GNU Linux-libre 6.5.10-gnu
[releases.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
379 };
380
381 /*
382  * perf_sched_events : >0 events exist
383  */
384
385 static void perf_sched_delayed(struct work_struct *work);
386 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
387 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
388 static DEFINE_MUTEX(perf_sched_mutex);
389 static atomic_t perf_sched_count;
390
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void update_context_time(struct perf_event_context *ctx);
574 static u64 perf_event_time(struct perf_event *event);
575
576 void __weak perf_event_print_debug(void)        { }
577
578 static inline u64 perf_clock(void)
579 {
580         return local_clock();
581 }
582
583 static inline u64 perf_event_clock(struct perf_event *event)
584 {
585         return event->clock();
586 }
587
588 /*
589  * State based event timekeeping...
590  *
591  * The basic idea is to use event->state to determine which (if any) time
592  * fields to increment with the current delta. This means we only need to
593  * update timestamps when we change state or when they are explicitly requested
594  * (read).
595  *
596  * Event groups make things a little more complicated, but not terribly so. The
597  * rules for a group are that if the group leader is OFF the entire group is
598  * OFF, irrespecive of what the group member states are. This results in
599  * __perf_effective_state().
600  *
601  * A futher ramification is that when a group leader flips between OFF and
602  * !OFF, we need to update all group member times.
603  *
604  *
605  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
606  * need to make sure the relevant context time is updated before we try and
607  * update our timestamps.
608  */
609
610 static __always_inline enum perf_event_state
611 __perf_effective_state(struct perf_event *event)
612 {
613         struct perf_event *leader = event->group_leader;
614
615         if (leader->state <= PERF_EVENT_STATE_OFF)
616                 return leader->state;
617
618         return event->state;
619 }
620
621 static __always_inline void
622 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
623 {
624         enum perf_event_state state = __perf_effective_state(event);
625         u64 delta = now - event->tstamp;
626
627         *enabled = event->total_time_enabled;
628         if (state >= PERF_EVENT_STATE_INACTIVE)
629                 *enabled += delta;
630
631         *running = event->total_time_running;
632         if (state >= PERF_EVENT_STATE_ACTIVE)
633                 *running += delta;
634 }
635
636 static void perf_event_update_time(struct perf_event *event)
637 {
638         u64 now = perf_event_time(event);
639
640         __perf_update_times(event, now, &event->total_time_enabled,
641                                         &event->total_time_running);
642         event->tstamp = now;
643 }
644
645 static void perf_event_update_sibling_time(struct perf_event *leader)
646 {
647         struct perf_event *sibling;
648
649         for_each_sibling_event(sibling, leader)
650                 perf_event_update_time(sibling);
651 }
652
653 static void
654 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
655 {
656         if (event->state == state)
657                 return;
658
659         perf_event_update_time(event);
660         /*
661          * If a group leader gets enabled/disabled all its siblings
662          * are affected too.
663          */
664         if ((event->state < 0) ^ (state < 0))
665                 perf_event_update_sibling_time(event);
666
667         WRITE_ONCE(event->state, state);
668 }
669
670 /*
671  * UP store-release, load-acquire
672  */
673
674 #define __store_release(ptr, val)                                       \
675 do {                                                                    \
676         barrier();                                                      \
677         WRITE_ONCE(*(ptr), (val));                                      \
678 } while (0)
679
680 #define __load_acquire(ptr)                                             \
681 ({                                                                      \
682         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
683         barrier();                                                      \
684         ___p;                                                           \
685 })
686
687 static void perf_ctx_disable(struct perf_event_context *ctx)
688 {
689         struct perf_event_pmu_context *pmu_ctx;
690
691         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
692                 perf_pmu_disable(pmu_ctx->pmu);
693 }
694
695 static void perf_ctx_enable(struct perf_event_context *ctx)
696 {
697         struct perf_event_pmu_context *pmu_ctx;
698
699         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
700                 perf_pmu_enable(pmu_ctx->pmu);
701 }
702
703 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
704 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
705
706 #ifdef CONFIG_CGROUP_PERF
707
708 static inline bool
709 perf_cgroup_match(struct perf_event *event)
710 {
711         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
712
713         /* @event doesn't care about cgroup */
714         if (!event->cgrp)
715                 return true;
716
717         /* wants specific cgroup scope but @cpuctx isn't associated with any */
718         if (!cpuctx->cgrp)
719                 return false;
720
721         /*
722          * Cgroup scoping is recursive.  An event enabled for a cgroup is
723          * also enabled for all its descendant cgroups.  If @cpuctx's
724          * cgroup is a descendant of @event's (the test covers identity
725          * case), it's a match.
726          */
727         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
728                                     event->cgrp->css.cgroup);
729 }
730
731 static inline void perf_detach_cgroup(struct perf_event *event)
732 {
733         css_put(&event->cgrp->css);
734         event->cgrp = NULL;
735 }
736
737 static inline int is_cgroup_event(struct perf_event *event)
738 {
739         return event->cgrp != NULL;
740 }
741
742 static inline u64 perf_cgroup_event_time(struct perf_event *event)
743 {
744         struct perf_cgroup_info *t;
745
746         t = per_cpu_ptr(event->cgrp->info, event->cpu);
747         return t->time;
748 }
749
750 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
751 {
752         struct perf_cgroup_info *t;
753
754         t = per_cpu_ptr(event->cgrp->info, event->cpu);
755         if (!__load_acquire(&t->active))
756                 return t->time;
757         now += READ_ONCE(t->timeoffset);
758         return now;
759 }
760
761 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
762 {
763         if (adv)
764                 info->time += now - info->timestamp;
765         info->timestamp = now;
766         /*
767          * see update_context_time()
768          */
769         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
770 }
771
772 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
773 {
774         struct perf_cgroup *cgrp = cpuctx->cgrp;
775         struct cgroup_subsys_state *css;
776         struct perf_cgroup_info *info;
777
778         if (cgrp) {
779                 u64 now = perf_clock();
780
781                 for (css = &cgrp->css; css; css = css->parent) {
782                         cgrp = container_of(css, struct perf_cgroup, css);
783                         info = this_cpu_ptr(cgrp->info);
784
785                         __update_cgrp_time(info, now, true);
786                         if (final)
787                                 __store_release(&info->active, 0);
788                 }
789         }
790 }
791
792 static inline void update_cgrp_time_from_event(struct perf_event *event)
793 {
794         struct perf_cgroup_info *info;
795
796         /*
797          * ensure we access cgroup data only when needed and
798          * when we know the cgroup is pinned (css_get)
799          */
800         if (!is_cgroup_event(event))
801                 return;
802
803         info = this_cpu_ptr(event->cgrp->info);
804         /*
805          * Do not update time when cgroup is not active
806          */
807         if (info->active)
808                 __update_cgrp_time(info, perf_clock(), true);
809 }
810
811 static inline void
812 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
813 {
814         struct perf_event_context *ctx = &cpuctx->ctx;
815         struct perf_cgroup *cgrp = cpuctx->cgrp;
816         struct perf_cgroup_info *info;
817         struct cgroup_subsys_state *css;
818
819         /*
820          * ctx->lock held by caller
821          * ensure we do not access cgroup data
822          * unless we have the cgroup pinned (css_get)
823          */
824         if (!cgrp)
825                 return;
826
827         WARN_ON_ONCE(!ctx->nr_cgroups);
828
829         for (css = &cgrp->css; css; css = css->parent) {
830                 cgrp = container_of(css, struct perf_cgroup, css);
831                 info = this_cpu_ptr(cgrp->info);
832                 __update_cgrp_time(info, ctx->timestamp, false);
833                 __store_release(&info->active, 1);
834         }
835 }
836
837 /*
838  * reschedule events based on the cgroup constraint of task.
839  */
840 static void perf_cgroup_switch(struct task_struct *task)
841 {
842         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
843         struct perf_cgroup *cgrp;
844
845         /*
846          * cpuctx->cgrp is set when the first cgroup event enabled,
847          * and is cleared when the last cgroup event disabled.
848          */
849         if (READ_ONCE(cpuctx->cgrp) == NULL)
850                 return;
851
852         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
853
854         cgrp = perf_cgroup_from_task(task, NULL);
855         if (READ_ONCE(cpuctx->cgrp) == cgrp)
856                 return;
857
858         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
859         perf_ctx_disable(&cpuctx->ctx);
860
861         ctx_sched_out(&cpuctx->ctx, EVENT_ALL);
862         /*
863          * must not be done before ctxswout due
864          * to update_cgrp_time_from_cpuctx() in
865          * ctx_sched_out()
866          */
867         cpuctx->cgrp = cgrp;
868         /*
869          * set cgrp before ctxsw in to allow
870          * perf_cgroup_set_timestamp() in ctx_sched_in()
871          * to not have to pass task around
872          */
873         ctx_sched_in(&cpuctx->ctx, EVENT_ALL);
874
875         perf_ctx_enable(&cpuctx->ctx);
876         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
877 }
878
879 static int perf_cgroup_ensure_storage(struct perf_event *event,
880                                 struct cgroup_subsys_state *css)
881 {
882         struct perf_cpu_context *cpuctx;
883         struct perf_event **storage;
884         int cpu, heap_size, ret = 0;
885
886         /*
887          * Allow storage to have sufficent space for an iterator for each
888          * possibly nested cgroup plus an iterator for events with no cgroup.
889          */
890         for (heap_size = 1; css; css = css->parent)
891                 heap_size++;
892
893         for_each_possible_cpu(cpu) {
894                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
895                 if (heap_size <= cpuctx->heap_size)
896                         continue;
897
898                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
899                                        GFP_KERNEL, cpu_to_node(cpu));
900                 if (!storage) {
901                         ret = -ENOMEM;
902                         break;
903                 }
904
905                 raw_spin_lock_irq(&cpuctx->ctx.lock);
906                 if (cpuctx->heap_size < heap_size) {
907                         swap(cpuctx->heap, storage);
908                         if (storage == cpuctx->heap_default)
909                                 storage = NULL;
910                         cpuctx->heap_size = heap_size;
911                 }
912                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
913
914                 kfree(storage);
915         }
916
917         return ret;
918 }
919
920 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
921                                       struct perf_event_attr *attr,
922                                       struct perf_event *group_leader)
923 {
924         struct perf_cgroup *cgrp;
925         struct cgroup_subsys_state *css;
926         struct fd f = fdget(fd);
927         int ret = 0;
928
929         if (!f.file)
930                 return -EBADF;
931
932         css = css_tryget_online_from_dir(f.file->f_path.dentry,
933                                          &perf_event_cgrp_subsys);
934         if (IS_ERR(css)) {
935                 ret = PTR_ERR(css);
936                 goto out;
937         }
938
939         ret = perf_cgroup_ensure_storage(event, css);
940         if (ret)
941                 goto out;
942
943         cgrp = container_of(css, struct perf_cgroup, css);
944         event->cgrp = cgrp;
945
946         /*
947          * all events in a group must monitor
948          * the same cgroup because a task belongs
949          * to only one perf cgroup at a time
950          */
951         if (group_leader && group_leader->cgrp != cgrp) {
952                 perf_detach_cgroup(event);
953                 ret = -EINVAL;
954         }
955 out:
956         fdput(f);
957         return ret;
958 }
959
960 static inline void
961 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
962 {
963         struct perf_cpu_context *cpuctx;
964
965         if (!is_cgroup_event(event))
966                 return;
967
968         /*
969          * Because cgroup events are always per-cpu events,
970          * @ctx == &cpuctx->ctx.
971          */
972         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
973
974         if (ctx->nr_cgroups++)
975                 return;
976
977         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
978 }
979
980 static inline void
981 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
982 {
983         struct perf_cpu_context *cpuctx;
984
985         if (!is_cgroup_event(event))
986                 return;
987
988         /*
989          * Because cgroup events are always per-cpu events,
990          * @ctx == &cpuctx->ctx.
991          */
992         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
993
994         if (--ctx->nr_cgroups)
995                 return;
996
997         cpuctx->cgrp = NULL;
998 }
999
1000 #else /* !CONFIG_CGROUP_PERF */
1001
1002 static inline bool
1003 perf_cgroup_match(struct perf_event *event)
1004 {
1005         return true;
1006 }
1007
1008 static inline void perf_detach_cgroup(struct perf_event *event)
1009 {}
1010
1011 static inline int is_cgroup_event(struct perf_event *event)
1012 {
1013         return 0;
1014 }
1015
1016 static inline void update_cgrp_time_from_event(struct perf_event *event)
1017 {
1018 }
1019
1020 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1021                                                 bool final)
1022 {
1023 }
1024
1025 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1026                                       struct perf_event_attr *attr,
1027                                       struct perf_event *group_leader)
1028 {
1029         return -EINVAL;
1030 }
1031
1032 static inline void
1033 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1034 {
1035 }
1036
1037 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1038 {
1039         return 0;
1040 }
1041
1042 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1043 {
1044         return 0;
1045 }
1046
1047 static inline void
1048 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1049 {
1050 }
1051
1052 static inline void
1053 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1054 {
1055 }
1056
1057 static void perf_cgroup_switch(struct task_struct *task)
1058 {
1059 }
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_pmu_context *cpc;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1078         rotations = perf_rotate_context(cpc);
1079
1080         raw_spin_lock(&cpc->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1083         else
1084                 cpc->hrtimer_active = 0;
1085         raw_spin_unlock(&cpc->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1091 {
1092         struct hrtimer *timer = &cpc->hrtimer;
1093         struct pmu *pmu = cpc->epc.pmu;
1094         u64 interval;
1095
1096         /*
1097          * check default is sane, if not set then force to
1098          * default interval (1/tick)
1099          */
1100         interval = pmu->hrtimer_interval_ms;
1101         if (interval < 1)
1102                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1103
1104         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1105
1106         raw_spin_lock_init(&cpc->hrtimer_lock);
1107         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1108         timer->function = perf_mux_hrtimer_handler;
1109 }
1110
1111 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1112 {
1113         struct hrtimer *timer = &cpc->hrtimer;
1114         unsigned long flags;
1115
1116         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1117         if (!cpc->hrtimer_active) {
1118                 cpc->hrtimer_active = 1;
1119                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1120                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1121         }
1122         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1123
1124         return 0;
1125 }
1126
1127 static int perf_mux_hrtimer_restart_ipi(void *arg)
1128 {
1129         return perf_mux_hrtimer_restart(arg);
1130 }
1131
1132 void perf_pmu_disable(struct pmu *pmu)
1133 {
1134         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135         if (!(*count)++)
1136                 pmu->pmu_disable(pmu);
1137 }
1138
1139 void perf_pmu_enable(struct pmu *pmu)
1140 {
1141         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142         if (!--(*count))
1143                 pmu->pmu_enable(pmu);
1144 }
1145
1146 static void perf_assert_pmu_disabled(struct pmu *pmu)
1147 {
1148         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1149 }
1150
1151 static void get_ctx(struct perf_event_context *ctx)
1152 {
1153         refcount_inc(&ctx->refcount);
1154 }
1155
1156 static void *alloc_task_ctx_data(struct pmu *pmu)
1157 {
1158         if (pmu->task_ctx_cache)
1159                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1160
1161         return NULL;
1162 }
1163
1164 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1165 {
1166         if (pmu->task_ctx_cache && task_ctx_data)
1167                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1168 }
1169
1170 static void free_ctx(struct rcu_head *head)
1171 {
1172         struct perf_event_context *ctx;
1173
1174         ctx = container_of(head, struct perf_event_context, rcu_head);
1175         kfree(ctx);
1176 }
1177
1178 static void put_ctx(struct perf_event_context *ctx)
1179 {
1180         if (refcount_dec_and_test(&ctx->refcount)) {
1181                 if (ctx->parent_ctx)
1182                         put_ctx(ctx->parent_ctx);
1183                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1184                         put_task_struct(ctx->task);
1185                 call_rcu(&ctx->rcu_head, free_ctx);
1186         }
1187 }
1188
1189 /*
1190  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1191  * perf_pmu_migrate_context() we need some magic.
1192  *
1193  * Those places that change perf_event::ctx will hold both
1194  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1195  *
1196  * Lock ordering is by mutex address. There are two other sites where
1197  * perf_event_context::mutex nests and those are:
1198  *
1199  *  - perf_event_exit_task_context()    [ child , 0 ]
1200  *      perf_event_exit_event()
1201  *        put_event()                   [ parent, 1 ]
1202  *
1203  *  - perf_event_init_context()         [ parent, 0 ]
1204  *      inherit_task_group()
1205  *        inherit_group()
1206  *          inherit_event()
1207  *            perf_event_alloc()
1208  *              perf_init_event()
1209  *                perf_try_init_event() [ child , 1 ]
1210  *
1211  * While it appears there is an obvious deadlock here -- the parent and child
1212  * nesting levels are inverted between the two. This is in fact safe because
1213  * life-time rules separate them. That is an exiting task cannot fork, and a
1214  * spawning task cannot (yet) exit.
1215  *
1216  * But remember that these are parent<->child context relations, and
1217  * migration does not affect children, therefore these two orderings should not
1218  * interact.
1219  *
1220  * The change in perf_event::ctx does not affect children (as claimed above)
1221  * because the sys_perf_event_open() case will install a new event and break
1222  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1223  * concerned with cpuctx and that doesn't have children.
1224  *
1225  * The places that change perf_event::ctx will issue:
1226  *
1227  *   perf_remove_from_context();
1228  *   synchronize_rcu();
1229  *   perf_install_in_context();
1230  *
1231  * to affect the change. The remove_from_context() + synchronize_rcu() should
1232  * quiesce the event, after which we can install it in the new location. This
1233  * means that only external vectors (perf_fops, prctl) can perturb the event
1234  * while in transit. Therefore all such accessors should also acquire
1235  * perf_event_context::mutex to serialize against this.
1236  *
1237  * However; because event->ctx can change while we're waiting to acquire
1238  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1239  * function.
1240  *
1241  * Lock order:
1242  *    exec_update_lock
1243  *      task_struct::perf_event_mutex
1244  *        perf_event_context::mutex
1245  *          perf_event::child_mutex;
1246  *            perf_event_context::lock
1247  *          perf_event::mmap_mutex
1248  *          mmap_lock
1249  *            perf_addr_filters_head::lock
1250  *
1251  *    cpu_hotplug_lock
1252  *      pmus_lock
1253  *        cpuctx->mutex / perf_event_context::mutex
1254  */
1255 static struct perf_event_context *
1256 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1257 {
1258         struct perf_event_context *ctx;
1259
1260 again:
1261         rcu_read_lock();
1262         ctx = READ_ONCE(event->ctx);
1263         if (!refcount_inc_not_zero(&ctx->refcount)) {
1264                 rcu_read_unlock();
1265                 goto again;
1266         }
1267         rcu_read_unlock();
1268
1269         mutex_lock_nested(&ctx->mutex, nesting);
1270         if (event->ctx != ctx) {
1271                 mutex_unlock(&ctx->mutex);
1272                 put_ctx(ctx);
1273                 goto again;
1274         }
1275
1276         return ctx;
1277 }
1278
1279 static inline struct perf_event_context *
1280 perf_event_ctx_lock(struct perf_event *event)
1281 {
1282         return perf_event_ctx_lock_nested(event, 0);
1283 }
1284
1285 static void perf_event_ctx_unlock(struct perf_event *event,
1286                                   struct perf_event_context *ctx)
1287 {
1288         mutex_unlock(&ctx->mutex);
1289         put_ctx(ctx);
1290 }
1291
1292 /*
1293  * This must be done under the ctx->lock, such as to serialize against
1294  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1295  * calling scheduler related locks and ctx->lock nests inside those.
1296  */
1297 static __must_check struct perf_event_context *
1298 unclone_ctx(struct perf_event_context *ctx)
1299 {
1300         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1301
1302         lockdep_assert_held(&ctx->lock);
1303
1304         if (parent_ctx)
1305                 ctx->parent_ctx = NULL;
1306         ctx->generation++;
1307
1308         return parent_ctx;
1309 }
1310
1311 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1312                                 enum pid_type type)
1313 {
1314         u32 nr;
1315         /*
1316          * only top level events have the pid namespace they were created in
1317          */
1318         if (event->parent)
1319                 event = event->parent;
1320
1321         nr = __task_pid_nr_ns(p, type, event->ns);
1322         /* avoid -1 if it is idle thread or runs in another ns */
1323         if (!nr && !pid_alive(p))
1324                 nr = -1;
1325         return nr;
1326 }
1327
1328 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1329 {
1330         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1331 }
1332
1333 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1334 {
1335         return perf_event_pid_type(event, p, PIDTYPE_PID);
1336 }
1337
1338 /*
1339  * If we inherit events we want to return the parent event id
1340  * to userspace.
1341  */
1342 static u64 primary_event_id(struct perf_event *event)
1343 {
1344         u64 id = event->id;
1345
1346         if (event->parent)
1347                 id = event->parent->id;
1348
1349         return id;
1350 }
1351
1352 /*
1353  * Get the perf_event_context for a task and lock it.
1354  *
1355  * This has to cope with the fact that until it is locked,
1356  * the context could get moved to another task.
1357  */
1358 static struct perf_event_context *
1359 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1360 {
1361         struct perf_event_context *ctx;
1362
1363 retry:
1364         /*
1365          * One of the few rules of preemptible RCU is that one cannot do
1366          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1367          * part of the read side critical section was irqs-enabled -- see
1368          * rcu_read_unlock_special().
1369          *
1370          * Since ctx->lock nests under rq->lock we must ensure the entire read
1371          * side critical section has interrupts disabled.
1372          */
1373         local_irq_save(*flags);
1374         rcu_read_lock();
1375         ctx = rcu_dereference(task->perf_event_ctxp);
1376         if (ctx) {
1377                 /*
1378                  * If this context is a clone of another, it might
1379                  * get swapped for another underneath us by
1380                  * perf_event_task_sched_out, though the
1381                  * rcu_read_lock() protects us from any context
1382                  * getting freed.  Lock the context and check if it
1383                  * got swapped before we could get the lock, and retry
1384                  * if so.  If we locked the right context, then it
1385                  * can't get swapped on us any more.
1386                  */
1387                 raw_spin_lock(&ctx->lock);
1388                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1389                         raw_spin_unlock(&ctx->lock);
1390                         rcu_read_unlock();
1391                         local_irq_restore(*flags);
1392                         goto retry;
1393                 }
1394
1395                 if (ctx->task == TASK_TOMBSTONE ||
1396                     !refcount_inc_not_zero(&ctx->refcount)) {
1397                         raw_spin_unlock(&ctx->lock);
1398                         ctx = NULL;
1399                 } else {
1400                         WARN_ON_ONCE(ctx->task != task);
1401                 }
1402         }
1403         rcu_read_unlock();
1404         if (!ctx)
1405                 local_irq_restore(*flags);
1406         return ctx;
1407 }
1408
1409 /*
1410  * Get the context for a task and increment its pin_count so it
1411  * can't get swapped to another task.  This also increments its
1412  * reference count so that the context can't get freed.
1413  */
1414 static struct perf_event_context *
1415 perf_pin_task_context(struct task_struct *task)
1416 {
1417         struct perf_event_context *ctx;
1418         unsigned long flags;
1419
1420         ctx = perf_lock_task_context(task, &flags);
1421         if (ctx) {
1422                 ++ctx->pin_count;
1423                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1424         }
1425         return ctx;
1426 }
1427
1428 static void perf_unpin_context(struct perf_event_context *ctx)
1429 {
1430         unsigned long flags;
1431
1432         raw_spin_lock_irqsave(&ctx->lock, flags);
1433         --ctx->pin_count;
1434         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 }
1436
1437 /*
1438  * Update the record of the current time in a context.
1439  */
1440 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1441 {
1442         u64 now = perf_clock();
1443
1444         lockdep_assert_held(&ctx->lock);
1445
1446         if (adv)
1447                 ctx->time += now - ctx->timestamp;
1448         ctx->timestamp = now;
1449
1450         /*
1451          * The above: time' = time + (now - timestamp), can be re-arranged
1452          * into: time` = now + (time - timestamp), which gives a single value
1453          * offset to compute future time without locks on.
1454          *
1455          * See perf_event_time_now(), which can be used from NMI context where
1456          * it's (obviously) not possible to acquire ctx->lock in order to read
1457          * both the above values in a consistent manner.
1458          */
1459         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1460 }
1461
1462 static void update_context_time(struct perf_event_context *ctx)
1463 {
1464         __update_context_time(ctx, true);
1465 }
1466
1467 static u64 perf_event_time(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470
1471         if (unlikely(!ctx))
1472                 return 0;
1473
1474         if (is_cgroup_event(event))
1475                 return perf_cgroup_event_time(event);
1476
1477         return ctx->time;
1478 }
1479
1480 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1481 {
1482         struct perf_event_context *ctx = event->ctx;
1483
1484         if (unlikely(!ctx))
1485                 return 0;
1486
1487         if (is_cgroup_event(event))
1488                 return perf_cgroup_event_time_now(event, now);
1489
1490         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1491                 return ctx->time;
1492
1493         now += READ_ONCE(ctx->timeoffset);
1494         return now;
1495 }
1496
1497 static enum event_type_t get_event_type(struct perf_event *event)
1498 {
1499         struct perf_event_context *ctx = event->ctx;
1500         enum event_type_t event_type;
1501
1502         lockdep_assert_held(&ctx->lock);
1503
1504         /*
1505          * It's 'group type', really, because if our group leader is
1506          * pinned, so are we.
1507          */
1508         if (event->group_leader != event)
1509                 event = event->group_leader;
1510
1511         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1512         if (!ctx->task)
1513                 event_type |= EVENT_CPU;
1514
1515         return event_type;
1516 }
1517
1518 /*
1519  * Helper function to initialize event group nodes.
1520  */
1521 static void init_event_group(struct perf_event *event)
1522 {
1523         RB_CLEAR_NODE(&event->group_node);
1524         event->group_index = 0;
1525 }
1526
1527 /*
1528  * Extract pinned or flexible groups from the context
1529  * based on event attrs bits.
1530  */
1531 static struct perf_event_groups *
1532 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1533 {
1534         if (event->attr.pinned)
1535                 return &ctx->pinned_groups;
1536         else
1537                 return &ctx->flexible_groups;
1538 }
1539
1540 /*
1541  * Helper function to initializes perf_event_group trees.
1542  */
1543 static void perf_event_groups_init(struct perf_event_groups *groups)
1544 {
1545         groups->tree = RB_ROOT;
1546         groups->index = 0;
1547 }
1548
1549 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1550 {
1551         struct cgroup *cgroup = NULL;
1552
1553 #ifdef CONFIG_CGROUP_PERF
1554         if (event->cgrp)
1555                 cgroup = event->cgrp->css.cgroup;
1556 #endif
1557
1558         return cgroup;
1559 }
1560
1561 /*
1562  * Compare function for event groups;
1563  *
1564  * Implements complex key that first sorts by CPU and then by virtual index
1565  * which provides ordering when rotating groups for the same CPU.
1566  */
1567 static __always_inline int
1568 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1569                       const struct cgroup *left_cgroup, const u64 left_group_index,
1570                       const struct perf_event *right)
1571 {
1572         if (left_cpu < right->cpu)
1573                 return -1;
1574         if (left_cpu > right->cpu)
1575                 return 1;
1576
1577         if (left_pmu) {
1578                 if (left_pmu < right->pmu_ctx->pmu)
1579                         return -1;
1580                 if (left_pmu > right->pmu_ctx->pmu)
1581                         return 1;
1582         }
1583
1584 #ifdef CONFIG_CGROUP_PERF
1585         {
1586                 const struct cgroup *right_cgroup = event_cgroup(right);
1587
1588                 if (left_cgroup != right_cgroup) {
1589                         if (!left_cgroup) {
1590                                 /*
1591                                  * Left has no cgroup but right does, no
1592                                  * cgroups come first.
1593                                  */
1594                                 return -1;
1595                         }
1596                         if (!right_cgroup) {
1597                                 /*
1598                                  * Right has no cgroup but left does, no
1599                                  * cgroups come first.
1600                                  */
1601                                 return 1;
1602                         }
1603                         /* Two dissimilar cgroups, order by id. */
1604                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1605                                 return -1;
1606
1607                         return 1;
1608                 }
1609         }
1610 #endif
1611
1612         if (left_group_index < right->group_index)
1613                 return -1;
1614         if (left_group_index > right->group_index)
1615                 return 1;
1616
1617         return 0;
1618 }
1619
1620 #define __node_2_pe(node) \
1621         rb_entry((node), struct perf_event, group_node)
1622
1623 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1624 {
1625         struct perf_event *e = __node_2_pe(a);
1626         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1627                                      e->group_index, __node_2_pe(b)) < 0;
1628 }
1629
1630 struct __group_key {
1631         int cpu;
1632         struct pmu *pmu;
1633         struct cgroup *cgroup;
1634 };
1635
1636 static inline int __group_cmp(const void *key, const struct rb_node *node)
1637 {
1638         const struct __group_key *a = key;
1639         const struct perf_event *b = __node_2_pe(node);
1640
1641         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1642         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1643 }
1644
1645 static inline int
1646 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1647 {
1648         const struct __group_key *a = key;
1649         const struct perf_event *b = __node_2_pe(node);
1650
1651         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1652         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1653                                      b->group_index, b);
1654 }
1655
1656 /*
1657  * Insert @event into @groups' tree; using
1658  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1659  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1660  */
1661 static void
1662 perf_event_groups_insert(struct perf_event_groups *groups,
1663                          struct perf_event *event)
1664 {
1665         event->group_index = ++groups->index;
1666
1667         rb_add(&event->group_node, &groups->tree, __group_less);
1668 }
1669
1670 /*
1671  * Helper function to insert event into the pinned or flexible groups.
1672  */
1673 static void
1674 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1675 {
1676         struct perf_event_groups *groups;
1677
1678         groups = get_event_groups(event, ctx);
1679         perf_event_groups_insert(groups, event);
1680 }
1681
1682 /*
1683  * Delete a group from a tree.
1684  */
1685 static void
1686 perf_event_groups_delete(struct perf_event_groups *groups,
1687                          struct perf_event *event)
1688 {
1689         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1690                      RB_EMPTY_ROOT(&groups->tree));
1691
1692         rb_erase(&event->group_node, &groups->tree);
1693         init_event_group(event);
1694 }
1695
1696 /*
1697  * Helper function to delete event from its groups.
1698  */
1699 static void
1700 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1701 {
1702         struct perf_event_groups *groups;
1703
1704         groups = get_event_groups(event, ctx);
1705         perf_event_groups_delete(groups, event);
1706 }
1707
1708 /*
1709  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1710  */
1711 static struct perf_event *
1712 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1713                         struct pmu *pmu, struct cgroup *cgrp)
1714 {
1715         struct __group_key key = {
1716                 .cpu = cpu,
1717                 .pmu = pmu,
1718                 .cgroup = cgrp,
1719         };
1720         struct rb_node *node;
1721
1722         node = rb_find_first(&key, &groups->tree, __group_cmp);
1723         if (node)
1724                 return __node_2_pe(node);
1725
1726         return NULL;
1727 }
1728
1729 static struct perf_event *
1730 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1731 {
1732         struct __group_key key = {
1733                 .cpu = event->cpu,
1734                 .pmu = pmu,
1735                 .cgroup = event_cgroup(event),
1736         };
1737         struct rb_node *next;
1738
1739         next = rb_next_match(&key, &event->group_node, __group_cmp);
1740         if (next)
1741                 return __node_2_pe(next);
1742
1743         return NULL;
1744 }
1745
1746 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1747         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1748              event; event = perf_event_groups_next(event, pmu))
1749
1750 /*
1751  * Iterate through the whole groups tree.
1752  */
1753 #define perf_event_groups_for_each(event, groups)                       \
1754         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1755                                 typeof(*event), group_node); event;     \
1756                 event = rb_entry_safe(rb_next(&event->group_node),      \
1757                                 typeof(*event), group_node))
1758
1759 /*
1760  * Add an event from the lists for its context.
1761  * Must be called with ctx->mutex and ctx->lock held.
1762  */
1763 static void
1764 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1765 {
1766         lockdep_assert_held(&ctx->lock);
1767
1768         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1769         event->attach_state |= PERF_ATTACH_CONTEXT;
1770
1771         event->tstamp = perf_event_time(event);
1772
1773         /*
1774          * If we're a stand alone event or group leader, we go to the context
1775          * list, group events are kept attached to the group so that
1776          * perf_group_detach can, at all times, locate all siblings.
1777          */
1778         if (event->group_leader == event) {
1779                 event->group_caps = event->event_caps;
1780                 add_event_to_groups(event, ctx);
1781         }
1782
1783         list_add_rcu(&event->event_entry, &ctx->event_list);
1784         ctx->nr_events++;
1785         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1786                 ctx->nr_user++;
1787         if (event->attr.inherit_stat)
1788                 ctx->nr_stat++;
1789
1790         if (event->state > PERF_EVENT_STATE_OFF)
1791                 perf_cgroup_event_enable(event, ctx);
1792
1793         ctx->generation++;
1794         event->pmu_ctx->nr_events++;
1795 }
1796
1797 /*
1798  * Initialize event state based on the perf_event_attr::disabled.
1799  */
1800 static inline void perf_event__state_init(struct perf_event *event)
1801 {
1802         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1803                                               PERF_EVENT_STATE_INACTIVE;
1804 }
1805
1806 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1807 {
1808         int entry = sizeof(u64); /* value */
1809         int size = 0;
1810         int nr = 1;
1811
1812         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1813                 size += sizeof(u64);
1814
1815         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1816                 size += sizeof(u64);
1817
1818         if (event->attr.read_format & PERF_FORMAT_ID)
1819                 entry += sizeof(u64);
1820
1821         if (event->attr.read_format & PERF_FORMAT_LOST)
1822                 entry += sizeof(u64);
1823
1824         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1825                 nr += nr_siblings;
1826                 size += sizeof(u64);
1827         }
1828
1829         size += entry * nr;
1830         event->read_size = size;
1831 }
1832
1833 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1834 {
1835         struct perf_sample_data *data;
1836         u16 size = 0;
1837
1838         if (sample_type & PERF_SAMPLE_IP)
1839                 size += sizeof(data->ip);
1840
1841         if (sample_type & PERF_SAMPLE_ADDR)
1842                 size += sizeof(data->addr);
1843
1844         if (sample_type & PERF_SAMPLE_PERIOD)
1845                 size += sizeof(data->period);
1846
1847         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1848                 size += sizeof(data->weight.full);
1849
1850         if (sample_type & PERF_SAMPLE_READ)
1851                 size += event->read_size;
1852
1853         if (sample_type & PERF_SAMPLE_DATA_SRC)
1854                 size += sizeof(data->data_src.val);
1855
1856         if (sample_type & PERF_SAMPLE_TRANSACTION)
1857                 size += sizeof(data->txn);
1858
1859         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1860                 size += sizeof(data->phys_addr);
1861
1862         if (sample_type & PERF_SAMPLE_CGROUP)
1863                 size += sizeof(data->cgroup);
1864
1865         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1866                 size += sizeof(data->data_page_size);
1867
1868         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1869                 size += sizeof(data->code_page_size);
1870
1871         event->header_size = size;
1872 }
1873
1874 /*
1875  * Called at perf_event creation and when events are attached/detached from a
1876  * group.
1877  */
1878 static void perf_event__header_size(struct perf_event *event)
1879 {
1880         __perf_event_read_size(event,
1881                                event->group_leader->nr_siblings);
1882         __perf_event_header_size(event, event->attr.sample_type);
1883 }
1884
1885 static void perf_event__id_header_size(struct perf_event *event)
1886 {
1887         struct perf_sample_data *data;
1888         u64 sample_type = event->attr.sample_type;
1889         u16 size = 0;
1890
1891         if (sample_type & PERF_SAMPLE_TID)
1892                 size += sizeof(data->tid_entry);
1893
1894         if (sample_type & PERF_SAMPLE_TIME)
1895                 size += sizeof(data->time);
1896
1897         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1898                 size += sizeof(data->id);
1899
1900         if (sample_type & PERF_SAMPLE_ID)
1901                 size += sizeof(data->id);
1902
1903         if (sample_type & PERF_SAMPLE_STREAM_ID)
1904                 size += sizeof(data->stream_id);
1905
1906         if (sample_type & PERF_SAMPLE_CPU)
1907                 size += sizeof(data->cpu_entry);
1908
1909         event->id_header_size = size;
1910 }
1911
1912 static bool perf_event_validate_size(struct perf_event *event)
1913 {
1914         /*
1915          * The values computed here will be over-written when we actually
1916          * attach the event.
1917          */
1918         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1919         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1920         perf_event__id_header_size(event);
1921
1922         /*
1923          * Sum the lot; should not exceed the 64k limit we have on records.
1924          * Conservative limit to allow for callchains and other variable fields.
1925          */
1926         if (event->read_size + event->header_size +
1927             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1928                 return false;
1929
1930         return true;
1931 }
1932
1933 static void perf_group_attach(struct perf_event *event)
1934 {
1935         struct perf_event *group_leader = event->group_leader, *pos;
1936
1937         lockdep_assert_held(&event->ctx->lock);
1938
1939         /*
1940          * We can have double attach due to group movement (move_group) in
1941          * perf_event_open().
1942          */
1943         if (event->attach_state & PERF_ATTACH_GROUP)
1944                 return;
1945
1946         event->attach_state |= PERF_ATTACH_GROUP;
1947
1948         if (group_leader == event)
1949                 return;
1950
1951         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1952
1953         group_leader->group_caps &= event->event_caps;
1954
1955         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1956         group_leader->nr_siblings++;
1957         group_leader->group_generation++;
1958
1959         perf_event__header_size(group_leader);
1960
1961         for_each_sibling_event(pos, group_leader)
1962                 perf_event__header_size(pos);
1963 }
1964
1965 /*
1966  * Remove an event from the lists for its context.
1967  * Must be called with ctx->mutex and ctx->lock held.
1968  */
1969 static void
1970 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1971 {
1972         WARN_ON_ONCE(event->ctx != ctx);
1973         lockdep_assert_held(&ctx->lock);
1974
1975         /*
1976          * We can have double detach due to exit/hot-unplug + close.
1977          */
1978         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1979                 return;
1980
1981         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1982
1983         ctx->nr_events--;
1984         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1985                 ctx->nr_user--;
1986         if (event->attr.inherit_stat)
1987                 ctx->nr_stat--;
1988
1989         list_del_rcu(&event->event_entry);
1990
1991         if (event->group_leader == event)
1992                 del_event_from_groups(event, ctx);
1993
1994         /*
1995          * If event was in error state, then keep it
1996          * that way, otherwise bogus counts will be
1997          * returned on read(). The only way to get out
1998          * of error state is by explicit re-enabling
1999          * of the event
2000          */
2001         if (event->state > PERF_EVENT_STATE_OFF) {
2002                 perf_cgroup_event_disable(event, ctx);
2003                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2004         }
2005
2006         ctx->generation++;
2007         event->pmu_ctx->nr_events--;
2008 }
2009
2010 static int
2011 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2012 {
2013         if (!has_aux(aux_event))
2014                 return 0;
2015
2016         if (!event->pmu->aux_output_match)
2017                 return 0;
2018
2019         return event->pmu->aux_output_match(aux_event);
2020 }
2021
2022 static void put_event(struct perf_event *event);
2023 static void event_sched_out(struct perf_event *event,
2024                             struct perf_event_context *ctx);
2025
2026 static void perf_put_aux_event(struct perf_event *event)
2027 {
2028         struct perf_event_context *ctx = event->ctx;
2029         struct perf_event *iter;
2030
2031         /*
2032          * If event uses aux_event tear down the link
2033          */
2034         if (event->aux_event) {
2035                 iter = event->aux_event;
2036                 event->aux_event = NULL;
2037                 put_event(iter);
2038                 return;
2039         }
2040
2041         /*
2042          * If the event is an aux_event, tear down all links to
2043          * it from other events.
2044          */
2045         for_each_sibling_event(iter, event->group_leader) {
2046                 if (iter->aux_event != event)
2047                         continue;
2048
2049                 iter->aux_event = NULL;
2050                 put_event(event);
2051
2052                 /*
2053                  * If it's ACTIVE, schedule it out and put it into ERROR
2054                  * state so that we don't try to schedule it again. Note
2055                  * that perf_event_enable() will clear the ERROR status.
2056                  */
2057                 event_sched_out(iter, ctx);
2058                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2059         }
2060 }
2061
2062 static bool perf_need_aux_event(struct perf_event *event)
2063 {
2064         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2065 }
2066
2067 static int perf_get_aux_event(struct perf_event *event,
2068                               struct perf_event *group_leader)
2069 {
2070         /*
2071          * Our group leader must be an aux event if we want to be
2072          * an aux_output. This way, the aux event will precede its
2073          * aux_output events in the group, and therefore will always
2074          * schedule first.
2075          */
2076         if (!group_leader)
2077                 return 0;
2078
2079         /*
2080          * aux_output and aux_sample_size are mutually exclusive.
2081          */
2082         if (event->attr.aux_output && event->attr.aux_sample_size)
2083                 return 0;
2084
2085         if (event->attr.aux_output &&
2086             !perf_aux_output_match(event, group_leader))
2087                 return 0;
2088
2089         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2090                 return 0;
2091
2092         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2093                 return 0;
2094
2095         /*
2096          * Link aux_outputs to their aux event; this is undone in
2097          * perf_group_detach() by perf_put_aux_event(). When the
2098          * group in torn down, the aux_output events loose their
2099          * link to the aux_event and can't schedule any more.
2100          */
2101         event->aux_event = group_leader;
2102
2103         return 1;
2104 }
2105
2106 static inline struct list_head *get_event_list(struct perf_event *event)
2107 {
2108         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2109                                     &event->pmu_ctx->flexible_active;
2110 }
2111
2112 /*
2113  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2114  * cannot exist on their own, schedule them out and move them into the ERROR
2115  * state. Also see _perf_event_enable(), it will not be able to recover
2116  * this ERROR state.
2117  */
2118 static inline void perf_remove_sibling_event(struct perf_event *event)
2119 {
2120         event_sched_out(event, event->ctx);
2121         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2122 }
2123
2124 static void perf_group_detach(struct perf_event *event)
2125 {
2126         struct perf_event *leader = event->group_leader;
2127         struct perf_event *sibling, *tmp;
2128         struct perf_event_context *ctx = event->ctx;
2129
2130         lockdep_assert_held(&ctx->lock);
2131
2132         /*
2133          * We can have double detach due to exit/hot-unplug + close.
2134          */
2135         if (!(event->attach_state & PERF_ATTACH_GROUP))
2136                 return;
2137
2138         event->attach_state &= ~PERF_ATTACH_GROUP;
2139
2140         perf_put_aux_event(event);
2141
2142         /*
2143          * If this is a sibling, remove it from its group.
2144          */
2145         if (leader != event) {
2146                 list_del_init(&event->sibling_list);
2147                 event->group_leader->nr_siblings--;
2148                 event->group_leader->group_generation++;
2149                 goto out;
2150         }
2151
2152         /*
2153          * If this was a group event with sibling events then
2154          * upgrade the siblings to singleton events by adding them
2155          * to whatever list we are on.
2156          */
2157         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2158
2159                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2160                         perf_remove_sibling_event(sibling);
2161
2162                 sibling->group_leader = sibling;
2163                 list_del_init(&sibling->sibling_list);
2164
2165                 /* Inherit group flags from the previous leader */
2166                 sibling->group_caps = event->group_caps;
2167
2168                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2169                         add_event_to_groups(sibling, event->ctx);
2170
2171                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2172                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2173                 }
2174
2175                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2176         }
2177
2178 out:
2179         for_each_sibling_event(tmp, leader)
2180                 perf_event__header_size(tmp);
2181
2182         perf_event__header_size(leader);
2183 }
2184
2185 static void sync_child_event(struct perf_event *child_event);
2186
2187 static void perf_child_detach(struct perf_event *event)
2188 {
2189         struct perf_event *parent_event = event->parent;
2190
2191         if (!(event->attach_state & PERF_ATTACH_CHILD))
2192                 return;
2193
2194         event->attach_state &= ~PERF_ATTACH_CHILD;
2195
2196         if (WARN_ON_ONCE(!parent_event))
2197                 return;
2198
2199         lockdep_assert_held(&parent_event->child_mutex);
2200
2201         sync_child_event(event);
2202         list_del_init(&event->child_list);
2203 }
2204
2205 static bool is_orphaned_event(struct perf_event *event)
2206 {
2207         return event->state == PERF_EVENT_STATE_DEAD;
2208 }
2209
2210 static inline int
2211 event_filter_match(struct perf_event *event)
2212 {
2213         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2214                perf_cgroup_match(event);
2215 }
2216
2217 static void
2218 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2219 {
2220         struct perf_event_pmu_context *epc = event->pmu_ctx;
2221         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2222         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2223
2224         // XXX cpc serialization, probably per-cpu IRQ disabled
2225
2226         WARN_ON_ONCE(event->ctx != ctx);
2227         lockdep_assert_held(&ctx->lock);
2228
2229         if (event->state != PERF_EVENT_STATE_ACTIVE)
2230                 return;
2231
2232         /*
2233          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2234          * we can schedule events _OUT_ individually through things like
2235          * __perf_remove_from_context().
2236          */
2237         list_del_init(&event->active_list);
2238
2239         perf_pmu_disable(event->pmu);
2240
2241         event->pmu->del(event, 0);
2242         event->oncpu = -1;
2243
2244         if (event->pending_disable) {
2245                 event->pending_disable = 0;
2246                 perf_cgroup_event_disable(event, ctx);
2247                 state = PERF_EVENT_STATE_OFF;
2248         }
2249
2250         if (event->pending_sigtrap) {
2251                 bool dec = true;
2252
2253                 event->pending_sigtrap = 0;
2254                 if (state != PERF_EVENT_STATE_OFF &&
2255                     !event->pending_work) {
2256                         event->pending_work = 1;
2257                         dec = false;
2258                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2259                         task_work_add(current, &event->pending_task, TWA_RESUME);
2260                 }
2261                 if (dec)
2262                         local_dec(&event->ctx->nr_pending);
2263         }
2264
2265         perf_event_set_state(event, state);
2266
2267         if (!is_software_event(event))
2268                 cpc->active_oncpu--;
2269         if (event->attr.freq && event->attr.sample_freq)
2270                 ctx->nr_freq--;
2271         if (event->attr.exclusive || !cpc->active_oncpu)
2272                 cpc->exclusive = 0;
2273
2274         perf_pmu_enable(event->pmu);
2275 }
2276
2277 static void
2278 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2279 {
2280         struct perf_event *event;
2281
2282         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2283                 return;
2284
2285         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2286
2287         event_sched_out(group_event, ctx);
2288
2289         /*
2290          * Schedule out siblings (if any):
2291          */
2292         for_each_sibling_event(event, group_event)
2293                 event_sched_out(event, ctx);
2294 }
2295
2296 #define DETACH_GROUP    0x01UL
2297 #define DETACH_CHILD    0x02UL
2298 #define DETACH_DEAD     0x04UL
2299
2300 /*
2301  * Cross CPU call to remove a performance event
2302  *
2303  * We disable the event on the hardware level first. After that we
2304  * remove it from the context list.
2305  */
2306 static void
2307 __perf_remove_from_context(struct perf_event *event,
2308                            struct perf_cpu_context *cpuctx,
2309                            struct perf_event_context *ctx,
2310                            void *info)
2311 {
2312         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2313         unsigned long flags = (unsigned long)info;
2314
2315         if (ctx->is_active & EVENT_TIME) {
2316                 update_context_time(ctx);
2317                 update_cgrp_time_from_cpuctx(cpuctx, false);
2318         }
2319
2320         /*
2321          * Ensure event_sched_out() switches to OFF, at the very least
2322          * this avoids raising perf_pending_task() at this time.
