GNU Linux-libre 4.19.211-gnu1
[releases.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 /*
592  * State based event timekeeping...
593  *
594  * The basic idea is to use event->state to determine which (if any) time
595  * fields to increment with the current delta. This means we only need to
596  * update timestamps when we change state or when they are explicitly requested
597  * (read).
598  *
599  * Event groups make things a little more complicated, but not terribly so. The
600  * rules for a group are that if the group leader is OFF the entire group is
601  * OFF, irrespecive of what the group member states are. This results in
602  * __perf_effective_state().
603  *
604  * A futher ramification is that when a group leader flips between OFF and
605  * !OFF, we need to update all group member times.
606  *
607  *
608  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
609  * need to make sure the relevant context time is updated before we try and
610  * update our timestamps.
611  */
612
613 static __always_inline enum perf_event_state
614 __perf_effective_state(struct perf_event *event)
615 {
616         struct perf_event *leader = event->group_leader;
617
618         if (leader->state <= PERF_EVENT_STATE_OFF)
619                 return leader->state;
620
621         return event->state;
622 }
623
624 static __always_inline void
625 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
626 {
627         enum perf_event_state state = __perf_effective_state(event);
628         u64 delta = now - event->tstamp;
629
630         *enabled = event->total_time_enabled;
631         if (state >= PERF_EVENT_STATE_INACTIVE)
632                 *enabled += delta;
633
634         *running = event->total_time_running;
635         if (state >= PERF_EVENT_STATE_ACTIVE)
636                 *running += delta;
637 }
638
639 static void perf_event_update_time(struct perf_event *event)
640 {
641         u64 now = perf_event_time(event);
642
643         __perf_update_times(event, now, &event->total_time_enabled,
644                                         &event->total_time_running);
645         event->tstamp = now;
646 }
647
648 static void perf_event_update_sibling_time(struct perf_event *leader)
649 {
650         struct perf_event *sibling;
651
652         for_each_sibling_event(sibling, leader)
653                 perf_event_update_time(sibling);
654 }
655
656 static void
657 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
658 {
659         if (event->state == state)
660                 return;
661
662         perf_event_update_time(event);
663         /*
664          * If a group leader gets enabled/disabled all its siblings
665          * are affected too.
666          */
667         if ((event->state < 0) ^ (state < 0))
668                 perf_event_update_sibling_time(event);
669
670         WRITE_ONCE(event->state, state);
671 }
672
673 #ifdef CONFIG_CGROUP_PERF
674
675 static inline bool
676 perf_cgroup_match(struct perf_event *event)
677 {
678         struct perf_event_context *ctx = event->ctx;
679         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
680
681         /* @event doesn't care about cgroup */
682         if (!event->cgrp)
683                 return true;
684
685         /* wants specific cgroup scope but @cpuctx isn't associated with any */
686         if (!cpuctx->cgrp)
687                 return false;
688
689         /*
690          * Cgroup scoping is recursive.  An event enabled for a cgroup is
691          * also enabled for all its descendant cgroups.  If @cpuctx's
692          * cgroup is a descendant of @event's (the test covers identity
693          * case), it's a match.
694          */
695         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
696                                     event->cgrp->css.cgroup);
697 }
698
699 static inline void perf_detach_cgroup(struct perf_event *event)
700 {
701         css_put(&event->cgrp->css);
702         event->cgrp = NULL;
703 }
704
705 static inline int is_cgroup_event(struct perf_event *event)
706 {
707         return event->cgrp != NULL;
708 }
709
710 static inline u64 perf_cgroup_event_time(struct perf_event *event)
711 {
712         struct perf_cgroup_info *t;
713
714         t = per_cpu_ptr(event->cgrp->info, event->cpu);
715         return t->time;
716 }
717
718 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
719 {
720         struct perf_cgroup_info *info;
721         u64 now;
722
723         now = perf_clock();
724
725         info = this_cpu_ptr(cgrp->info);
726
727         info->time += now - info->timestamp;
728         info->timestamp = now;
729 }
730
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733         struct perf_cgroup *cgrp = cpuctx->cgrp;
734         struct cgroup_subsys_state *css;
735
736         if (cgrp) {
737                 for (css = &cgrp->css; css; css = css->parent) {
738                         cgrp = container_of(css, struct perf_cgroup, css);
739                         __update_cgrp_time(cgrp);
740                 }
741         }
742 }
743
744 static inline void update_cgrp_time_from_event(struct perf_event *event)
745 {
746         struct perf_cgroup *cgrp;
747
748         /*
749          * ensure we access cgroup data only when needed and
750          * when we know the cgroup is pinned (css_get)
751          */
752         if (!is_cgroup_event(event))
753                 return;
754
755         cgrp = perf_cgroup_from_task(current, event->ctx);
756         /*
757          * Do not update time when cgroup is not active
758          */
759        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
760                 __update_cgrp_time(event->cgrp);
761 }
762
763 static inline void
764 perf_cgroup_set_timestamp(struct task_struct *task,
765                           struct perf_event_context *ctx)
766 {
767         struct perf_cgroup *cgrp;
768         struct perf_cgroup_info *info;
769         struct cgroup_subsys_state *css;
770
771         /*
772          * ctx->lock held by caller
773          * ensure we do not access cgroup data
774          * unless we have the cgroup pinned (css_get)
775          */
776         if (!task || !ctx->nr_cgroups)
777                 return;
778
779         cgrp = perf_cgroup_from_task(task, ctx);
780
781         for (css = &cgrp->css; css; css = css->parent) {
782                 cgrp = container_of(css, struct perf_cgroup, css);
783                 info = this_cpu_ptr(cgrp->info);
784                 info->timestamp = ctx->timestamp;
785         }
786 }
787
788 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
789
790 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
791 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
792
793 /*
794  * reschedule events based on the cgroup constraint of task.
795  *
796  * mode SWOUT : schedule out everything
797  * mode SWIN : schedule in based on cgroup for next
798  */
799 static void perf_cgroup_switch(struct task_struct *task, int mode)
800 {
801         struct perf_cpu_context *cpuctx;
802         struct list_head *list;
803         unsigned long flags;
804
805         /*
806          * Disable interrupts and preemption to avoid this CPU's
807          * cgrp_cpuctx_entry to change under us.
808          */
809         local_irq_save(flags);
810
811         list = this_cpu_ptr(&cgrp_cpuctx_list);
812         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
813                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
814
815                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
816                 perf_pmu_disable(cpuctx->ctx.pmu);
817
818                 if (mode & PERF_CGROUP_SWOUT) {
819                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
820                         /*
821                          * must not be done before ctxswout due
822                          * to event_filter_match() in event_sched_out()
823                          */
824                         cpuctx->cgrp = NULL;
825                 }
826
827                 if (mode & PERF_CGROUP_SWIN) {
828                         WARN_ON_ONCE(cpuctx->cgrp);
829                         /*
830                          * set cgrp before ctxsw in to allow
831                          * event_filter_match() to not have to pass
832                          * task around
833                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
834                          * because cgorup events are only per-cpu
835                          */
836                         cpuctx->cgrp = perf_cgroup_from_task(task,
837                                                              &cpuctx->ctx);
838                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
839                 }
840                 perf_pmu_enable(cpuctx->ctx.pmu);
841                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
842         }
843
844         local_irq_restore(flags);
845 }
846
847 static inline void perf_cgroup_sched_out(struct task_struct *task,
848                                          struct task_struct *next)
849 {
850         struct perf_cgroup *cgrp1;
851         struct perf_cgroup *cgrp2 = NULL;
852
853         rcu_read_lock();
854         /*
855          * we come here when we know perf_cgroup_events > 0
856          * we do not need to pass the ctx here because we know
857          * we are holding the rcu lock
858          */
859         cgrp1 = perf_cgroup_from_task(task, NULL);
860         cgrp2 = perf_cgroup_from_task(next, NULL);
861
862         /*
863          * only schedule out current cgroup events if we know
864          * that we are switching to a different cgroup. Otherwise,
865          * do no touch the cgroup events.
866          */
867         if (cgrp1 != cgrp2)
868                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
869
870         rcu_read_unlock();
871 }
872
873 static inline void perf_cgroup_sched_in(struct task_struct *prev,
874                                         struct task_struct *task)
875 {
876         struct perf_cgroup *cgrp1;
877         struct perf_cgroup *cgrp2 = NULL;
878
879         rcu_read_lock();
880         /*
881          * we come here when we know perf_cgroup_events > 0
882          * we do not need to pass the ctx here because we know
883          * we are holding the rcu lock
884          */
885         cgrp1 = perf_cgroup_from_task(task, NULL);
886         cgrp2 = perf_cgroup_from_task(prev, NULL);
887
888         /*
889          * only need to schedule in cgroup events if we are changing
890          * cgroup during ctxsw. Cgroup events were not scheduled
891          * out of ctxsw out if that was not the case.
892          */
893         if (cgrp1 != cgrp2)
894                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
895
896         rcu_read_unlock();
897 }
898
899 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
900                                       struct perf_event_attr *attr,
901                                       struct perf_event *group_leader)
902 {
903         struct perf_cgroup *cgrp;
904         struct cgroup_subsys_state *css;
905         struct fd f = fdget(fd);
906         int ret = 0;
907
908         if (!f.file)
909                 return -EBADF;
910
911         css = css_tryget_online_from_dir(f.file->f_path.dentry,
912                                          &perf_event_cgrp_subsys);
913         if (IS_ERR(css)) {
914                 ret = PTR_ERR(css);
915                 goto out;
916         }
917
918         cgrp = container_of(css, struct perf_cgroup, css);
919         event->cgrp = cgrp;
920
921         /*
922          * all events in a group must monitor
923          * the same cgroup because a task belongs
924          * to only one perf cgroup at a time
925          */
926         if (group_leader && group_leader->cgrp != cgrp) {
927                 perf_detach_cgroup(event);
928                 ret = -EINVAL;
929         }
930 out:
931         fdput(f);
932         return ret;
933 }
934
935 static inline void
936 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
937 {
938         struct perf_cgroup_info *t;
939         t = per_cpu_ptr(event->cgrp->info, event->cpu);
940         event->shadow_ctx_time = now - t->timestamp;
941 }
942
943 /*
944  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
945  * cleared when last cgroup event is removed.
946  */
947 static inline void
948 list_update_cgroup_event(struct perf_event *event,
949                          struct perf_event_context *ctx, bool add)
950 {
951         struct perf_cpu_context *cpuctx;
952         struct list_head *cpuctx_entry;
953
954         if (!is_cgroup_event(event))
955                 return;
956
957         /*
958          * Because cgroup events are always per-cpu events,
959          * this will always be called from the right CPU.
960          */
961         cpuctx = __get_cpu_context(ctx);
962
963         /*
964          * Since setting cpuctx->cgrp is conditional on the current @cgrp
965          * matching the event's cgroup, we must do this for every new event,
966          * because if the first would mismatch, the second would not try again
967          * and we would leave cpuctx->cgrp unset.
968          */
969         if (add && !cpuctx->cgrp) {
970                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
971
972                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
973                         cpuctx->cgrp = cgrp;
974         }
975
976         if (add && ctx->nr_cgroups++)
977                 return;
978         else if (!add && --ctx->nr_cgroups)
979                 return;
980
981         /* no cgroup running */
982         if (!add)
983                 cpuctx->cgrp = NULL;
984
985         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
986         if (add)
987                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
988         else
989                 list_del(cpuctx_entry);
990 }
991
992 #else /* !CONFIG_CGROUP_PERF */
993
994 static inline bool
995 perf_cgroup_match(struct perf_event *event)
996 {
997         return true;
998 }
999
1000 static inline void perf_detach_cgroup(struct perf_event *event)
1001 {}
1002
1003 static inline int is_cgroup_event(struct perf_event *event)
1004 {
1005         return 0;
1006 }
1007
1008 static inline void update_cgrp_time_from_event(struct perf_event *event)
1009 {
1010 }
1011
1012 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_out(struct task_struct *task,
1017                                          struct task_struct *next)
1018 {
1019 }
1020
1021 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1022                                         struct task_struct *task)
1023 {
1024 }
1025
1026 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1027                                       struct perf_event_attr *attr,
1028                                       struct perf_event *group_leader)
1029 {
1030         return -EINVAL;
1031 }
1032
1033 static inline void
1034 perf_cgroup_set_timestamp(struct task_struct *task,
1035                           struct perf_event_context *ctx)
1036 {
1037 }
1038
1039 void
1040 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1041 {
1042 }
1043
1044 static inline void
1045 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1046 {
1047 }
1048
1049 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1050 {
1051         return 0;
1052 }
1053
1054 static inline void
1055 list_update_cgroup_event(struct perf_event *event,
1056                          struct perf_event_context *ctx, bool add)
1057 {
1058 }
1059
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_context *cpuctx;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078         rotations = perf_rotate_context(cpuctx);
1079
1080         raw_spin_lock(&cpuctx->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083         else
1084                 cpuctx->hrtimer_active = 0;
1085         raw_spin_unlock(&cpuctx->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092         struct hrtimer *timer = &cpuctx->hrtimer;
1093         struct pmu *pmu = cpuctx->ctx.pmu;
1094         u64 interval;
1095
1096         /* no multiplexing needed for SW PMU */
1097         if (pmu->task_ctx_nr == perf_sw_context)
1098                 return;
1099
1100         /*
1101          * check default is sane, if not set then force to
1102          * default interval (1/tick)
1103          */
1104         interval = pmu->hrtimer_interval_ms;
1105         if (interval < 1)
1106                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107
1108         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109
1110         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1112         timer->function = perf_mux_hrtimer_handler;
1113 }
1114
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117         struct hrtimer *timer = &cpuctx->hrtimer;
1118         struct pmu *pmu = cpuctx->ctx.pmu;
1119         unsigned long flags;
1120
1121         /* not for SW PMU */
1122         if (pmu->task_ctx_nr == perf_sw_context)
1123                 return 0;
1124
1125         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126         if (!cpuctx->hrtimer_active) {
1127                 cpuctx->hrtimer_active = 1;
1128                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1130         }
1131         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132
1133         return 0;
1134 }
1135
1136 void perf_pmu_disable(struct pmu *pmu)
1137 {
1138         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1139         if (!(*count)++)
1140                 pmu->pmu_disable(pmu);
1141 }
1142
1143 void perf_pmu_enable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!--(*count))
1147                 pmu->pmu_enable(pmu);
1148 }
1149
1150 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1151
1152 /*
1153  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1154  * perf_event_task_tick() are fully serialized because they're strictly cpu
1155  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1156  * disabled, while perf_event_task_tick is called from IRQ context.
1157  */
1158 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1159 {
1160         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1161
1162         lockdep_assert_irqs_disabled();
1163
1164         WARN_ON(!list_empty(&ctx->active_ctx_list));
1165
1166         list_add(&ctx->active_ctx_list, head);
1167 }
1168
1169 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1170 {
1171         lockdep_assert_irqs_disabled();
1172
1173         WARN_ON(list_empty(&ctx->active_ctx_list));
1174
1175         list_del_init(&ctx->active_ctx_list);
1176 }
1177
1178 static void get_ctx(struct perf_event_context *ctx)
1179 {
1180         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1181 }
1182
1183 static void free_ctx(struct rcu_head *head)
1184 {
1185         struct perf_event_context *ctx;
1186
1187         ctx = container_of(head, struct perf_event_context, rcu_head);
1188         kfree(ctx->task_ctx_data);
1189         kfree(ctx);
1190 }
1191
1192 static void put_ctx(struct perf_event_context *ctx)
1193 {
1194         if (atomic_dec_and_test(&ctx->refcount)) {
1195                 if (ctx->parent_ctx)
1196                         put_ctx(ctx->parent_ctx);
1197                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1198                         put_task_struct(ctx->task);
1199                 call_rcu(&ctx->rcu_head, free_ctx);
1200         }
1201 }
1202
1203 /*
1204  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1205  * perf_pmu_migrate_context() we need some magic.
1206  *
1207  * Those places that change perf_event::ctx will hold both
1208  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1209  *
1210  * Lock ordering is by mutex address. There are two other sites where
1211  * perf_event_context::mutex nests and those are:
1212  *
1213  *  - perf_event_exit_task_context()    [ child , 0 ]
1214  *      perf_event_exit_event()
1215  *        put_event()                   [ parent, 1 ]
1216  *
1217  *  - perf_event_init_context()         [ parent, 0 ]
1218  *      inherit_task_group()
1219  *        inherit_group()
1220  *          inherit_event()
1221  *            perf_event_alloc()
1222  *              perf_init_event()
1223  *                perf_try_init_event() [ child , 1 ]
1224  *
1225  * While it appears there is an obvious deadlock here -- the parent and child
1226  * nesting levels are inverted between the two. This is in fact safe because
1227  * life-time rules separate them. That is an exiting task cannot fork, and a
1228  * spawning task cannot (yet) exit.
1229  *
1230  * But remember that that these are parent<->child context relations, and
1231  * migration does not affect children, therefore these two orderings should not
1232  * interact.
1233  *
1234  * The change in perf_event::ctx does not affect children (as claimed above)
1235  * because the sys_perf_event_open() case will install a new event and break
1236  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1237  * concerned with cpuctx and that doesn't have children.
1238  *
1239  * The places that change perf_event::ctx will issue:
1240  *
1241  *   perf_remove_from_context();
1242  *   synchronize_rcu();
1243  *   perf_install_in_context();
1244  *
1245  * to affect the change. The remove_from_context() + synchronize_rcu() should
1246  * quiesce the event, after which we can install it in the new location. This
1247  * means that only external vectors (perf_fops, prctl) can perturb the event
1248  * while in transit. Therefore all such accessors should also acquire
1249  * perf_event_context::mutex to serialize against this.
1250  *
1251  * However; because event->ctx can change while we're waiting to acquire
1252  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1253  * function.
1254  *
1255  * Lock order:
1256  *    cred_guard_mutex
1257  *      task_struct::perf_event_mutex
1258  *        perf_event_context::mutex
1259  *          perf_event::child_mutex;
1260  *            perf_event_context::lock
1261  *          perf_event::mmap_mutex
1262  *          mmap_sem
1263  *            perf_addr_filters_head::lock
1264  *
1265  *    cpu_hotplug_lock
1266  *      pmus_lock
1267  *        cpuctx->mutex / perf_event_context::mutex
1268  */
1269 static struct perf_event_context *
1270 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1271 {
1272         struct perf_event_context *ctx;
1273
1274 again:
1275         rcu_read_lock();
1276         ctx = READ_ONCE(event->ctx);
1277         if (!atomic_inc_not_zero(&ctx->refcount)) {
1278                 rcu_read_unlock();
1279                 goto again;
1280         }
1281         rcu_read_unlock();
1282
1283         mutex_lock_nested(&ctx->mutex, nesting);
1284         if (event->ctx != ctx) {
1285                 mutex_unlock(&ctx->mutex);
1286                 put_ctx(ctx);
1287                 goto again;
1288         }
1289
1290         return ctx;
1291 }
1292
1293 static inline struct perf_event_context *
1294 perf_event_ctx_lock(struct perf_event *event)
1295 {
1296         return perf_event_ctx_lock_nested(event, 0);
1297 }
1298
1299 static void perf_event_ctx_unlock(struct perf_event *event,
1300                                   struct perf_event_context *ctx)
1301 {
1302         mutex_unlock(&ctx->mutex);
1303         put_ctx(ctx);
1304 }
1305
1306 /*
1307  * This must be done under the ctx->lock, such as to serialize against
1308  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1309  * calling scheduler related locks and ctx->lock nests inside those.
1310  */
1311 static __must_check struct perf_event_context *
1312 unclone_ctx(struct perf_event_context *ctx)
1313 {
1314         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1315
1316         lockdep_assert_held(&ctx->lock);
1317
1318         if (parent_ctx)
1319                 ctx->parent_ctx = NULL;
1320         ctx->generation++;
1321
1322         return parent_ctx;
1323 }
1324
1325 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1326                                 enum pid_type type)
1327 {
1328         u32 nr;
1329         /*
1330          * only top level events have the pid namespace they were created in
1331          */
1332         if (event->parent)
1333                 event = event->parent;
1334
1335         nr = __task_pid_nr_ns(p, type, event->ns);
1336         /* avoid -1 if it is idle thread or runs in another ns */
1337         if (!nr && !pid_alive(p))
1338                 nr = -1;
1339         return nr;
1340 }
1341
1342 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1345 }
1346
1347 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1348 {
1349         return perf_event_pid_type(event, p, PIDTYPE_PID);
1350 }
1351
1352 /*
1353  * If we inherit events we want to return the parent event id
1354  * to userspace.
1355  */
1356 static u64 primary_event_id(struct perf_event *event)
1357 {
1358         u64 id = event->id;
1359
1360         if (event->parent)
1361                 id = event->parent->id;
1362
1363         return id;
1364 }
1365
1366 /*
1367  * Get the perf_event_context for a task and lock it.
1368  *
1369  * This has to cope with with the fact that until it is locked,
1370  * the context could get moved to another task.
1371  */
1372 static struct perf_event_context *
1373 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1374 {
1375         struct perf_event_context *ctx;
1376
1377 retry:
1378         /*
1379          * One of the few rules of preemptible RCU is that one cannot do
1380          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1381          * part of the read side critical section was irqs-enabled -- see
1382          * rcu_read_unlock_special().
1383          *
1384          * Since ctx->lock nests under rq->lock we must ensure the entire read
1385          * side critical section has interrupts disabled.
1386          */
1387         local_irq_save(*flags);
1388         rcu_read_lock();
1389         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1390         if (ctx) {
1391                 /*
1392                  * If this context is a clone of another, it might
1393                  * get swapped for another underneath us by
1394                  * perf_event_task_sched_out, though the
1395                  * rcu_read_lock() protects us from any context
1396                  * getting freed.  Lock the context and check if it
1397                  * got swapped before we could get the lock, and retry
1398                  * if so.  If we locked the right context, then it
1399                  * can't get swapped on us any more.
1400                  */
1401                 raw_spin_lock(&ctx->lock);
1402                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1403                         raw_spin_unlock(&ctx->lock);
1404                         rcu_read_unlock();
1405                         local_irq_restore(*flags);
1406                         goto retry;
1407                 }
1408
1409                 if (ctx->task == TASK_TOMBSTONE ||
1410                     !atomic_inc_not_zero(&ctx->refcount)) {
1411                         raw_spin_unlock(&ctx->lock);
1412                         ctx = NULL;
1413                 } else {
1414                         WARN_ON_ONCE(ctx->task != task);
1415                 }
1416         }
1417         rcu_read_unlock();
1418         if (!ctx)
1419                 local_irq_restore(*flags);
1420         return ctx;
1421 }
1422
1423 /*
1424  * Get the context for a task and increment its pin_count so it
1425  * can't get swapped to another task.  This also increments its
1426  * reference count so that the context can't get freed.
1427  */
1428 static struct perf_event_context *
1429 perf_pin_task_context(struct task_struct *task, int ctxn)
1430 {
1431         struct perf_event_context *ctx;
1432         unsigned long flags;
1433
1434         ctx = perf_lock_task_context(task, ctxn, &flags);
1435         if (ctx) {
1436                 ++ctx->pin_count;
1437                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1438         }
1439         return ctx;
1440 }
1441
1442 static void perf_unpin_context(struct perf_event_context *ctx)
1443 {
1444         unsigned long flags;
1445
1446         raw_spin_lock_irqsave(&ctx->lock, flags);
1447         --ctx->pin_count;
1448         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1449 }
1450
1451 /*
1452  * Update the record of the current time in a context.
1453  */
1454 static void update_context_time(struct perf_event_context *ctx)
1455 {
1456         u64 now = perf_clock();
1457
1458         ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460 }
1461
1462 static u64 perf_event_time(struct perf_event *event)
1463 {
1464         struct perf_event_context *ctx = event->ctx;
1465
1466         if (is_cgroup_event(event))
1467                 return perf_cgroup_event_time(event);
1468
1469         return ctx ? ctx->time : 0;
1470 }
1471
1472 static enum event_type_t get_event_type(struct perf_event *event)
1473 {
1474         struct perf_event_context *ctx = event->ctx;
1475         enum event_type_t event_type;
1476
1477         lockdep_assert_held(&ctx->lock);
1478
1479         /*
1480          * It's 'group type', really, because if our group leader is
1481          * pinned, so are we.
1482          */
1483         if (event->group_leader != event)
1484                 event = event->group_leader;
1485
1486         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1487         if (!ctx->task)
1488                 event_type |= EVENT_CPU;
1489
1490         return event_type;
1491 }
1492
1493 /*
1494  * Helper function to initialize event group nodes.
1495  */
1496 static void init_event_group(struct perf_event *event)
1497 {
1498         RB_CLEAR_NODE(&event->group_node);
1499         event->group_index = 0;
1500 }
1501
1502 /*
1503  * Extract pinned or flexible groups from the context
1504  * based on event attrs bits.
1505  */
1506 static struct perf_event_groups *
1507 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1508 {
1509         if (event->attr.pinned)
1510                 return &ctx->pinned_groups;
1511         else
1512                 return &ctx->flexible_groups;
1513 }
1514
1515 /*
1516  * Helper function to initializes perf_event_group trees.
1517  */
1518 static void perf_event_groups_init(struct perf_event_groups *groups)
1519 {
1520         groups->tree = RB_ROOT;
1521         groups->index = 0;
1522 }
1523
1524 /*
1525  * Compare function for event groups;
1526  *
1527  * Implements complex key that first sorts by CPU and then by virtual index
1528  * which provides ordering when rotating groups for the same CPU.
1529  */
1530 static bool
1531 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1532 {
1533         if (left->cpu < right->cpu)
1534                 return true;
1535         if (left->cpu > right->cpu)
1536                 return false;
1537
1538         if (left->group_index < right->group_index)
1539                 return true;
1540         if (left->group_index > right->group_index)
1541                 return false;
1542
1543         return false;
1544 }
1545
1546 /*
1547  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1548  * key (see perf_event_groups_less). This places it last inside the CPU
1549  * subtree.
1550  */
1551 static void
1552 perf_event_groups_insert(struct perf_event_groups *groups,
1553                          struct perf_event *event)
1554 {
1555         struct perf_event *node_event;
1556         struct rb_node *parent;
1557         struct rb_node **node;
1558
1559         event->group_index = ++groups->index;
1560
1561         node = &groups->tree.rb_node;
1562         parent = *node;
1563
1564         while (*node) {
1565                 parent = *node;
1566                 node_event = container_of(*node, struct perf_event, group_node);
1567
1568                 if (perf_event_groups_less(event, node_event))
1569                         node = &parent->rb_left;
1570                 else
1571                         node = &parent->rb_right;
1572         }
1573
1574         rb_link_node(&event->group_node, parent, node);
1575         rb_insert_color(&event->group_node, &groups->tree);
1576 }
1577
1578 /*
1579  * Helper function to insert event into the pinned or flexible groups.
1580  */
1581 static void
1582 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584         struct perf_event_groups *groups;
1585
1586         groups = get_event_groups(event, ctx);
1587         perf_event_groups_insert(groups, event);
1588 }
1589
1590 /*
1591  * Delete a group from a tree.
1592  */
1593 static void
1594 perf_event_groups_delete(struct perf_event_groups *groups,
1595                          struct perf_event *event)
1596 {
1597         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1598                      RB_EMPTY_ROOT(&groups->tree));
1599
1600         rb_erase(&event->group_node, &groups->tree);
1601         init_event_group(event);
1602 }
1603
1604 /*
1605  * Helper function to delete event from its groups.
1606  */
1607 static void
1608 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1609 {
1610         struct perf_event_groups *groups;
1611
1612         groups = get_event_groups(event, ctx);
1613         perf_event_groups_delete(groups, event);
1614 }
1615
1616 /*
1617  * Get the leftmost event in the @cpu subtree.
1618  */
1619 static struct perf_event *
1620 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1621 {
1622         struct perf_event *node_event = NULL, *match = NULL;
1623         struct rb_node *node = groups->tree.rb_node;
1624
1625         while (node) {
1626                 node_event = container_of(node, struct perf_event, group_node);
1627
1628                 if (cpu < node_event->cpu) {
1629                         node = node->rb_left;
1630                 } else if (cpu > node_event->cpu) {
1631                         node = node->rb_right;
1632                 } else {
1633                         match = node_event;
1634                         node = node->rb_left;
1635                 }
1636         }
1637
1638         return match;
1639 }
1640
1641 /*
1642  * Like rb_entry_next_safe() for the @cpu subtree.
1643  */
1644 static struct perf_event *
1645 perf_event_groups_next(struct perf_event *event)
1646 {
1647         struct perf_event *next;
1648
1649         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1650         if (next && next->cpu == event->cpu)
1651                 return next;
1652
1653         return NULL;
1654 }
1655
1656 /*
1657  * Iterate through the whole groups tree.
1658  */
1659 #define perf_event_groups_for_each(event, groups)                       \
1660         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1661                                 typeof(*event), group_node); event;     \
1662                 event = rb_entry_safe(rb_next(&event->group_node),      \
1663                                 typeof(*event), group_node))
1664
1665 /*
1666  * Add an event from the lists for its context.
1667  * Must be called with ctx->mutex and ctx->lock held.
1668  */
1669 static void
1670 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672         lockdep_assert_held(&ctx->lock);
1673
1674         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1675         event->attach_state |= PERF_ATTACH_CONTEXT;
1676
1677         event->tstamp = perf_event_time(event);
1678
1679         /*
1680          * If we're a stand alone event or group leader, we go to the context
1681          * list, group events are kept attached to the group so that
1682          * perf_group_detach can, at all times, locate all siblings.
1683          */
1684         if (event->group_leader == event) {
1685                 event->group_caps = event->event_caps;
1686                 add_event_to_groups(event, ctx);
1687         }
1688
1689         list_update_cgroup_event(event, ctx, true);
1690
1691         list_add_rcu(&event->event_entry, &ctx->event_list);
1692         ctx->nr_events++;
1693         if (event->attr.inherit_stat)
1694                 ctx->nr_stat++;
1695
1696         ctx->generation++;
1697 }
1698
1699 /*
1700  * Initialize event state based on the perf_event_attr::disabled.
1701  */
1702 static inline void perf_event__state_init(struct perf_event *event)
1703 {
1704         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1705                                               PERF_EVENT_STATE_INACTIVE;
1706 }
1707
1708 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1709 {
1710         int entry = sizeof(u64); /* value */
1711         int size = 0;
1712         int nr = 1;
1713
1714         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1715                 size += sizeof(u64);
1716
1717         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1718                 size += sizeof(u64);
1719
1720         if (event->attr.read_format & PERF_FORMAT_ID)
1721                 entry += sizeof(u64);
1722
1723         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1724                 nr += nr_siblings;
1725                 size += sizeof(u64);
1726         }
1727
1728         size += entry * nr;
1729         event->read_size = size;
1730 }
1731
1732 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1733 {
1734         struct perf_sample_data *data;
1735         u16 size = 0;
1736
1737         if (sample_type & PERF_SAMPLE_IP)
1738                 size += sizeof(data->ip);
1739
1740         if (sample_type & PERF_SAMPLE_ADDR)
1741                 size += sizeof(data->addr);
1742
1743         if (sample_type & PERF_SAMPLE_PERIOD)
1744                 size += sizeof(data->period);
1745
1746         if (sample_type & PERF_SAMPLE_WEIGHT)
1747                 size += sizeof(data->weight);
1748
1749         if (sample_type & PERF_SAMPLE_READ)
1750                 size += event->read_size;
1751
1752         if (sample_type & PERF_SAMPLE_DATA_SRC)
1753                 size += sizeof(data->data_src.val);
1754
1755         if (sample_type & PERF_SAMPLE_TRANSACTION)
1756                 size += sizeof(data->txn);
1757
1758         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1759                 size += sizeof(data->phys_addr);
1760
1761         event->header_size = size;
1762 }
1763
1764 /*
1765  * Called at perf_event creation and when events are attached/detached from a
1766  * group.
1767  */
1768 static void perf_event__header_size(struct perf_event *event)
1769 {
1770         __perf_event_read_size(event,
1771                                event->group_leader->nr_siblings);
1772         __perf_event_header_size(event, event->attr.sample_type);
1773 }
1774
1775 static void perf_event__id_header_size(struct perf_event *event)
1776 {
1777         struct perf_sample_data *data;
1778         u64 sample_type = event->attr.sample_type;
1779         u16 size = 0;
1780
1781         if (sample_type & PERF_SAMPLE_TID)
1782                 size += sizeof(data->tid_entry);
1783
1784         if (sample_type & PERF_SAMPLE_TIME)
1785                 size += sizeof(data->time);
1786
1787         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1788                 size += sizeof(data->id);
1789
1790         if (sample_type & PERF_SAMPLE_ID)
1791                 size += sizeof(data->id);
1792
1793         if (sample_type & PERF_SAMPLE_STREAM_ID)
1794                 size += sizeof(data->stream_id);
1795
1796         if (sample_type & PERF_SAMPLE_CPU)
1797                 size += sizeof(data->cpu_entry);
1798
1799         event->id_header_size = size;
1800 }
1801
1802 static bool perf_event_validate_size(struct perf_event *event)
1803 {
1804         /*
1805          * The values computed here will be over-written when we actually
1806          * attach the event.
