GNU Linux-libre 4.14.328-gnu1
[releases.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         WARN_ON_ONCE(!irqs_disabled());
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         WARN_ON_ONCE(!irqs_disabled());
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 #ifdef CONFIG_CGROUP_PERF
592
593 static inline bool
594 perf_cgroup_match(struct perf_event *event)
595 {
596         struct perf_event_context *ctx = event->ctx;
597         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
598
599         /* @event doesn't care about cgroup */
600         if (!event->cgrp)
601                 return true;
602
603         /* wants specific cgroup scope but @cpuctx isn't associated with any */
604         if (!cpuctx->cgrp)
605                 return false;
606
607         /*
608          * Cgroup scoping is recursive.  An event enabled for a cgroup is
609          * also enabled for all its descendant cgroups.  If @cpuctx's
610          * cgroup is a descendant of @event's (the test covers identity
611          * case), it's a match.
612          */
613         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
614                                     event->cgrp->css.cgroup);
615 }
616
617 static inline void perf_detach_cgroup(struct perf_event *event)
618 {
619         css_put(&event->cgrp->css);
620         event->cgrp = NULL;
621 }
622
623 static inline int is_cgroup_event(struct perf_event *event)
624 {
625         return event->cgrp != NULL;
626 }
627
628 static inline u64 perf_cgroup_event_time(struct perf_event *event)
629 {
630         struct perf_cgroup_info *t;
631
632         t = per_cpu_ptr(event->cgrp->info, event->cpu);
633         return t->time;
634 }
635
636 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
637 {
638         struct perf_cgroup_info *info;
639         u64 now;
640
641         now = perf_clock();
642
643         info = this_cpu_ptr(cgrp->info);
644
645         info->time += now - info->timestamp;
646         info->timestamp = now;
647 }
648
649 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
650 {
651         struct perf_cgroup *cgrp = cpuctx->cgrp;
652         struct cgroup_subsys_state *css;
653
654         if (cgrp) {
655                 for (css = &cgrp->css; css; css = css->parent) {
656                         cgrp = container_of(css, struct perf_cgroup, css);
657                         __update_cgrp_time(cgrp);
658                 }
659         }
660 }
661
662 static inline void update_cgrp_time_from_event(struct perf_event *event)
663 {
664         struct perf_cgroup *cgrp;
665
666         /*
667          * ensure we access cgroup data only when needed and
668          * when we know the cgroup is pinned (css_get)
669          */
670         if (!is_cgroup_event(event))
671                 return;
672
673         cgrp = perf_cgroup_from_task(current, event->ctx);
674         /*
675          * Do not update time when cgroup is not active
676          */
677        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
678                 __update_cgrp_time(event->cgrp);
679 }
680
681 static inline void
682 perf_cgroup_set_timestamp(struct task_struct *task,
683                           struct perf_event_context *ctx)
684 {
685         struct perf_cgroup *cgrp;
686         struct perf_cgroup_info *info;
687         struct cgroup_subsys_state *css;
688
689         /*
690          * ctx->lock held by caller
691          * ensure we do not access cgroup data
692          * unless we have the cgroup pinned (css_get)
693          */
694         if (!task || !ctx->nr_cgroups)
695                 return;
696
697         cgrp = perf_cgroup_from_task(task, ctx);
698
699         for (css = &cgrp->css; css; css = css->parent) {
700                 cgrp = container_of(css, struct perf_cgroup, css);
701                 info = this_cpu_ptr(cgrp->info);
702                 info->timestamp = ctx->timestamp;
703         }
704 }
705
706 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
707
708 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
709 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
710
711 /*
712  * reschedule events based on the cgroup constraint of task.
713  *
714  * mode SWOUT : schedule out everything
715  * mode SWIN : schedule in based on cgroup for next
716  */
717 static void perf_cgroup_switch(struct task_struct *task, int mode)
718 {
719         struct perf_cpu_context *cpuctx, *tmp;
720         struct list_head *list;
721         unsigned long flags;
722
723         /*
724          * Disable interrupts and preemption to avoid this CPU's
725          * cgrp_cpuctx_entry to change under us.
726          */
727         local_irq_save(flags);
728
729         list = this_cpu_ptr(&cgrp_cpuctx_list);
730         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
731                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
732
733                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
734                 perf_pmu_disable(cpuctx->ctx.pmu);
735
736                 if (mode & PERF_CGROUP_SWOUT) {
737                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
738                         /*
739                          * must not be done before ctxswout due
740                          * to event_filter_match() in event_sched_out()
741                          */
742                         cpuctx->cgrp = NULL;
743                 }
744
745                 if (mode & PERF_CGROUP_SWIN) {
746                         WARN_ON_ONCE(cpuctx->cgrp);
747                         /*
748                          * set cgrp before ctxsw in to allow
749                          * event_filter_match() to not have to pass
750                          * task around
751                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
752                          * because cgorup events are only per-cpu
753                          */
754                         cpuctx->cgrp = perf_cgroup_from_task(task,
755                                                              &cpuctx->ctx);
756                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
757                 }
758                 perf_pmu_enable(cpuctx->ctx.pmu);
759                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
760         }
761
762         local_irq_restore(flags);
763 }
764
765 static inline void perf_cgroup_sched_out(struct task_struct *task,
766                                          struct task_struct *next)
767 {
768         struct perf_cgroup *cgrp1;
769         struct perf_cgroup *cgrp2 = NULL;
770
771         rcu_read_lock();
772         /*
773          * we come here when we know perf_cgroup_events > 0
774          * we do not need to pass the ctx here because we know
775          * we are holding the rcu lock
776          */
777         cgrp1 = perf_cgroup_from_task(task, NULL);
778         cgrp2 = perf_cgroup_from_task(next, NULL);
779
780         /*
781          * only schedule out current cgroup events if we know
782          * that we are switching to a different cgroup. Otherwise,
783          * do no touch the cgroup events.
784          */
785         if (cgrp1 != cgrp2)
786                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
787
788         rcu_read_unlock();
789 }
790
791 static inline void perf_cgroup_sched_in(struct task_struct *prev,
792                                         struct task_struct *task)
793 {
794         struct perf_cgroup *cgrp1;
795         struct perf_cgroup *cgrp2 = NULL;
796
797         rcu_read_lock();
798         /*
799          * we come here when we know perf_cgroup_events > 0
800          * we do not need to pass the ctx here because we know
801          * we are holding the rcu lock
802          */
803         cgrp1 = perf_cgroup_from_task(task, NULL);
804         cgrp2 = perf_cgroup_from_task(prev, NULL);
805
806         /*
807          * only need to schedule in cgroup events if we are changing
808          * cgroup during ctxsw. Cgroup events were not scheduled
809          * out of ctxsw out if that was not the case.
810          */
811         if (cgrp1 != cgrp2)
812                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
813
814         rcu_read_unlock();
815 }
816
817 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
818                                       struct perf_event_attr *attr,
819                                       struct perf_event *group_leader)
820 {
821         struct perf_cgroup *cgrp;
822         struct cgroup_subsys_state *css;
823         struct fd f = fdget(fd);
824         int ret = 0;
825
826         if (!f.file)
827                 return -EBADF;
828
829         css = css_tryget_online_from_dir(f.file->f_path.dentry,
830                                          &perf_event_cgrp_subsys);
831         if (IS_ERR(css)) {
832                 ret = PTR_ERR(css);
833                 goto out;
834         }
835
836         cgrp = container_of(css, struct perf_cgroup, css);
837         event->cgrp = cgrp;
838
839         /*
840          * all events in a group must monitor
841          * the same cgroup because a task belongs
842          * to only one perf cgroup at a time
843          */
844         if (group_leader && group_leader->cgrp != cgrp) {
845                 perf_detach_cgroup(event);
846                 ret = -EINVAL;
847         }
848 out:
849         fdput(f);
850         return ret;
851 }
852
853 static inline void
854 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
855 {
856         struct perf_cgroup_info *t;
857         t = per_cpu_ptr(event->cgrp->info, event->cpu);
858         event->shadow_ctx_time = now - t->timestamp;
859 }
860
861 static inline void
862 perf_cgroup_defer_enabled(struct perf_event *event)
863 {
864         /*
865          * when the current task's perf cgroup does not match
866          * the event's, we need to remember to call the
867          * perf_mark_enable() function the first time a task with
868          * a matching perf cgroup is scheduled in.
869          */
870         if (is_cgroup_event(event) && !perf_cgroup_match(event))
871                 event->cgrp_defer_enabled = 1;
872 }
873
874 static inline void
875 perf_cgroup_mark_enabled(struct perf_event *event,
876                          struct perf_event_context *ctx)
877 {
878         struct perf_event *sub;
879         u64 tstamp = perf_event_time(event);
880
881         if (!event->cgrp_defer_enabled)
882                 return;
883
884         event->cgrp_defer_enabled = 0;
885
886         event->tstamp_enabled = tstamp - event->total_time_enabled;
887         list_for_each_entry(sub, &event->sibling_list, group_entry) {
888                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
889                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
890                         sub->cgrp_defer_enabled = 0;
891                 }
892         }
893 }
894
895 /*
896  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
897  * cleared when last cgroup event is removed.
898  */
899 static inline void
900 list_update_cgroup_event(struct perf_event *event,
901                          struct perf_event_context *ctx, bool add)
902 {
903         struct perf_cpu_context *cpuctx;
904         struct list_head *cpuctx_entry;
905
906         if (!is_cgroup_event(event))
907                 return;
908
909         /*
910          * Because cgroup events are always per-cpu events,
911          * this will always be called from the right CPU.
912          */
913         cpuctx = __get_cpu_context(ctx);
914
915         /*
916          * Since setting cpuctx->cgrp is conditional on the current @cgrp
917          * matching the event's cgroup, we must do this for every new event,
918          * because if the first would mismatch, the second would not try again
919          * and we would leave cpuctx->cgrp unset.
920          */
921         if (add && !cpuctx->cgrp) {
922                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
923
924                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
925                         cpuctx->cgrp = cgrp;
926         }
927
928         if (add && ctx->nr_cgroups++)
929                 return;
930         else if (!add && --ctx->nr_cgroups)
931                 return;
932
933         /* no cgroup running */
934         if (!add)
935                 cpuctx->cgrp = NULL;
936
937         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
938         if (add)
939                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
940         else
941                 list_del(cpuctx_entry);
942 }
943
944 #else /* !CONFIG_CGROUP_PERF */
945
946 static inline bool
947 perf_cgroup_match(struct perf_event *event)
948 {
949         return true;
950 }
951
952 static inline void perf_detach_cgroup(struct perf_event *event)
953 {}
954
955 static inline int is_cgroup_event(struct perf_event *event)
956 {
957         return 0;
958 }
959
960 static inline void update_cgrp_time_from_event(struct perf_event *event)
961 {
962 }
963
964 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
965 {
966 }
967
968 static inline void perf_cgroup_sched_out(struct task_struct *task,
969                                          struct task_struct *next)
970 {
971 }
972
973 static inline void perf_cgroup_sched_in(struct task_struct *prev,
974                                         struct task_struct *task)
975 {
976 }
977
978 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
979                                       struct perf_event_attr *attr,
980                                       struct perf_event *group_leader)
981 {
982         return -EINVAL;
983 }
984
985 static inline void
986 perf_cgroup_set_timestamp(struct task_struct *task,
987                           struct perf_event_context *ctx)
988 {
989 }
990
991 void
992 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
993 {
994 }
995
996 static inline void
997 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
998 {
999 }
1000
1001 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1002 {
1003         return 0;
1004 }
1005
1006 static inline void
1007 perf_cgroup_defer_enabled(struct perf_event *event)
1008 {
1009 }
1010
1011 static inline void
1012 perf_cgroup_mark_enabled(struct perf_event *event,
1013                          struct perf_event_context *ctx)
1014 {
1015 }
1016
1017 static inline void
1018 list_update_cgroup_event(struct perf_event *event,
1019                          struct perf_event_context *ctx, bool add)
1020 {
1021 }
1022
1023 #endif
1024
1025 /*
1026  * set default to be dependent on timer tick just
1027  * like original code
1028  */
1029 #define PERF_CPU_HRTIMER (1000 / HZ)
1030 /*
1031  * function must be called with interrupts disabled
1032  */
1033 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1034 {
1035         struct perf_cpu_context *cpuctx;
1036         int rotations = 0;
1037
1038         WARN_ON(!irqs_disabled());
1039
1040         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1041         rotations = perf_rotate_context(cpuctx);
1042
1043         raw_spin_lock(&cpuctx->hrtimer_lock);
1044         if (rotations)
1045                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1046         else
1047                 cpuctx->hrtimer_active = 0;
1048         raw_spin_unlock(&cpuctx->hrtimer_lock);
1049
1050         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1051 }
1052
1053 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1054 {
1055         struct hrtimer *timer = &cpuctx->hrtimer;
1056         struct pmu *pmu = cpuctx->ctx.pmu;
1057         u64 interval;
1058
1059         /* no multiplexing needed for SW PMU */
1060         if (pmu->task_ctx_nr == perf_sw_context)
1061                 return;
1062
1063         /*
1064          * check default is sane, if not set then force to
1065          * default interval (1/tick)
1066          */
1067         interval = pmu->hrtimer_interval_ms;
1068         if (interval < 1)
1069                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1070
1071         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1072
1073         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1074         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1075         timer->function = perf_mux_hrtimer_handler;
1076 }
1077
1078 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1079 {
1080         struct hrtimer *timer = &cpuctx->hrtimer;
1081         struct pmu *pmu = cpuctx->ctx.pmu;
1082         unsigned long flags;
1083
1084         /* not for SW PMU */
1085         if (pmu->task_ctx_nr == perf_sw_context)
1086                 return 0;
1087
1088         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1089         if (!cpuctx->hrtimer_active) {
1090                 cpuctx->hrtimer_active = 1;
1091                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1092                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1093         }
1094         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1095
1096         return 0;
1097 }
1098
1099 static int perf_mux_hrtimer_restart_ipi(void *arg)
1100 {
1101         return perf_mux_hrtimer_restart(arg);
1102 }
1103
1104 void perf_pmu_disable(struct pmu *pmu)
1105 {
1106         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1107         if (!(*count)++)
1108                 pmu->pmu_disable(pmu);
1109 }
1110
1111 void perf_pmu_enable(struct pmu *pmu)
1112 {
1113         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1114         if (!--(*count))
1115                 pmu->pmu_enable(pmu);
1116 }
1117
1118 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1119
1120 /*
1121  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1122  * perf_event_task_tick() are fully serialized because they're strictly cpu
1123  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1124  * disabled, while perf_event_task_tick is called from IRQ context.
1125  */
1126 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1127 {
1128         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1129
1130         WARN_ON(!irqs_disabled());
1131
1132         WARN_ON(!list_empty(&ctx->active_ctx_list));
1133
1134         list_add(&ctx->active_ctx_list, head);
1135 }
1136
1137 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1138 {
1139         WARN_ON(!irqs_disabled());
1140
1141         WARN_ON(list_empty(&ctx->active_ctx_list));
1142
1143         list_del_init(&ctx->active_ctx_list);
1144 }
1145
1146 static void get_ctx(struct perf_event_context *ctx)
1147 {
1148         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1149 }
1150
1151 static void free_ctx(struct rcu_head *head)
1152 {
1153         struct perf_event_context *ctx;
1154
1155         ctx = container_of(head, struct perf_event_context, rcu_head);
1156         kfree(ctx->task_ctx_data);
1157         kfree(ctx);
1158 }
1159
1160 static void put_ctx(struct perf_event_context *ctx)
1161 {
1162         if (atomic_dec_and_test(&ctx->refcount)) {
1163                 if (ctx->parent_ctx)
1164                         put_ctx(ctx->parent_ctx);
1165                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1166                         put_task_struct(ctx->task);
1167                 call_rcu(&ctx->rcu_head, free_ctx);
1168         }
1169 }
1170
1171 /*
1172  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1173  * perf_pmu_migrate_context() we need some magic.
1174  *
1175  * Those places that change perf_event::ctx will hold both
1176  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1177  *
1178  * Lock ordering is by mutex address. There are two other sites where
1179  * perf_event_context::mutex nests and those are:
1180  *
1181  *  - perf_event_exit_task_context()    [ child , 0 ]
1182  *      perf_event_exit_event()
1183  *        put_event()                   [ parent, 1 ]
1184  *
1185  *  - perf_event_init_context()         [ parent, 0 ]
1186  *      inherit_task_group()
1187  *        inherit_group()
1188  *          inherit_event()
1189  *            perf_event_alloc()
1190  *              perf_init_event()
1191  *                perf_try_init_event() [ child , 1 ]
1192  *
1193  * While it appears there is an obvious deadlock here -- the parent and child
1194  * nesting levels are inverted between the two. This is in fact safe because
1195  * life-time rules separate them. That is an exiting task cannot fork, and a
1196  * spawning task cannot (yet) exit.
1197  *
1198  * But remember that that these are parent<->child context relations, and
1199  * migration does not affect children, therefore these two orderings should not
1200  * interact.
1201  *
1202  * The change in perf_event::ctx does not affect children (as claimed above)
1203  * because the sys_perf_event_open() case will install a new event and break
1204  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1205  * concerned with cpuctx and that doesn't have children.
1206  *
1207  * The places that change perf_event::ctx will issue:
1208  *
1209  *   perf_remove_from_context();
1210  *   synchronize_rcu();
1211  *   perf_install_in_context();
1212  *
1213  * to affect the change. The remove_from_context() + synchronize_rcu() should
1214  * quiesce the event, after which we can install it in the new location. This
1215  * means that only external vectors (perf_fops, prctl) can perturb the event
1216  * while in transit. Therefore all such accessors should also acquire
1217  * perf_event_context::mutex to serialize against this.
1218  *
1219  * However; because event->ctx can change while we're waiting to acquire
1220  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1221  * function.
1222  *
1223  * Lock order:
1224  *    cred_guard_mutex
1225  *      task_struct::perf_event_mutex
1226  *        perf_event_context::mutex
1227  *          perf_event::child_mutex;
1228  *            perf_event_context::lock
1229  *          perf_event::mmap_mutex
1230  *          mmap_sem
1231  */
1232 static struct perf_event_context *
1233 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1234 {
1235         struct perf_event_context *ctx;
1236
1237 again:
1238         rcu_read_lock();
1239         ctx = ACCESS_ONCE(event->ctx);
1240         if (!atomic_inc_not_zero(&ctx->refcount)) {
1241                 rcu_read_unlock();
1242                 goto again;
1243         }
1244         rcu_read_unlock();
1245
1246         mutex_lock_nested(&ctx->mutex, nesting);
1247         if (event->ctx != ctx) {
1248                 mutex_unlock(&ctx->mutex);
1249                 put_ctx(ctx);
1250                 goto again;
1251         }
1252
1253         return ctx;
1254 }
1255
1256 static inline struct perf_event_context *
1257 perf_event_ctx_lock(struct perf_event *event)
1258 {
1259         return perf_event_ctx_lock_nested(event, 0);
1260 }
1261
1262 static void perf_event_ctx_unlock(struct perf_event *event,
1263                                   struct perf_event_context *ctx)
1264 {
1265         mutex_unlock(&ctx->mutex);
1266         put_ctx(ctx);
1267 }
1268
1269 /*
1270  * This must be done under the ctx->lock, such as to serialize against
1271  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1272  * calling scheduler related locks and ctx->lock nests inside those.
1273  */
1274 static __must_check struct perf_event_context *
1275 unclone_ctx(struct perf_event_context *ctx)
1276 {
1277         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1278
1279         lockdep_assert_held(&ctx->lock);
1280
1281         if (parent_ctx)
1282                 ctx->parent_ctx = NULL;
1283         ctx->generation++;
1284
1285         return parent_ctx;
1286 }
1287
1288 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1289                                 enum pid_type type)
1290 {
1291         u32 nr;
1292         /*
1293          * only top level events have the pid namespace they were created in
1294          */
1295         if (event->parent)
1296                 event = event->parent;
1297
1298         nr = __task_pid_nr_ns(p, type, event->ns);
1299         /* avoid -1 if it is idle thread or runs in another ns */
1300         if (!nr && !pid_alive(p))
1301                 nr = -1;
1302         return nr;
1303 }
1304
1305 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1306 {
1307         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1308 }
1309
1310 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1311 {
1312         return perf_event_pid_type(event, p, PIDTYPE_PID);
1313 }
1314
1315 /*
1316  * If we inherit events we want to return the parent event id
1317  * to userspace.
1318  */
1319 static u64 primary_event_id(struct perf_event *event)
1320 {
1321         u64 id = event->id;
1322
1323         if (event->parent)
1324                 id = event->parent->id;
1325
1326         return id;
1327 }
1328
1329 /*
1330  * Get the perf_event_context for a task and lock it.
1331  *
1332  * This has to cope with with the fact that until it is locked,
1333  * the context could get moved to another task.
1334  */
1335 static struct perf_event_context *
1336 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1337 {
1338         struct perf_event_context *ctx;
1339
1340 retry:
1341         /*
1342          * One of the few rules of preemptible RCU is that one cannot do
1343          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1344          * part of the read side critical section was irqs-enabled -- see
1345          * rcu_read_unlock_special().
1346          *
1347          * Since ctx->lock nests under rq->lock we must ensure the entire read
1348          * side critical section has interrupts disabled.
1349          */
1350         local_irq_save(*flags);
1351         rcu_read_lock();
1352         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1353         if (ctx) {
1354                 /*
1355                  * If this context is a clone of another, it might
1356                  * get swapped for another underneath us by
1357                  * perf_event_task_sched_out, though the
1358                  * rcu_read_lock() protects us from any context
1359                  * getting freed.  Lock the context and check if it
1360                  * got swapped before we could get the lock, and retry
1361                  * if so.  If we locked the right context, then it
1362                  * can't get swapped on us any more.
1363                  */
1364                 raw_spin_lock(&ctx->lock);
1365                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1366                         raw_spin_unlock(&ctx->lock);
1367                         rcu_read_unlock();
1368                         local_irq_restore(*flags);
1369                         goto retry;
1370                 }
1371
1372                 if (ctx->task == TASK_TOMBSTONE ||
1373                     !atomic_inc_not_zero(&ctx->refcount)) {
1374                         raw_spin_unlock(&ctx->lock);
1375                         ctx = NULL;
1376                 } else {
1377                         WARN_ON_ONCE(ctx->task != task);
1378                 }
1379         }
1380         rcu_read_unlock();
1381         if (!ctx)
1382                 local_irq_restore(*flags);
1383         return ctx;
1384 }
1385
1386 /*
1387  * Get the context for a task and increment its pin_count so it
1388  * can't get swapped to another task.  This also increments its
1389  * reference count so that the context can't get freed.
1390  */
1391 static struct perf_event_context *
1392 perf_pin_task_context(struct task_struct *task, int ctxn)
1393 {
1394         struct perf_event_context *ctx;
1395         unsigned long flags;
1396
1397         ctx = perf_lock_task_context(task, ctxn, &flags);
1398         if (ctx) {
1399                 ++ctx->pin_count;
1400                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1401         }
1402         return ctx;
1403 }
1404
1405 static void perf_unpin_context(struct perf_event_context *ctx)
1406 {
1407         unsigned long flags;
1408
1409         raw_spin_lock_irqsave(&ctx->lock, flags);
1410         --ctx->pin_count;
1411         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1412 }
1413
1414 /*
1415  * Update the record of the current time in a context.
1416  */
1417 static void update_context_time(struct perf_event_context *ctx)
1418 {
1419         u64 now = perf_clock();
1420
1421         ctx->time += now - ctx->timestamp;
1422         ctx->timestamp = now;
1423 }
1424
1425 static u64 perf_event_time(struct perf_event *event)
1426 {
1427         struct perf_event_context *ctx = event->ctx;
1428
1429         if (is_cgroup_event(event))
1430                 return perf_cgroup_event_time(event);
1431
1432         return ctx ? ctx->time : 0;
1433 }
1434
1435 /*
1436  * Update the total_time_enabled and total_time_running fields for a event.
1437  */
1438 static void update_event_times(struct perf_event *event)
1439 {
1440         struct perf_event_context *ctx = event->ctx;
1441         u64 run_end;
1442
1443         lockdep_assert_held(&ctx->lock);
1444
1445         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1446             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1447                 return;
1448
1449         /*
1450          * in cgroup mode, time_enabled represents
1451          * the time the event was enabled AND active
1452          * tasks were in the monitored cgroup. This is
1453          * independent of the activity of the context as
1454          * there may be a mix of cgroup and non-cgroup events.
1455          *
1456          * That is why we treat cgroup events differently
1457          * here.
1458          */
1459         if (is_cgroup_event(event))
1460                 run_end = perf_cgroup_event_time(event);
1461         else if (ctx->is_active)
1462                 run_end = ctx->time;
1463         else
1464                 run_end = event->tstamp_stopped;
1465
1466         event->total_time_enabled = run_end - event->tstamp_enabled;
1467
1468         if (event->state == PERF_EVENT_STATE_INACTIVE)
1469                 run_end = event->tstamp_stopped;
1470         else
1471                 run_end = perf_event_time(event);
1472
1473         event->total_time_running = run_end - event->tstamp_running;
1474
1475 }
1476
1477 /*
1478  * Update total_time_enabled and total_time_running for all events in a group.
1479  */
1480 static void update_group_times(struct perf_event *leader)
1481 {
1482         struct perf_event *event;
1483
1484         update_event_times(leader);
1485         list_for_each_entry(event, &leader->sibling_list, group_entry)
1486                 update_event_times(event);
1487 }
1488
1489 static enum event_type_t get_event_type(struct perf_event *event)
1490 {
1491         struct perf_event_context *ctx = event->ctx;
1492         enum event_type_t event_type;
1493
1494         lockdep_assert_held(&ctx->lock);
1495
1496         /*
1497          * It's 'group type', really, because if our group leader is
1498          * pinned, so are we.
1499          */
1500         if (event->group_leader != event)
1501                 event = event->group_leader;
1502
1503         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1504         if (!ctx->task)
1505                 event_type |= EVENT_CPU;
1506
1507         return event_type;
1508 }
1509
1510 static struct list_head *
1511 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1512 {
1513         if (event->attr.pinned)
1514                 return &ctx->pinned_groups;
1515         else
1516                 return &ctx->flexible_groups;
1517 }
1518
1519 /*
1520  * Add a event from the lists for its context.
1521  * Must be called with ctx->mutex and ctx->lock held.
1522  */
1523 static void
1524 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1525 {
1526         lockdep_assert_held(&ctx->lock);
1527
1528         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1529         event->attach_state |= PERF_ATTACH_CONTEXT;
1530
1531         /*
1532          * If we're a stand alone event or group leader, we go to the context
1533          * list, group events are kept attached to the group so that
1534          * perf_group_detach can, at all times, locate all siblings.
1535          */
1536         if (event->group_leader == event) {
1537                 struct list_head *list;
1538
1539                 event->group_caps = event->event_caps;
1540
1541                 list = ctx_group_list(event, ctx);
1542                 list_add_tail(&event->group_entry, list);
1543         }
1544
1545         list_update_cgroup_event(event, ctx, true);
1546
1547         list_add_rcu(&event->event_entry, &ctx->event_list);
1548         ctx->nr_events++;
1549         if (event->attr.inherit_stat)
1550                 ctx->nr_stat++;
1551
1552         ctx->generation++;
1553 }
1554
1555 /*
1556  * Initialize event state based on the perf_event_attr::disabled.
1557  */
1558 static inline void perf_event__state_init(struct perf_event *event)
1559 {
1560         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1561                                               PERF_EVENT_STATE_INACTIVE;
1562 }
1563
1564 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1565 {
1566         int entry = sizeof(u64); /* value */
1567         int size = 0;
1568         int nr = 1;
1569
1570         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1571                 size += sizeof(u64);
1572
1573         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1574                 size += sizeof(u64);
1575
1576         if (event->attr.read_format & PERF_FORMAT_ID)
1577                 entry += sizeof(u64);
1578
1579         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1580                 nr += nr_siblings;
1581                 size += sizeof(u64);
1582         }
1583
1584         size += entry * nr;
1585         event->read_size = size;
1586 }
1587
1588 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1589 {
1590         struct perf_sample_data *data;
1591         u16 size = 0;
1592
1593         if (sample_type & PERF_SAMPLE_IP)
1594                 size += sizeof(data->ip);
1595
1596         if (sample_type & PERF_SAMPLE_ADDR)
1597                 size += sizeof(data->addr);
1598
1599         if (sample_type & PERF_SAMPLE_PERIOD)
1600                 size += sizeof(data->period);
1601
1602         if (sample_type & PERF_SAMPLE_WEIGHT)
1603                 size += sizeof(data->weight);
1604
1605         if (sample_type & PERF_SAMPLE_READ)
1606                 size += event->read_size;
1607
1608         if (sample_type & PERF_SAMPLE_DATA_SRC)
1609                 size += sizeof(data->data_src.val);
1610
1611         if (sample_type & PERF_SAMPLE_TRANSACTION)
1612                 size += sizeof(data->txn);
1613
1614         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1615                 size += sizeof(data->phys_addr);
1616
1617         event->header_size = size;
1618 }
1619
1620 /*
1621  * Called at perf_event creation and when events are attached/detached from a
1622  * group.
1623  */
1624 static void perf_event__header_size(struct perf_event *event)
1625 {
1626         __perf_event_read_size(event,
1627                                event->group_leader->nr_siblings);
1628         __perf_event_header_size(event, event->attr.sample_type);
1629 }
1630
1631 static void perf_event__id_header_size(struct perf_event *event)
1632 {
1633         struct perf_sample_data *data;
1634         u64 sample_type = event->attr.sample_type;
1635         u16 size = 0;
1636
1637         if (sample_type & PERF_SAMPLE_TID)
1638                 size += sizeof(data->tid_entry);
1639
1640         if (sample_type & PERF_SAMPLE_TIME)
1641                 size += sizeof(data->time);
1642
1643         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1644                 size += sizeof(data->id);
1645
1646         if (sample_type & PERF_SAMPLE_ID)
1647                 size += sizeof(data->id);
1648
1649         if (sample_type & PERF_SAMPLE_STREAM_ID)
1650                 size += sizeof(data->stream_id);
1651
1652         if (sample_type & PERF_SAMPLE_CPU)
1653                 size += sizeof(data->cpu_entry);
1654
1655         event->id_header_size = size;
1656 }
1657
1658 static bool perf_event_validate_size(struct perf_event *event)
1659 {
1660         /*
1661          * The values computed here will be over-written when we actually
1662          * attach the event.
1663          */
1664         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1665         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1666         perf_event__id_header_size(event);
1667
1668         /*
1669          * Sum the lot; should not exceed the 64k limit we have on records.
1670          * Conservative limit to allow for callchains and other variable fields.
1671          */
1672         if (event->read_size + event->header_size +
1673             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1674                 return false;
1675
1676         return true;
1677 }
1678
1679 static void perf_group_attach(struct perf_event *event)
1680 {
1681         struct perf_event *group_leader = event->group_leader, *pos;
1682
1683         lockdep_assert_held(&event->ctx->lock);
1684
1685         /*
1686          * We can have double attach due to group movement in perf_event_open.
1687          */
1688         if (event->attach_state & PERF_ATTACH_GROUP)
1689                 return;
1690
1691         event->attach_state |= PERF_ATTACH_GROUP;
1692
1693         if (group_leader == event)
1694                 return;
1695
1696         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1697
1698         group_leader->group_caps &= event->event_caps;
1699
1700         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1701         group_leader->nr_siblings++;
1702         group_leader->group_generation++;
1703
1704         perf_event__header_size(group_leader);
1705
1706         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1707                 perf_event__header_size(pos);
1708 }
1709
1710 /*
1711  * Remove a event from the lists for its context.
1712  * Must be called with ctx->mutex and ctx->lock held.
1713  */
1714 static void
1715 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1716 {
1717         WARN_ON_ONCE(event->ctx != ctx);
1718         lockdep_assert_held(&ctx->lock);
1719
1720         /*
1721          * We can have double detach due to exit/hot-unplug + close.
1722          */
1723         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1724                 return;
1725
1726         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1727
1728         list_update_cgroup_event(event, ctx, false);
1729
1730         ctx->nr_events--;
1731         if (event->attr.inherit_stat)
1732                 ctx->nr_stat--;
1733
1734         list_del_rcu(&event->event_entry);
1735
1736         if (event->group_leader == event)
1737                 list_del_init(&event->group_entry);
1738
1739         update_group_times(event);
1740
1741         /*
1742          * If event was in error state, then keep it
1743          * that way, otherwise bogus counts will be
1744          * returned on read(). The only way to get out
1745          * of error state is by explicit re-enabling
1746          * of the event
1747          */
1748         if (event->state > PERF_EVENT_STATE_OFF)
1749                 event->state = PERF_EVENT_STATE_OFF;
1750
1751         ctx->generation++;
1752 }
1753
1754 static void perf_group_detach(struct perf_event *event)
1755 {
1756         struct perf_event *sibling, *tmp;
1757         struct list_head *list = NULL;
1758
1759         lockdep_assert_held(&event->ctx->lock);
1760
1761         /*
1762          * We can have double detach due to exit/hot-unplug + close.
1763          */
1764         if (!(event->attach_state & PERF_ATTACH_GROUP))
1765                 return;
1766
1767         event->attach_state &= ~PERF_ATTACH_GROUP;
1768
1769         /*
1770          * If this is a sibling, remove it from its group.
1771          */
1772         if (event->group_leader != event) {
1773                 list_del_init(&event->group_entry);
1774                 event->group_leader->nr_siblings--;
1775                 event->group_leader->group_generation++;
1776                 goto out;
1777         }
1778
1779         if (!list_empty(&event->group_entry))
1780                 list = &event->group_entry;
1781
1782         /*
1783          * If this was a group event with sibling events then
1784          * upgrade the siblings to singleton events by adding them
1785          * to whatever list we are on.
1786          */
1787         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1788                 if (list)
1789                         list_move_tail(&sibling->group_entry, list);
1790                 sibling->group_leader = sibling;
1791
1792                 /* Inherit group flags from the previous leader */
1793                 sibling->group_caps = event->group_caps;
1794
1795                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1796         }
1797
1798 out:
1799         perf_event__header_size(event->group_leader);
1800
1801         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1802                 perf_event__header_size(tmp);
1803 }
1804
1805 static bool is_orphaned_event(struct perf_event *event)
1806 {
1807         return event->state == PERF_EVENT_STATE_DEAD;
1808 }
1809
1810 static inline int __pmu_filter_match(struct perf_event *event)
1811 {
1812         struct pmu *pmu = event->pmu;
1813         return pmu->filter_match ? pmu->filter_match(event) : 1;
1814 }
1815
1816 /*
1817  * Check whether we should attempt to schedule an event group based on
1818  * PMU-specific filtering. An event group can consist of HW and SW events,
1819  * potentially with a SW leader, so we must check all the filters, to
1820  * determine whether a group is schedulable:
1821  */
1822 static inline int pmu_filter_match(struct perf_event *event)
1823 {
1824         struct perf_event *child;
1825
1826         if (!__pmu_filter_match(event))
1827                 return 0;
1828
1829         list_for_each_entry(child, &event->sibling_list, group_entry) {
1830                 if (!__pmu_filter_match(child))
1831                         return 0;
1832         }
1833
1834         return 1;
1835 }
1836
1837 static inline int
1838 event_filter_match(struct perf_event *event)
1839 {
1840         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1841                perf_cgroup_match(event) && pmu_filter_match(event);
1842 }
1843
1844 static void
1845 event_sched_out(struct perf_event *event,
1846                   struct perf_cpu_context *cpuctx,
1847                   struct perf_event_context *ctx)
1848 {
1849         u64 tstamp = perf_event_time(event);
1850         u64 delta;
1851
1852         WARN_ON_ONCE(event->ctx != ctx);
1853         lockdep_assert_held(&ctx->lock);
1854
1855         /*
1856          * An event which could not be activated because of
1857          * filter mismatch still needs to have its timings
1858          * maintained, otherwise bogus information is return
1859          * via read() for time_enabled, time_running:
1860          */
1861         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1862             !event_filter_match(event)) {
1863                 delta = tstamp - event->tstamp_stopped;
1864                 event->tstamp_running += delta;
1865                 event->tstamp_stopped = tstamp;
1866         }
1867
1868         if (event->state != PERF_EVENT_STATE_ACTIVE)
1869                 return;
1870
1871         perf_pmu_disable(event->pmu);
1872
1873         event->tstamp_stopped = tstamp;
1874         event->pmu->del(event, 0);
1875         event->oncpu = -1;
1876         event->state = PERF_EVENT_STATE_INACTIVE;
1877         if (event->pending_disable) {
1878                 event->pending_disable = 0;
1879                 event->state = PERF_EVENT_STATE_OFF;
1880         }
1881
1882         if (!is_software_event(event))
1883                 cpuctx->active_oncpu--;
1884         if (!--ctx->nr_active)
1885                 perf_event_ctx_deactivate(ctx);
1886         if (event->attr.freq && event->attr.sample_freq)
1887                 ctx->nr_freq--;
1888         if (event->attr.exclusive || !cpuctx->active_oncpu)
1889                 cpuctx->exclusive = 0;
1890
1891         perf_pmu_enable(event->pmu);
1892 }
1893
1894 static void
1895 group_sched_out(struct perf_event *group_event,
1896                 struct perf_cpu_context *cpuctx,
1897                 struct perf_event_context *ctx)
1898 {
1899         struct perf_event *event;
1900         int state = group_event->state;
1901
1902         perf_pmu_disable(ctx->pmu);
1903
1904         event_sched_out(group_event, cpuctx, ctx);
1905
1906         /*
1907          * Schedule out siblings (if any):
1908          */
1909         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1910                 event_sched_out(event, cpuctx, ctx);
1911
1912         perf_pmu_enable(ctx->pmu);
1913
1914         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1915                 cpuctx->exclusive = 0;
1916 }
1917
1918 #define DETACH_GROUP    0x01UL
1919
1920 /*
1921  * Cross CPU call to remove a performance event
1922  *
1923  * We disable the event on the hardware level first. After that we
1924  * remove it from the context list.
1925  */
1926 static void
1927 __perf_remove_from_context(struct perf_event *event,
1928                            struct perf_cpu_context *cpuctx,
1929                            struct perf_event_context *ctx,
1930                            void *info)
1931 {
1932         unsigned long flags = (unsigned long)info;
1933
1934         event_sched_out(event, cpuctx, ctx);
1935         if (flags & DETACH_GROUP)
1936                 perf_group_detach(event);
1937         list_del_event(event, ctx);
1938
1939         if (!ctx->nr_events && ctx->is_active) {
1940                 ctx->is_active = 0;
1941                 if (ctx->task) {
1942                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1943                         cpuctx->task_ctx = NULL;
1944                 }
1945         }
1946 }
1947
1948 /*
1949  * Remove the event from a task's (or a CPU's) list of events.
1950  *
1951  * If event->ctx is a cloned context, callers must make sure that
1952  * every task struct that event->ctx->task could possibly point to
1953  * remains valid.  This is OK when called from perf_release since
1954  * that only calls us on the top-level context, which can't be a clone.
1955  * When called from perf_event_exit_task, it's OK because the
1956  * context has been detached from its task.
1957  */
1958 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1959 {
1960         struct perf_event_context *ctx = event->ctx;
1961
1962         lockdep_assert_held(&ctx->mutex);
1963
1964         event_function_call(event, __perf_remove_from_context, (void *)flags);
1965
1966         /*
1967          * The above event_function_call() can NO-OP when it hits
1968          * TASK_TOMBSTONE. In that case we must already have been detached
1969          * from the context (by perf_event_exit_event()) but the grouping
1970          * might still be in-tact.
1971          */
1972         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1973         if ((flags & DETACH_GROUP) &&
1974             (event->attach_state & PERF_ATTACH_GROUP)) {
1975                 /*
1976                  * Since in that case we cannot possibly be scheduled, simply
1977                  * detach now.