2323          */
2324         if (flags & DETACH_DEAD)
2325                 event->pending_disable = 1;
2326         event_sched_out(event, ctx);
2327         if (flags & DETACH_GROUP)
2328                 perf_group_detach(event);
2329         if (flags & DETACH_CHILD)
2330                 perf_child_detach(event);
2331         list_del_event(event, ctx);
2332         if (flags & DETACH_DEAD)
2333                 event->state = PERF_EVENT_STATE_DEAD;
2334
2335         if (!pmu_ctx->nr_events) {
2336                 pmu_ctx->rotate_necessary = 0;
2337
2338                 if (ctx->task && ctx->is_active) {
2339                         struct perf_cpu_pmu_context *cpc;
2340
2341                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2342                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2343                         cpc->task_epc = NULL;
2344                 }
2345         }
2346
2347         if (!ctx->nr_events && ctx->is_active) {
2348                 if (ctx == &cpuctx->ctx)
2349                         update_cgrp_time_from_cpuctx(cpuctx, true);
2350
2351                 ctx->is_active = 0;
2352                 if (ctx->task) {
2353                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2354                         cpuctx->task_ctx = NULL;
2355                 }
2356         }
2357 }
2358
2359 /*
2360  * Remove the event from a task's (or a CPU's) list of events.
2361  *
2362  * If event->ctx is a cloned context, callers must make sure that
2363  * every task struct that event->ctx->task could possibly point to
2364  * remains valid.  This is OK when called from perf_release since
2365  * that only calls us on the top-level context, which can't be a clone.
2366  * When called from perf_event_exit_task, it's OK because the
2367  * context has been detached from its task.
2368  */
2369 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2370 {
2371         struct perf_event_context *ctx = event->ctx;
2372
2373         lockdep_assert_held(&ctx->mutex);
2374
2375         /*
2376          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2377          * to work in the face of TASK_TOMBSTONE, unlike every other
2378          * event_function_call() user.
2379          */
2380         raw_spin_lock_irq(&ctx->lock);
2381         if (!ctx->is_active) {
2382                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2383                                            ctx, (void *)flags);
2384                 raw_spin_unlock_irq(&ctx->lock);
2385                 return;
2386         }
2387         raw_spin_unlock_irq(&ctx->lock);
2388
2389         event_function_call(event, __perf_remove_from_context, (void *)flags);
2390 }
2391
2392 /*
2393  * Cross CPU call to disable a performance event
2394  */
2395 static void __perf_event_disable(struct perf_event *event,
2396                                  struct perf_cpu_context *cpuctx,
2397                                  struct perf_event_context *ctx,
2398                                  void *info)
2399 {
2400         if (event->state < PERF_EVENT_STATE_INACTIVE)
2401                 return;
2402
2403         if (ctx->is_active & EVENT_TIME) {
2404                 update_context_time(ctx);
2405                 update_cgrp_time_from_event(event);
2406         }
2407
2408         perf_pmu_disable(event->pmu_ctx->pmu);
2409
2410         if (event == event->group_leader)
2411                 group_sched_out(event, ctx);
2412         else
2413                 event_sched_out(event, ctx);
2414
2415         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2416         perf_cgroup_event_disable(event, ctx);
2417
2418         perf_pmu_enable(event->pmu_ctx->pmu);
2419 }
2420
2421 /*
2422  * Disable an event.
2423  *
2424  * If event->ctx is a cloned context, callers must make sure that
2425  * every task struct that event->ctx->task could possibly point to
2426  * remains valid.  This condition is satisfied when called through
2427  * perf_event_for_each_child or perf_event_for_each because they
2428  * hold the top-level event's child_mutex, so any descendant that
2429  * goes to exit will block in perf_event_exit_event().
2430  *
2431  * When called from perf_pending_irq it's OK because event->ctx
2432  * is the current context on this CPU and preemption is disabled,
2433  * hence we can't get into perf_event_task_sched_out for this context.
2434  */
2435 static void _perf_event_disable(struct perf_event *event)
2436 {
2437         struct perf_event_context *ctx = event->ctx;
2438
2439         raw_spin_lock_irq(&ctx->lock);
2440         if (event->state <= PERF_EVENT_STATE_OFF) {
2441                 raw_spin_unlock_irq(&ctx->lock);
2442                 return;
2443         }
2444         raw_spin_unlock_irq(&ctx->lock);
2445
2446         event_function_call(event, __perf_event_disable, NULL);
2447 }
2448
2449 void perf_event_disable_local(struct perf_event *event)
2450 {
2451         event_function_local(event, __perf_event_disable, NULL);
2452 }
2453
2454 /*
2455  * Strictly speaking kernel users cannot create groups and therefore this
2456  * interface does not need the perf_event_ctx_lock() magic.
2457  */
2458 void perf_event_disable(struct perf_event *event)
2459 {
2460         struct perf_event_context *ctx;
2461
2462         ctx = perf_event_ctx_lock(event);
2463         _perf_event_disable(event);
2464         perf_event_ctx_unlock(event, ctx);
2465 }
2466 EXPORT_SYMBOL_GPL(perf_event_disable);
2467
2468 void perf_event_disable_inatomic(struct perf_event *event)
2469 {
2470         event->pending_disable = 1;
2471         irq_work_queue(&event->pending_irq);
2472 }
2473
2474 #define MAX_INTERRUPTS (~0ULL)
2475
2476 static void perf_log_throttle(struct perf_event *event, int enable);
2477 static void perf_log_itrace_start(struct perf_event *event);
2478
2479 static int
2480 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2481 {
2482         struct perf_event_pmu_context *epc = event->pmu_ctx;
2483         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2484         int ret = 0;
2485
2486         WARN_ON_ONCE(event->ctx != ctx);
2487
2488         lockdep_assert_held(&ctx->lock);
2489
2490         if (event->state <= PERF_EVENT_STATE_OFF)
2491                 return 0;
2492
2493         WRITE_ONCE(event->oncpu, smp_processor_id());
2494         /*
2495          * Order event::oncpu write to happen before the ACTIVE state is
2496          * visible. This allows perf_event_{stop,read}() to observe the correct
2497          * ->oncpu if it sees ACTIVE.
2498          */
2499         smp_wmb();
2500         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2501
2502         /*
2503          * Unthrottle events, since we scheduled we might have missed several
2504          * ticks already, also for a heavily scheduling task there is little
2505          * guarantee it'll get a tick in a timely manner.
2506          */
2507         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2508                 perf_log_throttle(event, 1);
2509                 event->hw.interrupts = 0;
2510         }
2511
2512         perf_pmu_disable(event->pmu);
2513
2514         perf_log_itrace_start(event);
2515
2516         if (event->pmu->add(event, PERF_EF_START)) {
2517                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2518                 event->oncpu = -1;
2519                 ret = -EAGAIN;
2520                 goto out;
2521         }
2522
2523         if (!is_software_event(event))
2524                 cpc->active_oncpu++;
2525         if (event->attr.freq && event->attr.sample_freq)
2526                 ctx->nr_freq++;
2527
2528         if (event->attr.exclusive)
2529                 cpc->exclusive = 1;
2530
2531 out:
2532         perf_pmu_enable(event->pmu);
2533
2534         return ret;
2535 }
2536
2537 static int
2538 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2539 {
2540         struct perf_event *event, *partial_group = NULL;
2541         struct pmu *pmu = group_event->pmu_ctx->pmu;
2542
2543         if (group_event->state == PERF_EVENT_STATE_OFF)
2544                 return 0;
2545
2546         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2547
2548         if (event_sched_in(group_event, ctx))
2549                 goto error;
2550
2551         /*
2552          * Schedule in siblings as one group (if any):
2553          */
2554         for_each_sibling_event(event, group_event) {
2555                 if (event_sched_in(event, ctx)) {
2556                         partial_group = event;
2557                         goto group_error;
2558                 }
2559         }
2560
2561         if (!pmu->commit_txn(pmu))
2562                 return 0;
2563
2564 group_error:
2565         /*
2566          * Groups can be scheduled in as one unit only, so undo any
2567          * partial group before returning:
2568          * The events up to the failed event are scheduled out normally.
2569          */
2570         for_each_sibling_event(event, group_event) {
2571                 if (event == partial_group)
2572                         break;
2573
2574                 event_sched_out(event, ctx);
2575         }
2576         event_sched_out(group_event, ctx);
2577
2578 error:
2579         pmu->cancel_txn(pmu);
2580         return -EAGAIN;
2581 }
2582
2583 /*
2584  * Work out whether we can put this event group on the CPU now.
2585  */
2586 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2587 {
2588         struct perf_event_pmu_context *epc = event->pmu_ctx;
2589         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2590
2591         /*
2592          * Groups consisting entirely of software events can always go on.
2593          */
2594         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2595                 return 1;
2596         /*
2597          * If an exclusive group is already on, no other hardware
2598          * events can go on.
2599          */
2600         if (cpc->exclusive)
2601                 return 0;
2602         /*
2603          * If this group is exclusive and there are already
2604          * events on the CPU, it can't go on.
2605          */
2606         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2607                 return 0;
2608         /*
2609          * Otherwise, try to add it if all previous groups were able
2610          * to go on.
2611          */
2612         return can_add_hw;
2613 }
2614
2615 static void add_event_to_ctx(struct perf_event *event,
2616                                struct perf_event_context *ctx)
2617 {
2618         list_add_event(event, ctx);
2619         perf_group_attach(event);
2620 }
2621
2622 static void task_ctx_sched_out(struct perf_event_context *ctx,
2623                                 enum event_type_t event_type)
2624 {
2625         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2626
2627         if (!cpuctx->task_ctx)
2628                 return;
2629
2630         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2631                 return;
2632
2633         ctx_sched_out(ctx, event_type);
2634 }
2635
2636 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2637                                 struct perf_event_context *ctx)
2638 {
2639         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2640         if (ctx)
2641                  ctx_sched_in(ctx, EVENT_PINNED);
2642         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2643         if (ctx)
2644                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2645 }
2646
2647 /*
2648  * We want to maintain the following priority of scheduling:
2649  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2650  *  - task pinned (EVENT_PINNED)
2651  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2652  *  - task flexible (EVENT_FLEXIBLE).
2653  *
2654  * In order to avoid unscheduling and scheduling back in everything every
2655  * time an event is added, only do it for the groups of equal priority and
2656  * below.
2657  *
2658  * This can be called after a batch operation on task events, in which case
2659  * event_type is a bit mask of the types of events involved. For CPU events,
2660  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2661  */
2662 /*
2663  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2664  * event to the context or enabling existing event in the context. We can
2665  * probably optimize it by rescheduling only affected pmu_ctx.
2666  */
2667 static void ctx_resched(struct perf_cpu_context *cpuctx,
2668                         struct perf_event_context *task_ctx,
2669                         enum event_type_t event_type)
2670 {
2671         bool cpu_event = !!(event_type & EVENT_CPU);
2672
2673         /*
2674          * If pinned groups are involved, flexible groups also need to be
2675          * scheduled out.
2676          */
2677         if (event_type & EVENT_PINNED)
2678                 event_type |= EVENT_FLEXIBLE;
2679
2680         event_type &= EVENT_ALL;
2681
2682         perf_ctx_disable(&cpuctx->ctx);
2683         if (task_ctx) {
2684                 perf_ctx_disable(task_ctx);
2685                 task_ctx_sched_out(task_ctx, event_type);
2686         }
2687
2688         /*
2689          * Decide which cpu ctx groups to schedule out based on the types
2690          * of events that caused rescheduling:
2691          *  - EVENT_CPU: schedule out corresponding groups;
2692          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2693          *  - otherwise, do nothing more.
2694          */
2695         if (cpu_event)
2696                 ctx_sched_out(&cpuctx->ctx, event_type);
2697         else if (event_type & EVENT_PINNED)
2698                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2699
2700         perf_event_sched_in(cpuctx, task_ctx);
2701
2702         perf_ctx_enable(&cpuctx->ctx);
2703         if (task_ctx)
2704                 perf_ctx_enable(task_ctx);
2705 }
2706
2707 void perf_pmu_resched(struct pmu *pmu)
2708 {
2709         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2710         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2711
2712         perf_ctx_lock(cpuctx, task_ctx);
2713         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2714         perf_ctx_unlock(cpuctx, task_ctx);
2715 }
2716
2717 /*
2718  * Cross CPU call to install and enable a performance event
2719  *
2720  * Very similar to remote_function() + event_function() but cannot assume that
2721  * things like ctx->is_active and cpuctx->task_ctx are set.
2722  */
2723 static int  __perf_install_in_context(void *info)
2724 {
2725         struct perf_event *event = info;
2726         struct perf_event_context *ctx = event->ctx;
2727         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2728         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2729         bool reprogram = true;
2730         int ret = 0;
2731
2732         raw_spin_lock(&cpuctx->ctx.lock);
2733         if (ctx->task) {
2734                 raw_spin_lock(&ctx->lock);
2735                 task_ctx = ctx;
2736
2737                 reprogram = (ctx->task == current);
2738
2739                 /*
2740                  * If the task is running, it must be running on this CPU,
2741                  * otherwise we cannot reprogram things.
2742                  *
2743                  * If its not running, we don't care, ctx->lock will
2744                  * serialize against it becoming runnable.
2745                  */
2746                 if (task_curr(ctx->task) && !reprogram) {
2747                         ret = -ESRCH;
2748                         goto unlock;
2749                 }
2750
2751                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2752         } else if (task_ctx) {
2753                 raw_spin_lock(&task_ctx->lock);
2754         }
2755
2756 #ifdef CONFIG_CGROUP_PERF
2757         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2758                 /*
2759                  * If the current cgroup doesn't match the event's
2760                  * cgroup, we should not try to schedule it.
2761                  */
2762                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2763                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2764                                         event->cgrp->css.cgroup);
2765         }
2766 #endif
2767
2768         if (reprogram) {
2769                 ctx_sched_out(ctx, EVENT_TIME);
2770                 add_event_to_ctx(event, ctx);
2771                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2772         } else {
2773                 add_event_to_ctx(event, ctx);
2774         }
2775
2776 unlock:
2777         perf_ctx_unlock(cpuctx, task_ctx);
2778
2779         return ret;
2780 }
2781
2782 static bool exclusive_event_installable(struct perf_event *event,
2783                                         struct perf_event_context *ctx);
2784
2785 /*
2786  * Attach a performance event to a context.
2787  *
2788  * Very similar to event_function_call, see comment there.
2789  */
2790 static void
2791 perf_install_in_context(struct perf_event_context *ctx,
2792                         struct perf_event *event,
2793                         int cpu)
2794 {
2795         struct task_struct *task = READ_ONCE(ctx->task);
2796
2797         lockdep_assert_held(&ctx->mutex);
2798
2799         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2800
2801         if (event->cpu != -1)
2802                 WARN_ON_ONCE(event->cpu != cpu);
2803
2804         /*
2805          * Ensures that if we can observe event->ctx, both the event and ctx
2806          * will be 'complete'. See perf_iterate_sb_cpu().
2807          */
2808         smp_store_release(&event->ctx, ctx);
2809
2810         /*
2811          * perf_event_attr::disabled events will not run and can be initialized
2812          * without IPI. Except when this is the first event for the context, in
2813          * that case we need the magic of the IPI to set ctx->is_active.
2814          *
2815          * The IOC_ENABLE that is sure to follow the creation of a disabled
2816          * event will issue the IPI and reprogram the hardware.
2817          */
2818         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2819             ctx->nr_events && !is_cgroup_event(event)) {
2820                 raw_spin_lock_irq(&ctx->lock);
2821                 if (ctx->task == TASK_TOMBSTONE) {
2822                         raw_spin_unlock_irq(&ctx->lock);
2823                         return;
2824                 }
2825                 add_event_to_ctx(event, ctx);
2826                 raw_spin_unlock_irq(&ctx->lock);
2827                 return;
2828         }
2829
2830         if (!task) {
2831                 cpu_function_call(cpu, __perf_install_in_context, event);
2832                 return;
2833         }
2834
2835         /*
2836          * Should not happen, we validate the ctx is still alive before calling.
2837          */
2838         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2839                 return;
2840
2841         /*
2842          * Installing events is tricky because we cannot rely on ctx->is_active
2843          * to be set in case this is the nr_events 0 -> 1 transition.
2844          *
2845          * Instead we use task_curr(), which tells us if the task is running.
2846          * However, since we use task_curr() outside of rq::lock, we can race
2847          * against the actual state. This means the result can be wrong.
2848          *
2849          * If we get a false positive, we retry, this is harmless.
2850          *
2851          * If we get a false negative, things are complicated. If we are after
2852          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2853          * value must be correct. If we're before, it doesn't matter since
2854          * perf_event_context_sched_in() will program the counter.
2855          *
2856          * However, this hinges on the remote context switch having observed
2857          * our task->perf_event_ctxp[] store, such that it will in fact take
2858          * ctx::lock in perf_event_context_sched_in().
2859          *
2860          * We do this by task_function_call(), if the IPI fails to hit the task
2861          * we know any future context switch of task must see the
2862          * perf_event_ctpx[] store.
2863          */
2864
2865         /*
2866          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2867          * task_cpu() load, such that if the IPI then does not find the task
2868          * running, a future context switch of that task must observe the
2869          * store.
2870          */
2871         smp_mb();
2872 again:
2873         if (!task_function_call(task, __perf_install_in_context, event))
2874                 return;
2875
2876         raw_spin_lock_irq(&ctx->lock);
2877         task = ctx->task;
2878         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2879                 /*
2880                  * Cannot happen because we already checked above (which also
2881                  * cannot happen), and we hold ctx->mutex, which serializes us
2882                  * against perf_event_exit_task_context().
2883                  */
2884                 raw_spin_unlock_irq(&ctx->lock);
2885                 return;
2886         }
2887         /*
2888          * If the task is not running, ctx->lock will avoid it becoming so,
2889          * thus we can safely install the event.
2890          */
2891         if (task_curr(task)) {
2892                 raw_spin_unlock_irq(&ctx->lock);
2893                 goto again;
2894         }
2895         add_event_to_ctx(event, ctx);
2896         raw_spin_unlock_irq(&ctx->lock);
2897 }
2898
2899 /*
2900  * Cross CPU call to enable a performance event
2901  */
2902 static void __perf_event_enable(struct perf_event *event,
2903                                 struct perf_cpu_context *cpuctx,
2904                                 struct perf_event_context *ctx,
2905                                 void *info)
2906 {
2907         struct perf_event *leader = event->group_leader;
2908         struct perf_event_context *task_ctx;
2909
2910         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2911             event->state <= PERF_EVENT_STATE_ERROR)
2912                 return;
2913
2914         if (ctx->is_active)
2915                 ctx_sched_out(ctx, EVENT_TIME);
2916
2917         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2918         perf_cgroup_event_enable(event, ctx);
2919
2920         if (!ctx->is_active)
2921                 return;
2922
2923         if (!event_filter_match(event)) {
2924                 ctx_sched_in(ctx, EVENT_TIME);
2925                 return;
2926         }
2927
2928         /*
2929          * If the event is in a group and isn't the group leader,
2930          * then don't put it on unless the group is on.
2931          */
2932         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2933                 ctx_sched_in(ctx, EVENT_TIME);
2934                 return;
2935         }
2936
2937         task_ctx = cpuctx->task_ctx;
2938         if (ctx->task)
2939                 WARN_ON_ONCE(task_ctx != ctx);
2940
2941         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2942 }
2943
2944 /*
2945  * Enable an event.
2946  *
2947  * If event->ctx is a cloned context, callers must make sure that
2948  * every task struct that event->ctx->task could possibly point to
2949  * remains valid.  This condition is satisfied when called through
2950  * perf_event_for_each_child or perf_event_for_each as described
2951  * for perf_event_disable.
2952  */
2953 static void _perf_event_enable(struct perf_event *event)
2954 {
2955         struct perf_event_context *ctx = event->ctx;
2956
2957         raw_spin_lock_irq(&ctx->lock);
2958         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2959             event->state <  PERF_EVENT_STATE_ERROR) {
2960 out:
2961                 raw_spin_unlock_irq(&ctx->lock);
2962                 return;
2963         }
2964
2965         /*
2966          * If the event is in error state, clear that first.
2967          *
2968          * That way, if we see the event in error state below, we know that it
2969          * has gone back into error state, as distinct from the task having
2970          * been scheduled away before the cross-call arrived.
2971          */
2972         if (event->state == PERF_EVENT_STATE_ERROR) {
2973                 /*
2974                  * Detached SIBLING events cannot leave ERROR state.
2975                  */
2976                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2977                     event->group_leader == event)
2978                         goto out;
2979
2980                 event->state = PERF_EVENT_STATE_OFF;
2981         }
2982         raw_spin_unlock_irq(&ctx->lock);
2983
2984         event_function_call(event, __perf_event_enable, NULL);
2985 }
2986
2987 /*
2988  * See perf_event_disable();
2989  */
2990 void perf_event_enable(struct perf_event *event)
2991 {
2992         struct perf_event_context *ctx;
2993
2994         ctx = perf_event_ctx_lock(event);
2995         _perf_event_enable(event);
2996         perf_event_ctx_unlock(event, ctx);
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_enable);
2999
3000 struct stop_event_data {
3001         struct perf_event       *event;
3002         unsigned int            restart;
3003 };
3004
3005 static int __perf_event_stop(void *info)
3006 {
3007         struct stop_event_data *sd = info;
3008         struct perf_event *event = sd->event;
3009
3010         /* if it's already INACTIVE, do nothing */
3011         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3012                 return 0;
3013
3014         /* matches smp_wmb() in event_sched_in() */
3015         smp_rmb();
3016
3017         /*
3018          * There is a window with interrupts enabled before we get here,
3019          * so we need to check again lest we try to stop another CPU's event.
3020          */
3021         if (READ_ONCE(event->oncpu) != smp_processor_id())
3022                 return -EAGAIN;
3023
3024         event->pmu->stop(event, PERF_EF_UPDATE);
3025
3026         /*
3027          * May race with the actual stop (through perf_pmu_output_stop()),
3028          * but it is only used for events with AUX ring buffer, and such
3029          * events will refuse to restart because of rb::aux_mmap_count==0,
3030          * see comments in perf_aux_output_begin().
3031          *
3032          * Since this is happening on an event-local CPU, no trace is lost
3033          * while restarting.
3034          */
3035         if (sd->restart)
3036                 event->pmu->start(event, 0);
3037
3038         return 0;
3039 }
3040
3041 static int perf_event_stop(struct perf_event *event, int restart)
3042 {
3043         struct stop_event_data sd = {
3044                 .event          = event,
3045                 .restart        = restart,
3046         };
3047         int ret = 0;
3048
3049         do {
3050                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051                         return 0;
3052
3053                 /* matches smp_wmb() in event_sched_in() */
3054                 smp_rmb();
3055
3056                 /*
3057                  * We only want to restart ACTIVE events, so if the event goes
3058                  * inactive here (event->oncpu==-1), there's nothing more to do;
3059                  * fall through with ret==-ENXIO.
3060                  */
3061                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3062                                         __perf_event_stop, &sd);
3063         } while (ret == -EAGAIN);
3064
3065         return ret;
3066 }
3067
3068 /*
3069  * In order to contain the amount of racy and tricky in the address filter
3070  * configuration management, it is a two part process:
3071  *
3072  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3073  *      we update the addresses of corresponding vmas in
3074  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3075  * (p2) when an event is scheduled in (pmu::add), it calls
3076  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3077  *      if the generation has changed since the previous call.
3078  *
3079  * If (p1) happens while the event is active, we restart it to force (p2).
3080  *
3081  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3082  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3083  *     ioctl;
3084  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3085  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3086  *     for reading;
3087  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3088  *     of exec.
3089  */
3090 void perf_event_addr_filters_sync(struct perf_event *event)
3091 {
3092         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3093
3094         if (!has_addr_filter(event))
3095                 return;
3096
3097         raw_spin_lock(&ifh->lock);
3098         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3099                 event->pmu->addr_filters_sync(event);
3100                 event->hw.addr_filters_gen = event->addr_filters_gen;
3101         }
3102         raw_spin_unlock(&ifh->lock);
3103 }
3104 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3105
3106 static int _perf_event_refresh(struct perf_event *event, int refresh)
3107 {
3108         /*
3109          * not supported on inherited events
3110          */
3111         if (event->attr.inherit || !is_sampling_event(event))
3112                 return -EINVAL;
3113
3114         atomic_add(refresh, &event->event_limit);
3115         _perf_event_enable(event);
3116
3117         return 0;
3118 }
3119
3120 /*
3121  * See perf_event_disable()
3122  */
3123 int perf_event_refresh(struct perf_event *event, int refresh)
3124 {
3125         struct perf_event_context *ctx;
3126         int ret;
3127
3128         ctx = perf_event_ctx_lock(event);
3129         ret = _perf_event_refresh(event, refresh);
3130         perf_event_ctx_unlock(event, ctx);
3131
3132         return ret;
3133 }
3134 EXPORT_SYMBOL_GPL(perf_event_refresh);
3135
3136 static int perf_event_modify_breakpoint(struct perf_event *bp,
3137                                          struct perf_event_attr *attr)
3138 {
3139         int err;
3140
3141         _perf_event_disable(bp);
3142
3143         err = modify_user_hw_breakpoint_check(bp, attr, true);
3144
3145         if (!bp->attr.disabled)
3146                 _perf_event_enable(bp);
3147
3148         return err;
3149 }
3150
3151 /*
3152  * Copy event-type-independent attributes that may be modified.
3153  */
3154 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3155                                         const struct perf_event_attr *from)
3156 {
3157         to->sig_data = from->sig_data;
3158 }
3159
3160 static int perf_event_modify_attr(struct perf_event *event,
3161                                   struct perf_event_attr *attr)
3162 {
3163         int (*func)(struct perf_event *, struct perf_event_attr *);
3164         struct perf_event *child;
3165         int err;
3166
3167         if (event->attr.type != attr->type)
3168                 return -EINVAL;
3169
3170         switch (event->attr.type) {
3171         case PERF_TYPE_BREAKPOINT:
3172                 func = perf_event_modify_breakpoint;
3173                 break;
3174         default:
3175                 /* Place holder for future additions. */
3176                 return -EOPNOTSUPP;
3177         }
3178
3179         WARN_ON_ONCE(event->ctx->parent_ctx);
3180
3181         mutex_lock(&event->child_mutex);
3182         /*
3183          * Event-type-independent attributes must be copied before event-type
3184          * modification, which will validate that final attributes match the
3185          * source attributes after all relevant attributes have been copied.
3186          */
3187         perf_event_modify_copy_attr(&event->attr, attr);
3188         err = func(event, attr);
3189         if (err)
3190                 goto out;
3191         list_for_each_entry(child, &event->child_list, child_list) {
3192                 perf_event_modify_copy_attr(&child->attr, attr);
3193                 err = func(child, attr);
3194                 if (err)
3195                         goto out;
3196         }
3197 out:
3198         mutex_unlock(&event->child_mutex);
3199         return err;
3200 }
3201
3202 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3203                                 enum event_type_t event_type)
3204 {
3205         struct perf_event_context *ctx = pmu_ctx->ctx;
3206         struct perf_event *event, *tmp;
3207         struct pmu *pmu = pmu_ctx->pmu;
3208
3209         if (ctx->task && !ctx->is_active) {
3210                 struct perf_cpu_pmu_context *cpc;
3211
3212                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3213                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3214                 cpc->task_epc = NULL;
3215         }
3216
3217         if (!event_type)
3218                 return;
3219
3220         perf_pmu_disable(pmu);
3221         if (event_type & EVENT_PINNED) {
3222                 list_for_each_entry_safe(event, tmp,
3223                                          &pmu_ctx->pinned_active,
3224                                          active_list)
3225                         group_sched_out(event, ctx);
3226         }
3227
3228         if (event_type & EVENT_FLEXIBLE) {
3229                 list_for_each_entry_safe(event, tmp,
3230                                          &pmu_ctx->flexible_active,
3231                                          active_list)
3232                         group_sched_out(event, ctx);
3233                 /*
3234                  * Since we cleared EVENT_FLEXIBLE, also clear
3235                  * rotate_necessary, is will be reset by
3236                  * ctx_flexible_sched_in() when needed.
3237                  */
3238                 pmu_ctx->rotate_necessary = 0;
3239         }
3240         perf_pmu_enable(pmu);
3241 }
3242
3243 static void
3244 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3245 {
3246         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3247         struct perf_event_pmu_context *pmu_ctx;
3248         int is_active = ctx->is_active;
3249
3250         lockdep_assert_held(&ctx->lock);
3251
3252         if (likely(!ctx->nr_events)) {
3253                 /*
3254                  * See __perf_remove_from_context().
3255                  */
3256                 WARN_ON_ONCE(ctx->is_active);
3257                 if (ctx->task)
3258                         WARN_ON_ONCE(cpuctx->task_ctx);
3259                 return;
3260         }
3261
3262         /*
3263          * Always update time if it was set; not only when it changes.
3264          * Otherwise we can 'forget' to update time for any but the last
3265          * context we sched out. For example:
3266          *
3267          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3268          *   ctx_sched_out(.event_type = EVENT_PINNED)
3269          *
3270          * would only update time for the pinned events.
3271          */
3272         if (is_active & EVENT_TIME) {
3273                 /* update (and stop) ctx time */
3274                 update_context_time(ctx);
3275                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3276                 /*
3277                  * CPU-release for the below ->is_active store,
3278                  * see __load_acquire() in perf_event_time_now()
3279                  */
3280                 barrier();
3281         }
3282
3283         ctx->is_active &= ~event_type;
3284         if (!(ctx->is_active & EVENT_ALL))
3285                 ctx->is_active = 0;
3286
3287         if (ctx->task) {
3288                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3289                 if (!ctx->is_active)
3290                         cpuctx->task_ctx = NULL;
3291         }
3292
3293         is_active ^= ctx->is_active; /* changed bits */
3294
3295         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry)
3296                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3297 }
3298
3299 /*
3300  * Test whether two contexts are equivalent, i.e. whether they have both been
3301  * cloned from the same version of the same context.
3302  *
3303  * Equivalence is measured using a generation number in the context that is
3304  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3305  * and list_del_event().
3306  */
3307 static int context_equiv(struct perf_event_context *ctx1,
3308                          struct perf_event_context *ctx2)
3309 {
3310         lockdep_assert_held(&ctx1->lock);
3311         lockdep_assert_held(&ctx2->lock);
3312
3313         /* Pinning disables the swap optimization */
3314         if (ctx1->pin_count || ctx2->pin_count)
3315                 return 0;
3316
3317         /* If ctx1 is the parent of ctx2 */
3318         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3319                 return 1;
3320
3321         /* If ctx2 is the parent of ctx1 */
3322         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3323                 return 1;
3324
3325         /*
3326          * If ctx1 and ctx2 have the same parent; we flatten the parent
3327          * hierarchy, see perf_event_init_context().
3328          */
3329         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3330                         ctx1->parent_gen == ctx2->parent_gen)
3331                 return 1;
3332
3333         /* Unmatched */
3334         return 0;
3335 }
3336
3337 static void __perf_event_sync_stat(struct perf_event *event,
3338                                      struct perf_event *next_event)
3339 {
3340         u64 value;
3341
3342         if (!event->attr.inherit_stat)
3343                 return;
3344
3345         /*
3346          * Update the event value, we cannot use perf_event_read()
3347          * because we're in the middle of a context switch and have IRQs
3348          * disabled, which upsets smp_call_function_single(), however
3349          * we know the event must be on the current CPU, therefore we
3350          * don't need to use it.
3351          */
3352         if (event->state == PERF_EVENT_STATE_ACTIVE)
3353                 event->pmu->read(event);
3354
3355         perf_event_update_time(event);
3356
3357         /*
3358          * In order to keep per-task stats reliable we need to flip the event
3359          * values when we flip the contexts.
3360          */
3361         value = local64_read(&next_event->count);
3362         value = local64_xchg(&event->count, value);
3363         local64_set(&next_event->count, value);
3364
3365         swap(event->total_time_enabled, next_event->total_time_enabled);
3366         swap(event->total_time_running, next_event->total_time_running);
3367
3368         /*
3369          * Since we swizzled the values, update the user visible data too.
3370          */
3371         perf_event_update_userpage(event);
3372         perf_event_update_userpage(next_event);
3373 }
3374
3375 static void perf_event_sync_stat(struct perf_event_context *ctx,
3376                                    struct perf_event_context *next_ctx)
3377 {
3378         struct perf_event *event, *next_event;
3379
3380         if (!ctx->nr_stat)
3381                 return;
3382
3383         update_context_time(ctx);
3384
3385         event = list_first_entry(&ctx->event_list,
3386                                    struct perf_event, event_entry);
3387
3388         next_event = list_first_entry(&next_ctx->event_list,
3389                                         struct perf_event, event_entry);
3390
3391         while (&event->event_entry != &ctx->event_list &&
3392                &next_event->event_entry != &next_ctx->event_list) {
3393
3394                 __perf_event_sync_stat(event, next_event);
3395
3396                 event = list_next_entry(event, event_entry);
3397                 next_event = list_next_entry(next_event, event_entry);
3398         }
3399 }
3400
3401 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3402         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3403              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3404              !list_entry_is_head(pos1, head1, member) &&                \
3405              !list_entry_is_head(pos2, head2, member);                  \
3406              pos1 = list_next_entry(pos1, member),                      \
3407              pos2 = list_next_entry(pos2, member))
3408
3409 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3410                                           struct perf_event_context *next_ctx)
3411 {
3412         struct perf_event_pmu_context *prev_epc, *next_epc;
3413
3414         if (!prev_ctx->nr_task_data)
3415                 return;
3416
3417         double_list_for_each_entry(prev_epc, next_epc,
3418                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3419                                    pmu_ctx_entry) {
3420
3421                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3422                         continue;
3423
3424                 /*
3425                  * PMU specific parts of task perf context can require
3426                  * additional synchronization. As an example of such
3427                  * synchronization see implementation details of Intel
3428                  * LBR call stack data profiling;
3429                  */
3430                 if (prev_epc->pmu->swap_task_ctx)
3431                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3432                 else
3433                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3434         }
3435 }
3436
3437 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3438 {
3439         struct perf_event_pmu_context *pmu_ctx;
3440         struct perf_cpu_pmu_context *cpc;
3441
3442         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3443                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3444
3445                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3446                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3447         }
3448 }
3449
3450 static void
3451 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3452 {
3453         struct perf_event_context *ctx = task->perf_event_ctxp;
3454         struct perf_event_context *next_ctx;
3455         struct perf_event_context *parent, *next_parent;
3456         int do_switch = 1;
3457
3458         if (likely(!ctx))
3459                 return;
3460
3461         rcu_read_lock();
3462         next_ctx = rcu_dereference(next->perf_event_ctxp);
3463         if (!next_ctx)
3464                 goto unlock;
3465
3466         parent = rcu_dereference(ctx->parent_ctx);
3467         next_parent = rcu_dereference(next_ctx->parent_ctx);
3468
3469         /* If neither context have a parent context; they cannot be clones. */
3470         if (!parent && !next_parent)
3471                 goto unlock;
3472
3473         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3474                 /*
3475                  * Looks like the two contexts are clones, so we might be
3476                  * able to optimize the context switch.  We lock both
3477                  * contexts and check that they are clones under the
3478                  * lock (including re-checking that neither has been
3479                  * uncloned in the meantime).  It doesn't matter which
3480                  * order we take the locks because no other cpu could
3481                  * be trying to lock both of these tasks.
3482                  */
3483                 raw_spin_lock(&ctx->lock);
3484                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3485                 if (context_equiv(ctx, next_ctx)) {
3486
3487                         perf_ctx_disable(ctx);
3488
3489                         /* PMIs are disabled; ctx->nr_pending is stable. */
3490                         if (local_read(&ctx->nr_pending) ||
3491                             local_read(&next_ctx->nr_pending)) {
3492                                 /*
3493                                  * Must not swap out ctx when there's pending
3494                                  * events that rely on the ctx->task relation.
3495                                  */
3496                                 raw_spin_unlock(&next_ctx->lock);
3497                                 rcu_read_unlock();
3498                                 goto inside_switch;
3499                         }
3500
3501                         WRITE_ONCE(ctx->task, next);
3502                         WRITE_ONCE(next_ctx->task, task);
3503
3504                         perf_ctx_sched_task_cb(ctx, false);
3505                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3506
3507                         perf_ctx_enable(ctx);
3508
3509                         /*
3510                          * RCU_INIT_POINTER here is safe because we've not
3511                          * modified the ctx and the above modification of
3512                          * ctx->task and ctx->task_ctx_data are immaterial
3513                          * since those values are always verified under
3514                          * ctx->lock which we're now holding.
3515                          */
3516                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3517                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3518
3519                         do_switch = 0;
3520
3521                         perf_event_sync_stat(ctx, next_ctx);
3522                 }
3523                 raw_spin_unlock(&next_ctx->lock);
3524                 raw_spin_unlock(&ctx->lock);
3525         }
3526 unlock:
3527         rcu_read_unlock();
3528
3529         if (do_switch) {
3530                 raw_spin_lock(&ctx->lock);
3531                 perf_ctx_disable(ctx);
3532
3533 inside_switch:
3534                 perf_ctx_sched_task_cb(ctx, false);
3535                 task_ctx_sched_out(ctx, EVENT_ALL);
3536
3537                 perf_ctx_enable(ctx);
3538                 raw_spin_unlock(&ctx->lock);
3539         }
3540 }
3541
3542 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3543 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3544
3545 void perf_sched_cb_dec(struct pmu *pmu)
3546 {
3547         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3548
3549         this_cpu_dec(perf_sched_cb_usages);
3550         barrier();
3551
3552         if (!--cpc->sched_cb_usage)
3553                 list_del(&cpc->sched_cb_entry);
3554 }
3555
3556
3557 void perf_sched_cb_inc(struct pmu *pmu)
3558 {
3559         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3560
3561         if (!cpc->sched_cb_usage++)
3562                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3563
3564         barrier();
3565         this_cpu_inc(perf_sched_cb_usages);
3566 }
3567
3568 /*
3569  * This function provides the context switch callback to the lower code
3570  * layer. It is invoked ONLY when the context switch callback is enabled.
3571  *
3572  * This callback is relevant even to per-cpu events; for example multi event
3573  * PEBS requires this to provide PID/TID information. This requires we flush
3574  * all queued PEBS records before we context switch to a new task.
3575  */
3576 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3577 {
3578         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3579         struct pmu *pmu;
3580
3581         pmu = cpc->epc.pmu;
3582
3583         /* software PMUs will not have sched_task */
3584         if (WARN_ON_ONCE(!pmu->sched_task))
3585                 return;
3586
3587         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3588         perf_pmu_disable(pmu);
3589
3590         pmu->sched_task(cpc->task_epc, sched_in);
3591
3592         perf_pmu_enable(pmu);
3593         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3594 }
3595
3596 static void perf_pmu_sched_task(struct task_struct *prev,
3597                                 struct task_struct *next,
3598                                 bool sched_in)
3599 {
3600         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3601         struct perf_cpu_pmu_context *cpc;
3602
3603         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3604         if (prev == next || cpuctx->task_ctx)
3605                 return;
3606
3607         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3608                 __perf_pmu_sched_task(cpc, sched_in);
3609 }
3610
3611 static void perf_event_switch(struct task_struct *task,
3612                               struct task_struct *next_prev, bool sched_in);
3613
3614 /*
3615  * Called from scheduler to remove the events of the current task,
3616  * with interrupts disabled.
3617  *
3618  * We stop each event and update the event value in event->count.
3619  *
3620  * This does not protect us against NMI, but disable()
3621  * sets the disabled bit in the control field of event _before_
3622  * accessing the event control register. If a NMI hits, then it will
3623  * not restart the event.
3624  */
3625 void __perf_event_task_sched_out(struct task_struct *task,
3626                                  struct task_struct *next)
3627 {
3628         if (__this_cpu_read(perf_sched_cb_usages))
3629                 perf_pmu_sched_task(task, next, false);
3630
3631         if (atomic_read(&nr_switch_events))
3632                 perf_event_switch(task, next, false);
3633
3634         perf_event_context_sched_out(task, next);
3635
3636         /*
3637          * if cgroup events exist on this CPU, then we need
3638          * to check if we have to switch out PMU state.
3639          * cgroup event are system-wide mode only
3640          */
3641         perf_cgroup_switch(next);
3642 }
3643
3644 static bool perf_less_group_idx(const void *l, const void *r)
3645 {
3646         const struct perf_event *le = *(const struct perf_event **)l;
3647         const struct perf_event *re = *(const struct perf_event **)r;
3648
3649         return le->group_index < re->group_index;
3650 }
3651
3652 static void swap_ptr(void *l, void *r)
3653 {
3654         void **lp = l, **rp = r;
3655
3656         swap(*lp, *rp);
3657 }
3658
3659 static const struct min_heap_callbacks perf_min_heap = {
3660         .elem_size = sizeof(struct perf_event *),
3661         .less = perf_less_group_idx,
3662         .swp = swap_ptr,
3663 };
3664
3665 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3666 {
3667         struct perf_event **itrs = heap->data;
3668
3669         if (event) {
3670                 itrs[heap->nr] = event;
3671                 heap->nr++;
3672         }
3673 }
3674
3675 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3676 {
3677         struct perf_cpu_pmu_context *cpc;
3678
3679         if (!pmu_ctx->ctx->task)
3680                 return;
3681
3682         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3683         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3684         cpc->task_epc = pmu_ctx;
3685 }
3686
3687 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3688                                 struct perf_event_groups *groups, int cpu,
3689                                 struct pmu *pmu,
3690                                 int (*func)(struct perf_event *, void *),
3691                                 void *data)
3692 {
3693 #ifdef CONFIG_CGROUP_PERF
3694         struct cgroup_subsys_state *css = NULL;
3695 #endif
3696         struct perf_cpu_context *cpuctx = NULL;
3697         /* Space for per CPU and/or any CPU event iterators. */
3698         struct perf_event *itrs[2];
3699         struct min_heap event_heap;
3700         struct perf_event **evt;
3701         int ret;
3702
3703         if (pmu->filter && pmu->filter(pmu, cpu))
3704                 return 0;
3705
3706         if (!ctx->task) {
3707                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3708                 event_heap = (struct min_heap){
3709                         .data = cpuctx->heap,
3710                         .nr = 0,
3711                         .size = cpuctx->heap_size,
3712                 };
3713
3714                 lockdep_assert_held(&cpuctx->ctx.lock);
3715
3716 #ifdef CONFIG_CGROUP_PERF
3717                 if (cpuctx->cgrp)
3718                         css = &cpuctx->cgrp->css;
3719 #endif
3720         } else {
3721                 event_heap = (struct min_heap){
3722                         .data = itrs,
3723                         .nr = 0,
3724                         .size = ARRAY_SIZE(itrs),
3725                 };
3726                 /* Events not within a CPU context may be on any CPU. */
3727                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3728         }
3729         evt = event_heap.data;
3730
3731         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3732
3733 #ifdef CONFIG_CGROUP_PERF
3734         for (; css; css = css->parent)
3735                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3736 #endif
3737
3738         if (event_heap.nr) {
3739                 __link_epc((*evt)->pmu_ctx);
3740                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3741         }
3742
3743         min_heapify_all(&event_heap, &perf_min_heap);
3744
3745         while (event_heap.nr) {
3746                 ret = func(*evt, data);
3747                 if (ret)
3748                         return ret;
3749
3750                 *evt = perf_event_groups_next(*evt, pmu);
3751                 if (*evt)
3752                         min_heapify(&event_heap, 0, &perf_min_heap);
3753                 else
3754                         min_heap_pop(&event_heap, &perf_min_heap);
3755         }
3756
3757         return 0;
3758 }
3759
3760 /*
3761  * Because the userpage is strictly per-event (there is no concept of context,
3762  * so there cannot be a context indirection), every userpage must be updated
3763  * when context time starts :-(
3764  *
3765  * IOW, we must not miss EVENT_TIME edges.
3766  */
3767 static inline bool event_update_userpage(struct perf_event *event)
3768 {
3769         if (likely(!atomic_read(&event->mmap_count)))
3770                 return false;
3771
3772         perf_event_update_time(event);
3773         perf_event_update_userpage(event);
3774
3775         return true;
3776 }
3777
3778 static inline void group_update_userpage(struct perf_event *group_event)
3779 {
3780         struct perf_event *event;
3781
3782         if (!event_update_userpage(group_event))
3783                 return;
3784
3785         for_each_sibling_event(event, group_event)
3786                 event_update_userpage(event);
3787 }
3788
3789 static int merge_sched_in(struct perf_event *event, void *data)
3790 {
3791         struct perf_event_context *ctx = event->ctx;
3792         int *can_add_hw = data;
3793
3794         if (event->state <= PERF_EVENT_STATE_OFF)
3795                 return 0;
3796
3797         if (!event_filter_match(event))
3798                 return 0;
3799
3800         if (group_can_go_on(event, *can_add_hw)) {
3801                 if (!group_sched_in(event, ctx))
3802                         list_add_tail(&event->active_list, get_event_list(event));
3803         }
3804
3805         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3806                 *can_add_hw = 0;
3807                 if (event->attr.pinned) {
3808                         perf_cgroup_event_disable(event, ctx);
3809                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3810                 } else {
3811                         struct perf_cpu_pmu_context *cpc;
3812
3813                         event->pmu_ctx->rotate_necessary = 1;
3814                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3815                         perf_mux_hrtimer_restart(cpc);
3816                         group_update_userpage(event);
3817                 }
3818         }
3819
3820         return 0;
3821 }
3822
3823 static void ctx_pinned_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3824 {
3825         struct perf_event_pmu_context *pmu_ctx;
3826         int can_add_hw = 1;
3827
3828         if (pmu) {
3829                 visit_groups_merge(ctx, &ctx->pinned_groups,
3830                                    smp_processor_id(), pmu,
3831                                    merge_sched_in, &can_add_hw);
3832         } else {
3833                 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3834                         can_add_hw = 1;
3835                         visit_groups_merge(ctx, &ctx->pinned_groups,
3836                                            smp_processor_id(), pmu_ctx->pmu,
3837                                            merge_sched_in, &can_add_hw);
3838                 }
3839         }
3840 }
3841
3842 static void ctx_flexible_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3843 {
3844         struct perf_event_pmu_context *pmu_ctx;
3845         int can_add_hw = 1;
3846
3847         if (pmu) {
3848                 visit_groups_merge(ctx, &ctx->flexible_groups,
3849                                    smp_processor_id(), pmu,
3850                                    merge_sched_in, &can_add_hw);
3851         } else {
3852                 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3853                         can_add_hw = 1;
3854                         visit_groups_merge(ctx, &ctx->flexible_groups,
3855                                            smp_processor_id(), pmu_ctx->pmu,
3856                                            merge_sched_in, &can_add_hw);
3857                 }
3858         }
3859 }
3860
3861 static void __pmu_ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu)
3862 {
3863         ctx_flexible_sched_in(ctx, pmu);
3864 }
3865
3866 static void
3867 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3868 {
3869         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3870         int is_active = ctx->is_active;
3871
3872         lockdep_assert_held(&ctx->lock);
3873
3874         if (likely(!ctx->nr_events))
3875                 return;
3876
3877         if (!(is_active & EVENT_TIME)) {
3878                 /* start ctx time */
3879                 __update_context_time(ctx, false);
3880                 perf_cgroup_set_timestamp(cpuctx);
3881                 /*
3882                  * CPU-release for the below ->is_active store,
3883                  * see __load_acquire() in perf_event_time_now()
3884                  */
3885                 barrier();
3886         }
3887
3888         ctx->is_active |= (event_type | EVENT_TIME);
3889         if (ctx->task) {
3890                 if (!is_active)
3891                         cpuctx->task_ctx = ctx;
3892                 else
3893                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3894         }
3895
3896         is_active ^= ctx->is_active; /* changed bits */
3897
3898         /*
3899          * First go through the list and put on any pinned groups
3900          * in order to give them the best chance of going on.
3901          */
3902         if (is_active & EVENT_PINNED)
3903                 ctx_pinned_sched_in(ctx, NULL);
3904
3905         /* Then walk through the lower prio flexible groups */
3906         if (is_active & EVENT_FLEXIBLE)
3907                 ctx_flexible_sched_in(ctx, NULL);
3908 }
3909
3910 static void perf_event_context_sched_in(struct task_struct *task)
3911 {
3912         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3913         struct perf_event_context *ctx;
3914
3915         rcu_read_lock();
3916         ctx = rcu_dereference(task->perf_event_ctxp);
3917         if (!ctx)
3918                 goto rcu_unlock;
3919
3920         if (cpuctx->task_ctx == ctx) {
3921                 perf_ctx_lock(cpuctx, ctx);
3922                 perf_ctx_disable(ctx);
3923
3924                 perf_ctx_sched_task_cb(ctx, true);
3925
3926                 perf_ctx_enable(ctx);
3927                 perf_ctx_unlock(cpuctx, ctx);
3928                 goto rcu_unlock;
3929         }
3930
3931         perf_ctx_lock(cpuctx, ctx);
3932         /*
3933          * We must check ctx->nr_events while holding ctx->lock, such
3934          * that we serialize against perf_install_in_context().