1807          */
1808         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1809         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1810         perf_event__id_header_size(event);
1811
1812         /*
1813          * Sum the lot; should not exceed the 64k limit we have on records.
1814          * Conservative limit to allow for callchains and other variable fields.
1815          */
1816         if (event->read_size + event->header_size +
1817             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1818                 return false;
1819
1820         return true;
1821 }
1822
1823 static void perf_group_attach(struct perf_event *event)
1824 {
1825         struct perf_event *group_leader = event->group_leader, *pos;
1826
1827         lockdep_assert_held(&event->ctx->lock);
1828
1829         /*
1830          * We can have double attach due to group movement in perf_event_open.
1831          */
1832         if (event->attach_state & PERF_ATTACH_GROUP)
1833                 return;
1834
1835         event->attach_state |= PERF_ATTACH_GROUP;
1836
1837         if (group_leader == event)
1838                 return;
1839
1840         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1841
1842         group_leader->group_caps &= event->event_caps;
1843
1844         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1845         group_leader->nr_siblings++;
1846
1847         perf_event__header_size(group_leader);
1848
1849         for_each_sibling_event(pos, group_leader)
1850                 perf_event__header_size(pos);
1851 }
1852
1853 /*
1854  * Remove an event from the lists for its context.
1855  * Must be called with ctx->mutex and ctx->lock held.
1856  */
1857 static void
1858 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1859 {
1860         WARN_ON_ONCE(event->ctx != ctx);
1861         lockdep_assert_held(&ctx->lock);
1862
1863         /*
1864          * We can have double detach due to exit/hot-unplug + close.
1865          */
1866         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1867                 return;
1868
1869         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1870
1871         list_update_cgroup_event(event, ctx, false);
1872
1873         ctx->nr_events--;
1874         if (event->attr.inherit_stat)
1875                 ctx->nr_stat--;
1876
1877         list_del_rcu(&event->event_entry);
1878
1879         if (event->group_leader == event)
1880                 del_event_from_groups(event, ctx);
1881
1882         /*
1883          * If event was in error state, then keep it
1884          * that way, otherwise bogus counts will be
1885          * returned on read(). The only way to get out
1886          * of error state is by explicit re-enabling
1887          * of the event
1888          */
1889         if (event->state > PERF_EVENT_STATE_OFF)
1890                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1891
1892         ctx->generation++;
1893 }
1894
1895 static void perf_group_detach(struct perf_event *event)
1896 {
1897         struct perf_event *sibling, *tmp;
1898         struct perf_event_context *ctx = event->ctx;
1899
1900         lockdep_assert_held(&ctx->lock);
1901
1902         /*
1903          * We can have double detach due to exit/hot-unplug + close.
1904          */
1905         if (!(event->attach_state & PERF_ATTACH_GROUP))
1906                 return;
1907
1908         event->attach_state &= ~PERF_ATTACH_GROUP;
1909
1910         /*
1911          * If this is a sibling, remove it from its group.
1912          */
1913         if (event->group_leader != event) {
1914                 list_del_init(&event->sibling_list);
1915                 event->group_leader->nr_siblings--;
1916                 goto out;
1917         }
1918
1919         /*
1920          * If this was a group event with sibling events then
1921          * upgrade the siblings to singleton events by adding them
1922          * to whatever list we are on.
1923          */
1924         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1925
1926                 sibling->group_leader = sibling;
1927                 list_del_init(&sibling->sibling_list);
1928
1929                 /* Inherit group flags from the previous leader */
1930                 sibling->group_caps = event->group_caps;
1931
1932                 if (!RB_EMPTY_NODE(&event->group_node)) {
1933                         add_event_to_groups(sibling, event->ctx);
1934
1935                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1936                                 struct list_head *list = sibling->attr.pinned ?
1937                                         &ctx->pinned_active : &ctx->flexible_active;
1938
1939                                 list_add_tail(&sibling->active_list, list);
1940                         }
1941                 }
1942
1943                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1944         }
1945
1946 out:
1947         perf_event__header_size(event->group_leader);
1948
1949         for_each_sibling_event(tmp, event->group_leader)
1950                 perf_event__header_size(tmp);
1951 }
1952
1953 static bool is_orphaned_event(struct perf_event *event)
1954 {
1955         return event->state == PERF_EVENT_STATE_DEAD;
1956 }
1957
1958 static inline int __pmu_filter_match(struct perf_event *event)
1959 {
1960         struct pmu *pmu = event->pmu;
1961         return pmu->filter_match ? pmu->filter_match(event) : 1;
1962 }
1963
1964 /*
1965  * Check whether we should attempt to schedule an event group based on
1966  * PMU-specific filtering. An event group can consist of HW and SW events,
1967  * potentially with a SW leader, so we must check all the filters, to
1968  * determine whether a group is schedulable:
1969  */
1970 static inline int pmu_filter_match(struct perf_event *event)
1971 {
1972         struct perf_event *sibling;
1973
1974         if (!__pmu_filter_match(event))
1975                 return 0;
1976
1977         for_each_sibling_event(sibling, event) {
1978                 if (!__pmu_filter_match(sibling))
1979                         return 0;
1980         }
1981
1982         return 1;
1983 }
1984
1985 static inline int
1986 event_filter_match(struct perf_event *event)
1987 {
1988         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1989                perf_cgroup_match(event) && pmu_filter_match(event);
1990 }
1991
1992 static void
1993 event_sched_out(struct perf_event *event,
1994                   struct perf_cpu_context *cpuctx,
1995                   struct perf_event_context *ctx)
1996 {
1997         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1998
1999         WARN_ON_ONCE(event->ctx != ctx);
2000         lockdep_assert_held(&ctx->lock);
2001
2002         if (event->state != PERF_EVENT_STATE_ACTIVE)
2003                 return;
2004
2005         /*
2006          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2007          * we can schedule events _OUT_ individually through things like
2008          * __perf_remove_from_context().
2009          */
2010         list_del_init(&event->active_list);
2011
2012         perf_pmu_disable(event->pmu);
2013
2014         event->pmu->del(event, 0);
2015         event->oncpu = -1;
2016
2017         if (READ_ONCE(event->pending_disable) >= 0) {
2018                 WRITE_ONCE(event->pending_disable, -1);
2019                 state = PERF_EVENT_STATE_OFF;
2020         }
2021         perf_event_set_state(event, state);
2022
2023         if (!is_software_event(event))
2024                 cpuctx->active_oncpu--;
2025         if (!--ctx->nr_active)
2026                 perf_event_ctx_deactivate(ctx);
2027         if (event->attr.freq && event->attr.sample_freq)
2028                 ctx->nr_freq--;
2029         if (event->attr.exclusive || !cpuctx->active_oncpu)
2030                 cpuctx->exclusive = 0;
2031
2032         perf_pmu_enable(event->pmu);
2033 }
2034
2035 static void
2036 group_sched_out(struct perf_event *group_event,
2037                 struct perf_cpu_context *cpuctx,
2038                 struct perf_event_context *ctx)
2039 {
2040         struct perf_event *event;
2041
2042         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2043                 return;
2044
2045         perf_pmu_disable(ctx->pmu);
2046
2047         event_sched_out(group_event, cpuctx, ctx);
2048
2049         /*
2050          * Schedule out siblings (if any):
2051          */
2052         for_each_sibling_event(event, group_event)
2053                 event_sched_out(event, cpuctx, ctx);
2054
2055         perf_pmu_enable(ctx->pmu);
2056
2057         if (group_event->attr.exclusive)
2058                 cpuctx->exclusive = 0;
2059 }
2060
2061 #define DETACH_GROUP    0x01UL
2062
2063 /*
2064  * Cross CPU call to remove a performance event
2065  *
2066  * We disable the event on the hardware level first. After that we
2067  * remove it from the context list.
2068  */
2069 static void
2070 __perf_remove_from_context(struct perf_event *event,
2071                            struct perf_cpu_context *cpuctx,
2072                            struct perf_event_context *ctx,
2073                            void *info)
2074 {
2075         unsigned long flags = (unsigned long)info;
2076
2077         if (ctx->is_active & EVENT_TIME) {
2078                 update_context_time(ctx);
2079                 update_cgrp_time_from_cpuctx(cpuctx);
2080         }
2081
2082         event_sched_out(event, cpuctx, ctx);
2083         if (flags & DETACH_GROUP)
2084                 perf_group_detach(event);
2085         list_del_event(event, ctx);
2086
2087         if (!ctx->nr_events && ctx->is_active) {
2088                 ctx->is_active = 0;
2089                 ctx->rotate_necessary = 0;
2090                 if (ctx->task) {
2091                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2092                         cpuctx->task_ctx = NULL;
2093                 }
2094         }
2095 }
2096
2097 /*
2098  * Remove the event from a task's (or a CPU's) list of events.
2099  *
2100  * If event->ctx is a cloned context, callers must make sure that
2101  * every task struct that event->ctx->task could possibly point to
2102  * remains valid.  This is OK when called from perf_release since
2103  * that only calls us on the top-level context, which can't be a clone.
2104  * When called from perf_event_exit_task, it's OK because the
2105  * context has been detached from its task.
2106  */
2107 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2108 {
2109         struct perf_event_context *ctx = event->ctx;
2110
2111         lockdep_assert_held(&ctx->mutex);
2112
2113         event_function_call(event, __perf_remove_from_context, (void *)flags);
2114
2115         /*
2116          * The above event_function_call() can NO-OP when it hits
2117          * TASK_TOMBSTONE. In that case we must already have been detached
2118          * from the context (by perf_event_exit_event()) but the grouping
2119          * might still be in-tact.
2120          */
2121         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2122         if ((flags & DETACH_GROUP) &&
2123             (event->attach_state & PERF_ATTACH_GROUP)) {
2124                 /*
2125                  * Since in that case we cannot possibly be scheduled, simply
2126                  * detach now.
2127                  */
2128                 raw_spin_lock_irq(&ctx->lock);
2129                 perf_group_detach(event);
2130                 raw_spin_unlock_irq(&ctx->lock);
2131         }
2132 }
2133
2134 /*
2135  * Cross CPU call to disable a performance event
2136  */
2137 static void __perf_event_disable(struct perf_event *event,
2138                                  struct perf_cpu_context *cpuctx,
2139                                  struct perf_event_context *ctx,
2140                                  void *info)
2141 {
2142         if (event->state < PERF_EVENT_STATE_INACTIVE)
2143                 return;
2144
2145         if (ctx->is_active & EVENT_TIME) {
2146                 update_context_time(ctx);
2147                 update_cgrp_time_from_event(event);
2148         }
2149
2150         if (event == event->group_leader)
2151                 group_sched_out(event, cpuctx, ctx);
2152         else
2153                 event_sched_out(event, cpuctx, ctx);
2154
2155         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2156 }
2157
2158 /*
2159  * Disable an event.
2160  *
2161  * If event->ctx is a cloned context, callers must make sure that
2162  * every task struct that event->ctx->task could possibly point to
2163  * remains valid.  This condition is satisifed when called through
2164  * perf_event_for_each_child or perf_event_for_each because they
2165  * hold the top-level event's child_mutex, so any descendant that
2166  * goes to exit will block in perf_event_exit_event().
2167  *
2168  * When called from perf_pending_event it's OK because event->ctx
2169  * is the current context on this CPU and preemption is disabled,
2170  * hence we can't get into perf_event_task_sched_out for this context.
2171  */
2172 static void _perf_event_disable(struct perf_event *event)
2173 {
2174         struct perf_event_context *ctx = event->ctx;
2175
2176         raw_spin_lock_irq(&ctx->lock);
2177         if (event->state <= PERF_EVENT_STATE_OFF) {
2178                 raw_spin_unlock_irq(&ctx->lock);
2179                 return;
2180         }
2181         raw_spin_unlock_irq(&ctx->lock);
2182
2183         event_function_call(event, __perf_event_disable, NULL);
2184 }
2185
2186 void perf_event_disable_local(struct perf_event *event)
2187 {
2188         event_function_local(event, __perf_event_disable, NULL);
2189 }
2190
2191 /*
2192  * Strictly speaking kernel users cannot create groups and therefore this
2193  * interface does not need the perf_event_ctx_lock() magic.
2194  */
2195 void perf_event_disable(struct perf_event *event)
2196 {
2197         struct perf_event_context *ctx;
2198
2199         ctx = perf_event_ctx_lock(event);
2200         _perf_event_disable(event);
2201         perf_event_ctx_unlock(event, ctx);
2202 }
2203 EXPORT_SYMBOL_GPL(perf_event_disable);
2204
2205 void perf_event_disable_inatomic(struct perf_event *event)
2206 {
2207         WRITE_ONCE(event->pending_disable, smp_processor_id());
2208         /* can fail, see perf_pending_event_disable() */
2209         irq_work_queue(&event->pending);
2210 }
2211
2212 static void perf_set_shadow_time(struct perf_event *event,
2213                                  struct perf_event_context *ctx)
2214 {
2215         /*
2216          * use the correct time source for the time snapshot
2217          *
2218          * We could get by without this by leveraging the
2219          * fact that to get to this function, the caller
2220          * has most likely already called update_context_time()
2221          * and update_cgrp_time_xx() and thus both timestamp
2222          * are identical (or very close). Given that tstamp is,
2223          * already adjusted for cgroup, we could say that:
2224          *    tstamp - ctx->timestamp
2225          * is equivalent to
2226          *    tstamp - cgrp->timestamp.
2227          *
2228          * Then, in perf_output_read(), the calculation would
2229          * work with no changes because:
2230          * - event is guaranteed scheduled in
2231          * - no scheduled out in between
2232          * - thus the timestamp would be the same
2233          *
2234          * But this is a bit hairy.
2235          *
2236          * So instead, we have an explicit cgroup call to remain
2237          * within the time time source all along. We believe it
2238          * is cleaner and simpler to understand.
2239          */
2240         if (is_cgroup_event(event))
2241                 perf_cgroup_set_shadow_time(event, event->tstamp);
2242         else
2243                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2244 }
2245
2246 #define MAX_INTERRUPTS (~0ULL)
2247
2248 static void perf_log_throttle(struct perf_event *event, int enable);
2249 static void perf_log_itrace_start(struct perf_event *event);
2250
2251 static int
2252 event_sched_in(struct perf_event *event,
2253                  struct perf_cpu_context *cpuctx,
2254                  struct perf_event_context *ctx)
2255 {
2256         int ret = 0;
2257
2258         lockdep_assert_held(&ctx->lock);
2259
2260         if (event->state <= PERF_EVENT_STATE_OFF)
2261                 return 0;
2262
2263         WRITE_ONCE(event->oncpu, smp_processor_id());
2264         /*
2265          * Order event::oncpu write to happen before the ACTIVE state is
2266          * visible. This allows perf_event_{stop,read}() to observe the correct
2267          * ->oncpu if it sees ACTIVE.
2268          */
2269         smp_wmb();
2270         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2271
2272         /*
2273          * Unthrottle events, since we scheduled we might have missed several
2274          * ticks already, also for a heavily scheduling task there is little
2275          * guarantee it'll get a tick in a timely manner.
2276          */
2277         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2278                 perf_log_throttle(event, 1);
2279                 event->hw.interrupts = 0;
2280         }
2281
2282         perf_pmu_disable(event->pmu);
2283
2284         perf_set_shadow_time(event, ctx);
2285
2286         perf_log_itrace_start(event);
2287
2288         if (event->pmu->add(event, PERF_EF_START)) {
2289                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2290                 event->oncpu = -1;
2291                 ret = -EAGAIN;
2292                 goto out;
2293         }
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu++;
2297         if (!ctx->nr_active++)
2298                 perf_event_ctx_activate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq++;
2301
2302         if (event->attr.exclusive)
2303                 cpuctx->exclusive = 1;
2304
2305 out:
2306         perf_pmu_enable(event->pmu);
2307
2308         return ret;
2309 }
2310
2311 static int
2312 group_sched_in(struct perf_event *group_event,
2313                struct perf_cpu_context *cpuctx,
2314                struct perf_event_context *ctx)
2315 {
2316         struct perf_event *event, *partial_group = NULL;
2317         struct pmu *pmu = ctx->pmu;
2318
2319         if (group_event->state == PERF_EVENT_STATE_OFF)
2320                 return 0;
2321
2322         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2323
2324         if (event_sched_in(group_event, cpuctx, ctx)) {
2325                 pmu->cancel_txn(pmu);
2326                 perf_mux_hrtimer_restart(cpuctx);
2327                 return -EAGAIN;
2328         }
2329
2330         /*
2331          * Schedule in siblings as one group (if any):
2332          */
2333         for_each_sibling_event(event, group_event) {
2334                 if (event_sched_in(event, cpuctx, ctx)) {
2335                         partial_group = event;
2336                         goto group_error;
2337                 }
2338         }
2339
2340         if (!pmu->commit_txn(pmu))
2341                 return 0;
2342
2343 group_error:
2344         /*
2345          * Groups can be scheduled in as one unit only, so undo any
2346          * partial group before returning:
2347          * The events up to the failed event are scheduled out normally.
2348          */
2349         for_each_sibling_event(event, group_event) {
2350                 if (event == partial_group)
2351                         break;
2352
2353                 event_sched_out(event, cpuctx, ctx);
2354         }
2355         event_sched_out(group_event, cpuctx, ctx);
2356
2357         pmu->cancel_txn(pmu);
2358
2359         perf_mux_hrtimer_restart(cpuctx);
2360
2361         return -EAGAIN;
2362 }
2363
2364 /*
2365  * Work out whether we can put this event group on the CPU now.
2366  */
2367 static int group_can_go_on(struct perf_event *event,
2368                            struct perf_cpu_context *cpuctx,
2369                            int can_add_hw)
2370 {
2371         /*
2372          * Groups consisting entirely of software events can always go on.
2373          */
2374         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2375                 return 1;
2376         /*
2377          * If an exclusive group is already on, no other hardware
2378          * events can go on.
2379          */
2380         if (cpuctx->exclusive)
2381                 return 0;
2382         /*
2383          * If this group is exclusive and there are already
2384          * events on the CPU, it can't go on.
2385          */
2386         if (event->attr.exclusive && cpuctx->active_oncpu)
2387                 return 0;
2388         /*
2389          * Otherwise, try to add it if all previous groups were able
2390          * to go on.
2391          */
2392         return can_add_hw;
2393 }
2394
2395 static void add_event_to_ctx(struct perf_event *event,
2396                                struct perf_event_context *ctx)
2397 {
2398         list_add_event(event, ctx);
2399         perf_group_attach(event);
2400 }
2401
2402 static void ctx_sched_out(struct perf_event_context *ctx,
2403                           struct perf_cpu_context *cpuctx,
2404                           enum event_type_t event_type);
2405 static void
2406 ctx_sched_in(struct perf_event_context *ctx,
2407              struct perf_cpu_context *cpuctx,
2408              enum event_type_t event_type,
2409              struct task_struct *task);
2410
2411 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2412                                struct perf_event_context *ctx,
2413                                enum event_type_t event_type)
2414 {
2415         if (!cpuctx->task_ctx)
2416                 return;
2417
2418         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2419                 return;
2420
2421         ctx_sched_out(ctx, cpuctx, event_type);
2422 }
2423
2424 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2425                                 struct perf_event_context *ctx,
2426                                 struct task_struct *task)
2427 {
2428         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2429         if (ctx)
2430                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2431         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2432         if (ctx)
2433                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2434 }
2435
2436 /*
2437  * We want to maintain the following priority of scheduling:
2438  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2439  *  - task pinned (EVENT_PINNED)
2440  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2441  *  - task flexible (EVENT_FLEXIBLE).
2442  *
2443  * In order to avoid unscheduling and scheduling back in everything every
2444  * time an event is added, only do it for the groups of equal priority and
2445  * below.
2446  *
2447  * This can be called after a batch operation on task events, in which case
2448  * event_type is a bit mask of the types of events involved. For CPU events,
2449  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2450  */
2451 static void ctx_resched(struct perf_cpu_context *cpuctx,
2452                         struct perf_event_context *task_ctx,
2453                         enum event_type_t event_type)
2454 {
2455         enum event_type_t ctx_event_type;
2456         bool cpu_event = !!(event_type & EVENT_CPU);
2457
2458         /*
2459          * If pinned groups are involved, flexible groups also need to be
2460          * scheduled out.
2461          */
2462         if (event_type & EVENT_PINNED)
2463                 event_type |= EVENT_FLEXIBLE;
2464
2465         ctx_event_type = event_type & EVENT_ALL;
2466
2467         perf_pmu_disable(cpuctx->ctx.pmu);
2468         if (task_ctx)
2469                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2470
2471         /*
2472          * Decide which cpu ctx groups to schedule out based on the types
2473          * of events that caused rescheduling:
2474          *  - EVENT_CPU: schedule out corresponding groups;
2475          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2476          *  - otherwise, do nothing more.
2477          */
2478         if (cpu_event)
2479                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2480         else if (ctx_event_type & EVENT_PINNED)
2481                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2482
2483         perf_event_sched_in(cpuctx, task_ctx, current);
2484         perf_pmu_enable(cpuctx->ctx.pmu);
2485 }
2486
2487 /*
2488  * Cross CPU call to install and enable a performance event
2489  *
2490  * Very similar to remote_function() + event_function() but cannot assume that
2491  * things like ctx->is_active and cpuctx->task_ctx are set.
2492  */
2493 static int  __perf_install_in_context(void *info)
2494 {
2495         struct perf_event *event = info;
2496         struct perf_event_context *ctx = event->ctx;
2497         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2498         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2499         bool reprogram = true;
2500         int ret = 0;
2501
2502         raw_spin_lock(&cpuctx->ctx.lock);
2503         if (ctx->task) {
2504                 raw_spin_lock(&ctx->lock);
2505                 task_ctx = ctx;
2506
2507                 reprogram = (ctx->task == current);
2508
2509                 /*
2510                  * If the task is running, it must be running on this CPU,
2511                  * otherwise we cannot reprogram things.
2512                  *
2513                  * If its not running, we don't care, ctx->lock will
2514                  * serialize against it becoming runnable.
2515                  */
2516                 if (task_curr(ctx->task) && !reprogram) {
2517                         ret = -ESRCH;
2518                         goto unlock;
2519                 }
2520
2521                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2522         } else if (task_ctx) {
2523                 raw_spin_lock(&task_ctx->lock);
2524         }
2525
2526 #ifdef CONFIG_CGROUP_PERF
2527         if (is_cgroup_event(event)) {
2528                 /*
2529                  * If the current cgroup doesn't match the event's
2530                  * cgroup, we should not try to schedule it.
2531                  */
2532                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2533                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2534                                         event->cgrp->css.cgroup);
2535         }
2536 #endif
2537
2538         if (reprogram) {
2539                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2540                 add_event_to_ctx(event, ctx);
2541                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2542         } else {
2543                 add_event_to_ctx(event, ctx);
2544         }
2545
2546 unlock:
2547         perf_ctx_unlock(cpuctx, task_ctx);
2548
2549         return ret;
2550 }
2551
2552 static bool exclusive_event_installable(struct perf_event *event,
2553                                         struct perf_event_context *ctx);
2554
2555 /*
2556  * Attach a performance event to a context.
2557  *
2558  * Very similar to event_function_call, see comment there.
2559  */
2560 static void
2561 perf_install_in_context(struct perf_event_context *ctx,
2562                         struct perf_event *event,
2563                         int cpu)
2564 {
2565         struct task_struct *task = READ_ONCE(ctx->task);
2566
2567         lockdep_assert_held(&ctx->mutex);
2568
2569         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2570
2571         if (event->cpu != -1)
2572                 event->cpu = cpu;
2573
2574         /*
2575          * Ensures that if we can observe event->ctx, both the event and ctx
2576          * will be 'complete'. See perf_iterate_sb_cpu().
2577          */
2578         smp_store_release(&event->ctx, ctx);
2579
2580         if (!task) {
2581                 cpu_function_call(cpu, __perf_install_in_context, event);
2582                 return;
2583         }
2584
2585         /*
2586          * Should not happen, we validate the ctx is still alive before calling.
2587          */
2588         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2589                 return;
2590
2591         /*
2592          * Installing events is tricky because we cannot rely on ctx->is_active
2593          * to be set in case this is the nr_events 0 -> 1 transition.
2594          *
2595          * Instead we use task_curr(), which tells us if the task is running.
2596          * However, since we use task_curr() outside of rq::lock, we can race
2597          * against the actual state. This means the result can be wrong.
2598          *
2599          * If we get a false positive, we retry, this is harmless.
2600          *
2601          * If we get a false negative, things are complicated. If we are after
2602          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2603          * value must be correct. If we're before, it doesn't matter since
2604          * perf_event_context_sched_in() will program the counter.
2605          *
2606          * However, this hinges on the remote context switch having observed
2607          * our task->perf_event_ctxp[] store, such that it will in fact take
2608          * ctx::lock in perf_event_context_sched_in().
2609          *
2610          * We do this by task_function_call(), if the IPI fails to hit the task
2611          * we know any future context switch of task must see the
2612          * perf_event_ctpx[] store.
2613          */
2614
2615         /*
2616          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2617          * task_cpu() load, such that if the IPI then does not find the task
2618          * running, a future context switch of that task must observe the
2619          * store.
2620          */
2621         smp_mb();
2622 again:
2623         if (!task_function_call(task, __perf_install_in_context, event))
2624                 return;
2625
2626         raw_spin_lock_irq(&ctx->lock);
2627         task = ctx->task;
2628         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2629                 /*
2630                  * Cannot happen because we already checked above (which also
2631                  * cannot happen), and we hold ctx->mutex, which serializes us
2632                  * against perf_event_exit_task_context().
2633                  */
2634                 raw_spin_unlock_irq(&ctx->lock);
2635                 return;
2636         }
2637         /*
2638          * If the task is not running, ctx->lock will avoid it becoming so,
2639          * thus we can safely install the event.
2640          */
2641         if (task_curr(task)) {
2642                 raw_spin_unlock_irq(&ctx->lock);
2643                 goto again;
2644         }
2645         add_event_to_ctx(event, ctx);
2646         raw_spin_unlock_irq(&ctx->lock);
2647 }
2648
2649 /*
2650  * Cross CPU call to enable a performance event
2651  */
2652 static void __perf_event_enable(struct perf_event *event,
2653                                 struct perf_cpu_context *cpuctx,
2654                                 struct perf_event_context *ctx,
2655                                 void *info)
2656 {
2657         struct perf_event *leader = event->group_leader;
2658         struct perf_event_context *task_ctx;
2659
2660         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2661             event->state <= PERF_EVENT_STATE_ERROR)
2662                 return;
2663
2664         if (ctx->is_active)
2665                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2666
2667         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2668
2669         if (!ctx->is_active)
2670                 return;
2671
2672         if (!event_filter_match(event)) {
2673                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2674                 return;
2675         }
2676
2677         /*
2678          * If the event is in a group and isn't the group leader,
2679          * then don't put it on unless the group is on.
2680          */
2681         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2682                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2683                 return;
2684         }
2685
2686         task_ctx = cpuctx->task_ctx;
2687         if (ctx->task)
2688                 WARN_ON_ONCE(task_ctx != ctx);
2689
2690         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2691 }
2692
2693 /*
2694  * Enable an event.
2695  *
2696  * If event->ctx is a cloned context, callers must make sure that
2697  * every task struct that event->ctx->task could possibly point to
2698  * remains valid.  This condition is satisfied when called through
2699  * perf_event_for_each_child or perf_event_for_each as described
2700  * for perf_event_disable.
2701  */
2702 static void _perf_event_enable(struct perf_event *event)
2703 {
2704         struct perf_event_context *ctx = event->ctx;
2705
2706         raw_spin_lock_irq(&ctx->lock);
2707         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2708             event->state <  PERF_EVENT_STATE_ERROR) {
2709                 raw_spin_unlock_irq(&ctx->lock);
2710                 return;
2711         }
2712
2713         /*
2714          * If the event is in error state, clear that first.
2715          *
2716          * That way, if we see the event in error state below, we know that it
2717          * has gone back into error state, as distinct from the task having
2718          * been scheduled away before the cross-call arrived.
2719          */
2720         if (event->state == PERF_EVENT_STATE_ERROR)
2721                 event->state = PERF_EVENT_STATE_OFF;
2722         raw_spin_unlock_irq(&ctx->lock);
2723
2724         event_function_call(event, __perf_event_enable, NULL);
2725 }
2726
2727 /*
2728  * See perf_event_disable();
2729  */
2730 void perf_event_enable(struct perf_event *event)
2731 {
2732         struct perf_event_context *ctx;
2733
2734         ctx = perf_event_ctx_lock(event);
2735         _perf_event_enable(event);
2736         perf_event_ctx_unlock(event, ctx);
2737 }
2738 EXPORT_SYMBOL_GPL(perf_event_enable);
2739
2740 struct stop_event_data {
2741         struct perf_event       *event;
2742         unsigned int            restart;
2743 };
2744
2745 static int __perf_event_stop(void *info)
2746 {
2747         struct stop_event_data *sd = info;
2748         struct perf_event *event = sd->event;
2749
2750         /* if it's already INACTIVE, do nothing */
2751         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2752                 return 0;
2753
2754         /* matches smp_wmb() in event_sched_in() */
2755         smp_rmb();
2756
2757         /*
2758          * There is a window with interrupts enabled before we get here,
2759          * so we need to check again lest we try to stop another CPU's event.
2760          */
2761         if (READ_ONCE(event->oncpu) != smp_processor_id())
2762                 return -EAGAIN;
2763
2764         event->pmu->stop(event, PERF_EF_UPDATE);
2765
2766         /*
2767          * May race with the actual stop (through perf_pmu_output_stop()),
2768          * but it is only used for events with AUX ring buffer, and such
2769          * events will refuse to restart because of rb::aux_mmap_count==0,
2770          * see comments in perf_aux_output_begin().
2771          *
2772          * Since this is happening on an event-local CPU, no trace is lost
2773          * while restarting.
2774          */
2775         if (sd->restart)
2776                 event->pmu->start(event, 0);
2777
2778         return 0;
2779 }
2780
2781 static int perf_event_stop(struct perf_event *event, int restart)
2782 {
2783         struct stop_event_data sd = {
2784                 .event          = event,
2785                 .restart        = restart,
2786         };
2787         int ret = 0;
2788
2789         do {
2790                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2791                         return 0;
2792
2793                 /* matches smp_wmb() in event_sched_in() */
2794                 smp_rmb();
2795
2796                 /*
2797                  * We only want to restart ACTIVE events, so if the event goes
2798                  * inactive here (event->oncpu==-1), there's nothing more to do;
2799                  * fall through with ret==-ENXIO.
2800                  */
2801                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2802                                         __perf_event_stop, &sd);
2803         } while (ret == -EAGAIN);
2804
2805         return ret;
2806 }
2807
2808 /*
2809  * In order to contain the amount of racy and tricky in the address filter
2810  * configuration management, it is a two part process:
2811  *
2812  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2813  *      we update the addresses of corresponding vmas in
2814  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2815  * (p2) when an event is scheduled in (pmu::add), it calls
2816  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2817  *      if the generation has changed since the previous call.
2818  *
2819  * If (p1) happens while the event is active, we restart it to force (p2).
2820  *
2821  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2822  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2823  *     ioctl;
2824  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2825  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2826  *     for reading;
2827  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2828  *     of exec.