1978                  */
1979                 raw_spin_lock_irq(&ctx->lock);
1980                 perf_group_detach(event);
1981                 raw_spin_unlock_irq(&ctx->lock);
1982         }
1983 }
1984
1985 /*
1986  * Cross CPU call to disable a performance event
1987  */
1988 static void __perf_event_disable(struct perf_event *event,
1989                                  struct perf_cpu_context *cpuctx,
1990                                  struct perf_event_context *ctx,
1991                                  void *info)
1992 {
1993         if (event->state < PERF_EVENT_STATE_INACTIVE)
1994                 return;
1995
1996         update_context_time(ctx);
1997         update_cgrp_time_from_event(event);
1998         update_group_times(event);
1999         if (event == event->group_leader)
2000                 group_sched_out(event, cpuctx, ctx);
2001         else
2002                 event_sched_out(event, cpuctx, ctx);
2003         event->state = PERF_EVENT_STATE_OFF;
2004 }
2005
2006 /*
2007  * Disable a event.
2008  *
2009  * If event->ctx is a cloned context, callers must make sure that
2010  * every task struct that event->ctx->task could possibly point to
2011  * remains valid.  This condition is satisifed when called through
2012  * perf_event_for_each_child or perf_event_for_each because they
2013  * hold the top-level event's child_mutex, so any descendant that
2014  * goes to exit will block in perf_event_exit_event().
2015  *
2016  * When called from perf_pending_event it's OK because event->ctx
2017  * is the current context on this CPU and preemption is disabled,
2018  * hence we can't get into perf_event_task_sched_out for this context.
2019  */
2020 static void _perf_event_disable(struct perf_event *event)
2021 {
2022         struct perf_event_context *ctx = event->ctx;
2023
2024         raw_spin_lock_irq(&ctx->lock);
2025         if (event->state <= PERF_EVENT_STATE_OFF) {
2026                 raw_spin_unlock_irq(&ctx->lock);
2027                 return;
2028         }
2029         raw_spin_unlock_irq(&ctx->lock);
2030
2031         event_function_call(event, __perf_event_disable, NULL);
2032 }
2033
2034 void perf_event_disable_local(struct perf_event *event)
2035 {
2036         event_function_local(event, __perf_event_disable, NULL);
2037 }
2038
2039 /*
2040  * Strictly speaking kernel users cannot create groups and therefore this
2041  * interface does not need the perf_event_ctx_lock() magic.
2042  */
2043 void perf_event_disable(struct perf_event *event)
2044 {
2045         struct perf_event_context *ctx;
2046
2047         ctx = perf_event_ctx_lock(event);
2048         _perf_event_disable(event);
2049         perf_event_ctx_unlock(event, ctx);
2050 }
2051 EXPORT_SYMBOL_GPL(perf_event_disable);
2052
2053 void perf_event_disable_inatomic(struct perf_event *event)
2054 {
2055         event->pending_disable = 1;
2056         irq_work_queue(&event->pending);
2057 }
2058
2059 static void perf_set_shadow_time(struct perf_event *event,
2060                                  struct perf_event_context *ctx,
2061                                  u64 tstamp)
2062 {
2063         /*
2064          * use the correct time source for the time snapshot
2065          *
2066          * We could get by without this by leveraging the
2067          * fact that to get to this function, the caller
2068          * has most likely already called update_context_time()
2069          * and update_cgrp_time_xx() and thus both timestamp
2070          * are identical (or very close). Given that tstamp is,
2071          * already adjusted for cgroup, we could say that:
2072          *    tstamp - ctx->timestamp
2073          * is equivalent to
2074          *    tstamp - cgrp->timestamp.
2075          *
2076          * Then, in perf_output_read(), the calculation would
2077          * work with no changes because:
2078          * - event is guaranteed scheduled in
2079          * - no scheduled out in between
2080          * - thus the timestamp would be the same
2081          *
2082          * But this is a bit hairy.
2083          *
2084          * So instead, we have an explicit cgroup call to remain
2085          * within the time time source all along. We believe it
2086          * is cleaner and simpler to understand.
2087          */
2088         if (is_cgroup_event(event))
2089                 perf_cgroup_set_shadow_time(event, tstamp);
2090         else
2091                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2092 }
2093
2094 #define MAX_INTERRUPTS (~0ULL)
2095
2096 static void perf_log_throttle(struct perf_event *event, int enable);
2097 static void perf_log_itrace_start(struct perf_event *event);
2098
2099 static int
2100 event_sched_in(struct perf_event *event,
2101                  struct perf_cpu_context *cpuctx,
2102                  struct perf_event_context *ctx)
2103 {
2104         u64 tstamp = perf_event_time(event);
2105         int ret = 0;
2106
2107         lockdep_assert_held(&ctx->lock);
2108
2109         if (event->state <= PERF_EVENT_STATE_OFF)
2110                 return 0;
2111
2112         WRITE_ONCE(event->oncpu, smp_processor_id());
2113         /*
2114          * Order event::oncpu write to happen before the ACTIVE state
2115          * is visible.
2116          */
2117         smp_wmb();
2118         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2119
2120         /*
2121          * Unthrottle events, since we scheduled we might have missed several
2122          * ticks already, also for a heavily scheduling task there is little
2123          * guarantee it'll get a tick in a timely manner.
2124          */
2125         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2126                 perf_log_throttle(event, 1);
2127                 event->hw.interrupts = 0;
2128         }
2129
2130         /*
2131          * The new state must be visible before we turn it on in the hardware:
2132          */
2133         smp_wmb();
2134
2135         perf_pmu_disable(event->pmu);
2136
2137         perf_set_shadow_time(event, ctx, tstamp);
2138
2139         perf_log_itrace_start(event);
2140
2141         if (event->pmu->add(event, PERF_EF_START)) {
2142                 event->state = PERF_EVENT_STATE_INACTIVE;
2143                 event->oncpu = -1;
2144                 ret = -EAGAIN;
2145                 goto out;
2146         }
2147
2148         event->tstamp_running += tstamp - event->tstamp_stopped;
2149
2150         if (!is_software_event(event))
2151                 cpuctx->active_oncpu++;
2152         if (!ctx->nr_active++)
2153                 perf_event_ctx_activate(ctx);
2154         if (event->attr.freq && event->attr.sample_freq)
2155                 ctx->nr_freq++;
2156
2157         if (event->attr.exclusive)
2158                 cpuctx->exclusive = 1;
2159
2160 out:
2161         perf_pmu_enable(event->pmu);
2162
2163         return ret;
2164 }
2165
2166 static int
2167 group_sched_in(struct perf_event *group_event,
2168                struct perf_cpu_context *cpuctx,
2169                struct perf_event_context *ctx)
2170 {
2171         struct perf_event *event, *partial_group = NULL;
2172         struct pmu *pmu = ctx->pmu;
2173         u64 now = ctx->time;
2174         bool simulate = false;
2175
2176         if (group_event->state == PERF_EVENT_STATE_OFF)
2177                 return 0;
2178
2179         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2180
2181         if (event_sched_in(group_event, cpuctx, ctx)) {
2182                 pmu->cancel_txn(pmu);
2183                 perf_mux_hrtimer_restart(cpuctx);
2184                 return -EAGAIN;
2185         }
2186
2187         /*
2188          * Schedule in siblings as one group (if any):
2189          */
2190         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2191                 if (event_sched_in(event, cpuctx, ctx)) {
2192                         partial_group = event;
2193                         goto group_error;
2194                 }
2195         }
2196
2197         if (!pmu->commit_txn(pmu))
2198                 return 0;
2199
2200 group_error:
2201         /*
2202          * Groups can be scheduled in as one unit only, so undo any
2203          * partial group before returning:
2204          * The events up to the failed event are scheduled out normally,
2205          * tstamp_stopped will be updated.
2206          *
2207          * The failed events and the remaining siblings need to have
2208          * their timings updated as if they had gone thru event_sched_in()
2209          * and event_sched_out(). This is required to get consistent timings
2210          * across the group. This also takes care of the case where the group
2211          * could never be scheduled by ensuring tstamp_stopped is set to mark
2212          * the time the event was actually stopped, such that time delta
2213          * calculation in update_event_times() is correct.
2214          */
2215         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2216                 if (event == partial_group)
2217                         simulate = true;
2218
2219                 if (simulate) {
2220                         event->tstamp_running += now - event->tstamp_stopped;
2221                         event->tstamp_stopped = now;
2222                 } else {
2223                         event_sched_out(event, cpuctx, ctx);
2224                 }
2225         }
2226         event_sched_out(group_event, cpuctx, ctx);
2227
2228         pmu->cancel_txn(pmu);
2229
2230         perf_mux_hrtimer_restart(cpuctx);
2231
2232         return -EAGAIN;
2233 }
2234
2235 /*
2236  * Work out whether we can put this event group on the CPU now.
2237  */
2238 static int group_can_go_on(struct perf_event *event,
2239                            struct perf_cpu_context *cpuctx,
2240                            int can_add_hw)
2241 {
2242         /*
2243          * Groups consisting entirely of software events can always go on.
2244          */
2245         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2246                 return 1;
2247         /*
2248          * If an exclusive group is already on, no other hardware
2249          * events can go on.
2250          */
2251         if (cpuctx->exclusive)
2252                 return 0;
2253         /*
2254          * If this group is exclusive and there are already
2255          * events on the CPU, it can't go on.
2256          */
2257         if (event->attr.exclusive && cpuctx->active_oncpu)
2258                 return 0;
2259         /*
2260          * Otherwise, try to add it if all previous groups were able
2261          * to go on.
2262          */
2263         return can_add_hw;
2264 }
2265
2266 /*
2267  * Complement to update_event_times(). This computes the tstamp_* values to
2268  * continue 'enabled' state from @now, and effectively discards the time
2269  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2270  * just switched (context) time base).
2271  *
2272  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2273  * cannot have been scheduled in yet. And going into INACTIVE state means
2274  * '@event->tstamp_stopped = @now'.
2275  *
2276  * Thus given the rules of update_event_times():
2277  *
2278  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2279  *   total_time_running = tstamp_stopped - tstamp_running
2280  *
2281  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2282  * tstamp_* values.
2283  */
2284 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2285 {
2286         WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2287
2288         event->tstamp_stopped = now;
2289         event->tstamp_enabled = now - event->total_time_enabled;
2290         event->tstamp_running = now - event->total_time_running;
2291 }
2292
2293 static void add_event_to_ctx(struct perf_event *event,
2294                                struct perf_event_context *ctx)
2295 {
2296         u64 tstamp = perf_event_time(event);
2297
2298         list_add_event(event, ctx);
2299         perf_group_attach(event);
2300         /*
2301          * We can be called with event->state == STATE_OFF when we create with
2302          * .disabled = 1. In that case the IOC_ENABLE will call this function.
2303          */
2304         if (event->state == PERF_EVENT_STATE_INACTIVE)
2305                 __perf_event_enable_time(event, tstamp);
2306 }
2307
2308 static void ctx_sched_out(struct perf_event_context *ctx,
2309                           struct perf_cpu_context *cpuctx,
2310                           enum event_type_t event_type);
2311 static void
2312 ctx_sched_in(struct perf_event_context *ctx,
2313              struct perf_cpu_context *cpuctx,
2314              enum event_type_t event_type,
2315              struct task_struct *task);
2316
2317 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2318                                struct perf_event_context *ctx,
2319                                enum event_type_t event_type)
2320 {
2321         if (!cpuctx->task_ctx)
2322                 return;
2323
2324         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2325                 return;
2326
2327         ctx_sched_out(ctx, cpuctx, event_type);
2328 }
2329
2330 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2331                                 struct perf_event_context *ctx,
2332                                 struct task_struct *task)
2333 {
2334         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2335         if (ctx)
2336                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2337         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2338         if (ctx)
2339                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2340 }
2341
2342 /*
2343  * We want to maintain the following priority of scheduling:
2344  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2345  *  - task pinned (EVENT_PINNED)
2346  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2347  *  - task flexible (EVENT_FLEXIBLE).
2348  *
2349  * In order to avoid unscheduling and scheduling back in everything every
2350  * time an event is added, only do it for the groups of equal priority and
2351  * below.
2352  *
2353  * This can be called after a batch operation on task events, in which case
2354  * event_type is a bit mask of the types of events involved. For CPU events,
2355  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2356  */
2357 static void ctx_resched(struct perf_cpu_context *cpuctx,
2358                         struct perf_event_context *task_ctx,
2359                         enum event_type_t event_type)
2360 {
2361         enum event_type_t ctx_event_type;
2362         bool cpu_event = !!(event_type & EVENT_CPU);
2363
2364         /*
2365          * If pinned groups are involved, flexible groups also need to be
2366          * scheduled out.
2367          */
2368         if (event_type & EVENT_PINNED)
2369                 event_type |= EVENT_FLEXIBLE;
2370
2371         ctx_event_type = event_type & EVENT_ALL;
2372
2373         perf_pmu_disable(cpuctx->ctx.pmu);
2374         if (task_ctx)
2375                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2376
2377         /*
2378          * Decide which cpu ctx groups to schedule out based on the types
2379          * of events that caused rescheduling:
2380          *  - EVENT_CPU: schedule out corresponding groups;
2381          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2382          *  - otherwise, do nothing more.
2383          */
2384         if (cpu_event)
2385                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2386         else if (ctx_event_type & EVENT_PINNED)
2387                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2388
2389         perf_event_sched_in(cpuctx, task_ctx, current);
2390         perf_pmu_enable(cpuctx->ctx.pmu);
2391 }
2392
2393 /*
2394  * Cross CPU call to install and enable a performance event
2395  *
2396  * Very similar to remote_function() + event_function() but cannot assume that
2397  * things like ctx->is_active and cpuctx->task_ctx are set.
2398  */
2399 static int  __perf_install_in_context(void *info)
2400 {
2401         struct perf_event *event = info;
2402         struct perf_event_context *ctx = event->ctx;
2403         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2404         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2405         bool reprogram = true;
2406         int ret = 0;
2407
2408         raw_spin_lock(&cpuctx->ctx.lock);
2409         if (ctx->task) {
2410                 raw_spin_lock(&ctx->lock);
2411                 task_ctx = ctx;
2412
2413                 reprogram = (ctx->task == current);
2414
2415                 /*
2416                  * If the task is running, it must be running on this CPU,
2417                  * otherwise we cannot reprogram things.
2418                  *
2419                  * If its not running, we don't care, ctx->lock will
2420                  * serialize against it becoming runnable.
2421                  */
2422                 if (task_curr(ctx->task) && !reprogram) {
2423                         ret = -ESRCH;
2424                         goto unlock;
2425                 }
2426
2427                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2428         } else if (task_ctx) {
2429                 raw_spin_lock(&task_ctx->lock);
2430         }
2431
2432 #ifdef CONFIG_CGROUP_PERF
2433         if (is_cgroup_event(event)) {
2434                 /*
2435                  * If the current cgroup doesn't match the event's
2436                  * cgroup, we should not try to schedule it.
2437                  */
2438                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2439                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2440                                         event->cgrp->css.cgroup);
2441         }
2442 #endif
2443
2444         if (reprogram) {
2445                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2446                 add_event_to_ctx(event, ctx);
2447                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2448         } else {
2449                 add_event_to_ctx(event, ctx);
2450         }
2451
2452 unlock:
2453         perf_ctx_unlock(cpuctx, task_ctx);
2454
2455         return ret;
2456 }
2457
2458 /*
2459  * Attach a performance event to a context.
2460  *
2461  * Very similar to event_function_call, see comment there.
2462  */
2463 static void
2464 perf_install_in_context(struct perf_event_context *ctx,
2465                         struct perf_event *event,
2466                         int cpu)
2467 {
2468         struct task_struct *task = READ_ONCE(ctx->task);
2469
2470         lockdep_assert_held(&ctx->mutex);
2471
2472         if (event->cpu != -1)
2473                 event->cpu = cpu;
2474
2475         /*
2476          * Ensures that if we can observe event->ctx, both the event and ctx
2477          * will be 'complete'. See perf_iterate_sb_cpu().
2478          */
2479         smp_store_release(&event->ctx, ctx);
2480
2481         if (!task) {
2482                 cpu_function_call(cpu, __perf_install_in_context, event);
2483                 return;
2484         }
2485
2486         /*
2487          * Should not happen, we validate the ctx is still alive before calling.
2488          */
2489         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2490                 return;
2491
2492         /*
2493          * Installing events is tricky because we cannot rely on ctx->is_active
2494          * to be set in case this is the nr_events 0 -> 1 transition.
2495          *
2496          * Instead we use task_curr(), which tells us if the task is running.
2497          * However, since we use task_curr() outside of rq::lock, we can race
2498          * against the actual state. This means the result can be wrong.
2499          *
2500          * If we get a false positive, we retry, this is harmless.
2501          *
2502          * If we get a false negative, things are complicated. If we are after
2503          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2504          * value must be correct. If we're before, it doesn't matter since
2505          * perf_event_context_sched_in() will program the counter.
2506          *
2507          * However, this hinges on the remote context switch having observed
2508          * our task->perf_event_ctxp[] store, such that it will in fact take
2509          * ctx::lock in perf_event_context_sched_in().
2510          *
2511          * We do this by task_function_call(), if the IPI fails to hit the task
2512          * we know any future context switch of task must see the
2513          * perf_event_ctpx[] store.
2514          */
2515
2516         /*
2517          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2518          * task_cpu() load, such that if the IPI then does not find the task
2519          * running, a future context switch of that task must observe the
2520          * store.
2521          */
2522         smp_mb();
2523 again:
2524         if (!task_function_call(task, __perf_install_in_context, event))
2525                 return;
2526
2527         raw_spin_lock_irq(&ctx->lock);
2528         task = ctx->task;
2529         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2530                 /*
2531                  * Cannot happen because we already checked above (which also
2532                  * cannot happen), and we hold ctx->mutex, which serializes us
2533                  * against perf_event_exit_task_context().
2534                  */
2535                 raw_spin_unlock_irq(&ctx->lock);
2536                 return;
2537         }
2538         /*
2539          * If the task is not running, ctx->lock will avoid it becoming so,
2540          * thus we can safely install the event.
2541          */
2542         if (task_curr(task)) {
2543                 raw_spin_unlock_irq(&ctx->lock);
2544                 goto again;
2545         }
2546         add_event_to_ctx(event, ctx);
2547         raw_spin_unlock_irq(&ctx->lock);
2548 }
2549
2550 /*
2551  * Put a event into inactive state and update time fields.
2552  * Enabling the leader of a group effectively enables all
2553  * the group members that aren't explicitly disabled, so we
2554  * have to update their ->tstamp_enabled also.
2555  * Note: this works for group members as well as group leaders
2556  * since the non-leader members' sibling_lists will be empty.
2557  */
2558 static void __perf_event_mark_enabled(struct perf_event *event)
2559 {
2560         struct perf_event *sub;
2561         u64 tstamp = perf_event_time(event);
2562
2563         event->state = PERF_EVENT_STATE_INACTIVE;
2564         __perf_event_enable_time(event, tstamp);
2565         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2566                 /* XXX should not be > INACTIVE if event isn't */
2567                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2568                         __perf_event_enable_time(sub, tstamp);
2569         }
2570 }
2571
2572 /*
2573  * Cross CPU call to enable a performance event
2574  */
2575 static void __perf_event_enable(struct perf_event *event,
2576                                 struct perf_cpu_context *cpuctx,
2577                                 struct perf_event_context *ctx,
2578                                 void *info)
2579 {
2580         struct perf_event *leader = event->group_leader;
2581         struct perf_event_context *task_ctx;
2582
2583         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2584             event->state <= PERF_EVENT_STATE_ERROR)
2585                 return;
2586
2587         if (ctx->is_active)
2588                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2589
2590         __perf_event_mark_enabled(event);
2591
2592         if (!ctx->is_active)
2593                 return;
2594
2595         if (!event_filter_match(event)) {
2596                 if (is_cgroup_event(event))
2597                         perf_cgroup_defer_enabled(event);
2598                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2599                 return;
2600         }
2601
2602         /*
2603          * If the event is in a group and isn't the group leader,
2604          * then don't put it on unless the group is on.
2605          */
2606         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2607                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2608                 return;
2609         }
2610
2611         task_ctx = cpuctx->task_ctx;
2612         if (ctx->task)
2613                 WARN_ON_ONCE(task_ctx != ctx);
2614
2615         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2616 }
2617
2618 /*
2619  * Enable a event.
2620  *
2621  * If event->ctx is a cloned context, callers must make sure that
2622  * every task struct that event->ctx->task could possibly point to
2623  * remains valid.  This condition is satisfied when called through
2624  * perf_event_for_each_child or perf_event_for_each as described
2625  * for perf_event_disable.
2626  */
2627 static void _perf_event_enable(struct perf_event *event)
2628 {
2629         struct perf_event_context *ctx = event->ctx;
2630
2631         raw_spin_lock_irq(&ctx->lock);
2632         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2633             event->state <  PERF_EVENT_STATE_ERROR) {
2634                 raw_spin_unlock_irq(&ctx->lock);
2635                 return;
2636         }
2637
2638         /*
2639          * If the event is in error state, clear that first.
2640          *
2641          * That way, if we see the event in error state below, we know that it
2642          * has gone back into error state, as distinct from the task having
2643          * been scheduled away before the cross-call arrived.
2644          */
2645         if (event->state == PERF_EVENT_STATE_ERROR)
2646                 event->state = PERF_EVENT_STATE_OFF;
2647         raw_spin_unlock_irq(&ctx->lock);
2648
2649         event_function_call(event, __perf_event_enable, NULL);
2650 }
2651
2652 /*
2653  * See perf_event_disable();
2654  */
2655 void perf_event_enable(struct perf_event *event)
2656 {
2657         struct perf_event_context *ctx;
2658
2659         ctx = perf_event_ctx_lock(event);
2660         _perf_event_enable(event);
2661         perf_event_ctx_unlock(event, ctx);
2662 }
2663 EXPORT_SYMBOL_GPL(perf_event_enable);
2664
2665 struct stop_event_data {
2666         struct perf_event       *event;
2667         unsigned int            restart;
2668 };
2669
2670 static int __perf_event_stop(void *info)
2671 {
2672         struct stop_event_data *sd = info;
2673         struct perf_event *event = sd->event;
2674
2675         /* if it's already INACTIVE, do nothing */
2676         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2677                 return 0;
2678
2679         /* matches smp_wmb() in event_sched_in() */
2680         smp_rmb();
2681
2682         /*
2683          * There is a window with interrupts enabled before we get here,
2684          * so we need to check again lest we try to stop another CPU's event.
2685          */
2686         if (READ_ONCE(event->oncpu) != smp_processor_id())
2687                 return -EAGAIN;
2688
2689         event->pmu->stop(event, PERF_EF_UPDATE);
2690
2691         /*
2692          * May race with the actual stop (through perf_pmu_output_stop()),
2693          * but it is only used for events with AUX ring buffer, and such
2694          * events will refuse to restart because of rb::aux_mmap_count==0,
2695          * see comments in perf_aux_output_begin().
2696          *
2697          * Since this is happening on a event-local CPU, no trace is lost
2698          * while restarting.
2699          */
2700         if (sd->restart)
2701                 event->pmu->start(event, 0);
2702
2703         return 0;
2704 }
2705
2706 static int perf_event_stop(struct perf_event *event, int restart)
2707 {
2708         struct stop_event_data sd = {
2709                 .event          = event,
2710                 .restart        = restart,
2711         };
2712         int ret = 0;
2713
2714         do {
2715                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2716                         return 0;
2717
2718                 /* matches smp_wmb() in event_sched_in() */
2719                 smp_rmb();
2720
2721                 /*
2722                  * We only want to restart ACTIVE events, so if the event goes
2723                  * inactive here (event->oncpu==-1), there's nothing more to do;
2724                  * fall through with ret==-ENXIO.
2725                  */
2726                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2727                                         __perf_event_stop, &sd);
2728         } while (ret == -EAGAIN);
2729
2730         return ret;
2731 }
2732
2733 /*
2734  * In order to contain the amount of racy and tricky in the address filter
2735  * configuration management, it is a two part process:
2736  *
2737  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2738  *      we update the addresses of corresponding vmas in
2739  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2740  * (p2) when an event is scheduled in (pmu::add), it calls
2741  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2742  *      if the generation has changed since the previous call.
2743  *
2744  * If (p1) happens while the event is active, we restart it to force (p2).
2745  *
2746  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2747  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2748  *     ioctl;
2749  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2750  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2751  *     for reading;
2752  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2753  *     of exec.
2754  */
2755 void perf_event_addr_filters_sync(struct perf_event *event)
2756 {
2757         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2758
2759         if (!has_addr_filter(event))
2760                 return;
2761
2762         raw_spin_lock(&ifh->lock);
2763         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2764                 event->pmu->addr_filters_sync(event);
2765                 event->hw.addr_filters_gen = event->addr_filters_gen;
2766         }
2767         raw_spin_unlock(&ifh->lock);
2768 }
2769 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2770
2771 static int _perf_event_refresh(struct perf_event *event, int refresh)
2772 {
2773         /*
2774          * not supported on inherited events
2775          */
2776         if (event->attr.inherit || !is_sampling_event(event))
2777                 return -EINVAL;
2778
2779         atomic_add(refresh, &event->event_limit);
2780         _perf_event_enable(event);
2781
2782         return 0;
2783 }
2784
2785 /*
2786  * See perf_event_disable()
2787  */
2788 int perf_event_refresh(struct perf_event *event, int refresh)
2789 {
2790         struct perf_event_context *ctx;
2791         int ret;
2792
2793         ctx = perf_event_ctx_lock(event);
2794         ret = _perf_event_refresh(event, refresh);
2795         perf_event_ctx_unlock(event, ctx);
2796
2797         return ret;
2798 }
2799 EXPORT_SYMBOL_GPL(perf_event_refresh);
2800
2801 static void ctx_sched_out(struct perf_event_context *ctx,
2802                           struct perf_cpu_context *cpuctx,
2803                           enum event_type_t event_type)
2804 {
2805         int is_active = ctx->is_active;
2806         struct perf_event *event;
2807
2808         lockdep_assert_held(&ctx->lock);
2809
2810         if (likely(!ctx->nr_events)) {
2811                 /*
2812                  * See __perf_remove_from_context().
2813                  */
2814                 WARN_ON_ONCE(ctx->is_active);
2815                 if (ctx->task)
2816                         WARN_ON_ONCE(cpuctx->task_ctx);
2817                 return;
2818         }
2819
2820         ctx->is_active &= ~event_type;
2821         if (!(ctx->is_active & EVENT_ALL))
2822                 ctx->is_active = 0;
2823
2824         if (ctx->task) {
2825                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2826                 if (!ctx->is_active)
2827                         cpuctx->task_ctx = NULL;
2828         }
2829
2830         /*
2831          * Always update time if it was set; not only when it changes.
2832          * Otherwise we can 'forget' to update time for any but the last
2833          * context we sched out. For example:
2834          *
2835          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2836          *   ctx_sched_out(.event_type = EVENT_PINNED)
2837          *
2838          * would only update time for the pinned events.
2839          */
2840         if (is_active & EVENT_TIME) {
2841                 /* update (and stop) ctx time */
2842                 update_context_time(ctx);
2843                 update_cgrp_time_from_cpuctx(cpuctx);
2844         }
2845
2846         is_active ^= ctx->is_active; /* changed bits */
2847
2848         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2849                 return;
2850
2851         perf_pmu_disable(ctx->pmu);
2852         if (is_active & EVENT_PINNED) {
2853                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2854                         group_sched_out(event, cpuctx, ctx);
2855         }
2856
2857         if (is_active & EVENT_FLEXIBLE) {
2858                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2859                         group_sched_out(event, cpuctx, ctx);
2860         }
2861         perf_pmu_enable(ctx->pmu);
2862 }
2863
2864 /*
2865  * Test whether two contexts are equivalent, i.e. whether they have both been
2866  * cloned from the same version of the same context.
2867  *
2868  * Equivalence is measured using a generation number in the context that is
2869  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2870  * and list_del_event().
2871  */
2872 static int context_equiv(struct perf_event_context *ctx1,
2873                          struct perf_event_context *ctx2)
2874 {
2875         lockdep_assert_held(&ctx1->lock);
2876         lockdep_assert_held(&ctx2->lock);
2877
2878         /* Pinning disables the swap optimization */
2879         if (ctx1->pin_count || ctx2->pin_count)
2880                 return 0;
2881
2882         /* If ctx1 is the parent of ctx2 */
2883         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2884                 return 1;
2885
2886         /* If ctx2 is the parent of ctx1 */
2887         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2888                 return 1;
2889
2890         /*
2891          * If ctx1 and ctx2 have the same parent; we flatten the parent
2892          * hierarchy, see perf_event_init_context().
2893          */
2894         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2895                         ctx1->parent_gen == ctx2->parent_gen)
2896                 return 1;
2897
2898         /* Unmatched */
2899         return 0;
2900 }
2901
2902 static void __perf_event_sync_stat(struct perf_event *event,
2903                                      struct perf_event *next_event)
2904 {
2905         u64 value;
2906
2907         if (!event->attr.inherit_stat)
2908                 return;
2909
2910         /*
2911          * Update the event value, we cannot use perf_event_read()
2912          * because we're in the middle of a context switch and have IRQs
2913          * disabled, which upsets smp_call_function_single(), however
2914          * we know the event must be on the current CPU, therefore we
2915          * don't need to use it.
2916          */
2917         switch (event->state) {
2918         case PERF_EVENT_STATE_ACTIVE:
2919                 event->pmu->read(event);
2920                 /* fall-through */
2921
2922         case PERF_EVENT_STATE_INACTIVE:
2923                 update_event_times(event);
2924                 break;
2925
2926         default:
2927                 break;
2928         }
2929
2930         /*
2931          * In order to keep per-task stats reliable we need to flip the event
2932          * values when we flip the contexts.
2933          */
2934         value = local64_read(&next_event->count);
2935         value = local64_xchg(&event->count, value);
2936         local64_set(&next_event->count, value);
2937
2938         swap(event->total_time_enabled, next_event->total_time_enabled);
2939         swap(event->total_time_running, next_event->total_time_running);
2940
2941         /*
2942          * Since we swizzled the values, update the user visible data too.
2943          */
2944         perf_event_update_userpage(event);
2945         perf_event_update_userpage(next_event);
2946 }
2947
2948 static void perf_event_sync_stat(struct perf_event_context *ctx,
2949                                    struct perf_event_context *next_ctx)
2950 {
2951         struct perf_event *event, *next_event;
2952
2953         if (!ctx->nr_stat)
2954                 return;
2955
2956         update_context_time(ctx);
2957
2958         event = list_first_entry(&ctx->event_list,
2959                                    struct perf_event, event_entry);
2960
2961         next_event = list_first_entry(&next_ctx->event_list,
2962                                         struct perf_event, event_entry);
2963
2964         while (&event->event_entry != &ctx->event_list &&
2965                &next_event->event_entry != &next_ctx->event_list) {
2966
2967                 __perf_event_sync_stat(event, next_event);
2968
2969                 event = list_next_entry(event, event_entry);
2970                 next_event = list_next_entry(next_event, event_entry);
2971         }
2972 }
2973
2974 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2975                                          struct task_struct *next)
2976 {
2977         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2978         struct perf_event_context *next_ctx;
2979         struct perf_event_context *parent, *next_parent;
2980         struct perf_cpu_context *cpuctx;
2981         int do_switch = 1;
2982
2983         if (likely(!ctx))
2984                 return;
2985
2986         cpuctx = __get_cpu_context(ctx);
2987         if (!cpuctx->task_ctx)
2988                 return;
2989
2990         rcu_read_lock();
2991         next_ctx = next->perf_event_ctxp[ctxn];
2992         if (!next_ctx)
2993                 goto unlock;
2994
2995         parent = rcu_dereference(ctx->parent_ctx);
2996         next_parent = rcu_dereference(next_ctx->parent_ctx);
2997
2998         /* If neither context have a parent context; they cannot be clones. */
2999         if (!parent && !next_parent)
3000                 goto unlock;
3001
3002         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3003                 /*
3004                  * Looks like the two contexts are clones, so we might be
3005                  * able to optimize the context switch.  We lock both
3006                  * contexts and check that they are clones under the
3007                  * lock (including re-checking that neither has been
3008                  * uncloned in the meantime).  It doesn't matter which
3009                  * order we take the locks because no other cpu could
3010                  * be trying to lock both of these tasks.
3011                  */
3012                 raw_spin_lock(&ctx->lock);
3013                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3014                 if (context_equiv(ctx, next_ctx)) {
3015                         WRITE_ONCE(ctx->task, next);
3016                         WRITE_ONCE(next_ctx->task, task);
3017
3018                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3019
3020                         /*
3021                          * RCU_INIT_POINTER here is safe because we've not
3022                          * modified the ctx and the above modification of
3023                          * ctx->task and ctx->task_ctx_data are immaterial
3024                          * since those values are always verified under
3025                          * ctx->lock which we're now holding.
3026                          */
3027                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3028                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3029
3030                         do_switch = 0;
3031
3032                         perf_event_sync_stat(ctx, next_ctx);
3033                 }
3034                 raw_spin_unlock(&next_ctx->lock);
3035                 raw_spin_unlock(&ctx->lock);
3036         }
3037 unlock:
3038         rcu_read_unlock();
3039
3040         if (do_switch) {
3041                 raw_spin_lock(&ctx->lock);
3042                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3043                 raw_spin_unlock(&ctx->lock);
3044         }
3045 }
3046
3047 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3048
3049 void perf_sched_cb_dec(struct pmu *pmu)
3050 {
3051         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3052
3053         this_cpu_dec(perf_sched_cb_usages);
3054
3055         if (!--cpuctx->sched_cb_usage)
3056                 list_del(&cpuctx->sched_cb_entry);
3057 }
3058
3059
3060 void perf_sched_cb_inc(struct pmu *pmu)
3061 {
3062         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3063
3064         if (!cpuctx->sched_cb_usage++)
3065                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3066
3067         this_cpu_inc(perf_sched_cb_usages);
3068 }
3069
3070 /*
3071  * This function provides the context switch callback to the lower code
3072  * layer. It is invoked ONLY when the context switch callback is enabled.
3073  *
3074  * This callback is relevant even to per-cpu events; for example multi event
3075  * PEBS requires this to provide PID/TID information. This requires we flush
3076  * all queued PEBS records before we context switch to a new task.
3077  */
3078 static void perf_pmu_sched_task(struct task_struct *prev,
3079                                 struct task_struct *next,
3080                                 bool sched_in)
3081 {
3082         struct perf_cpu_context *cpuctx;
3083         struct pmu *pmu;
3084
3085         if (prev == next)
3086                 return;
3087
3088         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3089                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3090
3091                 if (WARN_ON_ONCE(!pmu->sched_task))
3092                         continue;
3093
3094                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3095                 perf_pmu_disable(pmu);
3096
3097                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3098
3099                 perf_pmu_enable(pmu);
3100                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3101         }
3102 }
3103
3104 static void perf_event_switch(struct task_struct *task,
3105                               struct task_struct *next_prev, bool sched_in);
3106
3107 #define for_each_task_context_nr(ctxn)                                  \
3108         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3109
3110 /*
3111  * Called from scheduler to remove the events of the current task,
3112  * with interrupts disabled.
3113  *
3114  * We stop each event and update the event value in event->count.
3115  *
3116  * This does not protect us against NMI, but disable()
3117  * sets the disabled bit in the control field of event _before_
3118  * accessing the event control register. If a NMI hits, then it will
3119  * not restart the event.
3120  */
3121 void __perf_event_task_sched_out(struct task_struct *task,
3122                                  struct task_struct *next)
3123 {
3124         int ctxn;
3125
3126         if (__this_cpu_read(perf_sched_cb_usages))
3127                 perf_pmu_sched_task(task, next, false);
3128
3129         if (atomic_read(&nr_switch_events))
3130                 perf_event_switch(task, next, false);
3131
3132         for_each_task_context_nr(ctxn)
3133                 perf_event_context_sched_out(task, ctxn, next);
3134
3135         /*
3136          * if cgroup events exist on this CPU, then we need
3137          * to check if we have to switch out PMU state.
3138          * cgroup event are system-wide mode only
3139          */
3140         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3141                 perf_cgroup_sched_out(task, next);
3142 }
3143
3144 /*
3145  * Called with IRQs disabled
3146  */
3147 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3148                               enum event_type_t event_type)
3149 {
3150         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3151 }
3152
3153 static void
3154 ctx_pinned_sched_in(struct perf_event_context *ctx,
3155                     struct perf_cpu_context *cpuctx)
3156 {
3157         struct perf_event *event;
3158
3159         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3160                 if (event->state <= PERF_EVENT_STATE_OFF)
3161                         continue;
3162                 if (!event_filter_match(event))
3163                         continue;
3164
3165                 /* may need to reset tstamp_enabled */
3166                 if (is_cgroup_event(event))
3167                         perf_cgroup_mark_enabled(event, ctx);
3168
3169                 if (group_can_go_on(event, cpuctx, 1))
3170                         group_sched_in(event, cpuctx, ctx);
3171
3172                 /*
3173                  * If this pinned group hasn't been scheduled,
3174                  * put it in error state.
3175                  */
3176                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3177                         update_group_times(event);
3178                         event->state = PERF_EVENT_STATE_ERROR;
3179                 }
3180         }
3181 }
3182
3183 static void
3184 ctx_flexible_sched_in(struct perf_event_context *ctx,
3185                       struct perf_cpu_context *cpuctx)
3186 {
3187         struct perf_event *event;
3188         int can_add_hw = 1;
3189
3190         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3191                 /* Ignore events in OFF or ERROR state */
3192                 if (event->state <= PERF_EVENT_STATE_OFF)
3193                         continue;
3194                 /*
3195                  * Listen to the 'cpu' scheduling filter constraint
3196                  * of events:
3197                  */
3198                 if (!event_filter_match(event))
3199                         continue;
3200
3201                 /* may need to reset tstamp_enabled */
3202                 if (is_cgroup_event(event))
3203                         perf_cgroup_mark_enabled(event, ctx);
3204
3205                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3206                         if (group_sched_in(event, cpuctx, ctx))
3207                                 can_add_hw = 0;
3208                 }
3209         }
3210 }
3211
3212 static void
3213 ctx_sched_in(struct perf_event_context *ctx,
3214              struct perf_cpu_context *cpuctx,
3215              enum event_type_t event_type,
3216              struct task_struct *task)
3217 {
3218         int is_active = ctx->is_active;
3219         u64 now;
3220
3221         lockdep_assert_held(&ctx->lock);
3222
3223         if (likely(!ctx->nr_events))
3224                 return;
3225
3226         ctx->is_active |= (event_type | EVENT_TIME);
3227         if (ctx->task) {
3228                 if (!is_active)
3229                         cpuctx->task_ctx = ctx;
3230                 else
3231                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3232         }
3233
3234         is_active ^= ctx->is_active; /* changed bits */
3235
3236         if (is_active & EVENT_TIME) {
3237                 /* start ctx time */
3238                 now = perf_clock();
3239                 ctx->timestamp = now;
3240                 perf_cgroup_set_timestamp(task, ctx);
3241         }
3242
3243         /*
3244          * First go through the list and put on any pinned groups
3245          * in order to give them the best chance of going on.
3246          */
3247         if (is_active & EVENT_PINNED)
3248                 ctx_pinned_sched_in(ctx, cpuctx);
3249
3250         /* Then walk through the lower prio flexible groups */
3251         if (is_active & EVENT_FLEXIBLE)
3252                 ctx_flexible_sched_in(ctx, cpuctx);
3253 }
3254
3255 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3256                              enum event_type_t event_type,
3257                              struct task_struct *task)
3258 {
3259         struct perf_event_context *ctx = &cpuctx->ctx;
3260
3261         ctx_sched_in(ctx, cpuctx, event_type, task);
3262 }
3263
3264 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3265                                         struct task_struct *task)
3266 {
3267         struct perf_cpu_context *cpuctx;
3268
3269         cpuctx = __get_cpu_context(ctx);
3270         if (cpuctx->task_ctx == ctx)
3271                 return;
3272
3273         perf_ctx_lock(cpuctx, ctx);
3274         /*
3275          * We must check ctx->nr_events while holding ctx->lock, such
3276          * that we serialize against perf_install_in_context().