3935          */
3936         if (!ctx->nr_events)
3937                 goto unlock;
3938
3939         perf_ctx_disable(ctx);
3940         /*
3941          * We want to keep the following priority order:
3942          * cpu pinned (that don't need to move), task pinned,
3943          * cpu flexible, task flexible.
3944          *
3945          * However, if task's ctx is not carrying any pinned
3946          * events, no need to flip the cpuctx's events around.
3947          */
3948         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3949                 perf_ctx_disable(&cpuctx->ctx);
3950                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3951         }
3952
3953         perf_event_sched_in(cpuctx, ctx);
3954
3955         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3956
3957         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3958                 perf_ctx_enable(&cpuctx->ctx);
3959
3960         perf_ctx_enable(ctx);
3961
3962 unlock:
3963         perf_ctx_unlock(cpuctx, ctx);
3964 rcu_unlock:
3965         rcu_read_unlock();
3966 }
3967
3968 /*
3969  * Called from scheduler to add the events of the current task
3970  * with interrupts disabled.
3971  *
3972  * We restore the event value and then enable it.
3973  *
3974  * This does not protect us against NMI, but enable()
3975  * sets the enabled bit in the control field of event _before_
3976  * accessing the event control register. If a NMI hits, then it will
3977  * keep the event running.
3978  */
3979 void __perf_event_task_sched_in(struct task_struct *prev,
3980                                 struct task_struct *task)
3981 {
3982         perf_event_context_sched_in(task);
3983
3984         if (atomic_read(&nr_switch_events))
3985                 perf_event_switch(task, prev, true);
3986
3987         if (__this_cpu_read(perf_sched_cb_usages))
3988                 perf_pmu_sched_task(prev, task, true);
3989 }
3990
3991 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3992 {
3993         u64 frequency = event->attr.sample_freq;
3994         u64 sec = NSEC_PER_SEC;
3995         u64 divisor, dividend;
3996
3997         int count_fls, nsec_fls, frequency_fls, sec_fls;
3998
3999         count_fls = fls64(count);
4000         nsec_fls = fls64(nsec);
4001         frequency_fls = fls64(frequency);
4002         sec_fls = 30;
4003
4004         /*
4005          * We got @count in @nsec, with a target of sample_freq HZ
4006          * the target period becomes:
4007          *
4008          *             @count * 10^9
4009          * period = -------------------
4010          *          @nsec * sample_freq
4011          *
4012          */
4013
4014         /*
4015          * Reduce accuracy by one bit such that @a and @b converge
4016          * to a similar magnitude.
4017          */
4018 #define REDUCE_FLS(a, b)                \
4019 do {                                    \
4020         if (a##_fls > b##_fls) {        \
4021                 a >>= 1;                \
4022                 a##_fls--;              \
4023         } else {                        \
4024                 b >>= 1;                \
4025                 b##_fls--;              \
4026         }                               \
4027 } while (0)
4028
4029         /*
4030          * Reduce accuracy until either term fits in a u64, then proceed with
4031          * the other, so that finally we can do a u64/u64 division.
4032          */
4033         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4034                 REDUCE_FLS(nsec, frequency);
4035                 REDUCE_FLS(sec, count);
4036         }
4037
4038         if (count_fls + sec_fls > 64) {
4039                 divisor = nsec * frequency;
4040
4041                 while (count_fls + sec_fls > 64) {
4042                         REDUCE_FLS(count, sec);
4043                         divisor >>= 1;
4044                 }
4045
4046                 dividend = count * sec;
4047         } else {
4048                 dividend = count * sec;
4049
4050                 while (nsec_fls + frequency_fls > 64) {
4051                         REDUCE_FLS(nsec, frequency);
4052                         dividend >>= 1;
4053                 }
4054
4055                 divisor = nsec * frequency;
4056         }
4057
4058         if (!divisor)
4059                 return dividend;
4060
4061         return div64_u64(dividend, divisor);
4062 }
4063
4064 static DEFINE_PER_CPU(int, perf_throttled_count);
4065 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4066
4067 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4068 {
4069         struct hw_perf_event *hwc = &event->hw;
4070         s64 period, sample_period;
4071         s64 delta;
4072
4073         period = perf_calculate_period(event, nsec, count);
4074
4075         delta = (s64)(period - hwc->sample_period);
4076         delta = (delta + 7) / 8; /* low pass filter */
4077
4078         sample_period = hwc->sample_period + delta;
4079
4080         if (!sample_period)
4081                 sample_period = 1;
4082
4083         hwc->sample_period = sample_period;
4084
4085         if (local64_read(&hwc->period_left) > 8*sample_period) {
4086                 if (disable)
4087                         event->pmu->stop(event, PERF_EF_UPDATE);
4088
4089                 local64_set(&hwc->period_left, 0);
4090
4091                 if (disable)
4092                         event->pmu->start(event, PERF_EF_RELOAD);
4093         }
4094 }
4095
4096 /*
4097  * combine freq adjustment with unthrottling to avoid two passes over the
4098  * events. At the same time, make sure, having freq events does not change
4099  * the rate of unthrottling as that would introduce bias.
4100  */
4101 static void
4102 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4103 {
4104         struct perf_event *event;
4105         struct hw_perf_event *hwc;
4106         u64 now, period = TICK_NSEC;
4107         s64 delta;
4108
4109         /*
4110          * only need to iterate over all events iff:
4111          * - context have events in frequency mode (needs freq adjust)
4112          * - there are events to unthrottle on this cpu
4113          */
4114         if (!(ctx->nr_freq || unthrottle))
4115                 return;
4116
4117         raw_spin_lock(&ctx->lock);
4118
4119         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4120                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4121                         continue;
4122
4123                 // XXX use visit thingy to avoid the -1,cpu match
4124                 if (!event_filter_match(event))
4125                         continue;
4126
4127                 perf_pmu_disable(event->pmu);
4128
4129                 hwc = &event->hw;
4130
4131                 if (hwc->interrupts == MAX_INTERRUPTS) {
4132                         hwc->interrupts = 0;
4133                         perf_log_throttle(event, 1);
4134                         event->pmu->start(event, 0);
4135                 }
4136
4137                 if (!event->attr.freq || !event->attr.sample_freq)
4138                         goto next;
4139
4140                 /*
4141                  * stop the event and update event->count
4142                  */
4143                 event->pmu->stop(event, PERF_EF_UPDATE);
4144
4145                 now = local64_read(&event->count);
4146                 delta = now - hwc->freq_count_stamp;
4147                 hwc->freq_count_stamp = now;
4148
4149                 /*
4150                  * restart the event
4151                  * reload only if value has changed
4152                  * we have stopped the event so tell that
4153                  * to perf_adjust_period() to avoid stopping it
4154                  * twice.
4155                  */
4156                 if (delta > 0)
4157                         perf_adjust_period(event, period, delta, false);
4158
4159                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4160         next:
4161                 perf_pmu_enable(event->pmu);
4162         }
4163
4164         raw_spin_unlock(&ctx->lock);
4165 }
4166
4167 /*
4168  * Move @event to the tail of the @ctx's elegible events.
4169  */
4170 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4171 {
4172         /*
4173          * Rotate the first entry last of non-pinned groups. Rotation might be
4174          * disabled by the inheritance code.
4175          */
4176         if (ctx->rotate_disable)
4177                 return;
4178
4179         perf_event_groups_delete(&ctx->flexible_groups, event);
4180         perf_event_groups_insert(&ctx->flexible_groups, event);
4181 }
4182
4183 /* pick an event from the flexible_groups to rotate */
4184 static inline struct perf_event *
4185 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4186 {
4187         struct perf_event *event;
4188         struct rb_node *node;
4189         struct rb_root *tree;
4190         struct __group_key key = {
4191                 .pmu = pmu_ctx->pmu,
4192         };
4193
4194         /* pick the first active flexible event */
4195         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4196                                          struct perf_event, active_list);
4197         if (event)
4198                 goto out;
4199
4200         /* if no active flexible event, pick the first event */
4201         tree = &pmu_ctx->ctx->flexible_groups.tree;
4202
4203         if (!pmu_ctx->ctx->task) {
4204                 key.cpu = smp_processor_id();
4205
4206                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4207                 if (node)
4208                         event = __node_2_pe(node);
4209                 goto out;
4210         }
4211
4212         key.cpu = -1;
4213         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4214         if (node) {
4215                 event = __node_2_pe(node);
4216                 goto out;
4217         }
4218
4219         key.cpu = smp_processor_id();
4220         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4221         if (node)
4222                 event = __node_2_pe(node);
4223
4224 out:
4225         /*
4226          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4227          * finds there are unschedulable events, it will set it again.
4228          */
4229         pmu_ctx->rotate_necessary = 0;
4230
4231         return event;
4232 }
4233
4234 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4235 {
4236         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4237         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4238         struct perf_event *cpu_event = NULL, *task_event = NULL;
4239         int cpu_rotate, task_rotate;
4240         struct pmu *pmu;
4241
4242         /*
4243          * Since we run this from IRQ context, nobody can install new
4244          * events, thus the event count values are stable.
4245          */
4246
4247         cpu_epc = &cpc->epc;
4248         pmu = cpu_epc->pmu;
4249         task_epc = cpc->task_epc;
4250
4251         cpu_rotate = cpu_epc->rotate_necessary;
4252         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4253
4254         if (!(cpu_rotate || task_rotate))
4255                 return false;
4256
4257         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4258         perf_pmu_disable(pmu);
4259
4260         if (task_rotate)
4261                 task_event = ctx_event_to_rotate(task_epc);
4262         if (cpu_rotate)
4263                 cpu_event = ctx_event_to_rotate(cpu_epc);
4264
4265         /*
4266          * As per the order given at ctx_resched() first 'pop' task flexible
4267          * and then, if needed CPU flexible.
4268          */
4269         if (task_event || (task_epc && cpu_event)) {
4270                 update_context_time(task_epc->ctx);
4271                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4272         }
4273
4274         if (cpu_event) {
4275                 update_context_time(&cpuctx->ctx);
4276                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4277                 rotate_ctx(&cpuctx->ctx, cpu_event);
4278                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4279         }
4280
4281         if (task_event)
4282                 rotate_ctx(task_epc->ctx, task_event);
4283
4284         if (task_event || (task_epc && cpu_event))
4285                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4286
4287         perf_pmu_enable(pmu);
4288         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4289
4290         return true;
4291 }
4292
4293 void perf_event_task_tick(void)
4294 {
4295         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4296         struct perf_event_context *ctx;
4297         int throttled;
4298
4299         lockdep_assert_irqs_disabled();
4300
4301         __this_cpu_inc(perf_throttled_seq);
4302         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4303         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4304
4305         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4306
4307         rcu_read_lock();
4308         ctx = rcu_dereference(current->perf_event_ctxp);
4309         if (ctx)
4310                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4311         rcu_read_unlock();
4312 }
4313
4314 static int event_enable_on_exec(struct perf_event *event,
4315                                 struct perf_event_context *ctx)
4316 {
4317         if (!event->attr.enable_on_exec)
4318                 return 0;
4319
4320         event->attr.enable_on_exec = 0;
4321         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4322                 return 0;
4323
4324         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4325
4326         return 1;
4327 }
4328
4329 /*
4330  * Enable all of a task's events that have been marked enable-on-exec.
4331  * This expects task == current.
4332  */
4333 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4334 {
4335         struct perf_event_context *clone_ctx = NULL;
4336         enum event_type_t event_type = 0;
4337         struct perf_cpu_context *cpuctx;
4338         struct perf_event *event;
4339         unsigned long flags;
4340         int enabled = 0;
4341
4342         local_irq_save(flags);
4343         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4344                 goto out;
4345
4346         if (!ctx->nr_events)
4347                 goto out;
4348
4349         cpuctx = this_cpu_ptr(&perf_cpu_context);
4350         perf_ctx_lock(cpuctx, ctx);
4351         ctx_sched_out(ctx, EVENT_TIME);
4352
4353         list_for_each_entry(event, &ctx->event_list, event_entry) {
4354                 enabled |= event_enable_on_exec(event, ctx);
4355                 event_type |= get_event_type(event);
4356         }
4357
4358         /*
4359          * Unclone and reschedule this context if we enabled any event.
4360          */
4361         if (enabled) {
4362                 clone_ctx = unclone_ctx(ctx);
4363                 ctx_resched(cpuctx, ctx, event_type);
4364         } else {
4365                 ctx_sched_in(ctx, EVENT_TIME);
4366         }
4367         perf_ctx_unlock(cpuctx, ctx);
4368
4369 out:
4370         local_irq_restore(flags);
4371
4372         if (clone_ctx)
4373                 put_ctx(clone_ctx);
4374 }
4375
4376 static void perf_remove_from_owner(struct perf_event *event);
4377 static void perf_event_exit_event(struct perf_event *event,
4378                                   struct perf_event_context *ctx);
4379
4380 /*
4381  * Removes all events from the current task that have been marked
4382  * remove-on-exec, and feeds their values back to parent events.
4383  */
4384 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4385 {
4386         struct perf_event_context *clone_ctx = NULL;
4387         struct perf_event *event, *next;
4388         unsigned long flags;
4389         bool modified = false;
4390
4391         mutex_lock(&ctx->mutex);
4392
4393         if (WARN_ON_ONCE(ctx->task != current))
4394                 goto unlock;
4395
4396         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4397                 if (!event->attr.remove_on_exec)
4398                         continue;
4399
4400                 if (!is_kernel_event(event))
4401                         perf_remove_from_owner(event);
4402
4403                 modified = true;
4404
4405                 perf_event_exit_event(event, ctx);
4406         }
4407
4408         raw_spin_lock_irqsave(&ctx->lock, flags);
4409         if (modified)
4410                 clone_ctx = unclone_ctx(ctx);
4411         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4412
4413 unlock:
4414         mutex_unlock(&ctx->mutex);
4415
4416         if (clone_ctx)
4417                 put_ctx(clone_ctx);
4418 }
4419
4420 struct perf_read_data {
4421         struct perf_event *event;
4422         bool group;
4423         int ret;
4424 };
4425
4426 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4427 {
4428         u16 local_pkg, event_pkg;
4429
4430         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4431                 int local_cpu = smp_processor_id();
4432
4433                 event_pkg = topology_physical_package_id(event_cpu);
4434                 local_pkg = topology_physical_package_id(local_cpu);
4435
4436                 if (event_pkg == local_pkg)
4437                         return local_cpu;
4438         }
4439
4440         return event_cpu;
4441 }
4442
4443 /*
4444  * Cross CPU call to read the hardware event
4445  */
4446 static void __perf_event_read(void *info)
4447 {
4448         struct perf_read_data *data = info;
4449         struct perf_event *sub, *event = data->event;
4450         struct perf_event_context *ctx = event->ctx;
4451         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4452         struct pmu *pmu = event->pmu;
4453
4454         /*
4455          * If this is a task context, we need to check whether it is
4456          * the current task context of this cpu.  If not it has been
4457          * scheduled out before the smp call arrived.  In that case
4458          * event->count would have been updated to a recent sample
4459          * when the event was scheduled out.
4460          */
4461         if (ctx->task && cpuctx->task_ctx != ctx)
4462                 return;
4463
4464         raw_spin_lock(&ctx->lock);
4465         if (ctx->is_active & EVENT_TIME) {
4466                 update_context_time(ctx);
4467                 update_cgrp_time_from_event(event);
4468         }
4469
4470         perf_event_update_time(event);
4471         if (data->group)
4472                 perf_event_update_sibling_time(event);
4473
4474         if (event->state != PERF_EVENT_STATE_ACTIVE)
4475                 goto unlock;
4476
4477         if (!data->group) {
4478                 pmu->read(event);
4479                 data->ret = 0;
4480                 goto unlock;
4481         }
4482
4483         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4484
4485         pmu->read(event);
4486
4487         for_each_sibling_event(sub, event) {
4488                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4489                         /*
4490                          * Use sibling's PMU rather than @event's since
4491                          * sibling could be on different (eg: software) PMU.
4492                          */
4493                         sub->pmu->read(sub);
4494                 }
4495         }
4496
4497         data->ret = pmu->commit_txn(pmu);
4498
4499 unlock:
4500         raw_spin_unlock(&ctx->lock);
4501 }
4502
4503 static inline u64 perf_event_count(struct perf_event *event)
4504 {
4505         return local64_read(&event->count) + atomic64_read(&event->child_count);
4506 }
4507
4508 static void calc_timer_values(struct perf_event *event,
4509                                 u64 *now,
4510                                 u64 *enabled,
4511                                 u64 *running)
4512 {
4513         u64 ctx_time;
4514
4515         *now = perf_clock();
4516         ctx_time = perf_event_time_now(event, *now);
4517         __perf_update_times(event, ctx_time, enabled, running);
4518 }
4519
4520 /*
4521  * NMI-safe method to read a local event, that is an event that
4522  * is:
4523  *   - either for the current task, or for this CPU
4524  *   - does not have inherit set, for inherited task events
4525  *     will not be local and we cannot read them atomically
4526  *   - must not have a pmu::count method
4527  */
4528 int perf_event_read_local(struct perf_event *event, u64 *value,
4529                           u64 *enabled, u64 *running)
4530 {
4531         unsigned long flags;
4532         int ret = 0;
4533
4534         /*
4535          * Disabling interrupts avoids all counter scheduling (context
4536          * switches, timer based rotation and IPIs).
4537          */
4538         local_irq_save(flags);
4539
4540         /*
4541          * It must not be an event with inherit set, we cannot read
4542          * all child counters from atomic context.
4543          */
4544         if (event->attr.inherit) {
4545                 ret = -EOPNOTSUPP;
4546                 goto out;
4547         }
4548
4549         /* If this is a per-task event, it must be for current */
4550         if ((event->attach_state & PERF_ATTACH_TASK) &&
4551             event->hw.target != current) {
4552                 ret = -EINVAL;
4553                 goto out;
4554         }
4555
4556         /* If this is a per-CPU event, it must be for this CPU */
4557         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4558             event->cpu != smp_processor_id()) {
4559                 ret = -EINVAL;
4560                 goto out;
4561         }
4562
4563         /* If this is a pinned event it must be running on this CPU */
4564         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4565                 ret = -EBUSY;
4566                 goto out;
4567         }
4568
4569         /*
4570          * If the event is currently on this CPU, its either a per-task event,
4571          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4572          * oncpu == -1).
4573          */
4574         if (event->oncpu == smp_processor_id())
4575                 event->pmu->read(event);
4576
4577         *value = local64_read(&event->count);
4578         if (enabled || running) {
4579                 u64 __enabled, __running, __now;
4580
4581                 calc_timer_values(event, &__now, &__enabled, &__running);
4582                 if (enabled)
4583                         *enabled = __enabled;
4584                 if (running)
4585                         *running = __running;
4586         }
4587 out:
4588         local_irq_restore(flags);
4589
4590         return ret;
4591 }
4592
4593 static int perf_event_read(struct perf_event *event, bool group)
4594 {
4595         enum perf_event_state state = READ_ONCE(event->state);
4596         int event_cpu, ret = 0;
4597
4598         /*
4599          * If event is enabled and currently active on a CPU, update the
4600          * value in the event structure:
4601          */
4602 again:
4603         if (state == PERF_EVENT_STATE_ACTIVE) {
4604                 struct perf_read_data data;
4605
4606                 /*
4607                  * Orders the ->state and ->oncpu loads such that if we see
4608                  * ACTIVE we must also see the right ->oncpu.
4609                  *
4610                  * Matches the smp_wmb() from event_sched_in().
4611                  */
4612                 smp_rmb();
4613
4614                 event_cpu = READ_ONCE(event->oncpu);
4615                 if ((unsigned)event_cpu >= nr_cpu_ids)
4616                         return 0;
4617
4618                 data = (struct perf_read_data){
4619                         .event = event,
4620                         .group = group,
4621                         .ret = 0,
4622                 };
4623
4624                 preempt_disable();
4625                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4626
4627                 /*
4628                  * Purposely ignore the smp_call_function_single() return
4629                  * value.
4630                  *
4631                  * If event_cpu isn't a valid CPU it means the event got
4632                  * scheduled out and that will have updated the event count.
4633                  *
4634                  * Therefore, either way, we'll have an up-to-date event count
4635                  * after this.
4636                  */
4637                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4638                 preempt_enable();
4639                 ret = data.ret;
4640
4641         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4642                 struct perf_event_context *ctx = event->ctx;
4643                 unsigned long flags;
4644
4645                 raw_spin_lock_irqsave(&ctx->lock, flags);
4646                 state = event->state;
4647                 if (state != PERF_EVENT_STATE_INACTIVE) {
4648                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4649                         goto again;
4650                 }
4651
4652                 /*
4653                  * May read while context is not active (e.g., thread is
4654                  * blocked), in that case we cannot update context time
4655                  */
4656                 if (ctx->is_active & EVENT_TIME) {
4657                         update_context_time(ctx);
4658                         update_cgrp_time_from_event(event);
4659                 }
4660
4661                 perf_event_update_time(event);
4662                 if (group)
4663                         perf_event_update_sibling_time(event);
4664                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4665         }
4666
4667         return ret;
4668 }
4669
4670 /*
4671  * Initialize the perf_event context in a task_struct:
4672  */
4673 static void __perf_event_init_context(struct perf_event_context *ctx)
4674 {
4675         raw_spin_lock_init(&ctx->lock);
4676         mutex_init(&ctx->mutex);
4677         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4678         perf_event_groups_init(&ctx->pinned_groups);
4679         perf_event_groups_init(&ctx->flexible_groups);
4680         INIT_LIST_HEAD(&ctx->event_list);
4681         refcount_set(&ctx->refcount, 1);
4682 }
4683
4684 static void
4685 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4686 {
4687         epc->pmu = pmu;
4688         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4689         INIT_LIST_HEAD(&epc->pinned_active);
4690         INIT_LIST_HEAD(&epc->flexible_active);
4691         atomic_set(&epc->refcount, 1);
4692 }
4693
4694 static struct perf_event_context *
4695 alloc_perf_context(struct task_struct *task)
4696 {
4697         struct perf_event_context *ctx;
4698
4699         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4700         if (!ctx)
4701                 return NULL;
4702
4703         __perf_event_init_context(ctx);
4704         if (task)
4705                 ctx->task = get_task_struct(task);
4706
4707         return ctx;
4708 }
4709
4710 static struct task_struct *
4711 find_lively_task_by_vpid(pid_t vpid)
4712 {
4713         struct task_struct *task;
4714
4715         rcu_read_lock();
4716         if (!vpid)
4717                 task = current;
4718         else
4719                 task = find_task_by_vpid(vpid);
4720         if (task)
4721                 get_task_struct(task);
4722         rcu_read_unlock();
4723
4724         if (!task)
4725                 return ERR_PTR(-ESRCH);
4726
4727         return task;
4728 }
4729
4730 /*
4731  * Returns a matching context with refcount and pincount.
4732  */
4733 static struct perf_event_context *
4734 find_get_context(struct task_struct *task, struct perf_event *event)
4735 {
4736         struct perf_event_context *ctx, *clone_ctx = NULL;
4737         struct perf_cpu_context *cpuctx;
4738         unsigned long flags;
4739         int err;
4740
4741         if (!task) {
4742                 /* Must be root to operate on a CPU event: */
4743                 err = perf_allow_cpu(&event->attr);
4744                 if (err)
4745                         return ERR_PTR(err);
4746
4747                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4748                 ctx = &cpuctx->ctx;
4749                 get_ctx(ctx);
4750                 raw_spin_lock_irqsave(&ctx->lock, flags);
4751                 ++ctx->pin_count;
4752                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4753
4754                 return ctx;
4755         }
4756
4757         err = -EINVAL;
4758 retry:
4759         ctx = perf_lock_task_context(task, &flags);
4760         if (ctx) {
4761                 clone_ctx = unclone_ctx(ctx);
4762                 ++ctx->pin_count;
4763
4764                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4765
4766                 if (clone_ctx)
4767                         put_ctx(clone_ctx);
4768         } else {
4769                 ctx = alloc_perf_context(task);
4770                 err = -ENOMEM;
4771                 if (!ctx)
4772                         goto errout;
4773
4774                 err = 0;
4775                 mutex_lock(&task->perf_event_mutex);
4776                 /*
4777                  * If it has already passed perf_event_exit_task().
4778                  * we must see PF_EXITING, it takes this mutex too.
4779                  */
4780                 if (task->flags & PF_EXITING)
4781                         err = -ESRCH;
4782                 else if (task->perf_event_ctxp)
4783                         err = -EAGAIN;
4784                 else {
4785                         get_ctx(ctx);
4786                         ++ctx->pin_count;
4787                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4788                 }
4789                 mutex_unlock(&task->perf_event_mutex);
4790
4791                 if (unlikely(err)) {
4792                         put_ctx(ctx);
4793
4794                         if (err == -EAGAIN)
4795                                 goto retry;
4796                         goto errout;
4797                 }
4798         }
4799
4800         return ctx;
4801
4802 errout:
4803         return ERR_PTR(err);
4804 }
4805
4806 static struct perf_event_pmu_context *
4807 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4808                      struct perf_event *event)
4809 {
4810         struct perf_event_pmu_context *new = NULL, *epc;
4811         void *task_ctx_data = NULL;
4812
4813         if (!ctx->task) {
4814                 struct perf_cpu_pmu_context *cpc;
4815
4816                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4817                 epc = &cpc->epc;
4818                 raw_spin_lock_irq(&ctx->lock);
4819                 if (!epc->ctx) {
4820                         atomic_set(&epc->refcount, 1);
4821                         epc->embedded = 1;
4822                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4823                         epc->ctx = ctx;
4824                 } else {
4825                         WARN_ON_ONCE(epc->ctx != ctx);
4826                         atomic_inc(&epc->refcount);
4827                 }
4828                 raw_spin_unlock_irq(&ctx->lock);
4829                 return epc;
4830         }
4831
4832         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4833         if (!new)
4834                 return ERR_PTR(-ENOMEM);
4835
4836         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4837                 task_ctx_data = alloc_task_ctx_data(pmu);
4838                 if (!task_ctx_data) {
4839                         kfree(new);
4840                         return ERR_PTR(-ENOMEM);
4841                 }
4842         }
4843
4844         __perf_init_event_pmu_context(new, pmu);
4845
4846         /*
4847          * XXX
4848          *
4849          * lockdep_assert_held(&ctx->mutex);
4850          *
4851          * can't because perf_event_init_task() doesn't actually hold the
4852          * child_ctx->mutex.
4853          */
4854
4855         raw_spin_lock_irq(&ctx->lock);
4856         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4857                 if (epc->pmu == pmu) {
4858                         WARN_ON_ONCE(epc->ctx != ctx);
4859                         atomic_inc(&epc->refcount);
4860                         goto found_epc;
4861                 }
4862         }
4863
4864         epc = new;
4865         new = NULL;
4866
4867         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4868         epc->ctx = ctx;
4869
4870 found_epc:
4871         if (task_ctx_data && !epc->task_ctx_data) {
4872                 epc->task_ctx_data = task_ctx_data;
4873                 task_ctx_data = NULL;
4874                 ctx->nr_task_data++;
4875         }
4876         raw_spin_unlock_irq(&ctx->lock);
4877
4878         free_task_ctx_data(pmu, task_ctx_data);
4879         kfree(new);
4880
4881         return epc;
4882 }
4883
4884 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4885 {
4886         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4887 }
4888
4889 static void free_epc_rcu(struct rcu_head *head)
4890 {
4891         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4892
4893         kfree(epc->task_ctx_data);
4894         kfree(epc);
4895 }
4896
4897 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4898 {
4899         struct perf_event_context *ctx = epc->ctx;
4900         unsigned long flags;
4901
4902         /*
4903          * XXX
4904          *
4905          * lockdep_assert_held(&ctx->mutex);
4906          *
4907          * can't because of the call-site in _free_event()/put_event()
4908          * which isn't always called under ctx->mutex.
4909          */
4910         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4911                 return;
4912
4913         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4914
4915         list_del_init(&epc->pmu_ctx_entry);
4916         epc->ctx = NULL;
4917
4918         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4919         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4920
4921         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4922
4923         if (epc->embedded)
4924                 return;
4925
4926         call_rcu(&epc->rcu_head, free_epc_rcu);
4927 }
4928
4929 static void perf_event_free_filter(struct perf_event *event);
4930
4931 static void free_event_rcu(struct rcu_head *head)
4932 {
4933         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4934
4935         if (event->ns)
4936                 put_pid_ns(event->ns);
4937         perf_event_free_filter(event);
4938         kmem_cache_free(perf_event_cache, event);
4939 }
4940
4941 static void ring_buffer_attach(struct perf_event *event,
4942                                struct perf_buffer *rb);
4943
4944 static void detach_sb_event(struct perf_event *event)
4945 {
4946         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4947
4948         raw_spin_lock(&pel->lock);
4949         list_del_rcu(&event->sb_list);
4950         raw_spin_unlock(&pel->lock);
4951 }
4952
4953 static bool is_sb_event(struct perf_event *event)
4954 {
4955         struct perf_event_attr *attr = &event->attr;
4956
4957         if (event->parent)
4958                 return false;
4959
4960         if (event->attach_state & PERF_ATTACH_TASK)
4961                 return false;
4962
4963         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4964             attr->comm || attr->comm_exec ||
4965             attr->task || attr->ksymbol ||
4966             attr->context_switch || attr->text_poke ||
4967             attr->bpf_event)
4968                 return true;
4969         return false;
4970 }
4971
4972 static void unaccount_pmu_sb_event(struct perf_event *event)
4973 {
4974         if (is_sb_event(event))
4975                 detach_sb_event(event);
4976 }
4977
4978 #ifdef CONFIG_NO_HZ_FULL
4979 static DEFINE_SPINLOCK(nr_freq_lock);
4980 #endif
4981
4982 static void unaccount_freq_event_nohz(void)
4983 {
4984 #ifdef CONFIG_NO_HZ_FULL
4985         spin_lock(&nr_freq_lock);
4986         if (atomic_dec_and_test(&nr_freq_events))
4987                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4988         spin_unlock(&nr_freq_lock);
4989 #endif
4990 }
4991
4992 static void unaccount_freq_event(void)
4993 {
4994         if (tick_nohz_full_enabled())
4995                 unaccount_freq_event_nohz();
4996         else
4997                 atomic_dec(&nr_freq_events);
4998 }
4999
5000 static void unaccount_event(struct perf_event *event)
5001 {
5002         bool dec = false;
5003
5004         if (event->parent)
5005                 return;
5006
5007         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5008                 dec = true;
5009         if (event->attr.mmap || event->attr.mmap_data)
5010                 atomic_dec(&nr_mmap_events);
5011         if (event->attr.build_id)
5012                 atomic_dec(&nr_build_id_events);
5013         if (event->attr.comm)
5014                 atomic_dec(&nr_comm_events);
5015         if (event->attr.namespaces)
5016                 atomic_dec(&nr_namespaces_events);
5017         if (event->attr.cgroup)
5018                 atomic_dec(&nr_cgroup_events);
5019         if (event->attr.task)
5020                 atomic_dec(&nr_task_events);
5021         if (event->attr.freq)
5022                 unaccount_freq_event();
5023         if (event->attr.context_switch) {
5024                 dec = true;
5025                 atomic_dec(&nr_switch_events);
5026         }
5027         if (is_cgroup_event(event))
5028                 dec = true;
5029         if (has_branch_stack(event))
5030                 dec = true;
5031         if (event->attr.ksymbol)
5032                 atomic_dec(&nr_ksymbol_events);
5033         if (event->attr.bpf_event)
5034                 atomic_dec(&nr_bpf_events);
5035         if (event->attr.text_poke)
5036                 atomic_dec(&nr_text_poke_events);
5037
5038         if (dec) {
5039                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5040                         schedule_delayed_work(&perf_sched_work, HZ);
5041         }
5042
5043         unaccount_pmu_sb_event(event);
5044 }
5045
5046 static void perf_sched_delayed(struct work_struct *work)
5047 {
5048         mutex_lock(&perf_sched_mutex);
5049         if (atomic_dec_and_test(&perf_sched_count))
5050                 static_branch_disable(&perf_sched_events);
5051         mutex_unlock(&perf_sched_mutex);
5052 }
5053
5054 /*
5055  * The following implement mutual exclusion of events on "exclusive" pmus
5056  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5057  * at a time, so we disallow creating events that might conflict, namely:
5058  *
5059  *  1) cpu-wide events in the presence of per-task events,
5060  *  2) per-task events in the presence of cpu-wide events,
5061  *  3) two matching events on the same perf_event_context.
5062  *
5063  * The former two cases are handled in the allocation path (perf_event_alloc(),
5064  * _free_event()), the latter -- before the first perf_install_in_context().
5065  */
5066 static int exclusive_event_init(struct perf_event *event)
5067 {
5068         struct pmu *pmu = event->pmu;
5069
5070         if (!is_exclusive_pmu(pmu))
5071                 return 0;
5072
5073         /*
5074          * Prevent co-existence of per-task and cpu-wide events on the
5075          * same exclusive pmu.
5076          *
5077          * Negative pmu::exclusive_cnt means there are cpu-wide
5078          * events on this "exclusive" pmu, positive means there are
5079          * per-task events.
5080          *
5081          * Since this is called in perf_event_alloc() path, event::ctx
5082          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5083          * to mean "per-task event", because unlike other attach states it
5084          * never gets cleared.
5085          */
5086         if (event->attach_state & PERF_ATTACH_TASK) {
5087                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5088                         return -EBUSY;
5089         } else {
5090                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5091                         return -EBUSY;
5092         }
5093
5094         return 0;
5095 }
5096
5097 static void exclusive_event_destroy(struct perf_event *event)
5098 {
5099         struct pmu *pmu = event->pmu;
5100
5101         if (!is_exclusive_pmu(pmu))
5102                 return;
5103
5104         /* see comment in exclusive_event_init() */
5105         if (event->attach_state & PERF_ATTACH_TASK)
5106                 atomic_dec(&pmu->exclusive_cnt);
5107         else
5108                 atomic_inc(&pmu->exclusive_cnt);
5109 }
5110
5111 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5112 {
5113         if ((e1->pmu == e2->pmu) &&
5114             (e1->cpu == e2->cpu ||
5115              e1->cpu == -1 ||
5116              e2->cpu == -1))
5117                 return true;
5118         return false;
5119 }
5120
5121 static bool exclusive_event_installable(struct perf_event *event,
5122                                         struct perf_event_context *ctx)
5123 {
5124         struct perf_event *iter_event;
5125         struct pmu *pmu = event->pmu;
5126
5127         lockdep_assert_held(&ctx->mutex);
5128
5129         if (!is_exclusive_pmu(pmu))
5130                 return true;
5131
5132         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5133                 if (exclusive_event_match(iter_event, event))
5134                         return false;
5135         }
5136
5137         return true;
5138 }
5139
5140 static void perf_addr_filters_splice(struct perf_event *event,
5141                                        struct list_head *head);
5142
5143 static void _free_event(struct perf_event *event)
5144 {
5145         irq_work_sync(&event->pending_irq);
5146
5147         unaccount_event(event);
5148
5149         security_perf_event_free(event);
5150
5151         if (event->rb) {
5152                 /*
5153                  * Can happen when we close an event with re-directed output.
5154                  *
5155                  * Since we have a 0 refcount, perf_mmap_close() will skip
5156                  * over us; possibly making our ring_buffer_put() the last.
5157                  */
5158                 mutex_lock(&event->mmap_mutex);
5159                 ring_buffer_attach(event, NULL);
5160                 mutex_unlock(&event->mmap_mutex);
5161         }
5162
5163         if (is_cgroup_event(event))
5164                 perf_detach_cgroup(event);
5165
5166         if (!event->parent) {
5167                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5168                         put_callchain_buffers();
5169         }
5170
5171         perf_event_free_bpf_prog(event);
5172         perf_addr_filters_splice(event, NULL);
5173         kfree(event->addr_filter_ranges);
5174
5175         if (event->destroy)
5176                 event->destroy(event);
5177
5178         /*
5179          * Must be after ->destroy(), due to uprobe_perf_close() using
5180          * hw.target.
5181          */
5182         if (event->hw.target)
5183                 put_task_struct(event->hw.target);
5184
5185         if (event->pmu_ctx)
5186                 put_pmu_ctx(event->pmu_ctx);
5187
5188         /*
5189          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5190          * all task references must be cleaned up.
5191          */
5192         if (event->ctx)
5193                 put_ctx(event->ctx);
5194
5195         exclusive_event_destroy(event);
5196         module_put(event->pmu->module);
5197
5198         call_rcu(&event->rcu_head, free_event_rcu);
5199 }
5200
5201 /*
5202  * Used to free events which have a known refcount of 1, such as in error paths
5203  * where the event isn't exposed yet and inherited events.
5204  */
5205 static void free_event(struct perf_event *event)
5206 {
5207         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5208                                 "unexpected event refcount: %ld; ptr=%p\n",
5209                                 atomic_long_read(&event->refcount), event)) {
5210                 /* leak to avoid use-after-free */
5211                 return;
5212         }
5213
5214         _free_event(event);
5215 }
5216
5217 /*
5218  * Remove user event from the owner task.
5219  */
5220 static void perf_remove_from_owner(struct perf_event *event)
5221 {
5222         struct task_struct *owner;
5223
5224         rcu_read_lock();
5225         /*
5226          * Matches the smp_store_release() in perf_event_exit_task(). If we
5227          * observe !owner it means the list deletion is complete and we can
5228          * indeed free this event, otherwise we need to serialize on
5229          * owner->perf_event_mutex.
5230          */
5231         owner = READ_ONCE(event->owner);
5232         if (owner) {
5233                 /*
5234                  * Since delayed_put_task_struct() also drops the last
5235                  * task reference we can safely take a new reference
5236                  * while holding the rcu_read_lock().
5237                  */
5238                 get_task_struct(owner);
5239         }
5240         rcu_read_unlock();
5241
5242         if (owner) {
5243                 /*
5244                  * If we're here through perf_event_exit_task() we're already
5245                  * holding ctx->mutex which would be an inversion wrt. the
5246                  * normal lock order.
5247                  *
5248                  * However we can safely take this lock because its the child
5249                  * ctx->mutex.
5250                  */
5251                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5252
5253                 /*
5254                  * We have to re-check the event->owner field, if it is cleared
5255                  * we raced with perf_event_exit_task(), acquiring the mutex
5256                  * ensured they're done, and we can proceed with freeing the
5257                  * event.
5258                  */
5259                 if (event->owner) {
5260                         list_del_init(&event->owner_entry);
5261                         smp_store_release(&event->owner, NULL);
5262                 }
5263                 mutex_unlock(&owner->perf_event_mutex);
5264                 put_task_struct(owner);
5265         }
5266 }
5267
5268 static void put_event(struct perf_event *event)
5269 {
5270         if (!atomic_long_dec_and_test(&event->refcount))
5271                 return;
5272
5273         _free_event(event);
5274 }
5275
5276 /*
5277  * Kill an event dead; while event:refcount will preserve the event
5278  * object, it will not preserve its functionality. Once the last 'user'
5279  * gives up the object, we'll destroy the thing.
5280  */
5281 int perf_event_release_kernel(struct perf_event *event)
5282 {
5283         struct perf_event_context *ctx = event->ctx;
5284         struct perf_event *child, *tmp;
5285         LIST_HEAD(free_list);
5286
5287         /*
5288          * If we got here through err_alloc: free_event(event); we will not
5289          * have attached to a context yet.
5290          */
5291         if (!ctx) {
5292                 WARN_ON_ONCE(event->attach_state &
5293                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5294                 goto no_ctx;
5295         }
5296
5297         if (!is_kernel_event(event))
5298                 perf_remove_from_owner(event);
5299
5300         ctx = perf_event_ctx_lock(event);
5301         WARN_ON_ONCE(ctx->parent_ctx);
5302
5303         /*
5304          * Mark this event as STATE_DEAD, there is no external reference to it
5305          * anymore.
5306          *
5307          * Anybody acquiring event->child_mutex after the below loop _must_
5308          * also see this, most importantly inherit_event() which will avoid
5309          * placing more children on the list.
5310          *
5311          * Thus this guarantees that we will in fact observe and kill _ALL_
5312          * child events.
5313          */
5314         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5315
5316         perf_event_ctx_unlock(event, ctx);
5317
5318 again:
5319         mutex_lock(&event->child_mutex);
5320         list_for_each_entry(child, &event->child_list, child_list) {
5321
5322                 /*
5323                  * Cannot change, child events are not migrated, see the
5324                  * comment with perf_event_ctx_lock_nested().
5325                  */
5326                 ctx = READ_ONCE(child->ctx);
5327                 /*
5328                  * Since child_mutex nests inside ctx::mutex, we must jump
5329                  * through hoops. We start by grabbing a reference on the ctx.
5330                  *
5331                  * Since the event cannot get freed while we hold the
5332                  * child_mutex, the context must also exist and have a !0
5333                  * reference count.
5334                  */
5335                 get_ctx(ctx);
5336
5337                 /*
5338                  * Now that we have a ctx ref, we can drop child_mutex, and
5339                  * acquire ctx::mutex without fear of it going away. Then we
5340                  * can re-acquire child_mutex.
5341                  */
5342                 mutex_unlock(&event->child_mutex);
5343                 mutex_lock(&ctx->mutex);
5344                 mutex_lock(&event->child_mutex);
5345
5346                 /*
5347                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5348                  * state, if child is still the first entry, it didn't get freed
5349                  * and we can continue doing so.
5350                  */
5351                 tmp = list_first_entry_or_null(&event->child_list,
5352                                                struct perf_event, child_list);
5353                 if (tmp == child) {
5354                         perf_remove_from_context(child, DETACH_GROUP);
5355                         list_move(&child->child_list, &free_list);
5356                         /*
5357                          * This matches the refcount bump in inherit_event();
5358                          * this can't be the last reference.
5359                          */
5360                         put_event(event);
5361                 }
5362
5363                 mutex_unlock(&event->child_mutex);
5364                 mutex_unlock(&ctx->mutex);
5365                 put_ctx(ctx);
5366                 goto again;
5367         }
5368         mutex_unlock(&event->child_mutex);
5369
5370         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5371                 void *var = &child->ctx->refcount;
5372
5373                 list_del(&child->child_list);
5374                 free_event(child);
5375
5376                 /*
5377                  * Wake any perf_event_free_task() waiting for this event to be
5378                  * freed.
5379                  */
5380                 smp_mb(); /* pairs with wait_var_event() */
5381                 wake_up_var(var);
5382         }
5383
5384 no_ctx:
5385         put_event(event); /* Must be the 'last' reference */
5386         return 0;
5387 }
5388 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5389
5390 /*
5391  * Called when the last reference to the file is gone.
5392  */
5393 static int perf_release(struct inode *inode, struct file *file)
5394 {
5395         perf_event_release_kernel(file->private_data);
5396         return 0;
5397 }
5398
5399 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5400 {
5401         struct perf_event *child;
5402         u64 total = 0;
5403
5404         *enabled = 0;
5405         *running = 0;
5406
5407         mutex_lock(&event->child_mutex);
5408
5409         (void)perf_event_read(event, false);
5410         total += perf_event_count(event);
5411
5412         *enabled += event->total_time_enabled +
5413                         atomic64_read(&event->child_total_time_enabled);
5414         *running += event->total_time_running +
5415                         atomic64_read(&event->child_total_time_running);
5416
5417         list_for_each_entry(child, &event->child_list, child_list) {
5418                 (void)perf_event_read(child, false);
5419                 total += perf_event_count(child);
5420                 *enabled += child->total_time_enabled;
5421                 *running += child->total_time_running;
5422         }
5423         mutex_unlock(&event->child_mutex);
5424
5425         return total;
5426 }
5427
5428 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5429 {
5430         struct perf_event_context *ctx;
5431         u64 count;
5432
5433         ctx = perf_event_ctx_lock(event);
5434         count = __perf_event_read_value(event, enabled, running);
5435         perf_event_ctx_unlock(event, ctx);
5436
5437         return count;
5438 }
5439 EXPORT_SYMBOL_GPL(perf_event_read_value);
5440
5441 static int __perf_read_group_add(struct perf_event *leader,
5442                                         u64 read_format, u64 *values)
5443 {
5444         struct perf_event_context *ctx = leader->ctx;
5445         struct perf_event *sub, *parent;
5446         unsigned long flags;
5447         int n = 1; /* skip @nr */
5448         int ret;
5449
5450         ret = perf_event_read(leader, true);
5451         if (ret)
5452                 return ret;
5453
5454         raw_spin_lock_irqsave(&ctx->lock, flags);
5455         /*
5456          * Verify the grouping between the parent and child (inherited)
5457          * events is still in tact.
5458          *
5459          * Specifically:
5460          *  - leader->ctx->lock pins leader->sibling_list
5461          *  - parent->child_mutex pins parent->child_list
5462          *  - parent->ctx->mutex pins parent->sibling_list
5463          *
5464          * Because parent->ctx != leader->ctx (and child_list nests inside
5465          * ctx->mutex), group destruction is not atomic between children, also
5466          * see perf_event_release_kernel(). Additionally, parent can grow the
5467          * group.
5468          *
5469          * Therefore it is possible to have parent and child groups in a
5470          * different configuration and summing over such a beast makes no sense
5471          * what so ever.
5472          *
5473          * Reject this.
5474          */
5475         parent = leader->parent;
5476         if (parent &&
5477             (parent->group_generation != leader->group_generation ||
5478              parent->nr_siblings != leader->nr_siblings)) {
5479                 ret = -ECHILD;
5480                 goto unlock;
5481         }
5482
5483         /*
5484          * Since we co-schedule groups, {enabled,running} times of siblings
5485          * will be identical to those of the leader, so we only publish one
5486          * set.
5487          */
5488         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5489                 values[n++] += leader->total_time_enabled +
5490                         atomic64_read(&leader->child_total_time_enabled);
5491         }
5492
5493         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5494                 values[n++] += leader->total_time_running +
5495                         atomic64_read(&leader->child_total_time_running);
5496         }
5497
5498         /*
5499          * Write {count,id} tuples for every sibling.
5500          */
5501         values[n++] += perf_event_count(leader);
5502         if (read_format & PERF_FORMAT_ID)
5503                 values[n++] = primary_event_id(leader);
5504         if (read_format & PERF_FORMAT_LOST)
5505                 values[n++] = atomic64_read(&leader->lost_samples);
5506
5507         for_each_sibling_event(sub, leader) {
5508                 values[n++] += perf_event_count(sub);
5509                 if (read_format & PERF_FORMAT_ID)
5510                         values[n++] = primary_event_id(sub);
5511                 if (read_format & PERF_FORMAT_LOST)
5512                         values[n++] = atomic64_read(&sub->lost_samples);
5513         }
5514
5515 unlock:
5516         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5517         return ret;
5518 }
5519
5520 static int perf_read_group(struct perf_event *event,
5521                                    u64 read_format, char __user *buf)
5522 {
5523         struct perf_event *leader = event->group_leader, *child;
5524         struct perf_event_context *ctx = leader->ctx;
5525         int ret;
5526         u64 *values;
5527
5528         lockdep_assert_held(&ctx->mutex);
5529
5530         values = kzalloc(event->read_size, GFP_KERNEL);
5531         if (!values)
5532                 return -ENOMEM;
5533
5534         values[0] = 1 + leader->nr_siblings;
5535
5536         mutex_lock(&leader->child_mutex);
5537
5538         ret = __perf_read_group_add(leader, read_format, values);
5539         if (ret)
5540                 goto unlock;
5541
5542         list_for_each_entry(child, &leader->child_list, child_list) {
5543                 ret = __perf_read_group_add(child, read_format, values);
5544                 if (ret)
5545                         goto unlock;
5546         }
5547
5548         mutex_unlock(&leader->child_mutex);
5549
5550         ret = event->read_size;
5551         if (copy_to_user(buf, values, event->read_size))
5552                 ret = -EFAULT;
5553         goto out;
5554
5555 unlock:
5556         mutex_unlock(&leader->child_mutex);
5557 out:
5558         kfree(values);
5559         return ret;
5560 }
5561
5562 static int perf_read_one(struct perf_event *event,
5563                                  u64 read_format, char __user *buf)
5564 {
5565         u64 enabled, running;
5566         u64 values[5];
5567         int n = 0;
5568
5569         values[n++] = __perf_event_read_value(event, &enabled, &running);
5570         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5571                 values[n++] = enabled;
5572         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5573                 values[n++] = running;
5574         if (read_format & PERF_FORMAT_ID)
5575                 values[n++] = primary_event_id(event);
5576         if (read_format & PERF_FORMAT_LOST)
5577                 values[n++] = atomic64_read(&event->lost_samples);
5578
5579         if (copy_to_user(buf, values, n * sizeof(u64)))
5580                 return -EFAULT;
5581
5582         return n * sizeof(u64);
5583 }
5584
5585 static bool is_event_hup(struct perf_event *event)
5586 {
5587         bool no_children;
5588
5589         if (event->state > PERF_EVENT_STATE_EXIT)
5590                 return false;
5591
5592         mutex_lock(&event->child_mutex);
5593         no_children = list_empty(&event->child_list);
5594         mutex_unlock(&event->child_mutex);
5595         return no_children;
5596 }
5597
5598 /*
5599  * Read the performance event - simple non blocking version for now
5600  */
5601 static ssize_t
5602 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5603 {
5604         u64 read_format = event->attr.read_format;
5605         int ret;
5606
5607         /*
5608          * Return end-of-file for a read on an event that is in
5609          * error state (i.e. because it was pinned but it couldn't be
5610          * scheduled on to the CPU at some point).