2829  */
2830 void perf_event_addr_filters_sync(struct perf_event *event)
2831 {
2832         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2833
2834         if (!has_addr_filter(event))
2835                 return;
2836
2837         raw_spin_lock(&ifh->lock);
2838         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2839                 event->pmu->addr_filters_sync(event);
2840                 event->hw.addr_filters_gen = event->addr_filters_gen;
2841         }
2842         raw_spin_unlock(&ifh->lock);
2843 }
2844 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2845
2846 static int _perf_event_refresh(struct perf_event *event, int refresh)
2847 {
2848         /*
2849          * not supported on inherited events
2850          */
2851         if (event->attr.inherit || !is_sampling_event(event))
2852                 return -EINVAL;
2853
2854         atomic_add(refresh, &event->event_limit);
2855         _perf_event_enable(event);
2856
2857         return 0;
2858 }
2859
2860 /*
2861  * See perf_event_disable()
2862  */
2863 int perf_event_refresh(struct perf_event *event, int refresh)
2864 {
2865         struct perf_event_context *ctx;
2866         int ret;
2867
2868         ctx = perf_event_ctx_lock(event);
2869         ret = _perf_event_refresh(event, refresh);
2870         perf_event_ctx_unlock(event, ctx);
2871
2872         return ret;
2873 }
2874 EXPORT_SYMBOL_GPL(perf_event_refresh);
2875
2876 static int perf_event_modify_breakpoint(struct perf_event *bp,
2877                                          struct perf_event_attr *attr)
2878 {
2879         int err;
2880
2881         _perf_event_disable(bp);
2882
2883         err = modify_user_hw_breakpoint_check(bp, attr, true);
2884
2885         if (!bp->attr.disabled)
2886                 _perf_event_enable(bp);
2887
2888         return err;
2889 }
2890
2891 static int perf_event_modify_attr(struct perf_event *event,
2892                                   struct perf_event_attr *attr)
2893 {
2894         if (event->attr.type != attr->type)
2895                 return -EINVAL;
2896
2897         switch (event->attr.type) {
2898         case PERF_TYPE_BREAKPOINT:
2899                 return perf_event_modify_breakpoint(event, attr);
2900         default:
2901                 /* Place holder for future additions. */
2902                 return -EOPNOTSUPP;
2903         }
2904 }
2905
2906 static void ctx_sched_out(struct perf_event_context *ctx,
2907                           struct perf_cpu_context *cpuctx,
2908                           enum event_type_t event_type)
2909 {
2910         struct perf_event *event, *tmp;
2911         int is_active = ctx->is_active;
2912
2913         lockdep_assert_held(&ctx->lock);
2914
2915         if (likely(!ctx->nr_events)) {
2916                 /*
2917                  * See __perf_remove_from_context().
2918                  */
2919                 WARN_ON_ONCE(ctx->is_active);
2920                 if (ctx->task)
2921                         WARN_ON_ONCE(cpuctx->task_ctx);
2922                 return;
2923         }
2924
2925         ctx->is_active &= ~event_type;
2926         if (!(ctx->is_active & EVENT_ALL))
2927                 ctx->is_active = 0;
2928
2929         if (ctx->task) {
2930                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2931                 if (!ctx->is_active)
2932                         cpuctx->task_ctx = NULL;
2933         }
2934
2935         /*
2936          * Always update time if it was set; not only when it changes.
2937          * Otherwise we can 'forget' to update time for any but the last
2938          * context we sched out. For example:
2939          *
2940          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2941          *   ctx_sched_out(.event_type = EVENT_PINNED)
2942          *
2943          * would only update time for the pinned events.
2944          */
2945         if (is_active & EVENT_TIME) {
2946                 /* update (and stop) ctx time */
2947                 update_context_time(ctx);
2948                 update_cgrp_time_from_cpuctx(cpuctx);
2949         }
2950
2951         is_active ^= ctx->is_active; /* changed bits */
2952
2953         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2954                 return;
2955
2956         perf_pmu_disable(ctx->pmu);
2957         if (is_active & EVENT_PINNED) {
2958                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2959                         group_sched_out(event, cpuctx, ctx);
2960         }
2961
2962         if (is_active & EVENT_FLEXIBLE) {
2963                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2964                         group_sched_out(event, cpuctx, ctx);
2965
2966                 /*
2967                  * Since we cleared EVENT_FLEXIBLE, also clear
2968                  * rotate_necessary, is will be reset by
2969                  * ctx_flexible_sched_in() when needed.
2970                  */
2971                 ctx->rotate_necessary = 0;
2972         }
2973         perf_pmu_enable(ctx->pmu);
2974 }
2975
2976 /*
2977  * Test whether two contexts are equivalent, i.e. whether they have both been
2978  * cloned from the same version of the same context.
2979  *
2980  * Equivalence is measured using a generation number in the context that is
2981  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2982  * and list_del_event().
2983  */
2984 static int context_equiv(struct perf_event_context *ctx1,
2985                          struct perf_event_context *ctx2)
2986 {
2987         lockdep_assert_held(&ctx1->lock);
2988         lockdep_assert_held(&ctx2->lock);
2989
2990         /* Pinning disables the swap optimization */
2991         if (ctx1->pin_count || ctx2->pin_count)
2992                 return 0;
2993
2994         /* If ctx1 is the parent of ctx2 */
2995         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2996                 return 1;
2997
2998         /* If ctx2 is the parent of ctx1 */
2999         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3000                 return 1;
3001
3002         /*
3003          * If ctx1 and ctx2 have the same parent; we flatten the parent
3004          * hierarchy, see perf_event_init_context().
3005          */
3006         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3007                         ctx1->parent_gen == ctx2->parent_gen)
3008                 return 1;
3009
3010         /* Unmatched */
3011         return 0;
3012 }
3013
3014 static void __perf_event_sync_stat(struct perf_event *event,
3015                                      struct perf_event *next_event)
3016 {
3017         u64 value;
3018
3019         if (!event->attr.inherit_stat)
3020                 return;
3021
3022         /*
3023          * Update the event value, we cannot use perf_event_read()
3024          * because we're in the middle of a context switch and have IRQs
3025          * disabled, which upsets smp_call_function_single(), however
3026          * we know the event must be on the current CPU, therefore we
3027          * don't need to use it.
3028          */
3029         if (event->state == PERF_EVENT_STATE_ACTIVE)
3030                 event->pmu->read(event);
3031
3032         perf_event_update_time(event);
3033
3034         /*
3035          * In order to keep per-task stats reliable we need to flip the event
3036          * values when we flip the contexts.
3037          */
3038         value = local64_read(&next_event->count);
3039         value = local64_xchg(&event->count, value);
3040         local64_set(&next_event->count, value);
3041
3042         swap(event->total_time_enabled, next_event->total_time_enabled);
3043         swap(event->total_time_running, next_event->total_time_running);
3044
3045         /*
3046          * Since we swizzled the values, update the user visible data too.
3047          */
3048         perf_event_update_userpage(event);
3049         perf_event_update_userpage(next_event);
3050 }
3051
3052 static void perf_event_sync_stat(struct perf_event_context *ctx,
3053                                    struct perf_event_context *next_ctx)
3054 {
3055         struct perf_event *event, *next_event;
3056
3057         if (!ctx->nr_stat)
3058                 return;
3059
3060         update_context_time(ctx);
3061
3062         event = list_first_entry(&ctx->event_list,
3063                                    struct perf_event, event_entry);
3064
3065         next_event = list_first_entry(&next_ctx->event_list,
3066                                         struct perf_event, event_entry);
3067
3068         while (&event->event_entry != &ctx->event_list &&
3069                &next_event->event_entry != &next_ctx->event_list) {
3070
3071                 __perf_event_sync_stat(event, next_event);
3072
3073                 event = list_next_entry(event, event_entry);
3074                 next_event = list_next_entry(next_event, event_entry);
3075         }
3076 }
3077
3078 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3079                                          struct task_struct *next)
3080 {
3081         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3082         struct perf_event_context *next_ctx;
3083         struct perf_event_context *parent, *next_parent;
3084         struct perf_cpu_context *cpuctx;
3085         int do_switch = 1;
3086
3087         if (likely(!ctx))
3088                 return;
3089
3090         cpuctx = __get_cpu_context(ctx);
3091         if (!cpuctx->task_ctx)
3092                 return;
3093
3094         rcu_read_lock();
3095         next_ctx = next->perf_event_ctxp[ctxn];
3096         if (!next_ctx)
3097                 goto unlock;
3098
3099         parent = rcu_dereference(ctx->parent_ctx);
3100         next_parent = rcu_dereference(next_ctx->parent_ctx);
3101
3102         /* If neither context have a parent context; they cannot be clones. */
3103         if (!parent && !next_parent)
3104                 goto unlock;
3105
3106         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3107                 /*
3108                  * Looks like the two contexts are clones, so we might be
3109                  * able to optimize the context switch.  We lock both
3110                  * contexts and check that they are clones under the
3111                  * lock (including re-checking that neither has been
3112                  * uncloned in the meantime).  It doesn't matter which
3113                  * order we take the locks because no other cpu could
3114                  * be trying to lock both of these tasks.
3115                  */
3116                 raw_spin_lock(&ctx->lock);
3117                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3118                 if (context_equiv(ctx, next_ctx)) {
3119                         WRITE_ONCE(ctx->task, next);
3120                         WRITE_ONCE(next_ctx->task, task);
3121
3122                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3123
3124                         /*
3125                          * RCU_INIT_POINTER here is safe because we've not
3126                          * modified the ctx and the above modification of
3127                          * ctx->task and ctx->task_ctx_data are immaterial
3128                          * since those values are always verified under
3129                          * ctx->lock which we're now holding.
3130                          */
3131                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3132                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3133
3134                         do_switch = 0;
3135
3136                         perf_event_sync_stat(ctx, next_ctx);
3137                 }
3138                 raw_spin_unlock(&next_ctx->lock);
3139                 raw_spin_unlock(&ctx->lock);
3140         }
3141 unlock:
3142         rcu_read_unlock();
3143
3144         if (do_switch) {
3145                 raw_spin_lock(&ctx->lock);
3146                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3147                 raw_spin_unlock(&ctx->lock);
3148         }
3149 }
3150
3151 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3152
3153 void perf_sched_cb_dec(struct pmu *pmu)
3154 {
3155         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3156
3157         this_cpu_dec(perf_sched_cb_usages);
3158
3159         if (!--cpuctx->sched_cb_usage)
3160                 list_del(&cpuctx->sched_cb_entry);
3161 }
3162
3163
3164 void perf_sched_cb_inc(struct pmu *pmu)
3165 {
3166         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3167
3168         if (!cpuctx->sched_cb_usage++)
3169                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3170
3171         this_cpu_inc(perf_sched_cb_usages);
3172 }
3173
3174 /*
3175  * This function provides the context switch callback to the lower code
3176  * layer. It is invoked ONLY when the context switch callback is enabled.
3177  *
3178  * This callback is relevant even to per-cpu events; for example multi event
3179  * PEBS requires this to provide PID/TID information. This requires we flush
3180  * all queued PEBS records before we context switch to a new task.
3181  */
3182 static void perf_pmu_sched_task(struct task_struct *prev,
3183                                 struct task_struct *next,
3184                                 bool sched_in)
3185 {
3186         struct perf_cpu_context *cpuctx;
3187         struct pmu *pmu;
3188
3189         if (prev == next)
3190                 return;
3191
3192         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3193                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3194
3195                 if (WARN_ON_ONCE(!pmu->sched_task))
3196                         continue;
3197
3198                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3199                 perf_pmu_disable(pmu);
3200
3201                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3202
3203                 perf_pmu_enable(pmu);
3204                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3205         }
3206 }
3207
3208 static void perf_event_switch(struct task_struct *task,
3209                               struct task_struct *next_prev, bool sched_in);
3210
3211 #define for_each_task_context_nr(ctxn)                                  \
3212         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3213
3214 /*
3215  * Called from scheduler to remove the events of the current task,
3216  * with interrupts disabled.
3217  *
3218  * We stop each event and update the event value in event->count.
3219  *
3220  * This does not protect us against NMI, but disable()
3221  * sets the disabled bit in the control field of event _before_
3222  * accessing the event control register. If a NMI hits, then it will
3223  * not restart the event.
3224  */
3225 void __perf_event_task_sched_out(struct task_struct *task,
3226                                  struct task_struct *next)
3227 {
3228         int ctxn;
3229
3230         if (__this_cpu_read(perf_sched_cb_usages))
3231                 perf_pmu_sched_task(task, next, false);
3232
3233         if (atomic_read(&nr_switch_events))
3234                 perf_event_switch(task, next, false);
3235
3236         for_each_task_context_nr(ctxn)
3237                 perf_event_context_sched_out(task, ctxn, next);
3238
3239         /*
3240          * if cgroup events exist on this CPU, then we need
3241          * to check if we have to switch out PMU state.
3242          * cgroup event are system-wide mode only
3243          */
3244         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3245                 perf_cgroup_sched_out(task, next);
3246 }
3247
3248 /*
3249  * Called with IRQs disabled
3250  */
3251 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3252                               enum event_type_t event_type)
3253 {
3254         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3255 }
3256
3257 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3258                               int (*func)(struct perf_event *, void *), void *data)
3259 {
3260         struct perf_event **evt, *evt1, *evt2;
3261         int ret;
3262
3263         evt1 = perf_event_groups_first(groups, -1);
3264         evt2 = perf_event_groups_first(groups, cpu);
3265
3266         while (evt1 || evt2) {
3267                 if (evt1 && evt2) {
3268                         if (evt1->group_index < evt2->group_index)
3269                                 evt = &evt1;
3270                         else
3271                                 evt = &evt2;
3272                 } else if (evt1) {
3273                         evt = &evt1;
3274                 } else {
3275                         evt = &evt2;
3276                 }
3277
3278                 ret = func(*evt, data);
3279                 if (ret)
3280                         return ret;
3281
3282                 *evt = perf_event_groups_next(*evt);
3283         }
3284
3285         return 0;
3286 }
3287
3288 struct sched_in_data {
3289         struct perf_event_context *ctx;
3290         struct perf_cpu_context *cpuctx;
3291         int can_add_hw;
3292 };
3293
3294 static int pinned_sched_in(struct perf_event *event, void *data)
3295 {
3296         struct sched_in_data *sid = data;
3297
3298         if (event->state <= PERF_EVENT_STATE_OFF)
3299                 return 0;
3300
3301         if (!event_filter_match(event))
3302                 return 0;
3303
3304         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3305                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3306                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3307         }
3308
3309         /*
3310          * If this pinned group hasn't been scheduled,
3311          * put it in error state.
3312          */
3313         if (event->state == PERF_EVENT_STATE_INACTIVE)
3314                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3315
3316         return 0;
3317 }
3318
3319 static int flexible_sched_in(struct perf_event *event, void *data)
3320 {
3321         struct sched_in_data *sid = data;
3322
3323         if (event->state <= PERF_EVENT_STATE_OFF)
3324                 return 0;
3325
3326         if (!event_filter_match(event))
3327                 return 0;
3328
3329         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3330                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3331                 if (ret) {
3332                         sid->can_add_hw = 0;
3333                         sid->ctx->rotate_necessary = 1;
3334                         return 0;
3335                 }
3336                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3337         }
3338
3339         return 0;
3340 }
3341
3342 static void
3343 ctx_pinned_sched_in(struct perf_event_context *ctx,
3344                     struct perf_cpu_context *cpuctx)
3345 {
3346         struct sched_in_data sid = {
3347                 .ctx = ctx,
3348                 .cpuctx = cpuctx,
3349                 .can_add_hw = 1,
3350         };
3351
3352         visit_groups_merge(&ctx->pinned_groups,
3353                            smp_processor_id(),
3354                            pinned_sched_in, &sid);
3355 }
3356
3357 static void
3358 ctx_flexible_sched_in(struct perf_event_context *ctx,
3359                       struct perf_cpu_context *cpuctx)
3360 {
3361         struct sched_in_data sid = {
3362                 .ctx = ctx,
3363                 .cpuctx = cpuctx,
3364                 .can_add_hw = 1,
3365         };
3366
3367         visit_groups_merge(&ctx->flexible_groups,
3368                            smp_processor_id(),
3369                            flexible_sched_in, &sid);
3370 }
3371
3372 static void
3373 ctx_sched_in(struct perf_event_context *ctx,
3374              struct perf_cpu_context *cpuctx,
3375              enum event_type_t event_type,
3376              struct task_struct *task)
3377 {
3378         int is_active = ctx->is_active;
3379         u64 now;
3380
3381         lockdep_assert_held(&ctx->lock);
3382
3383         if (likely(!ctx->nr_events))
3384                 return;
3385
3386         ctx->is_active |= (event_type | EVENT_TIME);
3387         if (ctx->task) {
3388                 if (!is_active)
3389                         cpuctx->task_ctx = ctx;
3390                 else
3391                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3392         }
3393
3394         is_active ^= ctx->is_active; /* changed bits */
3395
3396         if (is_active & EVENT_TIME) {
3397                 /* start ctx time */
3398                 now = perf_clock();
3399                 ctx->timestamp = now;
3400                 perf_cgroup_set_timestamp(task, ctx);
3401         }
3402
3403         /*
3404          * First go through the list and put on any pinned groups
3405          * in order to give them the best chance of going on.
3406          */
3407         if (is_active & EVENT_PINNED)
3408                 ctx_pinned_sched_in(ctx, cpuctx);
3409
3410         /* Then walk through the lower prio flexible groups */
3411         if (is_active & EVENT_FLEXIBLE)
3412                 ctx_flexible_sched_in(ctx, cpuctx);
3413 }
3414
3415 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3416                              enum event_type_t event_type,
3417                              struct task_struct *task)
3418 {
3419         struct perf_event_context *ctx = &cpuctx->ctx;
3420
3421         ctx_sched_in(ctx, cpuctx, event_type, task);
3422 }
3423
3424 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3425                                         struct task_struct *task)
3426 {
3427         struct perf_cpu_context *cpuctx;
3428
3429         cpuctx = __get_cpu_context(ctx);
3430         if (cpuctx->task_ctx == ctx)
3431                 return;
3432
3433         perf_ctx_lock(cpuctx, ctx);
3434         /*
3435          * We must check ctx->nr_events while holding ctx->lock, such
3436          * that we serialize against perf_install_in_context().
3437          */
3438         if (!ctx->nr_events)
3439                 goto unlock;
3440
3441         perf_pmu_disable(ctx->pmu);
3442         /*
3443          * We want to keep the following priority order:
3444          * cpu pinned (that don't need to move), task pinned,
3445          * cpu flexible, task flexible.
3446          *
3447          * However, if task's ctx is not carrying any pinned
3448          * events, no need to flip the cpuctx's events around.
3449          */
3450         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3451                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3452         perf_event_sched_in(cpuctx, ctx, task);
3453         perf_pmu_enable(ctx->pmu);
3454
3455 unlock:
3456         perf_ctx_unlock(cpuctx, ctx);
3457 }
3458
3459 /*
3460  * Called from scheduler to add the events of the current task
3461  * with interrupts disabled.
3462  *
3463  * We restore the event value and then enable it.
3464  *
3465  * This does not protect us against NMI, but enable()
3466  * sets the enabled bit in the control field of event _before_
3467  * accessing the event control register. If a NMI hits, then it will
3468  * keep the event running.
3469  */
3470 void __perf_event_task_sched_in(struct task_struct *prev,
3471                                 struct task_struct *task)
3472 {
3473         struct perf_event_context *ctx;
3474         int ctxn;
3475
3476         /*
3477          * If cgroup events exist on this CPU, then we need to check if we have
3478          * to switch in PMU state; cgroup event are system-wide mode only.
3479          *
3480          * Since cgroup events are CPU events, we must schedule these in before
3481          * we schedule in the task events.
3482          */
3483         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3484                 perf_cgroup_sched_in(prev, task);
3485
3486         for_each_task_context_nr(ctxn) {
3487                 ctx = task->perf_event_ctxp[ctxn];
3488                 if (likely(!ctx))
3489                         continue;
3490
3491                 perf_event_context_sched_in(ctx, task);
3492         }
3493
3494         if (atomic_read(&nr_switch_events))
3495                 perf_event_switch(task, prev, true);
3496
3497         if (__this_cpu_read(perf_sched_cb_usages))
3498                 perf_pmu_sched_task(prev, task, true);
3499 }
3500
3501 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3502 {
3503         u64 frequency = event->attr.sample_freq;
3504         u64 sec = NSEC_PER_SEC;
3505         u64 divisor, dividend;
3506
3507         int count_fls, nsec_fls, frequency_fls, sec_fls;
3508
3509         count_fls = fls64(count);
3510         nsec_fls = fls64(nsec);
3511         frequency_fls = fls64(frequency);
3512         sec_fls = 30;
3513
3514         /*
3515          * We got @count in @nsec, with a target of sample_freq HZ
3516          * the target period becomes:
3517          *
3518          *             @count * 10^9
3519          * period = -------------------
3520          *          @nsec * sample_freq
3521          *
3522          */
3523
3524         /*
3525          * Reduce accuracy by one bit such that @a and @b converge
3526          * to a similar magnitude.
3527          */
3528 #define REDUCE_FLS(a, b)                \
3529 do {                                    \
3530         if (a##_fls > b##_fls) {        \
3531                 a >>= 1;                \
3532                 a##_fls--;              \
3533         } else {                        \
3534                 b >>= 1;                \
3535                 b##_fls--;              \
3536         }                               \
3537 } while (0)
3538
3539         /*
3540          * Reduce accuracy until either term fits in a u64, then proceed with
3541          * the other, so that finally we can do a u64/u64 division.
3542          */
3543         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3544                 REDUCE_FLS(nsec, frequency);
3545                 REDUCE_FLS(sec, count);
3546         }
3547
3548         if (count_fls + sec_fls > 64) {
3549                 divisor = nsec * frequency;
3550
3551                 while (count_fls + sec_fls > 64) {
3552                         REDUCE_FLS(count, sec);
3553                         divisor >>= 1;
3554                 }
3555
3556                 dividend = count * sec;
3557         } else {
3558                 dividend = count * sec;
3559
3560                 while (nsec_fls + frequency_fls > 64) {
3561                         REDUCE_FLS(nsec, frequency);
3562                         dividend >>= 1;
3563                 }
3564
3565                 divisor = nsec * frequency;
3566         }
3567
3568         if (!divisor)
3569                 return dividend;
3570
3571         return div64_u64(dividend, divisor);
3572 }
3573
3574 static DEFINE_PER_CPU(int, perf_throttled_count);
3575 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3576
3577 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3578 {
3579         struct hw_perf_event *hwc = &event->hw;
3580         s64 period, sample_period;
3581         s64 delta;
3582
3583         period = perf_calculate_period(event, nsec, count);
3584
3585         delta = (s64)(period - hwc->sample_period);
3586         delta = (delta + 7) / 8; /* low pass filter */
3587
3588         sample_period = hwc->sample_period + delta;
3589
3590         if (!sample_period)
3591                 sample_period = 1;
3592
3593         hwc->sample_period = sample_period;
3594
3595         if (local64_read(&hwc->period_left) > 8*sample_period) {
3596                 if (disable)
3597                         event->pmu->stop(event, PERF_EF_UPDATE);
3598
3599                 local64_set(&hwc->period_left, 0);
3600
3601                 if (disable)
3602                         event->pmu->start(event, PERF_EF_RELOAD);
3603         }
3604 }
3605
3606 /*
3607  * combine freq adjustment with unthrottling to avoid two passes over the
3608  * events. At the same time, make sure, having freq events does not change
3609  * the rate of unthrottling as that would introduce bias.
3610  */
3611 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3612                                            int needs_unthr)
3613 {
3614         struct perf_event *event;
3615         struct hw_perf_event *hwc;
3616         u64 now, period = TICK_NSEC;
3617         s64 delta;
3618
3619         /*
3620          * only need to iterate over all events iff:
3621          * - context have events in frequency mode (needs freq adjust)
3622          * - there are events to unthrottle on this cpu
3623          */
3624         if (!(ctx->nr_freq || needs_unthr))
3625                 return;
3626
3627         raw_spin_lock(&ctx->lock);
3628         perf_pmu_disable(ctx->pmu);
3629
3630         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3631                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3632                         continue;
3633
3634                 if (!event_filter_match(event))
3635                         continue;
3636
3637                 perf_pmu_disable(event->pmu);
3638
3639                 hwc = &event->hw;
3640
3641                 if (hwc->interrupts == MAX_INTERRUPTS) {
3642                         hwc->interrupts = 0;
3643                         perf_log_throttle(event, 1);
3644                         event->pmu->start(event, 0);
3645                 }
3646
3647                 if (!event->attr.freq || !event->attr.sample_freq)
3648                         goto next;
3649
3650                 /*
3651                  * stop the event and update event->count
3652                  */
3653                 event->pmu->stop(event, PERF_EF_UPDATE);
3654
3655                 now = local64_read(&event->count);
3656                 delta = now - hwc->freq_count_stamp;
3657                 hwc->freq_count_stamp = now;
3658
3659                 /*
3660                  * restart the event
3661                  * reload only if value has changed
3662                  * we have stopped the event so tell that
3663                  * to perf_adjust_period() to avoid stopping it
3664                  * twice.
3665                  */
3666                 if (delta > 0)
3667                         perf_adjust_period(event, period, delta, false);
3668
3669                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3670         next:
3671                 perf_pmu_enable(event->pmu);
3672         }
3673
3674         perf_pmu_enable(ctx->pmu);
3675         raw_spin_unlock(&ctx->lock);
3676 }
3677
3678 /*
3679  * Move @event to the tail of the @ctx's elegible events.
3680  */
3681 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3682 {
3683         /*
3684          * Rotate the first entry last of non-pinned groups. Rotation might be
3685          * disabled by the inheritance code.
3686          */
3687         if (ctx->rotate_disable)
3688                 return;
3689
3690         perf_event_groups_delete(&ctx->flexible_groups, event);
3691         perf_event_groups_insert(&ctx->flexible_groups, event);
3692 }
3693
3694 /* pick an event from the flexible_groups to rotate */
3695 static inline struct perf_event *
3696 ctx_event_to_rotate(struct perf_event_context *ctx)
3697 {
3698         struct perf_event *event;
3699
3700         /* pick the first active flexible event */
3701         event = list_first_entry_or_null(&ctx->flexible_active,
3702                                          struct perf_event, active_list);
3703
3704         /* if no active flexible event, pick the first event */
3705         if (!event) {
3706                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3707                                       typeof(*event), group_node);
3708         }
3709
3710         /*
3711          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3712          * finds there are unschedulable events, it will set it again.
3713          */
3714         ctx->rotate_necessary = 0;
3715
3716         return event;
3717 }
3718
3719 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3720 {
3721         struct perf_event *cpu_event = NULL, *task_event = NULL;
3722         struct perf_event_context *task_ctx = NULL;
3723         int cpu_rotate, task_rotate;
3724
3725         /*
3726          * Since we run this from IRQ context, nobody can install new
3727          * events, thus the event count values are stable.
3728          */
3729
3730         cpu_rotate = cpuctx->ctx.rotate_necessary;
3731         task_ctx = cpuctx->task_ctx;
3732         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3733
3734         if (!(cpu_rotate || task_rotate))
3735                 return false;
3736
3737         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3738         perf_pmu_disable(cpuctx->ctx.pmu);
3739
3740         if (task_rotate)
3741                 task_event = ctx_event_to_rotate(task_ctx);
3742         if (cpu_rotate)
3743                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3744
3745         /*
3746          * As per the order given at ctx_resched() first 'pop' task flexible
3747          * and then, if needed CPU flexible.
3748          */
3749         if (task_event || (task_ctx && cpu_event))
3750                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3751         if (cpu_event)
3752                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3753
3754         if (task_event)
3755                 rotate_ctx(task_ctx, task_event);
3756         if (cpu_event)
3757                 rotate_ctx(&cpuctx->ctx, cpu_event);
3758
3759         perf_event_sched_in(cpuctx, task_ctx, current);
3760
3761         perf_pmu_enable(cpuctx->ctx.pmu);
3762         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3763
3764         return true;
3765 }
3766
3767 void perf_event_task_tick(void)
3768 {
3769         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3770         struct perf_event_context *ctx, *tmp;
3771         int throttled;
3772
3773         lockdep_assert_irqs_disabled();
3774
3775         __this_cpu_inc(perf_throttled_seq);
3776         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3777         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3778
3779         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3780                 perf_adjust_freq_unthr_context(ctx, throttled);
3781 }
3782
3783 static int event_enable_on_exec(struct perf_event *event,
3784                                 struct perf_event_context *ctx)
3785 {
3786         if (!event->attr.enable_on_exec)
3787                 return 0;
3788
3789         event->attr.enable_on_exec = 0;
3790         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3791                 return 0;
3792
3793         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3794
3795         return 1;
3796 }
3797
3798 /*
3799  * Enable all of a task's events that have been marked enable-on-exec.
3800  * This expects task == current.
3801  */
3802 static void perf_event_enable_on_exec(int ctxn)
3803 {
3804         struct perf_event_context *ctx, *clone_ctx = NULL;
3805         enum event_type_t event_type = 0;
3806         struct perf_cpu_context *cpuctx;
3807         struct perf_event *event;
3808         unsigned long flags;
3809         int enabled = 0;
3810
3811         local_irq_save(flags);
3812         ctx = current->perf_event_ctxp[ctxn];
3813         if (!ctx || !ctx->nr_events)
3814                 goto out;
3815
3816         cpuctx = __get_cpu_context(ctx);
3817         perf_ctx_lock(cpuctx, ctx);
3818         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3819         list_for_each_entry(event, &ctx->event_list, event_entry) {
3820                 enabled |= event_enable_on_exec(event, ctx);
3821                 event_type |= get_event_type(event);
3822         }
3823
3824         /*
3825          * Unclone and reschedule this context if we enabled any event.
3826          */
3827         if (enabled) {
3828                 clone_ctx = unclone_ctx(ctx);
3829                 ctx_resched(cpuctx, ctx, event_type);
3830         } else {
3831                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3832         }
3833         perf_ctx_unlock(cpuctx, ctx);
3834
3835 out:
3836         local_irq_restore(flags);
3837
3838         if (clone_ctx)
3839                 put_ctx(clone_ctx);
3840 }
3841
3842 struct perf_read_data {
3843         struct perf_event *event;
3844         bool group;
3845         int ret;
3846 };
3847
3848 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3849 {
3850         u16 local_pkg, event_pkg;
3851
3852         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3853                 int local_cpu = smp_processor_id();
3854
3855                 event_pkg = topology_physical_package_id(event_cpu);
3856                 local_pkg = topology_physical_package_id(local_cpu);
3857
3858                 if (event_pkg == local_pkg)
3859                         return local_cpu;
3860         }
3861
3862         return event_cpu;
3863 }
3864
3865 /*
3866  * Cross CPU call to read the hardware event
3867  */
3868 static void __perf_event_read(void *info)
3869 {
3870         struct perf_read_data *data = info;
3871         struct perf_event *sub, *event = data->event;
3872         struct perf_event_context *ctx = event->ctx;
3873         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3874         struct pmu *pmu = event->pmu;
3875
3876         /*
3877          * If this is a task context, we need to check whether it is
3878          * the current task context of this cpu.  If not it has been
3879          * scheduled out before the smp call arrived.  In that case
3880          * event->count would have been updated to a recent sample
3881          * when the event was scheduled out.
3882          */
3883         if (ctx->task && cpuctx->task_ctx != ctx)
3884                 return;
3885
3886         raw_spin_lock(&ctx->lock);
3887         if (ctx->is_active & EVENT_TIME) {
3888                 update_context_time(ctx);
3889                 update_cgrp_time_from_event(event);
3890         }
3891
3892         perf_event_update_time(event);
3893         if (data->group)
3894                 perf_event_update_sibling_time(event);
3895
3896         if (event->state != PERF_EVENT_STATE_ACTIVE)
3897                 goto unlock;
3898
3899         if (!data->group) {
3900                 pmu->read(event);
3901                 data->ret = 0;
3902                 goto unlock;
3903         }
3904
3905         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3906
3907         pmu->read(event);
3908
3909         for_each_sibling_event(sub, event) {
3910                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3911                         /*
3912                          * Use sibling's PMU rather than @event's since
3913                          * sibling could be on different (eg: software) PMU.
3914                          */
3915                         sub->pmu->read(sub);
3916                 }
3917         }
3918
3919         data->ret = pmu->commit_txn(pmu);
3920
3921 unlock:
3922         raw_spin_unlock(&ctx->lock);
3923 }
3924
3925 static inline u64 perf_event_count(struct perf_event *event)
3926 {
3927         return local64_read(&event->count) + atomic64_read(&event->child_count);
3928 }
3929
3930 /*
3931  * NMI-safe method to read a local event, that is an event that
3932  * is:
3933  *   - either for the current task, or for this CPU
3934  *   - does not have inherit set, for inherited task events
3935  *     will not be local and we cannot read them atomically
3936  *   - must not have a pmu::count method
3937  */
3938 int perf_event_read_local(struct perf_event *event, u64 *value,
3939                           u64 *enabled, u64 *running)
3940 {
3941         unsigned long flags;
3942         int ret = 0;
3943
3944         /*
3945          * Disabling interrupts avoids all counter scheduling (context
3946          * switches, timer based rotation and IPIs).
3947          */
3948         local_irq_save(flags);
3949
3950         /*
3951          * It must not be an event with inherit set, we cannot read
3952          * all child counters from atomic context.
3953          */
3954         if (event->attr.inherit) {
3955                 ret = -EOPNOTSUPP;
3956                 goto out;
3957         }
3958
3959         /* If this is a per-task event, it must be for current */
3960         if ((event->attach_state & PERF_ATTACH_TASK) &&
3961             event->hw.target != current) {
3962                 ret = -EINVAL;
3963                 goto out;
3964         }
3965
3966         /* If this is a per-CPU event, it must be for this CPU */
3967         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3968             event->cpu != smp_processor_id()) {
3969                 ret = -EINVAL;
3970                 goto out;
3971         }
3972
3973         /* If this is a pinned event it must be running on this CPU */
3974         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3975                 ret = -EBUSY;
3976                 goto out;
3977         }
3978
3979         /*
3980          * If the event is currently on this CPU, its either a per-task event,
3981          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3982          * oncpu == -1).