3277          */
3278         if (!ctx->nr_events)
3279                 goto unlock;
3280
3281         perf_pmu_disable(ctx->pmu);
3282         /*
3283          * We want to keep the following priority order:
3284          * cpu pinned (that don't need to move), task pinned,
3285          * cpu flexible, task flexible.
3286          *
3287          * However, if task's ctx is not carrying any pinned
3288          * events, no need to flip the cpuctx's events around.
3289          */
3290         if (!list_empty(&ctx->pinned_groups))
3291                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3292         perf_event_sched_in(cpuctx, ctx, task);
3293         perf_pmu_enable(ctx->pmu);
3294
3295 unlock:
3296         perf_ctx_unlock(cpuctx, ctx);
3297 }
3298
3299 /*
3300  * Called from scheduler to add the events of the current task
3301  * with interrupts disabled.
3302  *
3303  * We restore the event value and then enable it.
3304  *
3305  * This does not protect us against NMI, but enable()
3306  * sets the enabled bit in the control field of event _before_
3307  * accessing the event control register. If a NMI hits, then it will
3308  * keep the event running.
3309  */
3310 void __perf_event_task_sched_in(struct task_struct *prev,
3311                                 struct task_struct *task)
3312 {
3313         struct perf_event_context *ctx;
3314         int ctxn;
3315
3316         /*
3317          * If cgroup events exist on this CPU, then we need to check if we have
3318          * to switch in PMU state; cgroup event are system-wide mode only.
3319          *
3320          * Since cgroup events are CPU events, we must schedule these in before
3321          * we schedule in the task events.
3322          */
3323         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3324                 perf_cgroup_sched_in(prev, task);
3325
3326         for_each_task_context_nr(ctxn) {
3327                 ctx = task->perf_event_ctxp[ctxn];
3328                 if (likely(!ctx))
3329                         continue;
3330
3331                 perf_event_context_sched_in(ctx, task);
3332         }
3333
3334         if (atomic_read(&nr_switch_events))
3335                 perf_event_switch(task, prev, true);
3336
3337         if (__this_cpu_read(perf_sched_cb_usages))
3338                 perf_pmu_sched_task(prev, task, true);
3339 }
3340
3341 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3342 {
3343         u64 frequency = event->attr.sample_freq;
3344         u64 sec = NSEC_PER_SEC;
3345         u64 divisor, dividend;
3346
3347         int count_fls, nsec_fls, frequency_fls, sec_fls;
3348
3349         count_fls = fls64(count);
3350         nsec_fls = fls64(nsec);
3351         frequency_fls = fls64(frequency);
3352         sec_fls = 30;
3353
3354         /*
3355          * We got @count in @nsec, with a target of sample_freq HZ
3356          * the target period becomes:
3357          *
3358          *             @count * 10^9
3359          * period = -------------------
3360          *          @nsec * sample_freq
3361          *
3362          */
3363
3364         /*
3365          * Reduce accuracy by one bit such that @a and @b converge
3366          * to a similar magnitude.
3367          */
3368 #define REDUCE_FLS(a, b)                \
3369 do {                                    \
3370         if (a##_fls > b##_fls) {        \
3371                 a >>= 1;                \
3372                 a##_fls--;              \
3373         } else {                        \
3374                 b >>= 1;                \
3375                 b##_fls--;              \
3376         }                               \
3377 } while (0)
3378
3379         /*
3380          * Reduce accuracy until either term fits in a u64, then proceed with
3381          * the other, so that finally we can do a u64/u64 division.
3382          */
3383         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3384                 REDUCE_FLS(nsec, frequency);
3385                 REDUCE_FLS(sec, count);
3386         }
3387
3388         if (count_fls + sec_fls > 64) {
3389                 divisor = nsec * frequency;
3390
3391                 while (count_fls + sec_fls > 64) {
3392                         REDUCE_FLS(count, sec);
3393                         divisor >>= 1;
3394                 }
3395
3396                 dividend = count * sec;
3397         } else {
3398                 dividend = count * sec;
3399
3400                 while (nsec_fls + frequency_fls > 64) {
3401                         REDUCE_FLS(nsec, frequency);
3402                         dividend >>= 1;
3403                 }
3404
3405                 divisor = nsec * frequency;
3406         }
3407
3408         if (!divisor)
3409                 return dividend;
3410
3411         return div64_u64(dividend, divisor);
3412 }
3413
3414 static DEFINE_PER_CPU(int, perf_throttled_count);
3415 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3416
3417 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3418 {
3419         struct hw_perf_event *hwc = &event->hw;
3420         s64 period, sample_period;
3421         s64 delta;
3422
3423         period = perf_calculate_period(event, nsec, count);
3424
3425         delta = (s64)(period - hwc->sample_period);
3426         delta = (delta + 7) / 8; /* low pass filter */
3427
3428         sample_period = hwc->sample_period + delta;
3429
3430         if (!sample_period)
3431                 sample_period = 1;
3432
3433         hwc->sample_period = sample_period;
3434
3435         if (local64_read(&hwc->period_left) > 8*sample_period) {
3436                 if (disable)
3437                         event->pmu->stop(event, PERF_EF_UPDATE);
3438
3439                 local64_set(&hwc->period_left, 0);
3440
3441                 if (disable)
3442                         event->pmu->start(event, PERF_EF_RELOAD);
3443         }
3444 }
3445
3446 /*
3447  * combine freq adjustment with unthrottling to avoid two passes over the
3448  * events. At the same time, make sure, having freq events does not change
3449  * the rate of unthrottling as that would introduce bias.
3450  */
3451 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3452                                            int needs_unthr)
3453 {
3454         struct perf_event *event;
3455         struct hw_perf_event *hwc;
3456         u64 now, period = TICK_NSEC;
3457         s64 delta;
3458
3459         /*
3460          * only need to iterate over all events iff:
3461          * - context have events in frequency mode (needs freq adjust)
3462          * - there are events to unthrottle on this cpu
3463          */
3464         if (!(ctx->nr_freq || needs_unthr))
3465                 return;
3466
3467         raw_spin_lock(&ctx->lock);
3468         perf_pmu_disable(ctx->pmu);
3469
3470         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3471                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3472                         continue;
3473
3474                 if (!event_filter_match(event))
3475                         continue;
3476
3477                 perf_pmu_disable(event->pmu);
3478
3479                 hwc = &event->hw;
3480
3481                 if (hwc->interrupts == MAX_INTERRUPTS) {
3482                         hwc->interrupts = 0;
3483                         perf_log_throttle(event, 1);
3484                         event->pmu->start(event, 0);
3485                 }
3486
3487                 if (!event->attr.freq || !event->attr.sample_freq)
3488                         goto next;
3489
3490                 /*
3491                  * stop the event and update event->count
3492                  */
3493                 event->pmu->stop(event, PERF_EF_UPDATE);
3494
3495                 now = local64_read(&event->count);
3496                 delta = now - hwc->freq_count_stamp;
3497                 hwc->freq_count_stamp = now;
3498
3499                 /*
3500                  * restart the event
3501                  * reload only if value has changed
3502                  * we have stopped the event so tell that
3503                  * to perf_adjust_period() to avoid stopping it
3504                  * twice.
3505                  */
3506                 if (delta > 0)
3507                         perf_adjust_period(event, period, delta, false);
3508
3509                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3510         next:
3511                 perf_pmu_enable(event->pmu);
3512         }
3513
3514         perf_pmu_enable(ctx->pmu);
3515         raw_spin_unlock(&ctx->lock);
3516 }
3517
3518 /*
3519  * Round-robin a context's events:
3520  */
3521 static void rotate_ctx(struct perf_event_context *ctx)
3522 {
3523         /*
3524          * Rotate the first entry last of non-pinned groups. Rotation might be
3525          * disabled by the inheritance code.
3526          */
3527         if (!ctx->rotate_disable)
3528                 list_rotate_left(&ctx->flexible_groups);
3529 }
3530
3531 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3532 {
3533         struct perf_event_context *ctx = NULL;
3534         int rotate = 0;
3535
3536         if (cpuctx->ctx.nr_events) {
3537                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3538                         rotate = 1;
3539         }
3540
3541         ctx = cpuctx->task_ctx;
3542         if (ctx && ctx->nr_events) {
3543                 if (ctx->nr_events != ctx->nr_active)
3544                         rotate = 1;
3545         }
3546
3547         if (!rotate)
3548                 goto done;
3549
3550         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3551         perf_pmu_disable(cpuctx->ctx.pmu);
3552
3553         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3554         if (ctx)
3555                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3556
3557         rotate_ctx(&cpuctx->ctx);
3558         if (ctx)
3559                 rotate_ctx(ctx);
3560
3561         perf_event_sched_in(cpuctx, ctx, current);
3562
3563         perf_pmu_enable(cpuctx->ctx.pmu);
3564         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3565 done:
3566
3567         return rotate;
3568 }
3569
3570 void perf_event_task_tick(void)
3571 {
3572         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3573         struct perf_event_context *ctx, *tmp;
3574         int throttled;
3575
3576         WARN_ON(!irqs_disabled());
3577
3578         __this_cpu_inc(perf_throttled_seq);
3579         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3580         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3581
3582         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3583                 perf_adjust_freq_unthr_context(ctx, throttled);
3584 }
3585
3586 static int event_enable_on_exec(struct perf_event *event,
3587                                 struct perf_event_context *ctx)
3588 {
3589         if (!event->attr.enable_on_exec)
3590                 return 0;
3591
3592         event->attr.enable_on_exec = 0;
3593         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3594                 return 0;
3595
3596         __perf_event_mark_enabled(event);
3597
3598         return 1;
3599 }
3600
3601 /*
3602  * Enable all of a task's events that have been marked enable-on-exec.
3603  * This expects task == current.
3604  */
3605 static void perf_event_enable_on_exec(int ctxn)
3606 {
3607         struct perf_event_context *ctx, *clone_ctx = NULL;
3608         enum event_type_t event_type = 0;
3609         struct perf_cpu_context *cpuctx;
3610         struct perf_event *event;
3611         unsigned long flags;
3612         int enabled = 0;
3613
3614         local_irq_save(flags);
3615         ctx = current->perf_event_ctxp[ctxn];
3616         if (!ctx || !ctx->nr_events)
3617                 goto out;
3618
3619         cpuctx = __get_cpu_context(ctx);
3620         perf_ctx_lock(cpuctx, ctx);
3621         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3622         list_for_each_entry(event, &ctx->event_list, event_entry) {
3623                 enabled |= event_enable_on_exec(event, ctx);
3624                 event_type |= get_event_type(event);
3625         }
3626
3627         /*
3628          * Unclone and reschedule this context if we enabled any event.
3629          */
3630         if (enabled) {
3631                 clone_ctx = unclone_ctx(ctx);
3632                 ctx_resched(cpuctx, ctx, event_type);
3633         } else {
3634                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3635         }
3636         perf_ctx_unlock(cpuctx, ctx);
3637
3638 out:
3639         local_irq_restore(flags);
3640
3641         if (clone_ctx)
3642                 put_ctx(clone_ctx);
3643 }
3644
3645 struct perf_read_data {
3646         struct perf_event *event;
3647         bool group;
3648         int ret;
3649 };
3650
3651 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3652 {
3653         u16 local_pkg, event_pkg;
3654
3655         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3656                 int local_cpu = smp_processor_id();
3657
3658                 event_pkg = topology_physical_package_id(event_cpu);
3659                 local_pkg = topology_physical_package_id(local_cpu);
3660
3661                 if (event_pkg == local_pkg)
3662                         return local_cpu;
3663         }
3664
3665         return event_cpu;
3666 }
3667
3668 /*
3669  * Cross CPU call to read the hardware event
3670  */
3671 static void __perf_event_read(void *info)
3672 {
3673         struct perf_read_data *data = info;
3674         struct perf_event *sub, *event = data->event;
3675         struct perf_event_context *ctx = event->ctx;
3676         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3677         struct pmu *pmu = event->pmu;
3678
3679         /*
3680          * If this is a task context, we need to check whether it is
3681          * the current task context of this cpu.  If not it has been
3682          * scheduled out before the smp call arrived.  In that case
3683          * event->count would have been updated to a recent sample
3684          * when the event was scheduled out.
3685          */
3686         if (ctx->task && cpuctx->task_ctx != ctx)
3687                 return;
3688
3689         raw_spin_lock(&ctx->lock);
3690         if (ctx->is_active) {
3691                 update_context_time(ctx);
3692                 update_cgrp_time_from_event(event);
3693         }
3694
3695         update_event_times(event);
3696         if (event->state != PERF_EVENT_STATE_ACTIVE)
3697                 goto unlock;
3698
3699         if (!data->group) {
3700                 pmu->read(event);
3701                 data->ret = 0;
3702                 goto unlock;
3703         }
3704
3705         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3706
3707         pmu->read(event);
3708
3709         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3710                 update_event_times(sub);
3711                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3712                         /*
3713                          * Use sibling's PMU rather than @event's since
3714                          * sibling could be on different (eg: software) PMU.
3715                          */
3716                         sub->pmu->read(sub);
3717                 }
3718         }
3719
3720         data->ret = pmu->commit_txn(pmu);
3721
3722 unlock:
3723         raw_spin_unlock(&ctx->lock);
3724 }
3725
3726 static inline u64 perf_event_count(struct perf_event *event)
3727 {
3728         return local64_read(&event->count) + atomic64_read(&event->child_count);
3729 }
3730
3731 /*
3732  * NMI-safe method to read a local event, that is an event that
3733  * is:
3734  *   - either for the current task, or for this CPU
3735  *   - does not have inherit set, for inherited task events
3736  *     will not be local and we cannot read them atomically
3737  *   - must not have a pmu::count method
3738  */
3739 int perf_event_read_local(struct perf_event *event, u64 *value)
3740 {
3741         unsigned long flags;
3742         int ret = 0;
3743
3744         /*
3745          * Disabling interrupts avoids all counter scheduling (context
3746          * switches, timer based rotation and IPIs).
3747          */
3748         local_irq_save(flags);
3749
3750         /*
3751          * It must not be an event with inherit set, we cannot read
3752          * all child counters from atomic context.
3753          */
3754         if (event->attr.inherit) {
3755                 ret = -EOPNOTSUPP;
3756                 goto out;
3757         }
3758
3759         /* If this is a per-task event, it must be for current */
3760         if ((event->attach_state & PERF_ATTACH_TASK) &&
3761             event->hw.target != current) {
3762                 ret = -EINVAL;
3763                 goto out;
3764         }
3765
3766         /* If this is a per-CPU event, it must be for this CPU */
3767         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3768             event->cpu != smp_processor_id()) {
3769                 ret = -EINVAL;
3770                 goto out;
3771         }
3772
3773         /* If this is a pinned event it must be running on this CPU */
3774         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3775                 ret = -EBUSY;
3776                 goto out;
3777         }
3778
3779         /*
3780          * If the event is currently on this CPU, its either a per-task event,
3781          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3782          * oncpu == -1).
3783          */
3784         if (event->oncpu == smp_processor_id())
3785                 event->pmu->read(event);
3786
3787         *value = local64_read(&event->count);
3788 out:
3789         local_irq_restore(flags);
3790
3791         return ret;
3792 }
3793
3794 static int perf_event_read(struct perf_event *event, bool group)
3795 {
3796         int event_cpu, ret = 0;
3797
3798         /*
3799          * If event is enabled and currently active on a CPU, update the
3800          * value in the event structure:
3801          */
3802         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3803                 struct perf_read_data data = {
3804                         .event = event,
3805                         .group = group,
3806                         .ret = 0,
3807                 };
3808
3809                 event_cpu = READ_ONCE(event->oncpu);
3810                 if ((unsigned)event_cpu >= nr_cpu_ids)
3811                         return 0;
3812
3813                 preempt_disable();
3814                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3815
3816                 /*
3817                  * Purposely ignore the smp_call_function_single() return
3818                  * value.
3819                  *
3820                  * If event_cpu isn't a valid CPU it means the event got
3821                  * scheduled out and that will have updated the event count.
3822                  *
3823                  * Therefore, either way, we'll have an up-to-date event count
3824                  * after this.
3825                  */
3826                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3827                 preempt_enable();
3828                 ret = data.ret;
3829         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3830                 struct perf_event_context *ctx = event->ctx;
3831                 unsigned long flags;
3832
3833                 raw_spin_lock_irqsave(&ctx->lock, flags);
3834                 /*
3835                  * may read while context is not active
3836                  * (e.g., thread is blocked), in that case
3837                  * we cannot update context time
3838                  */
3839                 if (ctx->is_active) {
3840                         update_context_time(ctx);
3841                         update_cgrp_time_from_event(event);
3842                 }
3843                 if (group)
3844                         update_group_times(event);
3845                 else
3846                         update_event_times(event);
3847                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3848         }
3849
3850         return ret;
3851 }
3852
3853 /*
3854  * Initialize the perf_event context in a task_struct:
3855  */
3856 static void __perf_event_init_context(struct perf_event_context *ctx)
3857 {
3858         raw_spin_lock_init(&ctx->lock);
3859         mutex_init(&ctx->mutex);
3860         INIT_LIST_HEAD(&ctx->active_ctx_list);
3861         INIT_LIST_HEAD(&ctx->pinned_groups);
3862         INIT_LIST_HEAD(&ctx->flexible_groups);
3863         INIT_LIST_HEAD(&ctx->event_list);
3864         atomic_set(&ctx->refcount, 1);
3865 }
3866
3867 static struct perf_event_context *
3868 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3869 {
3870         struct perf_event_context *ctx;
3871
3872         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3873         if (!ctx)
3874                 return NULL;
3875
3876         __perf_event_init_context(ctx);
3877         if (task) {
3878                 ctx->task = task;
3879                 get_task_struct(task);
3880         }
3881         ctx->pmu = pmu;
3882
3883         return ctx;
3884 }
3885
3886 static struct task_struct *
3887 find_lively_task_by_vpid(pid_t vpid)
3888 {
3889         struct task_struct *task;
3890
3891         rcu_read_lock();
3892         if (!vpid)
3893                 task = current;
3894         else
3895                 task = find_task_by_vpid(vpid);
3896         if (task)
3897                 get_task_struct(task);
3898         rcu_read_unlock();
3899
3900         if (!task)
3901                 return ERR_PTR(-ESRCH);
3902
3903         return task;
3904 }
3905
3906 /*
3907  * Returns a matching context with refcount and pincount.
3908  */
3909 static struct perf_event_context *
3910 find_get_context(struct pmu *pmu, struct task_struct *task,
3911                 struct perf_event *event)
3912 {
3913         struct perf_event_context *ctx, *clone_ctx = NULL;
3914         struct perf_cpu_context *cpuctx;
3915         void *task_ctx_data = NULL;
3916         unsigned long flags;
3917         int ctxn, err;
3918         int cpu = event->cpu;
3919
3920         if (!task) {
3921                 /* Must be root to operate on a CPU event: */
3922                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3923                         return ERR_PTR(-EACCES);
3924
3925                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3926                 ctx = &cpuctx->ctx;
3927                 get_ctx(ctx);
3928                 raw_spin_lock_irqsave(&ctx->lock, flags);
3929                 ++ctx->pin_count;
3930                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3931
3932                 return ctx;
3933         }
3934
3935         err = -EINVAL;
3936         ctxn = pmu->task_ctx_nr;
3937         if (ctxn < 0)
3938                 goto errout;
3939
3940         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3941                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3942                 if (!task_ctx_data) {
3943                         err = -ENOMEM;
3944                         goto errout;
3945                 }
3946         }
3947
3948 retry:
3949         ctx = perf_lock_task_context(task, ctxn, &flags);
3950         if (ctx) {
3951                 clone_ctx = unclone_ctx(ctx);
3952                 ++ctx->pin_count;
3953
3954                 if (task_ctx_data && !ctx->task_ctx_data) {
3955                         ctx->task_ctx_data = task_ctx_data;
3956                         task_ctx_data = NULL;
3957                 }
3958                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3959
3960                 if (clone_ctx)
3961                         put_ctx(clone_ctx);
3962         } else {
3963                 ctx = alloc_perf_context(pmu, task);
3964                 err = -ENOMEM;
3965                 if (!ctx)
3966                         goto errout;
3967
3968                 if (task_ctx_data) {
3969                         ctx->task_ctx_data = task_ctx_data;
3970                         task_ctx_data = NULL;
3971                 }
3972
3973                 err = 0;
3974                 mutex_lock(&task->perf_event_mutex);
3975                 /*
3976                  * If it has already passed perf_event_exit_task().
3977                  * we must see PF_EXITING, it takes this mutex too.
3978                  */
3979                 if (task->flags & PF_EXITING)
3980                         err = -ESRCH;
3981                 else if (task->perf_event_ctxp[ctxn])
3982                         err = -EAGAIN;
3983                 else {
3984                         get_ctx(ctx);
3985                         ++ctx->pin_count;
3986                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3987                 }
3988                 mutex_unlock(&task->perf_event_mutex);
3989
3990                 if (unlikely(err)) {
3991                         put_ctx(ctx);
3992
3993                         if (err == -EAGAIN)
3994                                 goto retry;
3995                         goto errout;
3996                 }
3997         }
3998
3999         kfree(task_ctx_data);
4000         return ctx;
4001
4002 errout:
4003         kfree(task_ctx_data);
4004         return ERR_PTR(err);
4005 }
4006
4007 static void perf_event_free_filter(struct perf_event *event);
4008 static void perf_event_free_bpf_prog(struct perf_event *event);
4009
4010 static void free_event_rcu(struct rcu_head *head)
4011 {
4012         struct perf_event *event;
4013
4014         event = container_of(head, struct perf_event, rcu_head);
4015         if (event->ns)
4016                 put_pid_ns(event->ns);
4017         perf_event_free_filter(event);
4018         kfree(event);
4019 }
4020
4021 static void ring_buffer_attach(struct perf_event *event,
4022                                struct ring_buffer *rb);
4023
4024 static void detach_sb_event(struct perf_event *event)
4025 {
4026         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4027
4028         raw_spin_lock(&pel->lock);
4029         list_del_rcu(&event->sb_list);
4030         raw_spin_unlock(&pel->lock);
4031 }
4032
4033 static bool is_sb_event(struct perf_event *event)
4034 {
4035         struct perf_event_attr *attr = &event->attr;
4036
4037         if (event->parent)
4038                 return false;
4039
4040         if (event->attach_state & PERF_ATTACH_TASK)
4041                 return false;
4042
4043         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4044             attr->comm || attr->comm_exec ||
4045             attr->task ||
4046             attr->context_switch)
4047                 return true;
4048         return false;
4049 }
4050
4051 static void unaccount_pmu_sb_event(struct perf_event *event)
4052 {
4053         if (is_sb_event(event))
4054                 detach_sb_event(event);
4055 }
4056
4057 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4058 {
4059         if (event->parent)
4060                 return;
4061
4062         if (is_cgroup_event(event))
4063                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4064 }
4065
4066 #ifdef CONFIG_NO_HZ_FULL
4067 static DEFINE_SPINLOCK(nr_freq_lock);
4068 #endif
4069
4070 static void unaccount_freq_event_nohz(void)
4071 {
4072 #ifdef CONFIG_NO_HZ_FULL
4073         spin_lock(&nr_freq_lock);
4074         if (atomic_dec_and_test(&nr_freq_events))
4075                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4076         spin_unlock(&nr_freq_lock);
4077 #endif
4078 }
4079
4080 static void unaccount_freq_event(void)
4081 {
4082         if (tick_nohz_full_enabled())
4083                 unaccount_freq_event_nohz();
4084         else
4085                 atomic_dec(&nr_freq_events);
4086 }
4087
4088 static void unaccount_event(struct perf_event *event)
4089 {
4090         bool dec = false;
4091
4092         if (event->parent)
4093                 return;
4094
4095         if (event->attach_state & PERF_ATTACH_TASK)
4096                 dec = true;
4097         if (event->attr.mmap || event->attr.mmap_data)
4098                 atomic_dec(&nr_mmap_events);
4099         if (event->attr.comm)
4100                 atomic_dec(&nr_comm_events);
4101         if (event->attr.namespaces)
4102                 atomic_dec(&nr_namespaces_events);
4103         if (event->attr.task)
4104                 atomic_dec(&nr_task_events);
4105         if (event->attr.freq)
4106                 unaccount_freq_event();
4107         if (event->attr.context_switch) {
4108                 dec = true;
4109                 atomic_dec(&nr_switch_events);
4110         }
4111         if (is_cgroup_event(event))
4112                 dec = true;
4113         if (has_branch_stack(event))
4114                 dec = true;
4115
4116         if (dec) {
4117                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4118                         schedule_delayed_work(&perf_sched_work, HZ);
4119         }
4120
4121         unaccount_event_cpu(event, event->cpu);
4122
4123         unaccount_pmu_sb_event(event);
4124 }
4125
4126 static void perf_sched_delayed(struct work_struct *work)
4127 {
4128         mutex_lock(&perf_sched_mutex);
4129         if (atomic_dec_and_test(&perf_sched_count))
4130                 static_branch_disable(&perf_sched_events);
4131         mutex_unlock(&perf_sched_mutex);
4132 }
4133
4134 /*
4135  * The following implement mutual exclusion of events on "exclusive" pmus
4136  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4137  * at a time, so we disallow creating events that might conflict, namely:
4138  *
4139  *  1) cpu-wide events in the presence of per-task events,
4140  *  2) per-task events in the presence of cpu-wide events,
4141  *  3) two matching events on the same context.
4142  *
4143  * The former two cases are handled in the allocation path (perf_event_alloc(),
4144  * _free_event()), the latter -- before the first perf_install_in_context().
4145  */
4146 static int exclusive_event_init(struct perf_event *event)
4147 {
4148         struct pmu *pmu = event->pmu;
4149
4150         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4151                 return 0;
4152
4153         /*
4154          * Prevent co-existence of per-task and cpu-wide events on the
4155          * same exclusive pmu.
4156          *
4157          * Negative pmu::exclusive_cnt means there are cpu-wide
4158          * events on this "exclusive" pmu, positive means there are
4159          * per-task events.
4160          *
4161          * Since this is called in perf_event_alloc() path, event::ctx
4162          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4163          * to mean "per-task event", because unlike other attach states it
4164          * never gets cleared.
4165          */
4166         if (event->attach_state & PERF_ATTACH_TASK) {
4167                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4168                         return -EBUSY;
4169         } else {
4170                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4171                         return -EBUSY;
4172         }
4173
4174         return 0;
4175 }
4176
4177 static void exclusive_event_destroy(struct perf_event *event)
4178 {
4179         struct pmu *pmu = event->pmu;
4180
4181         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4182                 return;
4183
4184         /* see comment in exclusive_event_init() */
4185         if (event->attach_state & PERF_ATTACH_TASK)
4186                 atomic_dec(&pmu->exclusive_cnt);
4187         else
4188                 atomic_inc(&pmu->exclusive_cnt);
4189 }
4190
4191 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4192 {
4193         if ((e1->pmu == e2->pmu) &&
4194             (e1->cpu == e2->cpu ||
4195              e1->cpu == -1 ||
4196              e2->cpu == -1))
4197                 return true;
4198         return false;
4199 }
4200
4201 /* Called under the same ctx::mutex as perf_install_in_context() */
4202 static bool exclusive_event_installable(struct perf_event *event,
4203                                         struct perf_event_context *ctx)
4204 {
4205         struct perf_event *iter_event;
4206         struct pmu *pmu = event->pmu;
4207
4208         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4209                 return true;
4210
4211         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4212                 if (exclusive_event_match(iter_event, event))
4213                         return false;
4214         }
4215
4216         return true;
4217 }
4218
4219 static void perf_addr_filters_splice(struct perf_event *event,
4220                                        struct list_head *head);
4221
4222 static void _free_event(struct perf_event *event)
4223 {
4224         irq_work_sync(&event->pending);
4225
4226         unaccount_event(event);
4227
4228         if (event->rb) {
4229                 /*
4230                  * Can happen when we close an event with re-directed output.
4231                  *
4232                  * Since we have a 0 refcount, perf_mmap_close() will skip
4233                  * over us; possibly making our ring_buffer_put() the last.
4234                  */
4235                 mutex_lock(&event->mmap_mutex);
4236                 ring_buffer_attach(event, NULL);
4237                 mutex_unlock(&event->mmap_mutex);
4238         }
4239
4240         if (is_cgroup_event(event))
4241                 perf_detach_cgroup(event);
4242
4243         if (!event->parent) {
4244                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4245                         put_callchain_buffers();
4246         }
4247
4248         perf_event_free_bpf_prog(event);
4249         perf_addr_filters_splice(event, NULL);
4250         kfree(event->addr_filters_offs);
4251
4252         if (event->destroy)
4253                 event->destroy(event);
4254
4255         if (event->ctx)
4256                 put_ctx(event->ctx);
4257
4258         if (event->hw.target)
4259                 put_task_struct(event->hw.target);
4260
4261         exclusive_event_destroy(event);
4262         module_put(event->pmu->module);
4263
4264         call_rcu(&event->rcu_head, free_event_rcu);
4265 }
4266
4267 /*
4268  * Used to free events which have a known refcount of 1, such as in error paths
4269  * where the event isn't exposed yet and inherited events.
4270  */
4271 static void free_event(struct perf_event *event)
4272 {
4273         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4274                                 "unexpected event refcount: %ld; ptr=%p\n",
4275                                 atomic_long_read(&event->refcount), event)) {
4276                 /* leak to avoid use-after-free */
4277                 return;
4278         }
4279
4280         _free_event(event);
4281 }
4282
4283 /*
4284  * Remove user event from the owner task.
4285  */
4286 static void perf_remove_from_owner(struct perf_event *event)
4287 {
4288         struct task_struct *owner;
4289
4290         rcu_read_lock();
4291         /*
4292          * Matches the smp_store_release() in perf_event_exit_task(). If we
4293          * observe !owner it means the list deletion is complete and we can
4294          * indeed free this event, otherwise we need to serialize on
4295          * owner->perf_event_mutex.
4296          */
4297         owner = READ_ONCE(event->owner);
4298         if (owner) {
4299                 /*
4300                  * Since delayed_put_task_struct() also drops the last
4301                  * task reference we can safely take a new reference
4302                  * while holding the rcu_read_lock().
4303                  */
4304                 get_task_struct(owner);
4305         }
4306         rcu_read_unlock();
4307
4308         if (owner) {
4309                 /*
4310                  * If we're here through perf_event_exit_task() we're already
4311                  * holding ctx->mutex which would be an inversion wrt. the
4312                  * normal lock order.
4313                  *
4314                  * However we can safely take this lock because its the child
4315                  * ctx->mutex.
4316                  */
4317                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4318
4319                 /*
4320                  * We have to re-check the event->owner field, if it is cleared
4321                  * we raced with perf_event_exit_task(), acquiring the mutex
4322                  * ensured they're done, and we can proceed with freeing the
4323                  * event.
4324                  */
4325                 if (event->owner) {
4326                         list_del_init(&event->owner_entry);
4327                         smp_store_release(&event->owner, NULL);
4328                 }
4329                 mutex_unlock(&owner->perf_event_mutex);
4330                 put_task_struct(owner);
4331         }
4332 }
4333
4334 static void put_event(struct perf_event *event)
4335 {
4336         if (!atomic_long_dec_and_test(&event->refcount))
4337                 return;
4338
4339         _free_event(event);
4340 }
4341
4342 /*
4343  * Kill an event dead; while event:refcount will preserve the event
4344  * object, it will not preserve its functionality. Once the last 'user'
4345  * gives up the object, we'll destroy the thing.
4346  */
4347 int perf_event_release_kernel(struct perf_event *event)
4348 {
4349         struct perf_event_context *ctx = event->ctx;
4350         struct perf_event *child, *tmp;
4351
4352         /*
4353          * If we got here through err_file: fput(event_file); we will not have
4354          * attached to a context yet.
4355          */
4356         if (!ctx) {
4357                 WARN_ON_ONCE(event->attach_state &
4358                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4359                 goto no_ctx;
4360         }
4361
4362         if (!is_kernel_event(event))
4363                 perf_remove_from_owner(event);
4364
4365         ctx = perf_event_ctx_lock(event);
4366         WARN_ON_ONCE(ctx->parent_ctx);
4367         perf_remove_from_context(event, DETACH_GROUP);
4368
4369         raw_spin_lock_irq(&ctx->lock);
4370         /*
4371          * Mark this event as STATE_DEAD, there is no external reference to it
4372          * anymore.
4373          *
4374          * Anybody acquiring event->child_mutex after the below loop _must_
4375          * also see this, most importantly inherit_event() which will avoid
4376          * placing more children on the list.
4377          *
4378          * Thus this guarantees that we will in fact observe and kill _ALL_
4379          * child events.
4380          */
4381         event->state = PERF_EVENT_STATE_DEAD;
4382         raw_spin_unlock_irq(&ctx->lock);
4383
4384         perf_event_ctx_unlock(event, ctx);
4385
4386 again:
4387         mutex_lock(&event->child_mutex);
4388         list_for_each_entry(child, &event->child_list, child_list) {
4389
4390                 /*
4391                  * Cannot change, child events are not migrated, see the
4392                  * comment with perf_event_ctx_lock_nested().
4393                  */
4394                 ctx = READ_ONCE(child->ctx);
4395                 /*
4396                  * Since child_mutex nests inside ctx::mutex, we must jump
4397                  * through hoops. We start by grabbing a reference on the ctx.
4398                  *
4399                  * Since the event cannot get freed while we hold the
4400                  * child_mutex, the context must also exist and have a !0
4401                  * reference count.
4402                  */
4403                 get_ctx(ctx);
4404
4405                 /*
4406                  * Now that we have a ctx ref, we can drop child_mutex, and
4407                  * acquire ctx::mutex without fear of it going away. Then we
4408                  * can re-acquire child_mutex.
4409                  */
4410                 mutex_unlock(&event->child_mutex);
4411                 mutex_lock(&ctx->mutex);
4412                 mutex_lock(&event->child_mutex);
4413
4414                 /*
4415                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4416                  * state, if child is still the first entry, it didn't get freed
4417                  * and we can continue doing so.
4418                  */
4419                 tmp = list_first_entry_or_null(&event->child_list,
4420                                                struct perf_event, child_list);
4421                 if (tmp == child) {
4422                         perf_remove_from_context(child, DETACH_GROUP);
4423                         list_del(&child->child_list);
4424                         free_event(child);
4425                         /*
4426                          * This matches the refcount bump in inherit_event();
4427                          * this can't be the last reference.
4428                          */
4429                         put_event(event);
4430                 }
4431
4432                 mutex_unlock(&event->child_mutex);
4433                 mutex_unlock(&ctx->mutex);
4434                 put_ctx(ctx);
4435                 goto again;
4436         }
4437         mutex_unlock(&event->child_mutex);
4438
4439 no_ctx:
4440         put_event(event); /* Must be the 'last' reference */
4441         return 0;
4442 }
4443 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4444
4445 /*
4446  * Called when the last reference to the file is gone.
4447  */
4448 static int perf_release(struct inode *inode, struct file *file)
4449 {
4450         perf_event_release_kernel(file->private_data);
4451         return 0;
4452 }
4453
4454 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4455 {
4456         struct perf_event *child;
4457         u64 total = 0;
4458
4459         *enabled = 0;
4460         *running = 0;
4461
4462         mutex_lock(&event->child_mutex);
4463
4464         (void)perf_event_read(event, false);
4465         total += perf_event_count(event);
4466
4467         *enabled += event->total_time_enabled +
4468                         atomic64_read(&event->child_total_time_enabled);
4469         *running += event->total_time_running +
4470                         atomic64_read(&event->child_total_time_running);
4471
4472         list_for_each_entry(child, &event->child_list, child_list) {
4473                 (void)perf_event_read(child, false);
4474                 total += perf_event_count(child);
4475                 *enabled += child->total_time_enabled;
4476                 *running += child->total_time_running;
4477         }
4478         mutex_unlock(&event->child_mutex);
4479
4480         return total;
4481 }
4482 EXPORT_SYMBOL_GPL(perf_event_read_value);
4483
4484 static int __perf_read_group_add(struct perf_event *leader,
4485                                         u64 read_format, u64 *values)
4486 {
4487         struct perf_event_context *ctx = leader->ctx;
4488         struct perf_event *sub, *parent;
4489         unsigned long flags;
4490         int n = 1; /* skip @nr */
4491         int ret;
4492
4493         ret = perf_event_read(leader, true);
4494         if (ret)
4495                 return ret;
4496
4497         raw_spin_lock_irqsave(&ctx->lock, flags);
4498         /*
4499          * Verify the grouping between the parent and child (inherited)
4500          * events is still in tact.
4501          *
4502          * Specifically:
4503          *  - leader->ctx->lock pins leader->sibling_list
4504          *  - parent->child_mutex pins parent->child_list
4505          *  - parent->ctx->mutex pins parent->sibling_list
4506          *
4507          * Because parent->ctx != leader->ctx (and child_list nests inside
4508          * ctx->mutex), group destruction is not atomic between children, also
4509          * see perf_event_release_kernel(). Additionally, parent can grow the
4510          * group.
4511          *
4512          * Therefore it is possible to have parent and child groups in a
4513          * different configuration and summing over such a beast makes no sense
4514          * what so ever.
4515          *
4516          * Reject this.
4517          */
4518         parent = leader->parent;
4519         if (parent &&
4520             (parent->group_generation != leader->group_generation ||
4521              parent->nr_siblings != leader->nr_siblings)) {
4522                 ret = -ECHILD;
4523                 goto unlock;
4524         }
4525
4526         /*
4527          * Since we co-schedule groups, {enabled,running} times of siblings
4528          * will be identical to those of the leader, so we only publish one
4529          * set.
4530          */
4531         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4532                 values[n++] += leader->total_time_enabled +
4533                         atomic64_read(&leader->child_total_time_enabled);
4534         }
4535
4536         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4537                 values[n++] += leader->total_time_running +
4538                         atomic64_read(&leader->child_total_time_running);
4539         }
4540
4541         /*
4542          * Write {count,id} tuples for every sibling.
4543          */
4544         values[n++] += perf_event_count(leader);
4545         if (read_format & PERF_FORMAT_ID)
4546                 values[n++] = primary_event_id(leader);
4547
4548         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4549                 values[n++] += perf_event_count(sub);
4550                 if (read_format & PERF_FORMAT_ID)
4551                         values[n++] = primary_event_id(sub);
4552         }
4553
4554 unlock:
4555         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4556         return ret;
4557 }
4558
4559 static int perf_read_group(struct perf_event *event,
4560                                    u64 read_format, char __user *buf)
4561 {
4562         struct perf_event *leader = event->group_leader, *child;
4563         struct perf_event_context *ctx = leader->ctx;
4564         int ret;
4565         u64 *values;
4566
4567         lockdep_assert_held(&ctx->mutex);
4568
4569         values = kzalloc(event->read_size, GFP_KERNEL);
4570         if (!values)
4571                 return -ENOMEM;
4572
4573         values[0] = 1 + leader->nr_siblings;
4574
4575         mutex_lock(&leader->child_mutex);
4576
4577         ret = __perf_read_group_add(leader, read_format, values);
4578         if (ret)
4579                 goto unlock;
4580
4581         list_for_each_entry(child, &leader->child_list, child_list) {
4582                 ret = __perf_read_group_add(child, read_format, values);
4583                 if (ret)
4584                         goto unlock;
4585         }
4586
4587         mutex_unlock(&leader->child_mutex);
4588
4589         ret = event->read_size;
4590         if (copy_to_user(buf, values, event->read_size))
4591                 ret = -EFAULT;
4592         goto out;
4593
4594 unlock:
4595         mutex_unlock(&leader->child_mutex);
4596 out:
4597         kfree(values);
4598         return ret;
4599 }
4600
4601 static int perf_read_one(struct perf_event *event,
4602                                  u64 read_format, char __user *buf)
4603 {
4604         u64 enabled, running;
4605         u64 values[4];
4606         int n = 0;
4607
4608         values[n++] = perf_event_read_value(event, &enabled, &running);
4609         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4610                 values[n++] = enabled;
4611         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4612                 values[n++] = running;
4613         if (read_format & PERF_FORMAT_ID)
4614                 values[n++] = primary_event_id(event);
4615
4616         if (copy_to_user(buf, values, n * sizeof(u64)))
4617                 return -EFAULT;
4618
4619         return n * sizeof(u64);
4620 }
4621
4622 static bool is_event_hup(struct perf_event *event)
4623 {
4624         bool no_children;
4625
4626         if (event->state > PERF_EVENT_STATE_EXIT)
4627                 return false;
4628
4629         mutex_lock(&event->child_mutex);
4630         no_children = list_empty(&event->child_list);
4631         mutex_unlock(&event->child_mutex);
4632         return no_children;
4633 }
4634
4635 /*
4636  * Read the performance event - simple non blocking version for now
4637  */
4638 static ssize_t
4639 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4640 {
4641         u64 read_format = event->attr.read_format;
4642         int ret;
4643
4644         /*
4645          * Return end-of-file for a read on a event that is in
4646          * error state (i.e. because it was pinned but it couldn't be
4647          * scheduled on to the CPU at some point).