5611          */
5612         if (event->state == PERF_EVENT_STATE_ERROR)
5613                 return 0;
5614
5615         if (count < event->read_size)
5616                 return -ENOSPC;
5617
5618         WARN_ON_ONCE(event->ctx->parent_ctx);
5619         if (read_format & PERF_FORMAT_GROUP)
5620                 ret = perf_read_group(event, read_format, buf);
5621         else
5622                 ret = perf_read_one(event, read_format, buf);
5623
5624         return ret;
5625 }
5626
5627 static ssize_t
5628 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5629 {
5630         struct perf_event *event = file->private_data;
5631         struct perf_event_context *ctx;
5632         int ret;
5633
5634         ret = security_perf_event_read(event);
5635         if (ret)
5636                 return ret;
5637
5638         ctx = perf_event_ctx_lock(event);
5639         ret = __perf_read(event, buf, count);
5640         perf_event_ctx_unlock(event, ctx);
5641
5642         return ret;
5643 }
5644
5645 static __poll_t perf_poll(struct file *file, poll_table *wait)
5646 {
5647         struct perf_event *event = file->private_data;
5648         struct perf_buffer *rb;
5649         __poll_t events = EPOLLHUP;
5650
5651         poll_wait(file, &event->waitq, wait);
5652
5653         if (is_event_hup(event))
5654                 return events;
5655
5656         /*
5657          * Pin the event->rb by taking event->mmap_mutex; otherwise
5658          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5659          */
5660         mutex_lock(&event->mmap_mutex);
5661         rb = event->rb;
5662         if (rb)
5663                 events = atomic_xchg(&rb->poll, 0);
5664         mutex_unlock(&event->mmap_mutex);
5665         return events;
5666 }
5667
5668 static void _perf_event_reset(struct perf_event *event)
5669 {
5670         (void)perf_event_read(event, false);
5671         local64_set(&event->count, 0);
5672         perf_event_update_userpage(event);
5673 }
5674
5675 /* Assume it's not an event with inherit set. */
5676 u64 perf_event_pause(struct perf_event *event, bool reset)
5677 {
5678         struct perf_event_context *ctx;
5679         u64 count;
5680
5681         ctx = perf_event_ctx_lock(event);
5682         WARN_ON_ONCE(event->attr.inherit);
5683         _perf_event_disable(event);
5684         count = local64_read(&event->count);
5685         if (reset)
5686                 local64_set(&event->count, 0);
5687         perf_event_ctx_unlock(event, ctx);
5688
5689         return count;
5690 }
5691 EXPORT_SYMBOL_GPL(perf_event_pause);
5692
5693 /*
5694  * Holding the top-level event's child_mutex means that any
5695  * descendant process that has inherited this event will block
5696  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5697  * task existence requirements of perf_event_enable/disable.
5698  */
5699 static void perf_event_for_each_child(struct perf_event *event,
5700                                         void (*func)(struct perf_event *))
5701 {
5702         struct perf_event *child;
5703
5704         WARN_ON_ONCE(event->ctx->parent_ctx);
5705
5706         mutex_lock(&event->child_mutex);
5707         func(event);
5708         list_for_each_entry(child, &event->child_list, child_list)
5709                 func(child);
5710         mutex_unlock(&event->child_mutex);
5711 }
5712
5713 static void perf_event_for_each(struct perf_event *event,
5714                                   void (*func)(struct perf_event *))
5715 {
5716         struct perf_event_context *ctx = event->ctx;
5717         struct perf_event *sibling;
5718
5719         lockdep_assert_held(&ctx->mutex);
5720
5721         event = event->group_leader;
5722
5723         perf_event_for_each_child(event, func);
5724         for_each_sibling_event(sibling, event)
5725                 perf_event_for_each_child(sibling, func);
5726 }
5727
5728 static void __perf_event_period(struct perf_event *event,
5729                                 struct perf_cpu_context *cpuctx,
5730                                 struct perf_event_context *ctx,
5731                                 void *info)
5732 {
5733         u64 value = *((u64 *)info);
5734         bool active;
5735
5736         if (event->attr.freq) {
5737                 event->attr.sample_freq = value;
5738         } else {
5739                 event->attr.sample_period = value;
5740                 event->hw.sample_period = value;
5741         }
5742
5743         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5744         if (active) {
5745                 perf_pmu_disable(event->pmu);
5746                 /*
5747                  * We could be throttled; unthrottle now to avoid the tick
5748                  * trying to unthrottle while we already re-started the event.
5749                  */
5750                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5751                         event->hw.interrupts = 0;
5752                         perf_log_throttle(event, 1);
5753                 }
5754                 event->pmu->stop(event, PERF_EF_UPDATE);
5755         }
5756
5757         local64_set(&event->hw.period_left, 0);
5758
5759         if (active) {
5760                 event->pmu->start(event, PERF_EF_RELOAD);
5761                 perf_pmu_enable(event->pmu);
5762         }
5763 }
5764
5765 static int perf_event_check_period(struct perf_event *event, u64 value)
5766 {
5767         return event->pmu->check_period(event, value);
5768 }
5769
5770 static int _perf_event_period(struct perf_event *event, u64 value)
5771 {
5772         if (!is_sampling_event(event))
5773                 return -EINVAL;
5774
5775         if (!value)
5776                 return -EINVAL;
5777
5778         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5779                 return -EINVAL;
5780
5781         if (perf_event_check_period(event, value))
5782                 return -EINVAL;
5783
5784         if (!event->attr.freq && (value & (1ULL << 63)))
5785                 return -EINVAL;
5786
5787         event_function_call(event, __perf_event_period, &value);
5788
5789         return 0;
5790 }
5791
5792 int perf_event_period(struct perf_event *event, u64 value)
5793 {
5794         struct perf_event_context *ctx;
5795         int ret;
5796
5797         ctx = perf_event_ctx_lock(event);
5798         ret = _perf_event_period(event, value);
5799         perf_event_ctx_unlock(event, ctx);
5800
5801         return ret;
5802 }
5803 EXPORT_SYMBOL_GPL(perf_event_period);
5804
5805 static const struct file_operations perf_fops;
5806
5807 static inline int perf_fget_light(int fd, struct fd *p)
5808 {
5809         struct fd f = fdget(fd);
5810         if (!f.file)
5811                 return -EBADF;
5812
5813         if (f.file->f_op != &perf_fops) {
5814                 fdput(f);
5815                 return -EBADF;
5816         }
5817         *p = f;
5818         return 0;
5819 }
5820
5821 static int perf_event_set_output(struct perf_event *event,
5822                                  struct perf_event *output_event);
5823 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5824 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5825                           struct perf_event_attr *attr);
5826
5827 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5828 {
5829         void (*func)(struct perf_event *);
5830         u32 flags = arg;
5831
5832         switch (cmd) {
5833         case PERF_EVENT_IOC_ENABLE:
5834                 func = _perf_event_enable;
5835                 break;
5836         case PERF_EVENT_IOC_DISABLE:
5837                 func = _perf_event_disable;
5838                 break;
5839         case PERF_EVENT_IOC_RESET:
5840                 func = _perf_event_reset;
5841                 break;
5842
5843         case PERF_EVENT_IOC_REFRESH:
5844                 return _perf_event_refresh(event, arg);
5845
5846         case PERF_EVENT_IOC_PERIOD:
5847         {
5848                 u64 value;
5849
5850                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5851                         return -EFAULT;
5852
5853                 return _perf_event_period(event, value);
5854         }
5855         case PERF_EVENT_IOC_ID:
5856         {
5857                 u64 id = primary_event_id(event);
5858
5859                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5860                         return -EFAULT;
5861                 return 0;
5862         }
5863
5864         case PERF_EVENT_IOC_SET_OUTPUT:
5865         {
5866                 int ret;
5867                 if (arg != -1) {
5868                         struct perf_event *output_event;
5869                         struct fd output;
5870                         ret = perf_fget_light(arg, &output);
5871                         if (ret)
5872                                 return ret;
5873                         output_event = output.file->private_data;
5874                         ret = perf_event_set_output(event, output_event);
5875                         fdput(output);
5876                 } else {
5877                         ret = perf_event_set_output(event, NULL);
5878                 }
5879                 return ret;
5880         }
5881
5882         case PERF_EVENT_IOC_SET_FILTER:
5883                 return perf_event_set_filter(event, (void __user *)arg);
5884
5885         case PERF_EVENT_IOC_SET_BPF:
5886         {
5887                 struct bpf_prog *prog;
5888                 int err;
5889
5890                 prog = bpf_prog_get(arg);
5891                 if (IS_ERR(prog))
5892                         return PTR_ERR(prog);
5893
5894                 err = perf_event_set_bpf_prog(event, prog, 0);
5895                 if (err) {
5896                         bpf_prog_put(prog);
5897                         return err;
5898                 }
5899
5900                 return 0;
5901         }
5902
5903         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5904                 struct perf_buffer *rb;
5905
5906                 rcu_read_lock();
5907                 rb = rcu_dereference(event->rb);
5908                 if (!rb || !rb->nr_pages) {
5909                         rcu_read_unlock();
5910                         return -EINVAL;
5911                 }
5912                 rb_toggle_paused(rb, !!arg);
5913                 rcu_read_unlock();
5914                 return 0;
5915         }
5916
5917         case PERF_EVENT_IOC_QUERY_BPF:
5918                 return perf_event_query_prog_array(event, (void __user *)arg);
5919
5920         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5921                 struct perf_event_attr new_attr;
5922                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5923                                          &new_attr);
5924
5925                 if (err)
5926                         return err;
5927
5928                 return perf_event_modify_attr(event,  &new_attr);
5929         }
5930         default:
5931                 return -ENOTTY;
5932         }
5933
5934         if (flags & PERF_IOC_FLAG_GROUP)
5935                 perf_event_for_each(event, func);
5936         else
5937                 perf_event_for_each_child(event, func);
5938
5939         return 0;
5940 }
5941
5942 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5943 {
5944         struct perf_event *event = file->private_data;
5945         struct perf_event_context *ctx;
5946         long ret;
5947
5948         /* Treat ioctl like writes as it is likely a mutating operation. */
5949         ret = security_perf_event_write(event);
5950         if (ret)
5951                 return ret;
5952
5953         ctx = perf_event_ctx_lock(event);
5954         ret = _perf_ioctl(event, cmd, arg);
5955         perf_event_ctx_unlock(event, ctx);
5956
5957         return ret;
5958 }
5959
5960 #ifdef CONFIG_COMPAT
5961 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5962                                 unsigned long arg)
5963 {
5964         switch (_IOC_NR(cmd)) {
5965         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5966         case _IOC_NR(PERF_EVENT_IOC_ID):
5967         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5968         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5969                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5970                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5971                         cmd &= ~IOCSIZE_MASK;
5972                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5973                 }
5974                 break;
5975         }
5976         return perf_ioctl(file, cmd, arg);
5977 }
5978 #else
5979 # define perf_compat_ioctl NULL
5980 #endif
5981
5982 int perf_event_task_enable(void)
5983 {
5984         struct perf_event_context *ctx;
5985         struct perf_event *event;
5986
5987         mutex_lock(&current->perf_event_mutex);
5988         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5989                 ctx = perf_event_ctx_lock(event);
5990                 perf_event_for_each_child(event, _perf_event_enable);
5991                 perf_event_ctx_unlock(event, ctx);
5992         }
5993         mutex_unlock(&current->perf_event_mutex);
5994
5995         return 0;
5996 }
5997
5998 int perf_event_task_disable(void)
5999 {
6000         struct perf_event_context *ctx;
6001         struct perf_event *event;
6002
6003         mutex_lock(&current->perf_event_mutex);
6004         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6005                 ctx = perf_event_ctx_lock(event);
6006                 perf_event_for_each_child(event, _perf_event_disable);
6007                 perf_event_ctx_unlock(event, ctx);
6008         }
6009         mutex_unlock(&current->perf_event_mutex);
6010
6011         return 0;
6012 }
6013
6014 static int perf_event_index(struct perf_event *event)
6015 {
6016         if (event->hw.state & PERF_HES_STOPPED)
6017                 return 0;
6018
6019         if (event->state != PERF_EVENT_STATE_ACTIVE)
6020                 return 0;
6021
6022         return event->pmu->event_idx(event);
6023 }
6024
6025 static void perf_event_init_userpage(struct perf_event *event)
6026 {
6027         struct perf_event_mmap_page *userpg;
6028         struct perf_buffer *rb;
6029
6030         rcu_read_lock();
6031         rb = rcu_dereference(event->rb);
6032         if (!rb)
6033                 goto unlock;
6034
6035         userpg = rb->user_page;
6036
6037         /* Allow new userspace to detect that bit 0 is deprecated */
6038         userpg->cap_bit0_is_deprecated = 1;
6039         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6040         userpg->data_offset = PAGE_SIZE;
6041         userpg->data_size = perf_data_size(rb);
6042
6043 unlock:
6044         rcu_read_unlock();
6045 }
6046
6047 void __weak arch_perf_update_userpage(
6048         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6049 {
6050 }
6051
6052 /*
6053  * Callers need to ensure there can be no nesting of this function, otherwise
6054  * the seqlock logic goes bad. We can not serialize this because the arch
6055  * code calls this from NMI context.
6056  */
6057 void perf_event_update_userpage(struct perf_event *event)
6058 {
6059         struct perf_event_mmap_page *userpg;
6060         struct perf_buffer *rb;
6061         u64 enabled, running, now;
6062
6063         rcu_read_lock();
6064         rb = rcu_dereference(event->rb);
6065         if (!rb)
6066                 goto unlock;
6067
6068         /*
6069          * compute total_time_enabled, total_time_running
6070          * based on snapshot values taken when the event
6071          * was last scheduled in.
6072          *
6073          * we cannot simply called update_context_time()
6074          * because of locking issue as we can be called in
6075          * NMI context
6076          */
6077         calc_timer_values(event, &now, &enabled, &running);
6078
6079         userpg = rb->user_page;
6080         /*
6081          * Disable preemption to guarantee consistent time stamps are stored to
6082          * the user page.
6083          */
6084         preempt_disable();
6085         ++userpg->lock;
6086         barrier();
6087         userpg->index = perf_event_index(event);
6088         userpg->offset = perf_event_count(event);
6089         if (userpg->index)
6090                 userpg->offset -= local64_read(&event->hw.prev_count);
6091
6092         userpg->time_enabled = enabled +
6093                         atomic64_read(&event->child_total_time_enabled);
6094
6095         userpg->time_running = running +
6096                         atomic64_read(&event->child_total_time_running);
6097
6098         arch_perf_update_userpage(event, userpg, now);
6099
6100         barrier();
6101         ++userpg->lock;
6102         preempt_enable();
6103 unlock:
6104         rcu_read_unlock();
6105 }
6106 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6107
6108 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6109 {
6110         struct perf_event *event = vmf->vma->vm_file->private_data;
6111         struct perf_buffer *rb;
6112         vm_fault_t ret = VM_FAULT_SIGBUS;
6113
6114         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6115                 if (vmf->pgoff == 0)
6116                         ret = 0;
6117                 return ret;
6118         }
6119
6120         rcu_read_lock();
6121         rb = rcu_dereference(event->rb);
6122         if (!rb)
6123                 goto unlock;
6124
6125         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6126                 goto unlock;
6127
6128         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6129         if (!vmf->page)
6130                 goto unlock;
6131
6132         get_page(vmf->page);
6133         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6134         vmf->page->index   = vmf->pgoff;
6135
6136         ret = 0;
6137 unlock:
6138         rcu_read_unlock();
6139
6140         return ret;
6141 }
6142
6143 static void ring_buffer_attach(struct perf_event *event,
6144                                struct perf_buffer *rb)
6145 {
6146         struct perf_buffer *old_rb = NULL;
6147         unsigned long flags;
6148
6149         WARN_ON_ONCE(event->parent);
6150
6151         if (event->rb) {
6152                 /*
6153                  * Should be impossible, we set this when removing
6154                  * event->rb_entry and wait/clear when adding event->rb_entry.
6155                  */
6156                 WARN_ON_ONCE(event->rcu_pending);
6157
6158                 old_rb = event->rb;
6159                 spin_lock_irqsave(&old_rb->event_lock, flags);
6160                 list_del_rcu(&event->rb_entry);
6161                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6162
6163                 event->rcu_batches = get_state_synchronize_rcu();
6164                 event->rcu_pending = 1;
6165         }
6166
6167         if (rb) {
6168                 if (event->rcu_pending) {
6169                         cond_synchronize_rcu(event->rcu_batches);
6170                         event->rcu_pending = 0;
6171                 }
6172
6173                 spin_lock_irqsave(&rb->event_lock, flags);
6174                 list_add_rcu(&event->rb_entry, &rb->event_list);
6175                 spin_unlock_irqrestore(&rb->event_lock, flags);
6176         }
6177
6178         /*
6179          * Avoid racing with perf_mmap_close(AUX): stop the event
6180          * before swizzling the event::rb pointer; if it's getting
6181          * unmapped, its aux_mmap_count will be 0 and it won't
6182          * restart. See the comment in __perf_pmu_output_stop().
6183          *
6184          * Data will inevitably be lost when set_output is done in
6185          * mid-air, but then again, whoever does it like this is
6186          * not in for the data anyway.
6187          */
6188         if (has_aux(event))
6189                 perf_event_stop(event, 0);
6190
6191         rcu_assign_pointer(event->rb, rb);
6192
6193         if (old_rb) {
6194                 ring_buffer_put(old_rb);
6195                 /*
6196                  * Since we detached before setting the new rb, so that we
6197                  * could attach the new rb, we could have missed a wakeup.
6198                  * Provide it now.
6199                  */
6200                 wake_up_all(&event->waitq);
6201         }
6202 }
6203
6204 static void ring_buffer_wakeup(struct perf_event *event)
6205 {
6206         struct perf_buffer *rb;
6207
6208         if (event->parent)
6209                 event = event->parent;
6210
6211         rcu_read_lock();
6212         rb = rcu_dereference(event->rb);
6213         if (rb) {
6214                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6215                         wake_up_all(&event->waitq);
6216         }
6217         rcu_read_unlock();
6218 }
6219
6220 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6221 {
6222         struct perf_buffer *rb;
6223
6224         if (event->parent)
6225                 event = event->parent;
6226
6227         rcu_read_lock();
6228         rb = rcu_dereference(event->rb);
6229         if (rb) {
6230                 if (!refcount_inc_not_zero(&rb->refcount))
6231                         rb = NULL;
6232         }
6233         rcu_read_unlock();
6234
6235         return rb;
6236 }
6237
6238 void ring_buffer_put(struct perf_buffer *rb)
6239 {
6240         if (!refcount_dec_and_test(&rb->refcount))
6241                 return;
6242
6243         WARN_ON_ONCE(!list_empty(&rb->event_list));
6244
6245         call_rcu(&rb->rcu_head, rb_free_rcu);
6246 }
6247
6248 static void perf_mmap_open(struct vm_area_struct *vma)
6249 {
6250         struct perf_event *event = vma->vm_file->private_data;
6251
6252         atomic_inc(&event->mmap_count);
6253         atomic_inc(&event->rb->mmap_count);
6254
6255         if (vma->vm_pgoff)
6256                 atomic_inc(&event->rb->aux_mmap_count);
6257
6258         if (event->pmu->event_mapped)
6259                 event->pmu->event_mapped(event, vma->vm_mm);
6260 }
6261
6262 static void perf_pmu_output_stop(struct perf_event *event);
6263
6264 /*
6265  * A buffer can be mmap()ed multiple times; either directly through the same
6266  * event, or through other events by use of perf_event_set_output().
6267  *
6268  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6269  * the buffer here, where we still have a VM context. This means we need
6270  * to detach all events redirecting to us.
6271  */
6272 static void perf_mmap_close(struct vm_area_struct *vma)
6273 {
6274         struct perf_event *event = vma->vm_file->private_data;
6275         struct perf_buffer *rb = ring_buffer_get(event);
6276         struct user_struct *mmap_user = rb->mmap_user;
6277         int mmap_locked = rb->mmap_locked;
6278         unsigned long size = perf_data_size(rb);
6279         bool detach_rest = false;
6280
6281         if (event->pmu->event_unmapped)
6282                 event->pmu->event_unmapped(event, vma->vm_mm);
6283
6284         /*
6285          * rb->aux_mmap_count will always drop before rb->mmap_count and
6286          * event->mmap_count, so it is ok to use event->mmap_mutex to
6287          * serialize with perf_mmap here.
6288          */
6289         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6290             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6291                 /*
6292                  * Stop all AUX events that are writing to this buffer,
6293                  * so that we can free its AUX pages and corresponding PMU
6294                  * data. Note that after rb::aux_mmap_count dropped to zero,
6295                  * they won't start any more (see perf_aux_output_begin()).
6296                  */
6297                 perf_pmu_output_stop(event);
6298
6299                 /* now it's safe to free the pages */
6300                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6301                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6302
6303                 /* this has to be the last one */
6304                 rb_free_aux(rb);
6305                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6306
6307                 mutex_unlock(&event->mmap_mutex);
6308         }
6309
6310         if (atomic_dec_and_test(&rb->mmap_count))
6311                 detach_rest = true;
6312
6313         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6314                 goto out_put;
6315
6316         ring_buffer_attach(event, NULL);
6317         mutex_unlock(&event->mmap_mutex);
6318
6319         /* If there's still other mmap()s of this buffer, we're done. */
6320         if (!detach_rest)
6321                 goto out_put;
6322
6323         /*
6324          * No other mmap()s, detach from all other events that might redirect
6325          * into the now unreachable buffer. Somewhat complicated by the
6326          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6327          */
6328 again:
6329         rcu_read_lock();
6330         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6331                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6332                         /*
6333                          * This event is en-route to free_event() which will
6334                          * detach it and remove it from the list.
6335                          */
6336                         continue;
6337                 }
6338                 rcu_read_unlock();
6339
6340                 mutex_lock(&event->mmap_mutex);
6341                 /*
6342                  * Check we didn't race with perf_event_set_output() which can
6343                  * swizzle the rb from under us while we were waiting to
6344                  * acquire mmap_mutex.
6345                  *
6346                  * If we find a different rb; ignore this event, a next
6347                  * iteration will no longer find it on the list. We have to
6348                  * still restart the iteration to make sure we're not now
6349                  * iterating the wrong list.
6350                  */
6351                 if (event->rb == rb)
6352                         ring_buffer_attach(event, NULL);
6353
6354                 mutex_unlock(&event->mmap_mutex);
6355                 put_event(event);
6356
6357                 /*
6358                  * Restart the iteration; either we're on the wrong list or
6359                  * destroyed its integrity by doing a deletion.
6360                  */
6361                 goto again;
6362         }
6363         rcu_read_unlock();
6364
6365         /*
6366          * It could be there's still a few 0-ref events on the list; they'll
6367          * get cleaned up by free_event() -- they'll also still have their
6368          * ref on the rb and will free it whenever they are done with it.
6369          *
6370          * Aside from that, this buffer is 'fully' detached and unmapped,
6371          * undo the VM accounting.
6372          */
6373
6374         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6375                         &mmap_user->locked_vm);
6376         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6377         free_uid(mmap_user);
6378
6379 out_put:
6380         ring_buffer_put(rb); /* could be last */
6381 }
6382
6383 static const struct vm_operations_struct perf_mmap_vmops = {
6384         .open           = perf_mmap_open,
6385         .close          = perf_mmap_close, /* non mergeable */
6386         .fault          = perf_mmap_fault,
6387         .page_mkwrite   = perf_mmap_fault,
6388 };
6389
6390 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6391 {
6392         struct perf_event *event = file->private_data;
6393         unsigned long user_locked, user_lock_limit;
6394         struct user_struct *user = current_user();
6395         struct perf_buffer *rb = NULL;
6396         unsigned long locked, lock_limit;
6397         unsigned long vma_size;
6398         unsigned long nr_pages;
6399         long user_extra = 0, extra = 0;
6400         int ret = 0, flags = 0;
6401
6402         /*
6403          * Don't allow mmap() of inherited per-task counters. This would
6404          * create a performance issue due to all children writing to the
6405          * same rb.
6406          */
6407         if (event->cpu == -1 && event->attr.inherit)
6408                 return -EINVAL;
6409
6410         if (!(vma->vm_flags & VM_SHARED))
6411                 return -EINVAL;
6412
6413         ret = security_perf_event_read(event);
6414         if (ret)
6415                 return ret;
6416
6417         vma_size = vma->vm_end - vma->vm_start;
6418
6419         if (vma->vm_pgoff == 0) {
6420                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6421         } else {
6422                 /*
6423                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6424                  * mapped, all subsequent mappings should have the same size
6425                  * and offset. Must be above the normal perf buffer.
6426                  */
6427                 u64 aux_offset, aux_size;
6428
6429                 if (!event->rb)
6430                         return -EINVAL;
6431
6432                 nr_pages = vma_size / PAGE_SIZE;
6433
6434                 mutex_lock(&event->mmap_mutex);
6435                 ret = -EINVAL;
6436
6437                 rb = event->rb;
6438                 if (!rb)
6439                         goto aux_unlock;
6440
6441                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6442                 aux_size = READ_ONCE(rb->user_page->aux_size);
6443
6444                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6445                         goto aux_unlock;
6446
6447                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6448                         goto aux_unlock;
6449
6450                 /* already mapped with a different offset */
6451                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6452                         goto aux_unlock;
6453
6454                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6455                         goto aux_unlock;
6456
6457                 /* already mapped with a different size */
6458                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6459                         goto aux_unlock;
6460
6461                 if (!is_power_of_2(nr_pages))
6462                         goto aux_unlock;
6463
6464                 if (!atomic_inc_not_zero(&rb->mmap_count))
6465                         goto aux_unlock;
6466
6467                 if (rb_has_aux(rb)) {
6468                         atomic_inc(&rb->aux_mmap_count);
6469                         ret = 0;
6470                         goto unlock;
6471                 }
6472
6473                 atomic_set(&rb->aux_mmap_count, 1);
6474                 user_extra = nr_pages;
6475
6476                 goto accounting;
6477         }
6478
6479         /*
6480          * If we have rb pages ensure they're a power-of-two number, so we
6481          * can do bitmasks instead of modulo.
6482          */
6483         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6484                 return -EINVAL;
6485
6486         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6487                 return -EINVAL;
6488
6489         WARN_ON_ONCE(event->ctx->parent_ctx);
6490 again:
6491         mutex_lock(&event->mmap_mutex);
6492         if (event->rb) {
6493                 if (data_page_nr(event->rb) != nr_pages) {
6494                         ret = -EINVAL;
6495                         goto unlock;
6496                 }
6497
6498                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6499                         /*
6500                          * Raced against perf_mmap_close(); remove the
6501                          * event and try again.
6502                          */
6503                         ring_buffer_attach(event, NULL);
6504                         mutex_unlock(&event->mmap_mutex);
6505                         goto again;
6506                 }
6507
6508                 goto unlock;
6509         }
6510
6511         user_extra = nr_pages + 1;
6512
6513 accounting:
6514         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6515
6516         /*
6517          * Increase the limit linearly with more CPUs:
6518          */
6519         user_lock_limit *= num_online_cpus();
6520
6521         user_locked = atomic_long_read(&user->locked_vm);
6522
6523         /*
6524          * sysctl_perf_event_mlock may have changed, so that
6525          *     user->locked_vm > user_lock_limit
6526          */
6527         if (user_locked > user_lock_limit)
6528                 user_locked = user_lock_limit;
6529         user_locked += user_extra;
6530
6531         if (user_locked > user_lock_limit) {
6532                 /*
6533                  * charge locked_vm until it hits user_lock_limit;
6534                  * charge the rest from pinned_vm
6535                  */
6536                 extra = user_locked - user_lock_limit;
6537                 user_extra -= extra;
6538         }
6539
6540         lock_limit = rlimit(RLIMIT_MEMLOCK);
6541         lock_limit >>= PAGE_SHIFT;
6542         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6543
6544         if ((locked > lock_limit) && perf_is_paranoid() &&
6545                 !capable(CAP_IPC_LOCK)) {
6546                 ret = -EPERM;
6547                 goto unlock;
6548         }
6549
6550         WARN_ON(!rb && event->rb);
6551
6552         if (vma->vm_flags & VM_WRITE)
6553                 flags |= RING_BUFFER_WRITABLE;
6554
6555         if (!rb) {
6556                 rb = rb_alloc(nr_pages,
6557                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6558                               event->cpu, flags);
6559
6560                 if (!rb) {
6561                         ret = -ENOMEM;
6562                         goto unlock;
6563                 }
6564
6565                 atomic_set(&rb->mmap_count, 1);
6566                 rb->mmap_user = get_current_user();
6567                 rb->mmap_locked = extra;
6568
6569                 ring_buffer_attach(event, rb);
6570
6571                 perf_event_update_time(event);
6572                 perf_event_init_userpage(event);
6573                 perf_event_update_userpage(event);
6574         } else {
6575                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6576                                    event->attr.aux_watermark, flags);
6577                 if (!ret)
6578                         rb->aux_mmap_locked = extra;
6579         }
6580
6581 unlock:
6582         if (!ret) {
6583                 atomic_long_add(user_extra, &user->locked_vm);
6584                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6585
6586                 atomic_inc(&event->mmap_count);
6587         } else if (rb) {
6588                 atomic_dec(&rb->mmap_count);
6589         }
6590 aux_unlock:
6591         mutex_unlock(&event->mmap_mutex);
6592
6593         /*
6594          * Since pinned accounting is per vm we cannot allow fork() to copy our
6595          * vma.
6596          */
6597         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6598         vma->vm_ops = &perf_mmap_vmops;
6599
6600         if (event->pmu->event_mapped)
6601                 event->pmu->event_mapped(event, vma->vm_mm);
6602
6603         return ret;
6604 }
6605
6606 static int perf_fasync(int fd, struct file *filp, int on)
6607 {
6608         struct inode *inode = file_inode(filp);
6609         struct perf_event *event = filp->private_data;
6610         int retval;
6611
6612         inode_lock(inode);
6613         retval = fasync_helper(fd, filp, on, &event->fasync);
6614         inode_unlock(inode);
6615
6616         if (retval < 0)
6617                 return retval;
6618
6619         return 0;
6620 }
6621
6622 static const struct file_operations perf_fops = {
6623         .llseek                 = no_llseek,
6624         .release                = perf_release,
6625         .read                   = perf_read,
6626         .poll                   = perf_poll,
6627         .unlocked_ioctl         = perf_ioctl,
6628         .compat_ioctl           = perf_compat_ioctl,
6629         .mmap                   = perf_mmap,
6630         .fasync                 = perf_fasync,
6631 };
6632
6633 /*
6634  * Perf event wakeup
6635  *
6636  * If there's data, ensure we set the poll() state and publish everything
6637  * to user-space before waking everybody up.
6638  */
6639
6640 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6641 {
6642         /* only the parent has fasync state */
6643         if (event->parent)
6644                 event = event->parent;
6645         return &event->fasync;
6646 }
6647
6648 void perf_event_wakeup(struct perf_event *event)
6649 {
6650         ring_buffer_wakeup(event);
6651
6652         if (event->pending_kill) {
6653                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6654                 event->pending_kill = 0;
6655         }
6656 }
6657
6658 static void perf_sigtrap(struct perf_event *event)
6659 {
6660         /*
6661          * We'd expect this to only occur if the irq_work is delayed and either
6662          * ctx->task or current has changed in the meantime. This can be the
6663          * case on architectures that do not implement arch_irq_work_raise().
6664          */
6665         if (WARN_ON_ONCE(event->ctx->task != current))
6666                 return;
6667
6668         /*
6669          * Both perf_pending_task() and perf_pending_irq() can race with the
6670          * task exiting.
6671          */
6672         if (current->flags & PF_EXITING)
6673                 return;
6674
6675         send_sig_perf((void __user *)event->pending_addr,
6676                       event->orig_type, event->attr.sig_data);
6677 }
6678
6679 /*
6680  * Deliver the pending work in-event-context or follow the context.
6681  */
6682 static void __perf_pending_irq(struct perf_event *event)
6683 {
6684         int cpu = READ_ONCE(event->oncpu);
6685
6686         /*
6687          * If the event isn't running; we done. event_sched_out() will have
6688          * taken care of things.
6689          */
6690         if (cpu < 0)
6691                 return;
6692
6693         /*
6694          * Yay, we hit home and are in the context of the event.
6695          */
6696         if (cpu == smp_processor_id()) {
6697                 if (event->pending_sigtrap) {
6698                         event->pending_sigtrap = 0;
6699                         perf_sigtrap(event);
6700                         local_dec(&event->ctx->nr_pending);
6701                 }
6702                 if (event->pending_disable) {
6703                         event->pending_disable = 0;
6704                         perf_event_disable_local(event);
6705                 }
6706                 return;
6707         }
6708
6709         /*
6710          *  CPU-A                       CPU-B
6711          *
6712          *  perf_event_disable_inatomic()
6713          *    @pending_disable = CPU-A;
6714          *    irq_work_queue();
6715          *
6716          *  sched-out
6717          *    @pending_disable = -1;
6718          *
6719          *                              sched-in
6720          *                              perf_event_disable_inatomic()
6721          *                                @pending_disable = CPU-B;
6722          *                                irq_work_queue(); // FAILS
6723          *
6724          *  irq_work_run()
6725          *    perf_pending_irq()
6726          *
6727          * But the event runs on CPU-B and wants disabling there.
6728          */
6729         irq_work_queue_on(&event->pending_irq, cpu);
6730 }
6731
6732 static void perf_pending_irq(struct irq_work *entry)
6733 {
6734         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6735         int rctx;
6736
6737         /*
6738          * If we 'fail' here, that's OK, it means recursion is already disabled
6739          * and we won't recurse 'further'.
6740          */
6741         rctx = perf_swevent_get_recursion_context();
6742
6743         /*
6744          * The wakeup isn't bound to the context of the event -- it can happen
6745          * irrespective of where the event is.
6746          */
6747         if (event->pending_wakeup) {
6748                 event->pending_wakeup = 0;
6749                 perf_event_wakeup(event);
6750         }
6751
6752         __perf_pending_irq(event);
6753
6754         if (rctx >= 0)
6755                 perf_swevent_put_recursion_context(rctx);
6756 }
6757
6758 static void perf_pending_task(struct callback_head *head)
6759 {
6760         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6761         int rctx;
6762
6763         /*
6764          * If we 'fail' here, that's OK, it means recursion is already disabled
6765          * and we won't recurse 'further'.
6766          */
6767         preempt_disable_notrace();
6768         rctx = perf_swevent_get_recursion_context();
6769
6770         if (event->pending_work) {
6771                 event->pending_work = 0;
6772                 perf_sigtrap(event);
6773                 local_dec(&event->ctx->nr_pending);
6774         }
6775
6776         if (rctx >= 0)
6777                 perf_swevent_put_recursion_context(rctx);
6778         preempt_enable_notrace();
6779
6780         put_event(event);
6781 }
6782
6783 #ifdef CONFIG_GUEST_PERF_EVENTS
6784 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6785
6786 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6787 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6788 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6789
6790 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6791 {
6792         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6793                 return;
6794
6795         rcu_assign_pointer(perf_guest_cbs, cbs);
6796         static_call_update(__perf_guest_state, cbs->state);
6797         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6798
6799         /* Implementing ->handle_intel_pt_intr is optional. */
6800         if (cbs->handle_intel_pt_intr)
6801                 static_call_update(__perf_guest_handle_intel_pt_intr,
6802                                    cbs->handle_intel_pt_intr);
6803 }
6804 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6805
6806 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6807 {
6808         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6809                 return;
6810
6811         rcu_assign_pointer(perf_guest_cbs, NULL);
6812         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6813         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6814         static_call_update(__perf_guest_handle_intel_pt_intr,
6815                            (void *)&__static_call_return0);
6816         synchronize_rcu();
6817 }
6818 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6819 #endif
6820
6821 static void
6822 perf_output_sample_regs(struct perf_output_handle *handle,
6823                         struct pt_regs *regs, u64 mask)
6824 {
6825         int bit;
6826         DECLARE_BITMAP(_mask, 64);
6827
6828         bitmap_from_u64(_mask, mask);
6829         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6830                 u64 val;
6831
6832                 val = perf_reg_value(regs, bit);
6833                 perf_output_put(handle, val);
6834         }
6835 }
6836
6837 static void perf_sample_regs_user(struct perf_regs *regs_user,
6838                                   struct pt_regs *regs)
6839 {
6840         if (user_mode(regs)) {
6841                 regs_user->abi = perf_reg_abi(current);
6842                 regs_user->regs = regs;
6843         } else if (!(current->flags & PF_KTHREAD)) {
6844                 perf_get_regs_user(regs_user, regs);
6845         } else {
6846                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6847                 regs_user->regs = NULL;
6848         }
6849 }
6850
6851 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6852                                   struct pt_regs *regs)
6853 {
6854         regs_intr->regs = regs;
6855         regs_intr->abi  = perf_reg_abi(current);
6856 }
6857
6858
6859 /*
6860  * Get remaining task size from user stack pointer.
6861  *
6862  * It'd be better to take stack vma map and limit this more
6863  * precisely, but there's no way to get it safely under interrupt,
6864  * so using TASK_SIZE as limit.
6865  */
6866 static u64 perf_ustack_task_size(struct pt_regs *regs)
6867 {
6868         unsigned long addr = perf_user_stack_pointer(regs);
6869
6870         if (!addr || addr >= TASK_SIZE)
6871                 return 0;
6872
6873         return TASK_SIZE - addr;
6874 }
6875
6876 static u16
6877 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6878                         struct pt_regs *regs)
6879 {
6880         u64 task_size;
6881
6882         /* No regs, no stack pointer, no dump. */
6883         if (!regs)
6884                 return 0;
6885
6886         /*
6887          * Check if we fit in with the requested stack size into the:
6888          * - TASK_SIZE
6889          *   If we don't, we limit the size to the TASK_SIZE.
6890          *
6891          * - remaining sample size
6892          *   If we don't, we customize the stack size to
6893          *   fit in to the remaining sample size.
6894          */
6895
6896         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6897         stack_size = min(stack_size, (u16) task_size);
6898
6899         /* Current header size plus static size and dynamic size. */
6900         header_size += 2 * sizeof(u64);
6901
6902         /* Do we fit in with the current stack dump size? */
6903         if ((u16) (header_size + stack_size) < header_size) {
6904                 /*
6905                  * If we overflow the maximum size for the sample,
6906                  * we customize the stack dump size to fit in.
6907                  */
6908                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6909                 stack_size = round_up(stack_size, sizeof(u64));
6910         }
6911
6912         return stack_size;
6913 }
6914
6915 static void
6916 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6917                           struct pt_regs *regs)
6918 {
6919         /* Case of a kernel thread, nothing to dump */
6920         if (!regs) {
6921                 u64 size = 0;
6922                 perf_output_put(handle, size);
6923         } else {
6924                 unsigned long sp;
6925                 unsigned int rem;
6926                 u64 dyn_size;
6927
6928                 /*
6929                  * We dump:
6930                  * static size
6931                  *   - the size requested by user or the best one we can fit
6932                  *     in to the sample max size
6933                  * data
6934                  *   - user stack dump data
6935                  * dynamic size
6936                  *   - the actual dumped size
6937                  */
6938
6939                 /* Static size. */
6940                 perf_output_put(handle, dump_size);
6941
6942                 /* Data. */
6943                 sp = perf_user_stack_pointer(regs);
6944                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6945                 dyn_size = dump_size - rem;
6946
6947                 perf_output_skip(handle, rem);
6948
6949                 /* Dynamic size. */
6950                 perf_output_put(handle, dyn_size);
6951         }
6952 }
6953
6954 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6955                                           struct perf_sample_data *data,
6956                                           size_t size)
6957 {
6958         struct perf_event *sampler = event->aux_event;
6959         struct perf_buffer *rb;
6960
6961         data->aux_size = 0;
6962
6963         if (!sampler)
6964                 goto out;
6965
6966         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6967                 goto out;
6968
6969         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6970                 goto out;
6971
6972         rb = ring_buffer_get(sampler);
6973         if (!rb)
6974                 goto out;
6975
6976         /*
6977          * If this is an NMI hit inside sampling code, don't take
6978          * the sample. See also perf_aux_sample_output().
6979          */
6980         if (READ_ONCE(rb->aux_in_sampling)) {
6981                 data->aux_size = 0;
6982         } else {
6983                 size = min_t(size_t, size, perf_aux_size(rb));
6984                 data->aux_size = ALIGN(size, sizeof(u64));
6985         }
6986         ring_buffer_put(rb);
6987
6988 out:
6989         return data->aux_size;
6990 }
6991
6992 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6993                                  struct perf_event *event,
6994                                  struct perf_output_handle *handle,
6995                                  unsigned long size)
6996 {
6997         unsigned long flags;
6998         long ret;
6999
7000         /*
7001          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7002          * paths. If we start calling them in NMI context, they may race with
7003          * the IRQ ones, that is, for example, re-starting an event that's just
7004          * been stopped, which is why we're using a separate callback that
7005          * doesn't change the event state.
7006          *
7007          * IRQs need to be disabled to prevent IPIs from racing with us.
7008          */
7009         local_irq_save(flags);
7010         /*
7011          * Guard against NMI hits inside the critical section;
7012          * see also perf_prepare_sample_aux().
7013          */
7014         WRITE_ONCE(rb->aux_in_sampling, 1);
7015         barrier();
7016
7017         ret = event->pmu->snapshot_aux(event, handle, size);
7018
7019         barrier();
7020         WRITE_ONCE(rb->aux_in_sampling, 0);
7021         local_irq_restore(flags);
7022
7023         return ret;
7024 }
7025
7026 static void perf_aux_sample_output(struct perf_event *event,
7027                                    struct perf_output_handle *handle,
7028                                    struct perf_sample_data *data)
7029 {
7030         struct perf_event *sampler = event->aux_event;
7031         struct perf_buffer *rb;
7032         unsigned long pad;
7033         long size;
7034
7035         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7036                 return;
7037
7038         rb = ring_buffer_get(sampler);
7039         if (!rb)
7040                 return;
7041
7042         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7043
7044         /*
7045          * An error here means that perf_output_copy() failed (returned a
7046          * non-zero surplus that it didn't copy), which in its current
7047          * enlightened implementation is not possible. If that changes, we'd
7048          * like to know.
7049          */
7050         if (WARN_ON_ONCE(size < 0))
7051                 goto out_put;
7052
7053         /*
7054          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7055          * perf_prepare_sample_aux(), so should not be more than that.
7056          */
7057         pad = data->aux_size - size;
7058         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7059                 pad = 8;
7060
7061         if (pad) {
7062                 u64 zero = 0;
7063                 perf_output_copy(handle, &zero, pad);
7064         }
7065
7066 out_put:
7067         ring_buffer_put(rb);
7068 }
7069
7070 /*
7071  * A set of common sample data types saved even for non-sample records
7072  * when event->attr.sample_id_all is set.
7073  */
7074 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7075                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7076                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7077
7078 static void __perf_event_header__init_id(struct perf_sample_data *data,
7079                                          struct perf_event *event,
7080                                          u64 sample_type)
7081 {
7082         data->type = event->attr.sample_type;
7083         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7084
7085         if (sample_type & PERF_SAMPLE_TID) {
7086                 /* namespace issues */
7087                 data->tid_entry.pid = perf_event_pid(event, current);
7088                 data->tid_entry.tid = perf_event_tid(event, current);
7089         }
7090
7091         if (sample_type & PERF_SAMPLE_TIME)
7092                 data->time = perf_event_clock(event);
7093
7094         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7095                 data->id = primary_event_id(event);
7096
7097         if (sample_type & PERF_SAMPLE_STREAM_ID)
7098                 data->stream_id = event->id;
7099
7100         if (sample_type & PERF_SAMPLE_CPU) {
7101                 data->cpu_entry.cpu      = raw_smp_processor_id();
7102                 data->cpu_entry.reserved = 0;
7103         }
7104 }
7105
7106 void perf_event_header__init_id(struct perf_event_header *header,
7107                                 struct perf_sample_data *data,
7108                                 struct perf_event *event)
7109 {
7110         if (event->attr.sample_id_all) {
7111                 header->size += event->id_header_size;
7112                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7113         }
7114 }
7115
7116 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7117                                            struct perf_sample_data *data)
7118 {
7119         u64 sample_type = data->type;
7120
7121         if (sample_type & PERF_SAMPLE_TID)
7122                 perf_output_put(handle, data->tid_entry);
7123
7124         if (sample_type & PERF_SAMPLE_TIME)
7125                 perf_output_put(handle, data->time);
7126
7127         if (sample_type & PERF_SAMPLE_ID)
7128                 perf_output_put(handle, data->id);
7129
7130         if (sample_type & PERF_SAMPLE_STREAM_ID)
7131                 perf_output_put(handle, data->stream_id);
7132
7133         if (sample_type & PERF_SAMPLE_CPU)
7134                 perf_output_put(handle, data->cpu_entry);
7135
7136         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7137                 perf_output_put(handle, data->id);
7138 }
7139
7140 void perf_event__output_id_sample(struct perf_event *event,
7141                                   struct perf_output_handle *handle,
7142                                   struct perf_sample_data *sample)
7143 {
7144         if (event->attr.sample_id_all)
7145                 __perf_event__output_id_sample(handle, sample);
7146 }
7147
7148 static void perf_output_read_one(struct perf_output_handle *handle,
7149                                  struct perf_event *event,
7150                                  u64 enabled, u64 running)
7151 {
7152         u64 read_format = event->attr.read_format;
7153         u64 values[5];
7154         int n = 0;
7155
7156         values[n++] = perf_event_count(event);
7157         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7158                 values[n++] = enabled +
7159                         atomic64_read(&event->child_total_time_enabled);
7160         }
7161         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7162                 values[n++] = running +
7163                         atomic64_read(&event->child_total_time_running);
7164         }
7165         if (read_format & PERF_FORMAT_ID)
7166                 values[n++] = primary_event_id(event);
7167         if (read_format & PERF_FORMAT_LOST)
7168                 values[n++] = atomic64_read(&event->lost_samples);
7169
7170         __output_copy(handle, values, n * sizeof(u64));
7171 }
7172
7173 static void perf_output_read_group(struct perf_output_handle *handle,
7174                             struct perf_event *event,
7175                             u64 enabled, u64 running)
7176 {
7177         struct perf_event *leader = event->group_leader, *sub;
7178         u64 read_format = event->attr.read_format;
7179         unsigned long flags;
7180         u64 values[6];
7181         int n = 0;
7182
7183         /*
7184          * Disabling interrupts avoids all counter scheduling
7185          * (context switches, timer based rotation and IPIs).