3983          */
3984         if (event->oncpu == smp_processor_id())
3985                 event->pmu->read(event);
3986
3987         *value = local64_read(&event->count);
3988         if (enabled || running) {
3989                 u64 now = event->shadow_ctx_time + perf_clock();
3990                 u64 __enabled, __running;
3991
3992                 __perf_update_times(event, now, &__enabled, &__running);
3993                 if (enabled)
3994                         *enabled = __enabled;
3995                 if (running)
3996                         *running = __running;
3997         }
3998 out:
3999         local_irq_restore(flags);
4000
4001         return ret;
4002 }
4003
4004 static int perf_event_read(struct perf_event *event, bool group)
4005 {
4006         enum perf_event_state state = READ_ONCE(event->state);
4007         int event_cpu, ret = 0;
4008
4009         /*
4010          * If event is enabled and currently active on a CPU, update the
4011          * value in the event structure:
4012          */
4013 again:
4014         if (state == PERF_EVENT_STATE_ACTIVE) {
4015                 struct perf_read_data data;
4016
4017                 /*
4018                  * Orders the ->state and ->oncpu loads such that if we see
4019                  * ACTIVE we must also see the right ->oncpu.
4020                  *
4021                  * Matches the smp_wmb() from event_sched_in().
4022                  */
4023                 smp_rmb();
4024
4025                 event_cpu = READ_ONCE(event->oncpu);
4026                 if ((unsigned)event_cpu >= nr_cpu_ids)
4027                         return 0;
4028
4029                 data = (struct perf_read_data){
4030                         .event = event,
4031                         .group = group,
4032                         .ret = 0,
4033                 };
4034
4035                 preempt_disable();
4036                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4037
4038                 /*
4039                  * Purposely ignore the smp_call_function_single() return
4040                  * value.
4041                  *
4042                  * If event_cpu isn't a valid CPU it means the event got
4043                  * scheduled out and that will have updated the event count.
4044                  *
4045                  * Therefore, either way, we'll have an up-to-date event count
4046                  * after this.
4047                  */
4048                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4049                 preempt_enable();
4050                 ret = data.ret;
4051
4052         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4053                 struct perf_event_context *ctx = event->ctx;
4054                 unsigned long flags;
4055
4056                 raw_spin_lock_irqsave(&ctx->lock, flags);
4057                 state = event->state;
4058                 if (state != PERF_EVENT_STATE_INACTIVE) {
4059                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4060                         goto again;
4061                 }
4062
4063                 /*
4064                  * May read while context is not active (e.g., thread is
4065                  * blocked), in that case we cannot update context time
4066                  */
4067                 if (ctx->is_active & EVENT_TIME) {
4068                         update_context_time(ctx);
4069                         update_cgrp_time_from_event(event);
4070                 }
4071
4072                 perf_event_update_time(event);
4073                 if (group)
4074                         perf_event_update_sibling_time(event);
4075                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4076         }
4077
4078         return ret;
4079 }
4080
4081 /*
4082  * Initialize the perf_event context in a task_struct:
4083  */
4084 static void __perf_event_init_context(struct perf_event_context *ctx)
4085 {
4086         raw_spin_lock_init(&ctx->lock);
4087         mutex_init(&ctx->mutex);
4088         INIT_LIST_HEAD(&ctx->active_ctx_list);
4089         perf_event_groups_init(&ctx->pinned_groups);
4090         perf_event_groups_init(&ctx->flexible_groups);
4091         INIT_LIST_HEAD(&ctx->event_list);
4092         INIT_LIST_HEAD(&ctx->pinned_active);
4093         INIT_LIST_HEAD(&ctx->flexible_active);
4094         atomic_set(&ctx->refcount, 1);
4095 }
4096
4097 static struct perf_event_context *
4098 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4099 {
4100         struct perf_event_context *ctx;
4101
4102         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4103         if (!ctx)
4104                 return NULL;
4105
4106         __perf_event_init_context(ctx);
4107         if (task) {
4108                 ctx->task = task;
4109                 get_task_struct(task);
4110         }
4111         ctx->pmu = pmu;
4112
4113         return ctx;
4114 }
4115
4116 static struct task_struct *
4117 find_lively_task_by_vpid(pid_t vpid)
4118 {
4119         struct task_struct *task;
4120
4121         rcu_read_lock();
4122         if (!vpid)
4123                 task = current;
4124         else
4125                 task = find_task_by_vpid(vpid);
4126         if (task)
4127                 get_task_struct(task);
4128         rcu_read_unlock();
4129
4130         if (!task)
4131                 return ERR_PTR(-ESRCH);
4132
4133         return task;
4134 }
4135
4136 /*
4137  * Returns a matching context with refcount and pincount.
4138  */
4139 static struct perf_event_context *
4140 find_get_context(struct pmu *pmu, struct task_struct *task,
4141                 struct perf_event *event)
4142 {
4143         struct perf_event_context *ctx, *clone_ctx = NULL;
4144         struct perf_cpu_context *cpuctx;
4145         void *task_ctx_data = NULL;
4146         unsigned long flags;
4147         int ctxn, err;
4148         int cpu = event->cpu;
4149
4150         if (!task) {
4151                 /* Must be root to operate on a CPU event: */
4152                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4153                         return ERR_PTR(-EACCES);
4154
4155                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4156                 ctx = &cpuctx->ctx;
4157                 get_ctx(ctx);
4158                 raw_spin_lock_irqsave(&ctx->lock, flags);
4159                 ++ctx->pin_count;
4160                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4161
4162                 return ctx;
4163         }
4164
4165         err = -EINVAL;
4166         ctxn = pmu->task_ctx_nr;
4167         if (ctxn < 0)
4168                 goto errout;
4169
4170         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4171                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4172                 if (!task_ctx_data) {
4173                         err = -ENOMEM;
4174                         goto errout;
4175                 }
4176         }
4177
4178 retry:
4179         ctx = perf_lock_task_context(task, ctxn, &flags);
4180         if (ctx) {
4181                 clone_ctx = unclone_ctx(ctx);
4182                 ++ctx->pin_count;
4183
4184                 if (task_ctx_data && !ctx->task_ctx_data) {
4185                         ctx->task_ctx_data = task_ctx_data;
4186                         task_ctx_data = NULL;
4187                 }
4188                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4189
4190                 if (clone_ctx)
4191                         put_ctx(clone_ctx);
4192         } else {
4193                 ctx = alloc_perf_context(pmu, task);
4194                 err = -ENOMEM;
4195                 if (!ctx)
4196                         goto errout;
4197
4198                 if (task_ctx_data) {
4199                         ctx->task_ctx_data = task_ctx_data;
4200                         task_ctx_data = NULL;
4201                 }
4202
4203                 err = 0;
4204                 mutex_lock(&task->perf_event_mutex);
4205                 /*
4206                  * If it has already passed perf_event_exit_task().
4207                  * we must see PF_EXITING, it takes this mutex too.
4208                  */
4209                 if (task->flags & PF_EXITING)
4210                         err = -ESRCH;
4211                 else if (task->perf_event_ctxp[ctxn])
4212                         err = -EAGAIN;
4213                 else {
4214                         get_ctx(ctx);
4215                         ++ctx->pin_count;
4216                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4217                 }
4218                 mutex_unlock(&task->perf_event_mutex);
4219
4220                 if (unlikely(err)) {
4221                         put_ctx(ctx);
4222
4223                         if (err == -EAGAIN)
4224                                 goto retry;
4225                         goto errout;
4226                 }
4227         }
4228
4229         kfree(task_ctx_data);
4230         return ctx;
4231
4232 errout:
4233         kfree(task_ctx_data);
4234         return ERR_PTR(err);
4235 }
4236
4237 static void perf_event_free_filter(struct perf_event *event);
4238 static void perf_event_free_bpf_prog(struct perf_event *event);
4239
4240 static void free_event_rcu(struct rcu_head *head)
4241 {
4242         struct perf_event *event;
4243
4244         event = container_of(head, struct perf_event, rcu_head);
4245         if (event->ns)
4246                 put_pid_ns(event->ns);
4247         perf_event_free_filter(event);
4248         kfree(event);
4249 }
4250
4251 static void ring_buffer_attach(struct perf_event *event,
4252                                struct ring_buffer *rb);
4253
4254 static void detach_sb_event(struct perf_event *event)
4255 {
4256         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4257
4258         raw_spin_lock(&pel->lock);
4259         list_del_rcu(&event->sb_list);
4260         raw_spin_unlock(&pel->lock);
4261 }
4262
4263 static bool is_sb_event(struct perf_event *event)
4264 {
4265         struct perf_event_attr *attr = &event->attr;
4266
4267         if (event->parent)
4268                 return false;
4269
4270         if (event->attach_state & PERF_ATTACH_TASK)
4271                 return false;
4272
4273         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4274             attr->comm || attr->comm_exec ||
4275             attr->task ||
4276             attr->context_switch)
4277                 return true;
4278         return false;
4279 }
4280
4281 static void unaccount_pmu_sb_event(struct perf_event *event)
4282 {
4283         if (is_sb_event(event))
4284                 detach_sb_event(event);
4285 }
4286
4287 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4288 {
4289         if (event->parent)
4290                 return;
4291
4292         if (is_cgroup_event(event))
4293                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4294 }
4295
4296 #ifdef CONFIG_NO_HZ_FULL
4297 static DEFINE_SPINLOCK(nr_freq_lock);
4298 #endif
4299
4300 static void unaccount_freq_event_nohz(void)
4301 {
4302 #ifdef CONFIG_NO_HZ_FULL
4303         spin_lock(&nr_freq_lock);
4304         if (atomic_dec_and_test(&nr_freq_events))
4305                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4306         spin_unlock(&nr_freq_lock);
4307 #endif
4308 }
4309
4310 static void unaccount_freq_event(void)
4311 {
4312         if (tick_nohz_full_enabled())
4313                 unaccount_freq_event_nohz();
4314         else
4315                 atomic_dec(&nr_freq_events);
4316 }
4317
4318 static void unaccount_event(struct perf_event *event)
4319 {
4320         bool dec = false;
4321
4322         if (event->parent)
4323                 return;
4324
4325         if (event->attach_state & PERF_ATTACH_TASK)
4326                 dec = true;
4327         if (event->attr.mmap || event->attr.mmap_data)
4328                 atomic_dec(&nr_mmap_events);
4329         if (event->attr.comm)
4330                 atomic_dec(&nr_comm_events);
4331         if (event->attr.namespaces)
4332                 atomic_dec(&nr_namespaces_events);
4333         if (event->attr.task)
4334                 atomic_dec(&nr_task_events);
4335         if (event->attr.freq)
4336                 unaccount_freq_event();
4337         if (event->attr.context_switch) {
4338                 dec = true;
4339                 atomic_dec(&nr_switch_events);
4340         }
4341         if (is_cgroup_event(event))
4342                 dec = true;
4343         if (has_branch_stack(event))
4344                 dec = true;
4345
4346         if (dec) {
4347                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4348                         schedule_delayed_work(&perf_sched_work, HZ);
4349         }
4350
4351         unaccount_event_cpu(event, event->cpu);
4352
4353         unaccount_pmu_sb_event(event);
4354 }
4355
4356 static void perf_sched_delayed(struct work_struct *work)
4357 {
4358         mutex_lock(&perf_sched_mutex);
4359         if (atomic_dec_and_test(&perf_sched_count))
4360                 static_branch_disable(&perf_sched_events);
4361         mutex_unlock(&perf_sched_mutex);
4362 }
4363
4364 /*
4365  * The following implement mutual exclusion of events on "exclusive" pmus
4366  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4367  * at a time, so we disallow creating events that might conflict, namely:
4368  *
4369  *  1) cpu-wide events in the presence of per-task events,
4370  *  2) per-task events in the presence of cpu-wide events,
4371  *  3) two matching events on the same context.
4372  *
4373  * The former two cases are handled in the allocation path (perf_event_alloc(),
4374  * _free_event()), the latter -- before the first perf_install_in_context().
4375  */
4376 static int exclusive_event_init(struct perf_event *event)
4377 {
4378         struct pmu *pmu = event->pmu;
4379
4380         if (!is_exclusive_pmu(pmu))
4381                 return 0;
4382
4383         /*
4384          * Prevent co-existence of per-task and cpu-wide events on the
4385          * same exclusive pmu.
4386          *
4387          * Negative pmu::exclusive_cnt means there are cpu-wide
4388          * events on this "exclusive" pmu, positive means there are
4389          * per-task events.
4390          *
4391          * Since this is called in perf_event_alloc() path, event::ctx
4392          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4393          * to mean "per-task event", because unlike other attach states it
4394          * never gets cleared.
4395          */
4396         if (event->attach_state & PERF_ATTACH_TASK) {
4397                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4398                         return -EBUSY;
4399         } else {
4400                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4401                         return -EBUSY;
4402         }
4403
4404         return 0;
4405 }
4406
4407 static void exclusive_event_destroy(struct perf_event *event)
4408 {
4409         struct pmu *pmu = event->pmu;
4410
4411         if (!is_exclusive_pmu(pmu))
4412                 return;
4413
4414         /* see comment in exclusive_event_init() */
4415         if (event->attach_state & PERF_ATTACH_TASK)
4416                 atomic_dec(&pmu->exclusive_cnt);
4417         else
4418                 atomic_inc(&pmu->exclusive_cnt);
4419 }
4420
4421 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4422 {
4423         if ((e1->pmu == e2->pmu) &&
4424             (e1->cpu == e2->cpu ||
4425              e1->cpu == -1 ||
4426              e2->cpu == -1))
4427                 return true;
4428         return false;
4429 }
4430
4431 static bool exclusive_event_installable(struct perf_event *event,
4432                                         struct perf_event_context *ctx)
4433 {
4434         struct perf_event *iter_event;
4435         struct pmu *pmu = event->pmu;
4436
4437         lockdep_assert_held(&ctx->mutex);
4438
4439         if (!is_exclusive_pmu(pmu))
4440                 return true;
4441
4442         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4443                 if (exclusive_event_match(iter_event, event))
4444                         return false;
4445         }
4446
4447         return true;
4448 }
4449
4450 static void perf_addr_filters_splice(struct perf_event *event,
4451                                        struct list_head *head);
4452
4453 static void _free_event(struct perf_event *event)
4454 {
4455         irq_work_sync(&event->pending);
4456
4457         unaccount_event(event);
4458
4459         if (event->rb) {
4460                 /*
4461                  * Can happen when we close an event with re-directed output.
4462                  *
4463                  * Since we have a 0 refcount, perf_mmap_close() will skip
4464                  * over us; possibly making our ring_buffer_put() the last.
4465                  */
4466                 mutex_lock(&event->mmap_mutex);
4467                 ring_buffer_attach(event, NULL);
4468                 mutex_unlock(&event->mmap_mutex);
4469         }
4470
4471         if (is_cgroup_event(event))
4472                 perf_detach_cgroup(event);
4473
4474         if (!event->parent) {
4475                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4476                         put_callchain_buffers();
4477         }
4478
4479         perf_event_free_bpf_prog(event);
4480         perf_addr_filters_splice(event, NULL);
4481         kfree(event->addr_filter_ranges);
4482
4483         if (event->destroy)
4484                 event->destroy(event);
4485
4486         /*
4487          * Must be after ->destroy(), due to uprobe_perf_close() using
4488          * hw.target.
4489          */
4490         if (event->hw.target)
4491                 put_task_struct(event->hw.target);
4492
4493         /*
4494          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4495          * all task references must be cleaned up.
4496          */
4497         if (event->ctx)
4498                 put_ctx(event->ctx);
4499
4500         exclusive_event_destroy(event);
4501         module_put(event->pmu->module);
4502
4503         call_rcu(&event->rcu_head, free_event_rcu);
4504 }
4505
4506 /*
4507  * Used to free events which have a known refcount of 1, such as in error paths
4508  * where the event isn't exposed yet and inherited events.
4509  */
4510 static void free_event(struct perf_event *event)
4511 {
4512         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4513                                 "unexpected event refcount: %ld; ptr=%p\n",
4514                                 atomic_long_read(&event->refcount), event)) {
4515                 /* leak to avoid use-after-free */
4516                 return;
4517         }
4518
4519         _free_event(event);
4520 }
4521
4522 /*
4523  * Remove user event from the owner task.
4524  */
4525 static void perf_remove_from_owner(struct perf_event *event)
4526 {
4527         struct task_struct *owner;
4528
4529         rcu_read_lock();
4530         /*
4531          * Matches the smp_store_release() in perf_event_exit_task(). If we
4532          * observe !owner it means the list deletion is complete and we can
4533          * indeed free this event, otherwise we need to serialize on
4534          * owner->perf_event_mutex.
4535          */
4536         owner = READ_ONCE(event->owner);
4537         if (owner) {
4538                 /*
4539                  * Since delayed_put_task_struct() also drops the last
4540                  * task reference we can safely take a new reference
4541                  * while holding the rcu_read_lock().
4542                  */
4543                 get_task_struct(owner);
4544         }
4545         rcu_read_unlock();
4546
4547         if (owner) {
4548                 /*
4549                  * If we're here through perf_event_exit_task() we're already
4550                  * holding ctx->mutex which would be an inversion wrt. the
4551                  * normal lock order.
4552                  *
4553                  * However we can safely take this lock because its the child
4554                  * ctx->mutex.
4555                  */
4556                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4557
4558                 /*
4559                  * We have to re-check the event->owner field, if it is cleared
4560                  * we raced with perf_event_exit_task(), acquiring the mutex
4561                  * ensured they're done, and we can proceed with freeing the
4562                  * event.
4563                  */
4564                 if (event->owner) {
4565                         list_del_init(&event->owner_entry);
4566                         smp_store_release(&event->owner, NULL);
4567                 }
4568                 mutex_unlock(&owner->perf_event_mutex);
4569                 put_task_struct(owner);
4570         }
4571 }
4572
4573 static void put_event(struct perf_event *event)
4574 {
4575         if (!atomic_long_dec_and_test(&event->refcount))
4576                 return;
4577
4578         _free_event(event);
4579 }
4580
4581 /*
4582  * Kill an event dead; while event:refcount will preserve the event
4583  * object, it will not preserve its functionality. Once the last 'user'
4584  * gives up the object, we'll destroy the thing.
4585  */
4586 int perf_event_release_kernel(struct perf_event *event)
4587 {
4588         struct perf_event_context *ctx = event->ctx;
4589         struct perf_event *child, *tmp;
4590         LIST_HEAD(free_list);
4591
4592         /*
4593          * If we got here through err_file: fput(event_file); we will not have
4594          * attached to a context yet.
4595          */
4596         if (!ctx) {
4597                 WARN_ON_ONCE(event->attach_state &
4598                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4599                 goto no_ctx;
4600         }
4601
4602         if (!is_kernel_event(event))
4603                 perf_remove_from_owner(event);
4604
4605         ctx = perf_event_ctx_lock(event);
4606         WARN_ON_ONCE(ctx->parent_ctx);
4607         perf_remove_from_context(event, DETACH_GROUP);
4608
4609         raw_spin_lock_irq(&ctx->lock);
4610         /*
4611          * Mark this event as STATE_DEAD, there is no external reference to it
4612          * anymore.
4613          *
4614          * Anybody acquiring event->child_mutex after the below loop _must_
4615          * also see this, most importantly inherit_event() which will avoid
4616          * placing more children on the list.
4617          *
4618          * Thus this guarantees that we will in fact observe and kill _ALL_
4619          * child events.
4620          */
4621         event->state = PERF_EVENT_STATE_DEAD;
4622         raw_spin_unlock_irq(&ctx->lock);
4623
4624         perf_event_ctx_unlock(event, ctx);
4625
4626 again:
4627         mutex_lock(&event->child_mutex);
4628         list_for_each_entry(child, &event->child_list, child_list) {
4629
4630                 /*
4631                  * Cannot change, child events are not migrated, see the
4632                  * comment with perf_event_ctx_lock_nested().
4633                  */
4634                 ctx = READ_ONCE(child->ctx);
4635                 /*
4636                  * Since child_mutex nests inside ctx::mutex, we must jump
4637                  * through hoops. We start by grabbing a reference on the ctx.
4638                  *
4639                  * Since the event cannot get freed while we hold the
4640                  * child_mutex, the context must also exist and have a !0
4641                  * reference count.
4642                  */
4643                 get_ctx(ctx);
4644
4645                 /*
4646                  * Now that we have a ctx ref, we can drop child_mutex, and
4647                  * acquire ctx::mutex without fear of it going away. Then we
4648                  * can re-acquire child_mutex.
4649                  */
4650                 mutex_unlock(&event->child_mutex);
4651                 mutex_lock(&ctx->mutex);
4652                 mutex_lock(&event->child_mutex);
4653
4654                 /*
4655                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4656                  * state, if child is still the first entry, it didn't get freed
4657                  * and we can continue doing so.
4658                  */
4659                 tmp = list_first_entry_or_null(&event->child_list,
4660                                                struct perf_event, child_list);
4661                 if (tmp == child) {
4662                         perf_remove_from_context(child, DETACH_GROUP);
4663                         list_move(&child->child_list, &free_list);
4664                         /*
4665                          * This matches the refcount bump in inherit_event();
4666                          * this can't be the last reference.
4667                          */
4668                         put_event(event);
4669                 }
4670
4671                 mutex_unlock(&event->child_mutex);
4672                 mutex_unlock(&ctx->mutex);
4673                 put_ctx(ctx);
4674                 goto again;
4675         }
4676         mutex_unlock(&event->child_mutex);
4677
4678         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4679                 void *var = &child->ctx->refcount;
4680
4681                 list_del(&child->child_list);
4682                 free_event(child);
4683
4684                 /*
4685                  * Wake any perf_event_free_task() waiting for this event to be
4686                  * freed.
4687                  */
4688                 smp_mb(); /* pairs with wait_var_event() */
4689                 wake_up_var(var);
4690         }
4691
4692 no_ctx:
4693         put_event(event); /* Must be the 'last' reference */
4694         return 0;
4695 }
4696 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4697
4698 /*
4699  * Called when the last reference to the file is gone.
4700  */
4701 static int perf_release(struct inode *inode, struct file *file)
4702 {
4703         perf_event_release_kernel(file->private_data);
4704         return 0;
4705 }
4706
4707 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4708 {
4709         struct perf_event *child;
4710         u64 total = 0;
4711
4712         *enabled = 0;
4713         *running = 0;
4714
4715         mutex_lock(&event->child_mutex);
4716
4717         (void)perf_event_read(event, false);
4718         total += perf_event_count(event);
4719
4720         *enabled += event->total_time_enabled +
4721                         atomic64_read(&event->child_total_time_enabled);
4722         *running += event->total_time_running +
4723                         atomic64_read(&event->child_total_time_running);
4724
4725         list_for_each_entry(child, &event->child_list, child_list) {
4726                 (void)perf_event_read(child, false);
4727                 total += perf_event_count(child);
4728                 *enabled += child->total_time_enabled;
4729                 *running += child->total_time_running;
4730         }
4731         mutex_unlock(&event->child_mutex);
4732
4733         return total;
4734 }
4735
4736 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4737 {
4738         struct perf_event_context *ctx;
4739         u64 count;
4740
4741         ctx = perf_event_ctx_lock(event);
4742         count = __perf_event_read_value(event, enabled, running);
4743         perf_event_ctx_unlock(event, ctx);
4744
4745         return count;
4746 }
4747 EXPORT_SYMBOL_GPL(perf_event_read_value);
4748
4749 static int __perf_read_group_add(struct perf_event *leader,
4750                                         u64 read_format, u64 *values)
4751 {
4752         struct perf_event_context *ctx = leader->ctx;
4753         struct perf_event *sub;
4754         unsigned long flags;
4755         int n = 1; /* skip @nr */
4756         int ret;
4757
4758         ret = perf_event_read(leader, true);
4759         if (ret)
4760                 return ret;
4761
4762         raw_spin_lock_irqsave(&ctx->lock, flags);
4763
4764         /*
4765          * Since we co-schedule groups, {enabled,running} times of siblings
4766          * will be identical to those of the leader, so we only publish one
4767          * set.
4768          */
4769         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4770                 values[n++] += leader->total_time_enabled +
4771                         atomic64_read(&leader->child_total_time_enabled);
4772         }
4773
4774         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4775                 values[n++] += leader->total_time_running +
4776                         atomic64_read(&leader->child_total_time_running);
4777         }
4778
4779         /*
4780          * Write {count,id} tuples for every sibling.
4781          */
4782         values[n++] += perf_event_count(leader);
4783         if (read_format & PERF_FORMAT_ID)
4784                 values[n++] = primary_event_id(leader);
4785
4786         for_each_sibling_event(sub, leader) {
4787                 values[n++] += perf_event_count(sub);
4788                 if (read_format & PERF_FORMAT_ID)
4789                         values[n++] = primary_event_id(sub);
4790         }
4791
4792         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4793         return 0;
4794 }
4795
4796 static int perf_read_group(struct perf_event *event,
4797                                    u64 read_format, char __user *buf)
4798 {
4799         struct perf_event *leader = event->group_leader, *child;
4800         struct perf_event_context *ctx = leader->ctx;
4801         int ret;
4802         u64 *values;
4803
4804         lockdep_assert_held(&ctx->mutex);
4805
4806         values = kzalloc(event->read_size, GFP_KERNEL);
4807         if (!values)
4808                 return -ENOMEM;
4809
4810         values[0] = 1 + leader->nr_siblings;
4811
4812         /*
4813          * By locking the child_mutex of the leader we effectively
4814          * lock the child list of all siblings.. XXX explain how.
4815          */
4816         mutex_lock(&leader->child_mutex);
4817
4818         ret = __perf_read_group_add(leader, read_format, values);
4819         if (ret)
4820                 goto unlock;
4821
4822         list_for_each_entry(child, &leader->child_list, child_list) {
4823                 ret = __perf_read_group_add(child, read_format, values);
4824                 if (ret)
4825                         goto unlock;
4826         }
4827
4828         mutex_unlock(&leader->child_mutex);
4829
4830         ret = event->read_size;
4831         if (copy_to_user(buf, values, event->read_size))
4832                 ret = -EFAULT;
4833         goto out;
4834
4835 unlock:
4836         mutex_unlock(&leader->child_mutex);
4837 out:
4838         kfree(values);
4839         return ret;
4840 }
4841
4842 static int perf_read_one(struct perf_event *event,
4843                                  u64 read_format, char __user *buf)
4844 {
4845         u64 enabled, running;
4846         u64 values[4];
4847         int n = 0;
4848
4849         values[n++] = __perf_event_read_value(event, &enabled, &running);
4850         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4851                 values[n++] = enabled;
4852         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4853                 values[n++] = running;
4854         if (read_format & PERF_FORMAT_ID)
4855                 values[n++] = primary_event_id(event);
4856
4857         if (copy_to_user(buf, values, n * sizeof(u64)))
4858                 return -EFAULT;
4859
4860         return n * sizeof(u64);
4861 }
4862
4863 static bool is_event_hup(struct perf_event *event)
4864 {
4865         bool no_children;
4866
4867         if (event->state > PERF_EVENT_STATE_EXIT)
4868                 return false;
4869
4870         mutex_lock(&event->child_mutex);
4871         no_children = list_empty(&event->child_list);
4872         mutex_unlock(&event->child_mutex);
4873         return no_children;
4874 }
4875
4876 /*
4877  * Read the performance event - simple non blocking version for now
4878  */
4879 static ssize_t
4880 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4881 {
4882         u64 read_format = event->attr.read_format;
4883         int ret;
4884
4885         /*
4886          * Return end-of-file for a read on an event that is in
4887          * error state (i.e. because it was pinned but it couldn't be
4888          * scheduled on to the CPU at some point).
4889          */
4890         if (event->state == PERF_EVENT_STATE_ERROR)
4891                 return 0;
4892
4893         if (count < event->read_size)
4894                 return -ENOSPC;
4895
4896         WARN_ON_ONCE(event->ctx->parent_ctx);
4897         if (read_format & PERF_FORMAT_GROUP)
4898                 ret = perf_read_group(event, read_format, buf);
4899         else
4900                 ret = perf_read_one(event, read_format, buf);
4901
4902         return ret;
4903 }
4904
4905 static ssize_t
4906 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4907 {
4908         struct perf_event *event = file->private_data;
4909         struct perf_event_context *ctx;
4910         int ret;
4911
4912         ctx = perf_event_ctx_lock(event);
4913         ret = __perf_read(event, buf, count);
4914         perf_event_ctx_unlock(event, ctx);
4915
4916         return ret;
4917 }
4918
4919 static __poll_t perf_poll(struct file *file, poll_table *wait)
4920 {
4921         struct perf_event *event = file->private_data;
4922         struct ring_buffer *rb;
4923         __poll_t events = EPOLLHUP;
4924
4925         poll_wait(file, &event->waitq, wait);
4926
4927         if (is_event_hup(event))
4928                 return events;
4929
4930         /*
4931          * Pin the event->rb by taking event->mmap_mutex; otherwise
4932          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4933          */
4934         mutex_lock(&event->mmap_mutex);
4935         rb = event->rb;
4936         if (rb)
4937                 events = atomic_xchg(&rb->poll, 0);
4938         mutex_unlock(&event->mmap_mutex);
4939         return events;
4940 }
4941
4942 static void _perf_event_reset(struct perf_event *event)
4943 {
4944         (void)perf_event_read(event, false);
4945         local64_set(&event->count, 0);
4946         perf_event_update_userpage(event);
4947 }
4948
4949 /*
4950  * Holding the top-level event's child_mutex means that any
4951  * descendant process that has inherited this event will block
4952  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4953  * task existence requirements of perf_event_enable/disable.
4954  */
4955 static void perf_event_for_each_child(struct perf_event *event,
4956                                         void (*func)(struct perf_event *))
4957 {
4958         struct perf_event *child;
4959
4960         WARN_ON_ONCE(event->ctx->parent_ctx);
4961
4962         mutex_lock(&event->child_mutex);
4963         func(event);
4964         list_for_each_entry(child, &event->child_list, child_list)
4965                 func(child);
4966         mutex_unlock(&event->child_mutex);
4967 }
4968
4969 static void perf_event_for_each(struct perf_event *event,
4970                                   void (*func)(struct perf_event *))
4971 {
4972         struct perf_event_context *ctx = event->ctx;
4973         struct perf_event *sibling;
4974
4975         lockdep_assert_held(&ctx->mutex);
4976
4977         event = event->group_leader;
4978
4979         perf_event_for_each_child(event, func);
4980         for_each_sibling_event(sibling, event)
4981                 perf_event_for_each_child(sibling, func);
4982 }
4983
4984 static void __perf_event_period(struct perf_event *event,
4985                                 struct perf_cpu_context *cpuctx,
4986                                 struct perf_event_context *ctx,
4987                                 void *info)
4988 {
4989         u64 value = *((u64 *)info);
4990         bool active;
4991
4992         if (event->attr.freq) {
4993                 event->attr.sample_freq = value;
4994         } else {
4995                 event->attr.sample_period = value;
4996                 event->hw.sample_period = value;
4997         }
4998
4999         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5000         if (active) {
5001                 perf_pmu_disable(ctx->pmu);
5002                 /*
5003                  * We could be throttled; unthrottle now to avoid the tick
5004                  * trying to unthrottle while we already re-started the event.