4648          */
4649         if (event->state == PERF_EVENT_STATE_ERROR)
4650                 return 0;
4651
4652         if (count < event->read_size)
4653                 return -ENOSPC;
4654
4655         WARN_ON_ONCE(event->ctx->parent_ctx);
4656         if (read_format & PERF_FORMAT_GROUP)
4657                 ret = perf_read_group(event, read_format, buf);
4658         else
4659                 ret = perf_read_one(event, read_format, buf);
4660
4661         return ret;
4662 }
4663
4664 static ssize_t
4665 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4666 {
4667         struct perf_event *event = file->private_data;
4668         struct perf_event_context *ctx;
4669         int ret;
4670
4671         ctx = perf_event_ctx_lock(event);
4672         ret = __perf_read(event, buf, count);
4673         perf_event_ctx_unlock(event, ctx);
4674
4675         return ret;
4676 }
4677
4678 static unsigned int perf_poll(struct file *file, poll_table *wait)
4679 {
4680         struct perf_event *event = file->private_data;
4681         struct ring_buffer *rb;
4682         unsigned int events = POLLHUP;
4683
4684         poll_wait(file, &event->waitq, wait);
4685
4686         if (is_event_hup(event))
4687                 return events;
4688
4689         /*
4690          * Pin the event->rb by taking event->mmap_mutex; otherwise
4691          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4692          */
4693         mutex_lock(&event->mmap_mutex);
4694         rb = event->rb;
4695         if (rb)
4696                 events = atomic_xchg(&rb->poll, 0);
4697         mutex_unlock(&event->mmap_mutex);
4698         return events;
4699 }
4700
4701 static void _perf_event_reset(struct perf_event *event)
4702 {
4703         (void)perf_event_read(event, false);
4704         local64_set(&event->count, 0);
4705         perf_event_update_userpage(event);
4706 }
4707
4708 /*
4709  * Holding the top-level event's child_mutex means that any
4710  * descendant process that has inherited this event will block
4711  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4712  * task existence requirements of perf_event_enable/disable.
4713  */
4714 static void perf_event_for_each_child(struct perf_event *event,
4715                                         void (*func)(struct perf_event *))
4716 {
4717         struct perf_event *child;
4718
4719         WARN_ON_ONCE(event->ctx->parent_ctx);
4720
4721         mutex_lock(&event->child_mutex);
4722         func(event);
4723         list_for_each_entry(child, &event->child_list, child_list)
4724                 func(child);
4725         mutex_unlock(&event->child_mutex);
4726 }
4727
4728 static void perf_event_for_each(struct perf_event *event,
4729                                   void (*func)(struct perf_event *))
4730 {
4731         struct perf_event_context *ctx = event->ctx;
4732         struct perf_event *sibling;
4733
4734         lockdep_assert_held(&ctx->mutex);
4735
4736         event = event->group_leader;
4737
4738         perf_event_for_each_child(event, func);
4739         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4740                 perf_event_for_each_child(sibling, func);
4741 }
4742
4743 static void __perf_event_period(struct perf_event *event,
4744                                 struct perf_cpu_context *cpuctx,
4745                                 struct perf_event_context *ctx,
4746                                 void *info)
4747 {
4748         u64 value = *((u64 *)info);
4749         bool active;
4750
4751         if (event->attr.freq) {
4752                 event->attr.sample_freq = value;
4753         } else {
4754                 event->attr.sample_period = value;
4755                 event->hw.sample_period = value;
4756         }
4757
4758         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4759         if (active) {
4760                 perf_pmu_disable(ctx->pmu);
4761                 /*
4762                  * We could be throttled; unthrottle now to avoid the tick
4763                  * trying to unthrottle while we already re-started the event.
4764                  */
4765                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4766                         event->hw.interrupts = 0;
4767                         perf_log_throttle(event, 1);
4768                 }
4769                 event->pmu->stop(event, PERF_EF_UPDATE);
4770         }
4771
4772         local64_set(&event->hw.period_left, 0);
4773
4774         if (active) {
4775                 event->pmu->start(event, PERF_EF_RELOAD);
4776                 perf_pmu_enable(ctx->pmu);
4777         }
4778 }
4779
4780 static int perf_event_check_period(struct perf_event *event, u64 value)
4781 {
4782         return event->pmu->check_period(event, value);
4783 }
4784
4785 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4786 {
4787         u64 value;
4788
4789         if (!is_sampling_event(event))
4790                 return -EINVAL;
4791
4792         if (copy_from_user(&value, arg, sizeof(value)))
4793                 return -EFAULT;
4794
4795         if (!value)
4796                 return -EINVAL;
4797
4798         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4799                 return -EINVAL;
4800
4801         if (perf_event_check_period(event, value))
4802                 return -EINVAL;
4803
4804         if (!event->attr.freq && (value & (1ULL << 63)))
4805                 return -EINVAL;
4806
4807         event_function_call(event, __perf_event_period, &value);
4808
4809         return 0;
4810 }
4811
4812 static const struct file_operations perf_fops;
4813
4814 static inline int perf_fget_light(int fd, struct fd *p)
4815 {
4816         struct fd f = fdget(fd);
4817         if (!f.file)
4818                 return -EBADF;
4819
4820         if (f.file->f_op != &perf_fops) {
4821                 fdput(f);
4822                 return -EBADF;
4823         }
4824         *p = f;
4825         return 0;
4826 }
4827
4828 static int perf_event_set_output(struct perf_event *event,
4829                                  struct perf_event *output_event);
4830 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4831 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4832
4833 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4834 {
4835         void (*func)(struct perf_event *);
4836         u32 flags = arg;
4837
4838         switch (cmd) {
4839         case PERF_EVENT_IOC_ENABLE:
4840                 func = _perf_event_enable;
4841                 break;
4842         case PERF_EVENT_IOC_DISABLE:
4843                 func = _perf_event_disable;
4844                 break;
4845         case PERF_EVENT_IOC_RESET:
4846                 func = _perf_event_reset;
4847                 break;
4848
4849         case PERF_EVENT_IOC_REFRESH:
4850                 return _perf_event_refresh(event, arg);
4851
4852         case PERF_EVENT_IOC_PERIOD:
4853                 return perf_event_period(event, (u64 __user *)arg);
4854
4855         case PERF_EVENT_IOC_ID:
4856         {
4857                 u64 id = primary_event_id(event);
4858
4859                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4860                         return -EFAULT;
4861                 return 0;
4862         }
4863
4864         case PERF_EVENT_IOC_SET_OUTPUT:
4865         {
4866                 int ret;
4867                 if (arg != -1) {
4868                         struct perf_event *output_event;
4869                         struct fd output;
4870                         ret = perf_fget_light(arg, &output);
4871                         if (ret)
4872                                 return ret;
4873                         output_event = output.file->private_data;
4874                         ret = perf_event_set_output(event, output_event);
4875                         fdput(output);
4876                 } else {
4877                         ret = perf_event_set_output(event, NULL);
4878                 }
4879                 return ret;
4880         }
4881
4882         case PERF_EVENT_IOC_SET_FILTER:
4883                 return perf_event_set_filter(event, (void __user *)arg);
4884
4885         case PERF_EVENT_IOC_SET_BPF:
4886                 return perf_event_set_bpf_prog(event, arg);
4887
4888         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4889                 struct ring_buffer *rb;
4890
4891                 rcu_read_lock();
4892                 rb = rcu_dereference(event->rb);
4893                 if (!rb || !rb->nr_pages) {
4894                         rcu_read_unlock();
4895                         return -EINVAL;
4896                 }
4897                 rb_toggle_paused(rb, !!arg);
4898                 rcu_read_unlock();
4899                 return 0;
4900         }
4901         default:
4902                 return -ENOTTY;
4903         }
4904
4905         if (flags & PERF_IOC_FLAG_GROUP)
4906                 perf_event_for_each(event, func);
4907         else
4908                 perf_event_for_each_child(event, func);
4909
4910         return 0;
4911 }
4912
4913 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4914 {
4915         struct perf_event *event = file->private_data;
4916         struct perf_event_context *ctx;
4917         long ret;
4918
4919         ctx = perf_event_ctx_lock(event);
4920         ret = _perf_ioctl(event, cmd, arg);
4921         perf_event_ctx_unlock(event, ctx);
4922
4923         return ret;
4924 }
4925
4926 #ifdef CONFIG_COMPAT
4927 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4928                                 unsigned long arg)
4929 {
4930         switch (_IOC_NR(cmd)) {
4931         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4932         case _IOC_NR(PERF_EVENT_IOC_ID):
4933                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4934                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4935                         cmd &= ~IOCSIZE_MASK;
4936                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4937                 }
4938                 break;
4939         }
4940         return perf_ioctl(file, cmd, arg);
4941 }
4942 #else
4943 # define perf_compat_ioctl NULL
4944 #endif
4945
4946 int perf_event_task_enable(void)
4947 {
4948         struct perf_event_context *ctx;
4949         struct perf_event *event;
4950
4951         mutex_lock(&current->perf_event_mutex);
4952         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4953                 ctx = perf_event_ctx_lock(event);
4954                 perf_event_for_each_child(event, _perf_event_enable);
4955                 perf_event_ctx_unlock(event, ctx);
4956         }
4957         mutex_unlock(&current->perf_event_mutex);
4958
4959         return 0;
4960 }
4961
4962 int perf_event_task_disable(void)
4963 {
4964         struct perf_event_context *ctx;
4965         struct perf_event *event;
4966
4967         mutex_lock(&current->perf_event_mutex);
4968         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4969                 ctx = perf_event_ctx_lock(event);
4970                 perf_event_for_each_child(event, _perf_event_disable);
4971                 perf_event_ctx_unlock(event, ctx);
4972         }
4973         mutex_unlock(&current->perf_event_mutex);
4974
4975         return 0;
4976 }
4977
4978 static int perf_event_index(struct perf_event *event)
4979 {
4980         if (event->hw.state & PERF_HES_STOPPED)
4981                 return 0;
4982
4983         if (event->state != PERF_EVENT_STATE_ACTIVE)
4984                 return 0;
4985
4986         return event->pmu->event_idx(event);
4987 }
4988
4989 static void calc_timer_values(struct perf_event *event,
4990                                 u64 *now,
4991                                 u64 *enabled,
4992                                 u64 *running)
4993 {
4994         u64 ctx_time;
4995
4996         *now = perf_clock();
4997         ctx_time = event->shadow_ctx_time + *now;
4998         *enabled = ctx_time - event->tstamp_enabled;
4999         *running = ctx_time - event->tstamp_running;
5000 }
5001
5002 static void perf_event_init_userpage(struct perf_event *event)
5003 {
5004         struct perf_event_mmap_page *userpg;
5005         struct ring_buffer *rb;
5006
5007         rcu_read_lock();
5008         rb = rcu_dereference(event->rb);
5009         if (!rb)
5010                 goto unlock;
5011
5012         userpg = rb->user_page;
5013
5014         /* Allow new userspace to detect that bit 0 is deprecated */
5015         userpg->cap_bit0_is_deprecated = 1;
5016         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5017         userpg->data_offset = PAGE_SIZE;
5018         userpg->data_size = perf_data_size(rb);
5019
5020 unlock:
5021         rcu_read_unlock();
5022 }
5023
5024 void __weak arch_perf_update_userpage(
5025         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5026 {
5027 }
5028
5029 /*
5030  * Callers need to ensure there can be no nesting of this function, otherwise
5031  * the seqlock logic goes bad. We can not serialize this because the arch
5032  * code calls this from NMI context.
5033  */
5034 void perf_event_update_userpage(struct perf_event *event)
5035 {
5036         struct perf_event_mmap_page *userpg;
5037         struct ring_buffer *rb;
5038         u64 enabled, running, now;
5039
5040         rcu_read_lock();
5041         rb = rcu_dereference(event->rb);
5042         if (!rb)
5043                 goto unlock;
5044
5045         /*
5046          * compute total_time_enabled, total_time_running
5047          * based on snapshot values taken when the event
5048          * was last scheduled in.
5049          *
5050          * we cannot simply called update_context_time()
5051          * because of locking issue as we can be called in
5052          * NMI context
5053          */
5054         calc_timer_values(event, &now, &enabled, &running);
5055
5056         userpg = rb->user_page;
5057         /*
5058          * Disable preemption so as to not let the corresponding user-space
5059          * spin too long if we get preempted.
5060          */
5061         preempt_disable();
5062         ++userpg->lock;
5063         barrier();
5064         userpg->index = perf_event_index(event);
5065         userpg->offset = perf_event_count(event);
5066         if (userpg->index)
5067                 userpg->offset -= local64_read(&event->hw.prev_count);
5068
5069         userpg->time_enabled = enabled +
5070                         atomic64_read(&event->child_total_time_enabled);
5071
5072         userpg->time_running = running +
5073                         atomic64_read(&event->child_total_time_running);
5074
5075         arch_perf_update_userpage(event, userpg, now);
5076
5077         barrier();
5078         ++userpg->lock;
5079         preempt_enable();
5080 unlock:
5081         rcu_read_unlock();
5082 }
5083
5084 static int perf_mmap_fault(struct vm_fault *vmf)
5085 {
5086         struct perf_event *event = vmf->vma->vm_file->private_data;
5087         struct ring_buffer *rb;
5088         int ret = VM_FAULT_SIGBUS;
5089
5090         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5091                 if (vmf->pgoff == 0)
5092                         ret = 0;
5093                 return ret;
5094         }
5095
5096         rcu_read_lock();
5097         rb = rcu_dereference(event->rb);
5098         if (!rb)
5099                 goto unlock;
5100
5101         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5102                 goto unlock;
5103
5104         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5105         if (!vmf->page)
5106                 goto unlock;
5107
5108         get_page(vmf->page);
5109         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5110         vmf->page->index   = vmf->pgoff;
5111
5112         ret = 0;
5113 unlock:
5114         rcu_read_unlock();
5115
5116         return ret;
5117 }
5118
5119 static void ring_buffer_attach(struct perf_event *event,
5120                                struct ring_buffer *rb)
5121 {
5122         struct ring_buffer *old_rb = NULL;
5123         unsigned long flags;
5124
5125         if (event->rb) {
5126                 /*
5127                  * Should be impossible, we set this when removing
5128                  * event->rb_entry and wait/clear when adding event->rb_entry.
5129                  */
5130                 WARN_ON_ONCE(event->rcu_pending);
5131
5132                 old_rb = event->rb;
5133                 spin_lock_irqsave(&old_rb->event_lock, flags);
5134                 list_del_rcu(&event->rb_entry);
5135                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5136
5137                 event->rcu_batches = get_state_synchronize_rcu();
5138                 event->rcu_pending = 1;
5139         }
5140
5141         if (rb) {
5142                 if (event->rcu_pending) {
5143                         cond_synchronize_rcu(event->rcu_batches);
5144                         event->rcu_pending = 0;
5145                 }
5146
5147                 spin_lock_irqsave(&rb->event_lock, flags);
5148                 list_add_rcu(&event->rb_entry, &rb->event_list);
5149                 spin_unlock_irqrestore(&rb->event_lock, flags);
5150         }
5151
5152         /*
5153          * Avoid racing with perf_mmap_close(AUX): stop the event
5154          * before swizzling the event::rb pointer; if it's getting
5155          * unmapped, its aux_mmap_count will be 0 and it won't
5156          * restart. See the comment in __perf_pmu_output_stop().
5157          *
5158          * Data will inevitably be lost when set_output is done in
5159          * mid-air, but then again, whoever does it like this is
5160          * not in for the data anyway.
5161          */
5162         if (has_aux(event))
5163                 perf_event_stop(event, 0);
5164
5165         rcu_assign_pointer(event->rb, rb);
5166
5167         if (old_rb) {
5168                 ring_buffer_put(old_rb);
5169                 /*
5170                  * Since we detached before setting the new rb, so that we
5171                  * could attach the new rb, we could have missed a wakeup.
5172                  * Provide it now.
5173                  */
5174                 wake_up_all(&event->waitq);
5175         }
5176 }
5177
5178 static void ring_buffer_wakeup(struct perf_event *event)
5179 {
5180         struct ring_buffer *rb;
5181
5182         rcu_read_lock();
5183         rb = rcu_dereference(event->rb);
5184         if (rb) {
5185                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5186                         wake_up_all(&event->waitq);
5187         }
5188         rcu_read_unlock();
5189 }
5190
5191 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5192 {
5193         struct ring_buffer *rb;
5194
5195         rcu_read_lock();
5196         rb = rcu_dereference(event->rb);
5197         if (rb) {
5198                 if (!atomic_inc_not_zero(&rb->refcount))
5199                         rb = NULL;
5200         }
5201         rcu_read_unlock();
5202
5203         return rb;
5204 }
5205
5206 void ring_buffer_put(struct ring_buffer *rb)
5207 {
5208         if (!atomic_dec_and_test(&rb->refcount))
5209                 return;
5210
5211         WARN_ON_ONCE(!list_empty(&rb->event_list));
5212
5213         call_rcu(&rb->rcu_head, rb_free_rcu);
5214 }
5215
5216 static void perf_mmap_open(struct vm_area_struct *vma)
5217 {
5218         struct perf_event *event = vma->vm_file->private_data;
5219
5220         atomic_inc(&event->mmap_count);
5221         atomic_inc(&event->rb->mmap_count);
5222
5223         if (vma->vm_pgoff)
5224                 atomic_inc(&event->rb->aux_mmap_count);
5225
5226         if (event->pmu->event_mapped)
5227                 event->pmu->event_mapped(event, vma->vm_mm);
5228 }
5229
5230 static void perf_pmu_output_stop(struct perf_event *event);
5231
5232 /*
5233  * A buffer can be mmap()ed multiple times; either directly through the same
5234  * event, or through other events by use of perf_event_set_output().
5235  *
5236  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5237  * the buffer here, where we still have a VM context. This means we need
5238  * to detach all events redirecting to us.
5239  */
5240 static void perf_mmap_close(struct vm_area_struct *vma)
5241 {
5242         struct perf_event *event = vma->vm_file->private_data;
5243         struct ring_buffer *rb = ring_buffer_get(event);
5244         struct user_struct *mmap_user = rb->mmap_user;
5245         int mmap_locked = rb->mmap_locked;
5246         unsigned long size = perf_data_size(rb);
5247         bool detach_rest = false;
5248
5249         if (event->pmu->event_unmapped)
5250                 event->pmu->event_unmapped(event, vma->vm_mm);
5251
5252         /*
5253          * rb->aux_mmap_count will always drop before rb->mmap_count and
5254          * event->mmap_count, so it is ok to use event->mmap_mutex to
5255          * serialize with perf_mmap here.
5256          */
5257         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5258             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5259                 /*
5260                  * Stop all AUX events that are writing to this buffer,
5261                  * so that we can free its AUX pages and corresponding PMU
5262                  * data. Note that after rb::aux_mmap_count dropped to zero,
5263                  * they won't start any more (see perf_aux_output_begin()).
5264                  */
5265                 perf_pmu_output_stop(event);
5266
5267                 /* now it's safe to free the pages */
5268                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5269                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5270
5271                 /* this has to be the last one */
5272                 rb_free_aux(rb);
5273                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5274
5275                 mutex_unlock(&event->mmap_mutex);
5276         }
5277
5278         if (atomic_dec_and_test(&rb->mmap_count))
5279                 detach_rest = true;
5280
5281         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5282                 goto out_put;
5283
5284         ring_buffer_attach(event, NULL);
5285         mutex_unlock(&event->mmap_mutex);
5286
5287         /* If there's still other mmap()s of this buffer, we're done. */
5288         if (!detach_rest)
5289                 goto out_put;
5290
5291         /*
5292          * No other mmap()s, detach from all other events that might redirect
5293          * into the now unreachable buffer. Somewhat complicated by the
5294          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5295          */
5296 again:
5297         rcu_read_lock();
5298         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5299                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5300                         /*
5301                          * This event is en-route to free_event() which will
5302                          * detach it and remove it from the list.
5303                          */
5304                         continue;
5305                 }
5306                 rcu_read_unlock();
5307
5308                 mutex_lock(&event->mmap_mutex);
5309                 /*
5310                  * Check we didn't race with perf_event_set_output() which can
5311                  * swizzle the rb from under us while we were waiting to
5312                  * acquire mmap_mutex.
5313                  *
5314                  * If we find a different rb; ignore this event, a next
5315                  * iteration will no longer find it on the list. We have to
5316                  * still restart the iteration to make sure we're not now
5317                  * iterating the wrong list.
5318                  */
5319                 if (event->rb == rb)
5320                         ring_buffer_attach(event, NULL);
5321
5322                 mutex_unlock(&event->mmap_mutex);
5323                 put_event(event);
5324
5325                 /*
5326                  * Restart the iteration; either we're on the wrong list or
5327                  * destroyed its integrity by doing a deletion.
5328                  */
5329                 goto again;
5330         }
5331         rcu_read_unlock();
5332
5333         /*
5334          * It could be there's still a few 0-ref events on the list; they'll
5335          * get cleaned up by free_event() -- they'll also still have their
5336          * ref on the rb and will free it whenever they are done with it.
5337          *
5338          * Aside from that, this buffer is 'fully' detached and unmapped,
5339          * undo the VM accounting.
5340          */
5341
5342         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5343         vma->vm_mm->pinned_vm -= mmap_locked;
5344         free_uid(mmap_user);
5345
5346 out_put:
5347         ring_buffer_put(rb); /* could be last */
5348 }
5349
5350 static const struct vm_operations_struct perf_mmap_vmops = {
5351         .open           = perf_mmap_open,
5352         .close          = perf_mmap_close, /* non mergable */
5353         .fault          = perf_mmap_fault,
5354         .page_mkwrite   = perf_mmap_fault,
5355 };
5356
5357 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5358 {
5359         struct perf_event *event = file->private_data;
5360         unsigned long user_locked, user_lock_limit;
5361         struct user_struct *user = current_user();
5362         unsigned long locked, lock_limit;
5363         struct ring_buffer *rb = NULL;
5364         unsigned long vma_size;
5365         unsigned long nr_pages;
5366         long user_extra = 0, extra = 0;
5367         int ret = 0, flags = 0;
5368
5369         /*
5370          * Don't allow mmap() of inherited per-task counters. This would
5371          * create a performance issue due to all children writing to the
5372          * same rb.
5373          */
5374         if (event->cpu == -1 && event->attr.inherit)
5375                 return -EINVAL;
5376
5377         if (!(vma->vm_flags & VM_SHARED))
5378                 return -EINVAL;
5379
5380         vma_size = vma->vm_end - vma->vm_start;
5381
5382         if (vma->vm_pgoff == 0) {
5383                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5384         } else {
5385                 /*
5386                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5387                  * mapped, all subsequent mappings should have the same size
5388                  * and offset. Must be above the normal perf buffer.
5389                  */
5390                 u64 aux_offset, aux_size;
5391
5392                 if (!event->rb)
5393                         return -EINVAL;
5394
5395                 nr_pages = vma_size / PAGE_SIZE;
5396
5397                 mutex_lock(&event->mmap_mutex);
5398                 ret = -EINVAL;
5399
5400                 rb = event->rb;
5401                 if (!rb)
5402                         goto aux_unlock;
5403
5404                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5405                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5406
5407                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5408                         goto aux_unlock;
5409
5410                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5411                         goto aux_unlock;
5412
5413                 /* already mapped with a different offset */
5414                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5415                         goto aux_unlock;
5416
5417                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5418                         goto aux_unlock;
5419
5420                 /* already mapped with a different size */
5421                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5422                         goto aux_unlock;
5423
5424                 if (!is_power_of_2(nr_pages))
5425                         goto aux_unlock;
5426
5427                 if (!atomic_inc_not_zero(&rb->mmap_count))
5428                         goto aux_unlock;
5429
5430                 if (rb_has_aux(rb)) {
5431                         atomic_inc(&rb->aux_mmap_count);
5432                         ret = 0;
5433                         goto unlock;
5434                 }
5435
5436                 atomic_set(&rb->aux_mmap_count, 1);
5437                 user_extra = nr_pages;
5438
5439                 goto accounting;
5440         }
5441
5442         /*
5443          * If we have rb pages ensure they're a power-of-two number, so we
5444          * can do bitmasks instead of modulo.
5445          */
5446         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5447                 return -EINVAL;
5448
5449         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5450                 return -EINVAL;
5451
5452         WARN_ON_ONCE(event->ctx->parent_ctx);
5453 again:
5454         mutex_lock(&event->mmap_mutex);
5455         if (event->rb) {
5456                 if (event->rb->nr_pages != nr_pages) {
5457                         ret = -EINVAL;
5458                         goto unlock;
5459                 }
5460
5461                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5462                         /*
5463                          * Raced against perf_mmap_close(); remove the
5464                          * event and try again.
5465                          */
5466                         ring_buffer_attach(event, NULL);
5467                         mutex_unlock(&event->mmap_mutex);
5468                         goto again;
5469                 }
5470
5471                 goto unlock;
5472         }
5473
5474         user_extra = nr_pages + 1;
5475
5476 accounting:
5477         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5478
5479         /*
5480          * Increase the limit linearly with more CPUs:
5481          */
5482         user_lock_limit *= num_online_cpus();
5483
5484         user_locked = atomic_long_read(&user->locked_vm);
5485
5486         /*
5487          * sysctl_perf_event_mlock may have changed, so that
5488          *     user->locked_vm > user_lock_limit
5489          */
5490         if (user_locked > user_lock_limit)
5491                 user_locked = user_lock_limit;
5492         user_locked += user_extra;
5493
5494         if (user_locked > user_lock_limit)
5495                 extra = user_locked - user_lock_limit;
5496
5497         lock_limit = rlimit(RLIMIT_MEMLOCK);
5498         lock_limit >>= PAGE_SHIFT;
5499         locked = vma->vm_mm->pinned_vm + extra;
5500
5501         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5502                 !capable(CAP_IPC_LOCK)) {
5503                 ret = -EPERM;
5504                 goto unlock;
5505         }
5506
5507         WARN_ON(!rb && event->rb);
5508
5509         if (vma->vm_flags & VM_WRITE)
5510                 flags |= RING_BUFFER_WRITABLE;
5511
5512         if (!rb) {
5513                 rb = rb_alloc(nr_pages,
5514                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5515                               event->cpu, flags);
5516
5517                 if (!rb) {
5518                         ret = -ENOMEM;
5519                         goto unlock;
5520                 }
5521
5522                 atomic_set(&rb->mmap_count, 1);
5523                 rb->mmap_user = get_current_user();
5524                 rb->mmap_locked = extra;
5525
5526                 ring_buffer_attach(event, rb);
5527
5528                 perf_event_init_userpage(event);
5529                 perf_event_update_userpage(event);
5530         } else {
5531                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5532                                    event->attr.aux_watermark, flags);
5533                 if (!ret)
5534                         rb->aux_mmap_locked = extra;
5535         }
5536
5537 unlock:
5538         if (!ret) {
5539                 atomic_long_add(user_extra, &user->locked_vm);
5540                 vma->vm_mm->pinned_vm += extra;
5541
5542                 atomic_inc(&event->mmap_count);
5543         } else if (rb) {
5544                 atomic_dec(&rb->mmap_count);
5545         }
5546 aux_unlock:
5547         mutex_unlock(&event->mmap_mutex);
5548
5549         /*
5550          * Since pinned accounting is per vm we cannot allow fork() to copy our
5551          * vma.
5552          */
5553         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5554         vma->vm_ops = &perf_mmap_vmops;
5555
5556         if (event->pmu->event_mapped)
5557                 event->pmu->event_mapped(event, vma->vm_mm);
5558
5559         return ret;
5560 }
5561
5562 static int perf_fasync(int fd, struct file *filp, int on)
5563 {
5564         struct inode *inode = file_inode(filp);
5565         struct perf_event *event = filp->private_data;
5566         int retval;
5567
5568         inode_lock(inode);
5569         retval = fasync_helper(fd, filp, on, &event->fasync);
5570         inode_unlock(inode);
5571
5572         if (retval < 0)
5573                 return retval;
5574
5575         return 0;
5576 }
5577
5578 static const struct file_operations perf_fops = {
5579         .llseek                 = no_llseek,
5580         .release                = perf_release,
5581         .read                   = perf_read,
5582         .poll                   = perf_poll,
5583         .unlocked_ioctl         = perf_ioctl,
5584         .compat_ioctl           = perf_compat_ioctl,
5585         .mmap                   = perf_mmap,
5586         .fasync                 = perf_fasync,
5587 };
5588
5589 /*
5590  * Perf event wakeup
5591  *
5592  * If there's data, ensure we set the poll() state and publish everything
5593  * to user-space before waking everybody up.
5594  */
5595
5596 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5597 {
5598         /* only the parent has fasync state */
5599         if (event->parent)
5600                 event = event->parent;
5601         return &event->fasync;
5602 }
5603
5604 void perf_event_wakeup(struct perf_event *event)
5605 {
5606         ring_buffer_wakeup(event);
5607
5608         if (event->pending_kill) {
5609                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5610                 event->pending_kill = 0;
5611         }
5612 }
5613
5614 static void perf_pending_event(struct irq_work *entry)
5615 {
5616         struct perf_event *event = container_of(entry,
5617                         struct perf_event, pending);
5618         int rctx;
5619
5620         rctx = perf_swevent_get_recursion_context();
5621         /*
5622          * If we 'fail' here, that's OK, it means recursion is already disabled
5623          * and we won't recurse 'further'.
5624          */
5625
5626         if (event->pending_disable) {
5627                 event->pending_disable = 0;
5628                 perf_event_disable_local(event);
5629         }
5630
5631         if (event->pending_wakeup) {
5632                 event->pending_wakeup = 0;
5633                 perf_event_wakeup(event);
5634         }
5635
5636         if (rctx >= 0)
5637                 perf_swevent_put_recursion_context(rctx);
5638 }
5639
5640 /*
5641  * We assume there is only KVM supporting the callbacks.
5642  * Later on, we might change it to a list if there is
5643  * another virtualization implementation supporting the callbacks.
5644  */
5645 struct perf_guest_info_callbacks *perf_guest_cbs;
5646
5647 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5648 {
5649         perf_guest_cbs = cbs;
5650         return 0;
5651 }
5652 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5653
5654 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5655 {
5656         perf_guest_cbs = NULL;
5657         return 0;
5658 }
5659 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5660
5661 static void
5662 perf_output_sample_regs(struct perf_output_handle *handle,
5663                         struct pt_regs *regs, u64 mask)
5664 {
5665         int bit;
5666         DECLARE_BITMAP(_mask, 64);
5667
5668         bitmap_from_u64(_mask, mask);
5669         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5670                 u64 val;
5671
5672                 val = perf_reg_value(regs, bit);
5673                 perf_output_put(handle, val);
5674         }
5675 }
5676
5677 static void perf_sample_regs_user(struct perf_regs *regs_user,
5678                                   struct pt_regs *regs,
5679                                   struct pt_regs *regs_user_copy)
5680 {
5681         if (user_mode(regs)) {
5682                 regs_user->abi = perf_reg_abi(current);
5683                 regs_user->regs = regs;
5684         } else if (!(current->flags & PF_KTHREAD)) {
5685                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5686         } else {
5687                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5688                 regs_user->regs = NULL;
5689         }
5690 }
5691
5692 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5693                                   struct pt_regs *regs)
5694 {
5695         regs_intr->regs = regs;
5696         regs_intr->abi  = perf_reg_abi(current);
5697 }
5698
5699
5700 /*
5701  * Get remaining task size from user stack pointer.
5702  *
5703  * It'd be better to take stack vma map and limit this more
5704  * precisly, but there's no way to get it safely under interrupt,
5705  * so using TASK_SIZE as limit.
5706  */
5707 static u64 perf_ustack_task_size(struct pt_regs *regs)
5708 {
5709         unsigned long addr = perf_user_stack_pointer(regs);
5710
5711         if (!addr || addr >= TASK_SIZE)
5712                 return 0;
5713
5714         return TASK_SIZE - addr;
5715 }
5716
5717 static u16
5718 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5719                         struct pt_regs *regs)
5720 {
5721         u64 task_size;
5722
5723         /* No regs, no stack pointer, no dump. */
5724         if (!regs)
5725                 return 0;
5726
5727         /*
5728          * Check if we fit in with the requested stack size into the:
5729          * - TASK_SIZE
5730          *   If we don't, we limit the size to the TASK_SIZE.
5731          *
5732          * - remaining sample size
5733          *   If we don't, we customize the stack size to
5734          *   fit in to the remaining sample size.
5735          */
5736
5737         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5738         stack_size = min(stack_size, (u16) task_size);
5739
5740         /* Current header size plus static size and dynamic size. */
5741         header_size += 2 * sizeof(u64);
5742
5743         /* Do we fit in with the current stack dump size? */
5744         if ((u16) (header_size + stack_size) < header_size) {
5745                 /*
5746                  * If we overflow the maximum size for the sample,
5747                  * we customize the stack dump size to fit in.
5748                  */
5749                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5750                 stack_size = round_up(stack_size, sizeof(u64));
5751         }
5752
5753         return stack_size;
5754 }
5755
5756 static void
5757 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5758                           struct pt_regs *regs)
5759 {
5760         /* Case of a kernel thread, nothing to dump */
5761         if (!regs) {
5762                 u64 size = 0;
5763                 perf_output_put(handle, size);
5764         } else {
5765                 unsigned long sp;
5766                 unsigned int rem;
5767                 u64 dyn_size;
5768                 mm_segment_t fs;
5769
5770                 /*
5771                  * We dump:
5772                  * static size
5773                  *   - the size requested by user or the best one we can fit
5774                  *     in to the sample max size
5775                  * data
5776                  *   - user stack dump data
5777                  * dynamic size
5778                  *   - the actual dumped size
5779                  */
5780
5781                 /* Static size. */
5782                 perf_output_put(handle, dump_size);
5783
5784                 /* Data. */
5785                 sp = perf_user_stack_pointer(regs);
5786                 fs = get_fs();
5787                 set_fs(USER_DS);
5788                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5789                 set_fs(fs);
5790                 dyn_size = dump_size - rem;
5791
5792                 perf_output_skip(handle, rem);
5793
5794                 /* Dynamic size. */
5795                 perf_output_put(handle, dyn_size);
5796         }
5797 }
5798
5799 static void __perf_event_header__init_id(struct perf_event_header *header,
5800                                          struct perf_sample_data *data,
5801                                          struct perf_event *event,
5802                                          u64 sample_type)
5803 {
5804         data->type = event->attr.sample_type;
5805         header->size += event->id_header_size;
5806
5807         if (sample_type & PERF_SAMPLE_TID) {
5808                 /* namespace issues */
5809                 data->tid_entry.pid = perf_event_pid(event, current);
5810                 data->tid_entry.tid = perf_event_tid(event, current);
5811         }
5812
5813         if (sample_type & PERF_SAMPLE_TIME)
5814                 data->time = perf_event_clock(event);
5815
5816         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5817                 data->id = primary_event_id(event);
5818
5819         if (sample_type & PERF_SAMPLE_STREAM_ID)
5820                 data->stream_id = event->id;
5821
5822         if (sample_type & PERF_SAMPLE_CPU) {
5823                 data->cpu_entry.cpu      = raw_smp_processor_id();
5824                 data->cpu_entry.reserved = 0;
5825         }
5826 }
5827
5828 void perf_event_header__init_id(struct perf_event_header *header,
5829                                 struct perf_sample_data *data,
5830                                 struct perf_event *event)
5831 {
5832         if (event->attr.sample_id_all)
5833                 __perf_event_header__init_id(header, data, event, event->attr.sample_type);
5834 }
5835
5836 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5837                                            struct perf_sample_data *data)
5838 {
5839         u64 sample_type = data->type;
5840
5841         if (sample_type & PERF_SAMPLE_TID)
5842                 perf_output_put(handle, data->tid_entry);
5843
5844         if (sample_type & PERF_SAMPLE_TIME)
5845                 perf_output_put(handle, data->time);
5846
5847         if (sample_type & PERF_SAMPLE_ID)
5848                 perf_output_put(handle, data->id);
5849
5850         if (sample_type & PERF_SAMPLE_STREAM_ID)
5851                 perf_output_put(handle, data->stream_id);
5852
5853         if (sample_type & PERF_SAMPLE_CPU)
5854                 perf_output_put(handle, data->cpu_entry);
5855
5856         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5857                 perf_output_put(handle, data->id);
5858 }
5859
5860 void perf_event__output_id_sample(struct perf_event *event,
5861                                   struct perf_output_handle *handle,
5862                                   struct perf_sample_data *sample)
5863 {
5864         if (event->attr.sample_id_all)
5865                 __perf_event__output_id_sample(handle, sample);
5866 }
5867
5868 static void perf_output_read_one(struct perf_output_handle *handle,
5869                                  struct perf_event *event,
5870                                  u64 enabled, u64 running)
5871 {
5872         u64 read_format = event->attr.read_format;
5873         u64 values[4];
5874         int n = 0;
5875
5876         values[n++] = perf_event_count(event);
5877         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5878                 values[n++] = enabled +
5879                         atomic64_read(&event->child_total_time_enabled);
5880         }
5881         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5882                 values[n++] = running +
5883                         atomic64_read(&event->child_total_time_running);
5884         }
5885         if (read_format & PERF_FORMAT_ID)
5886                 values[n++] = primary_event_id(event);
5887
5888         __output_copy(handle, values, n * sizeof(u64));
5889 }
5890
5891 static void perf_output_read_group(struct perf_output_handle *handle,
5892                             struct perf_event *event,
5893                             u64 enabled, u64 running)
5894 {
5895         struct perf_event *leader = event->group_leader, *sub;
5896         u64 read_format = event->attr.read_format;
5897         u64 values[5];
5898         int n = 0;
5899
5900         values[n++] = 1 + leader->nr_siblings;
5901
5902         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5903                 values[n++] = enabled;
5904
5905         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5906                 values[n++] = running;
5907
5908         if ((leader != event) &&
5909             (leader->state == PERF_EVENT_STATE_ACTIVE))
5910                 leader->pmu->read(leader);
5911
5912         values[n++] = perf_event_count(leader);
5913         if (read_format & PERF_FORMAT_ID)
5914                 values[n++] = primary_event_id(leader);
5915
5916         __output_copy(handle, values, n * sizeof(u64));
5917
5918         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5919                 n = 0;
5920
5921                 if ((sub != event) &&
5922                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5923                         sub->pmu->read(sub);
5924
5925                 values[n++] = perf_event_count(sub);
5926                 if (read_format & PERF_FORMAT_ID)
5927                         values[n++] = primary_event_id(sub);
5928
5929                 __output_copy(handle, values, n * sizeof(u64));
5930         }
5931 }
5932
5933 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5934                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5935
5936 /*
5937  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5938  *
5939  * The problem is that its both hard and excessively expensive to iterate the
5940  * child list, not to mention that its impossible to IPI the children running
5941  * on another CPU, from interrupt/NMI context.
5942  */
5943 static void perf_output_read(struct perf_output_handle *handle,
5944                              struct perf_event *event)
5945 {
5946         u64 enabled = 0, running = 0, now;
5947         u64 read_format = event->attr.read_format;
5948
5949         /*
5950          * compute total_time_enabled, total_time_running
5951          * based on snapshot values taken when the event
5952          * was last scheduled in.