7186          */
7187         local_irq_save(flags);
7188
7189         values[n++] = 1 + leader->nr_siblings;
7190
7191         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7192                 values[n++] = enabled;
7193
7194         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7195                 values[n++] = running;
7196
7197         if ((leader != event) &&
7198             (leader->state == PERF_EVENT_STATE_ACTIVE))
7199                 leader->pmu->read(leader);
7200
7201         values[n++] = perf_event_count(leader);
7202         if (read_format & PERF_FORMAT_ID)
7203                 values[n++] = primary_event_id(leader);
7204         if (read_format & PERF_FORMAT_LOST)
7205                 values[n++] = atomic64_read(&leader->lost_samples);
7206
7207         __output_copy(handle, values, n * sizeof(u64));
7208
7209         for_each_sibling_event(sub, leader) {
7210                 n = 0;
7211
7212                 if ((sub != event) &&
7213                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7214                         sub->pmu->read(sub);
7215
7216                 values[n++] = perf_event_count(sub);
7217                 if (read_format & PERF_FORMAT_ID)
7218                         values[n++] = primary_event_id(sub);
7219                 if (read_format & PERF_FORMAT_LOST)
7220                         values[n++] = atomic64_read(&sub->lost_samples);
7221
7222                 __output_copy(handle, values, n * sizeof(u64));
7223         }
7224
7225         local_irq_restore(flags);
7226 }
7227
7228 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7229                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7230
7231 /*
7232  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7233  *
7234  * The problem is that its both hard and excessively expensive to iterate the
7235  * child list, not to mention that its impossible to IPI the children running
7236  * on another CPU, from interrupt/NMI context.
7237  */
7238 static void perf_output_read(struct perf_output_handle *handle,
7239                              struct perf_event *event)
7240 {
7241         u64 enabled = 0, running = 0, now;
7242         u64 read_format = event->attr.read_format;
7243
7244         /*
7245          * compute total_time_enabled, total_time_running
7246          * based on snapshot values taken when the event
7247          * was last scheduled in.
7248          *
7249          * we cannot simply called update_context_time()
7250          * because of locking issue as we are called in
7251          * NMI context
7252          */
7253         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7254                 calc_timer_values(event, &now, &enabled, &running);
7255
7256         if (event->attr.read_format & PERF_FORMAT_GROUP)
7257                 perf_output_read_group(handle, event, enabled, running);
7258         else
7259                 perf_output_read_one(handle, event, enabled, running);
7260 }
7261
7262 void perf_output_sample(struct perf_output_handle *handle,
7263                         struct perf_event_header *header,
7264                         struct perf_sample_data *data,
7265                         struct perf_event *event)
7266 {
7267         u64 sample_type = data->type;
7268
7269         perf_output_put(handle, *header);
7270
7271         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7272                 perf_output_put(handle, data->id);
7273
7274         if (sample_type & PERF_SAMPLE_IP)
7275                 perf_output_put(handle, data->ip);
7276
7277         if (sample_type & PERF_SAMPLE_TID)
7278                 perf_output_put(handle, data->tid_entry);
7279
7280         if (sample_type & PERF_SAMPLE_TIME)
7281                 perf_output_put(handle, data->time);
7282
7283         if (sample_type & PERF_SAMPLE_ADDR)
7284                 perf_output_put(handle, data->addr);
7285
7286         if (sample_type & PERF_SAMPLE_ID)
7287                 perf_output_put(handle, data->id);
7288
7289         if (sample_type & PERF_SAMPLE_STREAM_ID)
7290                 perf_output_put(handle, data->stream_id);
7291
7292         if (sample_type & PERF_SAMPLE_CPU)
7293                 perf_output_put(handle, data->cpu_entry);
7294
7295         if (sample_type & PERF_SAMPLE_PERIOD)
7296                 perf_output_put(handle, data->period);
7297
7298         if (sample_type & PERF_SAMPLE_READ)
7299                 perf_output_read(handle, event);
7300
7301         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7302                 int size = 1;
7303
7304                 size += data->callchain->nr;
7305                 size *= sizeof(u64);
7306                 __output_copy(handle, data->callchain, size);
7307         }
7308
7309         if (sample_type & PERF_SAMPLE_RAW) {
7310                 struct perf_raw_record *raw = data->raw;
7311
7312                 if (raw) {
7313                         struct perf_raw_frag *frag = &raw->frag;
7314
7315                         perf_output_put(handle, raw->size);
7316                         do {
7317                                 if (frag->copy) {
7318                                         __output_custom(handle, frag->copy,
7319                                                         frag->data, frag->size);
7320                                 } else {
7321                                         __output_copy(handle, frag->data,
7322                                                       frag->size);
7323                                 }
7324                                 if (perf_raw_frag_last(frag))
7325                                         break;
7326                                 frag = frag->next;
7327                         } while (1);
7328                         if (frag->pad)
7329                                 __output_skip(handle, NULL, frag->pad);
7330                 } else {
7331                         struct {
7332                                 u32     size;
7333                                 u32     data;
7334                         } raw = {
7335                                 .size = sizeof(u32),
7336                                 .data = 0,
7337                         };
7338                         perf_output_put(handle, raw);
7339                 }
7340         }
7341
7342         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7343                 if (data->br_stack) {
7344                         size_t size;
7345
7346                         size = data->br_stack->nr
7347                              * sizeof(struct perf_branch_entry);
7348
7349                         perf_output_put(handle, data->br_stack->nr);
7350                         if (branch_sample_hw_index(event))
7351                                 perf_output_put(handle, data->br_stack->hw_idx);
7352                         perf_output_copy(handle, data->br_stack->entries, size);
7353                 } else {
7354                         /*
7355                          * we always store at least the value of nr
7356                          */
7357                         u64 nr = 0;
7358                         perf_output_put(handle, nr);
7359                 }
7360         }
7361
7362         if (sample_type & PERF_SAMPLE_REGS_USER) {
7363                 u64 abi = data->regs_user.abi;
7364
7365                 /*
7366                  * If there are no regs to dump, notice it through
7367                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7368                  */
7369                 perf_output_put(handle, abi);
7370
7371                 if (abi) {
7372                         u64 mask = event->attr.sample_regs_user;
7373                         perf_output_sample_regs(handle,
7374                                                 data->regs_user.regs,
7375                                                 mask);
7376                 }
7377         }
7378
7379         if (sample_type & PERF_SAMPLE_STACK_USER) {
7380                 perf_output_sample_ustack(handle,
7381                                           data->stack_user_size,
7382                                           data->regs_user.regs);
7383         }
7384
7385         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7386                 perf_output_put(handle, data->weight.full);
7387
7388         if (sample_type & PERF_SAMPLE_DATA_SRC)
7389                 perf_output_put(handle, data->data_src.val);
7390
7391         if (sample_type & PERF_SAMPLE_TRANSACTION)
7392                 perf_output_put(handle, data->txn);
7393
7394         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7395                 u64 abi = data->regs_intr.abi;
7396                 /*
7397                  * If there are no regs to dump, notice it through
7398                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7399                  */
7400                 perf_output_put(handle, abi);
7401
7402                 if (abi) {
7403                         u64 mask = event->attr.sample_regs_intr;
7404
7405                         perf_output_sample_regs(handle,
7406                                                 data->regs_intr.regs,
7407                                                 mask);
7408                 }
7409         }
7410
7411         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7412                 perf_output_put(handle, data->phys_addr);
7413
7414         if (sample_type & PERF_SAMPLE_CGROUP)
7415                 perf_output_put(handle, data->cgroup);
7416
7417         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7418                 perf_output_put(handle, data->data_page_size);
7419
7420         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7421                 perf_output_put(handle, data->code_page_size);
7422
7423         if (sample_type & PERF_SAMPLE_AUX) {
7424                 perf_output_put(handle, data->aux_size);
7425
7426                 if (data->aux_size)
7427                         perf_aux_sample_output(event, handle, data);
7428         }
7429
7430         if (!event->attr.watermark) {
7431                 int wakeup_events = event->attr.wakeup_events;
7432
7433                 if (wakeup_events) {
7434                         struct perf_buffer *rb = handle->rb;
7435                         int events = local_inc_return(&rb->events);
7436
7437                         if (events >= wakeup_events) {
7438                                 local_sub(wakeup_events, &rb->events);
7439                                 local_inc(&rb->wakeup);
7440                         }
7441                 }
7442         }
7443 }
7444
7445 static u64 perf_virt_to_phys(u64 virt)
7446 {
7447         u64 phys_addr = 0;
7448
7449         if (!virt)
7450                 return 0;
7451
7452         if (virt >= TASK_SIZE) {
7453                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7454                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7455                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7456                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7457         } else {
7458                 /*
7459                  * Walking the pages tables for user address.
7460                  * Interrupts are disabled, so it prevents any tear down
7461                  * of the page tables.
7462                  * Try IRQ-safe get_user_page_fast_only first.
7463                  * If failed, leave phys_addr as 0.
7464                  */
7465                 if (current->mm != NULL) {
7466                         struct page *p;
7467
7468                         pagefault_disable();
7469                         if (get_user_page_fast_only(virt, 0, &p)) {
7470                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7471                                 put_page(p);
7472                         }
7473                         pagefault_enable();
7474                 }
7475         }
7476
7477         return phys_addr;
7478 }
7479
7480 /*
7481  * Return the pagetable size of a given virtual address.
7482  */
7483 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7484 {
7485         u64 size = 0;
7486
7487 #ifdef CONFIG_HAVE_FAST_GUP
7488         pgd_t *pgdp, pgd;
7489         p4d_t *p4dp, p4d;
7490         pud_t *pudp, pud;
7491         pmd_t *pmdp, pmd;
7492         pte_t *ptep, pte;
7493
7494         pgdp = pgd_offset(mm, addr);
7495         pgd = READ_ONCE(*pgdp);
7496         if (pgd_none(pgd))
7497                 return 0;
7498
7499         if (pgd_leaf(pgd))
7500                 return pgd_leaf_size(pgd);
7501
7502         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7503         p4d = READ_ONCE(*p4dp);
7504         if (!p4d_present(p4d))
7505                 return 0;
7506
7507         if (p4d_leaf(p4d))
7508                 return p4d_leaf_size(p4d);
7509
7510         pudp = pud_offset_lockless(p4dp, p4d, addr);
7511         pud = READ_ONCE(*pudp);
7512         if (!pud_present(pud))
7513                 return 0;
7514
7515         if (pud_leaf(pud))
7516                 return pud_leaf_size(pud);
7517
7518         pmdp = pmd_offset_lockless(pudp, pud, addr);
7519 again:
7520         pmd = pmdp_get_lockless(pmdp);
7521         if (!pmd_present(pmd))
7522                 return 0;
7523
7524         if (pmd_leaf(pmd))
7525                 return pmd_leaf_size(pmd);
7526
7527         ptep = pte_offset_map(&pmd, addr);
7528         if (!ptep)
7529                 goto again;
7530
7531         pte = ptep_get_lockless(ptep);
7532         if (pte_present(pte))
7533                 size = pte_leaf_size(pte);
7534         pte_unmap(ptep);
7535 #endif /* CONFIG_HAVE_FAST_GUP */
7536
7537         return size;
7538 }
7539
7540 static u64 perf_get_page_size(unsigned long addr)
7541 {
7542         struct mm_struct *mm;
7543         unsigned long flags;
7544         u64 size;
7545
7546         if (!addr)
7547                 return 0;
7548
7549         /*
7550          * Software page-table walkers must disable IRQs,
7551          * which prevents any tear down of the page tables.
7552          */
7553         local_irq_save(flags);
7554
7555         mm = current->mm;
7556         if (!mm) {
7557                 /*
7558                  * For kernel threads and the like, use init_mm so that
7559                  * we can find kernel memory.
7560                  */
7561                 mm = &init_mm;
7562         }
7563
7564         size = perf_get_pgtable_size(mm, addr);
7565
7566         local_irq_restore(flags);
7567
7568         return size;
7569 }
7570
7571 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7572
7573 struct perf_callchain_entry *
7574 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7575 {
7576         bool kernel = !event->attr.exclude_callchain_kernel;
7577         bool user   = !event->attr.exclude_callchain_user;
7578         /* Disallow cross-task user callchains. */
7579         bool crosstask = event->ctx->task && event->ctx->task != current;
7580         const u32 max_stack = event->attr.sample_max_stack;
7581         struct perf_callchain_entry *callchain;
7582
7583         if (!kernel && !user)
7584                 return &__empty_callchain;
7585
7586         callchain = get_perf_callchain(regs, 0, kernel, user,
7587                                        max_stack, crosstask, true);
7588         return callchain ?: &__empty_callchain;
7589 }
7590
7591 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7592 {
7593         return d * !!(flags & s);
7594 }
7595
7596 void perf_prepare_sample(struct perf_sample_data *data,
7597                          struct perf_event *event,
7598                          struct pt_regs *regs)
7599 {
7600         u64 sample_type = event->attr.sample_type;
7601         u64 filtered_sample_type;
7602
7603         /*
7604          * Add the sample flags that are dependent to others.  And clear the
7605          * sample flags that have already been done by the PMU driver.
7606          */
7607         filtered_sample_type = sample_type;
7608         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7609                                            PERF_SAMPLE_IP);
7610         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7611                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7612         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7613                                            PERF_SAMPLE_REGS_USER);
7614         filtered_sample_type &= ~data->sample_flags;
7615
7616         if (filtered_sample_type == 0) {
7617                 /* Make sure it has the correct data->type for output */
7618                 data->type = event->attr.sample_type;
7619                 return;
7620         }
7621
7622         __perf_event_header__init_id(data, event, filtered_sample_type);
7623
7624         if (filtered_sample_type & PERF_SAMPLE_IP) {
7625                 data->ip = perf_instruction_pointer(regs);
7626                 data->sample_flags |= PERF_SAMPLE_IP;
7627         }
7628
7629         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7630                 perf_sample_save_callchain(data, event, regs);
7631
7632         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7633                 data->raw = NULL;
7634                 data->dyn_size += sizeof(u64);
7635                 data->sample_flags |= PERF_SAMPLE_RAW;
7636         }
7637
7638         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7639                 data->br_stack = NULL;
7640                 data->dyn_size += sizeof(u64);
7641                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7642         }
7643
7644         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7645                 perf_sample_regs_user(&data->regs_user, regs);
7646
7647         /*
7648          * It cannot use the filtered_sample_type here as REGS_USER can be set
7649          * by STACK_USER (using __cond_set() above) and we don't want to update
7650          * the dyn_size if it's not requested by users.
7651          */
7652         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7653                 /* regs dump ABI info */
7654                 int size = sizeof(u64);
7655
7656                 if (data->regs_user.regs) {
7657                         u64 mask = event->attr.sample_regs_user;
7658                         size += hweight64(mask) * sizeof(u64);
7659                 }
7660
7661                 data->dyn_size += size;
7662                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7663         }
7664
7665         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7666                 /*
7667                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7668                  * processed as the last one or have additional check added
7669                  * in case new sample type is added, because we could eat
7670                  * up the rest of the sample size.
7671                  */
7672                 u16 stack_size = event->attr.sample_stack_user;
7673                 u16 header_size = perf_sample_data_size(data, event);
7674                 u16 size = sizeof(u64);
7675
7676                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7677                                                      data->regs_user.regs);
7678
7679                 /*
7680                  * If there is something to dump, add space for the dump
7681                  * itself and for the field that tells the dynamic size,
7682                  * which is how many have been actually dumped.
7683                  */
7684                 if (stack_size)
7685                         size += sizeof(u64) + stack_size;
7686
7687                 data->stack_user_size = stack_size;
7688                 data->dyn_size += size;
7689                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7690         }
7691
7692         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7693                 data->weight.full = 0;
7694                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7695         }
7696
7697         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7698                 data->data_src.val = PERF_MEM_NA;
7699                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7700         }
7701
7702         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7703                 data->txn = 0;
7704                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7705         }
7706
7707         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7708                 data->addr = 0;
7709                 data->sample_flags |= PERF_SAMPLE_ADDR;
7710         }
7711
7712         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7713                 /* regs dump ABI info */
7714                 int size = sizeof(u64);
7715
7716                 perf_sample_regs_intr(&data->regs_intr, regs);
7717
7718                 if (data->regs_intr.regs) {
7719                         u64 mask = event->attr.sample_regs_intr;
7720
7721                         size += hweight64(mask) * sizeof(u64);
7722                 }
7723
7724                 data->dyn_size += size;
7725                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7726         }
7727
7728         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7729                 data->phys_addr = perf_virt_to_phys(data->addr);
7730                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7731         }
7732
7733 #ifdef CONFIG_CGROUP_PERF
7734         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7735                 struct cgroup *cgrp;
7736
7737                 /* protected by RCU */
7738                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7739                 data->cgroup = cgroup_id(cgrp);
7740                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7741         }
7742 #endif
7743
7744         /*
7745          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7746          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7747          * but the value will not dump to the userspace.
7748          */
7749         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7750                 data->data_page_size = perf_get_page_size(data->addr);
7751                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7752         }
7753
7754         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7755                 data->code_page_size = perf_get_page_size(data->ip);
7756                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7757         }
7758
7759         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7760                 u64 size;
7761                 u16 header_size = perf_sample_data_size(data, event);
7762
7763                 header_size += sizeof(u64); /* size */
7764
7765                 /*
7766                  * Given the 16bit nature of header::size, an AUX sample can
7767                  * easily overflow it, what with all the preceding sample bits.
7768                  * Make sure this doesn't happen by using up to U16_MAX bytes
7769                  * per sample in total (rounded down to 8 byte boundary).
7770                  */
7771                 size = min_t(size_t, U16_MAX - header_size,
7772                              event->attr.aux_sample_size);
7773                 size = rounddown(size, 8);
7774                 size = perf_prepare_sample_aux(event, data, size);
7775
7776                 WARN_ON_ONCE(size + header_size > U16_MAX);
7777                 data->dyn_size += size + sizeof(u64); /* size above */
7778                 data->sample_flags |= PERF_SAMPLE_AUX;
7779         }
7780 }
7781
7782 void perf_prepare_header(struct perf_event_header *header,
7783                          struct perf_sample_data *data,
7784                          struct perf_event *event,
7785                          struct pt_regs *regs)
7786 {
7787         header->type = PERF_RECORD_SAMPLE;
7788         header->size = perf_sample_data_size(data, event);
7789         header->misc = perf_misc_flags(regs);
7790
7791         /*
7792          * If you're adding more sample types here, you likely need to do
7793          * something about the overflowing header::size, like repurpose the
7794          * lowest 3 bits of size, which should be always zero at the moment.
7795          * This raises a more important question, do we really need 512k sized
7796          * samples and why, so good argumentation is in order for whatever you
7797          * do here next.
7798          */
7799         WARN_ON_ONCE(header->size & 7);
7800 }
7801
7802 static __always_inline int
7803 __perf_event_output(struct perf_event *event,
7804                     struct perf_sample_data *data,
7805                     struct pt_regs *regs,
7806                     int (*output_begin)(struct perf_output_handle *,
7807                                         struct perf_sample_data *,
7808                                         struct perf_event *,
7809                                         unsigned int))
7810 {
7811         struct perf_output_handle handle;
7812         struct perf_event_header header;
7813         int err;
7814
7815         /* protect the callchain buffers */
7816         rcu_read_lock();
7817
7818         perf_prepare_sample(data, event, regs);
7819         perf_prepare_header(&header, data, event, regs);
7820
7821         err = output_begin(&handle, data, event, header.size);
7822         if (err)
7823                 goto exit;
7824
7825         perf_output_sample(&handle, &header, data, event);
7826
7827         perf_output_end(&handle);
7828
7829 exit:
7830         rcu_read_unlock();
7831         return err;
7832 }
7833
7834 void
7835 perf_event_output_forward(struct perf_event *event,
7836                          struct perf_sample_data *data,
7837                          struct pt_regs *regs)
7838 {
7839         __perf_event_output(event, data, regs, perf_output_begin_forward);
7840 }
7841
7842 void
7843 perf_event_output_backward(struct perf_event *event,
7844                            struct perf_sample_data *data,
7845                            struct pt_regs *regs)
7846 {
7847         __perf_event_output(event, data, regs, perf_output_begin_backward);
7848 }
7849
7850 int
7851 perf_event_output(struct perf_event *event,
7852                   struct perf_sample_data *data,
7853                   struct pt_regs *regs)
7854 {
7855         return __perf_event_output(event, data, regs, perf_output_begin);
7856 }
7857
7858 /*
7859  * read event_id
7860  */
7861
7862 struct perf_read_event {
7863         struct perf_event_header        header;
7864
7865         u32                             pid;
7866         u32                             tid;
7867 };
7868
7869 static void
7870 perf_event_read_event(struct perf_event *event,
7871                         struct task_struct *task)
7872 {
7873         struct perf_output_handle handle;
7874         struct perf_sample_data sample;
7875         struct perf_read_event read_event = {
7876                 .header = {
7877                         .type = PERF_RECORD_READ,
7878                         .misc = 0,
7879                         .size = sizeof(read_event) + event->read_size,
7880                 },
7881                 .pid = perf_event_pid(event, task),
7882                 .tid = perf_event_tid(event, task),
7883         };
7884         int ret;
7885
7886         perf_event_header__init_id(&read_event.header, &sample, event);
7887         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7888         if (ret)
7889                 return;
7890
7891         perf_output_put(&handle, read_event);
7892         perf_output_read(&handle, event);
7893         perf_event__output_id_sample(event, &handle, &sample);
7894
7895         perf_output_end(&handle);
7896 }
7897
7898 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7899
7900 static void
7901 perf_iterate_ctx(struct perf_event_context *ctx,
7902                    perf_iterate_f output,
7903                    void *data, bool all)
7904 {
7905         struct perf_event *event;
7906
7907         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7908                 if (!all) {
7909                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7910                                 continue;
7911                         if (!event_filter_match(event))
7912                                 continue;
7913                 }
7914
7915                 output(event, data);
7916         }
7917 }
7918
7919 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7920 {
7921         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7922         struct perf_event *event;
7923
7924         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7925                 /*
7926                  * Skip events that are not fully formed yet; ensure that
7927                  * if we observe event->ctx, both event and ctx will be
7928                  * complete enough. See perf_install_in_context().
7929                  */
7930                 if (!smp_load_acquire(&event->ctx))
7931                         continue;
7932
7933                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7934                         continue;
7935                 if (!event_filter_match(event))
7936                         continue;
7937                 output(event, data);
7938         }
7939 }
7940
7941 /*
7942  * Iterate all events that need to receive side-band events.
7943  *
7944  * For new callers; ensure that account_pmu_sb_event() includes
7945  * your event, otherwise it might not get delivered.
7946  */
7947 static void
7948 perf_iterate_sb(perf_iterate_f output, void *data,
7949                struct perf_event_context *task_ctx)
7950 {
7951         struct perf_event_context *ctx;
7952
7953         rcu_read_lock();
7954         preempt_disable();
7955
7956         /*
7957          * If we have task_ctx != NULL we only notify the task context itself.
7958          * The task_ctx is set only for EXIT events before releasing task
7959          * context.
7960          */
7961         if (task_ctx) {
7962                 perf_iterate_ctx(task_ctx, output, data, false);
7963                 goto done;
7964         }
7965
7966         perf_iterate_sb_cpu(output, data);
7967
7968         ctx = rcu_dereference(current->perf_event_ctxp);
7969         if (ctx)
7970                 perf_iterate_ctx(ctx, output, data, false);
7971 done:
7972         preempt_enable();
7973         rcu_read_unlock();
7974 }
7975
7976 /*
7977  * Clear all file-based filters at exec, they'll have to be
7978  * re-instated when/if these objects are mmapped again.
7979  */
7980 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7981 {
7982         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7983         struct perf_addr_filter *filter;
7984         unsigned int restart = 0, count = 0;
7985         unsigned long flags;
7986
7987         if (!has_addr_filter(event))
7988                 return;
7989
7990         raw_spin_lock_irqsave(&ifh->lock, flags);
7991         list_for_each_entry(filter, &ifh->list, entry) {
7992                 if (filter->path.dentry) {
7993                         event->addr_filter_ranges[count].start = 0;
7994                         event->addr_filter_ranges[count].size = 0;
7995                         restart++;
7996                 }
7997
7998                 count++;
7999         }
8000
8001         if (restart)
8002                 event->addr_filters_gen++;
8003         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8004
8005         if (restart)
8006                 perf_event_stop(event, 1);
8007 }
8008
8009 void perf_event_exec(void)
8010 {
8011         struct perf_event_context *ctx;
8012
8013         ctx = perf_pin_task_context(current);
8014         if (!ctx)
8015                 return;
8016
8017         perf_event_enable_on_exec(ctx);
8018         perf_event_remove_on_exec(ctx);
8019         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8020
8021         perf_unpin_context(ctx);
8022         put_ctx(ctx);
8023 }
8024
8025 struct remote_output {
8026         struct perf_buffer      *rb;
8027         int                     err;
8028 };
8029
8030 static void __perf_event_output_stop(struct perf_event *event, void *data)
8031 {
8032         struct perf_event *parent = event->parent;
8033         struct remote_output *ro = data;
8034         struct perf_buffer *rb = ro->rb;
8035         struct stop_event_data sd = {
8036                 .event  = event,
8037         };
8038
8039         if (!has_aux(event))
8040                 return;
8041
8042         if (!parent)
8043                 parent = event;
8044
8045         /*
8046          * In case of inheritance, it will be the parent that links to the
8047          * ring-buffer, but it will be the child that's actually using it.
8048          *
8049          * We are using event::rb to determine if the event should be stopped,
8050          * however this may race with ring_buffer_attach() (through set_output),
8051          * which will make us skip the event that actually needs to be stopped.
8052          * So ring_buffer_attach() has to stop an aux event before re-assigning
8053          * its rb pointer.
8054          */
8055         if (rcu_dereference(parent->rb) == rb)
8056                 ro->err = __perf_event_stop(&sd);
8057 }
8058
8059 static int __perf_pmu_output_stop(void *info)
8060 {
8061         struct perf_event *event = info;
8062         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8063         struct remote_output ro = {
8064                 .rb     = event->rb,
8065         };
8066
8067         rcu_read_lock();
8068         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8069         if (cpuctx->task_ctx)
8070                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8071                                    &ro, false);
8072         rcu_read_unlock();
8073
8074         return ro.err;
8075 }
8076
8077 static void perf_pmu_output_stop(struct perf_event *event)
8078 {
8079         struct perf_event *iter;
8080         int err, cpu;
8081
8082 restart:
8083         rcu_read_lock();
8084         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8085                 /*
8086                  * For per-CPU events, we need to make sure that neither they
8087                  * nor their children are running; for cpu==-1 events it's
8088                  * sufficient to stop the event itself if it's active, since
8089                  * it can't have children.
8090                  */
8091                 cpu = iter->cpu;
8092                 if (cpu == -1)
8093                         cpu = READ_ONCE(iter->oncpu);
8094
8095                 if (cpu == -1)
8096                         continue;
8097
8098                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8099                 if (err == -EAGAIN) {
8100                         rcu_read_unlock();
8101                         goto restart;
8102                 }
8103         }
8104         rcu_read_unlock();
8105 }
8106
8107 /*
8108  * task tracking -- fork/exit
8109  *
8110  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8111  */
8112
8113 struct perf_task_event {
8114         struct task_struct              *task;
8115         struct perf_event_context       *task_ctx;
8116
8117         struct {
8118                 struct perf_event_header        header;
8119
8120                 u32                             pid;
8121                 u32                             ppid;
8122                 u32                             tid;
8123                 u32                             ptid;
8124                 u64                             time;
8125         } event_id;
8126 };
8127
8128 static int perf_event_task_match(struct perf_event *event)
8129 {
8130         return event->attr.comm  || event->attr.mmap ||
8131                event->attr.mmap2 || event->attr.mmap_data ||
8132                event->attr.task;
8133 }
8134
8135 static void perf_event_task_output(struct perf_event *event,
8136                                    void *data)
8137 {
8138         struct perf_task_event *task_event = data;
8139         struct perf_output_handle handle;
8140         struct perf_sample_data sample;
8141         struct task_struct *task = task_event->task;
8142         int ret, size = task_event->event_id.header.size;
8143
8144         if (!perf_event_task_match(event))
8145                 return;
8146
8147         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8148
8149         ret = perf_output_begin(&handle, &sample, event,
8150                                 task_event->event_id.header.size);
8151         if (ret)
8152                 goto out;
8153
8154         task_event->event_id.pid = perf_event_pid(event, task);
8155         task_event->event_id.tid = perf_event_tid(event, task);
8156
8157         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8158                 task_event->event_id.ppid = perf_event_pid(event,
8159                                                         task->real_parent);
8160                 task_event->event_id.ptid = perf_event_pid(event,
8161                                                         task->real_parent);
8162         } else {  /* PERF_RECORD_FORK */
8163                 task_event->event_id.ppid = perf_event_pid(event, current);
8164                 task_event->event_id.ptid = perf_event_tid(event, current);
8165         }
8166
8167         task_event->event_id.time = perf_event_clock(event);
8168
8169         perf_output_put(&handle, task_event->event_id);
8170
8171         perf_event__output_id_sample(event, &handle, &sample);
8172
8173         perf_output_end(&handle);
8174 out:
8175         task_event->event_id.header.size = size;
8176 }
8177
8178 static void perf_event_task(struct task_struct *task,
8179                               struct perf_event_context *task_ctx,
8180                               int new)
8181 {
8182         struct perf_task_event task_event;
8183
8184         if (!atomic_read(&nr_comm_events) &&
8185             !atomic_read(&nr_mmap_events) &&
8186             !atomic_read(&nr_task_events))
8187                 return;
8188
8189         task_event = (struct perf_task_event){
8190                 .task     = task,
8191                 .task_ctx = task_ctx,
8192                 .event_id    = {
8193                         .header = {
8194                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8195                                 .misc = 0,
8196                                 .size = sizeof(task_event.event_id),
8197                         },
8198                         /* .pid  */
8199                         /* .ppid */
8200                         /* .tid  */
8201                         /* .ptid */
8202                         /* .time */
8203                 },
8204         };
8205
8206         perf_iterate_sb(perf_event_task_output,
8207                        &task_event,
8208                        task_ctx);
8209 }
8210
8211 void perf_event_fork(struct task_struct *task)
8212 {
8213         perf_event_task(task, NULL, 1);
8214         perf_event_namespaces(task);
8215 }
8216
8217 /*
8218  * comm tracking
8219  */
8220
8221 struct perf_comm_event {
8222         struct task_struct      *task;
8223         char                    *comm;
8224         int                     comm_size;
8225
8226         struct {
8227                 struct perf_event_header        header;
8228
8229                 u32                             pid;
8230                 u32                             tid;
8231         } event_id;
8232 };
8233
8234 static int perf_event_comm_match(struct perf_event *event)
8235 {
8236         return event->attr.comm;
8237 }
8238
8239 static void perf_event_comm_output(struct perf_event *event,
8240                                    void *data)
8241 {
8242         struct perf_comm_event *comm_event = data;
8243         struct perf_output_handle handle;
8244         struct perf_sample_data sample;
8245         int size = comm_event->event_id.header.size;
8246         int ret;
8247
8248         if (!perf_event_comm_match(event))
8249                 return;
8250
8251         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8252         ret = perf_output_begin(&handle, &sample, event,
8253                                 comm_event->event_id.header.size);
8254
8255         if (ret)
8256                 goto out;
8257
8258         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8259         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8260
8261         perf_output_put(&handle, comm_event->event_id);
8262         __output_copy(&handle, comm_event->comm,
8263                                    comm_event->comm_size);
8264
8265         perf_event__output_id_sample(event, &handle, &sample);
8266
8267         perf_output_end(&handle);
8268 out:
8269         comm_event->event_id.header.size = size;
8270 }
8271
8272 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8273 {
8274         char comm[TASK_COMM_LEN];
8275         unsigned int size;
8276
8277         memset(comm, 0, sizeof(comm));
8278         strlcpy(comm, comm_event->task->comm, sizeof(comm));
8279         size = ALIGN(strlen(comm)+1, sizeof(u64));
8280
8281         comm_event->comm = comm;
8282         comm_event->comm_size = size;
8283
8284         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8285
8286         perf_iterate_sb(perf_event_comm_output,
8287                        comm_event,
8288                        NULL);
8289 }
8290
8291 void perf_event_comm(struct task_struct *task, bool exec)
8292 {
8293         struct perf_comm_event comm_event;
8294
8295         if (!atomic_read(&nr_comm_events))
8296                 return;
8297
8298         comm_event = (struct perf_comm_event){
8299                 .task   = task,
8300                 /* .comm      */
8301                 /* .comm_size */
8302                 .event_id  = {
8303                         .header = {
8304                                 .type = PERF_RECORD_COMM,
8305                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8306                                 /* .size */
8307                         },
8308                         /* .pid */
8309                         /* .tid */
8310                 },
8311         };
8312
8313         perf_event_comm_event(&comm_event);
8314 }
8315
8316 /*
8317  * namespaces tracking
8318  */
8319
8320 struct perf_namespaces_event {
8321         struct task_struct              *task;
8322
8323         struct {
8324                 struct perf_event_header        header;
8325
8326                 u32                             pid;
8327                 u32                             tid;
8328                 u64                             nr_namespaces;
8329                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8330         } event_id;
8331 };
8332
8333 static int perf_event_namespaces_match(struct perf_event *event)
8334 {
8335         return event->attr.namespaces;
8336 }
8337
8338 static void perf_event_namespaces_output(struct perf_event *event,
8339                                          void *data)
8340 {
8341         struct perf_namespaces_event *namespaces_event = data;
8342         struct perf_output_handle handle;
8343         struct perf_sample_data sample;
8344         u16 header_size = namespaces_event->event_id.header.size;
8345         int ret;
8346
8347         if (!perf_event_namespaces_match(event))
8348                 return;
8349
8350         perf_event_header__init_id(&namespaces_event->event_id.header,
8351                                    &sample, event);
8352         ret = perf_output_begin(&handle, &sample, event,
8353                                 namespaces_event->event_id.header.size);
8354         if (ret)
8355                 goto out;
8356
8357         namespaces_event->event_id.pid = perf_event_pid(event,
8358                                                         namespaces_event->task);
8359         namespaces_event->event_id.tid = perf_event_tid(event,
8360                                                         namespaces_event->task);
8361
8362         perf_output_put(&handle, namespaces_event->event_id);
8363
8364         perf_event__output_id_sample(event, &handle, &sample);
8365
8366         perf_output_end(&handle);
8367 out:
8368         namespaces_event->event_id.header.size = header_size;
8369 }
8370
8371 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8372                                    struct task_struct *task,
8373                                    const struct proc_ns_operations *ns_ops)
8374 {
8375         struct path ns_path;
8376         struct inode *ns_inode;
8377         int error;
8378
8379         error = ns_get_path(&ns_path, task, ns_ops);
8380         if (!error) {
8381                 ns_inode = ns_path.dentry->d_inode;
8382                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8383                 ns_link_info->ino = ns_inode->i_ino;
8384                 path_put(&ns_path);
8385         }
8386 }
8387
8388 void perf_event_namespaces(struct task_struct *task)
8389 {
8390         struct perf_namespaces_event namespaces_event;
8391         struct perf_ns_link_info *ns_link_info;
8392
8393         if (!atomic_read(&nr_namespaces_events))
8394                 return;
8395
8396         namespaces_event = (struct perf_namespaces_event){
8397                 .task   = task,
8398                 .event_id  = {
8399                         .header = {
8400                                 .type = PERF_RECORD_NAMESPACES,
8401                                 .misc = 0,
8402                                 .size = sizeof(namespaces_event.event_id),
8403                         },
8404                         /* .pid */
8405                         /* .tid */
8406                         .nr_namespaces = NR_NAMESPACES,
8407                         /* .link_info[NR_NAMESPACES] */
8408                 },
8409         };
8410
8411         ns_link_info = namespaces_event.event_id.link_info;
8412
8413         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8414                                task, &mntns_operations);
8415
8416 #ifdef CONFIG_USER_NS
8417         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8418                                task, &userns_operations);
8419 #endif
8420 #ifdef CONFIG_NET_NS
8421         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8422                                task, &netns_operations);
8423 #endif
8424 #ifdef CONFIG_UTS_NS
8425         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8426                                task, &utsns_operations);
8427 #endif
8428 #ifdef CONFIG_IPC_NS
8429         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8430                                task, &ipcns_operations);
8431 #endif
8432 #ifdef CONFIG_PID_NS
8433         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8434                                task, &pidns_operations);
8435 #endif
8436 #ifdef CONFIG_CGROUPS
8437         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8438                                task, &cgroupns_operations);
8439 #endif
8440
8441         perf_iterate_sb(perf_event_namespaces_output,
8442                         &namespaces_event,
8443                         NULL);
8444 }
8445
8446 /*
8447  * cgroup tracking
8448  */
8449 #ifdef CONFIG_CGROUP_PERF
8450
8451 struct perf_cgroup_event {
8452         char                            *path;
8453         int                             path_size;
8454         struct {
8455                 struct perf_event_header        header;
8456                 u64                             id;
8457                 char                            path[];
8458         } event_id;
8459 };
8460
8461 static int perf_event_cgroup_match(struct perf_event *event)
8462 {
8463         return event->attr.cgroup;
8464 }
8465
8466 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8467 {
8468         struct perf_cgroup_event *cgroup_event = data;
8469         struct perf_output_handle handle;
8470         struct perf_sample_data sample;
8471         u16 header_size = cgroup_event->event_id.header.size;
8472         int ret;
8473
8474         if (!perf_event_cgroup_match(event))
8475                 return;
8476
8477         perf_event_header__init_id(&cgroup_event->event_id.header,
8478                                    &sample, event);
8479         ret = perf_output_begin(&handle, &sample, event,
8480                                 cgroup_event->event_id.header.size);
8481         if (ret)
8482                 goto out;
8483
8484         perf_output_put(&handle, cgroup_event->event_id);
8485         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8486
8487         perf_event__output_id_sample(event, &handle, &sample);
8488
8489         perf_output_end(&handle);
8490 out:
8491         cgroup_event->event_id.header.size = header_size;
8492 }
8493
8494 static void perf_event_cgroup(struct cgroup *cgrp)
8495 {
8496         struct perf_cgroup_event cgroup_event;
8497         char path_enomem[16] = "//enomem";
8498         char *pathname;
8499         size_t size;
8500
8501         if (!atomic_read(&nr_cgroup_events))
8502                 return;
8503
8504         cgroup_event = (struct perf_cgroup_event){
8505                 .event_id  = {
8506                         .header = {
8507                                 .type = PERF_RECORD_CGROUP,
8508                                 .misc = 0,
8509                                 .size = sizeof(cgroup_event.event_id),
8510                         },
8511                         .id = cgroup_id(cgrp),
8512                 },
8513         };
8514
8515         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8516         if (pathname == NULL) {
8517                 cgroup_event.path = path_enomem;
8518         } else {
8519                 /* just to be sure to have enough space for alignment */
8520                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8521                 cgroup_event.path = pathname;
8522         }
8523
8524         /*
8525          * Since our buffer works in 8 byte units we need to align our string
8526          * size to a multiple of 8. However, we must guarantee the tail end is
8527          * zero'd out to avoid leaking random bits to userspace.
8528          */
8529         size = strlen(cgroup_event.path) + 1;
8530         while (!IS_ALIGNED(size, sizeof(u64)))
8531                 cgroup_event.path[size++] = '\0';
8532
8533         cgroup_event.event_id.header.size += size;
8534         cgroup_event.path_size = size;
8535
8536         perf_iterate_sb(perf_event_cgroup_output,
8537                         &cgroup_event,
8538                         NULL);
8539
8540         kfree(pathname);
8541 }
8542
8543 #endif
8544
8545 /*
8546  * mmap tracking
8547  */
8548
8549 struct perf_mmap_event {
8550         struct vm_area_struct   *vma;
8551
8552         const char              *file_name;
8553         int                     file_size;
8554         int                     maj, min;
8555         u64                     ino;
8556         u64                     ino_generation;
8557         u32                     prot, flags;
8558         u8                      build_id[BUILD_ID_SIZE_MAX];
8559         u32                     build_id_size;
8560
8561         struct {
8562                 struct perf_event_header        header;
8563
8564                 u32                             pid;
8565                 u32                             tid;
8566                 u64                             start;
8567                 u64                             len;
8568                 u64                             pgoff;
8569         } event_id;
8570 };
8571
8572 static int perf_event_mmap_match(struct perf_event *event,
8573                                  void *data)
8574 {
8575         struct perf_mmap_event *mmap_event = data;
8576         struct vm_area_struct *vma = mmap_event->vma;
8577         int executable = vma->vm_flags & VM_EXEC;
8578
8579         return (!executable && event->attr.mmap_data) ||
8580                (executable && (event->attr.mmap || event->attr.mmap2));
8581 }
8582
8583 static void perf_event_mmap_output(struct perf_event *event,
8584                                    void *data)
8585 {
8586         struct perf_mmap_event *mmap_event = data;
8587         struct perf_output_handle handle;
8588         struct perf_sample_data sample;
8589         int size = mmap_event->event_id.header.size;
8590         u32 type = mmap_event->event_id.header.type;
8591         bool use_build_id;
8592         int ret;
8593
8594         if (!perf_event_mmap_match(event, data))
8595                 return;
8596
8597         if (event->attr.mmap2) {
8598                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8599                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8600                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8601                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8602                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8603                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8604                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8605         }
8606
8607         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8608         ret = perf_output_begin(&handle, &sample, event,
8609                                 mmap_event->event_id.header.size);
8610         if (ret)
8611                 goto out;
8612
8613         mmap_event->event_id.pid = perf_event_pid(event, current);
8614         mmap_event->event_id.tid = perf_event_tid(event, current);
8615
8616         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8617
8618         if (event->attr.mmap2 && use_build_id)
8619                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8620
8621         perf_output_put(&handle, mmap_event->event_id);
8622
8623         if (event->attr.mmap2) {
8624                 if (use_build_id) {
8625                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8626
8627                         __output_copy(&handle, size, 4);
8628                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8629                 } else {
8630                         perf_output_put(&handle, mmap_event->maj);
8631                         perf_output_put(&handle, mmap_event->min);
8632                         perf_output_put(&handle, mmap_event->ino);
8633                         perf_output_put(&handle, mmap_event->ino_generation);
8634                 }
8635                 perf_output_put(&handle, mmap_event->prot);
8636                 perf_output_put(&handle, mmap_event->flags);
8637         }
8638
8639         __output_copy(&handle, mmap_event->file_name,
8640                                    mmap_event->file_size);
8641
8642         perf_event__output_id_sample(event, &handle, &sample);
8643
8644         perf_output_end(&handle);
8645 out:
8646         mmap_event->event_id.header.size = size;
8647         mmap_event->event_id.header.type = type;
8648 }
8649
8650 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8651 {
8652         struct vm_area_struct *vma = mmap_event->vma;
8653         struct file *file = vma->vm_file;
8654         int maj = 0, min = 0;
8655         u64 ino = 0, gen = 0;
8656         u32 prot = 0, flags = 0;
8657         unsigned int size;
8658         char tmp[16];
8659         char *buf = NULL;
8660         char *name;
8661
8662         if (vma->vm_flags & VM_READ)
8663                 prot |= PROT_READ;
8664         if (vma->vm_flags & VM_WRITE)
8665                 prot |= PROT_WRITE;
8666         if (vma->vm_flags & VM_EXEC)
8667                 prot |= PROT_EXEC;
8668
8669         if (vma->vm_flags & VM_MAYSHARE)
8670                 flags = MAP_SHARED;
8671         else
8672                 flags = MAP_PRIVATE;
8673
8674         if (vma->vm_flags & VM_LOCKED)
8675                 flags |= MAP_LOCKED;
8676         if (is_vm_hugetlb_page(vma))
8677                 flags |= MAP_HUGETLB;
8678
8679         if (file) {
8680                 struct inode *inode;
8681                 dev_t dev;
8682
8683                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8684                 if (!buf) {
8685                         name = "//enomem";
8686                         goto cpy_name;
8687                 }
8688                 /*
8689                  * d_path() works from the end of the rb backwards, so we
8690                  * need to add enough zero bytes after the string to handle
8691                  * the 64bit alignment we do later.
8692                  */
8693                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8694                 if (IS_ERR(name)) {
8695                         name = "//toolong";
8696                         goto cpy_name;
8697                 }
8698                 inode = file_inode(vma->vm_file);
8699                 dev = inode->i_sb->s_dev;
8700                 ino = inode->i_ino;
8701                 gen = inode->i_generation;
8702                 maj = MAJOR(dev);
8703                 min = MINOR(dev);
8704
8705                 goto got_name;
8706         } else {
8707                 if (vma->vm_ops && vma->vm_ops->name) {
8708                         name = (char *) vma->vm_ops->name(vma);
8709                         if (name)
8710                                 goto cpy_name;
8711                 }
8712
8713                 name = (char *)arch_vma_name(vma);
8714                 if (name)
8715                         goto cpy_name;
8716
8717                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8718                                 vma->vm_end >= vma->vm_mm->brk) {
8719                         name = "[heap]";
8720                         goto cpy_name;
8721                 }
8722                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8723                                 vma->vm_end >= vma->vm_mm->start_stack) {
8724                         name = "[stack]";
8725                         goto cpy_name;
8726                 }
8727
8728                 name = "//anon";
8729                 goto cpy_name;
8730         }
8731
8732 cpy_name:
8733         strlcpy(tmp, name, sizeof(tmp));
8734         name = tmp;
8735 got_name:
8736         /*
8737          * Since our buffer works in 8 byte units we need to align our string
8738          * size to a multiple of 8. However, we must guarantee the tail end is
8739          * zero'd out to avoid leaking random bits to userspace.
8740          */
8741         size = strlen(name)+1;
8742         while (!IS_ALIGNED(size, sizeof(u64)))
8743                 name[size++] = '\0';
8744
8745         mmap_event->file_name = name;
8746         mmap_event->file_size = size;
8747         mmap_event->maj = maj;
8748         mmap_event->min = min;
8749         mmap_event->ino = ino;
8750         mmap_event->ino_generation = gen;
8751         mmap_event->prot = prot;
8752         mmap_event->flags = flags;
8753
8754         if (!(vma->vm_flags & VM_EXEC))
8755                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8756
8757         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8758
8759         if (atomic_read(&nr_build_id_events))
8760                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8761
8762         perf_iterate_sb(perf_event_mmap_output,
8763                        mmap_event,
8764                        NULL);
8765
8766         kfree(buf);
8767 }
8768
8769 /*
8770  * Check whether inode and address range match filter criteria.
