 ctx = &cpuctx->ctx;
13232
13233                 mutex_lock(&ctx->mutex);
13234                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13235                 cpuctx->online = 0;
13236                 mutex_unlock(&ctx->mutex);
13237         }
13238         cpumask_clear_cpu(cpu, perf_online_mask);
13239         mutex_unlock(&pmus_lock);
13240 }
13241 #else
13242
13243 static void perf_event_exit_cpu_context(int cpu) { }
13244
13245 #endif
13246
13247 int perf_event_init_cpu(unsigned int cpu)
13248 {
13249         struct perf_cpu_context *cpuctx;
13250         struct perf_event_context *ctx;
13251         struct pmu *pmu;
13252
13253         perf_swevent_init_cpu(cpu);
13254
13255         mutex_lock(&pmus_lock);
13256         cpumask_set_cpu(cpu, perf_online_mask);
13257         list_for_each_entry(pmu, &pmus, entry) {
13258                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13259                 ctx = &cpuctx->ctx;
13260
13261                 mutex_lock(&ctx->mutex);
13262                 cpuctx->online = 1;
13263                 mutex_unlock(&ctx->mutex);
13264         }
13265         mutex_unlock(&pmus_lock);
13266
13267         return 0;
13268 }
13269
13270 int perf_event_exit_cpu(unsigned int cpu)
13271 {
13272         perf_event_exit_cpu_context(cpu);
13273         return 0;
13274 }
13275
13276 static int
13277 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13278 {
13279         int cpu;
13280
13281         for_each_online_cpu(cpu)
13282                 perf_event_exit_cpu(cpu);
13283
13284         return NOTIFY_OK;
13285 }
13286
13287 /*
13288  * Run the perf reboot notifier at the very last possible moment so that
13289  * the generic watchdog code runs as long as possible.
13290  */
13291 static struct notifier_block perf_reboot_notifier = {
13292         .notifier_call = perf_reboot,
13293         .priority = INT_MIN,
13294 };
13295
13296 void __init perf_event_init(void)
13297 {
13298         int ret;
13299
13300         idr_init(&pmu_idr);
13301
13302         perf_event_init_all_cpus();
13303         init_srcu_struct(&pmus_srcu);
13304         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13305         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13306         perf_pmu_register(&perf_task_clock, NULL, -1);
13307         perf_tp_register();
13308         perf_event_init_cpu(smp_processor_id());
13309         register_reboot_notifier(&perf_reboot_notifier);
13310
13311         ret = init_hw_breakpoint();
13312         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13313
13314         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13315
13316         /*
13317          * Build time assertion that we keep the data_head at the intended
13318          * location.  IOW, validation we got the __reserved[] size right.
13319          */
13320         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13321                      != 1024);
13322 }
13323
13324 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13325                               char *page)
13326 {
13327         struct perf_pmu_events_attr *pmu_attr =
13328                 container_of(attr, struct perf_pmu_events_attr, attr);
13329
13330         if (pmu_attr->event_str)
13331                 return sprintf(page, "%s\n", pmu_attr->event_str);
13332
13333         return 0;
13334 }
13335 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13336
13337 static int __init perf_event_sysfs_init(void)
13338 {
13339         struct pmu *pmu;
13340         int ret;
13341
13342         mutex_lock(&pmus_lock);
13343
13344         ret = bus_register(&pmu_bus);
13345         if (ret)
13346                 goto unlock;
13347
13348         list_for_each_entry(pmu, &pmus, entry) {
13349                 if (!pmu->name || pmu->type < 0)
13350                         continue;
13351
13352                 ret = pmu_dev_alloc(pmu);
13353                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13354         }
13355         pmu_bus_running = 1;
13356         ret = 0;
13357
13358 unlock:
13359         mutex_unlock(&pmus_lock);
13360
13361         return ret;
13362 }
13363 device_initcall(perf_event_sysfs_init);
13364
13365 #ifdef CONFIG_CGROUP_PERF
13366 static struct cgroup_subsys_state *
13367 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13368 {
13369         struct perf_cgroup *jc;
13370
13371         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13372         if (!jc)
13373                 return ERR_PTR(-ENOMEM);
13374
13375         jc->info = alloc_percpu(struct perf_cgroup_info);
13376         if (!jc->info) {
13377                 kfree(jc);
13378                 return ERR_PTR(-ENOMEM);
13379         }
13380
13381         return &jc->css;
13382 }
13383
13384 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13385 {
13386         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13387
13388         free_percpu(jc->info);
13389         kfree(jc);
13390 }
13391
13392 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13393 {
13394         perf_event_cgroup(css->cgroup);
13395         return 0;
13396 }
13397
13398 static int __perf_cgroup_move(void *info)
13399 {
13400         struct task_struct *task = info;
13401         rcu_read_lock();
13402         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13403         rcu_read_unlock();
13404         return 0;
13405 }
13406
13407 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13408 {
13409         struct task_struct *task;
13410         struct cgroup_subsys_state *css;
13411
13412         cgroup_taskset_for_each(task, css, tset)
13413                 task_function_call(task, __perf_cgroup_move, task);
13414 }
13415
13416 struct cgroup_subsys perf_event_cgrp_subsys = {
13417         .css_alloc      = perf_cgroup_css_alloc,
13418         .css_free       = perf_cgroup_css_free,
13419         .css_online     = perf_cgroup_css_online,
13420         .attach         = perf_cgroup_attach,
13421         /*
13422          * Implicitly enable on dfl hierarchy so that perf events can
13423          * always be filtered by cgroup2 path as long as perf_event
13424          * controller is not mounted on a legacy hierarchy.
13425          */
13426         .implicit_on_dfl = true,
13427         .threaded       = true,
13428 };
13429 #endif /* CONFIG_CGROUP_PERF */