5005                  */
5006                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5007                         event->hw.interrupts = 0;
5008                         perf_log_throttle(event, 1);
5009                 }
5010                 event->pmu->stop(event, PERF_EF_UPDATE);
5011         }
5012
5013         local64_set(&event->hw.period_left, 0);
5014
5015         if (active) {
5016                 event->pmu->start(event, PERF_EF_RELOAD);
5017                 perf_pmu_enable(ctx->pmu);
5018         }
5019 }
5020
5021 static int perf_event_check_period(struct perf_event *event, u64 value)
5022 {
5023         return event->pmu->check_period(event, value);
5024 }
5025
5026 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5027 {
5028         u64 value;
5029
5030         if (!is_sampling_event(event))
5031                 return -EINVAL;
5032
5033         if (copy_from_user(&value, arg, sizeof(value)))
5034                 return -EFAULT;
5035
5036         if (!value)
5037                 return -EINVAL;
5038
5039         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5040                 return -EINVAL;
5041
5042         if (perf_event_check_period(event, value))
5043                 return -EINVAL;
5044
5045         if (!event->attr.freq && (value & (1ULL << 63)))
5046                 return -EINVAL;
5047
5048         event_function_call(event, __perf_event_period, &value);
5049
5050         return 0;
5051 }
5052
5053 static const struct file_operations perf_fops;
5054
5055 static inline int perf_fget_light(int fd, struct fd *p)
5056 {
5057         struct fd f = fdget(fd);
5058         if (!f.file)
5059                 return -EBADF;
5060
5061         if (f.file->f_op != &perf_fops) {
5062                 fdput(f);
5063                 return -EBADF;
5064         }
5065         *p = f;
5066         return 0;
5067 }
5068
5069 static int perf_event_set_output(struct perf_event *event,
5070                                  struct perf_event *output_event);
5071 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5072 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5073 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5074                           struct perf_event_attr *attr);
5075
5076 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5077 {
5078         void (*func)(struct perf_event *);
5079         u32 flags = arg;
5080
5081         switch (cmd) {
5082         case PERF_EVENT_IOC_ENABLE:
5083                 func = _perf_event_enable;
5084                 break;
5085         case PERF_EVENT_IOC_DISABLE:
5086                 func = _perf_event_disable;
5087                 break;
5088         case PERF_EVENT_IOC_RESET:
5089                 func = _perf_event_reset;
5090                 break;
5091
5092         case PERF_EVENT_IOC_REFRESH:
5093                 return _perf_event_refresh(event, arg);
5094
5095         case PERF_EVENT_IOC_PERIOD:
5096                 return perf_event_period(event, (u64 __user *)arg);
5097
5098         case PERF_EVENT_IOC_ID:
5099         {
5100                 u64 id = primary_event_id(event);
5101
5102                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5103                         return -EFAULT;
5104                 return 0;
5105         }
5106
5107         case PERF_EVENT_IOC_SET_OUTPUT:
5108         {
5109                 int ret;
5110                 if (arg != -1) {
5111                         struct perf_event *output_event;
5112                         struct fd output;
5113                         ret = perf_fget_light(arg, &output);
5114                         if (ret)
5115                                 return ret;
5116                         output_event = output.file->private_data;
5117                         ret = perf_event_set_output(event, output_event);
5118                         fdput(output);
5119                 } else {
5120                         ret = perf_event_set_output(event, NULL);
5121                 }
5122                 return ret;
5123         }
5124
5125         case PERF_EVENT_IOC_SET_FILTER:
5126                 return perf_event_set_filter(event, (void __user *)arg);
5127
5128         case PERF_EVENT_IOC_SET_BPF:
5129                 return perf_event_set_bpf_prog(event, arg);
5130
5131         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5132                 struct ring_buffer *rb;
5133
5134                 rcu_read_lock();
5135                 rb = rcu_dereference(event->rb);
5136                 if (!rb || !rb->nr_pages) {
5137                         rcu_read_unlock();
5138                         return -EINVAL;
5139                 }
5140                 rb_toggle_paused(rb, !!arg);
5141                 rcu_read_unlock();
5142                 return 0;
5143         }
5144
5145         case PERF_EVENT_IOC_QUERY_BPF:
5146                 return perf_event_query_prog_array(event, (void __user *)arg);
5147
5148         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5149                 struct perf_event_attr new_attr;
5150                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5151                                          &new_attr);
5152
5153                 if (err)
5154                         return err;
5155
5156                 return perf_event_modify_attr(event,  &new_attr);
5157         }
5158         default:
5159                 return -ENOTTY;
5160         }
5161
5162         if (flags & PERF_IOC_FLAG_GROUP)
5163                 perf_event_for_each(event, func);
5164         else
5165                 perf_event_for_each_child(event, func);
5166
5167         return 0;
5168 }
5169
5170 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5171 {
5172         struct perf_event *event = file->private_data;
5173         struct perf_event_context *ctx;
5174         long ret;
5175
5176         ctx = perf_event_ctx_lock(event);
5177         ret = _perf_ioctl(event, cmd, arg);
5178         perf_event_ctx_unlock(event, ctx);
5179
5180         return ret;
5181 }
5182
5183 #ifdef CONFIG_COMPAT
5184 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5185                                 unsigned long arg)
5186 {
5187         switch (_IOC_NR(cmd)) {
5188         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5189         case _IOC_NR(PERF_EVENT_IOC_ID):
5190         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5191         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5192                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5193                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5194                         cmd &= ~IOCSIZE_MASK;
5195                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5196                 }
5197                 break;
5198         }
5199         return perf_ioctl(file, cmd, arg);
5200 }
5201 #else
5202 # define perf_compat_ioctl NULL
5203 #endif
5204
5205 int perf_event_task_enable(void)
5206 {
5207         struct perf_event_context *ctx;
5208         struct perf_event *event;
5209
5210         mutex_lock(&current->perf_event_mutex);
5211         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5212                 ctx = perf_event_ctx_lock(event);
5213                 perf_event_for_each_child(event, _perf_event_enable);
5214                 perf_event_ctx_unlock(event, ctx);
5215         }
5216         mutex_unlock(&current->perf_event_mutex);
5217
5218         return 0;
5219 }
5220
5221 int perf_event_task_disable(void)
5222 {
5223         struct perf_event_context *ctx;
5224         struct perf_event *event;
5225
5226         mutex_lock(&current->perf_event_mutex);
5227         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5228                 ctx = perf_event_ctx_lock(event);
5229                 perf_event_for_each_child(event, _perf_event_disable);
5230                 perf_event_ctx_unlock(event, ctx);
5231         }
5232         mutex_unlock(&current->perf_event_mutex);
5233
5234         return 0;
5235 }
5236
5237 static int perf_event_index(struct perf_event *event)
5238 {
5239         if (event->hw.state & PERF_HES_STOPPED)
5240                 return 0;
5241
5242         if (event->state != PERF_EVENT_STATE_ACTIVE)
5243                 return 0;
5244
5245         return event->pmu->event_idx(event);
5246 }
5247
5248 static void calc_timer_values(struct perf_event *event,
5249                                 u64 *now,
5250                                 u64 *enabled,
5251                                 u64 *running)
5252 {
5253         u64 ctx_time;
5254
5255         *now = perf_clock();
5256         ctx_time = event->shadow_ctx_time + *now;
5257         __perf_update_times(event, ctx_time, enabled, running);
5258 }
5259
5260 static void perf_event_init_userpage(struct perf_event *event)
5261 {
5262         struct perf_event_mmap_page *userpg;
5263         struct ring_buffer *rb;
5264
5265         rcu_read_lock();
5266         rb = rcu_dereference(event->rb);
5267         if (!rb)
5268                 goto unlock;
5269
5270         userpg = rb->user_page;
5271
5272         /* Allow new userspace to detect that bit 0 is deprecated */
5273         userpg->cap_bit0_is_deprecated = 1;
5274         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5275         userpg->data_offset = PAGE_SIZE;
5276         userpg->data_size = perf_data_size(rb);
5277
5278 unlock:
5279         rcu_read_unlock();
5280 }
5281
5282 void __weak arch_perf_update_userpage(
5283         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5284 {
5285 }
5286
5287 /*
5288  * Callers need to ensure there can be no nesting of this function, otherwise
5289  * the seqlock logic goes bad. We can not serialize this because the arch
5290  * code calls this from NMI context.
5291  */
5292 void perf_event_update_userpage(struct perf_event *event)
5293 {
5294         struct perf_event_mmap_page *userpg;
5295         struct ring_buffer *rb;
5296         u64 enabled, running, now;
5297
5298         rcu_read_lock();
5299         rb = rcu_dereference(event->rb);
5300         if (!rb)
5301                 goto unlock;
5302
5303         /*
5304          * compute total_time_enabled, total_time_running
5305          * based on snapshot values taken when the event
5306          * was last scheduled in.
5307          *
5308          * we cannot simply called update_context_time()
5309          * because of locking issue as we can be called in
5310          * NMI context
5311          */
5312         calc_timer_values(event, &now, &enabled, &running);
5313
5314         userpg = rb->user_page;
5315         /*
5316          * Disable preemption to guarantee consistent time stamps are stored to
5317          * the user page.
5318          */
5319         preempt_disable();
5320         ++userpg->lock;
5321         barrier();
5322         userpg->index = perf_event_index(event);
5323         userpg->offset = perf_event_count(event);
5324         if (userpg->index)
5325                 userpg->offset -= local64_read(&event->hw.prev_count);
5326
5327         userpg->time_enabled = enabled +
5328                         atomic64_read(&event->child_total_time_enabled);
5329
5330         userpg->time_running = running +
5331                         atomic64_read(&event->child_total_time_running);
5332
5333         arch_perf_update_userpage(event, userpg, now);
5334
5335         barrier();
5336         ++userpg->lock;
5337         preempt_enable();
5338 unlock:
5339         rcu_read_unlock();
5340 }
5341 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5342
5343 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5344 {
5345         struct perf_event *event = vmf->vma->vm_file->private_data;
5346         struct ring_buffer *rb;
5347         vm_fault_t ret = VM_FAULT_SIGBUS;
5348
5349         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5350                 if (vmf->pgoff == 0)
5351                         ret = 0;
5352                 return ret;
5353         }
5354
5355         rcu_read_lock();
5356         rb = rcu_dereference(event->rb);
5357         if (!rb)
5358                 goto unlock;
5359
5360         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5361                 goto unlock;
5362
5363         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5364         if (!vmf->page)
5365                 goto unlock;
5366
5367         get_page(vmf->page);
5368         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5369         vmf->page->index   = vmf->pgoff;
5370
5371         ret = 0;
5372 unlock:
5373         rcu_read_unlock();
5374
5375         return ret;
5376 }
5377
5378 static void ring_buffer_attach(struct perf_event *event,
5379                                struct ring_buffer *rb)
5380 {
5381         struct ring_buffer *old_rb = NULL;
5382         unsigned long flags;
5383
5384         if (event->rb) {
5385                 /*
5386                  * Should be impossible, we set this when removing
5387                  * event->rb_entry and wait/clear when adding event->rb_entry.
5388                  */
5389                 WARN_ON_ONCE(event->rcu_pending);
5390
5391                 old_rb = event->rb;
5392                 spin_lock_irqsave(&old_rb->event_lock, flags);
5393                 list_del_rcu(&event->rb_entry);
5394                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5395
5396                 event->rcu_batches = get_state_synchronize_rcu();
5397                 event->rcu_pending = 1;
5398         }
5399
5400         if (rb) {
5401                 if (event->rcu_pending) {
5402                         cond_synchronize_rcu(event->rcu_batches);
5403                         event->rcu_pending = 0;
5404                 }
5405
5406                 spin_lock_irqsave(&rb->event_lock, flags);
5407                 list_add_rcu(&event->rb_entry, &rb->event_list);
5408                 spin_unlock_irqrestore(&rb->event_lock, flags);
5409         }
5410
5411         /*
5412          * Avoid racing with perf_mmap_close(AUX): stop the event
5413          * before swizzling the event::rb pointer; if it's getting
5414          * unmapped, its aux_mmap_count will be 0 and it won't
5415          * restart. See the comment in __perf_pmu_output_stop().
5416          *
5417          * Data will inevitably be lost when set_output is done in
5418          * mid-air, but then again, whoever does it like this is
5419          * not in for the data anyway.
5420          */
5421         if (has_aux(event))
5422                 perf_event_stop(event, 0);
5423
5424         rcu_assign_pointer(event->rb, rb);
5425
5426         if (old_rb) {
5427                 ring_buffer_put(old_rb);
5428                 /*
5429                  * Since we detached before setting the new rb, so that we
5430                  * could attach the new rb, we could have missed a wakeup.
5431                  * Provide it now.
5432                  */
5433                 wake_up_all(&event->waitq);
5434         }
5435 }
5436
5437 static void ring_buffer_wakeup(struct perf_event *event)
5438 {
5439         struct ring_buffer *rb;
5440
5441         rcu_read_lock();
5442         rb = rcu_dereference(event->rb);
5443         if (rb) {
5444                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5445                         wake_up_all(&event->waitq);
5446         }
5447         rcu_read_unlock();
5448 }
5449
5450 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5451 {
5452         struct ring_buffer *rb;
5453
5454         rcu_read_lock();
5455         rb = rcu_dereference(event->rb);
5456         if (rb) {
5457                 if (!atomic_inc_not_zero(&rb->refcount))
5458                         rb = NULL;
5459         }
5460         rcu_read_unlock();
5461
5462         return rb;
5463 }
5464
5465 void ring_buffer_put(struct ring_buffer *rb)
5466 {
5467         if (!atomic_dec_and_test(&rb->refcount))
5468                 return;
5469
5470         WARN_ON_ONCE(!list_empty(&rb->event_list));
5471
5472         call_rcu(&rb->rcu_head, rb_free_rcu);
5473 }
5474
5475 static void perf_mmap_open(struct vm_area_struct *vma)
5476 {
5477         struct perf_event *event = vma->vm_file->private_data;
5478
5479         atomic_inc(&event->mmap_count);
5480         atomic_inc(&event->rb->mmap_count);
5481
5482         if (vma->vm_pgoff)
5483                 atomic_inc(&event->rb->aux_mmap_count);
5484
5485         if (event->pmu->event_mapped)
5486                 event->pmu->event_mapped(event, vma->vm_mm);
5487 }
5488
5489 static void perf_pmu_output_stop(struct perf_event *event);
5490
5491 /*
5492  * A buffer can be mmap()ed multiple times; either directly through the same
5493  * event, or through other events by use of perf_event_set_output().
5494  *
5495  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5496  * the buffer here, where we still have a VM context. This means we need
5497  * to detach all events redirecting to us.
5498  */
5499 static void perf_mmap_close(struct vm_area_struct *vma)
5500 {
5501         struct perf_event *event = vma->vm_file->private_data;
5502         struct ring_buffer *rb = ring_buffer_get(event);
5503         struct user_struct *mmap_user = rb->mmap_user;
5504         int mmap_locked = rb->mmap_locked;
5505         unsigned long size = perf_data_size(rb);
5506         bool detach_rest = false;
5507
5508         if (event->pmu->event_unmapped)
5509                 event->pmu->event_unmapped(event, vma->vm_mm);
5510
5511         /*
5512          * rb->aux_mmap_count will always drop before rb->mmap_count and
5513          * event->mmap_count, so it is ok to use event->mmap_mutex to
5514          * serialize with perf_mmap here.
5515          */
5516         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5517             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5518                 /*
5519                  * Stop all AUX events that are writing to this buffer,
5520                  * so that we can free its AUX pages and corresponding PMU
5521                  * data. Note that after rb::aux_mmap_count dropped to zero,
5522                  * they won't start any more (see perf_aux_output_begin()).
5523                  */
5524                 perf_pmu_output_stop(event);
5525
5526                 /* now it's safe to free the pages */
5527                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5528                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5529
5530                 /* this has to be the last one */
5531                 rb_free_aux(rb);
5532                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5533
5534                 mutex_unlock(&event->mmap_mutex);
5535         }
5536
5537         if (atomic_dec_and_test(&rb->mmap_count))
5538                 detach_rest = true;
5539
5540         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5541                 goto out_put;
5542
5543         ring_buffer_attach(event, NULL);
5544         mutex_unlock(&event->mmap_mutex);
5545
5546         /* If there's still other mmap()s of this buffer, we're done. */
5547         if (!detach_rest)
5548                 goto out_put;
5549
5550         /*
5551          * No other mmap()s, detach from all other events that might redirect
5552          * into the now unreachable buffer. Somewhat complicated by the
5553          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5554          */
5555 again:
5556         rcu_read_lock();
5557         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5558                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5559                         /*
5560                          * This event is en-route to free_event() which will
5561                          * detach it and remove it from the list.
5562                          */
5563                         continue;
5564                 }
5565                 rcu_read_unlock();
5566
5567                 mutex_lock(&event->mmap_mutex);
5568                 /*
5569                  * Check we didn't race with perf_event_set_output() which can
5570                  * swizzle the rb from under us while we were waiting to
5571                  * acquire mmap_mutex.
5572                  *
5573                  * If we find a different rb; ignore this event, a next
5574                  * iteration will no longer find it on the list. We have to
5575                  * still restart the iteration to make sure we're not now
5576                  * iterating the wrong list.
5577                  */
5578                 if (event->rb == rb)
5579                         ring_buffer_attach(event, NULL);
5580
5581                 mutex_unlock(&event->mmap_mutex);
5582                 put_event(event);
5583
5584                 /*
5585                  * Restart the iteration; either we're on the wrong list or
5586                  * destroyed its integrity by doing a deletion.
5587                  */
5588                 goto again;
5589         }
5590         rcu_read_unlock();
5591
5592         /*
5593          * It could be there's still a few 0-ref events on the list; they'll
5594          * get cleaned up by free_event() -- they'll also still have their
5595          * ref on the rb and will free it whenever they are done with it.
5596          *
5597          * Aside from that, this buffer is 'fully' detached and unmapped,
5598          * undo the VM accounting.
5599          */
5600
5601         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5602         vma->vm_mm->pinned_vm -= mmap_locked;
5603         free_uid(mmap_user);
5604
5605 out_put:
5606         ring_buffer_put(rb); /* could be last */
5607 }
5608
5609 static const struct vm_operations_struct perf_mmap_vmops = {
5610         .open           = perf_mmap_open,
5611         .close          = perf_mmap_close, /* non mergable */
5612         .fault          = perf_mmap_fault,
5613         .page_mkwrite   = perf_mmap_fault,
5614 };
5615
5616 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5617 {
5618         struct perf_event *event = file->private_data;
5619         unsigned long user_locked, user_lock_limit;
5620         struct user_struct *user = current_user();
5621         unsigned long locked, lock_limit;
5622         struct ring_buffer *rb = NULL;
5623         unsigned long vma_size;
5624         unsigned long nr_pages;
5625         long user_extra = 0, extra = 0;
5626         int ret = 0, flags = 0;
5627
5628         /*
5629          * Don't allow mmap() of inherited per-task counters. This would
5630          * create a performance issue due to all children writing to the
5631          * same rb.
5632          */
5633         if (event->cpu == -1 && event->attr.inherit)
5634                 return -EINVAL;
5635
5636         if (!(vma->vm_flags & VM_SHARED))
5637                 return -EINVAL;
5638
5639         vma_size = vma->vm_end - vma->vm_start;
5640
5641         if (vma->vm_pgoff == 0) {
5642                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5643         } else {
5644                 /*
5645                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5646                  * mapped, all subsequent mappings should have the same size
5647                  * and offset. Must be above the normal perf buffer.
5648                  */
5649                 u64 aux_offset, aux_size;
5650
5651                 if (!event->rb)
5652                         return -EINVAL;
5653
5654                 nr_pages = vma_size / PAGE_SIZE;
5655
5656                 mutex_lock(&event->mmap_mutex);
5657                 ret = -EINVAL;
5658
5659                 rb = event->rb;
5660                 if (!rb)
5661                         goto aux_unlock;
5662
5663                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5664                 aux_size = READ_ONCE(rb->user_page->aux_size);
5665
5666                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5667                         goto aux_unlock;
5668
5669                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5670                         goto aux_unlock;
5671
5672                 /* already mapped with a different offset */
5673                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5674                         goto aux_unlock;
5675
5676                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5677                         goto aux_unlock;
5678
5679                 /* already mapped with a different size */
5680                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5681                         goto aux_unlock;
5682
5683                 if (!is_power_of_2(nr_pages))
5684                         goto aux_unlock;
5685
5686                 if (!atomic_inc_not_zero(&rb->mmap_count))
5687                         goto aux_unlock;
5688
5689                 if (rb_has_aux(rb)) {
5690                         atomic_inc(&rb->aux_mmap_count);
5691                         ret = 0;
5692                         goto unlock;
5693                 }
5694
5695                 atomic_set(&rb->aux_mmap_count, 1);
5696                 user_extra = nr_pages;
5697
5698                 goto accounting;
5699         }
5700
5701         /*
5702          * If we have rb pages ensure they're a power-of-two number, so we
5703          * can do bitmasks instead of modulo.
5704          */
5705         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5706                 return -EINVAL;
5707
5708         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5709                 return -EINVAL;
5710
5711         WARN_ON_ONCE(event->ctx->parent_ctx);
5712 again:
5713         mutex_lock(&event->mmap_mutex);
5714         if (event->rb) {
5715                 if (event->rb->nr_pages != nr_pages) {
5716                         ret = -EINVAL;
5717                         goto unlock;
5718                 }
5719
5720                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5721                         /*
5722                          * Raced against perf_mmap_close() through
5723                          * perf_event_set_output(). Try again, hope for better
5724                          * luck.
5725                          */
5726                         mutex_unlock(&event->mmap_mutex);
5727                         goto again;
5728                 }
5729
5730                 goto unlock;
5731         }
5732
5733         user_extra = nr_pages + 1;
5734
5735 accounting:
5736         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5737
5738         /*
5739          * Increase the limit linearly with more CPUs:
5740          */
5741         user_lock_limit *= num_online_cpus();
5742
5743         user_locked = atomic_long_read(&user->locked_vm);
5744
5745         /*
5746          * sysctl_perf_event_mlock may have changed, so that
5747          *     user->locked_vm > user_lock_limit
5748          */
5749         if (user_locked > user_lock_limit)
5750                 user_locked = user_lock_limit;
5751         user_locked += user_extra;
5752
5753         if (user_locked > user_lock_limit)
5754                 extra = user_locked - user_lock_limit;
5755
5756         lock_limit = rlimit(RLIMIT_MEMLOCK);
5757         lock_limit >>= PAGE_SHIFT;
5758         locked = vma->vm_mm->pinned_vm + extra;
5759
5760         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5761                 !capable(CAP_IPC_LOCK)) {
5762                 ret = -EPERM;
5763                 goto unlock;
5764         }
5765
5766         WARN_ON(!rb && event->rb);
5767
5768         if (vma->vm_flags & VM_WRITE)
5769                 flags |= RING_BUFFER_WRITABLE;
5770
5771         if (!rb) {
5772                 rb = rb_alloc(nr_pages,
5773                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5774                               event->cpu, flags);
5775
5776                 if (!rb) {
5777                         ret = -ENOMEM;
5778                         goto unlock;
5779                 }
5780
5781                 atomic_set(&rb->mmap_count, 1);
5782                 rb->mmap_user = get_current_user();
5783                 rb->mmap_locked = extra;
5784
5785                 ring_buffer_attach(event, rb);
5786
5787                 perf_event_init_userpage(event);
5788                 perf_event_update_userpage(event);
5789         } else {
5790                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5791                                    event->attr.aux_watermark, flags);
5792                 if (!ret)
5793                         rb->aux_mmap_locked = extra;
5794         }
5795
5796 unlock:
5797         if (!ret) {
5798                 atomic_long_add(user_extra, &user->locked_vm);
5799                 vma->vm_mm->pinned_vm += extra;
5800
5801                 atomic_inc(&event->mmap_count);
5802         } else if (rb) {
5803                 atomic_dec(&rb->mmap_count);
5804         }
5805 aux_unlock:
5806         mutex_unlock(&event->mmap_mutex);
5807
5808         /*
5809          * Since pinned accounting is per vm we cannot allow fork() to copy our
5810          * vma.
5811          */
5812         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5813         vma->vm_ops = &perf_mmap_vmops;
5814
5815         if (event->pmu->event_mapped)
5816                 event->pmu->event_mapped(event, vma->vm_mm);
5817
5818         return ret;
5819 }
5820
5821 static int perf_fasync(int fd, struct file *filp, int on)
5822 {
5823         struct inode *inode = file_inode(filp);
5824         struct perf_event *event = filp->private_data;
5825         int retval;
5826
5827         inode_lock(inode);
5828         retval = fasync_helper(fd, filp, on, &event->fasync);
5829         inode_unlock(inode);
5830
5831         if (retval < 0)
5832                 return retval;
5833
5834         return 0;
5835 }
5836
5837 static const struct file_operations perf_fops = {
5838         .llseek                 = no_llseek,
5839         .release                = perf_release,
5840         .read                   = perf_read,
5841         .poll                   = perf_poll,
5842         .unlocked_ioctl         = perf_ioctl,
5843         .compat_ioctl           = perf_compat_ioctl,
5844         .mmap                   = perf_mmap,
5845         .fasync                 = perf_fasync,
5846 };
5847
5848 /*
5849  * Perf event wakeup
5850  *
5851  * If there's data, ensure we set the poll() state and publish everything
5852  * to user-space before waking everybody up.
5853  */
5854
5855 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5856 {
5857         /* only the parent has fasync state */
5858         if (event->parent)
5859                 event = event->parent;
5860         return &event->fasync;
5861 }
5862
5863 void perf_event_wakeup(struct perf_event *event)
5864 {
5865         ring_buffer_wakeup(event);
5866
5867         if (event->pending_kill) {
5868                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5869                 event->pending_kill = 0;
5870         }
5871 }
5872
5873 static void perf_pending_event_disable(struct perf_event *event)
5874 {
5875         int cpu = READ_ONCE(event->pending_disable);
5876
5877         if (cpu < 0)
5878                 return;
5879
5880         if (cpu == smp_processor_id()) {
5881                 WRITE_ONCE(event->pending_disable, -1);
5882                 perf_event_disable_local(event);
5883                 return;
5884         }
5885
5886         /*
5887          *  CPU-A                       CPU-B
5888          *
5889          *  perf_event_disable_inatomic()
5890          *    @pending_disable = CPU-A;
5891          *    irq_work_queue();
5892          *
5893          *  sched-out
5894          *    @pending_disable = -1;
5895          *
5896          *                              sched-in
5897          *                              perf_event_disable_inatomic()
5898          *                                @pending_disable = CPU-B;
5899          *                                irq_work_queue(); // FAILS
5900          *
5901          *  irq_work_run()
5902          *    perf_pending_event()
5903          *
5904          * But the event runs on CPU-B and wants disabling there.
5905          */
5906         irq_work_queue_on(&event->pending, cpu);
5907 }
5908
5909 static void perf_pending_event(struct irq_work *entry)
5910 {
5911         struct perf_event *event = container_of(entry, struct perf_event, pending);
5912         int rctx;
5913
5914         rctx = perf_swevent_get_recursion_context();
5915         /*
5916          * If we 'fail' here, that's OK, it means recursion is already disabled
5917          * and we won't recurse 'further'.
5918          */
5919
5920         perf_pending_event_disable(event);
5921
5922         if (event->pending_wakeup) {
5923                 event->pending_wakeup = 0;
5924                 perf_event_wakeup(event);
5925         }
5926
5927         if (rctx >= 0)
5928                 perf_swevent_put_recursion_context(rctx);
5929 }
5930
5931 /*
5932  * We assume there is only KVM supporting the callbacks.
5933  * Later on, we might change it to a list if there is
5934  * another virtualization implementation supporting the callbacks.
5935  */
5936 struct perf_guest_info_callbacks *perf_guest_cbs;
5937
5938 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5939 {
5940         perf_guest_cbs = cbs;
5941         return 0;
5942 }
5943 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5944
5945 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5946 {
5947         perf_guest_cbs = NULL;
5948         return 0;
5949 }
5950 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5951
5952 static void
5953 perf_output_sample_regs(struct perf_output_handle *handle,
5954                         struct pt_regs *regs, u64 mask)
5955 {
5956         int bit;
5957         DECLARE_BITMAP(_mask, 64);
5958
5959         bitmap_from_u64(_mask, mask);
5960         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5961                 u64 val;
5962
5963                 val = perf_reg_value(regs, bit);
5964                 perf_output_put(handle, val);
5965         }
5966 }
5967
5968 static void perf_sample_regs_user(struct perf_regs *regs_user,
5969                                   struct pt_regs *regs,
5970                                   struct pt_regs *regs_user_copy)
5971 {
5972         if (user_mode(regs)) {
5973                 regs_user->abi = perf_reg_abi(current);
5974                 regs_user->regs = regs;
5975         } else if (!(current->flags & PF_KTHREAD)) {
5976                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5977         } else {
5978                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5979                 regs_user->regs = NULL;
5980         }
5981 }
5982
5983 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5984                                   struct pt_regs *regs)
5985 {
5986         regs_intr->regs = regs;
5987         regs_intr->abi  = perf_reg_abi(current);
5988 }
5989
5990
5991 /*
5992  * Get remaining task size from user stack pointer.
5993  *
5994  * It'd be better to take stack vma map and limit this more
5995  * precisly, but there's no way to get it safely under interrupt,
5996  * so using TASK_SIZE as limit.
5997  */
5998 static u64 perf_ustack_task_size(struct pt_regs *regs)
5999 {
6000         unsigned long addr = perf_user_stack_pointer(regs);
6001
6002         if (!addr || addr >= TASK_SIZE)
6003                 return 0;
6004
6005         return TASK_SIZE - addr;
6006 }
6007
6008 static u16
6009 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6010                         struct pt_regs *regs)
6011 {
6012         u64 task_size;
6013
6014         /* No regs, no stack pointer, no dump. */
6015         if (!regs)
6016                 return 0;
6017
6018         /*
6019          * Check if we fit in with the requested stack size into the:
6020          * - TASK_SIZE
6021          *   If we don't, we limit the size to the TASK_SIZE.
6022          *
6023          * - remaining sample size
6024          *   If we don't, we customize the stack size to
6025          *   fit in to the remaining sample size.
6026          */
6027
6028         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6029         stack_size = min(stack_size, (u16) task_size);
6030
6031         /* Current header size plus static size and dynamic size. */
6032         header_size += 2 * sizeof(u64);
6033
6034         /* Do we fit in with the current stack dump size? */
6035         if ((u16) (header_size + stack_size) < header_size) {
6036                 /*
6037                  * If we overflow the maximum size for the sample,
6038                  * we customize the stack dump size to fit in.
6039                  */
6040                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6041                 stack_size = round_up(stack_size, sizeof(u64));
6042         }
6043
6044         return stack_size;
6045 }
6046
6047 static void
6048 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6049                           struct pt_regs *regs)
6050 {
6051         /* Case of a kernel thread, nothing to dump */
6052         if (!regs) {
6053                 u64 size = 0;
6054                 perf_output_put(handle, size);
6055         } else {
6056                 unsigned long sp;
6057                 unsigned int rem;
6058                 u64 dyn_size;
6059                 mm_segment_t fs;
6060
6061                 /*
6062                  * We dump:
6063                  * static size
6064                  *   - the size requested by user or the best one we can fit
6065                  *     in to the sample max size
6066                  * data
6067                  *   - user stack dump data
6068                  * dynamic size
6069                  *   - the actual dumped size
6070                  */
6071
6072                 /* Static size. */
6073                 perf_output_put(handle, dump_size);
6074
6075                 /* Data. */
6076                 sp = perf_user_stack_pointer(regs);
6077                 fs = get_fs();
6078                 set_fs(USER_DS);
6079                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6080                 set_fs(fs);
6081                 dyn_size = dump_size - rem;
6082
6083                 perf_output_skip(handle, rem);
6084
6085                 /* Dynamic size. */
6086                 perf_output_put(handle, dyn_size);
6087         }
6088 }
6089
6090 static void __perf_event_header__init_id(struct perf_event_header *header,
6091                                          struct perf_sample_data *data,
6092                                          struct perf_event *event)
6093 {
6094         u64 sample_type = event->attr.sample_type;
6095
6096         data->type = sample_type;
6097         header->size += event->id_header_size;
6098
6099         if (sample_type & PERF_SAMPLE_TID) {
6100                 /* namespace issues */
6101                 data->tid_entry.pid = perf_event_pid(event, current);
6102                 data->tid_entry.tid = perf_event_tid(event, current);
6103         }
6104
6105         if (sample_type & PERF_SAMPLE_TIME)
6106                 data->time = perf_event_clock(event);
6107
6108         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6109                 data->id = primary_event_id(event);
6110
6111         if (sample_type & PERF_SAMPLE_STREAM_ID)
6112                 data->stream_id = event->id;
6113
6114         if (sample_type & PERF_SAMPLE_CPU) {
6115                 data->cpu_entry.cpu      = raw_smp_processor_id();
6116                 data->cpu_entry.reserved = 0;
6117         }
6118 }
6119
6120 void perf_event_header__init_id(struct perf_event_header *header,
6121                                 struct perf_sample_data *data,
6122                                 struct perf_event *event)
6123 {
6124         if (event->attr.sample_id_all)
6125                 __perf_event_header__init_id(header, data, event);
6126 }
6127
6128 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6129                                            struct perf_sample_data *data)
6130 {
6131         u64 sample_type = data->type;
6132
6133         if (sample_type & PERF_SAMPLE_TID)
6134                 perf_output_put(handle, data->tid_entry);
6135
6136         if (sample_type & PERF_SAMPLE_TIME)
6137                 perf_output_put(handle, data->time);
6138
6139         if (sample_type & PERF_SAMPLE_ID)
6140                 perf_output_put(handle, data->id);
6141
6142         if (sample_type & PERF_SAMPLE_STREAM_ID)
6143                 perf_output_put(handle, data->stream_id);
6144
6145         if (sample_type & PERF_SAMPLE_CPU)
6146                 perf_output_put(handle, data->cpu_entry);
6147
6148         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6149                 perf_output_put(handle, data->id);
6150 }
6151
6152 void perf_event__output_id_sample(struct perf_event *event,
6153                                   struct perf_output_handle *handle,
6154                                   struct perf_sample_data *sample)
6155 {
6156         if (event->attr.sample_id_all)
6157                 __perf_event__output_id_sample(handle, sample);
6158 }
6159
6160 static void perf_output_read_one(struct perf_output_handle *handle,
6161                                  struct perf_event *event,
6162                                  u64 enabled, u64 running)
6163 {
6164         u64 read_format = event->attr.read_format;
6165         u64 values[4];
6166         int n = 0;
6167
6168         values[n++] = perf_event_count(event);
6169         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6170                 values[n++] = enabled +
6171                         atomic64_read(&event->child_total_time_enabled);
6172         }
6173         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6174                 values[n++] = running +
6175                         atomic64_read(&event->child_total_time_running);
6176         }
6177         if (read_format & PERF_FORMAT_ID)
6178                 values[n++] = primary_event_id(event);
6179
6180         __output_copy(handle, values, n * sizeof(u64));
6181 }
6182
6183 static void perf_output_read_group(struct perf_output_handle *handle,
6184                             struct perf_event *event,
6185                             u64 enabled, u64 running)
6186 {
6187         struct perf_event *leader = event->group_leader, *sub;
6188         u64 read_format = event->attr.read_format;
6189         u64 values[5];
6190         int n = 0;
6191
6192         values[n++] = 1 + leader->nr_siblings;
6193
6194         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6195                 values[n++] = enabled;
6196
6197         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6198                 values[n++] = running;
6199
6200         if ((leader != event) &&
6201             (leader->state == PERF_EVENT_STATE_ACTIVE))
6202                 leader->pmu->read(leader);
6203
6204         values[n++] = perf_event_count(leader);
6205         if (read_format & PERF_FORMAT_ID)
6206                 values[n++] = primary_event_id(leader);
6207
6208         __output_copy(handle, values, n * sizeof(u64));
6209
6210         for_each_sibling_event(sub, leader) {
6211                 n = 0;
6212
6213                 if ((sub != event) &&
6214                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6215                         sub->pmu->read(sub);
6216
6217                 values[n++] = perf_event_count(sub);
6218                 if (read_format & PERF_FORMAT_ID)
6219                         values[n++] = primary_event_id(sub);
6220
6221                 __output_copy(handle, values, n * sizeof(u64));
6222         }
6223 }
6224
6225 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6226                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6227
6228 /*
6229  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6230  *
6231  * The problem is that its both hard and excessively expensive to iterate the
6232  * child list, not to mention that its impossible to IPI the children running
6233  * on another CPU, from interrupt/NMI context.