8771  */
8772 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8773                                      struct file *file, unsigned long offset,
8774                                      unsigned long size)
8775 {
8776         /* d_inode(NULL) won't be equal to any mapped user-space file */
8777         if (!filter->path.dentry)
8778                 return false;
8779
8780         if (d_inode(filter->path.dentry) != file_inode(file))
8781                 return false;
8782
8783         if (filter->offset > offset + size)
8784                 return false;
8785
8786         if (filter->offset + filter->size < offset)
8787                 return false;
8788
8789         return true;
8790 }
8791
8792 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8793                                         struct vm_area_struct *vma,
8794                                         struct perf_addr_filter_range *fr)
8795 {
8796         unsigned long vma_size = vma->vm_end - vma->vm_start;
8797         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8798         struct file *file = vma->vm_file;
8799
8800         if (!perf_addr_filter_match(filter, file, off, vma_size))
8801                 return false;
8802
8803         if (filter->offset < off) {
8804                 fr->start = vma->vm_start;
8805                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8806         } else {
8807                 fr->start = vma->vm_start + filter->offset - off;
8808                 fr->size = min(vma->vm_end - fr->start, filter->size);
8809         }
8810
8811         return true;
8812 }
8813
8814 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8815 {
8816         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8817         struct vm_area_struct *vma = data;
8818         struct perf_addr_filter *filter;
8819         unsigned int restart = 0, count = 0;
8820         unsigned long flags;
8821
8822         if (!has_addr_filter(event))
8823                 return;
8824
8825         if (!vma->vm_file)
8826                 return;
8827
8828         raw_spin_lock_irqsave(&ifh->lock, flags);
8829         list_for_each_entry(filter, &ifh->list, entry) {
8830                 if (perf_addr_filter_vma_adjust(filter, vma,
8831                                                 &event->addr_filter_ranges[count]))
8832                         restart++;
8833
8834                 count++;
8835         }
8836
8837         if (restart)
8838                 event->addr_filters_gen++;
8839         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8840
8841         if (restart)
8842                 perf_event_stop(event, 1);
8843 }
8844
8845 /*
8846  * Adjust all task's events' filters to the new vma
8847  */
8848 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8849 {
8850         struct perf_event_context *ctx;
8851
8852         /*
8853          * Data tracing isn't supported yet and as such there is no need
8854          * to keep track of anything that isn't related to executable code:
8855          */
8856         if (!(vma->vm_flags & VM_EXEC))
8857                 return;
8858
8859         rcu_read_lock();
8860         ctx = rcu_dereference(current->perf_event_ctxp);
8861         if (ctx)
8862                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8863         rcu_read_unlock();
8864 }
8865
8866 void perf_event_mmap(struct vm_area_struct *vma)
8867 {
8868         struct perf_mmap_event mmap_event;
8869
8870         if (!atomic_read(&nr_mmap_events))
8871                 return;
8872
8873         mmap_event = (struct perf_mmap_event){
8874                 .vma    = vma,
8875                 /* .file_name */
8876                 /* .file_size */
8877                 .event_id  = {
8878                         .header = {
8879                                 .type = PERF_RECORD_MMAP,
8880                                 .misc = PERF_RECORD_MISC_USER,
8881                                 /* .size */
8882                         },
8883                         /* .pid */
8884                         /* .tid */
8885                         .start  = vma->vm_start,
8886                         .len    = vma->vm_end - vma->vm_start,
8887                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8888                 },
8889                 /* .maj (attr_mmap2 only) */
8890                 /* .min (attr_mmap2 only) */
8891                 /* .ino (attr_mmap2 only) */
8892                 /* .ino_generation (attr_mmap2 only) */
8893                 /* .prot (attr_mmap2 only) */
8894                 /* .flags (attr_mmap2 only) */
8895         };
8896
8897         perf_addr_filters_adjust(vma);
8898         perf_event_mmap_event(&mmap_event);
8899 }
8900
8901 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8902                           unsigned long size, u64 flags)
8903 {
8904         struct perf_output_handle handle;
8905         struct perf_sample_data sample;
8906         struct perf_aux_event {
8907                 struct perf_event_header        header;
8908                 u64                             offset;
8909                 u64                             size;
8910                 u64                             flags;
8911         } rec = {
8912                 .header = {
8913                         .type = PERF_RECORD_AUX,
8914                         .misc = 0,
8915                         .size = sizeof(rec),
8916                 },
8917                 .offset         = head,
8918                 .size           = size,
8919                 .flags          = flags,
8920         };
8921         int ret;
8922
8923         perf_event_header__init_id(&rec.header, &sample, event);
8924         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8925
8926         if (ret)
8927                 return;
8928
8929         perf_output_put(&handle, rec);
8930         perf_event__output_id_sample(event, &handle, &sample);
8931
8932         perf_output_end(&handle);
8933 }
8934
8935 /*
8936  * Lost/dropped samples logging
8937  */
8938 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8939 {
8940         struct perf_output_handle handle;
8941         struct perf_sample_data sample;
8942         int ret;
8943
8944         struct {
8945                 struct perf_event_header        header;
8946                 u64                             lost;
8947         } lost_samples_event = {
8948                 .header = {
8949                         .type = PERF_RECORD_LOST_SAMPLES,
8950                         .misc = 0,
8951                         .size = sizeof(lost_samples_event),
8952                 },
8953                 .lost           = lost,
8954         };
8955
8956         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8957
8958         ret = perf_output_begin(&handle, &sample, event,
8959                                 lost_samples_event.header.size);
8960         if (ret)
8961                 return;
8962
8963         perf_output_put(&handle, lost_samples_event);
8964         perf_event__output_id_sample(event, &handle, &sample);
8965         perf_output_end(&handle);
8966 }
8967
8968 /*
8969  * context_switch tracking
8970  */
8971
8972 struct perf_switch_event {
8973         struct task_struct      *task;
8974         struct task_struct      *next_prev;
8975
8976         struct {
8977                 struct perf_event_header        header;
8978                 u32                             next_prev_pid;
8979                 u32                             next_prev_tid;
8980         } event_id;
8981 };
8982
8983 static int perf_event_switch_match(struct perf_event *event)
8984 {
8985         return event->attr.context_switch;
8986 }
8987
8988 static void perf_event_switch_output(struct perf_event *event, void *data)
8989 {
8990         struct perf_switch_event *se = data;
8991         struct perf_output_handle handle;
8992         struct perf_sample_data sample;
8993         int ret;
8994
8995         if (!perf_event_switch_match(event))
8996                 return;
8997
8998         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8999         if (event->ctx->task) {
9000                 se->event_id.header.type = PERF_RECORD_SWITCH;
9001                 se->event_id.header.size = sizeof(se->event_id.header);
9002         } else {
9003                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9004                 se->event_id.header.size = sizeof(se->event_id);
9005                 se->event_id.next_prev_pid =
9006                                         perf_event_pid(event, se->next_prev);
9007                 se->event_id.next_prev_tid =
9008                                         perf_event_tid(event, se->next_prev);
9009         }
9010
9011         perf_event_header__init_id(&se->event_id.header, &sample, event);
9012
9013         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9014         if (ret)
9015                 return;
9016
9017         if (event->ctx->task)
9018                 perf_output_put(&handle, se->event_id.header);
9019         else
9020                 perf_output_put(&handle, se->event_id);
9021
9022         perf_event__output_id_sample(event, &handle, &sample);
9023
9024         perf_output_end(&handle);
9025 }
9026
9027 static void perf_event_switch(struct task_struct *task,
9028                               struct task_struct *next_prev, bool sched_in)
9029 {
9030         struct perf_switch_event switch_event;
9031
9032         /* N.B. caller checks nr_switch_events != 0 */
9033
9034         switch_event = (struct perf_switch_event){
9035                 .task           = task,
9036                 .next_prev      = next_prev,
9037                 .event_id       = {
9038                         .header = {
9039                                 /* .type */
9040                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9041                                 /* .size */
9042                         },
9043                         /* .next_prev_pid */
9044                         /* .next_prev_tid */
9045                 },
9046         };
9047
9048         if (!sched_in && task->on_rq) {
9049                 switch_event.event_id.header.misc |=
9050                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9051         }
9052
9053         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9054 }
9055
9056 /*
9057  * IRQ throttle logging
9058  */
9059
9060 static void perf_log_throttle(struct perf_event *event, int enable)
9061 {
9062         struct perf_output_handle handle;
9063         struct perf_sample_data sample;
9064         int ret;
9065
9066         struct {
9067                 struct perf_event_header        header;
9068                 u64                             time;
9069                 u64                             id;
9070                 u64                             stream_id;
9071         } throttle_event = {
9072                 .header = {
9073                         .type = PERF_RECORD_THROTTLE,
9074                         .misc = 0,
9075                         .size = sizeof(throttle_event),
9076                 },
9077                 .time           = perf_event_clock(event),
9078                 .id             = primary_event_id(event),
9079                 .stream_id      = event->id,
9080         };
9081
9082         if (enable)
9083                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9084
9085         perf_event_header__init_id(&throttle_event.header, &sample, event);
9086
9087         ret = perf_output_begin(&handle, &sample, event,
9088                                 throttle_event.header.size);
9089         if (ret)
9090                 return;
9091
9092         perf_output_put(&handle, throttle_event);
9093         perf_event__output_id_sample(event, &handle, &sample);
9094         perf_output_end(&handle);
9095 }
9096
9097 /*
9098  * ksymbol register/unregister tracking
9099  */
9100
9101 struct perf_ksymbol_event {
9102         const char      *name;
9103         int             name_len;
9104         struct {
9105                 struct perf_event_header        header;
9106                 u64                             addr;
9107                 u32                             len;
9108                 u16                             ksym_type;
9109                 u16                             flags;
9110         } event_id;
9111 };
9112
9113 static int perf_event_ksymbol_match(struct perf_event *event)
9114 {
9115         return event->attr.ksymbol;
9116 }
9117
9118 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9119 {
9120         struct perf_ksymbol_event *ksymbol_event = data;
9121         struct perf_output_handle handle;
9122         struct perf_sample_data sample;
9123         int ret;
9124
9125         if (!perf_event_ksymbol_match(event))
9126                 return;
9127
9128         perf_event_header__init_id(&ksymbol_event->event_id.header,
9129                                    &sample, event);
9130         ret = perf_output_begin(&handle, &sample, event,
9131                                 ksymbol_event->event_id.header.size);
9132         if (ret)
9133                 return;
9134
9135         perf_output_put(&handle, ksymbol_event->event_id);
9136         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9137         perf_event__output_id_sample(event, &handle, &sample);
9138
9139         perf_output_end(&handle);
9140 }
9141
9142 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9143                         const char *sym)
9144 {
9145         struct perf_ksymbol_event ksymbol_event;
9146         char name[KSYM_NAME_LEN];
9147         u16 flags = 0;
9148         int name_len;
9149
9150         if (!atomic_read(&nr_ksymbol_events))
9151                 return;
9152
9153         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9154             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9155                 goto err;
9156
9157         strlcpy(name, sym, KSYM_NAME_LEN);
9158         name_len = strlen(name) + 1;
9159         while (!IS_ALIGNED(name_len, sizeof(u64)))
9160                 name[name_len++] = '\0';
9161         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9162
9163         if (unregister)
9164                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9165
9166         ksymbol_event = (struct perf_ksymbol_event){
9167                 .name = name,
9168                 .name_len = name_len,
9169                 .event_id = {
9170                         .header = {
9171                                 .type = PERF_RECORD_KSYMBOL,
9172                                 .size = sizeof(ksymbol_event.event_id) +
9173                                         name_len,
9174                         },
9175                         .addr = addr,
9176                         .len = len,
9177                         .ksym_type = ksym_type,
9178                         .flags = flags,
9179                 },
9180         };
9181
9182         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9183         return;
9184 err:
9185         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9186 }
9187
9188 /*
9189  * bpf program load/unload tracking
9190  */
9191
9192 struct perf_bpf_event {
9193         struct bpf_prog *prog;
9194         struct {
9195                 struct perf_event_header        header;
9196                 u16                             type;
9197                 u16                             flags;
9198                 u32                             id;
9199                 u8                              tag[BPF_TAG_SIZE];
9200         } event_id;
9201 };
9202
9203 static int perf_event_bpf_match(struct perf_event *event)
9204 {
9205         return event->attr.bpf_event;
9206 }
9207
9208 static void perf_event_bpf_output(struct perf_event *event, void *data)
9209 {
9210         struct perf_bpf_event *bpf_event = data;
9211         struct perf_output_handle handle;
9212         struct perf_sample_data sample;
9213         int ret;
9214
9215         if (!perf_event_bpf_match(event))
9216                 return;
9217
9218         perf_event_header__init_id(&bpf_event->event_id.header,
9219                                    &sample, event);
9220         ret = perf_output_begin(&handle, &sample, event,
9221                                 bpf_event->event_id.header.size);
9222         if (ret)
9223                 return;
9224
9225         perf_output_put(&handle, bpf_event->event_id);
9226         perf_event__output_id_sample(event, &handle, &sample);
9227
9228         perf_output_end(&handle);
9229 }
9230
9231 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9232                                          enum perf_bpf_event_type type)
9233 {
9234         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9235         int i;
9236
9237         if (prog->aux->func_cnt == 0) {
9238                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9239                                    (u64)(unsigned long)prog->bpf_func,
9240                                    prog->jited_len, unregister,
9241                                    prog->aux->ksym.name);
9242         } else {
9243                 for (i = 0; i < prog->aux->func_cnt; i++) {
9244                         struct bpf_prog *subprog = prog->aux->func[i];
9245
9246                         perf_event_ksymbol(
9247                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9248                                 (u64)(unsigned long)subprog->bpf_func,
9249                                 subprog->jited_len, unregister,
9250                                 subprog->aux->ksym.name);
9251                 }
9252         }
9253 }
9254
9255 void perf_event_bpf_event(struct bpf_prog *prog,
9256                           enum perf_bpf_event_type type,
9257                           u16 flags)
9258 {
9259         struct perf_bpf_event bpf_event;
9260
9261         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9262             type >= PERF_BPF_EVENT_MAX)
9263                 return;
9264
9265         switch (type) {
9266         case PERF_BPF_EVENT_PROG_LOAD:
9267         case PERF_BPF_EVENT_PROG_UNLOAD:
9268                 if (atomic_read(&nr_ksymbol_events))
9269                         perf_event_bpf_emit_ksymbols(prog, type);
9270                 break;
9271         default:
9272                 break;
9273         }
9274
9275         if (!atomic_read(&nr_bpf_events))
9276                 return;
9277
9278         bpf_event = (struct perf_bpf_event){
9279                 .prog = prog,
9280                 .event_id = {
9281                         .header = {
9282                                 .type = PERF_RECORD_BPF_EVENT,
9283                                 .size = sizeof(bpf_event.event_id),
9284                         },
9285                         .type = type,
9286                         .flags = flags,
9287                         .id = prog->aux->id,
9288                 },
9289         };
9290
9291         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9292
9293         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9294         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9295 }
9296
9297 struct perf_text_poke_event {
9298         const void              *old_bytes;
9299         const void              *new_bytes;
9300         size_t                  pad;
9301         u16                     old_len;
9302         u16                     new_len;
9303
9304         struct {
9305                 struct perf_event_header        header;
9306
9307                 u64                             addr;
9308         } event_id;
9309 };
9310
9311 static int perf_event_text_poke_match(struct perf_event *event)
9312 {
9313         return event->attr.text_poke;
9314 }
9315
9316 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9317 {
9318         struct perf_text_poke_event *text_poke_event = data;
9319         struct perf_output_handle handle;
9320         struct perf_sample_data sample;
9321         u64 padding = 0;
9322         int ret;
9323
9324         if (!perf_event_text_poke_match(event))
9325                 return;
9326
9327         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9328
9329         ret = perf_output_begin(&handle, &sample, event,
9330                                 text_poke_event->event_id.header.size);
9331         if (ret)
9332                 return;
9333
9334         perf_output_put(&handle, text_poke_event->event_id);
9335         perf_output_put(&handle, text_poke_event->old_len);
9336         perf_output_put(&handle, text_poke_event->new_len);
9337
9338         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9339         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9340
9341         if (text_poke_event->pad)
9342                 __output_copy(&handle, &padding, text_poke_event->pad);
9343
9344         perf_event__output_id_sample(event, &handle, &sample);
9345
9346         perf_output_end(&handle);
9347 }
9348
9349 void perf_event_text_poke(const void *addr, const void *old_bytes,
9350                           size_t old_len, const void *new_bytes, size_t new_len)
9351 {
9352         struct perf_text_poke_event text_poke_event;
9353         size_t tot, pad;
9354
9355         if (!atomic_read(&nr_text_poke_events))
9356                 return;
9357
9358         tot  = sizeof(text_poke_event.old_len) + old_len;
9359         tot += sizeof(text_poke_event.new_len) + new_len;
9360         pad  = ALIGN(tot, sizeof(u64)) - tot;
9361
9362         text_poke_event = (struct perf_text_poke_event){
9363                 .old_bytes    = old_bytes,
9364                 .new_bytes    = new_bytes,
9365                 .pad          = pad,
9366                 .old_len      = old_len,
9367                 .new_len      = new_len,
9368                 .event_id  = {
9369                         .header = {
9370                                 .type = PERF_RECORD_TEXT_POKE,
9371                                 .misc = PERF_RECORD_MISC_KERNEL,
9372                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9373                         },
9374                         .addr = (unsigned long)addr,
9375                 },
9376         };
9377
9378         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9379 }
9380
9381 void perf_event_itrace_started(struct perf_event *event)
9382 {
9383         event->attach_state |= PERF_ATTACH_ITRACE;
9384 }
9385
9386 static void perf_log_itrace_start(struct perf_event *event)
9387 {
9388         struct perf_output_handle handle;
9389         struct perf_sample_data sample;
9390         struct perf_aux_event {
9391                 struct perf_event_header        header;
9392                 u32                             pid;
9393                 u32                             tid;
9394         } rec;
9395         int ret;
9396
9397         if (event->parent)
9398                 event = event->parent;
9399
9400         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9401             event->attach_state & PERF_ATTACH_ITRACE)
9402                 return;
9403
9404         rec.header.type = PERF_RECORD_ITRACE_START;
9405         rec.header.misc = 0;
9406         rec.header.size = sizeof(rec);
9407         rec.pid = perf_event_pid(event, current);
9408         rec.tid = perf_event_tid(event, current);
9409
9410         perf_event_header__init_id(&rec.header, &sample, event);
9411         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9412
9413         if (ret)
9414                 return;
9415
9416         perf_output_put(&handle, rec);
9417         perf_event__output_id_sample(event, &handle, &sample);
9418
9419         perf_output_end(&handle);
9420 }
9421
9422 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9423 {
9424         struct perf_output_handle handle;
9425         struct perf_sample_data sample;
9426         struct perf_aux_event {
9427                 struct perf_event_header        header;
9428                 u64                             hw_id;
9429         } rec;
9430         int ret;
9431
9432         if (event->parent)
9433                 event = event->parent;
9434
9435         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9436         rec.header.misc = 0;
9437         rec.header.size = sizeof(rec);
9438         rec.hw_id       = hw_id;
9439
9440         perf_event_header__init_id(&rec.header, &sample, event);
9441         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9442
9443         if (ret)
9444                 return;
9445
9446         perf_output_put(&handle, rec);
9447         perf_event__output_id_sample(event, &handle, &sample);
9448
9449         perf_output_end(&handle);
9450 }
9451 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9452
9453 static int
9454 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9455 {
9456         struct hw_perf_event *hwc = &event->hw;
9457         int ret = 0;
9458         u64 seq;
9459
9460         seq = __this_cpu_read(perf_throttled_seq);
9461         if (seq != hwc->interrupts_seq) {
9462                 hwc->interrupts_seq = seq;
9463                 hwc->interrupts = 1;
9464         } else {
9465                 hwc->interrupts++;
9466                 if (unlikely(throttle &&
9467                              hwc->interrupts > max_samples_per_tick)) {
9468                         __this_cpu_inc(perf_throttled_count);
9469                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9470                         hwc->interrupts = MAX_INTERRUPTS;
9471                         perf_log_throttle(event, 0);
9472                         ret = 1;
9473                 }
9474         }
9475
9476         if (event->attr.freq) {
9477                 u64 now = perf_clock();
9478                 s64 delta = now - hwc->freq_time_stamp;
9479
9480                 hwc->freq_time_stamp = now;
9481
9482                 if (delta > 0 && delta < 2*TICK_NSEC)
9483                         perf_adjust_period(event, delta, hwc->last_period, true);
9484         }
9485
9486         return ret;
9487 }
9488
9489 int perf_event_account_interrupt(struct perf_event *event)
9490 {
9491         return __perf_event_account_interrupt(event, 1);
9492 }
9493
9494 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9495 {
9496         /*
9497          * Due to interrupt latency (AKA "skid"), we may enter the
9498          * kernel before taking an overflow, even if the PMU is only
9499          * counting user events.
9500          */
9501         if (event->attr.exclude_kernel && !user_mode(regs))
9502                 return false;
9503
9504         return true;
9505 }
9506
9507 /*
9508  * Generic event overflow handling, sampling.
9509  */
9510
9511 static int __perf_event_overflow(struct perf_event *event,
9512                                  int throttle, struct perf_sample_data *data,
9513                                  struct pt_regs *regs)
9514 {
9515         int events = atomic_read(&event->event_limit);
9516         int ret = 0;
9517
9518         /*
9519          * Non-sampling counters might still use the PMI to fold short
9520          * hardware counters, ignore those.
9521          */
9522         if (unlikely(!is_sampling_event(event)))
9523                 return 0;
9524
9525         ret = __perf_event_account_interrupt(event, throttle);
9526
9527         /*
9528          * XXX event_limit might not quite work as expected on inherited
9529          * events
9530          */
9531
9532         event->pending_kill = POLL_IN;
9533         if (events && atomic_dec_and_test(&event->event_limit)) {
9534                 ret = 1;
9535                 event->pending_kill = POLL_HUP;
9536                 perf_event_disable_inatomic(event);
9537         }
9538
9539         if (event->attr.sigtrap) {
9540                 /*
9541                  * The desired behaviour of sigtrap vs invalid samples is a bit
9542                  * tricky; on the one hand, one should not loose the SIGTRAP if
9543                  * it is the first event, on the other hand, we should also not
9544                  * trigger the WARN or override the data address.
9545                  */
9546                 bool valid_sample = sample_is_allowed(event, regs);
9547                 unsigned int pending_id = 1;
9548
9549                 if (regs)
9550                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9551                 if (!event->pending_sigtrap) {
9552                         event->pending_sigtrap = pending_id;
9553                         local_inc(&event->ctx->nr_pending);
9554                 } else if (event->attr.exclude_kernel && valid_sample) {
9555                         /*
9556                          * Should not be able to return to user space without
9557                          * consuming pending_sigtrap; with exceptions:
9558                          *
9559                          *  1. Where !exclude_kernel, events can overflow again
9560                          *     in the kernel without returning to user space.
9561                          *
9562                          *  2. Events that can overflow again before the IRQ-
9563                          *     work without user space progress (e.g. hrtimer).
9564                          *     To approximate progress (with false negatives),
9565                          *     check 32-bit hash of the current IP.
9566                          */
9567                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9568                 }
9569
9570                 event->pending_addr = 0;
9571                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9572                         event->pending_addr = data->addr;
9573                 irq_work_queue(&event->pending_irq);
9574         }
9575
9576         READ_ONCE(event->overflow_handler)(event, data, regs);
9577
9578         if (*perf_event_fasync(event) && event->pending_kill) {
9579                 event->pending_wakeup = 1;
9580                 irq_work_queue(&event->pending_irq);
9581         }
9582
9583         return ret;
9584 }
9585
9586 int perf_event_overflow(struct perf_event *event,
9587                         struct perf_sample_data *data,
9588                         struct pt_regs *regs)
9589 {
9590         return __perf_event_overflow(event, 1, data, regs);
9591 }
9592
9593 /*
9594  * Generic software event infrastructure
9595  */
9596
9597 struct swevent_htable {
9598         struct swevent_hlist            *swevent_hlist;
9599         struct mutex                    hlist_mutex;
9600         int                             hlist_refcount;
9601
9602         /* Recursion avoidance in each contexts */
9603         int                             recursion[PERF_NR_CONTEXTS];
9604 };
9605
9606 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9607
9608 /*
9609  * We directly increment event->count and keep a second value in
9610  * event->hw.period_left to count intervals. This period event
9611  * is kept in the range [-sample_period, 0] so that we can use the
9612  * sign as trigger.
9613  */
9614
9615 u64 perf_swevent_set_period(struct perf_event *event)
9616 {
9617         struct hw_perf_event *hwc = &event->hw;
9618         u64 period = hwc->last_period;
9619         u64 nr, offset;
9620         s64 old, val;
9621
9622         hwc->last_period = hwc->sample_period;
9623
9624 again:
9625         old = val = local64_read(&hwc->period_left);
9626         if (val < 0)
9627                 return 0;
9628
9629         nr = div64_u64(period + val, period);
9630         offset = nr * period;
9631         val -= offset;
9632         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9633                 goto again;
9634
9635         return nr;
9636 }
9637
9638 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9639                                     struct perf_sample_data *data,
9640                                     struct pt_regs *regs)
9641 {
9642         struct hw_perf_event *hwc = &event->hw;
9643         int throttle = 0;
9644
9645         if (!overflow)
9646                 overflow = perf_swevent_set_period(event);
9647
9648         if (hwc->interrupts == MAX_INTERRUPTS)
9649                 return;
9650
9651         for (; overflow; overflow--) {
9652                 if (__perf_event_overflow(event, throttle,
9653                                             data, regs)) {
9654                         /*
9655                          * We inhibit the overflow from happening when
9656                          * hwc->interrupts == MAX_INTERRUPTS.
9657                          */
9658                         break;
9659                 }
9660                 throttle = 1;
9661         }
9662 }
9663
9664 static void perf_swevent_event(struct perf_event *event, u64 nr,
9665                                struct perf_sample_data *data,
9666                                struct pt_regs *regs)
9667 {
9668         struct hw_perf_event *hwc = &event->hw;
9669
9670         local64_add(nr, &event->count);
9671
9672         if (!regs)
9673                 return;
9674
9675         if (!is_sampling_event(event))
9676                 return;
9677
9678         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9679                 data->period = nr;
9680                 return perf_swevent_overflow(event, 1, data, regs);
9681         } else
9682                 data->period = event->hw.last_period;
9683
9684         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9685                 return perf_swevent_overflow(event, 1, data, regs);
9686
9687         if (local64_add_negative(nr, &hwc->period_left))
9688                 return;
9689
9690         perf_swevent_overflow(event, 0, data, regs);
9691 }
9692
9693 static int perf_exclude_event(struct perf_event *event,
9694                               struct pt_regs *regs)
9695 {
9696         if (event->hw.state & PERF_HES_STOPPED)
9697                 return 1;
9698
9699         if (regs) {
9700                 if (event->attr.exclude_user && user_mode(regs))
9701                         return 1;
9702
9703                 if (event->attr.exclude_kernel && !user_mode(regs))
9704                         return 1;
9705         }
9706
9707         return 0;
9708 }
9709
9710 static int perf_swevent_match(struct perf_event *event,
9711                                 enum perf_type_id type,
9712                                 u32 event_id,
9713                                 struct perf_sample_data *data,
9714                                 struct pt_regs *regs)
9715 {
9716         if (event->attr.type != type)
9717                 return 0;
9718
9719         if (event->attr.config != event_id)
9720                 return 0;
9721
9722         if (perf_exclude_event(event, regs))
9723                 return 0;
9724
9725         return 1;
9726 }
9727
9728 static inline u64 swevent_hash(u64 type, u32 event_id)
9729 {
9730         u64 val = event_id | (type << 32);
9731
9732         return hash_64(val, SWEVENT_HLIST_BITS);
9733 }
9734
9735 static inline struct hlist_head *
9736 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9737 {
9738         u64 hash = swevent_hash(type, event_id);
9739
9740         return &hlist->heads[hash];
9741 }
9742
9743 /* For the read side: events when they trigger */
9744 static inline struct hlist_head *
9745 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9746 {
9747         struct swevent_hlist *hlist;
9748
9749         hlist = rcu_dereference(swhash->swevent_hlist);
9750         if (!hlist)
9751                 return NULL;
9752
9753         return __find_swevent_head(hlist, type, event_id);
9754 }
9755
9756 /* For the event head insertion and removal in the hlist */
9757 static inline struct hlist_head *
9758 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9759 {
9760         struct swevent_hlist *hlist;
9761         u32 event_id = event->attr.config;
9762         u64 type = event->attr.type;
9763
9764         /*
9765          * Event scheduling is always serialized against hlist allocation
9766          * and release. Which makes the protected version suitable here.
9767          * The context lock guarantees that.
9768          */
9769         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9770                                           lockdep_is_held(&event->ctx->lock));
9771         if (!hlist)
9772                 return NULL;
9773
9774         return __find_swevent_head(hlist, type, event_id);
9775 }
9776
9777 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9778                                     u64 nr,
9779                                     struct perf_sample_data *data,
9780                                     struct pt_regs *regs)
9781 {
9782         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9783         struct perf_event *event;
9784         struct hlist_head *head;
9785
9786         rcu_read_lock();
9787         head = find_swevent_head_rcu(swhash, type, event_id);
9788         if (!head)
9789                 goto end;
9790
9791         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9792                 if (perf_swevent_match(event, type, event_id, data, regs))
9793                         perf_swevent_event(event, nr, data, regs);
9794         }
9795 end:
9796         rcu_read_unlock();
9797 }
9798
9799 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9800
9801 int perf_swevent_get_recursion_context(void)
9802 {
9803         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9804
9805         return get_recursion_context(swhash->recursion);
9806 }
9807 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9808
9809 void perf_swevent_put_recursion_context(int rctx)
9810 {
9811         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9812
9813         put_recursion_context(swhash->recursion, rctx);
9814 }
9815
9816 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9817 {
9818         struct perf_sample_data data;
9819
9820         if (WARN_ON_ONCE(!regs))
9821                 return;
9822
9823         perf_sample_data_init(&data, addr, 0);
9824         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9825 }
9826
9827 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9828 {
9829         int rctx;
9830
9831         preempt_disable_notrace();
9832         rctx = perf_swevent_get_recursion_context();
9833         if (unlikely(rctx < 0))
9834                 goto fail;
9835
9836         ___perf_sw_event(event_id, nr, regs, addr);
9837
9838         perf_swevent_put_recursion_context(rctx);
9839 fail:
9840         preempt_enable_notrace();
9841 }
9842
9843 static void perf_swevent_read(struct perf_event *event)
9844 {
9845 }
9846
9847 static int perf_swevent_add(struct perf_event *event, int flags)
9848 {
9849         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9850         struct hw_perf_event *hwc = &event->hw;
9851         struct hlist_head *head;
9852
9853         if (is_sampling_event(event)) {
9854                 hwc->last_period = hwc->sample_period;
9855                 perf_swevent_set_period(event);
9856         }
9857
9858         hwc->state = !(flags & PERF_EF_START);
9859
9860         head = find_swevent_head(swhash, event);
9861         if (WARN_ON_ONCE(!head))
9862                 return -EINVAL;
9863
9864         hlist_add_head_rcu(&event->hlist_entry, head);
9865         perf_event_update_userpage(event);
9866
9867         return 0;
9868 }
9869
9870 static void perf_swevent_del(struct perf_event *event, int flags)
9871 {
9872         hlist_del_rcu(&event->hlist_entry);
9873 }
9874
9875 static void perf_swevent_start(struct perf_event *event, int flags)
9876 {
9877         event->hw.state = 0;
9878 }
9879
9880 static void perf_swevent_stop(struct perf_event *event, int flags)
9881 {
9882         event->hw.state = PERF_HES_STOPPED;
9883 }
9884
9885 /* Deref the hlist from the update side */
9886 static inline struct swevent_hlist *
9887 swevent_hlist_deref(struct swevent_htable *swhash)
9888 {
9889         return rcu_dereference_protected(swhash->swevent_hlist,
9890                                          lockdep_is_held(&swhash->hlist_mutex));
9891 }
9892
9893 static void swevent_hlist_release(struct swevent_htable *swhash)
9894 {
9895         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9896
9897         if (!hlist)
9898                 return;
9899
9900         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9901         kfree_rcu(hlist, rcu_head);
9902 }
9903
9904 static void swevent_hlist_put_cpu(int cpu)
9905 {
9906         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9907
9908         mutex_lock(&swhash->hlist_mutex);
9909
9910         if (!--swhash->hlist_refcount)
9911                 swevent_hlist_release(swhash);
9912
9913         mutex_unlock(&swhash->hlist_mutex);
9914 }
9915
9916 static void swevent_hlist_put(void)
9917 {
9918         int cpu;
9919
9920         for_each_possible_cpu(cpu)
9921                 swevent_hlist_put_cpu(cpu);
9922 }
9923
9924 static int swevent_hlist_get_cpu(int cpu)
9925 {
9926         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9927         int err = 0;
9928
9929         mutex_lock(&swhash->hlist_mutex);
9930         if (!swevent_hlist_deref(swhash) &&
9931             cpumask_test_cpu(cpu, perf_online_mask)) {
9932                 struct swevent_hlist *hlist;
9933
9934                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9935                 if (!hlist) {
9936                         err = -ENOMEM;
9937                         goto exit;
9938                 }
9939                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9940         }
9941         swhash->hlist_refcount++;
9942 exit:
9943         mutex_unlock(&swhash->hlist_mutex);
9944
9945         return err;
9946 }
9947
9948 static int swevent_hlist_get(void)
9949 {
9950         int err, cpu, failed_cpu;
9951
9952         mutex_lock(&pmus_lock);
9953         for_each_possible_cpu(cpu) {
9954                 err = swevent_hlist_get_cpu(cpu);
9955                 if (err) {
9956                         failed_cpu = cpu;
9957                         goto fail;
9958                 }
9959         }
9960         mutex_unlock(&pmus_lock);
9961         return 0;
9962 fail:
9963         for_each_possible_cpu(cpu) {
9964                 if (cpu == failed_cpu)
9965                         break;
9966                 swevent_hlist_put_cpu(cpu);
9967         }
9968         mutex_unlock(&pmus_lock);
9969         return err;
9970 }
9971
9972 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9973
9974 static void sw_perf_event_destroy(struct perf_event *event)
9975 {
9976         u64 event_id = event->attr.config;
9977
9978         WARN_ON(event->parent);
9979
9980         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9981         swevent_hlist_put();
9982 }
9983
9984 static struct pmu perf_cpu_clock; /* fwd declaration */
9985 static struct pmu perf_task_clock;
9986
9987 static int perf_swevent_init(struct perf_event *event)
9988 {
9989         u64 event_id = event->attr.config;
9990
9991         if (event->attr.type != PERF_TYPE_SOFTWARE)
9992                 return -ENOENT;
9993
9994         /*
9995          * no branch sampling for software events
9996          */
9997         if (has_branch_stack(event))
9998                 return -EOPNOTSUPP;
9999
10000         switch (event_id) {
10001         case PERF_COUNT_SW_CPU_CLOCK:
10002                 event->attr.type = perf_cpu_clock.type;
10003                 return -ENOENT;
10004         case PERF_COUNT_SW_TASK_CLOCK:
10005                 event->attr.type = perf_task_clock.type;
10006                 return -ENOENT;
10007
10008         default:
10009                 break;
10010         }
10011
10012         if (event_id >= PERF_COUNT_SW_MAX)
10013                 return -ENOENT;
10014
10015         if (!event->parent) {
10016                 int err;
10017
10018                 err = swevent_hlist_get();
10019                 if (err)
10020                         return err;
10021
10022                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10023                 event->destroy = sw_perf_event_destroy;
10024         }
10025
10026         return 0;
10027 }
10028
10029 static struct pmu perf_swevent = {
10030         .task_ctx_nr    = perf_sw_context,
10031
10032         .capabilities   = PERF_PMU_CAP_NO_NMI,
10033
10034         .event_init     = perf_swevent_init,
10035         .add            = perf_swevent_add,
10036         .del            = perf_swevent_del,
10037         .start          = perf_swevent_start,
10038         .stop           = perf_swevent_stop,
10039         .read           = perf_swevent_read,
10040 };
10041
10042 #ifdef CONFIG_EVENT_TRACING
10043
10044 static void tp_perf_event_destroy(struct perf_event *event)
10045 {
10046         perf_trace_destroy(event);
10047 }
10048
10049 static int perf_tp_event_init(struct perf_event *event)
10050 {
10051         int err;
10052
10053         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10054                 return -ENOENT;
10055
10056         /*
10057          * no branch sampling for tracepoint events
10058          */
10059         if (has_branch_stack(event))
10060                 return -EOPNOTSUPP;
10061
10062         err = perf_trace_init(event);
10063         if (err)
10064                 return err;
10065
10066         event->destroy = tp_perf_event_destroy;
10067
10068         return 0;
10069 }
10070
10071 static struct pmu perf_tracepoint = {
10072         .task_ctx_nr    = perf_sw_context,
10073
10074         .event_init     = perf_tp_event_init,
10075         .add            = perf_trace_add,
10076         .del            = perf_trace_del,
10077         .start          = perf_swevent_start,
10078         .stop           = perf_swevent_stop,
10079         .read           = perf_swevent_read,
10080 };
10081
10082 static int perf_tp_filter_match(struct perf_event *event,
10083                                 struct perf_sample_data *data)
10084 {
10085         void *record = data->raw->frag.data;
10086
10087         /* only top level events have filters set */
10088         if (event->parent)
10089                 event = event->parent;
10090
10091         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10092                 return 1;
10093         return 0;
10094 }
10095
10096 static int perf_tp_event_match(struct perf_event *event,
10097                                 struct perf_sample_data *data,
10098                                 struct pt_regs *regs)
10099 {
10100         if (event->hw.state & PERF_HES_STOPPED)
10101                 return 0;
10102         /*
10103          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10104          */
10105         if (event->attr.exclude_kernel && !user_mode(regs))
10106                 return 0;
10107
10108         if (!perf_tp_filter_match(event, data))
10109                 return 0;
10110
10111         return 1;
10112 }
10113
10114 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10115                                struct trace_event_call *call, u64 count,
10116                                struct pt_regs *regs, struct hlist_head *head,
10117                                struct task_struct *task)
10118 {
10119         if (bpf_prog_array_valid(call)) {
10120                 *(struct pt_regs **)raw_data = regs;
10121                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10122                         perf_swevent_put_recursion_context(rctx);
10123                         return;
10124                 }
10125         }
10126         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10127                       rctx, task);
10128 }
10129 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10130
10131 static void __perf_tp_event_target_task(u64 count, void *record,
10132                                         struct pt_regs *regs,
10133                                         struct perf_sample_data *data,
10134                                         struct perf_event *event)
10135 {
10136         struct trace_entry *entry = record;
10137
10138         if (event->attr.config != entry->type)
10139                 return;
10140         /* Cannot deliver synchronous signal to other task. */
10141         if (event->attr.sigtrap)
10142                 return;
10143         if (perf_tp_event_match(event, data, regs))
10144                 perf_swevent_event(event, count, data, regs);
10145 }
10146
10147 static void perf_tp_event_target_task(u64 count, void *record,
10148                                       struct pt_regs *regs,
10149                                       struct perf_sample_data *data,
10150                                       struct perf_event_context *ctx)
10151 {
10152         unsigned int cpu = smp_processor_id();
10153         struct pmu *pmu = &perf_tracepoint;
10154         struct perf_event *event, *sibling;
10155
10156         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10157                 __perf_tp_event_target_task(count, record, regs, data, event);
10158                 for_each_sibling_event(sibling, event)
10159                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10160         }
10161
10162         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10163                 __perf_tp_event_target_task(count, record, regs, data, event);
10164                 for_each_sibling_event(sibling, event)
10165                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10166         }
10167 }
10168
10169 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10170                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10171                    struct task_struct *task)
10172 {
10173         struct perf_sample_data data;
10174         struct perf_event *event;
10175
10176         struct perf_raw_record raw = {
10177                 .frag = {
10178                         .size = entry_size,
10179                         .data = record,
10180                 },
10181         };
10182
10183         perf_sample_data_init(&data, 0, 0);
10184         perf_sample_save_raw_data(&data, &raw);
10185
10186         perf_trace_buf_update(record, event_type);
10187
10188         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10189                 if (perf_tp_event_match(event, &data, regs)) {
10190                         perf_swevent_event(event, count, &data, regs);
10191
10192                         /*
10193                          * Here use the same on-stack perf_sample_data,
10194                          * some members in data are event-specific and
10195                          * need to be re-computed for different sweveents.
10196                          * Re-initialize data->sample_flags safely to avoid
10197                          * the problem that next event skips preparing data
10198                          * because data->sample_flags is set.
10199                          */
10200                         perf_sample_data_init(&data, 0, 0);
10201                         perf_sample_save_raw_data(&data, &raw);
10202                 }
10203         }
10204
10205         /*
10206          * If we got specified a target task, also iterate its context and
10207          * deliver this event there too.
10208          */
10209         if (task && task != current) {
10210                 struct perf_event_context *ctx;
10211
10212                 rcu_read_lock();
10213                 ctx = rcu_dereference(task->perf_event_ctxp);
10214                 if (!ctx)
10215                         goto unlock;
10216
10217                 raw_spin_lock(&ctx->lock);
10218                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10219                 raw_spin_unlock(&ctx->lock);
10220 unlock:
10221                 rcu_read_unlock();
10222         }
10223
10224         perf_swevent_put_recursion_context(rctx);
10225 }
10226 EXPORT_SYMBOL_GPL(perf_tp_event);
10227
10228 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10229 /*
10230  * Flags in config, used by dynamic PMU kprobe and uprobe
10231  * The flags should match following PMU_FORMAT_ATTR().
10232  *
10233  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10234  *                               if not set, create kprobe/uprobe
10235  *
10236  * The following values specify a reference counter (or semaphore in the
10237  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10238  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10239  *
10240  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10241  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10242  */
10243 enum perf_probe_config {
10244         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10245         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10246         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10247 };
10248
10249 PMU_FORMAT_ATTR(retprobe, "config:0");
10250 #endif
10251
10252 #ifdef CONFIG_KPROBE_EVENTS
10253 static struct attribute *kprobe_attrs[] = {
10254         &format_attr_retprobe.attr,
10255         NULL,
10256 };
10257
10258 static struct attribute_group kprobe_format_group = {
10259         .name = "format",
10260         .attrs = kprobe_attrs,
10261 };
10262
10263 static const struct attribute_group *kprobe_attr_groups[] = {
10264         &kprobe_format_group,
10265         NULL,
10266 };
10267
10268 static int perf_kprobe_event_init(struct perf_event *event);
10269 static struct pmu perf_kprobe = {
10270         .task_ctx_nr    = perf_sw_context,
10271         .event_init     = perf_kprobe_event_init,
10272         .add            = perf_trace_add,
10273         .del            = perf_trace_del,
10274         .start          = perf_swevent_start,
10275         .stop           = perf_swevent_stop,
10276         .read           = perf_swevent_read,
10277         .attr_groups    = kprobe_attr_groups,
10278 };
10279
10280 static int perf_kprobe_event_init(struct perf_event *event)
10281 {
10282         int err;
10283         bool is_retprobe;
10284
10285         if (event->attr.type != perf_kprobe.type)
10286                 return -ENOENT;
10287
10288         if (!perfmon_capable())
10289                 return -EACCES;
10290
10291         /*
10292          * no branch sampling for probe events
10293          */
10294         if (has_branch_stack(event))
10295                 return -EOPNOTSUPP;
10296
10297         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10298         err = perf_kprobe_init(event, is_retprobe);
10299         if (err)
10300                 return err;
10301
10302         event->destroy = perf_kprobe_destroy;
10303
10304         return 0;
10305 }
10306 #endif /* CONFIG_KPROBE_EVENTS */
10307
10308 #ifdef CONFIG_UPROBE_EVENTS
10309 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10310
10311 static struct attribute *uprobe_attrs[] = {
10312         &format_attr_retprobe.attr,
10313         &format_attr_ref_ctr_offset.attr,
10314         NULL,
10315 };
10316
10317 static struct attribute_group uprobe_format_group = {
10318         .name = "format",
10319         .attrs = uprobe_attrs,
10320 };
10321
10322 static const struct attribute_group *uprobe_attr_groups[] = {
10323         &uprobe_format_group,
10324         NULL,
10325 };
10326
10327 static int perf_uprobe_event_init(struct perf_event *event);
10328 static struct pmu perf_uprobe = {
10329         .task_ctx_nr    = perf_sw_context,
10330         .event_init     = perf_uprobe_event_init,
10331         .add            = perf_trace_add,
10332         .del            = perf_trace_del,
10333         .start          = perf_swevent_start,
10334         .stop           = perf_swevent_stop,
10335         .read           = perf_swevent_read,
10336         .attr_groups    = uprobe_attr_groups,
10337 };
10338
10339 static int perf_uprobe_event_init(struct perf_event *event)
10340 {
10341         int err;
10342         unsigned long ref_ctr_offset;
10343         bool is_retprobe;
10344
10345         if (event->attr.type != perf_uprobe.type)
10346                 return -ENOENT;
10347
10348         if (!perfmon_capable())
10349                 return -EACCES;
10350
10351         /*
10352          * no branch sampling for probe events
10353          */
10354         if (has_branch_stack(event))
10355                 return -EOPNOTSUPP;
10356
10357         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10358         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10359         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10360         if (err)
10361                 return err;
10362
10363         event->destroy = perf_uprobe_destroy;
10364
10365         return 0;
10366 }
10367 #endif /* CONFIG_UPROBE_EVENTS */
10368
10369 static inline void perf_tp_register(void)
10370 {
10371         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10372 #ifdef CONFIG_KPROBE_EVENTS
10373         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10374 #endif
10375 #ifdef CONFIG_UPROBE_EVENTS
10376         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10377 #endif
10378 }
10379
10380 static void perf_event_free_filter(struct perf_event *event)
10381 {
10382         ftrace_profile_free_filter(event);
10383 }
10384
10385 #ifdef CONFIG_BPF_SYSCALL
10386 static void bpf_overflow_handler(struct perf_event *event,
10387                                  struct perf_sample_data *data,
10388                                  struct pt_regs *regs)
10389 {
10390         struct bpf_perf_event_data_kern ctx = {
10391                 .data = data,
10392                 .event = event,
10393         };
10394         struct bpf_prog *prog;
10395         int ret = 0;
10396
10397         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10398         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10399                 goto out;
10400         rcu_read_lock();
10401         prog = READ_ONCE(event->prog);
10402         if (prog) {
10403                 perf_prepare_sample(data, event, regs);
10404                 ret = bpf_prog_run(prog, &ctx);
10405         }
10406         rcu_read_unlock();
10407 out:
10408         __this_cpu_dec(bpf_prog_active);
10409         if (!ret)
10410                 return;
10411
10412         event->orig_overflow_handler(event, data, regs);
10413 }
10414
10415 static int perf_event_set_bpf_handler(struct perf_event *event,
10416                                       struct bpf_prog *prog,
10417                                       u64 bpf_cookie)
10418 {
10419         if (event->overflow_handler_context)
10420                 /* hw breakpoint or kernel counter */
10421                 return -EINVAL;
10422
10423         if (event->prog)
10424                 return -EEXIST;
10425
10426         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10427                 return -EINVAL;
10428
10429         if (event->attr.precise_ip &&
10430             prog->call_get_stack &&
10431             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10432              event->attr.exclude_callchain_kernel ||
10433              event->attr.exclude_callchain_user)) {
10434                 /*
10435                  * On perf_event with precise_ip, calling bpf_get_stack()
10436                  * may trigger unwinder warnings and occasional crashes.
10437                  * bpf_get_[stack|stackid] works around this issue by using
10438                  * callchain attached to perf_sample_data. If the
10439                  * perf_event does not full (kernel and user) callchain
10440                  * attached to perf_sample_data, do not allow attaching BPF
10441                  * program that calls bpf_get_[stack|stackid].