5953          *
5954          * we cannot simply called update_context_time()
5955          * because of locking issue as we are called in
5956          * NMI context
5957          */
5958         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5959                 calc_timer_values(event, &now, &enabled, &running);
5960
5961         if (event->attr.read_format & PERF_FORMAT_GROUP)
5962                 perf_output_read_group(handle, event, enabled, running);
5963         else
5964                 perf_output_read_one(handle, event, enabled, running);
5965 }
5966
5967 void perf_output_sample(struct perf_output_handle *handle,
5968                         struct perf_event_header *header,
5969                         struct perf_sample_data *data,
5970                         struct perf_event *event)
5971 {
5972         u64 sample_type = data->type;
5973
5974         perf_output_put(handle, *header);
5975
5976         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5977                 perf_output_put(handle, data->id);
5978
5979         if (sample_type & PERF_SAMPLE_IP)
5980                 perf_output_put(handle, data->ip);
5981
5982         if (sample_type & PERF_SAMPLE_TID)
5983                 perf_output_put(handle, data->tid_entry);
5984
5985         if (sample_type & PERF_SAMPLE_TIME)
5986                 perf_output_put(handle, data->time);
5987
5988         if (sample_type & PERF_SAMPLE_ADDR)
5989                 perf_output_put(handle, data->addr);
5990
5991         if (sample_type & PERF_SAMPLE_ID)
5992                 perf_output_put(handle, data->id);
5993
5994         if (sample_type & PERF_SAMPLE_STREAM_ID)
5995                 perf_output_put(handle, data->stream_id);
5996
5997         if (sample_type & PERF_SAMPLE_CPU)
5998                 perf_output_put(handle, data->cpu_entry);
5999
6000         if (sample_type & PERF_SAMPLE_PERIOD)
6001                 perf_output_put(handle, data->period);
6002
6003         if (sample_type & PERF_SAMPLE_READ)
6004                 perf_output_read(handle, event);
6005
6006         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6007                 if (data->callchain) {
6008                         int size = 1;
6009
6010                         if (data->callchain)
6011                                 size += data->callchain->nr;
6012
6013                         size *= sizeof(u64);
6014
6015                         __output_copy(handle, data->callchain, size);
6016                 } else {
6017                         u64 nr = 0;
6018                         perf_output_put(handle, nr);
6019                 }
6020         }
6021
6022         if (sample_type & PERF_SAMPLE_RAW) {
6023                 struct perf_raw_record *raw = data->raw;
6024
6025                 if (raw) {
6026                         struct perf_raw_frag *frag = &raw->frag;
6027
6028                         perf_output_put(handle, raw->size);
6029                         do {
6030                                 if (frag->copy) {
6031                                         __output_custom(handle, frag->copy,
6032                                                         frag->data, frag->size);
6033                                 } else {
6034                                         __output_copy(handle, frag->data,
6035                                                       frag->size);
6036                                 }
6037                                 if (perf_raw_frag_last(frag))
6038                                         break;
6039                                 frag = frag->next;
6040                         } while (1);
6041                         if (frag->pad)
6042                                 __output_skip(handle, NULL, frag->pad);
6043                 } else {
6044                         struct {
6045                                 u32     size;
6046                                 u32     data;
6047                         } raw = {
6048                                 .size = sizeof(u32),
6049                                 .data = 0,
6050                         };
6051                         perf_output_put(handle, raw);
6052                 }
6053         }
6054
6055         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6056                 if (data->br_stack) {
6057                         size_t size;
6058
6059                         size = data->br_stack->nr
6060                              * sizeof(struct perf_branch_entry);
6061
6062                         perf_output_put(handle, data->br_stack->nr);
6063                         perf_output_copy(handle, data->br_stack->entries, size);
6064                 } else {
6065                         /*
6066                          * we always store at least the value of nr
6067                          */
6068                         u64 nr = 0;
6069                         perf_output_put(handle, nr);
6070                 }
6071         }
6072
6073         if (sample_type & PERF_SAMPLE_REGS_USER) {
6074                 u64 abi = data->regs_user.abi;
6075
6076                 /*
6077                  * If there are no regs to dump, notice it through
6078                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6079                  */
6080                 perf_output_put(handle, abi);
6081
6082                 if (abi) {
6083                         u64 mask = event->attr.sample_regs_user;
6084                         perf_output_sample_regs(handle,
6085                                                 data->regs_user.regs,
6086                                                 mask);
6087                 }
6088         }
6089
6090         if (sample_type & PERF_SAMPLE_STACK_USER) {
6091                 perf_output_sample_ustack(handle,
6092                                           data->stack_user_size,
6093                                           data->regs_user.regs);
6094         }
6095
6096         if (sample_type & PERF_SAMPLE_WEIGHT)
6097                 perf_output_put(handle, data->weight);
6098
6099         if (sample_type & PERF_SAMPLE_DATA_SRC)
6100                 perf_output_put(handle, data->data_src.val);
6101
6102         if (sample_type & PERF_SAMPLE_TRANSACTION)
6103                 perf_output_put(handle, data->txn);
6104
6105         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6106                 u64 abi = data->regs_intr.abi;
6107                 /*
6108                  * If there are no regs to dump, notice it through
6109                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6110                  */
6111                 perf_output_put(handle, abi);
6112
6113                 if (abi) {
6114                         u64 mask = event->attr.sample_regs_intr;
6115
6116                         perf_output_sample_regs(handle,
6117                                                 data->regs_intr.regs,
6118                                                 mask);
6119                 }
6120         }
6121
6122         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6123                 perf_output_put(handle, data->phys_addr);
6124
6125         if (!event->attr.watermark) {
6126                 int wakeup_events = event->attr.wakeup_events;
6127
6128                 if (wakeup_events) {
6129                         struct ring_buffer *rb = handle->rb;
6130                         int events = local_inc_return(&rb->events);
6131
6132                         if (events >= wakeup_events) {
6133                                 local_sub(wakeup_events, &rb->events);
6134                                 local_inc(&rb->wakeup);
6135                         }
6136                 }
6137         }
6138 }
6139
6140 static u64 perf_virt_to_phys(u64 virt)
6141 {
6142         u64 phys_addr = 0;
6143
6144         if (!virt)
6145                 return 0;
6146
6147         if (virt >= TASK_SIZE) {
6148                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6149                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6150                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6151                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6152         } else {
6153                 /*
6154                  * Walking the pages tables for user address.
6155                  * Interrupts are disabled, so it prevents any tear down
6156                  * of the page tables.
6157                  * Try IRQ-safe __get_user_pages_fast first.
6158                  * If failed, leave phys_addr as 0.
6159                  */
6160                 if (current->mm != NULL) {
6161                         struct page *p;
6162
6163                         pagefault_disable();
6164                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1) {
6165                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6166                                 put_page(p);
6167                         }
6168                         pagefault_enable();
6169                 }
6170         }
6171
6172         return phys_addr;
6173 }
6174
6175 void perf_prepare_sample(struct perf_event_header *header,
6176                          struct perf_sample_data *data,
6177                          struct perf_event *event,
6178                          struct pt_regs *regs)
6179 {
6180         u64 sample_type = event->attr.sample_type;
6181         u64 filtered_sample_type;
6182
6183         header->type = PERF_RECORD_SAMPLE;
6184         header->size = sizeof(*header) + event->header_size;
6185
6186         header->misc = 0;
6187         header->misc |= perf_misc_flags(regs);
6188
6189         /*
6190          * Clear the sample flags that have already been done by the
6191          * PMU driver.
6192          */
6193         filtered_sample_type = sample_type & ~data->sample_flags;
6194         __perf_event_header__init_id(header, data, event, filtered_sample_type);
6195
6196         if (sample_type & PERF_SAMPLE_IP)
6197                 data->ip = perf_instruction_pointer(regs);
6198
6199         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6200                 int size = 1;
6201
6202                 data->callchain = perf_callchain(event, regs);
6203
6204                 if (data->callchain)
6205                         size += data->callchain->nr;
6206
6207                 header->size += size * sizeof(u64);
6208         }
6209
6210         if (sample_type & PERF_SAMPLE_RAW) {
6211                 struct perf_raw_record *raw = data->raw;
6212                 int size;
6213
6214                 if (raw) {
6215                         struct perf_raw_frag *frag = &raw->frag;
6216                         u32 sum = 0;
6217
6218                         do {
6219                                 sum += frag->size;
6220                                 if (perf_raw_frag_last(frag))
6221                                         break;
6222                                 frag = frag->next;
6223                         } while (1);
6224
6225                         size = round_up(sum + sizeof(u32), sizeof(u64));
6226                         raw->size = size - sizeof(u32);
6227                         frag->pad = raw->size - sum;
6228                 } else {
6229                         size = sizeof(u64);
6230                 }
6231
6232                 header->size += size;
6233         }
6234
6235         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6236                 int size = sizeof(u64); /* nr */
6237                 if (data->br_stack) {
6238                         size += data->br_stack->nr
6239                               * sizeof(struct perf_branch_entry);
6240                 }
6241                 header->size += size;
6242         }
6243
6244         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6245                 perf_sample_regs_user(&data->regs_user, regs,
6246                                       &data->regs_user_copy);
6247
6248         if (sample_type & PERF_SAMPLE_REGS_USER) {
6249                 /* regs dump ABI info */
6250                 int size = sizeof(u64);
6251
6252                 if (data->regs_user.regs) {
6253                         u64 mask = event->attr.sample_regs_user;
6254                         size += hweight64(mask) * sizeof(u64);
6255                 }
6256
6257                 header->size += size;
6258         }
6259
6260         if (sample_type & PERF_SAMPLE_STACK_USER) {
6261                 /*
6262                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6263                  * processed as the last one or have additional check added
6264                  * in case new sample type is added, because we could eat
6265                  * up the rest of the sample size.
6266                  */
6267                 u16 stack_size = event->attr.sample_stack_user;
6268                 u16 size = sizeof(u64);
6269
6270                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6271                                                      data->regs_user.regs);
6272
6273                 /*
6274                  * If there is something to dump, add space for the dump
6275                  * itself and for the field that tells the dynamic size,
6276                  * which is how many have been actually dumped.
6277                  */
6278                 if (stack_size)
6279                         size += sizeof(u64) + stack_size;
6280
6281                 data->stack_user_size = stack_size;
6282                 header->size += size;
6283         }
6284
6285         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6286                 /* regs dump ABI info */
6287                 int size = sizeof(u64);
6288
6289                 perf_sample_regs_intr(&data->regs_intr, regs);
6290
6291                 if (data->regs_intr.regs) {
6292                         u64 mask = event->attr.sample_regs_intr;
6293
6294                         size += hweight64(mask) * sizeof(u64);
6295                 }
6296
6297                 header->size += size;
6298         }
6299
6300         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6301                 data->phys_addr = perf_virt_to_phys(data->addr);
6302 }
6303
6304 static void __always_inline
6305 __perf_event_output(struct perf_event *event,
6306                     struct perf_sample_data *data,
6307                     struct pt_regs *regs,
6308                     int (*output_begin)(struct perf_output_handle *,
6309                                         struct perf_event *,
6310                                         unsigned int))
6311 {
6312         struct perf_output_handle handle;
6313         struct perf_event_header header;
6314
6315         /* protect the callchain buffers */
6316         rcu_read_lock();
6317
6318         perf_prepare_sample(&header, data, event, regs);
6319
6320         if (output_begin(&handle, event, header.size))
6321                 goto exit;
6322
6323         perf_output_sample(&handle, &header, data, event);
6324
6325         perf_output_end(&handle);
6326
6327 exit:
6328         rcu_read_unlock();
6329 }
6330
6331 void
6332 perf_event_output_forward(struct perf_event *event,
6333                          struct perf_sample_data *data,
6334                          struct pt_regs *regs)
6335 {
6336         __perf_event_output(event, data, regs, perf_output_begin_forward);
6337 }
6338
6339 void
6340 perf_event_output_backward(struct perf_event *event,
6341                            struct perf_sample_data *data,
6342                            struct pt_regs *regs)
6343 {
6344         __perf_event_output(event, data, regs, perf_output_begin_backward);
6345 }
6346
6347 void
6348 perf_event_output(struct perf_event *event,
6349                   struct perf_sample_data *data,
6350                   struct pt_regs *regs)
6351 {
6352         __perf_event_output(event, data, regs, perf_output_begin);
6353 }
6354
6355 /*
6356  * read event_id
6357  */
6358
6359 struct perf_read_event {
6360         struct perf_event_header        header;
6361
6362         u32                             pid;
6363         u32                             tid;
6364 };
6365
6366 static void
6367 perf_event_read_event(struct perf_event *event,
6368                         struct task_struct *task)
6369 {
6370         struct perf_output_handle handle;
6371         struct perf_sample_data sample;
6372         struct perf_read_event read_event = {
6373                 .header = {
6374                         .type = PERF_RECORD_READ,
6375                         .misc = 0,
6376                         .size = sizeof(read_event) + event->read_size,
6377                 },
6378                 .pid = perf_event_pid(event, task),
6379                 .tid = perf_event_tid(event, task),
6380         };
6381         int ret;
6382
6383         perf_event_header__init_id(&read_event.header, &sample, event);
6384         ret = perf_output_begin(&handle, event, read_event.header.size);
6385         if (ret)
6386                 return;
6387
6388         perf_output_put(&handle, read_event);
6389         perf_output_read(&handle, event);
6390         perf_event__output_id_sample(event, &handle, &sample);
6391
6392         perf_output_end(&handle);
6393 }
6394
6395 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6396
6397 static void
6398 perf_iterate_ctx(struct perf_event_context *ctx,
6399                    perf_iterate_f output,
6400                    void *data, bool all)
6401 {
6402         struct perf_event *event;
6403
6404         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6405                 if (!all) {
6406                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6407                                 continue;
6408                         if (!event_filter_match(event))
6409                                 continue;
6410                 }
6411
6412                 output(event, data);
6413         }
6414 }
6415
6416 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6417 {
6418         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6419         struct perf_event *event;
6420
6421         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6422                 /*
6423                  * Skip events that are not fully formed yet; ensure that
6424                  * if we observe event->ctx, both event and ctx will be
6425                  * complete enough. See perf_install_in_context().
6426                  */
6427                 if (!smp_load_acquire(&event->ctx))
6428                         continue;
6429
6430                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6431                         continue;
6432                 if (!event_filter_match(event))
6433                         continue;
6434                 output(event, data);
6435         }
6436 }
6437
6438 /*
6439  * Iterate all events that need to receive side-band events.
6440  *
6441  * For new callers; ensure that account_pmu_sb_event() includes
6442  * your event, otherwise it might not get delivered.
6443  */
6444 static void
6445 perf_iterate_sb(perf_iterate_f output, void *data,
6446                struct perf_event_context *task_ctx)
6447 {
6448         struct perf_event_context *ctx;
6449         int ctxn;
6450
6451         rcu_read_lock();
6452         preempt_disable();
6453
6454         /*
6455          * If we have task_ctx != NULL we only notify the task context itself.
6456          * The task_ctx is set only for EXIT events before releasing task
6457          * context.
6458          */
6459         if (task_ctx) {
6460                 perf_iterate_ctx(task_ctx, output, data, false);
6461                 goto done;
6462         }
6463
6464         perf_iterate_sb_cpu(output, data);
6465
6466         for_each_task_context_nr(ctxn) {
6467                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6468                 if (ctx)
6469                         perf_iterate_ctx(ctx, output, data, false);
6470         }
6471 done:
6472         preempt_enable();
6473         rcu_read_unlock();
6474 }
6475
6476 /*
6477  * Clear all file-based filters at exec, they'll have to be
6478  * re-instated when/if these objects are mmapped again.
6479  */
6480 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6481 {
6482         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6483         struct perf_addr_filter *filter;
6484         unsigned int restart = 0, count = 0;
6485         unsigned long flags;
6486
6487         if (!has_addr_filter(event))
6488                 return;
6489
6490         raw_spin_lock_irqsave(&ifh->lock, flags);
6491         list_for_each_entry(filter, &ifh->list, entry) {
6492                 if (filter->path.dentry) {
6493                         event->addr_filters_offs[count] = 0;
6494                         restart++;
6495                 }
6496
6497                 count++;
6498         }
6499
6500         if (restart)
6501                 event->addr_filters_gen++;
6502         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6503
6504         if (restart)
6505                 perf_event_stop(event, 1);
6506 }
6507
6508 void perf_event_exec(void)
6509 {
6510         struct perf_event_context *ctx;
6511         int ctxn;
6512
6513         rcu_read_lock();
6514         for_each_task_context_nr(ctxn) {
6515                 ctx = current->perf_event_ctxp[ctxn];
6516                 if (!ctx)
6517                         continue;
6518
6519                 perf_event_enable_on_exec(ctxn);
6520
6521                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6522                                    true);
6523         }
6524         rcu_read_unlock();
6525 }
6526
6527 struct remote_output {
6528         struct ring_buffer      *rb;
6529         int                     err;
6530 };
6531
6532 static void __perf_event_output_stop(struct perf_event *event, void *data)
6533 {
6534         struct perf_event *parent = event->parent;
6535         struct remote_output *ro = data;
6536         struct ring_buffer *rb = ro->rb;
6537         struct stop_event_data sd = {
6538                 .event  = event,
6539         };
6540
6541         if (!has_aux(event))
6542                 return;
6543
6544         if (!parent)
6545                 parent = event;
6546
6547         /*
6548          * In case of inheritance, it will be the parent that links to the
6549          * ring-buffer, but it will be the child that's actually using it.
6550          *
6551          * We are using event::rb to determine if the event should be stopped,
6552          * however this may race with ring_buffer_attach() (through set_output),
6553          * which will make us skip the event that actually needs to be stopped.
6554          * So ring_buffer_attach() has to stop an aux event before re-assigning
6555          * its rb pointer.
6556          */
6557         if (rcu_dereference(parent->rb) == rb)
6558                 ro->err = __perf_event_stop(&sd);
6559 }
6560
6561 static int __perf_pmu_output_stop(void *info)
6562 {
6563         struct perf_event *event = info;
6564         struct pmu *pmu = event->pmu;
6565         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6566         struct remote_output ro = {
6567                 .rb     = event->rb,
6568         };
6569
6570         rcu_read_lock();
6571         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6572         if (cpuctx->task_ctx)
6573                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6574                                    &ro, false);
6575         rcu_read_unlock();
6576
6577         return ro.err;
6578 }
6579
6580 static void perf_pmu_output_stop(struct perf_event *event)
6581 {
6582         struct perf_event *iter;
6583         int err, cpu;
6584
6585 restart:
6586         rcu_read_lock();
6587         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6588                 /*
6589                  * For per-CPU events, we need to make sure that neither they
6590                  * nor their children are running; for cpu==-1 events it's
6591                  * sufficient to stop the event itself if it's active, since
6592                  * it can't have children.
6593                  */
6594                 cpu = iter->cpu;
6595                 if (cpu == -1)
6596                         cpu = READ_ONCE(iter->oncpu);
6597
6598                 if (cpu == -1)
6599                         continue;
6600
6601                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6602                 if (err == -EAGAIN) {
6603                         rcu_read_unlock();
6604                         goto restart;
6605                 }
6606         }
6607         rcu_read_unlock();
6608 }
6609
6610 /*
6611  * task tracking -- fork/exit
6612  *
6613  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6614  */
6615
6616 struct perf_task_event {
6617         struct task_struct              *task;
6618         struct perf_event_context       *task_ctx;
6619
6620         struct {
6621                 struct perf_event_header        header;
6622
6623                 u32                             pid;
6624                 u32                             ppid;
6625                 u32                             tid;
6626                 u32                             ptid;
6627                 u64                             time;
6628         } event_id;
6629 };
6630
6631 static int perf_event_task_match(struct perf_event *event)
6632 {
6633         return event->attr.comm  || event->attr.mmap ||
6634                event->attr.mmap2 || event->attr.mmap_data ||
6635                event->attr.task;
6636 }
6637
6638 static void perf_event_task_output(struct perf_event *event,
6639                                    void *data)
6640 {
6641         struct perf_task_event *task_event = data;
6642         struct perf_output_handle handle;
6643         struct perf_sample_data sample;
6644         struct task_struct *task = task_event->task;
6645         int ret, size = task_event->event_id.header.size;
6646
6647         if (!perf_event_task_match(event))
6648                 return;
6649
6650         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6651
6652         ret = perf_output_begin(&handle, event,
6653                                 task_event->event_id.header.size);
6654         if (ret)
6655                 goto out;
6656
6657         task_event->event_id.pid = perf_event_pid(event, task);
6658         task_event->event_id.tid = perf_event_tid(event, task);
6659
6660         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
6661                 task_event->event_id.ppid = perf_event_pid(event,
6662                                                         task->real_parent);
6663                 task_event->event_id.ptid = perf_event_pid(event,
6664                                                         task->real_parent);
6665         } else {  /* PERF_RECORD_FORK */
6666                 task_event->event_id.ppid = perf_event_pid(event, current);
6667                 task_event->event_id.ptid = perf_event_tid(event, current);
6668         }
6669
6670         task_event->event_id.time = perf_event_clock(event);
6671
6672         perf_output_put(&handle, task_event->event_id);
6673
6674         perf_event__output_id_sample(event, &handle, &sample);
6675
6676         perf_output_end(&handle);
6677 out:
6678         task_event->event_id.header.size = size;
6679 }
6680
6681 static void perf_event_task(struct task_struct *task,
6682                               struct perf_event_context *task_ctx,
6683                               int new)
6684 {
6685         struct perf_task_event task_event;
6686
6687         if (!atomic_read(&nr_comm_events) &&
6688             !atomic_read(&nr_mmap_events) &&
6689             !atomic_read(&nr_task_events))
6690                 return;
6691
6692         task_event = (struct perf_task_event){
6693                 .task     = task,
6694                 .task_ctx = task_ctx,
6695                 .event_id    = {
6696                         .header = {
6697                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6698                                 .misc = 0,
6699                                 .size = sizeof(task_event.event_id),
6700                         },
6701                         /* .pid  */
6702                         /* .ppid */
6703                         /* .tid  */
6704                         /* .ptid */
6705                         /* .time */
6706                 },
6707         };
6708
6709         perf_iterate_sb(perf_event_task_output,
6710                        &task_event,
6711                        task_ctx);
6712 }
6713
6714 void perf_event_fork(struct task_struct *task)
6715 {
6716         perf_event_task(task, NULL, 1);
6717         perf_event_namespaces(task);
6718 }
6719
6720 /*
6721  * comm tracking
6722  */
6723
6724 struct perf_comm_event {
6725         struct task_struct      *task;
6726         char                    *comm;
6727         int                     comm_size;
6728
6729         struct {
6730                 struct perf_event_header        header;
6731
6732                 u32                             pid;
6733                 u32                             tid;
6734         } event_id;
6735 };
6736
6737 static int perf_event_comm_match(struct perf_event *event)
6738 {
6739         return event->attr.comm;
6740 }
6741
6742 static void perf_event_comm_output(struct perf_event *event,
6743                                    void *data)
6744 {
6745         struct perf_comm_event *comm_event = data;
6746         struct perf_output_handle handle;
6747         struct perf_sample_data sample;
6748         int size = comm_event->event_id.header.size;
6749         int ret;
6750
6751         if (!perf_event_comm_match(event))
6752                 return;
6753
6754         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6755         ret = perf_output_begin(&handle, event,
6756                                 comm_event->event_id.header.size);
6757
6758         if (ret)
6759                 goto out;
6760
6761         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6762         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6763
6764         perf_output_put(&handle, comm_event->event_id);
6765         __output_copy(&handle, comm_event->comm,
6766                                    comm_event->comm_size);
6767
6768         perf_event__output_id_sample(event, &handle, &sample);
6769
6770         perf_output_end(&handle);
6771 out:
6772         comm_event->event_id.header.size = size;
6773 }
6774
6775 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6776 {
6777         char comm[TASK_COMM_LEN];
6778         unsigned int size;
6779
6780         memset(comm, 0, sizeof(comm));
6781         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6782         size = ALIGN(strlen(comm)+1, sizeof(u64));
6783
6784         comm_event->comm = comm;
6785         comm_event->comm_size = size;
6786
6787         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6788
6789         perf_iterate_sb(perf_event_comm_output,
6790                        comm_event,
6791                        NULL);
6792 }
6793
6794 void perf_event_comm(struct task_struct *task, bool exec)
6795 {
6796         struct perf_comm_event comm_event;
6797
6798         if (!atomic_read(&nr_comm_events))
6799                 return;
6800
6801         comm_event = (struct perf_comm_event){
6802                 .task   = task,
6803                 /* .comm      */
6804                 /* .comm_size */
6805                 .event_id  = {
6806                         .header = {
6807                                 .type = PERF_RECORD_COMM,
6808                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6809                                 /* .size */
6810                         },
6811                         /* .pid */
6812                         /* .tid */
6813                 },
6814         };
6815
6816         perf_event_comm_event(&comm_event);
6817 }
6818
6819 /*
6820  * namespaces tracking
6821  */
6822
6823 struct perf_namespaces_event {
6824         struct task_struct              *task;
6825
6826         struct {
6827                 struct perf_event_header        header;
6828
6829                 u32                             pid;
6830                 u32                             tid;
6831                 u64                             nr_namespaces;
6832                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6833         } event_id;
6834 };
6835
6836 static int perf_event_namespaces_match(struct perf_event *event)
6837 {
6838         return event->attr.namespaces;
6839 }
6840
6841 static void perf_event_namespaces_output(struct perf_event *event,
6842                                          void *data)
6843 {
6844         struct perf_namespaces_event *namespaces_event = data;
6845         struct perf_output_handle handle;
6846         struct perf_sample_data sample;
6847         u16 header_size = namespaces_event->event_id.header.size;
6848         int ret;
6849
6850         if (!perf_event_namespaces_match(event))
6851                 return;
6852
6853         perf_event_header__init_id(&namespaces_event->event_id.header,
6854                                    &sample, event);
6855         ret = perf_output_begin(&handle, event,
6856                                 namespaces_event->event_id.header.size);
6857         if (ret)
6858                 goto out;
6859
6860         namespaces_event->event_id.pid = perf_event_pid(event,
6861                                                         namespaces_event->task);
6862         namespaces_event->event_id.tid = perf_event_tid(event,
6863                                                         namespaces_event->task);
6864
6865         perf_output_put(&handle, namespaces_event->event_id);
6866
6867         perf_event__output_id_sample(event, &handle, &sample);
6868
6869         perf_output_end(&handle);
6870 out:
6871         namespaces_event->event_id.header.size = header_size;
6872 }
6873
6874 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6875                                    struct task_struct *task,
6876                                    const struct proc_ns_operations *ns_ops)
6877 {
6878         struct path ns_path;
6879         struct inode *ns_inode;
6880         void *error;
6881
6882         error = ns_get_path(&ns_path, task, ns_ops);
6883         if (!error) {
6884                 ns_inode = ns_path.dentry->d_inode;
6885                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6886                 ns_link_info->ino = ns_inode->i_ino;
6887                 path_put(&ns_path);
6888         }
6889 }
6890
6891 void perf_event_namespaces(struct task_struct *task)
6892 {
6893         struct perf_namespaces_event namespaces_event;
6894         struct perf_ns_link_info *ns_link_info;
6895
6896         if (!atomic_read(&nr_namespaces_events))
6897                 return;
6898
6899         namespaces_event = (struct perf_namespaces_event){
6900                 .task   = task,
6901                 .event_id  = {
6902                         .header = {
6903                                 .type = PERF_RECORD_NAMESPACES,
6904                                 .misc = 0,
6905                                 .size = sizeof(namespaces_event.event_id),
6906                         },
6907                         /* .pid */
6908                         /* .tid */
6909                         .nr_namespaces = NR_NAMESPACES,
6910                         /* .link_info[NR_NAMESPACES] */
6911                 },
6912         };
6913
6914         ns_link_info = namespaces_event.event_id.link_info;
6915
6916         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6917                                task, &mntns_operations);
6918
6919 #ifdef CONFIG_USER_NS
6920         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6921                                task, &userns_operations);
6922 #endif
6923 #ifdef CONFIG_NET_NS
6924         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6925                                task, &netns_operations);
6926 #endif
6927 #ifdef CONFIG_UTS_NS
6928         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6929                                task, &utsns_operations);
6930 #endif
6931 #ifdef CONFIG_IPC_NS
6932         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6933                                task, &ipcns_operations);
6934 #endif
6935 #ifdef CONFIG_PID_NS
6936         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6937                                task, &pidns_operations);
6938 #endif
6939 #ifdef CONFIG_CGROUPS
6940         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6941                                task, &cgroupns_operations);
6942 #endif
6943
6944         perf_iterate_sb(perf_event_namespaces_output,
6945                         &namespaces_event,
6946                         NULL);
6947 }
6948
6949 /*
6950  * mmap tracking
6951  */
6952
6953 struct perf_mmap_event {
6954         struct vm_area_struct   *vma;
6955
6956         const char              *file_name;
6957         int                     file_size;
6958         int                     maj, min;
6959         u64                     ino;
6960         u64                     ino_generation;
6961         u32                     prot, flags;
6962
6963         struct {
6964                 struct perf_event_header        header;
6965
6966                 u32                             pid;
6967                 u32                             tid;
6968                 u64                             start;
6969                 u64                             len;
6970                 u64                             pgoff;
6971         } event_id;
6972 };
6973
6974 static int perf_event_mmap_match(struct perf_event *event,
6975                                  void *data)
6976 {
6977         struct perf_mmap_event *mmap_event = data;
6978         struct vm_area_struct *vma = mmap_event->vma;
6979         int executable = vma->vm_flags & VM_EXEC;
6980
6981         return (!executable && event->attr.mmap_data) ||
6982                (executable && (event->attr.mmap || event->attr.mmap2));
6983 }
6984
6985 static void perf_event_mmap_output(struct perf_event *event,
6986                                    void *data)
6987 {
6988         struct perf_mmap_event *mmap_event = data;
6989         struct perf_output_handle handle;
6990         struct perf_sample_data sample;
6991         int size = mmap_event->event_id.header.size;
6992         u32 type = mmap_event->event_id.header.type;
6993         int ret;
6994
6995         if (!perf_event_mmap_match(event, data))
6996                 return;
6997
6998         if (event->attr.mmap2) {
6999                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7000                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7001                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7002                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7003                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7004                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7005                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7006         }
7007
7008         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7009         ret = perf_output_begin(&handle, event,
7010                                 mmap_event->event_id.header.size);
7011         if (ret)
7012                 goto out;
7013
7014         mmap_event->event_id.pid = perf_event_pid(event, current);
7015         mmap_event->event_id.tid = perf_event_tid(event, current);
7016
7017         perf_output_put(&handle, mmap_event->event_id);
7018
7019         if (event->attr.mmap2) {
7020                 perf_output_put(&handle, mmap_event->maj);
7021                 perf_output_put(&handle, mmap_event->min);
7022                 perf_output_put(&handle, mmap_event->ino);
7023                 perf_output_put(&handle, mmap_event->ino_generation);
7024                 perf_output_put(&handle, mmap_event->prot);
7025                 perf_output_put(&handle, mmap_event->flags);
7026         }
7027
7028         __output_copy(&handle, mmap_event->file_name,
7029                                    mmap_event->file_size);
7030
7031         perf_event__output_id_sample(event, &handle, &sample);
7032
7033         perf_output_end(&handle);
7034 out:
7035         mmap_event->event_id.header.size = size;
7036         mmap_event->event_id.header.type = type;
7037 }
7038
7039 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7040 {
7041         struct vm_area_struct *vma = mmap_event->vma;
7042         struct file *file = vma->vm_file;
7043         int maj = 0, min = 0;
7044         u64 ino = 0, gen = 0;
7045         u32 prot = 0, flags = 0;
7046         unsigned int size;
7047         char tmp[16];
7048         char *buf = NULL;
7049         char *name;
7050
7051         if (vma->vm_flags & VM_READ)
7052                 prot |= PROT_READ;
7053         if (vma->vm_flags & VM_WRITE)
7054                 prot |= PROT_WRITE;
7055         if (vma->vm_flags & VM_EXEC)
7056                 prot |= PROT_EXEC;
7057
7058         if (vma->vm_flags & VM_MAYSHARE)
7059                 flags = MAP_SHARED;
7060         else
7061                 flags = MAP_PRIVATE;
7062
7063         if (vma->vm_flags & VM_DENYWRITE)
7064                 flags |= MAP_DENYWRITE;
7065         if (vma->vm_flags & VM_MAYEXEC)
7066                 flags |= MAP_EXECUTABLE;
7067         if (vma->vm_flags & VM_LOCKED)
7068                 flags |= MAP_LOCKED;
7069         if (vma->vm_flags & VM_HUGETLB)
7070                 flags |= MAP_HUGETLB;
7071
7072         if (file) {
7073                 struct inode *inode;
7074                 dev_t dev;
7075
7076                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7077                 if (!buf) {
7078                         name = "//enomem";
7079                         goto cpy_name;
7080                 }
7081                 /*
7082                  * d_path() works from the end of the rb backwards, so we
7083                  * need to add enough zero bytes after the string to handle
7084                  * the 64bit alignment we do later.
7085                  */
7086                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7087                 if (IS_ERR(name)) {
7088                         name = "//toolong";
7089                         goto cpy_name;
7090                 }
7091                 inode = file_inode(vma->vm_file);
7092                 dev = inode->i_sb->s_dev;
7093                 ino = inode->i_ino;
7094                 gen = inode->i_generation;
7095                 maj = MAJOR(dev);
7096                 min = MINOR(dev);
7097
7098                 goto got_name;
7099         } else {
7100                 if (vma->vm_ops && vma->vm_ops->name) {
7101                         name = (char *) vma->vm_ops->name(vma);
7102                         if (name)
7103                                 goto cpy_name;
7104                 }
7105
7106                 name = (char *)arch_vma_name(vma);
7107                 if (name)
7108                         goto cpy_name;
7109
7110                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7111                                 vma->vm_end >= vma->vm_mm->brk) {
7112                         name = "[heap]";
7113                         goto cpy_name;
7114                 }
7115                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7116                                 vma->vm_end >= vma->vm_mm->start_stack) {
7117                         name = "[stack]";
7118                         goto cpy_name;
7119                 }
7120
7121                 name = "//anon";
7122                 goto cpy_name;
7123         }
7124
7125 cpy_name:
7126         strlcpy(tmp, name, sizeof(tmp));
7127         name = tmp;
7128 got_name:
7129         /*
7130          * Since our buffer works in 8 byte units we need to align our string
7131          * size to a multiple of 8. However, we must guarantee the tail end is
7132          * zero'd out to avoid leaking random bits to userspace.
7133          */
7134         size = strlen(name)+1;
7135         while (!IS_ALIGNED(size, sizeof(u64)))
7136                 name[size++] = '\0';
7137
7138         mmap_event->file_name = name;
7139         mmap_event->file_size = size;
7140         mmap_event->maj = maj;
7141         mmap_event->min = min;
7142         mmap_event->ino = ino;
7143         mmap_event->ino_generation = gen;
7144         mmap_event->prot = prot;
7145         mmap_event->flags = flags;
7146
7147         if (!(vma->vm_flags & VM_EXEC))
7148                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7149
7150         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7151
7152         perf_iterate_sb(perf_event_mmap_output,
7153                        mmap_event,
7154                        NULL);
7155
7156         kfree(buf);
7157 }
7158
7159 /*
7160  * Check whether inode and address range match filter criteria.