6234  */
6235 static void perf_output_read(struct perf_output_handle *handle,
6236                              struct perf_event *event)
6237 {
6238         u64 enabled = 0, running = 0, now;
6239         u64 read_format = event->attr.read_format;
6240
6241         /*
6242          * compute total_time_enabled, total_time_running
6243          * based on snapshot values taken when the event
6244          * was last scheduled in.
6245          *
6246          * we cannot simply called update_context_time()
6247          * because of locking issue as we are called in
6248          * NMI context
6249          */
6250         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6251                 calc_timer_values(event, &now, &enabled, &running);
6252
6253         if (event->attr.read_format & PERF_FORMAT_GROUP)
6254                 perf_output_read_group(handle, event, enabled, running);
6255         else
6256                 perf_output_read_one(handle, event, enabled, running);
6257 }
6258
6259 void perf_output_sample(struct perf_output_handle *handle,
6260                         struct perf_event_header *header,
6261                         struct perf_sample_data *data,
6262                         struct perf_event *event)
6263 {
6264         u64 sample_type = data->type;
6265
6266         perf_output_put(handle, *header);
6267
6268         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6269                 perf_output_put(handle, data->id);
6270
6271         if (sample_type & PERF_SAMPLE_IP)
6272                 perf_output_put(handle, data->ip);
6273
6274         if (sample_type & PERF_SAMPLE_TID)
6275                 perf_output_put(handle, data->tid_entry);
6276
6277         if (sample_type & PERF_SAMPLE_TIME)
6278                 perf_output_put(handle, data->time);
6279
6280         if (sample_type & PERF_SAMPLE_ADDR)
6281                 perf_output_put(handle, data->addr);
6282
6283         if (sample_type & PERF_SAMPLE_ID)
6284                 perf_output_put(handle, data->id);
6285
6286         if (sample_type & PERF_SAMPLE_STREAM_ID)
6287                 perf_output_put(handle, data->stream_id);
6288
6289         if (sample_type & PERF_SAMPLE_CPU)
6290                 perf_output_put(handle, data->cpu_entry);
6291
6292         if (sample_type & PERF_SAMPLE_PERIOD)
6293                 perf_output_put(handle, data->period);
6294
6295         if (sample_type & PERF_SAMPLE_READ)
6296                 perf_output_read(handle, event);
6297
6298         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6299                 int size = 1;
6300
6301                 size += data->callchain->nr;
6302                 size *= sizeof(u64);
6303                 __output_copy(handle, data->callchain, size);
6304         }
6305
6306         if (sample_type & PERF_SAMPLE_RAW) {
6307                 struct perf_raw_record *raw = data->raw;
6308
6309                 if (raw) {
6310                         struct perf_raw_frag *frag = &raw->frag;
6311
6312                         perf_output_put(handle, raw->size);
6313                         do {
6314                                 if (frag->copy) {
6315                                         __output_custom(handle, frag->copy,
6316                                                         frag->data, frag->size);
6317                                 } else {
6318                                         __output_copy(handle, frag->data,
6319                                                       frag->size);
6320                                 }
6321                                 if (perf_raw_frag_last(frag))
6322                                         break;
6323                                 frag = frag->next;
6324                         } while (1);
6325                         if (frag->pad)
6326                                 __output_skip(handle, NULL, frag->pad);
6327                 } else {
6328                         struct {
6329                                 u32     size;
6330                                 u32     data;
6331                         } raw = {
6332                                 .size = sizeof(u32),
6333                                 .data = 0,
6334                         };
6335                         perf_output_put(handle, raw);
6336                 }
6337         }
6338
6339         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6340                 if (data->br_stack) {
6341                         size_t size;
6342
6343                         size = data->br_stack->nr
6344                              * sizeof(struct perf_branch_entry);
6345
6346                         perf_output_put(handle, data->br_stack->nr);
6347                         perf_output_copy(handle, data->br_stack->entries, size);
6348                 } else {
6349                         /*
6350                          * we always store at least the value of nr
6351                          */
6352                         u64 nr = 0;
6353                         perf_output_put(handle, nr);
6354                 }
6355         }
6356
6357         if (sample_type & PERF_SAMPLE_REGS_USER) {
6358                 u64 abi = data->regs_user.abi;
6359
6360                 /*
6361                  * If there are no regs to dump, notice it through
6362                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6363                  */
6364                 perf_output_put(handle, abi);
6365
6366                 if (abi) {
6367                         u64 mask = event->attr.sample_regs_user;
6368                         perf_output_sample_regs(handle,
6369                                                 data->regs_user.regs,
6370                                                 mask);
6371                 }
6372         }
6373
6374         if (sample_type & PERF_SAMPLE_STACK_USER) {
6375                 perf_output_sample_ustack(handle,
6376                                           data->stack_user_size,
6377                                           data->regs_user.regs);
6378         }
6379
6380         if (sample_type & PERF_SAMPLE_WEIGHT)
6381                 perf_output_put(handle, data->weight);
6382
6383         if (sample_type & PERF_SAMPLE_DATA_SRC)
6384                 perf_output_put(handle, data->data_src.val);
6385
6386         if (sample_type & PERF_SAMPLE_TRANSACTION)
6387                 perf_output_put(handle, data->txn);
6388
6389         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6390                 u64 abi = data->regs_intr.abi;
6391                 /*
6392                  * If there are no regs to dump, notice it through
6393                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6394                  */
6395                 perf_output_put(handle, abi);
6396
6397                 if (abi) {
6398                         u64 mask = event->attr.sample_regs_intr;
6399
6400                         perf_output_sample_regs(handle,
6401                                                 data->regs_intr.regs,
6402                                                 mask);
6403                 }
6404         }
6405
6406         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6407                 perf_output_put(handle, data->phys_addr);
6408
6409         if (!event->attr.watermark) {
6410                 int wakeup_events = event->attr.wakeup_events;
6411
6412                 if (wakeup_events) {
6413                         struct ring_buffer *rb = handle->rb;
6414                         int events = local_inc_return(&rb->events);
6415
6416                         if (events >= wakeup_events) {
6417                                 local_sub(wakeup_events, &rb->events);
6418                                 local_inc(&rb->wakeup);
6419                         }
6420                 }
6421         }
6422 }
6423
6424 static u64 perf_virt_to_phys(u64 virt)
6425 {
6426         u64 phys_addr = 0;
6427         struct page *p = NULL;
6428
6429         if (!virt)
6430                 return 0;
6431
6432         if (virt >= TASK_SIZE) {
6433                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6434                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6435                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6436                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6437         } else {
6438                 /*
6439                  * Walking the pages tables for user address.
6440                  * Interrupts are disabled, so it prevents any tear down
6441                  * of the page tables.
6442                  * Try IRQ-safe __get_user_pages_fast first.
6443                  * If failed, leave phys_addr as 0.
6444                  */
6445                 if (current->mm != NULL) {
6446                         pagefault_disable();
6447                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6448                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6449                         pagefault_enable();
6450                 }
6451
6452                 if (p)
6453                         put_page(p);
6454         }
6455
6456         return phys_addr;
6457 }
6458
6459 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6460
6461 struct perf_callchain_entry *
6462 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6463 {
6464         bool kernel = !event->attr.exclude_callchain_kernel;
6465         bool user   = !event->attr.exclude_callchain_user;
6466         /* Disallow cross-task user callchains. */
6467         bool crosstask = event->ctx->task && event->ctx->task != current;
6468         const u32 max_stack = event->attr.sample_max_stack;
6469         struct perf_callchain_entry *callchain;
6470
6471         if (!kernel && !user)
6472                 return &__empty_callchain;
6473
6474         callchain = get_perf_callchain(regs, 0, kernel, user,
6475                                        max_stack, crosstask, true);
6476         return callchain ?: &__empty_callchain;
6477 }
6478
6479 void perf_prepare_sample(struct perf_event_header *header,
6480                          struct perf_sample_data *data,
6481                          struct perf_event *event,
6482                          struct pt_regs *regs)
6483 {
6484         u64 sample_type = event->attr.sample_type;
6485
6486         header->type = PERF_RECORD_SAMPLE;
6487         header->size = sizeof(*header) + event->header_size;
6488
6489         header->misc = 0;
6490         header->misc |= perf_misc_flags(regs);
6491
6492         __perf_event_header__init_id(header, data, event);
6493
6494         if (sample_type & PERF_SAMPLE_IP)
6495                 data->ip = perf_instruction_pointer(regs);
6496
6497         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6498                 int size = 1;
6499
6500                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6501                         data->callchain = perf_callchain(event, regs);
6502
6503                 size += data->callchain->nr;
6504
6505                 header->size += size * sizeof(u64);
6506         }
6507
6508         if (sample_type & PERF_SAMPLE_RAW) {
6509                 struct perf_raw_record *raw = data->raw;
6510                 int size;
6511
6512                 if (raw) {
6513                         struct perf_raw_frag *frag = &raw->frag;
6514                         u32 sum = 0;
6515
6516                         do {
6517                                 sum += frag->size;
6518                                 if (perf_raw_frag_last(frag))
6519                                         break;
6520                                 frag = frag->next;
6521                         } while (1);
6522
6523                         size = round_up(sum + sizeof(u32), sizeof(u64));
6524                         raw->size = size - sizeof(u32);
6525                         frag->pad = raw->size - sum;
6526                 } else {
6527                         size = sizeof(u64);
6528                 }
6529
6530                 header->size += size;
6531         }
6532
6533         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6534                 int size = sizeof(u64); /* nr */
6535                 if (data->br_stack) {
6536                         size += data->br_stack->nr
6537                               * sizeof(struct perf_branch_entry);
6538                 }
6539                 header->size += size;
6540         }
6541
6542         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6543                 perf_sample_regs_user(&data->regs_user, regs,
6544                                       &data->regs_user_copy);
6545
6546         if (sample_type & PERF_SAMPLE_REGS_USER) {
6547                 /* regs dump ABI info */
6548                 int size = sizeof(u64);
6549
6550                 if (data->regs_user.regs) {
6551                         u64 mask = event->attr.sample_regs_user;
6552                         size += hweight64(mask) * sizeof(u64);
6553                 }
6554
6555                 header->size += size;
6556         }
6557
6558         if (sample_type & PERF_SAMPLE_STACK_USER) {
6559                 /*
6560                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6561                  * processed as the last one or have additional check added
6562                  * in case new sample type is added, because we could eat
6563                  * up the rest of the sample size.
6564                  */
6565                 u16 stack_size = event->attr.sample_stack_user;
6566                 u16 size = sizeof(u64);
6567
6568                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6569                                                      data->regs_user.regs);
6570
6571                 /*
6572                  * If there is something to dump, add space for the dump
6573                  * itself and for the field that tells the dynamic size,
6574                  * which is how many have been actually dumped.
6575                  */
6576                 if (stack_size)
6577                         size += sizeof(u64) + stack_size;
6578
6579                 data->stack_user_size = stack_size;
6580                 header->size += size;
6581         }
6582
6583         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6584                 /* regs dump ABI info */
6585                 int size = sizeof(u64);
6586
6587                 perf_sample_regs_intr(&data->regs_intr, regs);
6588
6589                 if (data->regs_intr.regs) {
6590                         u64 mask = event->attr.sample_regs_intr;
6591
6592                         size += hweight64(mask) * sizeof(u64);
6593                 }
6594
6595                 header->size += size;
6596         }
6597
6598         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6599                 data->phys_addr = perf_virt_to_phys(data->addr);
6600 }
6601
6602 static __always_inline void
6603 __perf_event_output(struct perf_event *event,
6604                     struct perf_sample_data *data,
6605                     struct pt_regs *regs,
6606                     int (*output_begin)(struct perf_output_handle *,
6607                                         struct perf_event *,
6608                                         unsigned int))
6609 {
6610         struct perf_output_handle handle;
6611         struct perf_event_header header;
6612
6613         /* protect the callchain buffers */
6614         rcu_read_lock();
6615
6616         perf_prepare_sample(&header, data, event, regs);
6617
6618         if (output_begin(&handle, event, header.size))
6619                 goto exit;
6620
6621         perf_output_sample(&handle, &header, data, event);
6622
6623         perf_output_end(&handle);
6624
6625 exit:
6626         rcu_read_unlock();
6627 }
6628
6629 void
6630 perf_event_output_forward(struct perf_event *event,
6631                          struct perf_sample_data *data,
6632                          struct pt_regs *regs)
6633 {
6634         __perf_event_output(event, data, regs, perf_output_begin_forward);
6635 }
6636
6637 void
6638 perf_event_output_backward(struct perf_event *event,
6639                            struct perf_sample_data *data,
6640                            struct pt_regs *regs)
6641 {
6642         __perf_event_output(event, data, regs, perf_output_begin_backward);
6643 }
6644
6645 void
6646 perf_event_output(struct perf_event *event,
6647                   struct perf_sample_data *data,
6648                   struct pt_regs *regs)
6649 {
6650         __perf_event_output(event, data, regs, perf_output_begin);
6651 }
6652
6653 /*
6654  * read event_id
6655  */
6656
6657 struct perf_read_event {
6658         struct perf_event_header        header;
6659
6660         u32                             pid;
6661         u32                             tid;
6662 };
6663
6664 static void
6665 perf_event_read_event(struct perf_event *event,
6666                         struct task_struct *task)
6667 {
6668         struct perf_output_handle handle;
6669         struct perf_sample_data sample;
6670         struct perf_read_event read_event = {
6671                 .header = {
6672                         .type = PERF_RECORD_READ,
6673                         .misc = 0,
6674                         .size = sizeof(read_event) + event->read_size,
6675                 },
6676                 .pid = perf_event_pid(event, task),
6677                 .tid = perf_event_tid(event, task),
6678         };
6679         int ret;
6680
6681         perf_event_header__init_id(&read_event.header, &sample, event);
6682         ret = perf_output_begin(&handle, event, read_event.header.size);
6683         if (ret)
6684                 return;
6685
6686         perf_output_put(&handle, read_event);
6687         perf_output_read(&handle, event);
6688         perf_event__output_id_sample(event, &handle, &sample);
6689
6690         perf_output_end(&handle);
6691 }
6692
6693 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6694
6695 static void
6696 perf_iterate_ctx(struct perf_event_context *ctx,
6697                    perf_iterate_f output,
6698                    void *data, bool all)
6699 {
6700         struct perf_event *event;
6701
6702         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6703                 if (!all) {
6704                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6705                                 continue;
6706                         if (!event_filter_match(event))
6707                                 continue;
6708                 }
6709
6710                 output(event, data);
6711         }
6712 }
6713
6714 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6715 {
6716         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6717         struct perf_event *event;
6718
6719         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6720                 /*
6721                  * Skip events that are not fully formed yet; ensure that
6722                  * if we observe event->ctx, both event and ctx will be
6723                  * complete enough. See perf_install_in_context().
6724                  */
6725                 if (!smp_load_acquire(&event->ctx))
6726                         continue;
6727
6728                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6729                         continue;
6730                 if (!event_filter_match(event))
6731                         continue;
6732                 output(event, data);
6733         }
6734 }
6735
6736 /*
6737  * Iterate all events that need to receive side-band events.
6738  *
6739  * For new callers; ensure that account_pmu_sb_event() includes
6740  * your event, otherwise it might not get delivered.
6741  */
6742 static void
6743 perf_iterate_sb(perf_iterate_f output, void *data,
6744                struct perf_event_context *task_ctx)
6745 {
6746         struct perf_event_context *ctx;
6747         int ctxn;
6748
6749         rcu_read_lock();
6750         preempt_disable();
6751
6752         /*
6753          * If we have task_ctx != NULL we only notify the task context itself.
6754          * The task_ctx is set only for EXIT events before releasing task
6755          * context.
6756          */
6757         if (task_ctx) {
6758                 perf_iterate_ctx(task_ctx, output, data, false);
6759                 goto done;
6760         }
6761
6762         perf_iterate_sb_cpu(output, data);
6763
6764         for_each_task_context_nr(ctxn) {
6765                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6766                 if (ctx)
6767                         perf_iterate_ctx(ctx, output, data, false);
6768         }
6769 done:
6770         preempt_enable();
6771         rcu_read_unlock();
6772 }
6773
6774 /*
6775  * Clear all file-based filters at exec, they'll have to be
6776  * re-instated when/if these objects are mmapped again.
6777  */
6778 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6779 {
6780         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6781         struct perf_addr_filter *filter;
6782         unsigned int restart = 0, count = 0;
6783         unsigned long flags;
6784
6785         if (!has_addr_filter(event))
6786                 return;
6787
6788         raw_spin_lock_irqsave(&ifh->lock, flags);
6789         list_for_each_entry(filter, &ifh->list, entry) {
6790                 if (filter->path.dentry) {
6791                         event->addr_filter_ranges[count].start = 0;
6792                         event->addr_filter_ranges[count].size = 0;
6793                         restart++;
6794                 }
6795
6796                 count++;
6797         }
6798
6799         if (restart)
6800                 event->addr_filters_gen++;
6801         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6802
6803         if (restart)
6804                 perf_event_stop(event, 1);
6805 }
6806
6807 void perf_event_exec(void)
6808 {
6809         struct perf_event_context *ctx;
6810         int ctxn;
6811
6812         rcu_read_lock();
6813         for_each_task_context_nr(ctxn) {
6814                 ctx = current->perf_event_ctxp[ctxn];
6815                 if (!ctx)
6816                         continue;
6817
6818                 perf_event_enable_on_exec(ctxn);
6819
6820                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6821                                    true);
6822         }
6823         rcu_read_unlock();
6824 }
6825
6826 struct remote_output {
6827         struct ring_buffer      *rb;
6828         int                     err;
6829 };
6830
6831 static void __perf_event_output_stop(struct perf_event *event, void *data)
6832 {
6833         struct perf_event *parent = event->parent;
6834         struct remote_output *ro = data;
6835         struct ring_buffer *rb = ro->rb;
6836         struct stop_event_data sd = {
6837                 .event  = event,
6838         };
6839
6840         if (!has_aux(event))
6841                 return;
6842
6843         if (!parent)
6844                 parent = event;
6845
6846         /*
6847          * In case of inheritance, it will be the parent that links to the
6848          * ring-buffer, but it will be the child that's actually using it.
6849          *
6850          * We are using event::rb to determine if the event should be stopped,
6851          * however this may race with ring_buffer_attach() (through set_output),
6852          * which will make us skip the event that actually needs to be stopped.
6853          * So ring_buffer_attach() has to stop an aux event before re-assigning
6854          * its rb pointer.
6855          */
6856         if (rcu_dereference(parent->rb) == rb)
6857                 ro->err = __perf_event_stop(&sd);
6858 }
6859
6860 static int __perf_pmu_output_stop(void *info)
6861 {
6862         struct perf_event *event = info;
6863         struct pmu *pmu = event->ctx->pmu;
6864         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6865         struct remote_output ro = {
6866                 .rb     = event->rb,
6867         };
6868
6869         rcu_read_lock();
6870         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6871         if (cpuctx->task_ctx)
6872                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6873                                    &ro, false);
6874         rcu_read_unlock();
6875
6876         return ro.err;
6877 }
6878
6879 static void perf_pmu_output_stop(struct perf_event *event)
6880 {
6881         struct perf_event *iter;
6882         int err, cpu;
6883
6884 restart:
6885         rcu_read_lock();
6886         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6887                 /*
6888                  * For per-CPU events, we need to make sure that neither they
6889                  * nor their children are running; for cpu==-1 events it's
6890                  * sufficient to stop the event itself if it's active, since
6891                  * it can't have children.
6892                  */
6893                 cpu = iter->cpu;
6894                 if (cpu == -1)
6895                         cpu = READ_ONCE(iter->oncpu);
6896
6897                 if (cpu == -1)
6898                         continue;
6899
6900                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6901                 if (err == -EAGAIN) {
6902                         rcu_read_unlock();
6903                         goto restart;
6904                 }
6905         }
6906         rcu_read_unlock();
6907 }
6908
6909 /*
6910  * task tracking -- fork/exit
6911  *
6912  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6913  */
6914
6915 struct perf_task_event {
6916         struct task_struct              *task;
6917         struct perf_event_context       *task_ctx;
6918
6919         struct {
6920                 struct perf_event_header        header;
6921
6922                 u32                             pid;
6923                 u32                             ppid;
6924                 u32                             tid;
6925                 u32                             ptid;
6926                 u64                             time;
6927         } event_id;
6928 };
6929
6930 static int perf_event_task_match(struct perf_event *event)
6931 {
6932         return event->attr.comm  || event->attr.mmap ||
6933                event->attr.mmap2 || event->attr.mmap_data ||
6934                event->attr.task;
6935 }
6936
6937 static void perf_event_task_output(struct perf_event *event,
6938                                    void *data)
6939 {
6940         struct perf_task_event *task_event = data;
6941         struct perf_output_handle handle;
6942         struct perf_sample_data sample;
6943         struct task_struct *task = task_event->task;
6944         int ret, size = task_event->event_id.header.size;
6945
6946         if (!perf_event_task_match(event))
6947                 return;
6948
6949         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6950
6951         ret = perf_output_begin(&handle, event,
6952                                 task_event->event_id.header.size);
6953         if (ret)
6954                 goto out;
6955
6956         task_event->event_id.pid = perf_event_pid(event, task);
6957         task_event->event_id.tid = perf_event_tid(event, task);
6958
6959         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
6960                 task_event->event_id.ppid = perf_event_pid(event,
6961                                                         task->real_parent);
6962                 task_event->event_id.ptid = perf_event_pid(event,
6963                                                         task->real_parent);
6964         } else {  /* PERF_RECORD_FORK */
6965                 task_event->event_id.ppid = perf_event_pid(event, current);
6966                 task_event->event_id.ptid = perf_event_tid(event, current);
6967         }
6968
6969         task_event->event_id.time = perf_event_clock(event);
6970
6971         perf_output_put(&handle, task_event->event_id);
6972
6973         perf_event__output_id_sample(event, &handle, &sample);
6974
6975         perf_output_end(&handle);
6976 out:
6977         task_event->event_id.header.size = size;
6978 }
6979
6980 static void perf_event_task(struct task_struct *task,
6981                               struct perf_event_context *task_ctx,
6982                               int new)
6983 {
6984         struct perf_task_event task_event;
6985
6986         if (!atomic_read(&nr_comm_events) &&
6987             !atomic_read(&nr_mmap_events) &&
6988             !atomic_read(&nr_task_events))
6989                 return;
6990
6991         task_event = (struct perf_task_event){
6992                 .task     = task,
6993                 .task_ctx = task_ctx,
6994                 .event_id    = {
6995                         .header = {
6996                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6997                                 .misc = 0,
6998                                 .size = sizeof(task_event.event_id),
6999                         },
7000                         /* .pid  */
7001                         /* .ppid */
7002                         /* .tid  */
7003                         /* .ptid */
7004                         /* .time */
7005                 },
7006         };
7007
7008         perf_iterate_sb(perf_event_task_output,
7009                        &task_event,
7010                        task_ctx);
7011 }
7012
7013 void perf_event_fork(struct task_struct *task)
7014 {
7015         perf_event_task(task, NULL, 1);
7016         perf_event_namespaces(task);
7017 }
7018
7019 /*
7020  * comm tracking
7021  */
7022
7023 struct perf_comm_event {
7024         struct task_struct      *task;
7025         char                    *comm;
7026         int                     comm_size;
7027
7028         struct {
7029                 struct perf_event_header        header;
7030
7031                 u32                             pid;
7032                 u32                             tid;
7033         } event_id;
7034 };
7035
7036 static int perf_event_comm_match(struct perf_event *event)
7037 {
7038         return event->attr.comm;
7039 }
7040
7041 static void perf_event_comm_output(struct perf_event *event,
7042                                    void *data)
7043 {
7044         struct perf_comm_event *comm_event = data;
7045         struct perf_output_handle handle;
7046         struct perf_sample_data sample;
7047         int size = comm_event->event_id.header.size;
7048         int ret;
7049
7050         if (!perf_event_comm_match(event))
7051                 return;
7052
7053         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7054         ret = perf_output_begin(&handle, event,
7055                                 comm_event->event_id.header.size);
7056
7057         if (ret)
7058                 goto out;
7059
7060         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7061         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7062
7063         perf_output_put(&handle, comm_event->event_id);
7064         __output_copy(&handle, comm_event->comm,
7065                                    comm_event->comm_size);
7066
7067         perf_event__output_id_sample(event, &handle, &sample);
7068
7069         perf_output_end(&handle);
7070 out:
7071         comm_event->event_id.header.size = size;
7072 }
7073
7074 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7075 {
7076         char comm[TASK_COMM_LEN];
7077         unsigned int size;
7078
7079         memset(comm, 0, sizeof(comm));
7080         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7081         size = ALIGN(strlen(comm)+1, sizeof(u64));
7082
7083         comm_event->comm = comm;
7084         comm_event->comm_size = size;
7085
7086         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7087
7088         perf_iterate_sb(perf_event_comm_output,
7089                        comm_event,
7090                        NULL);
7091 }
7092
7093 void perf_event_comm(struct task_struct *task, bool exec)
7094 {
7095         struct perf_comm_event comm_event;
7096
7097         if (!atomic_read(&nr_comm_events))
7098                 return;
7099
7100         comm_event = (struct perf_comm_event){
7101                 .task   = task,
7102                 /* .comm      */
7103                 /* .comm_size */
7104                 .event_id  = {
7105                         .header = {
7106                                 .type = PERF_RECORD_COMM,
7107                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7108                                 /* .size */
7109                         },
7110                         /* .pid */
7111                         /* .tid */
7112                 },
7113         };
7114
7115         perf_event_comm_event(&comm_event);
7116 }
7117
7118 /*
7119  * namespaces tracking
7120  */
7121
7122 struct perf_namespaces_event {
7123         struct task_struct              *task;
7124
7125         struct {
7126                 struct perf_event_header        header;
7127
7128                 u32                             pid;
7129                 u32                             tid;
7130                 u64                             nr_namespaces;
7131                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7132         } event_id;
7133 };
7134
7135 static int perf_event_namespaces_match(struct perf_event *event)
7136 {
7137         return event->attr.namespaces;
7138 }
7139
7140 static void perf_event_namespaces_output(struct perf_event *event,
7141                                          void *data)
7142 {
7143         struct perf_namespaces_event *namespaces_event = data;
7144         struct perf_output_handle handle;
7145         struct perf_sample_data sample;
7146         u16 header_size = namespaces_event->event_id.header.size;
7147         int ret;
7148
7149         if (!perf_event_namespaces_match(event))
7150                 return;
7151
7152         perf_event_header__init_id(&namespaces_event->event_id.header,
7153                                    &sample, event);
7154         ret = perf_output_begin(&handle, event,
7155                                 namespaces_event->event_id.header.size);
7156         if (ret)
7157                 goto out;
7158
7159         namespaces_event->event_id.pid = perf_event_pid(event,
7160                                                         namespaces_event->task);
7161         namespaces_event->event_id.tid = perf_event_tid(event,
7162                                                         namespaces_event->task);
7163
7164         perf_output_put(&handle, namespaces_event->event_id);
7165
7166         perf_event__output_id_sample(event, &handle, &sample);
7167
7168         perf_output_end(&handle);
7169 out:
7170         namespaces_event->event_id.header.size = header_size;
7171 }
7172
7173 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7174                                    struct task_struct *task,
7175                                    const struct proc_ns_operations *ns_ops)
7176 {
7177         struct path ns_path;
7178         struct inode *ns_inode;
7179         void *error;
7180
7181         error = ns_get_path(&ns_path, task, ns_ops);
7182         if (!error) {
7183                 ns_inode = ns_path.dentry->d_inode;
7184                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7185                 ns_link_info->ino = ns_inode->i_ino;
7186                 path_put(&ns_path);
7187         }
7188 }
7189
7190 void perf_event_namespaces(struct task_struct *task)
7191 {
7192         struct perf_namespaces_event namespaces_event;
7193         struct perf_ns_link_info *ns_link_info;
7194
7195         if (!atomic_read(&nr_namespaces_events))
7196                 return;
7197
7198         namespaces_event = (struct perf_namespaces_event){
7199                 .task   = task,
7200                 .event_id  = {
7201                         .header = {
7202                                 .type = PERF_RECORD_NAMESPACES,
7203                                 .misc = 0,
7204                                 .size = sizeof(namespaces_event.event_id),
7205                         },
7206                         /* .pid */
7207                         /* .tid */
7208                         .nr_namespaces = NR_NAMESPACES,
7209                         /* .link_info[NR_NAMESPACES] */
7210                 },
7211         };
7212
7213         ns_link_info = namespaces_event.event_id.link_info;
7214
7215         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7216                                task, &mntns_operations);
7217
7218 #ifdef CONFIG_USER_NS
7219         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7220                                task, &userns_operations);
7221 #endif
7222 #ifdef CONFIG_NET_NS
7223         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7224                                task, &netns_operations);
7225 #endif
7226 #ifdef CONFIG_UTS_NS
7227         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7228                                task, &utsns_operations);
7229 #endif
7230 #ifdef CONFIG_IPC_NS
7231         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7232                                task, &ipcns_operations);
7233 #endif
7234 #ifdef CONFIG_PID_NS
7235         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7236                                task, &pidns_operations);
7237 #endif
7238 #ifdef CONFIG_CGROUPS
7239         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7240                                task, &cgroupns_operations);
7241 #endif
7242
7243         perf_iterate_sb(perf_event_namespaces_output,
7244                         &namespaces_event,
7245                         NULL);
7246 }
7247
7248 /*
7249  * mmap tracking
7250  */
7251
7252 struct perf_mmap_event {
7253         struct vm_area_struct   *vma;
7254
7255         const char              *file_name;
7256         int                     file_size;
7257         int                     maj, min;
7258         u64                     ino;
7259         u64                     ino_generation;
7260         u32                     prot, flags;
7261
7262         struct {
7263                 struct perf_event_header        header;
7264
7265                 u32                             pid;
7266                 u32                             tid;
7267                 u64                             start;
7268                 u64                             len;
7269                 u64                             pgoff;
7270         } event_id;
7271 };
7272
7273 static int perf_event_mmap_match(struct perf_event *event,
7274                                  void *data)
7275 {
7276         struct perf_mmap_event *mmap_event = data;
7277         struct vm_area_struct *vma = mmap_event->vma;
7278         int executable = vma->vm_flags & VM_EXEC;
7279
7280         return (!executable && event->attr.mmap_data) ||
7281                (executable && (event->attr.mmap || event->attr.mmap2));
7282 }
7283
7284 static void perf_event_mmap_output(struct perf_event *event,
7285                                    void *data)
7286 {
7287         struct perf_mmap_event *mmap_event = data;
7288         struct perf_output_handle handle;
7289         struct perf_sample_data sample;
7290         int size = mmap_event->event_id.header.size;
7291         u32 type = mmap_event->event_id.header.type;
7292         int ret;
7293
7294         if (!perf_event_mmap_match(event, data))
7295                 return;
7296
7297         if (event->attr.mmap2) {
7298                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7299                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7300                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7301                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7302                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7303                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7304                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7305         }
7306
7307         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7308         ret = perf_output_begin(&handle, event,
7309                                 mmap_event->event_id.header.size);
7310         if (ret)
7311                 goto out;
7312
7313         mmap_event->event_id.pid = perf_event_pid(event, current);
7314         mmap_event->event_id.tid = perf_event_tid(event, current);
7315
7316         perf_output_put(&handle, mmap_event->event_id);
7317
7318         if (event->attr.mmap2) {
7319                 perf_output_put(&handle, mmap_event->maj);
7320                 perf_output_put(&handle, mmap_event->min);
7321                 perf_output_put(&handle, mmap_event->ino);
7322                 perf_output_put(&handle, mmap_event->ino_generation);
7323                 perf_output_put(&handle, mmap_event->prot);
7324                 perf_output_put(&handle, mmap_event->flags);
7325         }
7326
7327         __output_copy(&handle, mmap_event->file_name,
7328                                    mmap_event->file_size);
7329
7330         perf_event__output_id_sample(event, &handle, &sample);
7331
7332         perf_output_end(&handle);
7333 out:
7334         mmap_event->event_id.header.size = size;
7335         mmap_event->event_id.header.type = type;
7336 }
7337
7338 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7339 {
7340         struct vm_area_struct *vma = mmap_event->vma;
7341         struct file *file = vma->vm_file;
7342         int maj = 0, min = 0;
7343         u64 ino = 0, gen = 0;
7344         u32 prot = 0, flags = 0;
7345         unsigned int size;
7346         char tmp[16];
7347         char *buf = NULL;
7348         char *name;
7349
7350         if (vma->vm_flags & VM_READ)
7351                 prot |= PROT_READ;
7352         if (vma->vm_flags & VM_WRITE)
7353                 prot |= PROT_WRITE;
7354         if (vma->vm_flags & VM_EXEC)
7355                 prot |= PROT_EXEC;
7356
7357         if (vma->vm_flags & VM_MAYSHARE)
7358                 flags = MAP_SHARED;
7359         else
7360                 flags = MAP_PRIVATE;
7361
7362         if (vma->vm_flags & VM_DENYWRITE)
7363                 flags |= MAP_DENYWRITE;
7364         if (vma->vm_flags & VM_MAYEXEC)
7365                 flags |= MAP_EXECUTABLE;
7366         if (vma->vm_flags & VM_LOCKED)
7367                 flags |= MAP_LOCKED;
7368         if (vma->vm_flags & VM_HUGETLB)
7369                 flags |= MAP_HUGETLB;
7370
7371         if (file) {
7372                 struct inode *inode;
7373                 dev_t dev;
7374
7375                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7376                 if (!buf) {
7377                         name = "//enomem";
7378                         goto cpy_name;
7379                 }
7380                 /*
7381                  * d_path() works from the end of the rb backwards, so we
7382                  * need to add enough zero bytes after the string to handle
7383                  * the 64bit alignment we do later.