10442                  */
10443                 return -EPROTO;
10444         }
10445
10446         event->prog = prog;
10447         event->bpf_cookie = bpf_cookie;
10448         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10449         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10450         return 0;
10451 }
10452
10453 static void perf_event_free_bpf_handler(struct perf_event *event)
10454 {
10455         struct bpf_prog *prog = event->prog;
10456
10457         if (!prog)
10458                 return;
10459
10460         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10461         event->prog = NULL;
10462         bpf_prog_put(prog);
10463 }
10464 #else
10465 static int perf_event_set_bpf_handler(struct perf_event *event,
10466                                       struct bpf_prog *prog,
10467                                       u64 bpf_cookie)
10468 {
10469         return -EOPNOTSUPP;
10470 }
10471 static void perf_event_free_bpf_handler(struct perf_event *event)
10472 {
10473 }
10474 #endif
10475
10476 /*
10477  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10478  * with perf_event_open()
10479  */
10480 static inline bool perf_event_is_tracing(struct perf_event *event)
10481 {
10482         if (event->pmu == &perf_tracepoint)
10483                 return true;
10484 #ifdef CONFIG_KPROBE_EVENTS
10485         if (event->pmu == &perf_kprobe)
10486                 return true;
10487 #endif
10488 #ifdef CONFIG_UPROBE_EVENTS
10489         if (event->pmu == &perf_uprobe)
10490                 return true;
10491 #endif
10492         return false;
10493 }
10494
10495 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10496                             u64 bpf_cookie)
10497 {
10498         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10499
10500         if (!perf_event_is_tracing(event))
10501                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10502
10503         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10504         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10505         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10506         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10507         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10508                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10509                 return -EINVAL;
10510
10511         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10512             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10513             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10514                 return -EINVAL;
10515
10516         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10517                 /* only uprobe programs are allowed to be sleepable */
10518                 return -EINVAL;
10519
10520         /* Kprobe override only works for kprobes, not uprobes. */
10521         if (prog->kprobe_override && !is_kprobe)
10522                 return -EINVAL;
10523
10524         if (is_tracepoint || is_syscall_tp) {
10525                 int off = trace_event_get_offsets(event->tp_event);
10526
10527                 if (prog->aux->max_ctx_offset > off)
10528                         return -EACCES;
10529         }
10530
10531         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10532 }
10533
10534 void perf_event_free_bpf_prog(struct perf_event *event)
10535 {
10536         if (!perf_event_is_tracing(event)) {
10537                 perf_event_free_bpf_handler(event);
10538                 return;
10539         }
10540         perf_event_detach_bpf_prog(event);
10541 }
10542
10543 #else
10544
10545 static inline void perf_tp_register(void)
10546 {
10547 }
10548
10549 static void perf_event_free_filter(struct perf_event *event)
10550 {
10551 }
10552
10553 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10554                             u64 bpf_cookie)
10555 {
10556         return -ENOENT;
10557 }
10558
10559 void perf_event_free_bpf_prog(struct perf_event *event)
10560 {
10561 }
10562 #endif /* CONFIG_EVENT_TRACING */
10563
10564 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10565 void perf_bp_event(struct perf_event *bp, void *data)
10566 {
10567         struct perf_sample_data sample;
10568         struct pt_regs *regs = data;
10569
10570         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10571
10572         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10573                 perf_swevent_event(bp, 1, &sample, regs);
10574 }
10575 #endif
10576
10577 /*
10578  * Allocate a new address filter
10579  */
10580 static struct perf_addr_filter *
10581 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10582 {
10583         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10584         struct perf_addr_filter *filter;
10585
10586         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10587         if (!filter)
10588                 return NULL;
10589
10590         INIT_LIST_HEAD(&filter->entry);
10591         list_add_tail(&filter->entry, filters);
10592
10593         return filter;
10594 }
10595
10596 static void free_filters_list(struct list_head *filters)
10597 {
10598         struct perf_addr_filter *filter, *iter;
10599
10600         list_for_each_entry_safe(filter, iter, filters, entry) {
10601                 path_put(&filter->path);
10602                 list_del(&filter->entry);
10603                 kfree(filter);
10604         }
10605 }
10606
10607 /*
10608  * Free existing address filters and optionally install new ones
10609  */
10610 static void perf_addr_filters_splice(struct perf_event *event,
10611                                      struct list_head *head)
10612 {
10613         unsigned long flags;
10614         LIST_HEAD(list);
10615
10616         if (!has_addr_filter(event))
10617                 return;
10618
10619         /* don't bother with children, they don't have their own filters */
10620         if (event->parent)
10621                 return;
10622
10623         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10624
10625         list_splice_init(&event->addr_filters.list, &list);
10626         if (head)
10627                 list_splice(head, &event->addr_filters.list);
10628
10629         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10630
10631         free_filters_list(&list);
10632 }
10633
10634 /*
10635  * Scan through mm's vmas and see if one of them matches the
10636  * @filter; if so, adjust filter's address range.
10637  * Called with mm::mmap_lock down for reading.
10638  */
10639 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10640                                    struct mm_struct *mm,
10641                                    struct perf_addr_filter_range *fr)
10642 {
10643         struct vm_area_struct *vma;
10644         VMA_ITERATOR(vmi, mm, 0);
10645
10646         for_each_vma(vmi, vma) {
10647                 if (!vma->vm_file)
10648                         continue;
10649
10650                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10651                         return;
10652         }
10653 }
10654
10655 /*
10656  * Update event's address range filters based on the
10657  * task's existing mappings, if any.
10658  */
10659 static void perf_event_addr_filters_apply(struct perf_event *event)
10660 {
10661         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10662         struct task_struct *task = READ_ONCE(event->ctx->task);
10663         struct perf_addr_filter *filter;
10664         struct mm_struct *mm = NULL;
10665         unsigned int count = 0;
10666         unsigned long flags;
10667
10668         /*
10669          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10670          * will stop on the parent's child_mutex that our caller is also holding
10671          */
10672         if (task == TASK_TOMBSTONE)
10673                 return;
10674
10675         if (ifh->nr_file_filters) {
10676                 mm = get_task_mm(task);
10677                 if (!mm)
10678                         goto restart;
10679
10680                 mmap_read_lock(mm);
10681         }
10682
10683         raw_spin_lock_irqsave(&ifh->lock, flags);
10684         list_for_each_entry(filter, &ifh->list, entry) {
10685                 if (filter->path.dentry) {
10686                         /*
10687                          * Adjust base offset if the filter is associated to a
10688                          * binary that needs to be mapped:
10689                          */
10690                         event->addr_filter_ranges[count].start = 0;
10691                         event->addr_filter_ranges[count].size = 0;
10692
10693                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10694                 } else {
10695                         event->addr_filter_ranges[count].start = filter->offset;
10696                         event->addr_filter_ranges[count].size  = filter->size;
10697                 }
10698
10699                 count++;
10700         }
10701
10702         event->addr_filters_gen++;
10703         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10704
10705         if (ifh->nr_file_filters) {
10706                 mmap_read_unlock(mm);
10707
10708                 mmput(mm);
10709         }
10710
10711 restart:
10712         perf_event_stop(event, 1);
10713 }
10714
10715 /*
10716  * Address range filtering: limiting the data to certain
10717  * instruction address ranges. Filters are ioctl()ed to us from
10718  * userspace as ascii strings.
10719  *
10720  * Filter string format:
10721  *
10722  * ACTION RANGE_SPEC
10723  * where ACTION is one of the
10724  *  * "filter": limit the trace to this region
10725  *  * "start": start tracing from this address
10726  *  * "stop": stop tracing at this address/region;
10727  * RANGE_SPEC is
10728  *  * for kernel addresses: <start address>[/<size>]
10729  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10730  *
10731  * if <size> is not specified or is zero, the range is treated as a single
10732  * address; not valid for ACTION=="filter".
10733  */
10734 enum {
10735         IF_ACT_NONE = -1,
10736         IF_ACT_FILTER,
10737         IF_ACT_START,
10738         IF_ACT_STOP,
10739         IF_SRC_FILE,
10740         IF_SRC_KERNEL,
10741         IF_SRC_FILEADDR,
10742         IF_SRC_KERNELADDR,
10743 };
10744
10745 enum {
10746         IF_STATE_ACTION = 0,
10747         IF_STATE_SOURCE,
10748         IF_STATE_END,
10749 };
10750
10751 static const match_table_t if_tokens = {
10752         { IF_ACT_FILTER,        "filter" },
10753         { IF_ACT_START,         "start" },
10754         { IF_ACT_STOP,          "stop" },
10755         { IF_SRC_FILE,          "%u/%u@%s" },
10756         { IF_SRC_KERNEL,        "%u/%u" },
10757         { IF_SRC_FILEADDR,      "%u@%s" },
10758         { IF_SRC_KERNELADDR,    "%u" },
10759         { IF_ACT_NONE,          NULL },
10760 };
10761
10762 /*
10763  * Address filter string parser
10764  */
10765 static int
10766 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10767                              struct list_head *filters)
10768 {
10769         struct perf_addr_filter *filter = NULL;
10770         char *start, *orig, *filename = NULL;
10771         substring_t args[MAX_OPT_ARGS];
10772         int state = IF_STATE_ACTION, token;
10773         unsigned int kernel = 0;
10774         int ret = -EINVAL;
10775
10776         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10777         if (!fstr)
10778                 return -ENOMEM;
10779
10780         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10781                 static const enum perf_addr_filter_action_t actions[] = {
10782                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10783                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10784                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10785                 };
10786                 ret = -EINVAL;
10787
10788                 if (!*start)
10789                         continue;
10790
10791                 /* filter definition begins */
10792                 if (state == IF_STATE_ACTION) {
10793                         filter = perf_addr_filter_new(event, filters);
10794                         if (!filter)
10795                                 goto fail;
10796                 }
10797
10798                 token = match_token(start, if_tokens, args);
10799                 switch (token) {
10800                 case IF_ACT_FILTER:
10801                 case IF_ACT_START:
10802                 case IF_ACT_STOP:
10803                         if (state != IF_STATE_ACTION)
10804                                 goto fail;
10805
10806                         filter->action = actions[token];
10807                         state = IF_STATE_SOURCE;
10808                         break;
10809
10810                 case IF_SRC_KERNELADDR:
10811                 case IF_SRC_KERNEL:
10812                         kernel = 1;
10813                         fallthrough;
10814
10815                 case IF_SRC_FILEADDR:
10816                 case IF_SRC_FILE:
10817                         if (state != IF_STATE_SOURCE)
10818                                 goto fail;
10819
10820                         *args[0].to = 0;
10821                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10822                         if (ret)
10823                                 goto fail;
10824
10825                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10826                                 *args[1].to = 0;
10827                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10828                                 if (ret)
10829                                         goto fail;
10830                         }
10831
10832                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10833                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10834
10835                                 kfree(filename);
10836                                 filename = match_strdup(&args[fpos]);
10837                                 if (!filename) {
10838                                         ret = -ENOMEM;
10839                                         goto fail;
10840                                 }
10841                         }
10842
10843                         state = IF_STATE_END;
10844                         break;
10845
10846                 default:
10847                         goto fail;
10848                 }
10849
10850                 /*
10851                  * Filter definition is fully parsed, validate and install it.
10852                  * Make sure that it doesn't contradict itself or the event's
10853                  * attribute.
10854                  */
10855                 if (state == IF_STATE_END) {
10856                         ret = -EINVAL;
10857
10858                         /*
10859                          * ACTION "filter" must have a non-zero length region
10860                          * specified.
10861                          */
10862                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10863                             !filter->size)
10864                                 goto fail;
10865
10866                         if (!kernel) {
10867                                 if (!filename)
10868                                         goto fail;
10869
10870                                 /*
10871                                  * For now, we only support file-based filters
10872                                  * in per-task events; doing so for CPU-wide
10873                                  * events requires additional context switching
10874                                  * trickery, since same object code will be
10875                                  * mapped at different virtual addresses in
10876                                  * different processes.
10877                                  */
10878                                 ret = -EOPNOTSUPP;
10879                                 if (!event->ctx->task)
10880                                         goto fail;
10881
10882                                 /* look up the path and grab its inode */
10883                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10884                                                 &filter->path);
10885                                 if (ret)
10886                                         goto fail;
10887
10888                                 ret = -EINVAL;
10889                                 if (!filter->path.dentry ||
10890                                     !S_ISREG(d_inode(filter->path.dentry)
10891                                              ->i_mode))
10892                                         goto fail;
10893
10894                                 event->addr_filters.nr_file_filters++;
10895                         }
10896
10897                         /* ready to consume more filters */
10898                         kfree(filename);
10899                         filename = NULL;
10900                         state = IF_STATE_ACTION;
10901                         filter = NULL;
10902                         kernel = 0;
10903                 }
10904         }
10905
10906         if (state != IF_STATE_ACTION)
10907                 goto fail;
10908
10909         kfree(filename);
10910         kfree(orig);
10911
10912         return 0;
10913
10914 fail:
10915         kfree(filename);
10916         free_filters_list(filters);
10917         kfree(orig);
10918
10919         return ret;
10920 }
10921
10922 static int
10923 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10924 {
10925         LIST_HEAD(filters);
10926         int ret;
10927
10928         /*
10929          * Since this is called in perf_ioctl() path, we're already holding
10930          * ctx::mutex.
10931          */
10932         lockdep_assert_held(&event->ctx->mutex);
10933
10934         if (WARN_ON_ONCE(event->parent))
10935                 return -EINVAL;
10936
10937         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10938         if (ret)
10939                 goto fail_clear_files;
10940
10941         ret = event->pmu->addr_filters_validate(&filters);
10942         if (ret)
10943                 goto fail_free_filters;
10944
10945         /* remove existing filters, if any */
10946         perf_addr_filters_splice(event, &filters);
10947
10948         /* install new filters */
10949         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10950
10951         return ret;
10952
10953 fail_free_filters:
10954         free_filters_list(&filters);
10955
10956 fail_clear_files:
10957         event->addr_filters.nr_file_filters = 0;
10958
10959         return ret;
10960 }
10961
10962 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10963 {
10964         int ret = -EINVAL;
10965         char *filter_str;
10966
10967         filter_str = strndup_user(arg, PAGE_SIZE);
10968         if (IS_ERR(filter_str))
10969                 return PTR_ERR(filter_str);
10970
10971 #ifdef CONFIG_EVENT_TRACING
10972         if (perf_event_is_tracing(event)) {
10973                 struct perf_event_context *ctx = event->ctx;
10974
10975                 /*
10976                  * Beware, here be dragons!!
10977                  *
10978                  * the tracepoint muck will deadlock against ctx->mutex, but
10979                  * the tracepoint stuff does not actually need it. So
10980                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10981                  * already have a reference on ctx.
10982                  *
10983                  * This can result in event getting moved to a different ctx,
10984                  * but that does not affect the tracepoint state.
10985                  */
10986                 mutex_unlock(&ctx->mutex);
10987                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10988                 mutex_lock(&ctx->mutex);
10989         } else
10990 #endif
10991         if (has_addr_filter(event))
10992                 ret = perf_event_set_addr_filter(event, filter_str);
10993
10994         kfree(filter_str);
10995         return ret;
10996 }
10997
10998 /*
10999  * hrtimer based swevent callback
11000  */
11001
11002 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11003 {
11004         enum hrtimer_restart ret = HRTIMER_RESTART;
11005         struct perf_sample_data data;
11006         struct pt_regs *regs;
11007         struct perf_event *event;
11008         u64 period;
11009
11010         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11011
11012         if (event->state != PERF_EVENT_STATE_ACTIVE)
11013                 return HRTIMER_NORESTART;
11014
11015         event->pmu->read(event);
11016
11017         perf_sample_data_init(&data, 0, event->hw.last_period);
11018         regs = get_irq_regs();
11019
11020         if (regs && !perf_exclude_event(event, regs)) {
11021                 if (!(event->attr.exclude_idle && is_idle_task(current)))
11022                         if (__perf_event_overflow(event, 1, &data, regs))
11023                                 ret = HRTIMER_NORESTART;
11024         }
11025
11026         period = max_t(u64, 10000, event->hw.sample_period);
11027         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11028
11029         return ret;
11030 }
11031
11032 static void perf_swevent_start_hrtimer(struct perf_event *event)
11033 {
11034         struct hw_perf_event *hwc = &event->hw;
11035         s64 period;
11036
11037         if (!is_sampling_event(event))
11038                 return;
11039
11040         period = local64_read(&hwc->period_left);
11041         if (period) {
11042                 if (period < 0)
11043                         period = 10000;
11044
11045                 local64_set(&hwc->period_left, 0);
11046         } else {
11047                 period = max_t(u64, 10000, hwc->sample_period);
11048         }
11049         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11050                       HRTIMER_MODE_REL_PINNED_HARD);
11051 }
11052
11053 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11054 {
11055         struct hw_perf_event *hwc = &event->hw;
11056
11057         if (is_sampling_event(event)) {
11058                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11059                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11060
11061                 hrtimer_cancel(&hwc->hrtimer);
11062         }
11063 }
11064
11065 static void perf_swevent_init_hrtimer(struct perf_event *event)
11066 {
11067         struct hw_perf_event *hwc = &event->hw;
11068
11069         if (!is_sampling_event(event))
11070                 return;
11071
11072         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11073         hwc->hrtimer.function = perf_swevent_hrtimer;
11074
11075         /*
11076          * Since hrtimers have a fixed rate, we can do a static freq->period
11077          * mapping and avoid the whole period adjust feedback stuff.
11078          */
11079         if (event->attr.freq) {
11080                 long freq = event->attr.sample_freq;
11081
11082                 event->attr.sample_period = NSEC_PER_SEC / freq;
11083                 hwc->sample_period = event->attr.sample_period;
11084                 local64_set(&hwc->period_left, hwc->sample_period);
11085                 hwc->last_period = hwc->sample_period;
11086                 event->attr.freq = 0;
11087         }
11088 }
11089
11090 /*
11091  * Software event: cpu wall time clock
11092  */
11093
11094 static void cpu_clock_event_update(struct perf_event *event)
11095 {
11096         s64 prev;
11097         u64 now;
11098
11099         now = local_clock();
11100         prev = local64_xchg(&event->hw.prev_count, now);
11101         local64_add(now - prev, &event->count);
11102 }
11103
11104 static void cpu_clock_event_start(struct perf_event *event, int flags)
11105 {
11106         local64_set(&event->hw.prev_count, local_clock());
11107         perf_swevent_start_hrtimer(event);
11108 }
11109
11110 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11111 {
11112         perf_swevent_cancel_hrtimer(event);
11113         cpu_clock_event_update(event);
11114 }
11115
11116 static int cpu_clock_event_add(struct perf_event *event, int flags)
11117 {
11118         if (flags & PERF_EF_START)
11119                 cpu_clock_event_start(event, flags);
11120         perf_event_update_userpage(event);
11121
11122         return 0;
11123 }
11124
11125 static void cpu_clock_event_del(struct perf_event *event, int flags)
11126 {
11127         cpu_clock_event_stop(event, flags);
11128 }
11129
11130 static void cpu_clock_event_read(struct perf_event *event)
11131 {
11132         cpu_clock_event_update(event);
11133 }
11134
11135 static int cpu_clock_event_init(struct perf_event *event)
11136 {
11137         if (event->attr.type != perf_cpu_clock.type)
11138                 return -ENOENT;
11139
11140         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11141                 return -ENOENT;
11142
11143         /*
11144          * no branch sampling for software events
11145          */
11146         if (has_branch_stack(event))
11147                 return -EOPNOTSUPP;
11148
11149         perf_swevent_init_hrtimer(event);
11150
11151         return 0;
11152 }
11153
11154 static struct pmu perf_cpu_clock = {
11155         .task_ctx_nr    = perf_sw_context,
11156
11157         .capabilities   = PERF_PMU_CAP_NO_NMI,
11158         .dev            = PMU_NULL_DEV,
11159
11160         .event_init     = cpu_clock_event_init,
11161         .add            = cpu_clock_event_add,
11162         .del            = cpu_clock_event_del,
11163         .start          = cpu_clock_event_start,
11164         .stop           = cpu_clock_event_stop,
11165         .read           = cpu_clock_event_read,
11166 };
11167
11168 /*
11169  * Software event: task time clock
11170  */
11171
11172 static void task_clock_event_update(struct perf_event *event, u64 now)
11173 {
11174         u64 prev;
11175         s64 delta;
11176
11177         prev = local64_xchg(&event->hw.prev_count, now);
11178         delta = now - prev;
11179         local64_add(delta, &event->count);
11180 }
11181
11182 static void task_clock_event_start(struct perf_event *event, int flags)
11183 {
11184         local64_set(&event->hw.prev_count, event->ctx->time);
11185         perf_swevent_start_hrtimer(event);
11186 }
11187
11188 static void task_clock_event_stop(struct perf_event *event, int flags)
11189 {
11190         perf_swevent_cancel_hrtimer(event);
11191         task_clock_event_update(event, event->ctx->time);
11192 }
11193
11194 static int task_clock_event_add(struct perf_event *event, int flags)
11195 {
11196         if (flags & PERF_EF_START)
11197                 task_clock_event_start(event, flags);
11198         perf_event_update_userpage(event);
11199
11200         return 0;
11201 }
11202
11203 static void task_clock_event_del(struct perf_event *event, int flags)
11204 {
11205         task_clock_event_stop(event, PERF_EF_UPDATE);
11206 }
11207
11208 static void task_clock_event_read(struct perf_event *event)
11209 {
11210         u64 now = perf_clock();
11211         u64 delta = now - event->ctx->timestamp;
11212         u64 time = event->ctx->time + delta;
11213
11214         task_clock_event_update(event, time);
11215 }
11216
11217 static int task_clock_event_init(struct perf_event *event)
11218 {
11219         if (event->attr.type != perf_task_clock.type)
11220                 return -ENOENT;
11221
11222         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11223                 return -ENOENT;
11224
11225         /*
11226          * no branch sampling for software events
11227          */
11228         if (has_branch_stack(event))
11229                 return -EOPNOTSUPP;
11230
11231         perf_swevent_init_hrtimer(event);
11232
11233         return 0;
11234 }
11235
11236 static struct pmu perf_task_clock = {
11237         .task_ctx_nr    = perf_sw_context,
11238
11239         .capabilities   = PERF_PMU_CAP_NO_NMI,
11240         .dev            = PMU_NULL_DEV,
11241
11242         .event_init     = task_clock_event_init,
11243         .add            = task_clock_event_add,
11244         .del            = task_clock_event_del,
11245         .start          = task_clock_event_start,
11246         .stop           = task_clock_event_stop,
11247         .read           = task_clock_event_read,
11248 };
11249
11250 static void perf_pmu_nop_void(struct pmu *pmu)
11251 {
11252 }
11253
11254 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11255 {
11256 }
11257
11258 static int perf_pmu_nop_int(struct pmu *pmu)
11259 {
11260         return 0;
11261 }
11262
11263 static int perf_event_nop_int(struct perf_event *event, u64 value)
11264 {
11265         return 0;
11266 }
11267
11268 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11269
11270 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11271 {
11272         __this_cpu_write(nop_txn_flags, flags);
11273
11274         if (flags & ~PERF_PMU_TXN_ADD)
11275                 return;
11276
11277         perf_pmu_disable(pmu);
11278 }
11279
11280 static int perf_pmu_commit_txn(struct pmu *pmu)
11281 {
11282         unsigned int flags = __this_cpu_read(nop_txn_flags);
11283
11284         __this_cpu_write(nop_txn_flags, 0);
11285
11286         if (flags & ~PERF_PMU_TXN_ADD)
11287                 return 0;
11288
11289         perf_pmu_enable(pmu);
11290         return 0;
11291 }
11292
11293 static void perf_pmu_cancel_txn(struct pmu *pmu)
11294 {
11295         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11296
11297         __this_cpu_write(nop_txn_flags, 0);
11298
11299         if (flags & ~PERF_PMU_TXN_ADD)
11300                 return;
11301
11302         perf_pmu_enable(pmu);
11303 }
11304
11305 static int perf_event_idx_default(struct perf_event *event)
11306 {
11307         return 0;
11308 }
11309
11310 static void free_pmu_context(struct pmu *pmu)
11311 {
11312         free_percpu(pmu->cpu_pmu_context);
11313 }
11314
11315 /*
11316  * Let userspace know that this PMU supports address range filtering:
11317  */
11318 static ssize_t nr_addr_filters_show(struct device *dev,
11319                                     struct device_attribute *attr,
11320                                     char *page)
11321 {
11322         struct pmu *pmu = dev_get_drvdata(dev);
11323
11324         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11325 }
11326 DEVICE_ATTR_RO(nr_addr_filters);
11327
11328 static struct idr pmu_idr;
11329
11330 static ssize_t
11331 type_show(struct device *dev, struct device_attribute *attr, char *page)
11332 {
11333         struct pmu *pmu = dev_get_drvdata(dev);
11334
11335         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11336 }
11337 static DEVICE_ATTR_RO(type);
11338
11339 static ssize_t
11340 perf_event_mux_interval_ms_show(struct device *dev,
11341                                 struct device_attribute *attr,
11342                                 char *page)
11343 {
11344         struct pmu *pmu = dev_get_drvdata(dev);
11345
11346         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11347 }
11348
11349 static DEFINE_MUTEX(mux_interval_mutex);
11350
11351 static ssize_t
11352 perf_event_mux_interval_ms_store(struct device *dev,
11353                                  struct device_attribute *attr,
11354                                  const char *buf, size_t count)
11355 {
11356         struct pmu *pmu = dev_get_drvdata(dev);
11357         int timer, cpu, ret;
11358
11359         ret = kstrtoint(buf, 0, &timer);
11360         if (ret)
11361                 return ret;
11362
11363         if (timer < 1)
11364                 return -EINVAL;
11365
11366         /* same value, noting to do */
11367         if (timer == pmu->hrtimer_interval_ms)
11368                 return count;
11369
11370         mutex_lock(&mux_interval_mutex);
11371         pmu->hrtimer_interval_ms = timer;
11372
11373         /* update all cpuctx for this PMU */
11374         cpus_read_lock();
11375         for_each_online_cpu(cpu) {
11376                 struct perf_cpu_pmu_context *cpc;
11377                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11378                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11379
11380                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11381         }
11382         cpus_read_unlock();
11383         mutex_unlock(&mux_interval_mutex);
11384
11385         return count;
11386 }
11387 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11388
11389 static struct attribute *pmu_dev_attrs[] = {
11390         &dev_attr_type.attr,
11391         &dev_attr_perf_event_mux_interval_ms.attr,
11392         NULL,
11393 };
11394 ATTRIBUTE_GROUPS(pmu_dev);
11395
11396 static int pmu_bus_running;
11397 static struct bus_type pmu_bus = {
11398         .name           = "event_source",
11399         .dev_groups     = pmu_dev_groups,
11400 };
11401
11402 static void pmu_dev_release(struct device *dev)
11403 {
11404         kfree(dev);
11405 }
11406
11407 static int pmu_dev_alloc(struct pmu *pmu)
11408 {
11409         int ret = -ENOMEM;
11410
11411         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11412         if (!pmu->dev)
11413                 goto out;
11414
11415         pmu->dev->groups = pmu->attr_groups;
11416         device_initialize(pmu->dev);
11417
11418         dev_set_drvdata(pmu->dev, pmu);
11419         pmu->dev->bus = &pmu_bus;
11420         pmu->dev->parent = pmu->parent;
11421         pmu->dev->release = pmu_dev_release;
11422
11423         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11424         if (ret)
11425                 goto free_dev;
11426
11427         ret = device_add(pmu->dev);
11428         if (ret)
11429                 goto free_dev;
11430
11431         /* For PMUs with address filters, throw in an extra attribute: */
11432         if (pmu->nr_addr_filters)
11433                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11434
11435         if (ret)
11436                 goto del_dev;
11437
11438         if (pmu->attr_update)
11439                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11440
11441         if (ret)
11442                 goto del_dev;
11443
11444 out:
11445         return ret;
11446
11447 del_dev:
11448         device_del(pmu->dev);
11449
11450 free_dev:
11451         put_device(pmu->dev);
11452         goto out;
11453 }
11454
11455 static struct lock_class_key cpuctx_mutex;
11456 static struct lock_class_key cpuctx_lock;
11457
11458 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11459 {
11460         int cpu, ret, max = PERF_TYPE_MAX;
11461
11462         mutex_lock(&pmus_lock);
11463         ret = -ENOMEM;
11464         pmu->pmu_disable_count = alloc_percpu(int);
11465         if (!pmu->pmu_disable_count)
11466                 goto unlock;
11467
11468         pmu->type = -1;
11469         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11470                 ret = -EINVAL;
11471                 goto free_pdc;
11472         }
11473
11474         pmu->name = name;
11475
11476         if (type >= 0)
11477                 max = type;
11478
11479         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11480         if (ret < 0)
11481                 goto free_pdc;
11482
11483         WARN_ON(type >= 0 && ret != type);
11484
11485         type = ret;
11486         pmu->type = type;
11487
11488         if (pmu_bus_running && !pmu->dev) {
11489                 ret = pmu_dev_alloc(pmu);
11490                 if (ret)
11491                         goto free_idr;
11492         }
11493
11494         ret = -ENOMEM;
11495         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11496         if (!pmu->cpu_pmu_context)
11497                 goto free_dev;
11498
11499         for_each_possible_cpu(cpu) {
11500                 struct perf_cpu_pmu_context *cpc;
11501
11502                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11503                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11504                 __perf_mux_hrtimer_init(cpc, cpu);
11505         }
11506
11507         if (!pmu->start_txn) {
11508                 if (pmu->pmu_enable) {
11509                         /*
11510                          * If we have pmu_enable/pmu_disable calls, install
11511                          * transaction stubs that use that to try and batch
11512                          * hardware accesses.
11513                          */
11514                         pmu->start_txn  = perf_pmu_start_txn;
11515                         pmu->commit_txn = perf_pmu_commit_txn;
11516                         pmu->cancel_txn = perf_pmu_cancel_txn;
11517                 } else {
11518                         pmu->start_txn  = perf_pmu_nop_txn;
11519                         pmu->commit_txn = perf_pmu_nop_int;
11520                         pmu->cancel_txn = perf_pmu_nop_void;
11521                 }
11522         }
11523
11524         if (!pmu->pmu_enable) {
11525                 pmu->pmu_enable  = perf_pmu_nop_void;
11526                 pmu->pmu_disable = perf_pmu_nop_void;
11527         }
11528
11529         if (!pmu->check_period)
11530                 pmu->check_period = perf_event_nop_int;
11531
11532         if (!pmu->event_idx)
11533                 pmu->event_idx = perf_event_idx_default;
11534
11535         list_add_rcu(&pmu->entry, &pmus);
11536         atomic_set(&pmu->exclusive_cnt, 0);
11537         ret = 0;
11538 unlock:
11539         mutex_unlock(&pmus_lock);
11540
11541         return ret;
11542
11543 free_dev:
11544         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11545                 device_del(pmu->dev);
11546                 put_device(pmu->dev);
11547         }
11548
11549 free_idr:
11550         idr_remove(&pmu_idr, pmu->type);
11551
11552 free_pdc:
11553         free_percpu(pmu->pmu_disable_count);
11554         goto unlock;
11555 }
11556 EXPORT_SYMBOL_GPL(perf_pmu_register);
11557
11558 void perf_pmu_unregister(struct pmu *pmu)
11559 {
11560         mutex_lock(&pmus_lock);
11561         list_del_rcu(&pmu->entry);
11562
11563         /*
11564          * We dereference the pmu list under both SRCU and regular RCU, so
11565          * synchronize against both of those.
11566          */
11567         synchronize_srcu(&pmus_srcu);
11568         synchronize_rcu();
11569
11570         free_percpu(pmu->pmu_disable_count);
11571         idr_remove(&pmu_idr, pmu->type);
11572         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11573                 if (pmu->nr_addr_filters)
11574                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11575                 device_del(pmu->dev);
11576                 put_device(pmu->dev);
11577         }
11578         free_pmu_context(pmu);
11579         mutex_unlock(&pmus_lock);
11580 }
11581 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11582
11583 static inline bool has_extended_regs(struct perf_event *event)
11584 {
11585         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11586                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11587 }
11588
11589 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11590 {
11591         struct perf_event_context *ctx = NULL;
11592         int ret;
11593
11594         if (!try_module_get(pmu->module))
11595                 return -ENODEV;
11596
11597         /*
11598          * A number of pmu->event_init() methods iterate the sibling_list to,
11599          * for example, validate if the group fits on the PMU. Therefore,
11600          * if this is a sibling event, acquire the ctx->mutex to protect
11601          * the sibling_list.
11602          */
11603         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11604                 /*
11605                  * This ctx->mutex can nest when we're called through
11606                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11607                  */
11608                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11609                                                  SINGLE_DEPTH_NESTING);
11610                 BUG_ON(!ctx);
11611         }
11612
11613         event->pmu = pmu;
11614         ret = pmu->event_init(event);
11615
11616         if (ctx)
11617                 perf_event_ctx_unlock(event->group_leader, ctx);
11618
11619         if (!ret) {
11620                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11621                     has_extended_regs(event))
11622                         ret = -EOPNOTSUPP;
11623
11624                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11625                     event_has_any_exclude_flag(event))
11626                         ret = -EINVAL;
11627
11628                 if (ret && event->destroy)
11629                         event->destroy(event);
11630         }
11631
11632         if (ret)
11633                 module_put(pmu->module);
11634
11635         return ret;
11636 }
11637
11638 static struct pmu *perf_init_event(struct perf_event *event)
11639 {
11640         bool extended_type = false;
11641         int idx, type, ret;
11642         struct pmu *pmu;
11643
11644         idx = srcu_read_lock(&pmus_srcu);
11645
11646         /*
11647          * Save original type before calling pmu->event_init() since certain
11648          * pmus overwrites event->attr.type to forward event to another pmu.
11649          */
11650         event->orig_type = event->attr.type;
11651
11652         /* Try parent's PMU first: */
11653         if (event->parent && event->parent->pmu) {
11654                 pmu = event->parent->pmu;
11655                 ret = perf_try_init_event(pmu, event);
11656                 if (!ret)
11657                         goto unlock;
11658         }
11659
11660         /*
11661          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11662          * are often aliases for PERF_TYPE_RAW.
11663          */
11664         type = event->attr.type;
11665         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11666                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11667                 if (!type) {
11668                         type = PERF_TYPE_RAW;
11669                 } else {
11670                         extended_type = true;
11671                         event->attr.config &= PERF_HW_EVENT_MASK;
11672                 }
11673         }
11674
11675 again:
11676         rcu_read_lock();
11677         pmu = idr_find(&pmu_idr, type);
11678         rcu_read_unlock();
11679         if (pmu) {
11680                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11681                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11682                         goto fail;
11683
11684                 ret = perf_try_init_event(pmu, event);
11685                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11686                         type = event->attr.type;
11687                         goto again;
11688                 }
11689
11690                 if (ret)
11691                         pmu = ERR_PTR(ret);
11692
11693                 goto unlock;
11694         }
11695
11696         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11697                 ret = perf_try_init_event(pmu, event);
11698                 if (!ret)
11699                         goto unlock;
11700
11701                 if (ret != -ENOENT) {
11702                         pmu = ERR_PTR(ret);
11703                         goto unlock;
11704                 }
11705         }
11706 fail:
11707         pmu = ERR_PTR(-ENOENT);
11708 unlock:
11709         srcu_read_unlock(&pmus_srcu, idx);
11710
11711         return pmu;
11712 }
11713
11714 static void attach_sb_event(struct perf_event *event)
11715 {
11716         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11717
11718         raw_spin_lock(&pel->lock);
11719         list_add_rcu(&event->sb_list, &pel->list);
11720         raw_spin_unlock(&pel->lock);
11721 }
11722
11723 /*
11724  * We keep a list of all !task (and therefore per-cpu) events
11725  * that need to receive side-band records.
11726  *
11727  * This avoids having to scan all the various PMU per-cpu contexts
11728  * looking for them.
11729  */
11730 static void account_pmu_sb_event(struct perf_event *event)
11731 {
11732         if (is_sb_event(event))
11733                 attach_sb_event(event);
11734 }
11735
11736 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11737 static void account_freq_event_nohz(void)
11738 {
11739 #ifdef CONFIG_NO_HZ_FULL
11740         /* Lock so we don't race with concurrent unaccount */
11741         spin_lock(&nr_freq_lock);
11742         if (atomic_inc_return(&nr_freq_events) == 1)
11743                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11744         spin_unlock(&nr_freq_lock);
11745 #endif
11746 }
11747
11748 static void account_freq_event(void)
11749 {
11750         if (tick_nohz_full_enabled())
11751                 account_freq_event_nohz();
11752         else
11753                 atomic_inc(&nr_freq_events);
11754 }
11755
11756
11757 static void account_event(struct perf_event *event)
11758 {
11759         bool inc = false;
11760
11761         if (event->parent)
11762                 return;
11763
11764         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11765                 inc = true;
11766         if (event->attr.mmap || event->attr.mmap_data)
11767                 atomic_inc(&nr_mmap_events);
11768         if (event->attr.build_id)
11769                 atomic_inc(&nr_build_id_events);
11770         if (event->attr.comm)
11771                 atomic_inc(&nr_comm_events);
11772         if (event->attr.namespaces)
11773                 atomic_inc(&nr_namespaces_events);
11774         if (event->attr.cgroup)
11775                 atomic_inc(&nr_cgroup_events);
11776         if (event->attr.task)
11777                 atomic_inc(&nr_task_events);
11778         if (event->attr.freq)
11779                 account_freq_event();
11780         if (event->attr.context_switch) {
11781                 atomic_inc(&nr_switch_events);
11782                 inc = true;
11783         }
11784         if (has_branch_stack(event))
11785                 inc = true;
11786         if (is_cgroup_event(event))
11787                 inc = true;
11788         if (event->attr.ksymbol)
11789                 atomic_inc(&nr_ksymbol_events);
11790         if (event->attr.bpf_event)
11791                 atomic_inc(&nr_bpf_events);
11792         if (event->attr.text_poke)
11793                 atomic_inc(&nr_text_poke_events);
11794
11795         if (inc) {
11796                 /*
11797                  * We need the mutex here because static_branch_enable()
11798                  * must complete *before* the perf_sched_count increment
11799                  * becomes visible.
11800                  */
11801                 if (atomic_inc_not_zero(&perf_sched_count))
11802                         goto enabled;
11803
11804                 mutex_lock(&perf_sched_mutex);
11805                 if (!atomic_read(&perf_sched_count)) {
11806                         static_branch_enable(&perf_sched_events);
11807                         /*
11808                          * Guarantee that all CPUs observe they key change and
11809                          * call the perf scheduling hooks before proceeding to
11810                          * install events that need them.
11811                          */
11812                         synchronize_rcu();
11813                 }
11814                 /*
11815                  * Now that we have waited for the sync_sched(), allow further
11816                  * increments to by-pass the mutex.
11817                  */
11818                 atomic_inc(&perf_sched_count);
11819                 mutex_unlock(&perf_sched_mutex);
11820         }
11821 enabled:
11822
11823         account_pmu_sb_event(event);
11824 }
11825
11826 /*
11827  * Allocate and initialize an event structure
11828  */
11829 static struct perf_event *
11830 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11831                  struct task_struct *task,
11832                  struct perf_event *group_leader,
11833                  struct perf_event *parent_event,
11834                  perf_overflow_handler_t overflow_handler,
11835                  void *context, int cgroup_fd)
11836 {
11837         struct pmu *pmu;
11838         struct perf_event *event;
11839         struct hw_perf_event *hwc;
11840         long err = -EINVAL;
11841         int node;
11842
11843         if ((unsigned)cpu >= nr_cpu_ids) {
11844                 if (!task || cpu != -1)
11845                         return ERR_PTR(-EINVAL);
11846         }
11847         if (attr->sigtrap && !task) {
11848                 /* Requires a task: avoid signalling random tasks. */
11849                 return ERR_PTR(-EINVAL);
11850         }
11851
11852         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11853         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11854                                       node);
11855         if (!event)
11856                 return ERR_PTR(-ENOMEM);
11857
11858         /*
11859          * Single events are their own group leaders, with an
11860          * empty sibling list:
11861          */
11862         if (!group_leader)
11863                 group_leader = event;
11864
11865         mutex_init(&event->child_mutex);
11866         INIT_LIST_HEAD(&event->child_list);
11867
11868         INIT_LIST_HEAD(&event->event_entry);
11869         INIT_LIST_HEAD(&event->sibling_list);
11870         INIT_LIST_HEAD(&event->active_list);
11871         init_event_group(event);
11872         INIT_LIST_HEAD(&event->rb_entry);
11873         INIT_LIST_HEAD(&event->active_entry);
11874         INIT_LIST_HEAD(&event->addr_filters.list);
11875         INIT_HLIST_NODE(&event->hlist_entry);
11876
11877
11878         init_waitqueue_head(&event->waitq);
11879         init_irq_work(&event->pending_irq, perf_pending_irq);
11880         init_task_work(&event->pending_task, perf_pending_task);
11881
11882         mutex_init(&event->mmap_mutex);
11883         raw_spin_lock_init(&event->addr_filters.lock);
11884
11885         atomic_long_set(&event->refcount, 1);
11886         event->cpu              = cpu;
11887         event->attr             = *attr;
11888         event->group_leader     = group_leader;
11889         event->pmu              = NULL;
11890         event->oncpu            = -1;
11891
11892         event->parent           = parent_event;
11893
11894         event->ns               = get_pid_ns(task_active_pid_ns(current));
11895         event->id               = atomic64_inc_return(&perf_event_id);
11896
11897         event->state            = PERF_EVENT_STATE_INACTIVE;
11898
11899         if (parent_event)
11900                 event->event_caps = parent_event->event_caps;
11901
11902         if (task) {
11903                 event->attach_state = PERF_ATTACH_TASK;
11904                 /*
11905                  * XXX pmu::event_init needs to know what task to account to
11906                  * and we cannot use the ctx information because we need the
11907                  * pmu before we get a ctx.
11908                  */
11909                 event->hw.target = get_task_struct(task);
11910         }
11911
11912         event->clock = &local_clock;
11913         if (parent_event)
11914                 event->clock = parent_event->clock;
11915
11916         if (!overflow_handler && parent_event) {
11917                 overflow_handler = parent_event->overflow_handler;
11918                 context = parent_event->overflow_handler_context;
11919 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11920                 if (overflow_handler == bpf_overflow_handler) {
11921                         struct bpf_prog *prog = parent_event->prog;
11922
11923                         bpf_prog_inc(prog);
11924                         event->prog = prog;
11925                         event->orig_overflow_handler =
11926                                 parent_event->orig_overflow_handler;
11927                 }
11928 #endif
11929         }
11930
11931         if (overflow_handler) {
11932                 event->overflow_handler = overflow_handler;
11933                 event->overflow_handler_context = context;
11934         } else if (is_write_backward(event)){
11935                 event->overflow_handler = perf_event_output_backward;
11936                 event->overflow_handler_context = NULL;
11937         } else {
11938                 event->overflow_handler = perf_event_output_forward;
11939                 event->overflow_handler_context = NULL;
11940         }
11941
11942         perf_event__state_init(event);
11943
11944         pmu = NULL;
11945
11946         hwc = &event->hw;
11947         hwc->sample_period = attr->sample_period;
11948         if (attr->freq && attr->sample_freq)
11949                 hwc->sample_period = 1;
11950         hwc->last_period = hwc->sample_period;
11951
11952         local64_set(&hwc->period_left, hwc->sample_period);
11953
11954         /*
11955          * We currently do not support PERF_SAMPLE_READ on inherited events.
11956          * See perf_output_read().
11957          */
11958         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11959                 goto err_ns;
11960
11961         if (!has_branch_stack(event))
11962                 event->attr.branch_sample_type = 0;
11963
11964         pmu = perf_init_event(event);
11965         if (IS_ERR(pmu)) {
11966                 err = PTR_ERR(pmu);
11967                 goto err_ns;
11968         }
11969
11970         /*
11971          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11972          * events (they don't make sense as the cgroup will be different
11973          * on other CPUs in the uncore mask).
11974          */
11975         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11976                 err = -EINVAL;
11977                 goto err_pmu;
11978         }
11979
11980         if (event->attr.aux_output &&
11981             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11982                 err = -EOPNOTSUPP;
11983                 goto err_pmu;
11984         }
11985
11986         if (cgroup_fd != -1) {
11987                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11988                 if (err)
11989                         goto err_pmu;
11990         }
11991
11992         err = exclusive_event_init(event);
11993         if (err)
11994                 goto err_pmu;
11995
11996         if (has_addr_filter(event)) {
11997                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11998                                                     sizeof(struct perf_addr_filter_range),
11999                                                     GFP_KERNEL);
12000                 if (!event->addr_filter_ranges) {
12001                         err = -ENOMEM;
12002                         goto err_per_task;
12003                 }
12004
12005                 /*
12006                  * Clone the parent's vma offsets: they are valid until exec()
12007                  * even if the mm is not shared with the parent.
12008                  */
12009                 if (event->parent) {
12010                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12011
12012                         raw_spin_lock_irq(&ifh->lock);
12013                         memcpy(event->addr_filter_ranges,
12014                                event->parent->addr_filter_ranges,
12015                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12016                         raw_spin_unlock_irq(&ifh->lock);
12017                 }
12018
12019                 /* force hw sync on the address filters */
12020                 event->addr_filters_gen = 1;
12021         }
12022
12023         if (!event->parent) {
12024                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12025                         err = get_callchain_buffers(attr->sample_max_stack);
12026                         if (err)
12027                                 goto err_addr_filters;
12028                 }
12029         }
12030
12031         err = security_perf_event_alloc(event);
12032         if (err)
12033                 goto err_callchain_buffer;
12034
12035         /* symmetric to unaccount_event() in _free_event() */
12036         account_event(event);
12037
12038         return event;
12039
12040 err_callchain_buffer:
12041         if (!event->parent) {
12042                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12043                         put_callchain_buffers();
12044         }
12045 err_addr_filters:
12046         kfree(event->addr_filter_ranges);
12047
12048 err_per_task:
12049         exclusive_event_destroy(event);
12050
12051 err_pmu:
12052         if (is_cgroup_event(event))
12053                 perf_detach_cgroup(event);
12054         if (event->destroy)
12055                 event->destroy(event);
12056         module_put(pmu->module);
12057 err_ns:
12058         if (event->hw.target)
12059                 put_task_struct(event->hw.target);
12060         call_rcu(&event->rcu_head, free_event_rcu);
12061
12062         return ERR_PTR(err);
12063 }
12064
12065 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12066                           struct perf_event_attr *attr)
12067 {
12068         u32 size;
12069         int ret;
12070
12071         /* Zero the full structure, so that a short copy will be nice. */
12072         memset(attr, 0, sizeof(*attr));
12073
12074         ret = get_user(size, &uattr->size);
12075         if (ret)
12076                 return ret;
12077
12078         /* ABI compatibility quirk: */
12079         if (!size)
12080                 size = PERF_ATTR_SIZE_VER0;
12081         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12082                 goto err_size;
12083
12084         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12085         if (ret) {
12086                 if (ret == -E2BIG)
12087                         goto err_size;
12088                 return ret;
12089         }
12090
12091         attr->size = size;
12092
12093         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12094                 return -EINVAL;
12095
12096         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12097                 return -EINVAL;
12098
12099         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12100                 return -EINVAL;
12101
12102         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12103                 u64 mask = attr->branch_sample_type;
12104
12105                 /* only using defined bits */
12106                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12107                         return -EINVAL;
12108
12109                 /* at least one branch bit must be set */
12110                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12111                         return -EINVAL;
12112
12113                 /* propagate priv level, when not set for branch */
12114                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12115
12116                         /* exclude_kernel checked on syscall entry */
12117                         if (!attr->exclude_kernel)
12118                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12119
12120                         if (!attr->exclude_user)
12121                                 mask |= PERF_SAMPLE_BRANCH_USER;
12122
12123                         if (!attr->exclude_hv)
12124                                 mask |= PERF_SAMPLE_BRANCH_HV;
12125                         /*
12126                          * adjust user setting (for HW filter setup)
12127                          */
12128                         attr->branch_sample_type = mask;
12129                 }
12130                 /* privileged levels capture (kernel, hv): check permissions */
12131                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12132                         ret = perf_allow_kernel(attr);
12133                         if (ret)
12134                                 return ret;
12135                 }
12136         }
12137
12138         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12139                 ret = perf_reg_validate(attr->sample_regs_user);
12140                 if (ret)
12141                         return ret;
12142         }
12143
12144         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12145                 if (!arch_perf_have_user_stack_dump())
12146                         return -ENOSYS;
12147
12148                 /*
12149                  * We have __u32 type for the size, but so far
12150                  * we can only use __u16 as maximum due to the
12151                  * __u16 sample size limit.
12152                  */
12153                 if (attr->sample_stack_user >= USHRT_MAX)
12154                         return -EINVAL;
12155                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12156                         return -EINVAL;
12157         }
12158
12159         if (!attr->sample_max_stack)
12160                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12161
12162         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12163                 ret = perf_reg_validate(attr->sample_regs_intr);
12164
12165 #ifndef CONFIG_CGROUP_PERF
12166         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12167                 return -EINVAL;
12168 #endif
12169         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12170             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12171                 return -EINVAL;
12172
12173         if (!attr->inherit && attr->inherit_thread)
12174                 return -EINVAL;
12175
12176         if (attr->remove_on_exec && attr->enable_on_exec)
12177                 return -EINVAL;
12178
12179         if (attr->sigtrap && !attr->remove_on_exec)
12180                 return -EINVAL;
12181
12182 out:
12183         return ret;
12184
12185 err_size:
12186         put_user(sizeof(*attr), &uattr->size);
12187         ret = -E2BIG;
12188         goto out;
12189 }
12190
12191 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12192 {
12193         if (b < a)
12194                 swap(a, b);
12195
12196         mutex_lock(a);
12197         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12198 }
12199
12200 static int
12201 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12202 {
12203         struct perf_buffer *rb = NULL;
12204         int ret = -EINVAL;
12205
12206         if (!output_event) {
12207                 mutex_lock(&event->mmap_mutex);
12208                 goto set;
12209         }
12210
12211         /* don't allow circular references */
12212         if (event == output_event)
12213                 goto out;
12214
12215         /*
12216          * Don't allow cross-cpu buffers
12217          */
12218         if (output_event->cpu != event->cpu)
12219                 goto out;
12220
12221         /*
12222          * If its not a per-cpu rb, it must be the same task.