7161  */
7162 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7163                                      struct file *file, unsigned long offset,
7164                                      unsigned long size)
7165 {
7166         /* d_inode(NULL) won't be equal to any mapped user-space file */
7167         if (!filter->path.dentry)
7168                 return false;
7169
7170         if (d_inode(filter->path.dentry) != file_inode(file))
7171                 return false;
7172
7173         if (filter->offset > offset + size)
7174                 return false;
7175
7176         if (filter->offset + filter->size < offset)
7177                 return false;
7178
7179         return true;
7180 }
7181
7182 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7183 {
7184         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7185         struct vm_area_struct *vma = data;
7186         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7187         struct file *file = vma->vm_file;
7188         struct perf_addr_filter *filter;
7189         unsigned int restart = 0, count = 0;
7190
7191         if (!has_addr_filter(event))
7192                 return;
7193
7194         if (!file)
7195                 return;
7196
7197         raw_spin_lock_irqsave(&ifh->lock, flags);
7198         list_for_each_entry(filter, &ifh->list, entry) {
7199                 if (perf_addr_filter_match(filter, file, off,
7200                                              vma->vm_end - vma->vm_start)) {
7201                         event->addr_filters_offs[count] = vma->vm_start;
7202                         restart++;
7203                 }
7204
7205                 count++;
7206         }
7207
7208         if (restart)
7209                 event->addr_filters_gen++;
7210         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7211
7212         if (restart)
7213                 perf_event_stop(event, 1);
7214 }
7215
7216 /*
7217  * Adjust all task's events' filters to the new vma
7218  */
7219 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7220 {
7221         struct perf_event_context *ctx;
7222         int ctxn;
7223
7224         /*
7225          * Data tracing isn't supported yet and as such there is no need
7226          * to keep track of anything that isn't related to executable code:
7227          */
7228         if (!(vma->vm_flags & VM_EXEC))
7229                 return;
7230
7231         rcu_read_lock();
7232         for_each_task_context_nr(ctxn) {
7233                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7234                 if (!ctx)
7235                         continue;
7236
7237                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7238         }
7239         rcu_read_unlock();
7240 }
7241
7242 void perf_event_mmap(struct vm_area_struct *vma)
7243 {
7244         struct perf_mmap_event mmap_event;
7245
7246         if (!atomic_read(&nr_mmap_events))
7247                 return;
7248
7249         mmap_event = (struct perf_mmap_event){
7250                 .vma    = vma,
7251                 /* .file_name */
7252                 /* .file_size */
7253                 .event_id  = {
7254                         .header = {
7255                                 .type = PERF_RECORD_MMAP,
7256                                 .misc = PERF_RECORD_MISC_USER,
7257                                 /* .size */
7258                         },
7259                         /* .pid */
7260                         /* .tid */
7261                         .start  = vma->vm_start,
7262                         .len    = vma->vm_end - vma->vm_start,
7263                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7264                 },
7265                 /* .maj (attr_mmap2 only) */
7266                 /* .min (attr_mmap2 only) */
7267                 /* .ino (attr_mmap2 only) */
7268                 /* .ino_generation (attr_mmap2 only) */
7269                 /* .prot (attr_mmap2 only) */
7270                 /* .flags (attr_mmap2 only) */
7271         };
7272
7273         perf_addr_filters_adjust(vma);
7274         perf_event_mmap_event(&mmap_event);
7275 }
7276
7277 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7278                           unsigned long size, u64 flags)
7279 {
7280         struct perf_output_handle handle;
7281         struct perf_sample_data sample;
7282         struct perf_aux_event {
7283                 struct perf_event_header        header;
7284                 u64                             offset;
7285                 u64                             size;
7286                 u64                             flags;
7287         } rec = {
7288                 .header = {
7289                         .type = PERF_RECORD_AUX,
7290                         .misc = 0,
7291                         .size = sizeof(rec),
7292                 },
7293                 .offset         = head,
7294                 .size           = size,
7295                 .flags          = flags,
7296         };
7297         int ret;
7298
7299         perf_event_header__init_id(&rec.header, &sample, event);
7300         ret = perf_output_begin(&handle, event, rec.header.size);
7301
7302         if (ret)
7303                 return;
7304
7305         perf_output_put(&handle, rec);
7306         perf_event__output_id_sample(event, &handle, &sample);
7307
7308         perf_output_end(&handle);
7309 }
7310
7311 /*
7312  * Lost/dropped samples logging
7313  */
7314 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7315 {
7316         struct perf_output_handle handle;
7317         struct perf_sample_data sample;
7318         int ret;
7319
7320         struct {
7321                 struct perf_event_header        header;
7322                 u64                             lost;
7323         } lost_samples_event = {
7324                 .header = {
7325                         .type = PERF_RECORD_LOST_SAMPLES,
7326                         .misc = 0,
7327                         .size = sizeof(lost_samples_event),
7328                 },
7329                 .lost           = lost,
7330         };
7331
7332         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7333
7334         ret = perf_output_begin(&handle, event,
7335                                 lost_samples_event.header.size);
7336         if (ret)
7337                 return;
7338
7339         perf_output_put(&handle, lost_samples_event);
7340         perf_event__output_id_sample(event, &handle, &sample);
7341         perf_output_end(&handle);
7342 }
7343
7344 /*
7345  * context_switch tracking
7346  */
7347
7348 struct perf_switch_event {
7349         struct task_struct      *task;
7350         struct task_struct      *next_prev;
7351
7352         struct {
7353                 struct perf_event_header        header;
7354                 u32                             next_prev_pid;
7355                 u32                             next_prev_tid;
7356         } event_id;
7357 };
7358
7359 static int perf_event_switch_match(struct perf_event *event)
7360 {
7361         return event->attr.context_switch;
7362 }
7363
7364 static void perf_event_switch_output(struct perf_event *event, void *data)
7365 {
7366         struct perf_switch_event *se = data;
7367         struct perf_output_handle handle;
7368         struct perf_sample_data sample;
7369         int ret;
7370
7371         if (!perf_event_switch_match(event))
7372                 return;
7373
7374         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7375         if (event->ctx->task) {
7376                 se->event_id.header.type = PERF_RECORD_SWITCH;
7377                 se->event_id.header.size = sizeof(se->event_id.header);
7378         } else {
7379                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7380                 se->event_id.header.size = sizeof(se->event_id);
7381                 se->event_id.next_prev_pid =
7382                                         perf_event_pid(event, se->next_prev);
7383                 se->event_id.next_prev_tid =
7384                                         perf_event_tid(event, se->next_prev);
7385         }
7386
7387         perf_event_header__init_id(&se->event_id.header, &sample, event);
7388
7389         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7390         if (ret)
7391                 return;
7392
7393         if (event->ctx->task)
7394                 perf_output_put(&handle, se->event_id.header);
7395         else
7396                 perf_output_put(&handle, se->event_id);
7397
7398         perf_event__output_id_sample(event, &handle, &sample);
7399
7400         perf_output_end(&handle);
7401 }
7402
7403 static void perf_event_switch(struct task_struct *task,
7404                               struct task_struct *next_prev, bool sched_in)
7405 {
7406         struct perf_switch_event switch_event;
7407
7408         /* N.B. caller checks nr_switch_events != 0 */
7409
7410         switch_event = (struct perf_switch_event){
7411                 .task           = task,
7412                 .next_prev      = next_prev,
7413                 .event_id       = {
7414                         .header = {
7415                                 /* .type */
7416                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7417                                 /* .size */
7418                         },
7419                         /* .next_prev_pid */
7420                         /* .next_prev_tid */
7421                 },
7422         };
7423
7424         perf_iterate_sb(perf_event_switch_output,
7425                        &switch_event,
7426                        NULL);
7427 }
7428
7429 /*
7430  * IRQ throttle logging
7431  */
7432
7433 static void perf_log_throttle(struct perf_event *event, int enable)
7434 {
7435         struct perf_output_handle handle;
7436         struct perf_sample_data sample;
7437         int ret;
7438
7439         struct {
7440                 struct perf_event_header        header;
7441                 u64                             time;
7442                 u64                             id;
7443                 u64                             stream_id;
7444         } throttle_event = {
7445                 .header = {
7446                         .type = PERF_RECORD_THROTTLE,
7447                         .misc = 0,
7448                         .size = sizeof(throttle_event),
7449                 },
7450                 .time           = perf_event_clock(event),
7451                 .id             = primary_event_id(event),
7452                 .stream_id      = event->id,
7453         };
7454
7455         if (enable)
7456                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7457
7458         perf_event_header__init_id(&throttle_event.header, &sample, event);
7459
7460         ret = perf_output_begin(&handle, event,
7461                                 throttle_event.header.size);
7462         if (ret)
7463                 return;
7464
7465         perf_output_put(&handle, throttle_event);
7466         perf_event__output_id_sample(event, &handle, &sample);
7467         perf_output_end(&handle);
7468 }
7469
7470 void perf_event_itrace_started(struct perf_event *event)
7471 {
7472         event->attach_state |= PERF_ATTACH_ITRACE;
7473 }
7474
7475 static void perf_log_itrace_start(struct perf_event *event)
7476 {
7477         struct perf_output_handle handle;
7478         struct perf_sample_data sample;
7479         struct perf_aux_event {
7480                 struct perf_event_header        header;
7481                 u32                             pid;
7482                 u32                             tid;
7483         } rec;
7484         int ret;
7485
7486         if (event->parent)
7487                 event = event->parent;
7488
7489         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7490             event->attach_state & PERF_ATTACH_ITRACE)
7491                 return;
7492
7493         rec.header.type = PERF_RECORD_ITRACE_START;
7494         rec.header.misc = 0;
7495         rec.header.size = sizeof(rec);
7496         rec.pid = perf_event_pid(event, current);
7497         rec.tid = perf_event_tid(event, current);
7498
7499         perf_event_header__init_id(&rec.header, &sample, event);
7500         ret = perf_output_begin(&handle, event, rec.header.size);
7501
7502         if (ret)
7503                 return;
7504
7505         perf_output_put(&handle, rec);
7506         perf_event__output_id_sample(event, &handle, &sample);
7507
7508         perf_output_end(&handle);
7509 }
7510
7511 static int
7512 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7513 {
7514         struct hw_perf_event *hwc = &event->hw;
7515         int ret = 0;
7516         u64 seq;
7517
7518         seq = __this_cpu_read(perf_throttled_seq);
7519         if (seq != hwc->interrupts_seq) {
7520                 hwc->interrupts_seq = seq;
7521                 hwc->interrupts = 1;
7522         } else {
7523                 hwc->interrupts++;
7524                 if (unlikely(throttle &&
7525                              hwc->interrupts > max_samples_per_tick)) {
7526                         __this_cpu_inc(perf_throttled_count);
7527                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7528                         hwc->interrupts = MAX_INTERRUPTS;
7529                         perf_log_throttle(event, 0);
7530                         ret = 1;
7531                 }
7532         }
7533
7534         if (event->attr.freq) {
7535                 u64 now = perf_clock();
7536                 s64 delta = now - hwc->freq_time_stamp;
7537
7538                 hwc->freq_time_stamp = now;
7539
7540                 if (delta > 0 && delta < 2*TICK_NSEC)
7541                         perf_adjust_period(event, delta, hwc->last_period, true);
7542         }
7543
7544         return ret;
7545 }
7546
7547 int perf_event_account_interrupt(struct perf_event *event)
7548 {
7549         return __perf_event_account_interrupt(event, 1);
7550 }
7551
7552 /*
7553  * Generic event overflow handling, sampling.
7554  */
7555
7556 static int __perf_event_overflow(struct perf_event *event,
7557                                    int throttle, struct perf_sample_data *data,
7558                                    struct pt_regs *regs)
7559 {
7560         int events = atomic_read(&event->event_limit);
7561         int ret = 0;
7562
7563         /*
7564          * Non-sampling counters might still use the PMI to fold short
7565          * hardware counters, ignore those.
7566          */
7567         if (unlikely(!is_sampling_event(event)))
7568                 return 0;
7569
7570         ret = __perf_event_account_interrupt(event, throttle);
7571
7572         /*
7573          * XXX event_limit might not quite work as expected on inherited
7574          * events
7575          */
7576
7577         event->pending_kill = POLL_IN;
7578         if (events && atomic_dec_and_test(&event->event_limit)) {
7579                 ret = 1;
7580                 event->pending_kill = POLL_HUP;
7581
7582                 perf_event_disable_inatomic(event);
7583         }
7584
7585         READ_ONCE(event->overflow_handler)(event, data, regs);
7586
7587         if (*perf_event_fasync(event) && event->pending_kill) {
7588                 event->pending_wakeup = 1;
7589                 irq_work_queue(&event->pending);
7590         }
7591
7592         return ret;
7593 }
7594
7595 int perf_event_overflow(struct perf_event *event,
7596                           struct perf_sample_data *data,
7597                           struct pt_regs *regs)
7598 {
7599         return __perf_event_overflow(event, 1, data, regs);
7600 }
7601
7602 /*
7603  * Generic software event infrastructure
7604  */
7605
7606 struct swevent_htable {
7607         struct swevent_hlist            *swevent_hlist;
7608         struct mutex                    hlist_mutex;
7609         int                             hlist_refcount;
7610
7611         /* Recursion avoidance in each contexts */
7612         int                             recursion[PERF_NR_CONTEXTS];
7613 };
7614
7615 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7616
7617 /*
7618  * We directly increment event->count and keep a second value in
7619  * event->hw.period_left to count intervals. This period event
7620  * is kept in the range [-sample_period, 0] so that we can use the
7621  * sign as trigger.
7622  */
7623
7624 u64 perf_swevent_set_period(struct perf_event *event)
7625 {
7626         struct hw_perf_event *hwc = &event->hw;
7627         u64 period = hwc->last_period;
7628         u64 nr, offset;
7629         s64 old, val;
7630
7631         hwc->last_period = hwc->sample_period;
7632
7633 again:
7634         old = val = local64_read(&hwc->period_left);
7635         if (val < 0)
7636                 return 0;
7637
7638         nr = div64_u64(period + val, period);
7639         offset = nr * period;
7640         val -= offset;
7641         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7642                 goto again;
7643
7644         return nr;
7645 }
7646
7647 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7648                                     struct perf_sample_data *data,
7649                                     struct pt_regs *regs)
7650 {
7651         struct hw_perf_event *hwc = &event->hw;
7652         int throttle = 0;
7653
7654         if (!overflow)
7655                 overflow = perf_swevent_set_period(event);
7656
7657         if (hwc->interrupts == MAX_INTERRUPTS)
7658                 return;
7659
7660         for (; overflow; overflow--) {
7661                 if (__perf_event_overflow(event, throttle,
7662                                             data, regs)) {
7663                         /*
7664                          * We inhibit the overflow from happening when
7665                          * hwc->interrupts == MAX_INTERRUPTS.
7666                          */
7667                         break;
7668                 }
7669                 throttle = 1;
7670         }
7671 }
7672
7673 static void perf_swevent_event(struct perf_event *event, u64 nr,
7674                                struct perf_sample_data *data,
7675                                struct pt_regs *regs)
7676 {
7677         struct hw_perf_event *hwc = &event->hw;
7678
7679         local64_add(nr, &event->count);
7680
7681         if (!regs)
7682                 return;
7683
7684         if (!is_sampling_event(event))
7685                 return;
7686
7687         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7688                 data->period = nr;
7689                 return perf_swevent_overflow(event, 1, data, regs);
7690         } else
7691                 data->period = event->hw.last_period;
7692
7693         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7694                 return perf_swevent_overflow(event, 1, data, regs);
7695
7696         if (local64_add_negative(nr, &hwc->period_left))
7697                 return;
7698
7699         perf_swevent_overflow(event, 0, data, regs);
7700 }
7701
7702 static int perf_exclude_event(struct perf_event *event,
7703                               struct pt_regs *regs)
7704 {
7705         if (event->hw.state & PERF_HES_STOPPED)
7706                 return 1;
7707
7708         if (regs) {
7709                 if (event->attr.exclude_user && user_mode(regs))
7710                         return 1;
7711
7712                 if (event->attr.exclude_kernel && !user_mode(regs))
7713                         return 1;
7714         }
7715
7716         return 0;
7717 }
7718
7719 static int perf_swevent_match(struct perf_event *event,
7720                                 enum perf_type_id type,
7721                                 u32 event_id,
7722                                 struct perf_sample_data *data,
7723                                 struct pt_regs *regs)
7724 {
7725         if (event->attr.type != type)
7726                 return 0;
7727
7728         if (event->attr.config != event_id)
7729                 return 0;
7730
7731         if (perf_exclude_event(event, regs))
7732                 return 0;
7733
7734         return 1;
7735 }
7736
7737 static inline u64 swevent_hash(u64 type, u32 event_id)
7738 {
7739         u64 val = event_id | (type << 32);
7740
7741         return hash_64(val, SWEVENT_HLIST_BITS);
7742 }
7743
7744 static inline struct hlist_head *
7745 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7746 {
7747         u64 hash = swevent_hash(type, event_id);
7748
7749         return &hlist->heads[hash];
7750 }
7751
7752 /* For the read side: events when they trigger */
7753 static inline struct hlist_head *
7754 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7755 {
7756         struct swevent_hlist *hlist;
7757
7758         hlist = rcu_dereference(swhash->swevent_hlist);
7759         if (!hlist)
7760                 return NULL;
7761
7762         return __find_swevent_head(hlist, type, event_id);
7763 }
7764
7765 /* For the event head insertion and removal in the hlist */
7766 static inline struct hlist_head *
7767 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7768 {
7769         struct swevent_hlist *hlist;
7770         u32 event_id = event->attr.config;
7771         u64 type = event->attr.type;
7772
7773         /*
7774          * Event scheduling is always serialized against hlist allocation
7775          * and release. Which makes the protected version suitable here.
7776          * The context lock guarantees that.
7777          */
7778         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7779                                           lockdep_is_held(&event->ctx->lock));
7780         if (!hlist)
7781                 return NULL;
7782
7783         return __find_swevent_head(hlist, type, event_id);
7784 }
7785
7786 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7787                                     u64 nr,
7788                                     struct perf_sample_data *data,
7789                                     struct pt_regs *regs)
7790 {
7791         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7792         struct perf_event *event;
7793         struct hlist_head *head;
7794
7795         rcu_read_lock();
7796         head = find_swevent_head_rcu(swhash, type, event_id);
7797         if (!head)
7798                 goto end;
7799
7800         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7801                 if (perf_swevent_match(event, type, event_id, data, regs))
7802                         perf_swevent_event(event, nr, data, regs);
7803         }
7804 end:
7805         rcu_read_unlock();
7806 }
7807
7808 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7809
7810 int perf_swevent_get_recursion_context(void)
7811 {
7812         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7813
7814         return get_recursion_context(swhash->recursion);
7815 }
7816 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7817
7818 void perf_swevent_put_recursion_context(int rctx)
7819 {
7820         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7821
7822         put_recursion_context(swhash->recursion, rctx);
7823 }
7824
7825 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7826 {
7827         struct perf_sample_data data;
7828
7829         if (WARN_ON_ONCE(!regs))
7830                 return;
7831
7832         perf_sample_data_init(&data, addr, 0);
7833         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7834 }
7835
7836 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7837 {
7838         int rctx;
7839
7840         preempt_disable_notrace();
7841         rctx = perf_swevent_get_recursion_context();
7842         if (unlikely(rctx < 0))
7843                 goto fail;
7844
7845         ___perf_sw_event(event_id, nr, regs, addr);
7846
7847         perf_swevent_put_recursion_context(rctx);
7848 fail:
7849         preempt_enable_notrace();
7850 }
7851
7852 static void perf_swevent_read(struct perf_event *event)
7853 {
7854 }
7855
7856 static int perf_swevent_add(struct perf_event *event, int flags)
7857 {
7858         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7859         struct hw_perf_event *hwc = &event->hw;
7860         struct hlist_head *head;
7861
7862         if (is_sampling_event(event)) {
7863                 hwc->last_period = hwc->sample_period;
7864                 perf_swevent_set_period(event);
7865         }
7866
7867         hwc->state = !(flags & PERF_EF_START);
7868
7869         head = find_swevent_head(swhash, event);
7870         if (WARN_ON_ONCE(!head))
7871                 return -EINVAL;
7872
7873         hlist_add_head_rcu(&event->hlist_entry, head);
7874         perf_event_update_userpage(event);
7875
7876         return 0;
7877 }
7878
7879 static void perf_swevent_del(struct perf_event *event, int flags)
7880 {
7881         hlist_del_rcu(&event->hlist_entry);
7882 }
7883
7884 static void perf_swevent_start(struct perf_event *event, int flags)
7885 {
7886         event->hw.state = 0;
7887 }
7888
7889 static void perf_swevent_stop(struct perf_event *event, int flags)
7890 {
7891         event->hw.state = PERF_HES_STOPPED;
7892 }
7893
7894 /* Deref the hlist from the update side */
7895 static inline struct swevent_hlist *
7896 swevent_hlist_deref(struct swevent_htable *swhash)
7897 {
7898         return rcu_dereference_protected(swhash->swevent_hlist,
7899                                          lockdep_is_held(&swhash->hlist_mutex));
7900 }
7901
7902 static void swevent_hlist_release(struct swevent_htable *swhash)
7903 {
7904         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7905
7906         if (!hlist)
7907                 return;
7908
7909         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7910         kfree_rcu(hlist, rcu_head);
7911 }
7912
7913 static void swevent_hlist_put_cpu(int cpu)
7914 {
7915         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7916
7917         mutex_lock(&swhash->hlist_mutex);
7918
7919         if (!--swhash->hlist_refcount)
7920                 swevent_hlist_release(swhash);
7921
7922         mutex_unlock(&swhash->hlist_mutex);
7923 }
7924
7925 static void swevent_hlist_put(void)
7926 {
7927         int cpu;
7928
7929         for_each_possible_cpu(cpu)
7930                 swevent_hlist_put_cpu(cpu);
7931 }
7932
7933 static int swevent_hlist_get_cpu(int cpu)
7934 {
7935         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7936         int err = 0;
7937
7938         mutex_lock(&swhash->hlist_mutex);
7939         if (!swevent_hlist_deref(swhash) &&
7940             cpumask_test_cpu(cpu, perf_online_mask)) {
7941                 struct swevent_hlist *hlist;
7942
7943                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7944                 if (!hlist) {
7945                         err = -ENOMEM;
7946                         goto exit;
7947                 }
7948                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7949         }
7950         swhash->hlist_refcount++;
7951 exit:
7952         mutex_unlock(&swhash->hlist_mutex);
7953
7954         return err;
7955 }
7956
7957 static int swevent_hlist_get(void)
7958 {
7959         int err, cpu, failed_cpu;
7960
7961         mutex_lock(&pmus_lock);
7962         for_each_possible_cpu(cpu) {
7963                 err = swevent_hlist_get_cpu(cpu);
7964                 if (err) {
7965                         failed_cpu = cpu;
7966                         goto fail;
7967                 }
7968         }
7969         mutex_unlock(&pmus_lock);
7970         return 0;
7971 fail:
7972         for_each_possible_cpu(cpu) {
7973                 if (cpu == failed_cpu)
7974                         break;
7975                 swevent_hlist_put_cpu(cpu);
7976         }
7977         mutex_unlock(&pmus_lock);
7978         return err;
7979 }
7980
7981 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7982
7983 static void sw_perf_event_destroy(struct perf_event *event)
7984 {
7985         u64 event_id = event->attr.config;
7986
7987         WARN_ON(event->parent);
7988
7989         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7990         swevent_hlist_put();
7991 }
7992
7993 static int perf_swevent_init(struct perf_event *event)
7994 {
7995         u64 event_id = event->attr.config;
7996
7997         if (event->attr.type != PERF_TYPE_SOFTWARE)
7998                 return -ENOENT;
7999
8000         /*
8001          * no branch sampling for software events
8002          */
8003         if (has_branch_stack(event))
8004                 return -EOPNOTSUPP;
8005
8006         switch (event_id) {
8007         case PERF_COUNT_SW_CPU_CLOCK:
8008         case PERF_COUNT_SW_TASK_CLOCK:
8009                 return -ENOENT;
8010
8011         default:
8012                 break;
8013         }
8014
8015         if (event_id >= PERF_COUNT_SW_MAX)
8016                 return -ENOENT;
8017
8018         if (!event->parent) {
8019                 int err;
8020
8021                 err = swevent_hlist_get();
8022                 if (err)
8023                         return err;
8024
8025                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8026                 event->destroy = sw_perf_event_destroy;
8027         }
8028
8029         return 0;
8030 }
8031
8032 static struct pmu perf_swevent = {
8033         .task_ctx_nr    = perf_sw_context,
8034
8035         .capabilities   = PERF_PMU_CAP_NO_NMI,
8036
8037         .event_init     = perf_swevent_init,
8038         .add            = perf_swevent_add,
8039         .del            = perf_swevent_del,
8040         .start          = perf_swevent_start,
8041         .stop           = perf_swevent_stop,
8042         .read           = perf_swevent_read,
8043 };
8044
8045 #ifdef CONFIG_EVENT_TRACING
8046
8047 static int perf_tp_filter_match(struct perf_event *event,
8048                                 struct perf_sample_data *data)
8049 {
8050         void *record = data->raw->frag.data;
8051
8052         /* only top level events have filters set */
8053         if (event->parent)
8054                 event = event->parent;
8055
8056         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8057                 return 1;
8058         return 0;
8059 }
8060
8061 static int perf_tp_event_match(struct perf_event *event,
8062                                 struct perf_sample_data *data,
8063                                 struct pt_regs *regs)
8064 {
8065         if (event->hw.state & PERF_HES_STOPPED)
8066                 return 0;
8067         /*
8068          * All tracepoints are from kernel-space.
8069          */
8070         if (event->attr.exclude_kernel)
8071                 return 0;
8072
8073         if (!perf_tp_filter_match(event, data))
8074                 return 0;
8075
8076         return 1;
8077 }
8078
8079 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8080                                struct trace_event_call *call, u64 count,
8081                                struct pt_regs *regs, struct hlist_head *head,
8082                                struct task_struct *task)
8083 {
8084         struct bpf_prog *prog = call->prog;
8085
8086         if (prog) {
8087                 *(struct pt_regs **)raw_data = regs;
8088                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
8089                         perf_swevent_put_recursion_context(rctx);
8090                         return;
8091                 }
8092         }
8093         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8094                       rctx, task, NULL);
8095 }
8096 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8097
8098 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8099                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8100                    struct task_struct *task, struct perf_event *event)
8101 {
8102         struct perf_sample_data data;
8103
8104         struct perf_raw_record raw = {
8105                 .frag = {
8106                         .size = entry_size,
8107                         .data = record,
8108                 },
8109         };
8110
8111         perf_sample_data_init(&data, 0, 0);
8112         data.raw = &raw;
8113
8114         perf_trace_buf_update(record, event_type);
8115
8116         /* Use the given event instead of the hlist */
8117         if (event) {
8118                 if (perf_tp_event_match(event, &data, regs))
8119                         perf_swevent_event(event, count, &data, regs);
8120         } else {
8121                 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8122                         if (perf_tp_event_match(event, &data, regs))
8123                                 perf_swevent_event(event, count, &data, regs);
8124                 }
8125         }
8126
8127         /*
8128          * If we got specified a target task, also iterate its context and
8129          * deliver this event there too.
8130          */
8131         if (task && task != current) {
8132                 struct perf_event_context *ctx;
8133                 struct trace_entry *entry = record;
8134
8135                 rcu_read_lock();
8136                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8137                 if (!ctx)
8138                         goto unlock;
8139
8140                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8141                         if (event->cpu != smp_processor_id())
8142                                 continue;
8143                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8144                                 continue;
8145                         if (event->attr.config != entry->type)
8146                                 continue;
8147                         if (perf_tp_event_match(event, &data, regs))
8148                                 perf_swevent_event(event, count, &data, regs);
8149                 }
8150 unlock:
8151                 rcu_read_unlock();
8152         }
8153
8154         perf_swevent_put_recursion_context(rctx);
8155 }
8156 EXPORT_SYMBOL_GPL(perf_tp_event);
8157
8158 static void tp_perf_event_destroy(struct perf_event *event)
8159 {
8160         perf_trace_destroy(event);
8161 }
8162
8163 static int perf_tp_event_init(struct perf_event *event)
8164 {
8165         int err;
8166
8167         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8168                 return -ENOENT;
8169
8170         /*
8171          * no branch sampling for tracepoint events
8172          */
8173         if (has_branch_stack(event))
8174                 return -EOPNOTSUPP;
8175
8176         err = perf_trace_init(event);
8177         if (err)
8178                 return err;
8179
8180         event->destroy = tp_perf_event_destroy;
8181
8182         return 0;
8183 }
8184
8185 static struct pmu perf_tracepoint = {
8186         .task_ctx_nr    = perf_sw_context,
8187
8188         .event_init     = perf_tp_event_init,
8189         .add            = perf_trace_add,
8190         .del            = perf_trace_del,
8191         .start          = perf_swevent_start,
8192         .stop           = perf_swevent_stop,
8193         .read           = perf_swevent_read,
8194 };
8195
8196 static inline void perf_tp_register(void)
8197 {
8198         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8199 }
8200
8201 static void perf_event_free_filter(struct perf_event *event)
8202 {
8203         ftrace_profile_free_filter(event);
8204 }
8205
8206 #ifdef CONFIG_BPF_SYSCALL
8207 static void bpf_overflow_handler(struct perf_event *event,
8208                                  struct perf_sample_data *data,
8209                                  struct pt_regs *regs)
8210 {
8211         struct bpf_perf_event_data_kern ctx = {
8212                 .data = data,
8213                 .regs = regs,
8214         };
8215         int ret = 0;
8216
8217         preempt_disable();
8218         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8219                 goto out;
8220         rcu_read_lock();
8221         ret = BPF_PROG_RUN(event->prog, &ctx);
8222         rcu_read_unlock();
8223 out:
8224         __this_cpu_dec(bpf_prog_active);
8225         preempt_enable();
8226         if (!ret)
8227                 return;
8228
8229         event->orig_overflow_handler(event, data, regs);
8230 }
8231
8232 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8233 {
8234         struct bpf_prog *prog;
8235
8236         if (event->overflow_handler_context)
8237                 /* hw breakpoint or kernel counter */
8238                 return -EINVAL;
8239
8240         if (event->prog)
8241                 return -EEXIST;
8242
8243         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8244         if (IS_ERR(prog))
8245                 return PTR_ERR(prog);
8246
8247         event->prog = prog;
8248         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8249         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8250         return 0;
8251 }
8252
8253 static void perf_event_free_bpf_handler(struct perf_event *event)
8254 {
8255         struct bpf_prog *prog = event->prog;
8256
8257         if (!prog)
8258                 return;
8259
8260         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8261         event->prog = NULL;
8262         bpf_prog_put(prog);
8263 }
8264 #else
8265 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8266 {
8267         return -EOPNOTSUPP;
8268 }
8269 static void perf_event_free_bpf_handler(struct perf_event *event)
8270 {
8271 }
8272 #endif
8273
8274 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8275 {
8276         bool is_kprobe, is_tracepoint, is_syscall_tp;
8277         struct bpf_prog *prog;
8278
8279         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8280                 return perf_event_set_bpf_handler(event, prog_fd);
8281
8282         if (event->tp_event->prog)
8283                 return -EEXIST;
8284
8285         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8286         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8287         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8288         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8289                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8290                 return -EINVAL;
8291
8292         prog = bpf_prog_get(prog_fd);
8293         if (IS_ERR(prog))
8294                 return PTR_ERR(prog);
8295
8296         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8297             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8298             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8299                 /* valid fd, but invalid bpf program type */
8300                 bpf_prog_put(prog);
8301                 return -EINVAL;
8302         }
8303
8304         if (is_tracepoint || is_syscall_tp) {
8305                 int off = trace_event_get_offsets(event->tp_event);
8306
8307                 if (prog->aux->max_ctx_offset > off) {
8308                         bpf_prog_put(prog);
8309                         return -EACCES;
8310                 }
8311         }
8312         event->tp_event->prog = prog;
8313         event->tp_event->bpf_prog_owner = event;
8314
8315         return 0;
8316 }
8317
8318 static void perf_event_free_bpf_prog(struct perf_event *event)
8319 {
8320         struct bpf_prog *prog;
8321
8322         perf_event_free_bpf_handler(event);
8323
8324         if (!event->tp_event)
8325                 return;
8326
8327         prog = event->tp_event->prog;
8328         if (prog && event->tp_event->bpf_prog_owner == event) {
8329                 event->tp_event->prog = NULL;
8330                 bpf_prog_put(prog);
8331         }
8332 }
8333
8334 #else
8335
8336 static inline void perf_tp_register(void)
8337 {
8338 }
8339
8340 static void perf_event_free_filter(struct perf_event *event)
8341 {
8342 }
8343
8344 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8345 {
8346         return -ENOENT;
8347 }
8348
8349 static void perf_event_free_bpf_prog(struct perf_event *event)
8350 {
8351 }
8352 #endif /* CONFIG_EVENT_TRACING */
8353
8354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8355 void perf_bp_event(struct perf_event *bp, void *data)
8356 {
8357         struct perf_sample_data sample;
8358         struct pt_regs *regs = data;
8359
8360         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8361
8362         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8363                 perf_swevent_event(bp, 1, &sample, regs);
8364 }
8365 #endif
8366
8367 /*
8368  * Allocate a new address filter
8369  */
8370 static struct perf_addr_filter *
8371 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8372 {
8373         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8374         struct perf_addr_filter *filter;
8375
8376         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8377         if (!filter)
8378                 return NULL;
8379
8380         INIT_LIST_HEAD(&filter->entry);
8381         list_add_tail(&filter->entry, filters);
8382
8383         return filter;
8384 }
8385
8386 static void free_filters_list(struct list_head *filters)
8387 {
8388         struct perf_addr_filter *filter, *iter;
8389
8390         list_for_each_entry_safe(filter, iter, filters, entry) {
8391                 path_put(&filter->path);
8392                 list_del(&filter->entry);
8393                 kfree(filter);
8394         }
8395 }
8396
8397 /*
8398  * Free existing address filters and optionally install new ones
8399  */
8400 static void perf_addr_filters_splice(struct perf_event *event,
8401                                      struct list_head *head)
8402 {
8403         unsigned long flags;
8404         LIST_HEAD(list);
8405
8406         if (!has_addr_filter(event))
8407                 return;
8408
8409         /* don't bother with children, they don't have their own filters */
8410         if (event->parent)
8411                 return;
8412
8413         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8414
8415         list_splice_init(&event->addr_filters.list, &list);
8416         if (head)
8417                 list_splice(head, &event->addr_filters.list);
8418
8419         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8420
8421         free_filters_list(&list);
8422 }
8423
8424 /*
8425  * Scan through mm's vmas and see if one of them matches the
8426  * @filter; if so, adjust filter's address range.
8427  * Called with mm::mmap_sem down for reading.
8428  */
8429 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8430                                             struct mm_struct *mm)
8431 {
8432         struct vm_area_struct *vma;
8433
8434         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8435                 struct file *file = vma->vm_file;
8436                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8437                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8438
8439                 if (!file)
8440                         continue;
8441
8442                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8443                         continue;
8444
8445                 return vma->vm_start;
8446         }
8447
8448         return 0;
8449 }
8450
8451 /*
8452  * Update event's address range filters based on the
8453  * task's existing mappings, if any.
8454  */
8455 static void perf_event_addr_filters_apply(struct perf_event *event)
8456 {
8457         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8458         struct task_struct *task = READ_ONCE(event->ctx->task);
8459         struct perf_addr_filter *filter;
8460         struct mm_struct *mm = NULL;
8461         unsigned int count = 0;
8462         unsigned long flags;
8463
8464         /*
8465          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8466          * will stop on the parent's child_mutex that our caller is also holding
8467          */
8468         if (task == TASK_TOMBSTONE)
8469                 return;
8470
8471         if (!ifh->nr_file_filters)
8472                 return;
8473
8474         mm = get_task_mm(task);
8475         if (!mm)
8476                 goto restart;
8477
8478         down_read(&mm->mmap_sem);
8479
8480         raw_spin_lock_irqsave(&ifh->lock, flags);
8481         list_for_each_entry(filter, &ifh->list, entry) {
8482                 event->addr_filters_offs[count] = 0;
8483
8484                 /*
8485                  * Adjust base offset if the filter is associated to a binary
8486                  * that needs to be mapped:
8487                  */
8488                 if (filter->path.dentry)
8489                         event->addr_filters_offs[count] =
8490                                 perf_addr_filter_apply(filter, mm);
8491
8492                 count++;
8493         }
8494
8495         event->addr_filters_gen++;
8496         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8497
8498         up_read(&mm->mmap_sem);
8499
8500         mmput(mm);
8501
8502 restart:
8503         perf_event_stop(event, 1);
8504 }
8505
8506 /*
8507  * Address range filtering: limiting the data to certain
8508  * instruction address ranges. Filters are ioctl()ed to us from
8509  * userspace as ascii strings.
8510  *
8511  * Filter string format:
8512  *
8513  * ACTION RANGE_SPEC
8514  * where ACTION is one of the
8515  *  * "filter": limit the trace to this region
8516  *  * "start": start tracing from this address
8517  *  * "stop": stop tracing at this address/region;
8518  * RANGE_SPEC is
8519  *  * for kernel addresses: <start address>[/<size>]
8520  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8521  *
8522  * if <size> is not specified, the range is treated as a single address.
8523  */
8524 enum {
8525         IF_ACT_NONE = -1,
8526         IF_ACT_FILTER,
8527         IF_ACT_START,
8528         IF_ACT_STOP,
8529         IF_SRC_FILE,
8530         IF_SRC_KERNEL,
8531         IF_SRC_FILEADDR,
8532         IF_SRC_KERNELADDR,
8533 };
8534
8535 enum {
8536         IF_STATE_ACTION = 0,
8537         IF_STATE_SOURCE,
8538         IF_STATE_END,
8539 };
8540
8541 static const match_table_t if_tokens = {
8542         { IF_ACT_FILTER,        "filter" },
8543         { IF_ACT_START,         "start" },
8544         { IF_ACT_STOP,          "stop" },
8545         { IF_SRC_FILE,          "%u/%u@%s" },
8546         { IF_SRC_KERNEL,        "%u/%u" },
8547         { IF_SRC_FILEADDR,      "%u@%s" },
8548         { IF_SRC_KERNELADDR,    "%u" },
8549         { IF_ACT_NONE,          NULL },
8550 };
8551
8552 /*
8553  * Address filter string parser
8554  */
8555 static int
8556 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8557                              struct list_head *filters)
8558 {
8559         struct perf_addr_filter *filter = NULL;
8560         char *start, *orig, *filename = NULL;
8561         substring_t args[MAX_OPT_ARGS];
8562         int state = IF_STATE_ACTION, token;
8563         unsigned int kernel = 0;
8564         int ret = -EINVAL;
8565
8566         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8567         if (!fstr)
8568                 return -ENOMEM;
8569
8570         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8571                 ret = -EINVAL;
8572
8573                 if (!*start)
8574                         continue;
8575
8576                 /* filter definition begins */
8577                 if (state == IF_STATE_ACTION) {
8578                         filter = perf_addr_filter_new(event, filters);
8579                         if (!filter)
8580                                 goto fail;
8581                 }
8582
8583                 token = match_token(start, if_tokens, args);
8584                 switch (token) {
8585                 case IF_ACT_FILTER:
8586                 case IF_ACT_START:
8587                         filter->filter = 1;
8588
8589                 case IF_ACT_STOP:
8590                         if (state != IF_STATE_ACTION)
8591                                 goto fail;
8592
8593                         state = IF_STATE_SOURCE;
8594                         break;
8595
8596                 case IF_SRC_KERNELADDR:
8597                 case IF_SRC_KERNEL:
8598                         kernel = 1;
8599
8600                 case IF_SRC_FILEADDR:
8601                 case IF_SRC_FILE:
8602                         if (state != IF_STATE_SOURCE)
8603                                 goto fail;
8604
8605                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8606                                 filter->range = 1;
8607
8608                         *args[0].to = 0;
8609                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8610                         if (ret)
8611                                 goto fail;
8612
8613                         if (filter->range) {
8614                                 *args[1].to = 0;
8615                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8616                                 if (ret)
8617                                         goto fail;
8618                         }
8619
8620                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8621                                 int fpos = filter->range ? 2 : 1;
8622
8623                                 kfree(filename);
8624                                 filename = match_strdup(&args[fpos]);
8625                                 if (!filename) {
8626                                         ret = -ENOMEM;
8627                                         goto fail;
8628                                 }
8629                         }
8630
8631                         state = IF_STATE_END;
8632                         break;
8633
8634                 default:
8635                         goto fail;
8636                 }
8637
8638                 /*
8639                  * Filter definition is fully parsed, validate and install it.
8640                  * Make sure that it doesn't contradict itself or the event's
8641                  * attribute.
8642                  */
8643                 if (state == IF_STATE_END) {
8644                         ret = -EINVAL;
8645                         if (kernel && event->attr.exclude_kernel)
8646                                 goto fail;
8647
8648                         if (!kernel) {
8649                                 if (!filename)
8650                                         goto fail;
8651
8652                                 /*
8653                                  * For now, we only support file-based filters
8654                                  * in per-task events; doing so for CPU-wide
8655                                  * events requires additional context switching
8656                                  * trickery, since same object code will be
8657                                  * mapped at different virtual addresses in
8658                                  * different processes.
8659                                  */
8660                                 ret = -EOPNOTSUPP;
8661                                 if (!event->ctx->task)
8662                                         goto fail;
8663
8664                                 /* look up the path and grab its inode */
8665                                 ret = kern_path(filename, LOOKUP_FOLLOW,
8666                                                 &filter->path);
8667                                 if (ret)
8668                                         goto fail;
8669
8670                                 ret = -EINVAL;
8671                                 if (!filter->path.dentry ||
8672                                     !S_ISREG(d_inode(filter->path.dentry)
8673                                              ->i_mode))
8674                                         goto fail;
8675
8676                                 event->addr_filters.nr_file_filters++;
8677                         }
8678
8679                         /* ready to consume more filters */
8680                         kfree(filename);
8681                         filename = NULL;
8682                         state = IF_STATE_ACTION;
8683                         filter = NULL;
8684                         kernel = 0;
8685                 }
8686         }
8687
8688         if (state != IF_STATE_ACTION)
8689                 goto fail;
8690
8691         kfree(filename);
8692         kfree(orig);
8693
8694         return 0;
8695
8696 fail:
8697         kfree(filename);
8698         free_filters_list(filters);
8699         kfree(orig);
8700
8701         return ret;
8702 }
8703
8704 static int
8705 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8706 {
8707         LIST_HEAD(filters);
8708         int ret;
8709
8710         /*
8711          * Since this is called in perf_ioctl() path, we're already holding
8712          * ctx::mutex.
8713          */
8714         lockdep_assert_held(&event->ctx->mutex);
8715
8716         if (WARN_ON_ONCE(event->parent))
8717                 return -EINVAL;
8718
8719         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8720         if (ret)
8721                 goto fail_clear_files;
8722
8723         ret = event->pmu->addr_filters_validate(&filters);
8724         if (ret)
8725                 goto fail_free_filters;
8726
8727         /* remove existing filters, if any */
8728         perf_addr_filters_splice(event, &filters);
8729
8730         /* install new filters */
8731         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8732
8733         return ret;
8734
8735 fail_free_filters:
8736         free_filters_list(&filters);
8737
8738 fail_clear_files:
8739         event->addr_filters.nr_file_filters = 0;
8740
8741         return ret;
8742 }
8743
8744 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8745 {
8746         char *filter_str;
8747         int ret = -EINVAL;
8748
8749         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8750             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8751             !has_addr_filter(event))
8752                 return -EINVAL;
8753
8754         filter_str = strndup_user(arg, PAGE_SIZE);
8755         if (IS_ERR(filter_str))
8756                 return PTR_ERR(filter_str);
8757
8758         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8759             event->attr.type == PERF_TYPE_TRACEPOINT)
8760                 ret = ftrace_profile_set_filter(event, event->attr.config,
8761                                                 filter_str);
8762         else if (has_addr_filter(event))
8763                 ret = perf_event_set_addr_filter(event, filter_str);
8764
8765         kfree(filter_str);
8766         return ret;
8767 }
8768
8769 /*
8770  * hrtimer based swevent callback
8771  */
8772
8773 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8774 {
8775         enum hrtimer_restart ret = HRTIMER_RESTART;
8776         struct perf_sample_data data;
8777         struct pt_regs *regs;
8778         struct perf_event *event;
8779         u64 period;
8780
8781         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8782
8783         if (event->state != PERF_EVENT_STATE_ACTIVE)
8784                 return HRTIMER_NORESTART;
8785
8786         event->pmu->read(event);
8787
8788         perf_sample_data_init(&data, 0, event->hw.last_period);
8789         regs = get_irq_regs();
8790
8791         if (regs && !perf_exclude_event(event, regs)) {
8792                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8793                         if (__perf_event_overflow(event, 1, &data, regs))
8794                                 ret = HRTIMER_NORESTART;
8795         }
8796
8797         period = max_t(u64, 10000, event->hw.sample_period);
8798         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8799
8800         return ret;
8801 }
8802
8803 static void perf_swevent_start_hrtimer(struct perf_event *event)
8804 {
8805         struct hw_perf_event *hwc = &event->hw;
8806         s64 period;
8807
8808         if (!is_sampling_event(event))
8809                 return;
8810
8811         period = local64_read(&hwc->period_left);
8812         if (period) {
8813                 if (period < 0)
8814                         period = 10000;
8815
8816                 local64_set(&hwc->period_left, 0);
8817         } else {
8818                 period = max_t(u64, 10000, hwc->sample_period);
8819         }
8820         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8821                       HRTIMER_MODE_REL_PINNED);
8822 }
8823
8824 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8825 {
8826         struct hw_perf_event *hwc = &event->hw;
8827
8828         if (is_sampling_event(event)) {
8829                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8830                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8831
8832                 hrtimer_cancel(&hwc->hrtimer);
8833         }
8834 }
8835
8836 static void perf_swevent_init_hrtimer(struct perf_event *event)
8837 {
8838         struct hw_perf_event *hwc = &event->hw;
8839
8840         if (!is_sampling_event(event))
8841                 return;
8842
8843         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8844         hwc->hrtimer.function = perf_swevent_hrtimer;
8845
8846         /*
8847          * Since hrtimers have a fixed rate, we can do a static freq->period
8848          * mapping and avoid the whole period adjust feedback stuff.