7384                  */
7385                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7386                 if (IS_ERR(name)) {
7387                         name = "//toolong";
7388                         goto cpy_name;
7389                 }
7390                 inode = file_inode(vma->vm_file);
7391                 dev = inode->i_sb->s_dev;
7392                 ino = inode->i_ino;
7393                 gen = inode->i_generation;
7394                 maj = MAJOR(dev);
7395                 min = MINOR(dev);
7396
7397                 goto got_name;
7398         } else {
7399                 if (vma->vm_ops && vma->vm_ops->name) {
7400                         name = (char *) vma->vm_ops->name(vma);
7401                         if (name)
7402                                 goto cpy_name;
7403                 }
7404
7405                 name = (char *)arch_vma_name(vma);
7406                 if (name)
7407                         goto cpy_name;
7408
7409                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7410                                 vma->vm_end >= vma->vm_mm->brk) {
7411                         name = "[heap]";
7412                         goto cpy_name;
7413                 }
7414                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7415                                 vma->vm_end >= vma->vm_mm->start_stack) {
7416                         name = "[stack]";
7417                         goto cpy_name;
7418                 }
7419
7420                 name = "//anon";
7421                 goto cpy_name;
7422         }
7423
7424 cpy_name:
7425         strlcpy(tmp, name, sizeof(tmp));
7426         name = tmp;
7427 got_name:
7428         /*
7429          * Since our buffer works in 8 byte units we need to align our string
7430          * size to a multiple of 8. However, we must guarantee the tail end is
7431          * zero'd out to avoid leaking random bits to userspace.
7432          */
7433         size = strlen(name)+1;
7434         while (!IS_ALIGNED(size, sizeof(u64)))
7435                 name[size++] = '\0';
7436
7437         mmap_event->file_name = name;
7438         mmap_event->file_size = size;
7439         mmap_event->maj = maj;
7440         mmap_event->min = min;
7441         mmap_event->ino = ino;
7442         mmap_event->ino_generation = gen;
7443         mmap_event->prot = prot;
7444         mmap_event->flags = flags;
7445
7446         if (!(vma->vm_flags & VM_EXEC))
7447                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7448
7449         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7450
7451         perf_iterate_sb(perf_event_mmap_output,
7452                        mmap_event,
7453                        NULL);
7454
7455         kfree(buf);
7456 }
7457
7458 /*
7459  * Check whether inode and address range match filter criteria.
7460  */
7461 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7462                                      struct file *file, unsigned long offset,
7463                                      unsigned long size)
7464 {
7465         /* d_inode(NULL) won't be equal to any mapped user-space file */
7466         if (!filter->path.dentry)
7467                 return false;
7468
7469         if (d_inode(filter->path.dentry) != file_inode(file))
7470                 return false;
7471
7472         if (filter->offset > offset + size)
7473                 return false;
7474
7475         if (filter->offset + filter->size < offset)
7476                 return false;
7477
7478         return true;
7479 }
7480
7481 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7482                                         struct vm_area_struct *vma,
7483                                         struct perf_addr_filter_range *fr)
7484 {
7485         unsigned long vma_size = vma->vm_end - vma->vm_start;
7486         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7487         struct file *file = vma->vm_file;
7488
7489         if (!perf_addr_filter_match(filter, file, off, vma_size))
7490                 return false;
7491
7492         if (filter->offset < off) {
7493                 fr->start = vma->vm_start;
7494                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7495         } else {
7496                 fr->start = vma->vm_start + filter->offset - off;
7497                 fr->size = min(vma->vm_end - fr->start, filter->size);
7498         }
7499
7500         return true;
7501 }
7502
7503 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7504 {
7505         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7506         struct vm_area_struct *vma = data;
7507         struct perf_addr_filter *filter;
7508         unsigned int restart = 0, count = 0;
7509         unsigned long flags;
7510
7511         if (!has_addr_filter(event))
7512                 return;
7513
7514         if (!vma->vm_file)
7515                 return;
7516
7517         raw_spin_lock_irqsave(&ifh->lock, flags);
7518         list_for_each_entry(filter, &ifh->list, entry) {
7519                 if (perf_addr_filter_vma_adjust(filter, vma,
7520                                                 &event->addr_filter_ranges[count]))
7521                         restart++;
7522
7523                 count++;
7524         }
7525
7526         if (restart)
7527                 event->addr_filters_gen++;
7528         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7529
7530         if (restart)
7531                 perf_event_stop(event, 1);
7532 }
7533
7534 /*
7535  * Adjust all task's events' filters to the new vma
7536  */
7537 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7538 {
7539         struct perf_event_context *ctx;
7540         int ctxn;
7541
7542         /*
7543          * Data tracing isn't supported yet and as such there is no need
7544          * to keep track of anything that isn't related to executable code:
7545          */
7546         if (!(vma->vm_flags & VM_EXEC))
7547                 return;
7548
7549         rcu_read_lock();
7550         for_each_task_context_nr(ctxn) {
7551                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7552                 if (!ctx)
7553                         continue;
7554
7555                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7556         }
7557         rcu_read_unlock();
7558 }
7559
7560 void perf_event_mmap(struct vm_area_struct *vma)
7561 {
7562         struct perf_mmap_event mmap_event;
7563
7564         if (!atomic_read(&nr_mmap_events))
7565                 return;
7566
7567         mmap_event = (struct perf_mmap_event){
7568                 .vma    = vma,
7569                 /* .file_name */
7570                 /* .file_size */
7571                 .event_id  = {
7572                         .header = {
7573                                 .type = PERF_RECORD_MMAP,
7574                                 .misc = PERF_RECORD_MISC_USER,
7575                                 /* .size */
7576                         },
7577                         /* .pid */
7578                         /* .tid */
7579                         .start  = vma->vm_start,
7580                         .len    = vma->vm_end - vma->vm_start,
7581                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7582                 },
7583                 /* .maj (attr_mmap2 only) */
7584                 /* .min (attr_mmap2 only) */
7585                 /* .ino (attr_mmap2 only) */
7586                 /* .ino_generation (attr_mmap2 only) */
7587                 /* .prot (attr_mmap2 only) */
7588                 /* .flags (attr_mmap2 only) */
7589         };
7590
7591         perf_addr_filters_adjust(vma);
7592         perf_event_mmap_event(&mmap_event);
7593 }
7594
7595 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7596                           unsigned long size, u64 flags)
7597 {
7598         struct perf_output_handle handle;
7599         struct perf_sample_data sample;
7600         struct perf_aux_event {
7601                 struct perf_event_header        header;
7602                 u64                             offset;
7603                 u64                             size;
7604                 u64                             flags;
7605         } rec = {
7606                 .header = {
7607                         .type = PERF_RECORD_AUX,
7608                         .misc = 0,
7609                         .size = sizeof(rec),
7610                 },
7611                 .offset         = head,
7612                 .size           = size,
7613                 .flags          = flags,
7614         };
7615         int ret;
7616
7617         perf_event_header__init_id(&rec.header, &sample, event);
7618         ret = perf_output_begin(&handle, event, rec.header.size);
7619
7620         if (ret)
7621                 return;
7622
7623         perf_output_put(&handle, rec);
7624         perf_event__output_id_sample(event, &handle, &sample);
7625
7626         perf_output_end(&handle);
7627 }
7628
7629 /*
7630  * Lost/dropped samples logging
7631  */
7632 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7633 {
7634         struct perf_output_handle handle;
7635         struct perf_sample_data sample;
7636         int ret;
7637
7638         struct {
7639                 struct perf_event_header        header;
7640                 u64                             lost;
7641         } lost_samples_event = {
7642                 .header = {
7643                         .type = PERF_RECORD_LOST_SAMPLES,
7644                         .misc = 0,
7645                         .size = sizeof(lost_samples_event),
7646                 },
7647                 .lost           = lost,
7648         };
7649
7650         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7651
7652         ret = perf_output_begin(&handle, event,
7653                                 lost_samples_event.header.size);
7654         if (ret)
7655                 return;
7656
7657         perf_output_put(&handle, lost_samples_event);
7658         perf_event__output_id_sample(event, &handle, &sample);
7659         perf_output_end(&handle);
7660 }
7661
7662 /*
7663  * context_switch tracking
7664  */
7665
7666 struct perf_switch_event {
7667         struct task_struct      *task;
7668         struct task_struct      *next_prev;
7669
7670         struct {
7671                 struct perf_event_header        header;
7672                 u32                             next_prev_pid;
7673                 u32                             next_prev_tid;
7674         } event_id;
7675 };
7676
7677 static int perf_event_switch_match(struct perf_event *event)
7678 {
7679         return event->attr.context_switch;
7680 }
7681
7682 static void perf_event_switch_output(struct perf_event *event, void *data)
7683 {
7684         struct perf_switch_event *se = data;
7685         struct perf_output_handle handle;
7686         struct perf_sample_data sample;
7687         int ret;
7688
7689         if (!perf_event_switch_match(event))
7690                 return;
7691
7692         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7693         if (event->ctx->task) {
7694                 se->event_id.header.type = PERF_RECORD_SWITCH;
7695                 se->event_id.header.size = sizeof(se->event_id.header);
7696         } else {
7697                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7698                 se->event_id.header.size = sizeof(se->event_id);
7699                 se->event_id.next_prev_pid =
7700                                         perf_event_pid(event, se->next_prev);
7701                 se->event_id.next_prev_tid =
7702                                         perf_event_tid(event, se->next_prev);
7703         }
7704
7705         perf_event_header__init_id(&se->event_id.header, &sample, event);
7706
7707         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7708         if (ret)
7709                 return;
7710
7711         if (event->ctx->task)
7712                 perf_output_put(&handle, se->event_id.header);
7713         else
7714                 perf_output_put(&handle, se->event_id);
7715
7716         perf_event__output_id_sample(event, &handle, &sample);
7717
7718         perf_output_end(&handle);
7719 }
7720
7721 static void perf_event_switch(struct task_struct *task,
7722                               struct task_struct *next_prev, bool sched_in)
7723 {
7724         struct perf_switch_event switch_event;
7725
7726         /* N.B. caller checks nr_switch_events != 0 */
7727
7728         switch_event = (struct perf_switch_event){
7729                 .task           = task,
7730                 .next_prev      = next_prev,
7731                 .event_id       = {
7732                         .header = {
7733                                 /* .type */
7734                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7735                                 /* .size */
7736                         },
7737                         /* .next_prev_pid */
7738                         /* .next_prev_tid */
7739                 },
7740         };
7741
7742         if (!sched_in && task->state == TASK_RUNNING)
7743                 switch_event.event_id.header.misc |=
7744                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7745
7746         perf_iterate_sb(perf_event_switch_output,
7747                        &switch_event,
7748                        NULL);
7749 }
7750
7751 /*
7752  * IRQ throttle logging
7753  */
7754
7755 static void perf_log_throttle(struct perf_event *event, int enable)
7756 {
7757         struct perf_output_handle handle;
7758         struct perf_sample_data sample;
7759         int ret;
7760
7761         struct {
7762                 struct perf_event_header        header;
7763                 u64                             time;
7764                 u64                             id;
7765                 u64                             stream_id;
7766         } throttle_event = {
7767                 .header = {
7768                         .type = PERF_RECORD_THROTTLE,
7769                         .misc = 0,
7770                         .size = sizeof(throttle_event),
7771                 },
7772                 .time           = perf_event_clock(event),
7773                 .id             = primary_event_id(event),
7774                 .stream_id      = event->id,
7775         };
7776
7777         if (enable)
7778                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7779
7780         perf_event_header__init_id(&throttle_event.header, &sample, event);
7781
7782         ret = perf_output_begin(&handle, event,
7783                                 throttle_event.header.size);
7784         if (ret)
7785                 return;
7786
7787         perf_output_put(&handle, throttle_event);
7788         perf_event__output_id_sample(event, &handle, &sample);
7789         perf_output_end(&handle);
7790 }
7791
7792 void perf_event_itrace_started(struct perf_event *event)
7793 {
7794         event->attach_state |= PERF_ATTACH_ITRACE;
7795 }
7796
7797 static void perf_log_itrace_start(struct perf_event *event)
7798 {
7799         struct perf_output_handle handle;
7800         struct perf_sample_data sample;
7801         struct perf_aux_event {
7802                 struct perf_event_header        header;
7803                 u32                             pid;
7804                 u32                             tid;
7805         } rec;
7806         int ret;
7807
7808         if (event->parent)
7809                 event = event->parent;
7810
7811         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7812             event->attach_state & PERF_ATTACH_ITRACE)
7813                 return;
7814
7815         rec.header.type = PERF_RECORD_ITRACE_START;
7816         rec.header.misc = 0;
7817         rec.header.size = sizeof(rec);
7818         rec.pid = perf_event_pid(event, current);
7819         rec.tid = perf_event_tid(event, current);
7820
7821         perf_event_header__init_id(&rec.header, &sample, event);
7822         ret = perf_output_begin(&handle, event, rec.header.size);
7823
7824         if (ret)
7825                 return;
7826
7827         perf_output_put(&handle, rec);
7828         perf_event__output_id_sample(event, &handle, &sample);
7829
7830         perf_output_end(&handle);
7831 }
7832
7833 static int
7834 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7835 {
7836         struct hw_perf_event *hwc = &event->hw;
7837         int ret = 0;
7838         u64 seq;
7839
7840         seq = __this_cpu_read(perf_throttled_seq);
7841         if (seq != hwc->interrupts_seq) {
7842                 hwc->interrupts_seq = seq;
7843                 hwc->interrupts = 1;
7844         } else {
7845                 hwc->interrupts++;
7846                 if (unlikely(throttle
7847                              && hwc->interrupts >= max_samples_per_tick)) {
7848                         __this_cpu_inc(perf_throttled_count);
7849                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7850                         hwc->interrupts = MAX_INTERRUPTS;
7851                         perf_log_throttle(event, 0);
7852                         ret = 1;
7853                 }
7854         }
7855
7856         if (event->attr.freq) {
7857                 u64 now = perf_clock();
7858                 s64 delta = now - hwc->freq_time_stamp;
7859
7860                 hwc->freq_time_stamp = now;
7861
7862                 if (delta > 0 && delta < 2*TICK_NSEC)
7863                         perf_adjust_period(event, delta, hwc->last_period, true);
7864         }
7865
7866         return ret;
7867 }
7868
7869 int perf_event_account_interrupt(struct perf_event *event)
7870 {
7871         return __perf_event_account_interrupt(event, 1);
7872 }
7873
7874 /*
7875  * Generic event overflow handling, sampling.
7876  */
7877
7878 static int __perf_event_overflow(struct perf_event *event,
7879                                    int throttle, struct perf_sample_data *data,
7880                                    struct pt_regs *regs)
7881 {
7882         int events = atomic_read(&event->event_limit);
7883         int ret = 0;
7884
7885         /*
7886          * Non-sampling counters might still use the PMI to fold short
7887          * hardware counters, ignore those.
7888          */
7889         if (unlikely(!is_sampling_event(event)))
7890                 return 0;
7891
7892         ret = __perf_event_account_interrupt(event, throttle);
7893
7894         /*
7895          * XXX event_limit might not quite work as expected on inherited
7896          * events
7897          */
7898
7899         event->pending_kill = POLL_IN;
7900         if (events && atomic_dec_and_test(&event->event_limit)) {
7901                 ret = 1;
7902                 event->pending_kill = POLL_HUP;
7903
7904                 perf_event_disable_inatomic(event);
7905         }
7906
7907         READ_ONCE(event->overflow_handler)(event, data, regs);
7908
7909         if (*perf_event_fasync(event) && event->pending_kill) {
7910                 event->pending_wakeup = 1;
7911                 irq_work_queue(&event->pending);
7912         }
7913
7914         return ret;
7915 }
7916
7917 int perf_event_overflow(struct perf_event *event,
7918                           struct perf_sample_data *data,
7919                           struct pt_regs *regs)
7920 {
7921         return __perf_event_overflow(event, 1, data, regs);
7922 }
7923
7924 /*
7925  * Generic software event infrastructure
7926  */
7927
7928 struct swevent_htable {
7929         struct swevent_hlist            *swevent_hlist;
7930         struct mutex                    hlist_mutex;
7931         int                             hlist_refcount;
7932
7933         /* Recursion avoidance in each contexts */
7934         int                             recursion[PERF_NR_CONTEXTS];
7935 };
7936
7937 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7938
7939 /*
7940  * We directly increment event->count and keep a second value in
7941  * event->hw.period_left to count intervals. This period event
7942  * is kept in the range [-sample_period, 0] so that we can use the
7943  * sign as trigger.
7944  */
7945
7946 u64 perf_swevent_set_period(struct perf_event *event)
7947 {
7948         struct hw_perf_event *hwc = &event->hw;
7949         u64 period = hwc->last_period;
7950         u64 nr, offset;
7951         s64 old, val;
7952
7953         hwc->last_period = hwc->sample_period;
7954
7955 again:
7956         old = val = local64_read(&hwc->period_left);
7957         if (val < 0)
7958                 return 0;
7959
7960         nr = div64_u64(period + val, period);
7961         offset = nr * period;
7962         val -= offset;
7963         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7964                 goto again;
7965
7966         return nr;
7967 }
7968
7969 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7970                                     struct perf_sample_data *data,
7971                                     struct pt_regs *regs)
7972 {
7973         struct hw_perf_event *hwc = &event->hw;
7974         int throttle = 0;
7975
7976         if (!overflow)
7977                 overflow = perf_swevent_set_period(event);
7978
7979         if (hwc->interrupts == MAX_INTERRUPTS)
7980                 return;
7981
7982         for (; overflow; overflow--) {
7983                 if (__perf_event_overflow(event, throttle,
7984                                             data, regs)) {
7985                         /*
7986                          * We inhibit the overflow from happening when
7987                          * hwc->interrupts == MAX_INTERRUPTS.
7988                          */
7989                         break;
7990                 }
7991                 throttle = 1;
7992         }
7993 }
7994
7995 static void perf_swevent_event(struct perf_event *event, u64 nr,
7996                                struct perf_sample_data *data,
7997                                struct pt_regs *regs)
7998 {
7999         struct hw_perf_event *hwc = &event->hw;
8000
8001         local64_add(nr, &event->count);
8002
8003         if (!regs)
8004                 return;
8005
8006         if (!is_sampling_event(event))
8007                 return;
8008
8009         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8010                 data->period = nr;
8011                 return perf_swevent_overflow(event, 1, data, regs);
8012         } else
8013                 data->period = event->hw.last_period;
8014
8015         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8016                 return perf_swevent_overflow(event, 1, data, regs);
8017
8018         if (local64_add_negative(nr, &hwc->period_left))
8019                 return;
8020
8021         perf_swevent_overflow(event, 0, data, regs);
8022 }
8023
8024 static int perf_exclude_event(struct perf_event *event,
8025                               struct pt_regs *regs)
8026 {
8027         if (event->hw.state & PERF_HES_STOPPED)
8028                 return 1;
8029
8030         if (regs) {
8031                 if (event->attr.exclude_user && user_mode(regs))
8032                         return 1;
8033
8034                 if (event->attr.exclude_kernel && !user_mode(regs))
8035                         return 1;
8036         }
8037
8038         return 0;
8039 }
8040
8041 static int perf_swevent_match(struct perf_event *event,
8042                                 enum perf_type_id type,
8043                                 u32 event_id,
8044                                 struct perf_sample_data *data,
8045                                 struct pt_regs *regs)
8046 {
8047         if (event->attr.type != type)
8048                 return 0;
8049
8050         if (event->attr.config != event_id)
8051                 return 0;
8052
8053         if (perf_exclude_event(event, regs))
8054                 return 0;
8055
8056         return 1;
8057 }
8058
8059 static inline u64 swevent_hash(u64 type, u32 event_id)
8060 {
8061         u64 val = event_id | (type << 32);
8062
8063         return hash_64(val, SWEVENT_HLIST_BITS);
8064 }
8065
8066 static inline struct hlist_head *
8067 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8068 {
8069         u64 hash = swevent_hash(type, event_id);
8070
8071         return &hlist->heads[hash];
8072 }
8073
8074 /* For the read side: events when they trigger */
8075 static inline struct hlist_head *
8076 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8077 {
8078         struct swevent_hlist *hlist;
8079
8080         hlist = rcu_dereference(swhash->swevent_hlist);
8081         if (!hlist)
8082                 return NULL;
8083
8084         return __find_swevent_head(hlist, type, event_id);
8085 }
8086
8087 /* For the event head insertion and removal in the hlist */
8088 static inline struct hlist_head *
8089 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8090 {
8091         struct swevent_hlist *hlist;
8092         u32 event_id = event->attr.config;
8093         u64 type = event->attr.type;
8094
8095         /*
8096          * Event scheduling is always serialized against hlist allocation
8097          * and release. Which makes the protected version suitable here.
8098          * The context lock guarantees that.
8099          */
8100         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8101                                           lockdep_is_held(&event->ctx->lock));
8102         if (!hlist)
8103                 return NULL;
8104
8105         return __find_swevent_head(hlist, type, event_id);
8106 }
8107
8108 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8109                                     u64 nr,
8110                                     struct perf_sample_data *data,
8111                                     struct pt_regs *regs)
8112 {
8113         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8114         struct perf_event *event;
8115         struct hlist_head *head;
8116
8117         rcu_read_lock();
8118         head = find_swevent_head_rcu(swhash, type, event_id);
8119         if (!head)
8120                 goto end;
8121
8122         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8123                 if (perf_swevent_match(event, type, event_id, data, regs))
8124                         perf_swevent_event(event, nr, data, regs);
8125         }
8126 end:
8127         rcu_read_unlock();
8128 }
8129
8130 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8131
8132 int perf_swevent_get_recursion_context(void)
8133 {
8134         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8135
8136         return get_recursion_context(swhash->recursion);
8137 }
8138 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8139
8140 void perf_swevent_put_recursion_context(int rctx)
8141 {
8142         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8143
8144         put_recursion_context(swhash->recursion, rctx);
8145 }
8146
8147 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8148 {
8149         struct perf_sample_data data;
8150
8151         if (WARN_ON_ONCE(!regs))
8152                 return;
8153
8154         perf_sample_data_init(&data, addr, 0);
8155         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8156 }
8157
8158 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8159 {
8160         int rctx;
8161
8162         preempt_disable_notrace();
8163         rctx = perf_swevent_get_recursion_context();
8164         if (unlikely(rctx < 0))
8165                 goto fail;
8166
8167         ___perf_sw_event(event_id, nr, regs, addr);
8168
8169         perf_swevent_put_recursion_context(rctx);
8170 fail:
8171         preempt_enable_notrace();
8172 }
8173
8174 static void perf_swevent_read(struct perf_event *event)
8175 {
8176 }
8177
8178 static int perf_swevent_add(struct perf_event *event, int flags)
8179 {
8180         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8181         struct hw_perf_event *hwc = &event->hw;
8182         struct hlist_head *head;
8183
8184         if (is_sampling_event(event)) {
8185                 hwc->last_period = hwc->sample_period;
8186                 perf_swevent_set_period(event);
8187         }
8188
8189         hwc->state = !(flags & PERF_EF_START);
8190
8191         head = find_swevent_head(swhash, event);
8192         if (WARN_ON_ONCE(!head))
8193                 return -EINVAL;
8194
8195         hlist_add_head_rcu(&event->hlist_entry, head);
8196         perf_event_update_userpage(event);
8197
8198         return 0;
8199 }
8200
8201 static void perf_swevent_del(struct perf_event *event, int flags)
8202 {
8203         hlist_del_rcu(&event->hlist_entry);
8204 }
8205
8206 static void perf_swevent_start(struct perf_event *event, int flags)
8207 {
8208         event->hw.state = 0;
8209 }
8210
8211 static void perf_swevent_stop(struct perf_event *event, int flags)
8212 {
8213         event->hw.state = PERF_HES_STOPPED;
8214 }
8215
8216 /* Deref the hlist from the update side */
8217 static inline struct swevent_hlist *
8218 swevent_hlist_deref(struct swevent_htable *swhash)
8219 {
8220         return rcu_dereference_protected(swhash->swevent_hlist,
8221                                          lockdep_is_held(&swhash->hlist_mutex));
8222 }
8223
8224 static void swevent_hlist_release(struct swevent_htable *swhash)
8225 {
8226         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8227
8228         if (!hlist)
8229                 return;
8230
8231         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8232         kfree_rcu(hlist, rcu_head);
8233 }
8234
8235 static void swevent_hlist_put_cpu(int cpu)
8236 {
8237         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8238
8239         mutex_lock(&swhash->hlist_mutex);
8240
8241         if (!--swhash->hlist_refcount)
8242                 swevent_hlist_release(swhash);
8243
8244         mutex_unlock(&swhash->hlist_mutex);
8245 }
8246
8247 static void swevent_hlist_put(void)
8248 {
8249         int cpu;
8250
8251         for_each_possible_cpu(cpu)
8252                 swevent_hlist_put_cpu(cpu);
8253 }
8254
8255 static int swevent_hlist_get_cpu(int cpu)
8256 {
8257         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8258         int err = 0;
8259
8260         mutex_lock(&swhash->hlist_mutex);
8261         if (!swevent_hlist_deref(swhash) &&
8262             cpumask_test_cpu(cpu, perf_online_mask)) {
8263                 struct swevent_hlist *hlist;
8264
8265                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8266                 if (!hlist) {
8267                         err = -ENOMEM;
8268                         goto exit;
8269                 }
8270                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8271         }
8272         swhash->hlist_refcount++;
8273 exit:
8274         mutex_unlock(&swhash->hlist_mutex);
8275
8276         return err;
8277 }
8278
8279 static int swevent_hlist_get(void)
8280 {
8281         int err, cpu, failed_cpu;
8282
8283         mutex_lock(&pmus_lock);
8284         for_each_possible_cpu(cpu) {
8285                 err = swevent_hlist_get_cpu(cpu);
8286                 if (err) {
8287                         failed_cpu = cpu;
8288                         goto fail;
8289                 }
8290         }
8291         mutex_unlock(&pmus_lock);
8292         return 0;
8293 fail:
8294         for_each_possible_cpu(cpu) {
8295                 if (cpu == failed_cpu)
8296                         break;
8297                 swevent_hlist_put_cpu(cpu);
8298         }
8299         mutex_unlock(&pmus_lock);
8300         return err;
8301 }
8302
8303 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8304
8305 static void sw_perf_event_destroy(struct perf_event *event)
8306 {
8307         u64 event_id = event->attr.config;
8308
8309         WARN_ON(event->parent);
8310
8311         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8312         swevent_hlist_put();
8313 }
8314
8315 static int perf_swevent_init(struct perf_event *event)
8316 {
8317         u64 event_id = event->attr.config;
8318
8319         if (event->attr.type != PERF_TYPE_SOFTWARE)
8320                 return -ENOENT;
8321
8322         /*
8323          * no branch sampling for software events
8324          */
8325         if (has_branch_stack(event))
8326                 return -EOPNOTSUPP;
8327
8328         switch (event_id) {
8329         case PERF_COUNT_SW_CPU_CLOCK:
8330         case PERF_COUNT_SW_TASK_CLOCK:
8331                 return -ENOENT;
8332
8333         default:
8334                 break;
8335         }
8336
8337         if (event_id >= PERF_COUNT_SW_MAX)
8338                 return -ENOENT;
8339
8340         if (!event->parent) {
8341                 int err;
8342
8343                 err = swevent_hlist_get();
8344                 if (err)
8345                         return err;
8346
8347                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8348                 event->destroy = sw_perf_event_destroy;
8349         }
8350
8351         return 0;
8352 }
8353
8354 static struct pmu perf_swevent = {
8355         .task_ctx_nr    = perf_sw_context,
8356
8357         .capabilities   = PERF_PMU_CAP_NO_NMI,
8358
8359         .event_init     = perf_swevent_init,
8360         .add            = perf_swevent_add,
8361         .del            = perf_swevent_del,
8362         .start          = perf_swevent_start,
8363         .stop           = perf_swevent_stop,
8364         .read           = perf_swevent_read,
8365 };
8366
8367 #ifdef CONFIG_EVENT_TRACING
8368
8369 static int perf_tp_filter_match(struct perf_event *event,
8370                                 struct perf_sample_data *data)
8371 {
8372         void *record = data->raw->frag.data;
8373
8374         /* only top level events have filters set */
8375         if (event->parent)
8376                 event = event->parent;
8377
8378         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8379                 return 1;
8380         return 0;
8381 }
8382
8383 static int perf_tp_event_match(struct perf_event *event,
8384                                 struct perf_sample_data *data,
8385                                 struct pt_regs *regs)
8386 {
8387         if (event->hw.state & PERF_HES_STOPPED)
8388                 return 0;
8389         /*
8390          * All tracepoints are from kernel-space.