12223          */
12224         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12225                 goto out;
12226
12227         /*
12228          * Mixing clocks in the same buffer is trouble you don't need.
12229          */
12230         if (output_event->clock != event->clock)
12231                 goto out;
12232
12233         /*
12234          * Either writing ring buffer from beginning or from end.
12235          * Mixing is not allowed.
12236          */
12237         if (is_write_backward(output_event) != is_write_backward(event))
12238                 goto out;
12239
12240         /*
12241          * If both events generate aux data, they must be on the same PMU
12242          */
12243         if (has_aux(event) && has_aux(output_event) &&
12244             event->pmu != output_event->pmu)
12245                 goto out;
12246
12247         /*
12248          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12249          * output_event is already on rb->event_list, and the list iteration
12250          * restarts after every removal, it is guaranteed this new event is
12251          * observed *OR* if output_event is already removed, it's guaranteed we
12252          * observe !rb->mmap_count.
12253          */
12254         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12255 set:
12256         /* Can't redirect output if we've got an active mmap() */
12257         if (atomic_read(&event->mmap_count))
12258                 goto unlock;
12259
12260         if (output_event) {
12261                 /* get the rb we want to redirect to */
12262                 rb = ring_buffer_get(output_event);
12263                 if (!rb)
12264                         goto unlock;
12265
12266                 /* did we race against perf_mmap_close() */
12267                 if (!atomic_read(&rb->mmap_count)) {
12268                         ring_buffer_put(rb);
12269                         goto unlock;
12270                 }
12271         }
12272
12273         ring_buffer_attach(event, rb);
12274
12275         ret = 0;
12276 unlock:
12277         mutex_unlock(&event->mmap_mutex);
12278         if (output_event)
12279                 mutex_unlock(&output_event->mmap_mutex);
12280
12281 out:
12282         return ret;
12283 }
12284
12285 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12286 {
12287         bool nmi_safe = false;
12288
12289         switch (clk_id) {
12290         case CLOCK_MONOTONIC:
12291                 event->clock = &ktime_get_mono_fast_ns;
12292                 nmi_safe = true;
12293                 break;
12294
12295         case CLOCK_MONOTONIC_RAW:
12296                 event->clock = &ktime_get_raw_fast_ns;
12297                 nmi_safe = true;
12298                 break;
12299
12300         case CLOCK_REALTIME:
12301                 event->clock = &ktime_get_real_ns;
12302                 break;
12303
12304         case CLOCK_BOOTTIME:
12305                 event->clock = &ktime_get_boottime_ns;
12306                 break;
12307
12308         case CLOCK_TAI:
12309                 event->clock = &ktime_get_clocktai_ns;
12310                 break;
12311
12312         default:
12313                 return -EINVAL;
12314         }
12315
12316         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12317                 return -EINVAL;
12318
12319         return 0;
12320 }
12321
12322 static bool
12323 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12324 {
12325         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12326         bool is_capable = perfmon_capable();
12327
12328         if (attr->sigtrap) {
12329                 /*
12330                  * perf_event_attr::sigtrap sends signals to the other task.
12331                  * Require the current task to also have CAP_KILL.
12332                  */
12333                 rcu_read_lock();
12334                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12335                 rcu_read_unlock();
12336
12337                 /*
12338                  * If the required capabilities aren't available, checks for
12339                  * ptrace permissions: upgrade to ATTACH, since sending signals
12340                  * can effectively change the target task.
12341                  */
12342                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12343         }
12344
12345         /*
12346          * Preserve ptrace permission check for backwards compatibility. The
12347          * ptrace check also includes checks that the current task and other
12348          * task have matching uids, and is therefore not done here explicitly.
12349          */
12350         return is_capable || ptrace_may_access(task, ptrace_mode);
12351 }
12352
12353 /**
12354  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12355  *
12356  * @attr_uptr:  event_id type attributes for monitoring/sampling
12357  * @pid:                target pid
12358  * @cpu:                target cpu
12359  * @group_fd:           group leader event fd
12360  * @flags:              perf event open flags
12361  */
12362 SYSCALL_DEFINE5(perf_event_open,
12363                 struct perf_event_attr __user *, attr_uptr,
12364                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12365 {
12366         struct perf_event *group_leader = NULL, *output_event = NULL;
12367         struct perf_event_pmu_context *pmu_ctx;
12368         struct perf_event *event, *sibling;
12369         struct perf_event_attr attr;
12370         struct perf_event_context *ctx;
12371         struct file *event_file = NULL;
12372         struct fd group = {NULL, 0};
12373         struct task_struct *task = NULL;
12374         struct pmu *pmu;
12375         int event_fd;
12376         int move_group = 0;
12377         int err;
12378         int f_flags = O_RDWR;
12379         int cgroup_fd = -1;
12380
12381         /* for future expandability... */
12382         if (flags & ~PERF_FLAG_ALL)
12383                 return -EINVAL;
12384
12385         err = perf_copy_attr(attr_uptr, &attr);
12386         if (err)
12387                 return err;
12388
12389         /* Do we allow access to perf_event_open(2) ? */
12390         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12391         if (err)
12392                 return err;
12393
12394         if (!attr.exclude_kernel) {
12395                 err = perf_allow_kernel(&attr);
12396                 if (err)
12397                         return err;
12398         }
12399
12400         if (attr.namespaces) {
12401                 if (!perfmon_capable())
12402                         return -EACCES;
12403         }
12404
12405         if (attr.freq) {
12406                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12407                         return -EINVAL;
12408         } else {
12409                 if (attr.sample_period & (1ULL << 63))
12410                         return -EINVAL;
12411         }
12412
12413         /* Only privileged users can get physical addresses */
12414         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12415                 err = perf_allow_kernel(&attr);
12416                 if (err)
12417                         return err;
12418         }
12419
12420         /* REGS_INTR can leak data, lockdown must prevent this */
12421         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12422                 err = security_locked_down(LOCKDOWN_PERF);
12423                 if (err)
12424                         return err;
12425         }
12426
12427         /*
12428          * In cgroup mode, the pid argument is used to pass the fd
12429          * opened to the cgroup directory in cgroupfs. The cpu argument
12430          * designates the cpu on which to monitor threads from that
12431          * cgroup.
12432          */
12433         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12434                 return -EINVAL;
12435
12436         if (flags & PERF_FLAG_FD_CLOEXEC)
12437                 f_flags |= O_CLOEXEC;
12438
12439         event_fd = get_unused_fd_flags(f_flags);
12440         if (event_fd < 0)
12441                 return event_fd;
12442
12443         if (group_fd != -1) {
12444                 err = perf_fget_light(group_fd, &group);
12445                 if (err)
12446                         goto err_fd;
12447                 group_leader = group.file->private_data;
12448                 if (flags & PERF_FLAG_FD_OUTPUT)
12449                         output_event = group_leader;
12450                 if (flags & PERF_FLAG_FD_NO_GROUP)
12451                         group_leader = NULL;
12452         }
12453
12454         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12455                 task = find_lively_task_by_vpid(pid);
12456                 if (IS_ERR(task)) {
12457                         err = PTR_ERR(task);
12458                         goto err_group_fd;
12459                 }
12460         }
12461
12462         if (task && group_leader &&
12463             group_leader->attr.inherit != attr.inherit) {
12464                 err = -EINVAL;
12465                 goto err_task;
12466         }
12467
12468         if (flags & PERF_FLAG_PID_CGROUP)
12469                 cgroup_fd = pid;
12470
12471         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12472                                  NULL, NULL, cgroup_fd);
12473         if (IS_ERR(event)) {
12474                 err = PTR_ERR(event);
12475                 goto err_task;
12476         }
12477
12478         if (is_sampling_event(event)) {
12479                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12480                         err = -EOPNOTSUPP;
12481                         goto err_alloc;
12482                 }
12483         }
12484
12485         /*
12486          * Special case software events and allow them to be part of
12487          * any hardware group.
12488          */
12489         pmu = event->pmu;
12490
12491         if (attr.use_clockid) {
12492                 err = perf_event_set_clock(event, attr.clockid);
12493                 if (err)
12494                         goto err_alloc;
12495         }
12496
12497         if (pmu->task_ctx_nr == perf_sw_context)
12498                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12499
12500         if (task) {
12501                 err = down_read_interruptible(&task->signal->exec_update_lock);
12502                 if (err)
12503                         goto err_alloc;
12504
12505                 /*
12506                  * We must hold exec_update_lock across this and any potential
12507                  * perf_install_in_context() call for this new event to
12508                  * serialize against exec() altering our credentials (and the
12509                  * perf_event_exit_task() that could imply).
12510                  */
12511                 err = -EACCES;
12512                 if (!perf_check_permission(&attr, task))
12513                         goto err_cred;
12514         }
12515
12516         /*
12517          * Get the target context (task or percpu):
12518          */
12519         ctx = find_get_context(task, event);
12520         if (IS_ERR(ctx)) {
12521                 err = PTR_ERR(ctx);
12522                 goto err_cred;
12523         }
12524
12525         mutex_lock(&ctx->mutex);
12526
12527         if (ctx->task == TASK_TOMBSTONE) {
12528                 err = -ESRCH;
12529                 goto err_locked;
12530         }
12531
12532         if (!task) {
12533                 /*
12534                  * Check if the @cpu we're creating an event for is online.
12535                  *
12536                  * We use the perf_cpu_context::ctx::mutex to serialize against
12537                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12538                  */
12539                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12540
12541                 if (!cpuctx->online) {
12542                         err = -ENODEV;
12543                         goto err_locked;
12544                 }
12545         }
12546
12547         if (group_leader) {
12548                 err = -EINVAL;
12549
12550                 /*
12551                  * Do not allow a recursive hierarchy (this new sibling
12552                  * becoming part of another group-sibling):
12553                  */
12554                 if (group_leader->group_leader != group_leader)
12555                         goto err_locked;
12556
12557                 /* All events in a group should have the same clock */
12558                 if (group_leader->clock != event->clock)
12559                         goto err_locked;
12560
12561                 /*
12562                  * Make sure we're both events for the same CPU;
12563                  * grouping events for different CPUs is broken; since
12564                  * you can never concurrently schedule them anyhow.
12565                  */
12566                 if (group_leader->cpu != event->cpu)
12567                         goto err_locked;
12568
12569                 /*
12570                  * Make sure we're both on the same context; either task or cpu.
12571                  */
12572                 if (group_leader->ctx != ctx)
12573                         goto err_locked;
12574
12575                 /*
12576                  * Only a group leader can be exclusive or pinned
12577                  */
12578                 if (attr.exclusive || attr.pinned)
12579                         goto err_locked;
12580
12581                 if (is_software_event(event) &&
12582                     !in_software_context(group_leader)) {
12583                         /*
12584                          * If the event is a sw event, but the group_leader
12585                          * is on hw context.
12586                          *
12587                          * Allow the addition of software events to hw
12588                          * groups, this is safe because software events
12589                          * never fail to schedule.
12590                          *
12591                          * Note the comment that goes with struct
12592                          * perf_event_pmu_context.
12593                          */
12594                         pmu = group_leader->pmu_ctx->pmu;
12595                 } else if (!is_software_event(event)) {
12596                         if (is_software_event(group_leader) &&
12597                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12598                                 /*
12599                                  * In case the group is a pure software group, and we
12600                                  * try to add a hardware event, move the whole group to
12601                                  * the hardware context.
12602                                  */
12603                                 move_group = 1;
12604                         }
12605
12606                         /* Don't allow group of multiple hw events from different pmus */
12607                         if (!in_software_context(group_leader) &&
12608                             group_leader->pmu_ctx->pmu != pmu)
12609                                 goto err_locked;
12610                 }
12611         }
12612
12613         /*
12614          * Now that we're certain of the pmu; find the pmu_ctx.
12615          */
12616         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12617         if (IS_ERR(pmu_ctx)) {
12618                 err = PTR_ERR(pmu_ctx);
12619                 goto err_locked;
12620         }
12621         event->pmu_ctx = pmu_ctx;
12622
12623         if (output_event) {
12624                 err = perf_event_set_output(event, output_event);
12625                 if (err)
12626                         goto err_context;
12627         }
12628
12629         if (!perf_event_validate_size(event)) {
12630                 err = -E2BIG;
12631                 goto err_context;
12632         }
12633
12634         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12635                 err = -EINVAL;
12636                 goto err_context;
12637         }
12638
12639         /*
12640          * Must be under the same ctx::mutex as perf_install_in_context(),
12641          * because we need to serialize with concurrent event creation.
12642          */
12643         if (!exclusive_event_installable(event, ctx)) {
12644                 err = -EBUSY;
12645                 goto err_context;
12646         }
12647
12648         WARN_ON_ONCE(ctx->parent_ctx);
12649
12650         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12651         if (IS_ERR(event_file)) {
12652                 err = PTR_ERR(event_file);
12653                 event_file = NULL;
12654                 goto err_context;
12655         }
12656
12657         /*
12658          * This is the point on no return; we cannot fail hereafter. This is
12659          * where we start modifying current state.
12660          */
12661
12662         if (move_group) {
12663                 perf_remove_from_context(group_leader, 0);
12664                 put_pmu_ctx(group_leader->pmu_ctx);
12665
12666                 for_each_sibling_event(sibling, group_leader) {
12667                         perf_remove_from_context(sibling, 0);
12668                         put_pmu_ctx(sibling->pmu_ctx);
12669                 }
12670
12671                 /*
12672                  * Install the group siblings before the group leader.
12673                  *
12674                  * Because a group leader will try and install the entire group
12675                  * (through the sibling list, which is still in-tact), we can
12676                  * end up with siblings installed in the wrong context.
12677                  *
12678                  * By installing siblings first we NO-OP because they're not
12679                  * reachable through the group lists.
12680                  */
12681                 for_each_sibling_event(sibling, group_leader) {
12682                         sibling->pmu_ctx = pmu_ctx;
12683                         get_pmu_ctx(pmu_ctx);
12684                         perf_event__state_init(sibling);
12685                         perf_install_in_context(ctx, sibling, sibling->cpu);
12686                 }
12687
12688                 /*
12689                  * Removing from the context ends up with disabled
12690                  * event. What we want here is event in the initial
12691                  * startup state, ready to be add into new context.
12692                  */
12693                 group_leader->pmu_ctx = pmu_ctx;
12694                 get_pmu_ctx(pmu_ctx);
12695                 perf_event__state_init(group_leader);
12696                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12697         }
12698
12699         /*
12700          * Precalculate sample_data sizes; do while holding ctx::mutex such
12701          * that we're serialized against further additions and before
12702          * perf_install_in_context() which is the point the event is active and
12703          * can use these values.
12704          */
12705         perf_event__header_size(event);
12706         perf_event__id_header_size(event);
12707
12708         event->owner = current;
12709
12710         perf_install_in_context(ctx, event, event->cpu);
12711         perf_unpin_context(ctx);
12712
12713         mutex_unlock(&ctx->mutex);
12714
12715         if (task) {
12716                 up_read(&task->signal->exec_update_lock);
12717                 put_task_struct(task);
12718         }
12719
12720         mutex_lock(&current->perf_event_mutex);
12721         list_add_tail(&event->owner_entry, &current->perf_event_list);
12722         mutex_unlock(&current->perf_event_mutex);
12723
12724         /*
12725          * Drop the reference on the group_event after placing the
12726          * new event on the sibling_list. This ensures destruction
12727          * of the group leader will find the pointer to itself in
12728          * perf_group_detach().
12729          */
12730         fdput(group);
12731         fd_install(event_fd, event_file);
12732         return event_fd;
12733
12734 err_context:
12735         put_pmu_ctx(event->pmu_ctx);
12736         event->pmu_ctx = NULL; /* _free_event() */
12737 err_locked:
12738         mutex_unlock(&ctx->mutex);
12739         perf_unpin_context(ctx);
12740         put_ctx(ctx);
12741 err_cred:
12742         if (task)
12743                 up_read(&task->signal->exec_update_lock);
12744 err_alloc:
12745         free_event(event);
12746 err_task:
12747         if (task)
12748                 put_task_struct(task);
12749 err_group_fd:
12750         fdput(group);
12751 err_fd:
12752         put_unused_fd(event_fd);
12753         return err;
12754 }
12755
12756 /**
12757  * perf_event_create_kernel_counter
12758  *
12759  * @attr: attributes of the counter to create
12760  * @cpu: cpu in which the counter is bound
12761  * @task: task to profile (NULL for percpu)
12762  * @overflow_handler: callback to trigger when we hit the event
12763  * @context: context data could be used in overflow_handler callback
12764  */
12765 struct perf_event *
12766 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12767                                  struct task_struct *task,
12768                                  perf_overflow_handler_t overflow_handler,
12769                                  void *context)
12770 {
12771         struct perf_event_pmu_context *pmu_ctx;
12772         struct perf_event_context *ctx;
12773         struct perf_event *event;
12774         struct pmu *pmu;
12775         int err;
12776
12777         /*
12778          * Grouping is not supported for kernel events, neither is 'AUX',
12779          * make sure the caller's intentions are adjusted.
12780          */
12781         if (attr->aux_output)
12782                 return ERR_PTR(-EINVAL);
12783
12784         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12785                                  overflow_handler, context, -1);
12786         if (IS_ERR(event)) {
12787                 err = PTR_ERR(event);
12788                 goto err;
12789         }
12790
12791         /* Mark owner so we could distinguish it from user events. */
12792         event->owner = TASK_TOMBSTONE;
12793         pmu = event->pmu;
12794
12795         if (pmu->task_ctx_nr == perf_sw_context)
12796                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12797
12798         /*
12799          * Get the target context (task or percpu):
12800          */
12801         ctx = find_get_context(task, event);
12802         if (IS_ERR(ctx)) {
12803                 err = PTR_ERR(ctx);
12804                 goto err_alloc;
12805         }
12806
12807         WARN_ON_ONCE(ctx->parent_ctx);
12808         mutex_lock(&ctx->mutex);
12809         if (ctx->task == TASK_TOMBSTONE) {
12810                 err = -ESRCH;
12811                 goto err_unlock;
12812         }
12813
12814         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12815         if (IS_ERR(pmu_ctx)) {
12816                 err = PTR_ERR(pmu_ctx);
12817                 goto err_unlock;
12818         }
12819         event->pmu_ctx = pmu_ctx;
12820
12821         if (!task) {
12822                 /*
12823                  * Check if the @cpu we're creating an event for is online.
12824                  *
12825                  * We use the perf_cpu_context::ctx::mutex to serialize against
12826                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12827                  */
12828                 struct perf_cpu_context *cpuctx =
12829                         container_of(ctx, struct perf_cpu_context, ctx);
12830                 if (!cpuctx->online) {
12831                         err = -ENODEV;
12832                         goto err_pmu_ctx;
12833                 }
12834         }
12835
12836         if (!exclusive_event_installable(event, ctx)) {
12837                 err = -EBUSY;
12838                 goto err_pmu_ctx;
12839         }
12840
12841         perf_install_in_context(ctx, event, event->cpu);
12842         perf_unpin_context(ctx);
12843         mutex_unlock(&ctx->mutex);
12844
12845         return event;
12846
12847 err_pmu_ctx:
12848         put_pmu_ctx(pmu_ctx);
12849         event->pmu_ctx = NULL; /* _free_event() */
12850 err_unlock:
12851         mutex_unlock(&ctx->mutex);
12852         perf_unpin_context(ctx);
12853         put_ctx(ctx);
12854 err_alloc:
12855         free_event(event);
12856 err:
12857         return ERR_PTR(err);
12858 }
12859 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12860
12861 static void __perf_pmu_remove(struct perf_event_context *ctx,
12862                               int cpu, struct pmu *pmu,
12863                               struct perf_event_groups *groups,
12864                               struct list_head *events)
12865 {
12866         struct perf_event *event, *sibling;
12867
12868         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12869                 perf_remove_from_context(event, 0);
12870                 put_pmu_ctx(event->pmu_ctx);
12871                 list_add(&event->migrate_entry, events);
12872
12873                 for_each_sibling_event(sibling, event) {
12874                         perf_remove_from_context(sibling, 0);
12875                         put_pmu_ctx(sibling->pmu_ctx);
12876                         list_add(&sibling->migrate_entry, events);
12877                 }
12878         }
12879 }
12880
12881 static void __perf_pmu_install_event(struct pmu *pmu,
12882                                      struct perf_event_context *ctx,
12883                                      int cpu, struct perf_event *event)
12884 {
12885         struct perf_event_pmu_context *epc;
12886
12887         event->cpu = cpu;
12888         epc = find_get_pmu_context(pmu, ctx, event);
12889         event->pmu_ctx = epc;
12890
12891         if (event->state >= PERF_EVENT_STATE_OFF)
12892                 event->state = PERF_EVENT_STATE_INACTIVE;
12893         perf_install_in_context(ctx, event, cpu);
12894 }
12895
12896 static void __perf_pmu_install(struct perf_event_context *ctx,
12897                                int cpu, struct pmu *pmu, struct list_head *events)
12898 {
12899         struct perf_event *event, *tmp;
12900
12901         /*
12902          * Re-instate events in 2 passes.
12903          *
12904          * Skip over group leaders and only install siblings on this first
12905          * pass, siblings will not get enabled without a leader, however a
12906          * leader will enable its siblings, even if those are still on the old
12907          * context.
12908          */
12909         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12910                 if (event->group_leader == event)
12911                         continue;
12912
12913                 list_del(&event->migrate_entry);
12914                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12915         }
12916
12917         /*
12918          * Once all the siblings are setup properly, install the group leaders
12919          * to make it go.
12920          */
12921         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12922                 list_del(&event->migrate_entry);
12923                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12924         }
12925 }
12926
12927 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12928 {
12929         struct perf_event_context *src_ctx, *dst_ctx;
12930         LIST_HEAD(events);
12931
12932         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12933         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12934
12935         /*
12936          * See perf_event_ctx_lock() for comments on the details
12937          * of swizzling perf_event::ctx.
12938          */
12939         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12940
12941         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
12942         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
12943
12944         if (!list_empty(&events)) {
12945                 /*
12946                  * Wait for the events to quiesce before re-instating them.
12947                  */
12948                 synchronize_rcu();
12949
12950                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
12951         }
12952
12953         mutex_unlock(&dst_ctx->mutex);
12954         mutex_unlock(&src_ctx->mutex);
12955 }
12956 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12957
12958 static void sync_child_event(struct perf_event *child_event)
12959 {
12960         struct perf_event *parent_event = child_event->parent;
12961         u64 child_val;
12962
12963         if (child_event->attr.inherit_stat) {
12964                 struct task_struct *task = child_event->ctx->task;
12965
12966                 if (task && task != TASK_TOMBSTONE)
12967                         perf_event_read_event(child_event, task);
12968         }
12969
12970         child_val = perf_event_count(child_event);
12971
12972         /*
12973          * Add back the child's count to the parent's count:
12974          */
12975         atomic64_add(child_val, &parent_event->child_count);
12976         atomic64_add(child_event->total_time_enabled,
12977                      &parent_event->child_total_time_enabled);
12978         atomic64_add(child_event->total_time_running,
12979                      &parent_event->child_total_time_running);
12980 }
12981
12982 static void
12983 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12984 {
12985         struct perf_event *parent_event = event->parent;
12986         unsigned long detach_flags = 0;
12987
12988         if (parent_event) {
12989                 /*
12990                  * Do not destroy the 'original' grouping; because of the
12991                  * context switch optimization the original events could've
12992                  * ended up in a random child task.
12993                  *
12994                  * If we were to destroy the original group, all group related
12995                  * operations would cease to function properly after this
12996                  * random child dies.
12997                  *
12998                  * Do destroy all inherited groups, we don't care about those
12999                  * and being thorough is better.
13000                  */
13001                 detach_flags = DETACH_GROUP | DETACH_CHILD;
13002                 mutex_lock(&parent_event->child_mutex);
13003         }
13004
13005         perf_remove_from_context(event, detach_flags);
13006
13007         raw_spin_lock_irq(&ctx->lock);
13008         if (event->state > PERF_EVENT_STATE_EXIT)
13009                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13010         raw_spin_unlock_irq(&ctx->lock);
13011
13012         /*
13013          * Child events can be freed.
13014          */
13015         if (parent_event) {
13016                 mutex_unlock(&parent_event->child_mutex);
13017                 /*
13018                  * Kick perf_poll() for is_event_hup();
13019                  */
13020                 perf_event_wakeup(parent_event);
13021                 free_event(event);
13022                 put_event(parent_event);
13023                 return;
13024         }
13025
13026         /*
13027          * Parent events are governed by their filedesc, retain them.
13028          */
13029         perf_event_wakeup(event);
13030 }
13031
13032 static void perf_event_exit_task_context(struct task_struct *child)
13033 {
13034         struct perf_event_context *child_ctx, *clone_ctx = NULL;
13035         struct perf_event *child_event, *next;
13036
13037         WARN_ON_ONCE(child != current);
13038
13039         child_ctx = perf_pin_task_context(child);
13040         if (!child_ctx)
13041                 return;
13042
13043         /*
13044          * In order to reduce the amount of tricky in ctx tear-down, we hold
13045          * ctx::mutex over the entire thing. This serializes against almost
13046          * everything that wants to access the ctx.
13047          *
13048          * The exception is sys_perf_event_open() /
13049          * perf_event_create_kernel_count() which does find_get_context()
13050          * without ctx::mutex (it cannot because of the move_group double mutex
13051          * lock thing). See the comments in perf_install_in_context().
13052          */
13053         mutex_lock(&child_ctx->mutex);
13054
13055         /*
13056          * In a single ctx::lock section, de-schedule the events and detach the
13057          * context from the task such that we cannot ever get it scheduled back
13058          * in.
13059          */
13060         raw_spin_lock_irq(&child_ctx->lock);
13061         task_ctx_sched_out(child_ctx, EVENT_ALL);
13062
13063         /*
13064          * Now that the context is inactive, destroy the task <-> ctx relation
13065          * and mark the context dead.
13066          */
13067         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13068         put_ctx(child_ctx); /* cannot be last */
13069         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13070         put_task_struct(current); /* cannot be last */
13071
13072         clone_ctx = unclone_ctx(child_ctx);
13073         raw_spin_unlock_irq(&child_ctx->lock);
13074
13075         if (clone_ctx)
13076                 put_ctx(clone_ctx);
13077
13078         /*
13079          * Report the task dead after unscheduling the events so that we
13080          * won't get any samples after PERF_RECORD_EXIT. We can however still
13081          * get a few PERF_RECORD_READ events.
13082          */
13083         perf_event_task(child, child_ctx, 0);
13084
13085         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13086                 perf_event_exit_event(child_event, child_ctx);
13087
13088         mutex_unlock(&child_ctx->mutex);
13089
13090         put_ctx(child_ctx);
13091 }
13092
13093 /*
13094  * When a child task exits, feed back event values to parent events.
13095  *
13096  * Can be called with exec_update_lock held when called from
13097  * setup_new_exec().
13098  */
13099 void perf_event_exit_task(struct task_struct *child)
13100 {
13101         struct perf_event *event, *tmp;
13102
13103         mutex_lock(&child->perf_event_mutex);
13104         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13105                                  owner_entry) {
13106                 list_del_init(&event->owner_entry);
13107
13108                 /*
13109                  * Ensure the list deletion is visible before we clear
13110                  * the owner, closes a race against perf_release() where
13111                  * we need to serialize on the owner->perf_event_mutex.
13112                  */
13113                 smp_store_release(&event->owner, NULL);
13114         }
13115         mutex_unlock(&child->perf_event_mutex);
13116
13117         perf_event_exit_task_context(child);
13118
13119         /*
13120          * The perf_event_exit_task_context calls perf_event_task
13121          * with child's task_ctx, which generates EXIT events for
13122          * child contexts and sets child->perf_event_ctxp[] to NULL.
13123          * At this point we need to send EXIT events to cpu contexts.
13124          */
13125         perf_event_task(child, NULL, 0);
13126 }
13127
13128 static void perf_free_event(struct perf_event *event,
13129                             struct perf_event_context *ctx)
13130 {
13131         struct perf_event *parent = event->parent;
13132
13133         if (WARN_ON_ONCE(!parent))
13134                 return;
13135
13136         mutex_lock(&parent->child_mutex);
13137         list_del_init(&event->child_list);
13138         mutex_unlock(&parent->child_mutex);
13139
13140         put_event(parent);
13141
13142         raw_spin_lock_irq(&ctx->lock);
13143         perf_group_detach(event);
13144         list_del_event(event, ctx);
13145         raw_spin_unlock_irq(&ctx->lock);
13146         free_event(event);
13147 }
13148
13149 /*
13150  * Free a context as created by inheritance by perf_event_init_task() below,
13151  * used by fork() in case of fail.
13152  *
13153  * Even though the task has never lived, the context and events have been
13154  * exposed through the child_list, so we must take care tearing it all down.
13155  */
13156 void perf_event_free_task(struct task_struct *task)
13157 {
13158         struct perf_event_context *ctx;
13159         struct perf_event *event, *tmp;
13160
13161         ctx = rcu_access_pointer(task->perf_event_ctxp);
13162         if (!ctx)
13163                 return;
13164
13165         mutex_lock(&ctx->mutex);
13166         raw_spin_lock_irq(&ctx->lock);
13167         /*
13168          * Destroy the task <-> ctx relation and mark the context dead.
13169          *
13170          * This is important because even though the task hasn't been
13171          * exposed yet the context has been (through child_list).
13172          */
13173         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13174         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13175         put_task_struct(task); /* cannot be last */
13176         raw_spin_unlock_irq(&ctx->lock);
13177
13178
13179         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13180                 perf_free_event(event, ctx);
13181
13182         mutex_unlock(&ctx->mutex);
13183
13184         /*
13185          * perf_event_release_kernel() could've stolen some of our
13186          * child events and still have them on its free_list. In that
13187          * case we must wait for these events to have been freed (in
13188          * particular all their references to this task must've been
13189          * dropped).
13190          *
13191          * Without this copy_process() will unconditionally free this
13192          * task (irrespective of its reference count) and
13193          * _free_event()'s put_task_struct(event->hw.target) will be a
13194          * use-after-free.
13195          *
13196          * Wait for all events to drop their context reference.
13197          */
13198         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13199         put_ctx(ctx); /* must be last */
13200 }
13201
13202 void perf_event_delayed_put(struct task_struct *task)
13203 {
13204         WARN_ON_ONCE(task->perf_event_ctxp);
13205 }
13206
13207 struct file *perf_event_get(unsigned int fd)
13208 {
13209         struct file *file = fget(fd);
13210         if (!file)
13211                 return ERR_PTR(-EBADF);
13212
13213         if (file->f_op != &perf_fops) {
13214                 fput(file);
13215                 return ERR_PTR(-EBADF);
13216         }
13217
13218         return file;
13219 }
13220
13221 const struct perf_event *perf_get_event(struct file *file)
13222 {
13223         if (file->f_op != &perf_fops)
13224                 return ERR_PTR(-EINVAL);
13225
13226         return file->private_data;
13227 }
13228
13229 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13230 {
13231         if (!event)
13232                 return ERR_PTR(-EINVAL);
13233
13234         return &event->attr;
13235 }
13236
13237 /*
13238  * Inherit an event from parent task to child task.
13239  *
13240  * Returns:
13241  *  - valid pointer on success
13242  *  - NULL for orphaned events
13243  *  - IS_ERR() on error
13244  */
13245 static struct perf_event *
13246 inherit_event(struct perf_event *parent_event,
13247               struct task_struct *parent,
13248               struct perf_event_context *parent_ctx,
13249               struct task_struct *child,
13250               struct perf_event *group_leader,
13251               struct perf_event_context *child_ctx)
13252 {
13253         enum perf_event_state parent_state = parent_event->state;
13254         struct perf_event_pmu_context *pmu_ctx;
13255         struct perf_event *child_event;
13256         unsigned long flags;
13257
13258         /*
13259          * Instead of creating recursive hierarchies of events,
13260          * we link inherited events back to the original parent,
13261          * which has a filp for sure, which we use as the reference
13262          * count:
13263          */
13264         if (parent_event->parent)
13265                 parent_event = parent_event->parent;
13266
13267         child_event = perf_event_alloc(&parent_event->attr,
13268                                            parent_event->cpu,
13269                                            child,
13270                                            group_leader, parent_event,
13271                                            NULL, NULL, -1);
13272         if (IS_ERR(child_event))
13273                 return child_event;
13274
13275         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13276         if (IS_ERR(pmu_ctx)) {
13277                 free_event(child_event);
13278                 return ERR_CAST(pmu_ctx);
13279         }
13280         child_event->pmu_ctx = pmu_ctx;
13281
13282         /*
13283          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13284          * must be under the same lock in order to serialize against
13285          * perf_event_release_kernel(), such that either we must observe
13286          * is_orphaned_event() or they will observe us on the child_list.
13287          */
13288         mutex_lock(&parent_event->child_mutex);
13289         if (is_orphaned_event(parent_event) ||
13290             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13291                 mutex_unlock(&parent_event->child_mutex);
13292                 /* task_ctx_data is freed with child_ctx */
13293                 free_event(child_event);
13294                 return NULL;
13295         }
13296
13297         get_ctx(child_ctx);
13298
13299         /*
13300          * Make the child state follow the state of the parent event,
13301          * not its attr.disabled bit.  We hold the parent's mutex,
13302          * so we won't race with perf_event_{en, dis}able_family.
13303          */
13304         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13305                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13306         else
13307                 child_event->state = PERF_EVENT_STATE_OFF;
13308
13309         if (parent_event->attr.freq) {
13310                 u64 sample_period = parent_event->hw.sample_period;
13311                 struct hw_perf_event *hwc = &child_event->hw;
13312
13313                 hwc->sample_period = sample_period;
13314                 hwc->last_period   = sample_period;
13315
13316                 local64_set(&hwc->period_left, sample_period);
13317         }
13318
13319         child_event->ctx = child_ctx;
13320         child_event->overflow_handler = parent_event->overflow_handler;
13321         child_event->overflow_handler_context
13322                 = parent_event->overflow_handler_context;
13323
13324         /*
13325          * Precalculate sample_data sizes
13326          */
13327         perf_event__header_size(child_event);
13328         perf_event__id_header_size(child_event);
13329
13330         /*
13331          * Link it up in the child's context:
13332          */
13333         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13334         add_event_to_ctx(child_event, child_ctx);
13335         child_event->attach_state |= PERF_ATTACH_CHILD;
13336         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13337
13338         /*
13339          * Link this into the parent event's child list
13340          */
13341         list_add_tail(&child_event->child_list, &parent_event->child_list);
13342         mutex_unlock(&parent_event->child_mutex);
13343
13344         return child_event;
13345 }
13346
13347 /*
13348  * Inherits an event group.
13349  *
13350  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13351  * This matches with perf_event_release_kernel() removing all child events.
13352  *
13353  * Returns:
13354  *  - 0 on success
13355  *  - <0 on error
13356  */
13357 static int inherit_group(struct perf_event *parent_event,
13358               struct task_struct *parent,
13359               struct perf_event_context *parent_ctx,
13360               struct task_struct *child,
13361               struct perf_event_context *child_ctx)
13362 {
13363         struct perf_event *leader;
13364         struct perf_event *sub;
13365         struct perf_event *child_ctr;
13366
13367         leader = inherit_event(parent_event, parent, parent_ctx,
13368                                  child, NULL, child_ctx);
13369         if (IS_ERR(leader))
13370                 return PTR_ERR(leader);
13371         /*
13372          * @leader can be NULL here because of is_orphaned_event(). In this
13373          * case inherit_event() will create individual events, similar to what
13374          * perf_group_detach() would do anyway.
13375          */
13376         for_each_sibling_event(sub, parent_event) {
13377                 child_ctr = inherit_event(sub, parent, parent_ctx,
13378                                             child, leader, child_ctx);
13379                 if (IS_ERR(child_ctr))
13380                         return PTR_ERR(child_ctr);
13381
13382                 if (sub->aux_event == parent_event && child_ctr &&
13383                     !perf_get_aux_event(child_ctr, leader))
13384                         return -EINVAL;
13385         }
13386         if (leader)
13387                 leader->group_generation = parent_event->group_generation;
13388         return 0;
13389 }
13390
13391 /*
13392  * Creates the child task context and tries to inherit the event-group.
13393  *
13394  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13395  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13396  * consistent with perf_event_release_kernel() removing all child events.
13397  *
13398  * Returns:
13399  *  - 0 on success
13400  *  - <0 on error
13401  */
13402 static int
13403 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13404                    struct perf_event_context *parent_ctx,
13405                    struct task_struct *child,
13406                    u64 clone_flags, int *inherited_all)
13407 {
13408         struct perf_event_context *child_ctx;
13409         int ret;
13410
13411         if (!event->attr.inherit ||
13412             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13413             /* Do not inherit if sigtrap and signal handlers were cleared. */
13414             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13415                 *inherited_all = 0;
13416                 return 0;
13417         }
13418
13419         child_ctx = child->perf_event_ctxp;
13420         if (!child_ctx) {
13421                 /*
13422                  * This is executed from the parent task context, so
13423                  * inherit events that have been marked for cloning.
13424                  * First allocate and initialize a context for the
13425                  * child.
13426                  */
13427                 child_ctx = alloc_perf_context(child);
13428                 if (!child_ctx)
13429                         return -ENOMEM;
13430
13431                 child->perf_event_ctxp = child_ctx;
13432         }
13433
13434         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13435         if (ret)
13436                 *inherited_all = 0;
13437
13438         return ret;
13439 }
13440
13441 /*
13442  * Initialize the perf_event context in task_struct
13443  */
13444 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13445 {
13446         struct perf_event_context *child_ctx, *parent_ctx;
13447         struct perf_event_context *cloned_ctx;
13448         struct perf_event *event;
13449         struct task_struct *parent = current;
13450         int inherited_all = 1;
13451         unsigned long flags;
13452         int ret = 0;
13453
13454         if (likely(!parent->perf_event_ctxp))
13455                 return 0;
13456
13457         /*
13458          * If the parent's context is a clone, pin it so it won't get
13459          * swapped under us.
13460          */
13461         parent_ctx = perf_pin_task_context(parent);
13462         if (!parent_ctx)
13463                 return 0;
13464
13465         /*
13466          * No need to check if parent_ctx != NULL here; since we saw
13467          * it non-NULL earlier, the only reason for it to become NULL
13468          * is if we exit, and since we're currently in the middle of
13469          * a fork we can't be exiting at the same time.
13470          */
13471
13472         /*
13473          * Lock the parent list. No need to lock the child - not PID
13474          * hashed yet and not running, so nobody can access it.
13475          */
13476         mutex_lock(&parent_ctx->mutex);
13477
13478         /*
13479          * We dont have to disable NMIs - we are only looking at
13480          * the list, not manipulating it:
13481          */
13482         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13483                 ret = inherit_task_group(event, parent, parent_ctx,
13484                                          child, clone_flags, &inherited_all);
13485                 if (ret)
13486                         goto out_unlock;
13487         }
13488
13489         /*
13490          * We can't hold ctx->lock when iterating the ->flexible_group list due
13491          * to allocations, but we need to prevent rotation because
13492          * rotate_ctx() will change the list from interrupt context.
13493          */
13494         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13495         parent_ctx->rotate_disable = 1;
13496         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13497
13498         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13499                 ret = inherit_task_group(event, parent, parent_ctx,
13500                                          child, clone_flags, &inherited_all);
13501                 if (ret)
13502                         goto out_unlock;
13503         }
13504
13505         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13506         parent_ctx->rotate_disable = 0;
13507
13508         child_ctx = child->perf_event_ctxp;
13509
13510         if (child_ctx && inherited_all) {
13511                 /*
13512                  * Mark the child context as a clone of the parent
13513                  * context, or of whatever the parent is a clone of.
13514                  *
13515                  * Note that if the parent is a clone, the holding of
13516                  * parent_ctx->lock avoids it from being uncloned.
13517                  */
13518                 cloned_ctx = parent_ctx->parent_ctx;
13519                 if (cloned_ctx) {
13520                         child_ctx->parent_ctx = cloned_ctx;
13521                         child_ctx->parent_gen = parent_ctx->parent_gen;
13522                 } else {
13523                         child_ctx->parent_ctx = parent_ctx;
13524                         child_ctx->parent_gen = parent_ctx->generation;
13525                 }
13526                 get_ctx(child_ctx->parent_ctx);
13527         }
13528
13529         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13530 out_unlock:
13531         mutex_unlock(&parent_ctx->mutex);
13532
13533         perf_unpin_context(parent_ctx);
13534         put_ctx(parent_ctx);
13535
13536         return ret;
13537 }
13538
13539 /*
13540  * Initialize the perf_event context in task_struct
13541  */
13542 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13543 {
13544         int ret;
13545
13546         child->perf_event_ctxp = NULL;
13547         mutex_init(&child->perf_event_mutex);
13548         INIT_LIST_HEAD(&child->perf_event_list);
13549
13550         ret = perf_event_init_context(child, clone_flags);
13551         if (ret) {
13552                 perf_event_free_task(child);
13553                 return ret;
13554         }
13555
13556         return 0;
13557 }
13558
13559 static void __init perf_event_init_all_cpus(void)
13560 {
13561         struct swevent_htable *swhash;
13562         struct perf_cpu_context *cpuctx;
13563         int cpu;
13564
13565         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13566
13567         for_each_possible_cpu(cpu) {
13568                 swhash = &per_cpu(swevent_htable, cpu);
13569                 mutex_init(&swhash->hlist_mutex);
13570
13571                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13572                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13573
13574                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13575
13576                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13577                 __perf_event_init_context(&cpuctx->ctx);
13578                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13579                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13580                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13581                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13582                 cpuctx->heap = cpuctx->heap_default;
13583         }
13584 }
13585
13586 static void perf_swevent_init_cpu(unsigned int cpu)
13587 {
13588         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13589
13590         mutex_lock(&swhash->hlist_mutex);
13591         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13592                 struct swevent_hlist *hlist;
13593
13594                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13595                 WARN_ON(!hlist);
13596                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13597         }
13598         mutex_unlock(&swhash->hlist_mutex);
13599 }
13600
13601 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13602 static void __perf_event_exit_context(void *__info)
13603 {
13604         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13605         struct perf_event_context *ctx = __info;
13606         struct perf_event *event;
13607
13608         raw_spin_lock(&ctx->lock);
13609         ctx_sched_out(ctx, EVENT_TIME);
13610         list_for_each_entry(event, &ctx->event_list, event_entry)
13611                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13612         raw_spin_unlock(&ctx->lock);
13613 }
13614
13615 static void perf_event_exit_cpu_context(int cpu)
13616 {
13617         struct perf_cpu_context *cpuctx;
13618         struct perf_event_context *ctx;
13619
13620         // XXX simplify cpuctx->online
13621         mutex_lock(&pmus_lock);
13622         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13623         ctx = &cpuctx->ctx;
13624
13625         mutex_lock(&ctx->mutex);
13626         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13627         cpuctx->online = 0;
13628         mutex_unlock(&ctx->mutex);
13629         cpumask_clear_cpu(cpu, perf_online_mask);
13630         mutex_unlock(&pmus_lock);
13631 }
13632 #else
13633
13634 static void perf_event_exit_cpu_context(int cpu) { }
13635
13636 #endif
13637
13638 int perf_event_init_cpu(unsigned int cpu)
13639 {
13640         struct perf_cpu_context *cpuctx;
13641         struct perf_event_context *ctx;
13642
13643         perf_swevent_init_cpu(cpu);
13644
13645         mutex_lock(&pmus_lock);
13646         cpumask_set_cpu(cpu, perf_online_mask);
13647         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13648         ctx = &cpuctx->ctx;
13649
13650         mutex_lock(&ctx->mutex);
13651         cpuctx->online = 1;
13652         mutex_unlock(&ctx->mutex);
13653         mutex_unlock(&pmus_lock);
13654
13655         return 0;
13656 }
13657
13658 int perf_event_exit_cpu(unsigned int cpu)
13659 {
13660         perf_event_exit_cpu_context(cpu);
13661         return 0;
13662 }
13663
13664 static int
13665 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13666 {
13667         int cpu;
13668
13669         for_each_online_cpu(cpu)
13670                 perf_event_exit_cpu(cpu);
13671
13672         return NOTIFY_OK;
13673 }
13674
13675 /*
13676  * Run the perf reboot notifier at the very last possible moment so that
13677  * the generic watchdog code runs as long as possible.
13678  */
13679 static struct notifier_block perf_reboot_notifier = {
13680         .notifier_call = perf_reboot,
13681         .priority = INT_MIN,
13682 };
13683
13684 void __init perf_event_init(void)
13685 {
13686         int ret;
13687
13688         idr_init(&pmu_idr);
13689
13690         perf_event_init_all_cpus();
13691         init_srcu_struct(&pmus_srcu);
13692         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13693         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13694         perf_pmu_register(&perf_task_clock, "task_clock", -1);
13695         perf_tp_register();
13696         perf_event_init_cpu(smp_processor_id());
13697         register_reboot_notifier(&perf_reboot_notifier);
13698
13699         ret = init_hw_breakpoint();
13700         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13701
13702         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13703
13704         /*
13705          * Build time assertion that we keep the data_head at the intended
13706          * location.  IOW, validation we got the __reserved[] size right.
13707          */
13708         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13709                      != 1024);
13710 }
13711
13712 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13713                               char *page)
13714 {
13715         struct perf_pmu_events_attr *pmu_attr =
13716                 container_of(attr, struct perf_pmu_events_attr, attr);
13717
13718         if (pmu_attr->event_str)
13719                 return sprintf(page, "%s\n", pmu_attr->event_str);
13720
13721         return 0;
13722 }
13723 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13724
13725 static int __init perf_event_sysfs_init(void)
13726 {
13727         struct pmu *pmu;
13728         int ret;
13729
13730         mutex_lock(&pmus_lock);
13731
13732         ret = bus_register(&pmu_bus);
13733         if (ret)
13734                 goto unlock;
13735
13736         list_for_each_entry(pmu, &pmus, entry) {
13737                 if (pmu->dev)
13738                         continue;
13739
13740                 ret = pmu_dev_alloc(pmu);
13741                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13742         }
13743         pmu_bus_running = 1;
13744         ret = 0;
13745
13746 unlock:
13747         mutex_unlock(&pmus_lock);
13748
13749         return ret;
13750 }
13751 device_initcall(perf_event_sysfs_init);
13752
13753 #ifdef CONFIG_CGROUP_PERF
13754 static struct cgroup_subsys_state *
13755 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13756 {
13757         struct perf_cgroup *jc;
13758
13759         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13760         if (!jc)
13761                 return ERR_PTR(-ENOMEM);
13762
13763         jc->info = alloc_percpu(struct perf_cgroup_info);
13764         if (!jc->info) {
13765                 kfree(jc);
13766                 return ERR_PTR(-ENOMEM);
13767         }
13768
13769         return &jc->css;
13770 }
13771
13772 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13773 {
13774         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13775
13776         free_percpu(jc->info);
13777         kfree(jc);
13778 }
13779
13780 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13781 {
13782         perf_event_cgroup(css->cgroup);
13783         return 0;
13784 }
13785
13786 static int __perf_cgroup_move(void *info)
13787 {
13788         struct task_struct *task = info;
13789
13790         preempt_disable();
13791         perf_cgroup_switch(task);
13792         preempt_enable();
13793
13794         return 0;
13795 }
13796
13797 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13798 {
13799         struct task_struct *task;
13800         struct cgroup_subsys_state *css;
13801
13802         cgroup_taskset_for_each(task, css, tset)
13803                 task_function_call(task, __perf_cgroup_move, task);
13804 }
13805
13806 struct cgroup_subsys perf_event_cgrp_subsys = {
13807         .css_alloc      = perf_cgroup_css_alloc,
13808         .css_free       = perf_cgroup_css_free,
13809         .css_online     = perf_cgroup_css_online,
13810         .attach         = perf_cgroup_attach,
13811         /*
13812          * Implicitly enable on dfl hierarchy so that perf events can
13813          * always be filtered by cgroup2 path as long as perf_event
13814          * controller is not mounted on a legacy hierarchy.
13815          */
13816         .implicit_on_dfl = true,
13817         .threaded       = true,
13818 };
13819 #endif /* CONFIG_CGROUP_PERF */
13820
13821 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);