8849          */
8850         if (event->attr.freq) {
8851                 long freq = event->attr.sample_freq;
8852
8853                 event->attr.sample_period = NSEC_PER_SEC / freq;
8854                 hwc->sample_period = event->attr.sample_period;
8855                 local64_set(&hwc->period_left, hwc->sample_period);
8856                 hwc->last_period = hwc->sample_period;
8857                 event->attr.freq = 0;
8858         }
8859 }
8860
8861 /*
8862  * Software event: cpu wall time clock
8863  */
8864
8865 static void cpu_clock_event_update(struct perf_event *event)
8866 {
8867         s64 prev;
8868         u64 now;
8869
8870         now = local_clock();
8871         prev = local64_xchg(&event->hw.prev_count, now);
8872         local64_add(now - prev, &event->count);
8873 }
8874
8875 static void cpu_clock_event_start(struct perf_event *event, int flags)
8876 {
8877         local64_set(&event->hw.prev_count, local_clock());
8878         perf_swevent_start_hrtimer(event);
8879 }
8880
8881 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8882 {
8883         perf_swevent_cancel_hrtimer(event);
8884         cpu_clock_event_update(event);
8885 }
8886
8887 static int cpu_clock_event_add(struct perf_event *event, int flags)
8888 {
8889         if (flags & PERF_EF_START)
8890                 cpu_clock_event_start(event, flags);
8891         perf_event_update_userpage(event);
8892
8893         return 0;
8894 }
8895
8896 static void cpu_clock_event_del(struct perf_event *event, int flags)
8897 {
8898         cpu_clock_event_stop(event, flags);
8899 }
8900
8901 static void cpu_clock_event_read(struct perf_event *event)
8902 {
8903         cpu_clock_event_update(event);
8904 }
8905
8906 static int cpu_clock_event_init(struct perf_event *event)
8907 {
8908         if (event->attr.type != PERF_TYPE_SOFTWARE)
8909                 return -ENOENT;
8910
8911         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8912                 return -ENOENT;
8913
8914         /*
8915          * no branch sampling for software events
8916          */
8917         if (has_branch_stack(event))
8918                 return -EOPNOTSUPP;
8919
8920         perf_swevent_init_hrtimer(event);
8921
8922         return 0;
8923 }
8924
8925 static struct pmu perf_cpu_clock = {
8926         .task_ctx_nr    = perf_sw_context,
8927
8928         .capabilities   = PERF_PMU_CAP_NO_NMI,
8929
8930         .event_init     = cpu_clock_event_init,
8931         .add            = cpu_clock_event_add,
8932         .del            = cpu_clock_event_del,
8933         .start          = cpu_clock_event_start,
8934         .stop           = cpu_clock_event_stop,
8935         .read           = cpu_clock_event_read,
8936 };
8937
8938 /*
8939  * Software event: task time clock
8940  */
8941
8942 static void task_clock_event_update(struct perf_event *event, u64 now)
8943 {
8944         u64 prev;
8945         s64 delta;
8946
8947         prev = local64_xchg(&event->hw.prev_count, now);
8948         delta = now - prev;
8949         local64_add(delta, &event->count);
8950 }
8951
8952 static void task_clock_event_start(struct perf_event *event, int flags)
8953 {
8954         local64_set(&event->hw.prev_count, event->ctx->time);
8955         perf_swevent_start_hrtimer(event);
8956 }
8957
8958 static void task_clock_event_stop(struct perf_event *event, int flags)
8959 {
8960         perf_swevent_cancel_hrtimer(event);
8961         task_clock_event_update(event, event->ctx->time);
8962 }
8963
8964 static int task_clock_event_add(struct perf_event *event, int flags)
8965 {
8966         if (flags & PERF_EF_START)
8967                 task_clock_event_start(event, flags);
8968         perf_event_update_userpage(event);
8969
8970         return 0;
8971 }
8972
8973 static void task_clock_event_del(struct perf_event *event, int flags)
8974 {
8975         task_clock_event_stop(event, PERF_EF_UPDATE);
8976 }
8977
8978 static void task_clock_event_read(struct perf_event *event)
8979 {
8980         u64 now = perf_clock();
8981         u64 delta = now - event->ctx->timestamp;
8982         u64 time = event->ctx->time + delta;
8983
8984         task_clock_event_update(event, time);
8985 }
8986
8987 static int task_clock_event_init(struct perf_event *event)
8988 {
8989         if (event->attr.type != PERF_TYPE_SOFTWARE)
8990                 return -ENOENT;
8991
8992         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8993                 return -ENOENT;
8994
8995         /*
8996          * no branch sampling for software events
8997          */
8998         if (has_branch_stack(event))
8999                 return -EOPNOTSUPP;
9000
9001         perf_swevent_init_hrtimer(event);
9002
9003         return 0;
9004 }
9005
9006 static struct pmu perf_task_clock = {
9007         .task_ctx_nr    = perf_sw_context,
9008
9009         .capabilities   = PERF_PMU_CAP_NO_NMI,
9010
9011         .event_init     = task_clock_event_init,
9012         .add            = task_clock_event_add,
9013         .del            = task_clock_event_del,
9014         .start          = task_clock_event_start,
9015         .stop           = task_clock_event_stop,
9016         .read           = task_clock_event_read,
9017 };
9018
9019 static void perf_pmu_nop_void(struct pmu *pmu)
9020 {
9021 }
9022
9023 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9024 {
9025 }
9026
9027 static int perf_pmu_nop_int(struct pmu *pmu)
9028 {
9029         return 0;
9030 }
9031
9032 static int perf_event_nop_int(struct perf_event *event, u64 value)
9033 {
9034         return 0;
9035 }
9036
9037 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9038
9039 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9040 {
9041         __this_cpu_write(nop_txn_flags, flags);
9042
9043         if (flags & ~PERF_PMU_TXN_ADD)
9044                 return;
9045
9046         perf_pmu_disable(pmu);
9047 }
9048
9049 static int perf_pmu_commit_txn(struct pmu *pmu)
9050 {
9051         unsigned int flags = __this_cpu_read(nop_txn_flags);
9052
9053         __this_cpu_write(nop_txn_flags, 0);
9054
9055         if (flags & ~PERF_PMU_TXN_ADD)
9056                 return 0;
9057
9058         perf_pmu_enable(pmu);
9059         return 0;
9060 }
9061
9062 static void perf_pmu_cancel_txn(struct pmu *pmu)
9063 {
9064         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9065
9066         __this_cpu_write(nop_txn_flags, 0);
9067
9068         if (flags & ~PERF_PMU_TXN_ADD)
9069                 return;
9070
9071         perf_pmu_enable(pmu);
9072 }
9073
9074 static int perf_event_idx_default(struct perf_event *event)
9075 {
9076         return 0;
9077 }
9078
9079 /*
9080  * Ensures all contexts with the same task_ctx_nr have the same
9081  * pmu_cpu_context too.
9082  */
9083 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9084 {
9085         struct pmu *pmu;
9086
9087         if (ctxn < 0)
9088                 return NULL;
9089
9090         list_for_each_entry(pmu, &pmus, entry) {
9091                 if (pmu->task_ctx_nr == ctxn)
9092                         return pmu->pmu_cpu_context;
9093         }
9094
9095         return NULL;
9096 }
9097
9098 static void free_pmu_context(struct pmu *pmu)
9099 {
9100         /*
9101          * Static contexts such as perf_sw_context have a global lifetime
9102          * and may be shared between different PMUs. Avoid freeing them
9103          * when a single PMU is going away.
9104          */
9105         if (pmu->task_ctx_nr > perf_invalid_context)
9106                 return;
9107
9108         free_percpu(pmu->pmu_cpu_context);
9109 }
9110
9111 /*
9112  * Let userspace know that this PMU supports address range filtering:
9113  */
9114 static ssize_t nr_addr_filters_show(struct device *dev,
9115                                     struct device_attribute *attr,
9116                                     char *page)
9117 {
9118         struct pmu *pmu = dev_get_drvdata(dev);
9119
9120         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9121 }
9122 DEVICE_ATTR_RO(nr_addr_filters);
9123
9124 static struct idr pmu_idr;
9125
9126 static ssize_t
9127 type_show(struct device *dev, struct device_attribute *attr, char *page)
9128 {
9129         struct pmu *pmu = dev_get_drvdata(dev);
9130
9131         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9132 }
9133 static DEVICE_ATTR_RO(type);
9134
9135 static ssize_t
9136 perf_event_mux_interval_ms_show(struct device *dev,
9137                                 struct device_attribute *attr,
9138                                 char *page)
9139 {
9140         struct pmu *pmu = dev_get_drvdata(dev);
9141
9142         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9143 }
9144
9145 static DEFINE_MUTEX(mux_interval_mutex);
9146
9147 static ssize_t
9148 perf_event_mux_interval_ms_store(struct device *dev,
9149                                  struct device_attribute *attr,
9150                                  const char *buf, size_t count)
9151 {
9152         struct pmu *pmu = dev_get_drvdata(dev);
9153         int timer, cpu, ret;
9154
9155         ret = kstrtoint(buf, 0, &timer);
9156         if (ret)
9157                 return ret;
9158
9159         if (timer < 1)
9160                 return -EINVAL;
9161
9162         /* same value, noting to do */
9163         if (timer == pmu->hrtimer_interval_ms)
9164                 return count;
9165
9166         mutex_lock(&mux_interval_mutex);
9167         pmu->hrtimer_interval_ms = timer;
9168
9169         /* update all cpuctx for this PMU */
9170         cpus_read_lock();
9171         for_each_online_cpu(cpu) {
9172                 struct perf_cpu_context *cpuctx;
9173                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9174                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9175
9176                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpuctx);
9177         }
9178         cpus_read_unlock();
9179         mutex_unlock(&mux_interval_mutex);
9180
9181         return count;
9182 }
9183 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9184
9185 static struct attribute *pmu_dev_attrs[] = {
9186         &dev_attr_type.attr,
9187         &dev_attr_perf_event_mux_interval_ms.attr,
9188         NULL,
9189 };
9190 ATTRIBUTE_GROUPS(pmu_dev);
9191
9192 static int pmu_bus_running;
9193 static struct bus_type pmu_bus = {
9194         .name           = "event_source",
9195         .dev_groups     = pmu_dev_groups,
9196 };
9197
9198 static void pmu_dev_release(struct device *dev)
9199 {
9200         kfree(dev);
9201 }
9202
9203 static int pmu_dev_alloc(struct pmu *pmu)
9204 {
9205         int ret = -ENOMEM;
9206
9207         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9208         if (!pmu->dev)
9209                 goto out;
9210
9211         pmu->dev->groups = pmu->attr_groups;
9212         device_initialize(pmu->dev);
9213
9214         dev_set_drvdata(pmu->dev, pmu);
9215         pmu->dev->bus = &pmu_bus;
9216         pmu->dev->release = pmu_dev_release;
9217
9218         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9219         if (ret)
9220                 goto free_dev;
9221
9222         ret = device_add(pmu->dev);
9223         if (ret)
9224                 goto free_dev;
9225
9226         /* For PMUs with address filters, throw in an extra attribute: */
9227         if (pmu->nr_addr_filters)
9228                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9229
9230         if (ret)
9231                 goto del_dev;
9232
9233 out:
9234         return ret;
9235
9236 del_dev:
9237         device_del(pmu->dev);
9238
9239 free_dev:
9240         put_device(pmu->dev);
9241         goto out;
9242 }
9243
9244 static struct lock_class_key cpuctx_mutex;
9245 static struct lock_class_key cpuctx_lock;
9246
9247 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9248 {
9249         int cpu, ret;
9250
9251         mutex_lock(&pmus_lock);
9252         ret = -ENOMEM;
9253         pmu->pmu_disable_count = alloc_percpu(int);
9254         if (!pmu->pmu_disable_count)
9255                 goto unlock;
9256
9257         pmu->type = -1;
9258         if (!name)
9259                 goto skip_type;
9260         pmu->name = name;
9261
9262         if (type < 0) {
9263                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9264                 if (type < 0) {
9265                         ret = type;
9266                         goto free_pdc;
9267                 }
9268         }
9269         pmu->type = type;
9270
9271         if (pmu_bus_running) {
9272                 ret = pmu_dev_alloc(pmu);
9273                 if (ret)
9274                         goto free_idr;
9275         }
9276
9277 skip_type:
9278         if (pmu->task_ctx_nr == perf_hw_context) {
9279                 static int hw_context_taken = 0;
9280
9281                 /*
9282                  * Other than systems with heterogeneous CPUs, it never makes
9283                  * sense for two PMUs to share perf_hw_context. PMUs which are
9284                  * uncore must use perf_invalid_context.
9285                  */
9286                 if (WARN_ON_ONCE(hw_context_taken &&
9287                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9288                         pmu->task_ctx_nr = perf_invalid_context;
9289
9290                 hw_context_taken = 1;
9291         }
9292
9293         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9294         if (pmu->pmu_cpu_context)
9295                 goto got_cpu_context;
9296
9297         ret = -ENOMEM;
9298         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9299         if (!pmu->pmu_cpu_context)
9300                 goto free_dev;
9301
9302         for_each_possible_cpu(cpu) {
9303                 struct perf_cpu_context *cpuctx;
9304
9305                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9306                 __perf_event_init_context(&cpuctx->ctx);
9307                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9308                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9309                 cpuctx->ctx.pmu = pmu;
9310                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9311
9312                 __perf_mux_hrtimer_init(cpuctx, cpu);
9313         }
9314
9315 got_cpu_context:
9316         if (!pmu->start_txn) {
9317                 if (pmu->pmu_enable) {
9318                         /*
9319                          * If we have pmu_enable/pmu_disable calls, install
9320                          * transaction stubs that use that to try and batch
9321                          * hardware accesses.
9322                          */
9323                         pmu->start_txn  = perf_pmu_start_txn;
9324                         pmu->commit_txn = perf_pmu_commit_txn;
9325                         pmu->cancel_txn = perf_pmu_cancel_txn;
9326                 } else {
9327                         pmu->start_txn  = perf_pmu_nop_txn;
9328                         pmu->commit_txn = perf_pmu_nop_int;
9329                         pmu->cancel_txn = perf_pmu_nop_void;
9330                 }
9331         }
9332
9333         if (!pmu->pmu_enable) {
9334                 pmu->pmu_enable  = perf_pmu_nop_void;
9335                 pmu->pmu_disable = perf_pmu_nop_void;
9336         }
9337
9338         if (!pmu->check_period)
9339                 pmu->check_period = perf_event_nop_int;
9340
9341         if (!pmu->event_idx)
9342                 pmu->event_idx = perf_event_idx_default;
9343
9344         list_add_rcu(&pmu->entry, &pmus);
9345         atomic_set(&pmu->exclusive_cnt, 0);
9346         ret = 0;
9347 unlock:
9348         mutex_unlock(&pmus_lock);
9349
9350         return ret;
9351
9352 free_dev:
9353         device_del(pmu->dev);
9354         put_device(pmu->dev);
9355
9356 free_idr:
9357         if (pmu->type >= PERF_TYPE_MAX)
9358                 idr_remove(&pmu_idr, pmu->type);
9359
9360 free_pdc:
9361         free_percpu(pmu->pmu_disable_count);
9362         goto unlock;
9363 }
9364 EXPORT_SYMBOL_GPL(perf_pmu_register);
9365
9366 void perf_pmu_unregister(struct pmu *pmu)
9367 {
9368         mutex_lock(&pmus_lock);
9369         list_del_rcu(&pmu->entry);
9370
9371         /*
9372          * We dereference the pmu list under both SRCU and regular RCU, so
9373          * synchronize against both of those.
9374          */
9375         synchronize_srcu(&pmus_srcu);
9376         synchronize_rcu();
9377
9378         free_percpu(pmu->pmu_disable_count);
9379         if (pmu->type >= PERF_TYPE_MAX)
9380                 idr_remove(&pmu_idr, pmu->type);
9381         if (pmu_bus_running) {
9382                 if (pmu->nr_addr_filters)
9383                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9384                 device_del(pmu->dev);
9385                 put_device(pmu->dev);
9386         }
9387         free_pmu_context(pmu);
9388         mutex_unlock(&pmus_lock);
9389 }
9390 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9391
9392 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9393 {
9394         struct perf_event_context *ctx = NULL;
9395         int ret;
9396
9397         if (!try_module_get(pmu->module))
9398                 return -ENODEV;
9399
9400         if (event->group_leader != event) {
9401                 /*
9402                  * This ctx->mutex can nest when we're called through
9403                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9404                  */
9405                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9406                                                  SINGLE_DEPTH_NESTING);
9407                 BUG_ON(!ctx);
9408         }
9409
9410         event->pmu = pmu;
9411         ret = pmu->event_init(event);
9412
9413         if (ctx)
9414                 perf_event_ctx_unlock(event->group_leader, ctx);
9415
9416         if (ret)
9417                 module_put(pmu->module);
9418
9419         return ret;
9420 }
9421
9422 static struct pmu *perf_init_event(struct perf_event *event)
9423 {
9424         struct pmu *pmu;
9425         int idx;
9426         int ret;
9427
9428         idx = srcu_read_lock(&pmus_srcu);
9429
9430         /* Try parent's PMU first: */
9431         if (event->parent && event->parent->pmu) {
9432                 pmu = event->parent->pmu;
9433                 ret = perf_try_init_event(pmu, event);
9434                 if (!ret)
9435                         goto unlock;
9436         }
9437
9438         rcu_read_lock();
9439         pmu = idr_find(&pmu_idr, event->attr.type);
9440         rcu_read_unlock();
9441         if (pmu) {
9442                 ret = perf_try_init_event(pmu, event);
9443                 if (ret)
9444                         pmu = ERR_PTR(ret);
9445                 goto unlock;
9446         }
9447
9448         list_for_each_entry_rcu(pmu, &pmus, entry) {
9449                 ret = perf_try_init_event(pmu, event);
9450                 if (!ret)
9451                         goto unlock;
9452
9453                 if (ret != -ENOENT) {
9454                         pmu = ERR_PTR(ret);
9455                         goto unlock;
9456                 }
9457         }
9458         pmu = ERR_PTR(-ENOENT);
9459 unlock:
9460         srcu_read_unlock(&pmus_srcu, idx);
9461
9462         return pmu;
9463 }
9464
9465 static void attach_sb_event(struct perf_event *event)
9466 {
9467         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9468
9469         raw_spin_lock(&pel->lock);
9470         list_add_rcu(&event->sb_list, &pel->list);
9471         raw_spin_unlock(&pel->lock);
9472 }
9473
9474 /*
9475  * We keep a list of all !task (and therefore per-cpu) events
9476  * that need to receive side-band records.
9477  *
9478  * This avoids having to scan all the various PMU per-cpu contexts
9479  * looking for them.
9480  */
9481 static void account_pmu_sb_event(struct perf_event *event)
9482 {
9483         if (is_sb_event(event))
9484                 attach_sb_event(event);
9485 }
9486
9487 static void account_event_cpu(struct perf_event *event, int cpu)
9488 {
9489         if (event->parent)
9490                 return;
9491
9492         if (is_cgroup_event(event))
9493                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9494 }
9495
9496 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9497 static void account_freq_event_nohz(void)
9498 {
9499 #ifdef CONFIG_NO_HZ_FULL
9500         /* Lock so we don't race with concurrent unaccount */
9501         spin_lock(&nr_freq_lock);
9502         if (atomic_inc_return(&nr_freq_events) == 1)
9503                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9504         spin_unlock(&nr_freq_lock);
9505 #endif
9506 }
9507
9508 static void account_freq_event(void)
9509 {
9510         if (tick_nohz_full_enabled())
9511                 account_freq_event_nohz();
9512         else
9513                 atomic_inc(&nr_freq_events);
9514 }
9515
9516
9517 static void account_event(struct perf_event *event)
9518 {
9519         bool inc = false;
9520
9521         if (event->parent)
9522                 return;
9523
9524         if (event->attach_state & PERF_ATTACH_TASK)
9525                 inc = true;
9526         if (event->attr.mmap || event->attr.mmap_data)
9527                 atomic_inc(&nr_mmap_events);
9528         if (event->attr.comm)
9529                 atomic_inc(&nr_comm_events);
9530         if (event->attr.namespaces)
9531                 atomic_inc(&nr_namespaces_events);
9532         if (event->attr.task)
9533                 atomic_inc(&nr_task_events);
9534         if (event->attr.freq)
9535                 account_freq_event();
9536         if (event->attr.context_switch) {
9537                 atomic_inc(&nr_switch_events);
9538                 inc = true;
9539         }
9540         if (has_branch_stack(event))
9541                 inc = true;
9542         if (is_cgroup_event(event))
9543                 inc = true;
9544
9545         if (inc) {
9546                 if (atomic_inc_not_zero(&perf_sched_count))
9547                         goto enabled;
9548
9549                 mutex_lock(&perf_sched_mutex);
9550                 if (!atomic_read(&perf_sched_count)) {
9551                         static_branch_enable(&perf_sched_events);
9552                         /*
9553                          * Guarantee that all CPUs observe they key change and
9554                          * call the perf scheduling hooks before proceeding to
9555                          * install events that need them.
9556                          */
9557                         synchronize_sched();
9558                 }
9559                 /*
9560                  * Now that we have waited for the sync_sched(), allow further
9561                  * increments to by-pass the mutex.
9562                  */
9563                 atomic_inc(&perf_sched_count);
9564                 mutex_unlock(&perf_sched_mutex);
9565         }
9566 enabled:
9567
9568         account_event_cpu(event, event->cpu);
9569
9570         account_pmu_sb_event(event);
9571 }
9572
9573 /*
9574  * Allocate and initialize a event structure
9575  */
9576 static struct perf_event *
9577 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9578                  struct task_struct *task,
9579                  struct perf_event *group_leader,
9580                  struct perf_event *parent_event,
9581                  perf_overflow_handler_t overflow_handler,
9582                  void *context, int cgroup_fd)
9583 {
9584         struct pmu *pmu;
9585         struct perf_event *event;
9586         struct hw_perf_event *hwc;
9587         long err = -EINVAL;
9588
9589         if ((unsigned)cpu >= nr_cpu_ids) {
9590                 if (!task || cpu != -1)
9591                         return ERR_PTR(-EINVAL);
9592         }
9593
9594         event = kzalloc(sizeof(*event), GFP_KERNEL);
9595         if (!event)
9596                 return ERR_PTR(-ENOMEM);
9597
9598         /*
9599          * Single events are their own group leaders, with an
9600          * empty sibling list:
9601          */
9602         if (!group_leader)
9603                 group_leader = event;
9604
9605         mutex_init(&event->child_mutex);
9606         INIT_LIST_HEAD(&event->child_list);
9607
9608         INIT_LIST_HEAD(&event->group_entry);
9609         INIT_LIST_HEAD(&event->event_entry);
9610         INIT_LIST_HEAD(&event->sibling_list);
9611         INIT_LIST_HEAD(&event->rb_entry);
9612         INIT_LIST_HEAD(&event->active_entry);
9613         INIT_LIST_HEAD(&event->addr_filters.list);
9614         INIT_HLIST_NODE(&event->hlist_entry);
9615
9616
9617         init_waitqueue_head(&event->waitq);
9618         init_irq_work(&event->pending, perf_pending_event);
9619
9620         mutex_init(&event->mmap_mutex);
9621         raw_spin_lock_init(&event->addr_filters.lock);
9622
9623         atomic_long_set(&event->refcount, 1);
9624         event->cpu              = cpu;
9625         event->attr             = *attr;
9626         event->group_leader     = group_leader;
9627         event->pmu              = NULL;
9628         event->oncpu            = -1;
9629
9630         event->parent           = parent_event;
9631
9632         event->ns               = get_pid_ns(task_active_pid_ns(current));
9633         event->id               = atomic64_inc_return(&perf_event_id);
9634
9635         event->state            = PERF_EVENT_STATE_INACTIVE;
9636
9637         if (task) {
9638                 event->attach_state = PERF_ATTACH_TASK;
9639                 /*
9640                  * XXX pmu::event_init needs to know what task to account to
9641                  * and we cannot use the ctx information because we need the
9642                  * pmu before we get a ctx.
9643                  */
9644                 get_task_struct(task);
9645                 event->hw.target = task;
9646         }
9647
9648         event->clock = &local_clock;
9649         if (parent_event)
9650                 event->clock = parent_event->clock;
9651
9652         if (!overflow_handler && parent_event) {
9653                 overflow_handler = parent_event->overflow_handler;
9654                 context = parent_event->overflow_handler_context;
9655 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9656                 if (overflow_handler == bpf_overflow_handler) {
9657                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9658
9659                         if (IS_ERR(prog)) {
9660                                 err = PTR_ERR(prog);
9661                                 goto err_ns;
9662                         }
9663                         event->prog = prog;
9664                         event->orig_overflow_handler =
9665                                 parent_event->orig_overflow_handler;
9666                 }
9667 #endif
9668         }
9669
9670         if (overflow_handler) {
9671                 event->overflow_handler = overflow_handler;
9672                 event->overflow_handler_context = context;
9673         } else if (is_write_backward(event)){
9674                 event->overflow_handler = perf_event_output_backward;
9675                 event->overflow_handler_context = NULL;
9676         } else {
9677                 event->overflow_handler = perf_event_output_forward;
9678                 event->overflow_handler_context = NULL;
9679         }
9680
9681         perf_event__state_init(event);
9682
9683         pmu = NULL;
9684
9685         hwc = &event->hw;
9686         hwc->sample_period = attr->sample_period;
9687         if (attr->freq && attr->sample_freq)
9688                 hwc->sample_period = 1;
9689         hwc->last_period = hwc->sample_period;
9690
9691         local64_set(&hwc->period_left, hwc->sample_period);
9692
9693         /*
9694          * We currently do not support PERF_SAMPLE_READ on inherited events.
9695          * See perf_output_read().
9696          */
9697         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9698                 goto err_ns;
9699
9700         if (!has_branch_stack(event))
9701                 event->attr.branch_sample_type = 0;
9702
9703         if (cgroup_fd != -1) {
9704                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9705                 if (err)
9706                         goto err_ns;
9707         }
9708
9709         pmu = perf_init_event(event);
9710         if (IS_ERR(pmu)) {
9711                 err = PTR_ERR(pmu);
9712                 goto err_ns;
9713         }
9714
9715         err = exclusive_event_init(event);
9716         if (err)
9717                 goto err_pmu;
9718
9719         if (has_addr_filter(event)) {
9720                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9721                                                    sizeof(unsigned long),
9722                                                    GFP_KERNEL);
9723                 if (!event->addr_filters_offs) {
9724                         err = -ENOMEM;
9725                         goto err_per_task;
9726                 }
9727
9728                 /* force hw sync on the address filters */
9729                 event->addr_filters_gen = 1;
9730         }
9731
9732         if (!event->parent) {
9733                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9734                         err = get_callchain_buffers(attr->sample_max_stack);
9735                         if (err)
9736                                 goto err_addr_filters;
9737                 }
9738         }
9739
9740         /* symmetric to unaccount_event() in _free_event() */
9741         account_event(event);
9742
9743         return event;
9744
9745 err_addr_filters:
9746         kfree(event->addr_filters_offs);
9747
9748 err_per_task:
9749         exclusive_event_destroy(event);
9750
9751 err_pmu:
9752         if (event->destroy)
9753                 event->destroy(event);
9754         module_put(pmu->module);
9755 err_ns:
9756         if (is_cgroup_event(event))
9757                 perf_detach_cgroup(event);
9758         if (event->ns)
9759                 put_pid_ns(event->ns);
9760         if (event->hw.target)
9761                 put_task_struct(event->hw.target);
9762         kfree(event);
9763
9764         return ERR_PTR(err);
9765 }
9766
9767 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9768                           struct perf_event_attr *attr)
9769 {
9770         u32 size;
9771         int ret;
9772
9773         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9774                 return -EFAULT;
9775
9776         /*
9777          * zero the full structure, so that a short copy will be nice.
9778          */
9779         memset(attr, 0, sizeof(*attr));
9780
9781         ret = get_user(size, &uattr->size);
9782         if (ret)
9783                 return ret;
9784
9785         if (size > PAGE_SIZE)   /* silly large */
9786                 goto err_size;
9787
9788         if (!size)              /* abi compat */
9789                 size = PERF_ATTR_SIZE_VER0;
9790
9791         if (size < PERF_ATTR_SIZE_VER0)
9792                 goto err_size;
9793
9794         /*
9795          * If we're handed a bigger struct than we know of,
9796          * ensure all the unknown bits are 0 - i.e. new
9797          * user-space does not rely on any kernel feature
9798          * extensions we dont know about yet.
9799          */
9800         if (size > sizeof(*attr)) {
9801                 unsigned char __user *addr;
9802                 unsigned char __user *end;
9803                 unsigned char val;
9804
9805                 addr = (void __user *)uattr + sizeof(*attr);
9806                 end  = (void __user *)uattr + size;
9807
9808                 for (; addr < end; addr++) {
9809                         ret = get_user(val, addr);
9810                         if (ret)
9811                                 return ret;
9812                         if (val)
9813                                 goto err_size;
9814                 }
9815                 size = sizeof(*attr);
9816         }
9817
9818         ret = copy_from_user(attr, uattr, size);
9819         if (ret)
9820                 return -EFAULT;
9821
9822         attr->size = size;
9823
9824         if (attr->__reserved_1)
9825                 return -EINVAL;
9826
9827         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9828                 return -EINVAL;
9829
9830         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9831                 return -EINVAL;
9832
9833         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9834                 u64 mask = attr->branch_sample_type;
9835
9836                 /* only using defined bits */
9837                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9838                         return -EINVAL;
9839
9840                 /* at least one branch bit must be set */
9841                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9842                         return -EINVAL;
9843
9844                 /* propagate priv level, when not set for branch */
9845                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9846
9847                         /* exclude_kernel checked on syscall entry */
9848                         if (!attr->exclude_kernel)
9849                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9850
9851                         if (!attr->exclude_user)
9852                                 mask |= PERF_SAMPLE_BRANCH_USER;
9853
9854                         if (!attr->exclude_hv)
9855                                 mask |= PERF_SAMPLE_BRANCH_HV;
9856                         /*
9857                          * adjust user setting (for HW filter setup)
9858                          */
9859                         attr->branch_sample_type = mask;
9860                 }
9861                 /* privileged levels capture (kernel, hv): check permissions */
9862                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9863                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9864                         return -EACCES;
9865         }
9866
9867         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9868                 ret = perf_reg_validate(attr->sample_regs_user);
9869                 if (ret)
9870                         return ret;
9871         }
9872
9873         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9874                 if (!arch_perf_have_user_stack_dump())
9875                         return -ENOSYS;
9876
9877                 /*
9878                  * We have __u32 type for the size, but so far
9879                  * we can only use __u16 as maximum due to the
9880                  * __u16 sample size limit.
9881                  */
9882                 if (attr->sample_stack_user >= USHRT_MAX)
9883                         return -EINVAL;
9884                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9885                         return -EINVAL;
9886         }
9887
9888         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9889                 ret = perf_reg_validate(attr->sample_regs_intr);
9890 out:
9891         return ret;
9892
9893 err_size:
9894         put_user(sizeof(*attr), &uattr->size);
9895         ret = -E2BIG;
9896         goto out;
9897 }
9898
9899 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9900 {
9901         if (b < a)
9902                 swap(a, b);
9903
9904         mutex_lock(a);
9905         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9906 }
9907
9908 static int
9909 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9910 {
9911         struct ring_buffer *rb = NULL;
9912         int ret = -EINVAL;
9913
9914         if (!output_event) {
9915                 mutex_lock(&event->mmap_mutex);
9916                 goto set;
9917         }
9918
9919         /* don't allow circular references */
9920         if (event == output_event)
9921                 goto out;
9922
9923         /*
9924          * Don't allow cross-cpu buffers
9925          */
9926         if (output_event->cpu != event->cpu)
9927                 goto out;
9928
9929         /*
9930          * If its not a per-cpu rb, it must be the same task.
9931          */
9932         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
9933                 goto out;
9934
9935         /*
9936          * Mixing clocks in the same buffer is trouble you don't need.
9937          */
9938         if (output_event->clock != event->clock)
9939                 goto out;
9940
9941         /*
9942          * Either writing ring buffer from beginning or from end.
9943          * Mixing is not allowed.
9944          */
9945         if (is_write_backward(output_event) != is_write_backward(event))
9946                 goto out;
9947
9948         /*
9949          * If both events generate aux data, they must be on the same PMU
9950          */
9951         if (has_aux(event) && has_aux(output_event) &&
9952             event->pmu != output_event->pmu)
9953                 goto out;
9954
9955         /*
9956          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
9957          * output_event is already on rb->event_list, and the list iteration
9958          * restarts after every removal, it is guaranteed this new event is
9959          * observed *OR* if output_event is already removed, it's guaranteed we
9960          * observe !rb->mmap_count.
9961          */
9962         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
9963 set:
9964         /* Can't redirect output if we've got an active mmap() */
9965         if (atomic_read(&event->mmap_count))
9966                 goto unlock;
9967
9968         if (output_event) {
9969                 /* get the rb we want to redirect to */
9970                 rb = ring_buffer_get(output_event);
9971                 if (!rb)
9972                         goto unlock;
9973
9974                 /* did we race against perf_mmap_close() */
9975                 if (!atomic_read(&rb->mmap_count)) {
9976                         ring_buffer_put(rb);
9977                         goto unlock;
9978                 }
9979         }
9980
9981         ring_buffer_attach(event, rb);
9982
9983         ret = 0;
9984 unlock:
9985         mutex_unlock(&event->mmap_mutex);
9986         if (output_event)
9987                 mutex_unlock(&output_event->mmap_mutex);
9988
9989 out:
9990         return ret;
9991 }
9992
9993 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9994 {
9995         bool nmi_safe = false;
9996
9997         switch (clk_id) {
9998         case CLOCK_MONOTONIC:
9999                 event->clock = &ktime_get_mono_fast_ns;
10000                 nmi_safe = true;
10001                 break;
10002
10003         case CLOCK_MONOTONIC_RAW:
10004                 event->clock = &ktime_get_raw_fast_ns;
10005                 nmi_safe = true;
10006                 break;
10007
10008         case CLOCK_REALTIME:
10009                 event->clock = &ktime_get_real_ns;
10010                 break;
10011
10012         case CLOCK_BOOTTIME:
10013                 event->clock = &ktime_get_boot_ns;
10014                 break;
10015
10016         case CLOCK_TAI:
10017                 event->clock = &ktime_get_tai_ns;
10018                 break;
10019
10020         default:
10021                 return -EINVAL;
10022         }
10023
10024         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10025                 return -EINVAL;
10026
10027         return 0;
10028 }
10029
10030 /*
10031  * Variation on perf_event_ctx_lock_nested(), except we take two context
10032  * mutexes.
10033  */
10034 static struct perf_event_context *
10035 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10036                              struct perf_event_context *ctx)
10037 {
10038         struct perf_event_context *gctx;
10039
10040 again:
10041         rcu_read_lock();
10042         gctx = READ_ONCE(group_leader->ctx);
10043         if (!atomic_inc_not_zero(&gctx->refcount)) {
10044                 rcu_read_unlock();
10045                 goto again;
10046         }
10047         rcu_read_unlock();
10048
10049         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10050
10051         if (group_leader->ctx != gctx) {
10052                 mutex_unlock(&ctx->mutex);
10053                 mutex_unlock(&gctx->mutex);
10054                 put_ctx(gctx);
10055                 goto again;
10056         }
10057
10058         return gctx;
10059 }
10060
10061 /**
10062  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10063  *
10064  * @attr_uptr:  event_id type attributes for monitoring/sampling
10065  * @pid:                target pid
10066  * @cpu:                target cpu
10067  * @group_fd:           group leader event fd
10068  */
10069 SYSCALL_DEFINE5(perf_event_open,
10070                 struct perf_event_attr __user *, attr_uptr,
10071                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10072 {
10073         struct perf_event *group_leader = NULL, *output_event = NULL;
10074         struct perf_event *event, *sibling;
10075         struct perf_event_attr attr;
10076         struct perf_event_context *ctx, *gctx;
10077         struct file *event_file = NULL;
10078         struct fd group = {NULL, 0};
10079         struct task_struct *task = NULL;
10080         struct pmu *pmu;
10081         int event_fd;
10082         int move_group = 0;
10083         int err;
10084         int f_flags = O_RDWR;
10085         int cgroup_fd = -1;
10086
10087         /* for future expandability... */
10088         if (flags & ~PERF_FLAG_ALL)
10089                 return -EINVAL;
10090
10091         err = perf_copy_attr(attr_uptr, &attr);
10092         if (err)
10093                 return err;
10094
10095         if (!attr.exclude_kernel) {
10096                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10097                         return -EACCES;
10098         }
10099
10100         if (attr.namespaces) {
10101                 if (!capable(CAP_SYS_ADMIN))
10102                         return -EACCES;
10103         }
10104
10105         if (attr.freq) {
10106                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10107                         return -EINVAL;
10108         } else {
10109                 if (attr.sample_period & (1ULL << 63))
10110                         return -EINVAL;
10111         }
10112
10113         /* Only privileged users can get physical addresses */
10114         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10115             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10116                 return -EACCES;
10117
10118         if (!attr.sample_max_stack)
10119                 attr.sample_max_stack = sysctl_perf_event_max_stack;
10120
10121         /*
10122          * In cgroup mode, the pid argument is used to pass the fd
10123          * opened to the cgroup directory in cgroupfs. The cpu argument
10124          * designates the cpu on which to monitor threads from that
10125          * cgroup.
10126          */
10127         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10128                 return -EINVAL;
10129
10130         if (flags & PERF_FLAG_FD_CLOEXEC)
10131                 f_flags |= O_CLOEXEC;
10132
10133         event_fd = get_unused_fd_flags(f_flags);
10134         if (event_fd < 0)
10135                 return event_fd;
10136
10137         if (group_fd != -1) {
10138                 err = perf_fget_light(group_fd, &group);
10139                 if (err)
10140                         goto err_fd;
10141                 group_leader = group.file->private_data;
10142                 if (flags & PERF_FLAG_FD_OUTPUT)
10143                         output_event = group_leader;
10144                 if (flags & PERF_FLAG_FD_NO_GROUP)
10145                         group_leader = NULL;
10146         }
10147
10148         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10149                 task = find_lively_task_by_vpid(pid);
10150                 if (IS_ERR(task)) {
10151                         err = PTR_ERR(task);
10152                         goto err_group_fd;
10153                 }
10154         }
10155
10156         if (task && group_leader &&
10157             group_leader->attr.inherit != attr.inherit) {
10158                 err = -EINVAL;
10159                 goto err_task;
10160         }
10161
10162         if (task) {
10163                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10164                 if (err)
10165                         goto err_task;
10166
10167                 /*
10168                  * Reuse ptrace permission checks for now.
10169                  *
10170                  * We must hold cred_guard_mutex across this and any potential
10171                  * perf_install_in_context() call for this new event to
10172                  * serialize against exec() altering our credentials (and the
10173                  * perf_event_exit_task() that could imply).
10174                  */
10175                 err = -EACCES;
10176                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10177                         goto err_cred;
10178         }
10179
10180         if (flags & PERF_FLAG_PID_CGROUP)
10181                 cgroup_fd = pid;
10182
10183         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10184                                  NULL, NULL, cgroup_fd);
10185         if (IS_ERR(event)) {
10186                 err = PTR_ERR(event);
10187                 goto err_cred;
10188         }
10189
10190         if (is_sampling_event(event)) {
10191                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10192                         err = -EOPNOTSUPP;
10193                         goto err_alloc;
10194                 }
10195         }
10196
10197         /*
10198          * Special case software events and allow them to be part of
10199          * any hardware group.
10200          */
10201         pmu = event->pmu;
10202
10203         if (attr.use_clockid) {
10204                 err = perf_event_set_clock(event, attr.clockid);
10205                 if (err)
10206                         goto err_alloc;
10207         }
10208
10209         if (pmu->task_ctx_nr == perf_sw_context)
10210                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10211
10212         if (group_leader &&
10213             (is_software_event(event) != is_software_event(group_leader))) {
10214                 if (is_software_event(event)) {
10215                         /*
10216                          * If event and group_leader are not both a software
10217                          * event, and event is, then group leader is not.
10218                          *
10219                          * Allow the addition of software events to !software
10220                          * groups, this is safe because software events never
10221                          * fail to schedule.
10222                          */
10223                         pmu = group_leader->pmu;
10224                 } else if (is_software_event(group_leader) &&
10225                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10226                         /*
10227                          * In case the group is a pure software group, and we
10228                          * try to add a hardware event, move the whole group to
10229                          * the hardware context.
10230                          */
10231                         move_group = 1;
10232                 }
10233         }
10234
10235         /*
10236          * Get the target context (task or percpu):
10237          */
10238         ctx = find_get_context(pmu, task, event);
10239         if (IS_ERR(ctx)) {
10240                 err = PTR_ERR(ctx);
10241                 goto err_alloc;
10242         }
10243
10244         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10245                 err = -EBUSY;
10246                 goto err_context;
10247         }
10248
10249         /*
10250          * Look up the group leader (we will attach this event to it):
10251          */
10252         if (group_leader) {
10253                 err = -EINVAL;
10254
10255                 /*
10256                  * Do not allow a recursive hierarchy (this new sibling
10257                  * becoming part of another group-sibling):
10258                  */
10259                 if (group_leader->group_leader != group_leader)
10260                         goto err_context;
10261
10262                 /* All events in a group should have the same clock */
10263                 if (group_leader->clock != event->clock)
10264                         goto err_context;
10265
10266                 /*
10267                  * Make sure we're both events for the same CPU;
10268                  * grouping events for different CPUs is broken; since
10269                  * you can never concurrently schedule them anyhow.
10270                  */
10271                 if (group_leader->cpu != event->cpu)
10272                         goto err_context;
10273
10274                 /*
10275                  * Make sure we're both on the same task, or both
10276                  * per-CPU events.
10277                  */
10278                 if (group_leader->ctx->task != ctx->task)
10279                         goto err_context;
10280
10281                 /*
10282                  * Do not allow to attach to a group in a different task
10283                  * or CPU context. If we're moving SW events, we'll fix
10284                  * this up later, so allow that.
10285                  *
10286                  * Racy, not holding group_leader->ctx->mutex, see comment with
10287                  * perf_event_ctx_lock().
10288                  */
10289                 if (!move_group && group_leader->ctx != ctx)
10290                         goto err_context;
10291
10292                 /*
10293                  * Only a group leader can be exclusive or pinned
10294                  */
10295                 if (attr.exclusive || attr.pinned)
10296                         goto err_context;
10297         }
10298
10299         if (output_event) {
10300                 err = perf_event_set_output(event, output_event);
10301                 if (err)
10302                         goto err_context;
10303         }
10304
10305         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10306                                         f_flags);
10307         if (IS_ERR(event_file)) {
10308                 err = PTR_ERR(event_file);
10309                 event_file = NULL;
10310                 goto err_context;
10311         }
10312
10313         if (move_group) {
10314                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10315
10316                 if (gctx->task == TASK_TOMBSTONE) {
10317                         err = -ESRCH;
10318                         goto err_locked;
10319                 }
10320
10321                 /*
10322                  * Check if we raced against another sys_perf_event_open() call
10323                  * moving the software group underneath us.
10324                  */
10325                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10326                         /*
10327                          * If someone moved the group out from under us, check
10328                          * if this new event wound up on the same ctx, if so
10329                          * its the regular !move_group case, otherwise fail.
10330                          */
10331                         if (gctx != ctx) {
10332                                 err = -EINVAL;
10333                                 goto err_locked;
10334                         } else {
10335                                 perf_event_ctx_unlock(group_leader, gctx);
10336                                 move_group = 0;
10337                                 goto not_move_group;
10338                         }
10339                 }
10340         } else {
10341                 mutex_lock(&ctx->mutex);
10342
10343                 /*
10344                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
10345                  * see the group_leader && !move_group test earlier.
10346                  */
10347                 if (group_leader && group_leader->ctx != ctx) {
10348                         err = -EINVAL;
10349                         goto err_locked;
10350                 }
10351         }
10352 not_move_group:
10353
10354         if (ctx->task == TASK_TOMBSTONE) {
10355                 err = -ESRCH;
10356                 goto err_locked;
10357         }
10358
10359         if (!perf_event_validate_size(event)) {
10360                 err = -E2BIG;
10361                 goto err_locked;
10362         }
10363
10364         if (!task) {
10365                 /*
10366                  * Check if the @cpu we're creating an event for is online.
10367                  *
10368                  * We use the perf_cpu_context::ctx::mutex to serialize against
10369                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10370                  */
10371                 struct perf_cpu_context *cpuctx =
10372                         container_of(ctx, struct perf_cpu_context, ctx);
10373
10374                 if (!cpuctx->online) {
10375                         err = -ENODEV;
10376                         goto err_locked;
10377                 }
10378         }
10379
10380
10381         /*
10382          * Must be under the same ctx::mutex as perf_install_in_context(),
10383          * because we need to serialize with concurrent event creation.
10384          */
10385         if (!exclusive_event_installable(event, ctx)) {
10386                 /* exclusive and group stuff are assumed mutually exclusive */
10387                 WARN_ON_ONCE(move_group);
10388
10389                 err = -EBUSY;
10390                 goto err_locked;
10391         }
10392
10393         WARN_ON_ONCE(ctx->parent_ctx);
10394
10395         /*
10396          * This is the point on no return; we cannot fail hereafter. This is
10397          * where we start modifying current state.
10398          */
10399
10400         if (move_group) {
10401                 /*
10402                  * See perf_event_ctx_lock() for comments on the details
10403                  * of swizzling perf_event::ctx.
10404                  */
10405                 perf_remove_from_context(group_leader, 0);
10406                 put_ctx(gctx);
10407
10408                 list_for_each_entry(sibling, &group_leader->sibling_list,
10409                                     group_entry) {
10410                         perf_remove_from_context(sibling, 0);
10411                         put_ctx(gctx);
10412                 }
10413
10414                 /*
10415                  * Wait for everybody to stop referencing the events through
10416                  * the old lists, before installing it on new lists.
10417                  */
10418                 synchronize_rcu();
10419
10420                 /*
10421                  * Install the group siblings before the group leader.
10422                  *
10423                  * Because a group leader will try and install the entire group
10424                  * (through the sibling list, which is still in-tact), we can
10425                  * end up with siblings installed in the wrong context.
10426                  *
10427                  * By installing siblings first we NO-OP because they're not
10428                  * reachable through the group lists.
10429                  */
10430                 list_for_each_entry(sibling, &group_leader->sibling_list,
10431                                     group_entry) {
10432                         perf_event__state_init(sibling);
10433                         perf_install_in_context(ctx, sibling, sibling->cpu);
10434                         get_ctx(ctx);
10435                 }
10436
10437                 /*
10438                  * Removing from the context ends up with disabled
10439                  * event. What we want here is event in the initial
10440                  * startup state, ready to be add into new context.
10441                  */
10442                 perf_event__state_init(group_leader);
10443                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10444                 get_ctx(ctx);
10445         }
10446
10447         /*
10448          * Precalculate sample_data sizes; do while holding ctx::mutex such
10449          * that we're serialized against further additions and before
10450          * perf_install_in_context() which is the point the event is active and
10451          * can use these values.
10452          */
10453         perf_event__header_size(event);
10454         perf_event__id_header_size(event);
10455
10456         event->owner = current;
10457
10458         perf_install_in_context(ctx, event, event->cpu);
10459         perf_unpin_context(ctx);
10460
10461         if (move_group)
10462                 perf_event_ctx_unlock(group_leader, gctx);
10463         mutex_unlock(&ctx->mutex);
10464
10465         if (task) {
10466                 mutex_unlock(&task->signal->cred_guard_mutex);
10467                 put_task_struct(task);
10468         }
10469
10470         mutex_lock(&current->perf_event_mutex);
10471         list_add_tail(&event->owner_entry, &current->perf_event_list);
10472         mutex_unlock(&current->perf_event_mutex);
10473
10474         /*
10475          * Drop the reference on the group_event after placing the
10476          * new event on the sibling_list. This ensures destruction
10477          * of the group leader will find the pointer to itself in
10478          * perf_group_detach().
10479          */
10480         fdput(group);
10481         fd_install(event_fd, event_file);
10482         return event_fd;
10483
10484 err_locked:
10485         if (move_group)
10486                 perf_event_ctx_unlock(group_leader, gctx);
10487         mutex_unlock(&ctx->mutex);
10488 /* err_file: */
10489         fput(event_file);
10490 err_context:
10491         perf_unpin_context(ctx);
10492         put_ctx(ctx);
10493 err_alloc:
10494         /*
10495          * If event_file is set, the fput() above will have called ->release()
10496          * and that will take care of freeing the event.
10497          */
10498         if (!event_file)
10499                 free_event(event);
10500 err_cred:
10501         if (task)
10502                 mutex_unlock(&task->signal->cred_guard_mutex);
10503 err_task:
10504         if (task)
10505                 put_task_struct(task);
10506 err_group_fd:
10507         fdput(group);
10508 err_fd:
10509         put_unused_fd(event_fd);
10510         return err;
10511 }
10512
10513 /**
10514  * perf_event_create_kernel_counter
10515  *
10516  * @attr: attributes of the counter to create
10517  * @cpu: cpu in which the counter is bound
10518  * @task: task to profile (NULL for percpu)
10519  */
10520 struct perf_event *
10521 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10522                                  struct task_struct *task,
10523                                  perf_overflow_handler_t overflow_handler,
10524                                  void *context)
10525 {
10526         struct perf_event_context *ctx;
10527         struct perf_event *event;
10528         int err;
10529
10530         /*
10531          * Get the target context (task or percpu):
10532          */
10533
10534         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10535                                  overflow_handler, context, -1);
10536         if (IS_ERR(event)) {
10537                 err = PTR_ERR(event);
10538                 goto err;
10539         }
10540
10541         /* Mark owner so we could distinguish it from user events. */
10542         event->owner = TASK_TOMBSTONE;
10543
10544         ctx = find_get_context(event->pmu, task, event);
10545         if (IS_ERR(ctx)) {
10546                 err = PTR_ERR(ctx);
10547                 goto err_free;
10548         }
10549
10550         WARN_ON_ONCE(ctx->parent_ctx);
10551         mutex_lock(&ctx->mutex);
10552         if (ctx->task == TASK_TOMBSTONE) {
10553                 err = -ESRCH;
10554                 goto err_unlock;
10555         }
10556
10557         if (!task) {
10558                 /*
10559                  * Check if the @cpu we're creating an event for is online.
10560                  *
10561                  * We use the perf_cpu_context::ctx::mutex to serialize against
10562                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10563                  */
10564                 struct perf_cpu_context *cpuctx =
10565                         container_of(ctx, struct perf_cpu_context, ctx);
10566                 if (!cpuctx->online) {
10567                         err = -ENODEV;
10568                         goto err_unlock;
10569                 }
10570         }
10571
10572         if (!exclusive_event_installable(event, ctx)) {
10573                 err = -EBUSY;
10574                 goto err_unlock;
10575         }
10576
10577         perf_install_in_context(ctx, event, event->cpu);
10578         perf_unpin_context(ctx);
10579         mutex_unlock(&ctx->mutex);
10580
10581         return event;
10582
10583 err_unlock:
10584         mutex_unlock(&ctx->mutex);
10585         perf_unpin_context(ctx);
10586         put_ctx(ctx);
10587 err_free:
10588         free_event(event);
10589 err:
10590         return ERR_PTR(err);
10591 }
10592 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10593
10594 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10595 {
10596         struct perf_event_context *src_ctx;
10597         struct perf_event_context *dst_ctx;
10598         struct perf_event *event, *tmp;
10599         LIST_HEAD(events);
10600
10601         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10602         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10603
10604         /*
10605          * See perf_event_ctx_lock() for comments on the details
10606          * of swizzling perf_event::ctx.
10607          */
10608         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10609         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10610                                  event_entry) {
10611                 perf_remove_from_context(event, 0);
10612                 unaccount_event_cpu(event, src_cpu);
10613                 put_ctx(src_ctx);
10614                 list_add(&event->migrate_entry, &events);
10615         }
10616
10617         /*
10618          * Wait for the events to quiesce before re-instating them.
10619          */
10620         synchronize_rcu();
10621
10622         /*
10623          * Re-instate events in 2 passes.
10624          *
10625          * Skip over group leaders and only install siblings on this first
10626          * pass, siblings will not get enabled without a leader, however a
10627          * leader will enable its siblings, even if those are still on the old
10628          * context.
10629          */
10630         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10631                 if (event->group_leader == event)
10632                         continue;
10633
10634                 list_del(&event->migrate_entry);
10635                 if (event->state >= PERF_EVENT_STATE_OFF)
10636                         event->state = PERF_EVENT_STATE_INACTIVE;
10637                 account_event_cpu(event, dst_cpu);
10638                 perf_install_in_context(dst_ctx, event, dst_cpu);
10639                 get_ctx(dst_ctx);
10640         }
10641
10642         /*
10643          * Once all the siblings are setup properly, install the group leaders
10644          * to make it go.
10645          */
10646         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10647                 list_del(&event->migrate_entry);
10648                 if (event->state >= PERF_EVENT_STATE_OFF)
10649                         event->state = PERF_EVENT_STATE_INACTIVE;
10650                 account_event_cpu(event, dst_cpu);
10651                 perf_install_in_context(dst_ctx, event, dst_cpu);
10652                 get_ctx(dst_ctx);
10653         }
10654         mutex_unlock(&dst_ctx->mutex);
10655         mutex_unlock(&src_ctx->mutex);
10656 }
10657 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10658
10659 static void sync_child_event(struct perf_event *child_event,
10660                                struct task_struct *child)
10661 {
10662         struct perf_event *parent_event = child_event->parent;
10663         u64 child_val;
10664
10665         if (child_event->attr.inherit_stat)
10666                 perf_event_read_event(child_event, child);
10667
10668         child_val = perf_event_count(child_event);
10669
10670         /*
10671          * Add back the child's count to the parent's count:
10672          */
10673         atomic64_add(child_val, &parent_event->child_count);
10674         atomic64_add(child_event->total_time_enabled,
10675                      &parent_event->child_total_time_enabled);
10676         atomic64_add(child_event->total_time_running,
10677                      &parent_event->child_total_time_running);
10678 }
10679
10680 static void
10681 perf_event_exit_event(struct perf_event *child_event,
10682                       struct perf_event_context *child_ctx,
10683                       struct task_struct *child)
10684 {
10685         struct perf_event *parent_event = child_event->parent;
10686
10687         /*
10688          * Do not destroy the 'original' grouping; because of the context
10689          * switch optimization the original events could've ended up in a
10690          * random child task.
10691          *
10692          * If we were to destroy the original group, all group related
10693          * operations would cease to function properly after this random
10694          * child dies.
10695          *
10696          * Do destroy all inherited groups, we don't care about those
10697          * and being thorough is better.
10698          */
10699         raw_spin_lock_irq(&child_ctx->lock);
10700         WARN_ON_ONCE(child_ctx->is_active);
10701
10702         if (parent_event)
10703                 perf_group_detach(child_event);
10704         list_del_event(child_event, child_ctx);
10705         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10706         raw_spin_unlock_irq(&child_ctx->lock);
10707
10708         /*
10709          * Parent events are governed by their filedesc, retain them.
10710          */
10711         if (!parent_event) {
10712                 perf_event_wakeup(child_event);
10713                 return;
10714         }
10715         /*
10716          * Child events can be cleaned up.
10717          */
10718
10719         sync_child_event(child_event, child);
10720
10721         /*
10722          * Remove this event from the parent's list
10723          */
10724         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10725         mutex_lock(&parent_event->child_mutex);
10726         list_del_init(&child_event->child_list);
10727         mutex_unlock(&parent_event->child_mutex);
10728
10729         /*
10730          * Kick perf_poll() for is_event_hup().
10731          */
10732         perf_event_wakeup(parent_event);
10733         free_event(child_event);
10734         put_event(parent_event);
10735 }
10736
10737 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10738 {
10739         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10740         struct perf_event *child_event, *next;
10741
10742         WARN_ON_ONCE(child != current);
10743
10744         child_ctx = perf_pin_task_context(child, ctxn);
10745         if (!child_ctx)
10746                 return;
10747
10748         /*
10749          * In order to reduce the amount of tricky in ctx tear-down, we hold
10750          * ctx::mutex over the entire thing. This serializes against almost
10751          * everything that wants to access the ctx.
10752          *
10753          * The exception is sys_perf_event_open() /
10754          * perf_event_create_kernel_count() which does find_get_context()
10755          * without ctx::mutex (it cannot because of the move_group double mutex
10756          * lock thing). See the comments in perf_install_in_context().
10757          */
10758         mutex_lock(&child_ctx->mutex);
10759
10760         /*
10761          * In a single ctx::lock section, de-schedule the events and detach the
10762          * context from the task such that we cannot ever get it scheduled back
10763          * in.
10764          */
10765         raw_spin_lock_irq(&child_ctx->lock);
10766         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10767
10768         /*
10769          * Now that the context is inactive, destroy the task <-> ctx relation
10770          * and mark the context dead.
10771          */
10772         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10773         put_ctx(child_ctx); /* cannot be last */
10774         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10775         put_task_struct(current); /* cannot be last */
10776
10777         clone_ctx = unclone_ctx(child_ctx);
10778         raw_spin_unlock_irq(&child_ctx->lock);
10779
10780         if (clone_ctx)
10781                 put_ctx(clone_ctx);
10782
10783         /*
10784          * Report the task dead after unscheduling the events so that we
10785          * won't get any samples after PERF_RECORD_EXIT. We can however still
10786          * get a few PERF_RECORD_READ events.
10787          */
10788         perf_event_task(child, child_ctx, 0);
10789
10790         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10791                 perf_event_exit_event(child_event, child_ctx, child);
10792
10793         mutex_unlock(&child_ctx->mutex);
10794
10795         put_ctx(child_ctx);
10796 }
10797
10798 /*
10799  * When a child task exits, feed back event values to parent events.
10800  *
10801  * Can be called with cred_guard_mutex held when called from
10802  * install_exec_creds().
10803  */
10804 void perf_event_exit_task(struct task_struct *child)
10805 {
10806         struct perf_event *event, *tmp;
10807         int ctxn;
10808
10809         mutex_lock(&child->perf_event_mutex);
10810         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10811                                  owner_entry) {
10812                 list_del_init(&event->owner_entry);
10813
10814                 /*
10815                  * Ensure the list deletion is visible before we clear
10816                  * the owner, closes a race against perf_release() where
10817                  * we need to serialize on the owner->perf_event_mutex.
10818                  */
10819                 smp_store_release(&event->owner, NULL);
10820         }
10821         mutex_unlock(&child->perf_event_mutex);
10822
10823         for_each_task_context_nr(ctxn)
10824                 perf_event_exit_task_context(child, ctxn);
10825
10826         /*
10827          * The perf_event_exit_task_context calls perf_event_task
10828          * with child's task_ctx, which generates EXIT events for
10829          * child contexts and sets child->perf_event_ctxp[] to NULL.
10830          * At this point we need to send EXIT events to cpu contexts.
10831          */
10832         perf_event_task(child, NULL, 0);
10833 }
10834
10835 static void perf_free_event(struct perf_event *event,
10836                             struct perf_event_context *ctx)
10837 {
10838         struct perf_event *parent = event->parent;
10839
10840         if (WARN_ON_ONCE(!parent))
10841                 return;
10842
10843         mutex_lock(&parent->child_mutex);
10844         list_del_init(&event->child_list);
10845         mutex_unlock(&parent->child_mutex);
10846
10847         put_event(parent);
10848
10849         raw_spin_lock_irq(&ctx->lock);
10850         perf_group_detach(event);
10851         list_del_event(event, ctx);
10852         raw_spin_unlock_irq(&ctx->lock);
10853         free_event(event);
10854 }
10855
10856 /*
10857  * Free an unexposed, unused context as created by inheritance by
10858  * perf_event_init_task below, used by fork() in case of fail.
10859  *
10860  * Not all locks are strictly required, but take them anyway to be nice and
10861  * help out with the lockdep assertions.
10862  */
10863 void perf_event_free_task(struct task_struct *task)
10864 {
10865         struct perf_event_context *ctx;
10866         struct perf_event *event, *tmp;
10867         int ctxn;
10868
10869         for_each_task_context_nr(ctxn) {
10870                 ctx = task->perf_event_ctxp[ctxn];
10871                 if (!ctx)
10872                         continue;
10873
10874                 mutex_lock(&ctx->mutex);
10875                 raw_spin_lock_irq(&ctx->lock);
10876                 /*
10877                  * Destroy the task <-> ctx relation and mark the context dead.
10878                  *
10879                  * This is important because even though the task hasn't been
10880                  * exposed yet the context has been (through child_list).
10881                  */
10882                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10883                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10884                 put_task_struct(task); /* cannot be last */
10885                 raw_spin_unlock_irq(&ctx->lock);
10886
10887                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10888                         perf_free_event(event, ctx);
10889
10890                 mutex_unlock(&ctx->mutex);
10891                 put_ctx(ctx);
10892         }
10893 }
10894
10895 void perf_event_delayed_put(struct task_struct *task)
10896 {
10897         int ctxn;
10898
10899         for_each_task_context_nr(ctxn)
10900                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10901 }
10902
10903 struct file *perf_event_get(unsigned int fd)
10904 {
10905         struct file *file;
10906
10907         file = fget_raw(fd);
10908         if (!file)
10909                 return ERR_PTR(-EBADF);
10910
10911         if (file->f_op != &perf_fops) {
10912                 fput(file);
10913                 return ERR_PTR(-EBADF);
10914         }
10915
10916         return file;
10917 }
10918
10919 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10920 {
10921         if (!event)
10922                 return ERR_PTR(-EINVAL);
10923
10924         return &event->attr;
10925 }
10926
10927 /*
10928  * Inherit a event from parent task to child task.
10929  *
10930  * Returns:
10931  *  - valid pointer on success
10932  *  - NULL for orphaned events
10933  *  - IS_ERR() on error
10934  */
10935 static struct perf_event *
10936 inherit_event(struct perf_event *parent_event,
10937               struct task_struct *parent,
10938               struct perf_event_context *parent_ctx,
10939               struct task_struct *child,
10940               struct perf_event *group_leader,
10941               struct perf_event_context *child_ctx)
10942 {
10943         enum perf_event_active_state parent_state = parent_event->state;
10944         struct perf_event *child_event;
10945         unsigned long flags;
10946
10947         /*
10948          * Instead of creating recursive hierarchies of events,
10949          * we link inherited events back to the original parent,
10950          * which has a filp for sure, which we use as the reference
10951          * count:
10952          */
10953         if (parent_event->parent)
10954                 parent_event = parent_event->parent;
10955
10956         child_event = perf_event_alloc(&parent_event->attr,
10957                                            parent_event->cpu,
10958                                            child,
10959                                            group_leader, parent_event,
10960                                            NULL, NULL, -1);
10961         if (IS_ERR(child_event))
10962                 return child_event;
10963
10964         /*
10965          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10966          * must be under the same lock in order to serialize against
10967          * perf_event_release_kernel(), such that either we must observe
10968          * is_orphaned_event() or they will observe us on the child_list.
10969          */
10970         mutex_lock(&parent_event->child_mutex);
10971         if (is_orphaned_event(parent_event) ||
10972             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10973                 mutex_unlock(&parent_event->child_mutex);
10974                 free_event(child_event);
10975                 return NULL;
10976         }
10977
10978         get_ctx(child_ctx);
10979
10980         /*
10981          * Make the child state follow the state of the parent event,
10982          * not its attr.disabled bit.  We hold the parent's mutex,
10983          * so we won't race with perf_event_{en, dis}able_family.
10984          */
10985         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10986                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10987         else
10988                 child_event->state = PERF_EVENT_STATE_OFF;
10989
10990         if (parent_event->attr.freq) {
10991                 u64 sample_period = parent_event->hw.sample_period;
10992                 struct hw_perf_event *hwc = &child_event->hw;
10993
10994                 hwc->sample_period = sample_period;
10995                 hwc->last_period   = sample_period;
10996
10997                 local64_set(&hwc->period_left, sample_period);
10998         }
10999
11000         child_event->ctx = child_ctx;
11001         child_event->overflow_handler = parent_event->overflow_handler;
11002         child_event->overflow_handler_context
11003                 = parent_event->overflow_handler_context;
11004
11005         /*
11006          * Precalculate sample_data sizes
11007          */
11008         perf_event__header_size(child_event);
11009         perf_event__id_header_size(child_event);
11010
11011         /*
11012          * Link it up in the child's context:
11013          */
11014         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11015         add_event_to_ctx(child_event, child_ctx);
11016         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11017
11018         /*
11019          * Link this into the parent event's child list
11020          */
11021         list_add_tail(&child_event->child_list, &parent_event->child_list);
11022         mutex_unlock(&parent_event->child_mutex);
11023
11024         return child_event;
11025 }
11026
11027 /*
11028  * Inherits an event group.
11029  *
11030  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11031  * This matches with perf_event_release_kernel() removing all child events.
11032  *
11033  * Returns:
11034  *  - 0 on success
11035  *  - <0 on error
11036  */
11037 static int inherit_group(struct perf_event *parent_event,
11038               struct task_struct *parent,
11039               struct perf_event_context *parent_ctx,
11040               struct task_struct *child,
11041               struct perf_event_context *child_ctx)
11042 {
11043         struct perf_event *leader;
11044         struct perf_event *sub;
11045         struct perf_event *child_ctr;
11046
11047         leader = inherit_event(parent_event, parent, parent_ctx,
11048                                  child, NULL, child_ctx);
11049         if (IS_ERR(leader))
11050                 return PTR_ERR(leader);
11051         /*
11052          * @leader can be NULL here because of is_orphaned_event(). In this
11053          * case inherit_event() will create individual events, similar to what
11054          * perf_group_detach() would do anyway.
11055          */
11056         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
11057                 child_ctr = inherit_event(sub, parent, parent_ctx,
11058                                             child, leader, child_ctx);
11059                 if (IS_ERR(child_ctr))
11060                         return PTR_ERR(child_ctr);
11061         }
11062         leader->group_generation = parent_event->group_generation;
11063         return 0;
11064 }
11065
11066 /*
11067  * Creates the child task context and tries to inherit the event-group.
11068  *
11069  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11070  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11071  * consistent with perf_event_release_kernel() removing all child events.
11072  *
11073  * Returns:
11074  *  - 0 on success
11075  *  - <0 on error
11076  */
11077 static int
11078 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11079                    struct perf_event_context *parent_ctx,
11080                    struct task_struct *child, int ctxn,
11081                    int *inherited_all)
11082 {
11083         int ret;
11084         struct perf_event_context *child_ctx;
11085
11086         if (!event->attr.inherit) {
11087                 *inherited_all = 0;
11088                 return 0;
11089         }
11090
11091         child_ctx = child->perf_event_ctxp[ctxn];
11092         if (!child_ctx) {
11093                 /*
11094                  * This is executed from the parent task context, so
11095                  * inherit events that have been marked for cloning.
11096                  * First allocate and initialize a context for the
11097                  * child.
11098                  */
11099                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11100                 if (!child_ctx)
11101                         return -ENOMEM;
11102
11103                 child->perf_event_ctxp[ctxn] = child_ctx;
11104         }
11105
11106         ret = inherit_group(event, parent, parent_ctx,
11107                             child, child_ctx);
11108
11109         if (ret)
11110                 *inherited_all = 0;
11111
11112         return ret;
11113 }
11114
11115 /*
11116  * Initialize the perf_event context in task_struct
11117  */
11118 static int perf_event_init_context(struct task_struct *child, int ctxn)
11119 {
11120         struct perf_event_context *child_ctx, *parent_ctx;
11121         struct perf_event_context *cloned_ctx;
11122         struct perf_event *event;
11123         struct task_struct *parent = current;
11124         int inherited_all = 1;
11125         unsigned long flags;
11126         int ret = 0;
11127
11128         if (likely(!parent->perf_event_ctxp[ctxn]))
11129                 return 0;
11130
11131         /*
11132          * If the parent's context is a clone, pin it so it won't get
11133          * swapped under us.
11134          */
11135         parent_ctx = perf_pin_task_context(parent, ctxn);
11136         if (!parent_ctx)
11137                 return 0;
11138
11139         /*
11140          * No need to check if parent_ctx != NULL here; since we saw
11141          * it non-NULL earlier, the only reason for it to become NULL
11142          * is if we exit, and since we're currently in the middle of
11143          * a fork we can't be exiting at the same time.
11144          */
11145
11146         /*
11147          * Lock the parent list. No need to lock the child - not PID
11148          * hashed yet and not running, so nobody can access it.
11149          */
11150         mutex_lock(&parent_ctx->mutex);
11151
11152         /*
11153          * We dont have to disable NMIs - we are only looking at
11154          * the list, not manipulating it:
11155          */
11156         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
11157                 ret = inherit_task_group(event, parent, parent_ctx,
11158                                          child, ctxn, &inherited_all);
11159                 if (ret)
11160                         goto out_unlock;
11161         }
11162
11163         /*
11164          * We can't hold ctx->lock when iterating the ->flexible_group list due
11165          * to allocations, but we need to prevent rotation because
11166          * rotate_ctx() will change the list from interrupt context.
11167          */
11168         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11169         parent_ctx->rotate_disable = 1;
11170         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11171
11172         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11173                 ret = inherit_task_group(event, parent, parent_ctx,
11174                                          child, ctxn, &inherited_all);
11175                 if (ret)
11176                         goto out_unlock;
11177         }
11178
11179         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11180         parent_ctx->rotate_disable = 0;
11181
11182         child_ctx = child->perf_event_ctxp[ctxn];
11183
11184         if (child_ctx && inherited_all) {
11185                 /*
11186                  * Mark the child context as a clone of the parent
11187                  * context, or of whatever the parent is a clone of.
11188                  *
11189                  * Note that if the parent is a clone, the holding of
11190                  * parent_ctx->lock avoids it from being uncloned.
11191                  */
11192                 cloned_ctx = parent_ctx->parent_ctx;
11193                 if (cloned_ctx) {
11194                         child_ctx->parent_ctx = cloned_ctx;
11195                         child_ctx->parent_gen = parent_ctx->parent_gen;
11196                 } else {
11197                         child_ctx->parent_ctx = parent_ctx;
11198                         child_ctx->parent_gen = parent_ctx->generation;
11199                 }
11200                 get_ctx(child_ctx->parent_ctx);
11201         }
11202
11203         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11204 out_unlock:
11205         mutex_unlock(&parent_ctx->mutex);
11206
11207         perf_unpin_context(parent_ctx);
11208         put_ctx(parent_ctx);
11209
11210         return ret;
11211 }
11212
11213 /*
11214  * Initialize the perf_event context in task_struct
11215  */
11216 int perf_event_init_task(struct task_struct *child)
11217 {
11218         int ctxn, ret;
11219
11220         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11221         mutex_init(&child->perf_event_mutex);
11222         INIT_LIST_HEAD(&child->perf_event_list);
11223
11224         for_each_task_context_nr(ctxn) {
11225                 ret = perf_event_init_context(child, ctxn);
11226                 if (ret) {
11227                         perf_event_free_task(child);
11228                         return ret;
11229                 }
11230         }
11231
11232         return 0;
11233 }
11234
11235 static void __init perf_event_init_all_cpus(void)
11236 {
11237         struct swevent_htable *swhash;
11238         int cpu;
11239
11240         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11241
11242         for_each_possible_cpu(cpu) {
11243                 swhash = &per_cpu(swevent_htable, cpu);
11244                 mutex_init(&swhash->hlist_mutex);
11245                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11246
11247                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11248                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11249
11250 #ifdef CONFIG_CGROUP_PERF
11251                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11252 #endif
11253                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11254         }
11255 }
11256
11257 void perf_swevent_init_cpu(unsigned int cpu)
11258 {
11259         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11260
11261         mutex_lock(&swhash->hlist_mutex);
11262         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11263                 struct swevent_hlist *hlist;
11264
11265                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11266                 WARN_ON(!hlist);
11267                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11268         }
11269         mutex_unlock(&swhash->hlist_mutex);
11270 }
11271
11272 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11273 static void __perf_event_exit_context(void *__info)
11274 {
11275         struct perf_event_context *ctx = __info;
11276         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11277         struct perf_event *event;
11278
11279         raw_spin_lock(&ctx->lock);
11280         list_for_each_entry(event, &ctx->event_list, event_entry)
11281                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11282         raw_spin_unlock(&ctx->lock);
11283 }
11284
11285 static void perf_event_exit_cpu_context(int cpu)
11286 {
11287         struct perf_cpu_context *cpuctx;
11288         struct perf_event_context *ctx;
11289         struct pmu *pmu;
11290
11291         mutex_lock(&pmus_lock);
11292         list_for_each_entry(pmu, &pmus, entry) {
11293                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11294                 ctx = &cpuctx->ctx;
11295
11296                 mutex_lock(&ctx->mutex);
11297                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11298                 cpuctx->online = 0;
11299                 mutex_unlock(&ctx->mutex);
11300         }
11301         cpumask_clear_cpu(cpu, perf_online_mask);
11302         mutex_unlock(&pmus_lock);
11303 }
11304 #else
11305
11306 static void perf_event_exit_cpu_context(int cpu) { }
11307
11308 #endif
11309
11310 int perf_event_init_cpu(unsigned int cpu)
11311 {
11312         struct perf_cpu_context *cpuctx;
11313         struct perf_event_context *ctx;
11314         struct pmu *pmu;
11315
11316         perf_swevent_init_cpu(cpu);
11317
11318         mutex_lock(&pmus_lock);
11319         cpumask_set_cpu(cpu, perf_online_mask);
11320         list_for_each_entry(pmu, &pmus, entry) {
11321                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11322                 ctx = &cpuctx->ctx;
11323
11324                 mutex_lock(&ctx->mutex);
11325                 cpuctx->online = 1;
11326                 mutex_unlock(&ctx->mutex);
11327         }
11328         mutex_unlock(&pmus_lock);
11329
11330         return 0;
11331 }
11332
11333 int perf_event_exit_cpu(unsigned int cpu)
11334 {
11335         perf_event_exit_cpu_context(cpu);
11336         return 0;
11337 }
11338
11339 static int
11340 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11341 {
11342         int cpu;
11343
11344         for_each_online_cpu(cpu)
11345                 perf_event_exit_cpu(cpu);
11346
11347         return NOTIFY_OK;
11348 }
11349
11350 /*
11351  * Run the perf reboot notifier at the very last possible moment so that
11352  * the generic watchdog code runs as long as possible.
11353  */
11354 static struct notifier_block perf_reboot_notifier = {
11355         .notifier_call = perf_reboot,
11356         .priority = INT_MIN,
11357 };
11358
11359 void __init perf_event_init(void)
11360 {
11361         int ret;
11362
11363         idr_init(&pmu_idr);
11364
11365         perf_event_init_all_cpus();
11366         init_srcu_struct(&pmus_srcu);
11367         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11368         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11369         perf_pmu_register(&perf_task_clock, NULL, -1);
11370         perf_tp_register();
11371         perf_event_init_cpu(smp_processor_id());
11372         register_reboot_notifier(&perf_reboot_notifier);
11373
11374         ret = init_hw_breakpoint();
11375         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11376
11377         /*
11378          * Build time assertion that we keep the data_head at the intended
11379          * location.  IOW, validation we got the __reserved[] size right.
11380          */
11381         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11382                      != 1024);
11383 }
11384
11385 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11386                               char *page)
11387 {
11388         struct perf_pmu_events_attr *pmu_attr =
11389                 container_of(attr, struct perf_pmu_events_attr, attr);
11390
11391         if (pmu_attr->event_str)
11392                 return sprintf(page, "%s\n", pmu_attr->event_str);
11393
11394         return 0;
11395 }
11396 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11397
11398 static int __init perf_event_sysfs_init(void)
11399 {
11400         struct pmu *pmu;
11401         int ret;
11402
11403         mutex_lock(&pmus_lock);
11404
11405         ret = bus_register(&pmu_bus);
11406         if (ret)
11407                 goto unlock;
11408
11409         list_for_each_entry(pmu, &pmus, entry) {
11410                 if (!pmu->name || pmu->type < 0)
11411                         continue;
11412
11413                 ret = pmu_dev_alloc(pmu);
11414                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11415         }
11416         pmu_bus_running = 1;
11417         ret = 0;
11418
11419 unlock:
11420         mutex_unlock(&pmus_lock);
11421
11422         return ret;
11423 }
11424 device_initcall(perf_event_sysfs_init);
11425
11426 #ifdef CONFIG_CGROUP_PERF
11427 static struct cgroup_subsys_state *
11428 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11429 {
11430         struct perf_cgroup *jc;
11431
11432         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11433         if (!jc)
11434                 return ERR_PTR(-ENOMEM);
11435
11436         jc->info = alloc_percpu(struct perf_cgroup_info);
11437         if (!jc->info) {
11438                 kfree(jc);
11439                 return ERR_PTR(-ENOMEM);
11440         }
11441
11442         return &jc->css;
11443 }
11444
11445 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11446 {
11447         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11448
11449         free_percpu(jc->info);
11450         kfree(jc);
11451 }
11452
11453 static int __perf_cgroup_move(void *info)
11454 {
11455         struct task_struct *task = info;
11456         rcu_read_lock();
11457         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11458         rcu_read_unlock();
11459         return 0;
11460 }
11461
11462 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11463 {
11464         struct task_struct *task;
11465         struct cgroup_subsys_state *css;
11466
11467         cgroup_taskset_for_each(task, css, tset)
11468                 task_function_call(task, __perf_cgroup_move, task);
11469 }
11470
11471 struct cgroup_subsys perf_event_cgrp_subsys = {
11472         .css_alloc      = perf_cgroup_css_alloc,
11473         .css_free       = perf_cgroup_css_free,
11474         .attach         = perf_cgroup_attach,
11475         /*
11476          * Implicitly enable on dfl hierarchy so that perf events can
11477          * always be filtered by cgroup2 path as long as perf_event
11478          * controller is not mounted on a legacy hierarchy.
11479          */
11480         .implicit_on_dfl = true,
11481         .threaded       = true,
11482 };
11483 #endif /* CONFIG_CGROUP_PERF */