8391          */
8392         if (event->attr.exclude_kernel)
8393                 return 0;
8394
8395         if (!perf_tp_filter_match(event, data))
8396                 return 0;
8397
8398         return 1;
8399 }
8400
8401 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8402                                struct trace_event_call *call, u64 count,
8403                                struct pt_regs *regs, struct hlist_head *head,
8404                                struct task_struct *task)
8405 {
8406         if (bpf_prog_array_valid(call)) {
8407                 *(struct pt_regs **)raw_data = regs;
8408                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8409                         perf_swevent_put_recursion_context(rctx);
8410                         return;
8411                 }
8412         }
8413         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8414                       rctx, task);
8415 }
8416 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8417
8418 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8419                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8420                    struct task_struct *task)
8421 {
8422         struct perf_sample_data data;
8423         struct perf_event *event;
8424
8425         struct perf_raw_record raw = {
8426                 .frag = {
8427                         .size = entry_size,
8428                         .data = record,
8429                 },
8430         };
8431
8432         perf_sample_data_init(&data, 0, 0);
8433         data.raw = &raw;
8434
8435         perf_trace_buf_update(record, event_type);
8436
8437         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8438                 if (perf_tp_event_match(event, &data, regs))
8439                         perf_swevent_event(event, count, &data, regs);
8440         }
8441
8442         /*
8443          * If we got specified a target task, also iterate its context and
8444          * deliver this event there too.
8445          */
8446         if (task && task != current) {
8447                 struct perf_event_context *ctx;
8448                 struct trace_entry *entry = record;
8449
8450                 rcu_read_lock();
8451                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8452                 if (!ctx)
8453                         goto unlock;
8454
8455                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8456                         if (event->cpu != smp_processor_id())
8457                                 continue;
8458                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8459                                 continue;
8460                         if (event->attr.config != entry->type)
8461                                 continue;
8462                         if (perf_tp_event_match(event, &data, regs))
8463                                 perf_swevent_event(event, count, &data, regs);
8464                 }
8465 unlock:
8466                 rcu_read_unlock();
8467         }
8468
8469         perf_swevent_put_recursion_context(rctx);
8470 }
8471 EXPORT_SYMBOL_GPL(perf_tp_event);
8472
8473 static void tp_perf_event_destroy(struct perf_event *event)
8474 {
8475         perf_trace_destroy(event);
8476 }
8477
8478 static int perf_tp_event_init(struct perf_event *event)
8479 {
8480         int err;
8481
8482         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8483                 return -ENOENT;
8484
8485         /*
8486          * no branch sampling for tracepoint events
8487          */
8488         if (has_branch_stack(event))
8489                 return -EOPNOTSUPP;
8490
8491         err = perf_trace_init(event);
8492         if (err)
8493                 return err;
8494
8495         event->destroy = tp_perf_event_destroy;
8496
8497         return 0;
8498 }
8499
8500 static struct pmu perf_tracepoint = {
8501         .task_ctx_nr    = perf_sw_context,
8502
8503         .event_init     = perf_tp_event_init,
8504         .add            = perf_trace_add,
8505         .del            = perf_trace_del,
8506         .start          = perf_swevent_start,
8507         .stop           = perf_swevent_stop,
8508         .read           = perf_swevent_read,
8509 };
8510
8511 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8512 /*
8513  * Flags in config, used by dynamic PMU kprobe and uprobe
8514  * The flags should match following PMU_FORMAT_ATTR().
8515  *
8516  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8517  *                               if not set, create kprobe/uprobe
8518  */
8519 enum perf_probe_config {
8520         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8521 };
8522
8523 PMU_FORMAT_ATTR(retprobe, "config:0");
8524
8525 static struct attribute *probe_attrs[] = {
8526         &format_attr_retprobe.attr,
8527         NULL,
8528 };
8529
8530 static struct attribute_group probe_format_group = {
8531         .name = "format",
8532         .attrs = probe_attrs,
8533 };
8534
8535 static const struct attribute_group *probe_attr_groups[] = {
8536         &probe_format_group,
8537         NULL,
8538 };
8539 #endif
8540
8541 #ifdef CONFIG_KPROBE_EVENTS
8542 static int perf_kprobe_event_init(struct perf_event *event);
8543 static struct pmu perf_kprobe = {
8544         .task_ctx_nr    = perf_sw_context,
8545         .event_init     = perf_kprobe_event_init,
8546         .add            = perf_trace_add,
8547         .del            = perf_trace_del,
8548         .start          = perf_swevent_start,
8549         .stop           = perf_swevent_stop,
8550         .read           = perf_swevent_read,
8551         .attr_groups    = probe_attr_groups,
8552 };
8553
8554 static int perf_kprobe_event_init(struct perf_event *event)
8555 {
8556         int err;
8557         bool is_retprobe;
8558
8559         if (event->attr.type != perf_kprobe.type)
8560                 return -ENOENT;
8561
8562         if (!capable(CAP_SYS_ADMIN))
8563                 return -EACCES;
8564
8565         /*
8566          * no branch sampling for probe events
8567          */
8568         if (has_branch_stack(event))
8569                 return -EOPNOTSUPP;
8570
8571         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8572         err = perf_kprobe_init(event, is_retprobe);
8573         if (err)
8574                 return err;
8575
8576         event->destroy = perf_kprobe_destroy;
8577
8578         return 0;
8579 }
8580 #endif /* CONFIG_KPROBE_EVENTS */
8581
8582 #ifdef CONFIG_UPROBE_EVENTS
8583 static int perf_uprobe_event_init(struct perf_event *event);
8584 static struct pmu perf_uprobe = {
8585         .task_ctx_nr    = perf_sw_context,
8586         .event_init     = perf_uprobe_event_init,
8587         .add            = perf_trace_add,
8588         .del            = perf_trace_del,
8589         .start          = perf_swevent_start,
8590         .stop           = perf_swevent_stop,
8591         .read           = perf_swevent_read,
8592         .attr_groups    = probe_attr_groups,
8593 };
8594
8595 static int perf_uprobe_event_init(struct perf_event *event)
8596 {
8597         int err;
8598         bool is_retprobe;
8599
8600         if (event->attr.type != perf_uprobe.type)
8601                 return -ENOENT;
8602
8603         if (!capable(CAP_SYS_ADMIN))
8604                 return -EACCES;
8605
8606         /*
8607          * no branch sampling for probe events
8608          */
8609         if (has_branch_stack(event))
8610                 return -EOPNOTSUPP;
8611
8612         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8613         err = perf_uprobe_init(event, is_retprobe);
8614         if (err)
8615                 return err;
8616
8617         event->destroy = perf_uprobe_destroy;
8618
8619         return 0;
8620 }
8621 #endif /* CONFIG_UPROBE_EVENTS */
8622
8623 static inline void perf_tp_register(void)
8624 {
8625         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8626 #ifdef CONFIG_KPROBE_EVENTS
8627         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8628 #endif
8629 #ifdef CONFIG_UPROBE_EVENTS
8630         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8631 #endif
8632 }
8633
8634 static void perf_event_free_filter(struct perf_event *event)
8635 {
8636         ftrace_profile_free_filter(event);
8637 }
8638
8639 #ifdef CONFIG_BPF_SYSCALL
8640 static void bpf_overflow_handler(struct perf_event *event,
8641                                  struct perf_sample_data *data,
8642                                  struct pt_regs *regs)
8643 {
8644         struct bpf_perf_event_data_kern ctx = {
8645                 .data = data,
8646                 .event = event,
8647         };
8648         int ret = 0;
8649
8650         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8651         preempt_disable();
8652         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8653                 goto out;
8654         rcu_read_lock();
8655         ret = BPF_PROG_RUN(event->prog, &ctx);
8656         rcu_read_unlock();
8657 out:
8658         __this_cpu_dec(bpf_prog_active);
8659         preempt_enable();
8660         if (!ret)
8661                 return;
8662
8663         event->orig_overflow_handler(event, data, regs);
8664 }
8665
8666 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8667 {
8668         struct bpf_prog *prog;
8669
8670         if (event->overflow_handler_context)
8671                 /* hw breakpoint or kernel counter */
8672                 return -EINVAL;
8673
8674         if (event->prog)
8675                 return -EEXIST;
8676
8677         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8678         if (IS_ERR(prog))
8679                 return PTR_ERR(prog);
8680
8681         event->prog = prog;
8682         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8683         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8684         return 0;
8685 }
8686
8687 static void perf_event_free_bpf_handler(struct perf_event *event)
8688 {
8689         struct bpf_prog *prog = event->prog;
8690
8691         if (!prog)
8692                 return;
8693
8694         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8695         event->prog = NULL;
8696         bpf_prog_put(prog);
8697 }
8698 #else
8699 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8700 {
8701         return -EOPNOTSUPP;
8702 }
8703 static void perf_event_free_bpf_handler(struct perf_event *event)
8704 {
8705 }
8706 #endif
8707
8708 /*
8709  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8710  * with perf_event_open()
8711  */
8712 static inline bool perf_event_is_tracing(struct perf_event *event)
8713 {
8714         if (event->pmu == &perf_tracepoint)
8715                 return true;
8716 #ifdef CONFIG_KPROBE_EVENTS
8717         if (event->pmu == &perf_kprobe)
8718                 return true;
8719 #endif
8720 #ifdef CONFIG_UPROBE_EVENTS
8721         if (event->pmu == &perf_uprobe)
8722                 return true;
8723 #endif
8724         return false;
8725 }
8726
8727 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8728 {
8729         bool is_kprobe, is_tracepoint, is_syscall_tp;
8730         struct bpf_prog *prog;
8731         int ret;
8732
8733         if (!perf_event_is_tracing(event))
8734                 return perf_event_set_bpf_handler(event, prog_fd);
8735
8736         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8737         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8738         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8739         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8740                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8741                 return -EINVAL;
8742
8743         prog = bpf_prog_get(prog_fd);
8744         if (IS_ERR(prog))
8745                 return PTR_ERR(prog);
8746
8747         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8748             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8749             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8750                 /* valid fd, but invalid bpf program type */
8751                 bpf_prog_put(prog);
8752                 return -EINVAL;
8753         }
8754
8755         /* Kprobe override only works for kprobes, not uprobes. */
8756         if (prog->kprobe_override &&
8757             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8758                 bpf_prog_put(prog);
8759                 return -EINVAL;
8760         }
8761
8762         if (is_tracepoint || is_syscall_tp) {
8763                 int off = trace_event_get_offsets(event->tp_event);
8764
8765                 if (prog->aux->max_ctx_offset > off) {
8766                         bpf_prog_put(prog);
8767                         return -EACCES;
8768                 }
8769         }
8770
8771         ret = perf_event_attach_bpf_prog(event, prog);
8772         if (ret)
8773                 bpf_prog_put(prog);
8774         return ret;
8775 }
8776
8777 static void perf_event_free_bpf_prog(struct perf_event *event)
8778 {
8779         if (!perf_event_is_tracing(event)) {
8780                 perf_event_free_bpf_handler(event);
8781                 return;
8782         }
8783         perf_event_detach_bpf_prog(event);
8784 }
8785
8786 #else
8787
8788 static inline void perf_tp_register(void)
8789 {
8790 }
8791
8792 static void perf_event_free_filter(struct perf_event *event)
8793 {
8794 }
8795
8796 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8797 {
8798         return -ENOENT;
8799 }
8800
8801 static void perf_event_free_bpf_prog(struct perf_event *event)
8802 {
8803 }
8804 #endif /* CONFIG_EVENT_TRACING */
8805
8806 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8807 void perf_bp_event(struct perf_event *bp, void *data)
8808 {
8809         struct perf_sample_data sample;
8810         struct pt_regs *regs = data;
8811
8812         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8813
8814         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8815                 perf_swevent_event(bp, 1, &sample, regs);
8816 }
8817 #endif
8818
8819 /*
8820  * Allocate a new address filter
8821  */
8822 static struct perf_addr_filter *
8823 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8824 {
8825         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8826         struct perf_addr_filter *filter;
8827
8828         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8829         if (!filter)
8830                 return NULL;
8831
8832         INIT_LIST_HEAD(&filter->entry);
8833         list_add_tail(&filter->entry, filters);
8834
8835         return filter;
8836 }
8837
8838 static void free_filters_list(struct list_head *filters)
8839 {
8840         struct perf_addr_filter *filter, *iter;
8841
8842         list_for_each_entry_safe(filter, iter, filters, entry) {
8843                 path_put(&filter->path);
8844                 list_del(&filter->entry);
8845                 kfree(filter);
8846         }
8847 }
8848
8849 /*
8850  * Free existing address filters and optionally install new ones
8851  */
8852 static void perf_addr_filters_splice(struct perf_event *event,
8853                                      struct list_head *head)
8854 {
8855         unsigned long flags;
8856         LIST_HEAD(list);
8857
8858         if (!has_addr_filter(event))
8859                 return;
8860
8861         /* don't bother with children, they don't have their own filters */
8862         if (event->parent)
8863                 return;
8864
8865         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8866
8867         list_splice_init(&event->addr_filters.list, &list);
8868         if (head)
8869                 list_splice(head, &event->addr_filters.list);
8870
8871         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8872
8873         free_filters_list(&list);
8874 }
8875
8876 /*
8877  * Scan through mm's vmas and see if one of them matches the
8878  * @filter; if so, adjust filter's address range.
8879  * Called with mm::mmap_sem down for reading.
8880  */
8881 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
8882                                    struct mm_struct *mm,
8883                                    struct perf_addr_filter_range *fr)
8884 {
8885         struct vm_area_struct *vma;
8886
8887         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8888                 if (!vma->vm_file)
8889                         continue;
8890
8891                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
8892                         return;
8893         }
8894 }
8895
8896 /*
8897  * Update event's address range filters based on the
8898  * task's existing mappings, if any.
8899  */
8900 static void perf_event_addr_filters_apply(struct perf_event *event)
8901 {
8902         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8903         struct task_struct *task = READ_ONCE(event->ctx->task);
8904         struct perf_addr_filter *filter;
8905         struct mm_struct *mm = NULL;
8906         unsigned int count = 0;
8907         unsigned long flags;
8908
8909         /*
8910          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8911          * will stop on the parent's child_mutex that our caller is also holding
8912          */
8913         if (task == TASK_TOMBSTONE)
8914                 return;
8915
8916         if (ifh->nr_file_filters) {
8917                 mm = get_task_mm(task);
8918                 if (!mm)
8919                         goto restart;
8920
8921                 down_read(&mm->mmap_sem);
8922         }
8923
8924         raw_spin_lock_irqsave(&ifh->lock, flags);
8925         list_for_each_entry(filter, &ifh->list, entry) {
8926                 if (filter->path.dentry) {
8927                         /*
8928                          * Adjust base offset if the filter is associated to a
8929                          * binary that needs to be mapped:
8930                          */
8931                         event->addr_filter_ranges[count].start = 0;
8932                         event->addr_filter_ranges[count].size = 0;
8933
8934                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
8935                 } else {
8936                         event->addr_filter_ranges[count].start = filter->offset;
8937                         event->addr_filter_ranges[count].size  = filter->size;
8938                 }
8939
8940                 count++;
8941         }
8942
8943         event->addr_filters_gen++;
8944         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8945
8946         if (ifh->nr_file_filters) {
8947                 up_read(&mm->mmap_sem);
8948
8949                 mmput(mm);
8950         }
8951
8952 restart:
8953         perf_event_stop(event, 1);
8954 }
8955
8956 /*
8957  * Address range filtering: limiting the data to certain
8958  * instruction address ranges. Filters are ioctl()ed to us from
8959  * userspace as ascii strings.
8960  *
8961  * Filter string format:
8962  *
8963  * ACTION RANGE_SPEC
8964  * where ACTION is one of the
8965  *  * "filter": limit the trace to this region
8966  *  * "start": start tracing from this address
8967  *  * "stop": stop tracing at this address/region;
8968  * RANGE_SPEC is
8969  *  * for kernel addresses: <start address>[/<size>]
8970  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8971  *
8972  * if <size> is not specified or is zero, the range is treated as a single
8973  * address; not valid for ACTION=="filter".
8974  */
8975 enum {
8976         IF_ACT_NONE = -1,
8977         IF_ACT_FILTER,
8978         IF_ACT_START,
8979         IF_ACT_STOP,
8980         IF_SRC_FILE,
8981         IF_SRC_KERNEL,
8982         IF_SRC_FILEADDR,
8983         IF_SRC_KERNELADDR,
8984 };
8985
8986 enum {
8987         IF_STATE_ACTION = 0,
8988         IF_STATE_SOURCE,
8989         IF_STATE_END,
8990 };
8991
8992 static const match_table_t if_tokens = {
8993         { IF_ACT_FILTER,        "filter" },
8994         { IF_ACT_START,         "start" },
8995         { IF_ACT_STOP,          "stop" },
8996         { IF_SRC_FILE,          "%u/%u@%s" },
8997         { IF_SRC_KERNEL,        "%u/%u" },
8998         { IF_SRC_FILEADDR,      "%u@%s" },
8999         { IF_SRC_KERNELADDR,    "%u" },
9000         { IF_ACT_NONE,          NULL },
9001 };
9002
9003 /*
9004  * Address filter string parser
9005  */
9006 static int
9007 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9008                              struct list_head *filters)
9009 {
9010         struct perf_addr_filter *filter = NULL;
9011         char *start, *orig, *filename = NULL;
9012         substring_t args[MAX_OPT_ARGS];
9013         int state = IF_STATE_ACTION, token;
9014         unsigned int kernel = 0;
9015         int ret = -EINVAL;
9016
9017         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9018         if (!fstr)
9019                 return -ENOMEM;
9020
9021         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9022                 static const enum perf_addr_filter_action_t actions[] = {
9023                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9024                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9025                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9026                 };
9027                 ret = -EINVAL;
9028
9029                 if (!*start)
9030                         continue;
9031
9032                 /* filter definition begins */
9033                 if (state == IF_STATE_ACTION) {
9034                         filter = perf_addr_filter_new(event, filters);
9035                         if (!filter)
9036                                 goto fail;
9037                 }
9038
9039                 token = match_token(start, if_tokens, args);
9040                 switch (token) {
9041                 case IF_ACT_FILTER:
9042                 case IF_ACT_START:
9043                 case IF_ACT_STOP:
9044                         if (state != IF_STATE_ACTION)
9045                                 goto fail;
9046
9047                         filter->action = actions[token];
9048                         state = IF_STATE_SOURCE;
9049                         break;
9050
9051                 case IF_SRC_KERNELADDR:
9052                 case IF_SRC_KERNEL:
9053                         kernel = 1;
9054
9055                 case IF_SRC_FILEADDR:
9056                 case IF_SRC_FILE:
9057                         if (state != IF_STATE_SOURCE)
9058                                 goto fail;
9059
9060                         *args[0].to = 0;
9061                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9062                         if (ret)
9063                                 goto fail;
9064
9065                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9066                                 *args[1].to = 0;
9067                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9068                                 if (ret)
9069                                         goto fail;
9070                         }
9071
9072                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9073                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9074
9075                                 kfree(filename);
9076                                 filename = match_strdup(&args[fpos]);
9077                                 if (!filename) {
9078                                         ret = -ENOMEM;
9079                                         goto fail;
9080                                 }
9081                         }
9082
9083                         state = IF_STATE_END;
9084                         break;
9085
9086                 default:
9087                         goto fail;
9088                 }
9089
9090                 /*
9091                  * Filter definition is fully parsed, validate and install it.
9092                  * Make sure that it doesn't contradict itself or the event's
9093                  * attribute.
9094                  */
9095                 if (state == IF_STATE_END) {
9096                         ret = -EINVAL;
9097                         if (kernel && event->attr.exclude_kernel)
9098                                 goto fail;
9099
9100                         /*
9101                          * ACTION "filter" must have a non-zero length region
9102                          * specified.
9103                          */
9104                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9105                             !filter->size)
9106                                 goto fail;
9107
9108                         if (!kernel) {
9109                                 if (!filename)
9110                                         goto fail;
9111
9112                                 /*
9113                                  * For now, we only support file-based filters
9114                                  * in per-task events; doing so for CPU-wide
9115                                  * events requires additional context switching
9116                                  * trickery, since same object code will be
9117                                  * mapped at different virtual addresses in
9118                                  * different processes.
9119                                  */
9120                                 ret = -EOPNOTSUPP;
9121                                 if (!event->ctx->task)
9122                                         goto fail;
9123
9124                                 /* look up the path and grab its inode */
9125                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9126                                                 &filter->path);
9127                                 if (ret)
9128                                         goto fail;
9129
9130                                 ret = -EINVAL;
9131                                 if (!filter->path.dentry ||
9132                                     !S_ISREG(d_inode(filter->path.dentry)
9133                                              ->i_mode))
9134                                         goto fail;
9135
9136                                 event->addr_filters.nr_file_filters++;
9137                         }
9138
9139                         /* ready to consume more filters */
9140                         state = IF_STATE_ACTION;
9141                         filter = NULL;
9142                 }
9143         }
9144
9145         if (state != IF_STATE_ACTION)
9146                 goto fail;
9147
9148         kfree(filename);
9149         kfree(orig);
9150
9151         return 0;
9152
9153 fail:
9154         kfree(filename);
9155         free_filters_list(filters);
9156         kfree(orig);
9157
9158         return ret;
9159 }
9160
9161 static int
9162 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9163 {
9164         LIST_HEAD(filters);
9165         int ret;
9166
9167         /*
9168          * Since this is called in perf_ioctl() path, we're already holding
9169          * ctx::mutex.
9170          */
9171         lockdep_assert_held(&event->ctx->mutex);
9172
9173         if (WARN_ON_ONCE(event->parent))
9174                 return -EINVAL;
9175
9176         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9177         if (ret)
9178                 goto fail_clear_files;
9179
9180         ret = event->pmu->addr_filters_validate(&filters);
9181         if (ret)
9182                 goto fail_free_filters;
9183
9184         /* remove existing filters, if any */
9185         perf_addr_filters_splice(event, &filters);
9186
9187         /* install new filters */
9188         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9189
9190         return ret;
9191
9192 fail_free_filters:
9193         free_filters_list(&filters);
9194
9195 fail_clear_files:
9196         event->addr_filters.nr_file_filters = 0;
9197
9198         return ret;
9199 }
9200
9201 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9202 {
9203         int ret = -EINVAL;
9204         char *filter_str;
9205
9206         filter_str = strndup_user(arg, PAGE_SIZE);
9207         if (IS_ERR(filter_str))
9208                 return PTR_ERR(filter_str);
9209
9210 #ifdef CONFIG_EVENT_TRACING
9211         if (perf_event_is_tracing(event)) {
9212                 struct perf_event_context *ctx = event->ctx;
9213
9214                 /*
9215                  * Beware, here be dragons!!
9216                  *
9217                  * the tracepoint muck will deadlock against ctx->mutex, but
9218                  * the tracepoint stuff does not actually need it. So
9219                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9220                  * already have a reference on ctx.
9221                  *
9222                  * This can result in event getting moved to a different ctx,
9223                  * but that does not affect the tracepoint state.
9224                  */
9225                 mutex_unlock(&ctx->mutex);
9226                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9227                 mutex_lock(&ctx->mutex);
9228         } else
9229 #endif
9230         if (has_addr_filter(event))
9231                 ret = perf_event_set_addr_filter(event, filter_str);
9232
9233         kfree(filter_str);
9234         return ret;
9235 }
9236
9237 /*
9238  * hrtimer based swevent callback
9239  */
9240
9241 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9242 {
9243         enum hrtimer_restart ret = HRTIMER_RESTART;
9244         struct perf_sample_data data;
9245         struct pt_regs *regs;
9246         struct perf_event *event;
9247         u64 period;
9248
9249         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9250
9251         if (event->state != PERF_EVENT_STATE_ACTIVE)
9252                 return HRTIMER_NORESTART;
9253
9254         event->pmu->read(event);
9255
9256         perf_sample_data_init(&data, 0, event->hw.last_period);
9257         regs = get_irq_regs();
9258
9259         if (regs && !perf_exclude_event(event, regs)) {
9260                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9261                         if (__perf_event_overflow(event, 1, &data, regs))
9262                                 ret = HRTIMER_NORESTART;
9263         }
9264
9265         period = max_t(u64, 10000, event->hw.sample_period);
9266         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9267
9268         return ret;
9269 }
9270
9271 static void perf_swevent_start_hrtimer(struct perf_event *event)
9272 {
9273         struct hw_perf_event *hwc = &event->hw;
9274         s64 period;
9275
9276         if (!is_sampling_event(event))
9277                 return;
9278
9279         period = local64_read(&hwc->period_left);
9280         if (period) {
9281                 if (period < 0)
9282                         period = 10000;
9283
9284                 local64_set(&hwc->period_left, 0);
9285         } else {
9286                 period = max_t(u64, 10000, hwc->sample_period);
9287         }
9288         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9289                       HRTIMER_MODE_REL_PINNED);
9290 }
9291
9292 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9293 {
9294         struct hw_perf_event *hwc = &event->hw;
9295
9296         if (is_sampling_event(event)) {
9297                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9298                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9299
9300                 hrtimer_cancel(&hwc->hrtimer);
9301         }
9302 }
9303
9304 static void perf_swevent_init_hrtimer(struct perf_event *event)
9305 {
9306         struct hw_perf_event *hwc = &event->hw;
9307
9308         if (!is_sampling_event(event))
9309                 return;
9310
9311         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9312         hwc->hrtimer.function = perf_swevent_hrtimer;
9313
9314         /*
9315          * Since hrtimers have a fixed rate, we can do a static freq->period
9316          * mapping and avoid the whole period adjust feedback stuff.
9317          */
9318         if (event->attr.freq) {
9319                 long freq = event->attr.sample_freq;
9320
9321                 event->attr.sample_period = NSEC_PER_SEC / freq;
9322                 hwc->sample_period = event->attr.sample_period;
9323                 local64_set(&hwc->period_left, hwc->sample_period);
9324                 hwc->last_period = hwc->sample_period;
9325                 event->attr.freq = 0;
9326         }
9327 }
9328
9329 /*
9330  * Software event: cpu wall time clock
9331  */
9332
9333 static void cpu_clock_event_update(struct perf_event *event)
9334 {
9335         s64 prev;
9336         u64 now;
9337
9338         now = local_clock();
9339         prev = local64_xchg(&event->hw.prev_count, now);
9340         local64_add(now - prev, &event->count);
9341 }
9342
9343 static void cpu_clock_event_start(struct perf_event *event, int flags)
9344 {
9345         local64_set(&event->hw.prev_count, local_clock());
9346         perf_swevent_start_hrtimer(event);
9347 }
9348
9349 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9350 {
9351         perf_swevent_cancel_hrtimer(event);
9352         cpu_clock_event_update(event);
9353 }
9354
9355 static int cpu_clock_event_add(struct perf_event *event, int flags)
9356 {
9357         if (flags & PERF_EF_START)
9358                 cpu_clock_event_start(event, flags);
9359         perf_event_update_userpage(event);
9360
9361         return 0;
9362 }
9363
9364 static void cpu_clock_event_del(struct perf_event *event, int flags)
9365 {
9366         cpu_clock_event_stop(event, flags);
9367 }
9368
9369 static void cpu_clock_event_read(struct perf_event *event)
9370 {
9371         cpu_clock_event_update(event);
9372 }
9373
9374 static int cpu_clock_event_init(struct perf_event *event)
9375 {
9376         if (event->attr.type != PERF_TYPE_SOFTWARE)
9377                 return -ENOENT;
9378
9379         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9380                 return -ENOENT;
9381
9382         /*
9383          * no branch sampling for software events
9384          */
9385         if (has_branch_stack(event))
9386                 return -EOPNOTSUPP;
9387
9388         perf_swevent_init_hrtimer(event);
9389
9390         return 0;
9391 }
9392
9393 static struct pmu perf_cpu_clock = {
9394         .task_ctx_nr    = perf_sw_context,
9395
9396         .capabilities   = PERF_PMU_CAP_NO_NMI,
9397
9398         .event_init     = cpu_clock_event_init,
9399         .add            = cpu_clock_event_add,
9400         .del            = cpu_clock_event_del,
9401         .start          = cpu_clock_event_start,
9402         .stop           = cpu_clock_event_stop,
9403         .read           = cpu_clock_event_read,
9404 };
9405
9406 /*
9407  * Software event: task time clock
9408  */
9409
9410 static void task_clock_event_update(struct perf_event *event, u64 now)
9411 {
9412         u64 prev;
9413         s64 delta;
9414
9415         prev = local64_xchg(&event->hw.prev_count, now);
9416         delta = now - prev;
9417         local64_add(delta, &event->count);
9418 }
9419
9420 static void task_clock_event_start(struct perf_event *event, int flags)
9421 {
9422         local64_set(&event->hw.prev_count, event->ctx->time);
9423         perf_swevent_start_hrtimer(event);
9424 }
9425
9426 static void task_clock_event_stop(struct perf_event *event, int flags)
9427 {
9428         perf_swevent_cancel_hrtimer(event);
9429         task_clock_event_update(event, event->ctx->time);
9430 }
9431
9432 static int task_clock_event_add(struct perf_event *event, int flags)
9433 {
9434         if (flags & PERF_EF_START)
9435                 task_clock_event_start(event, flags);
9436         perf_event_update_userpage(event);
9437
9438         return 0;
9439 }
9440
9441 static void task_clock_event_del(struct perf_event *event, int flags)
9442 {
9443         task_clock_event_stop(event, PERF_EF_UPDATE);
9444 }
9445
9446 static void task_clock_event_read(struct perf_event *event)
9447 {
9448         u64 now = perf_clock();
9449         u64 delta = now - event->ctx->timestamp;
9450         u64 time = event->ctx->time + delta;
9451
9452         task_clock_event_update(event, time);
9453 }
9454
9455 static int task_clock_event_init(struct perf_event *event)
9456 {
9457         if (event->attr.type != PERF_TYPE_SOFTWARE)
9458                 return -ENOENT;
9459
9460         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9461                 return -ENOENT;
9462
9463         /*
9464          * no branch sampling for software events
9465          */
9466         if (has_branch_stack(event))
9467                 return -EOPNOTSUPP;
9468
9469         perf_swevent_init_hrtimer(event);
9470
9471         return 0;
9472 }
9473
9474 static struct pmu perf_task_clock = {
9475         .task_ctx_nr    = perf_sw_context,
9476
9477         .capabilities   = PERF_PMU_CAP_NO_NMI,
9478
9479         .event_init     = task_clock_event_init,
9480         .add            = task_clock_event_add,
9481         .del            = task_clock_event_del,
9482         .start          = task_clock_event_start,
9483         .stop           = task_clock_event_stop,
9484         .read           = task_clock_event_read,
9485 };
9486
9487 static void perf_pmu_nop_void(struct pmu *pmu)
9488 {
9489 }
9490
9491 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9492 {
9493 }
9494
9495 static int perf_pmu_nop_int(struct pmu *pmu)
9496 {
9497         return 0;
9498 }
9499
9500 static int perf_event_nop_int(struct perf_event *event, u64 value)
9501 {
9502         return 0;
9503 }
9504
9505 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9506
9507 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9508 {
9509         __this_cpu_write(nop_txn_flags, flags);
9510
9511         if (flags & ~PERF_PMU_TXN_ADD)
9512                 return;
9513
9514         perf_pmu_disable(pmu);
9515 }
9516
9517 static int perf_pmu_commit_txn(struct pmu *pmu)
9518 {
9519         unsigned int flags = __this_cpu_read(nop_txn_flags);
9520
9521         __this_cpu_write(nop_txn_flags, 0);
9522
9523         if (flags & ~PERF_PMU_TXN_ADD)
9524                 return 0;
9525
9526         perf_pmu_enable(pmu);
9527         return 0;
9528 }
9529
9530 static void perf_pmu_cancel_txn(struct pmu *pmu)
9531 {
9532         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9533
9534         __this_cpu_write(nop_txn_flags, 0);
9535
9536         if (flags & ~PERF_PMU_TXN_ADD)
9537                 return;
9538
9539         perf_pmu_enable(pmu);
9540 }
9541
9542 static int perf_event_idx_default(struct perf_event *event)
9543 {
9544         return 0;
9545 }
9546
9547 /*
9548  * Ensures all contexts with the same task_ctx_nr have the same
9549  * pmu_cpu_context too.
9550  */
9551 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9552 {
9553         struct pmu *pmu;
9554
9555         if (ctxn < 0)
9556                 return NULL;
9557
9558         list_for_each_entry(pmu, &pmus, entry) {
9559                 if (pmu->task_ctx_nr == ctxn)
9560                         return pmu->pmu_cpu_context;
9561         }
9562
9563         return NULL;
9564 }
9565
9566 static void free_pmu_context(struct pmu *pmu)
9567 {
9568         /*
9569          * Static contexts such as perf_sw_context have a global lifetime
9570          * and may be shared between different PMUs. Avoid freeing them
9571          * when a single PMU is going away.
9572          */
9573         if (pmu->task_ctx_nr > perf_invalid_context)
9574                 return;
9575
9576         free_percpu(pmu->pmu_cpu_context);
9577 }
9578
9579 /*
9580  * Let userspace know that this PMU supports address range filtering:
9581  */
9582 static ssize_t nr_addr_filters_show(struct device *dev,
9583                                     struct device_attribute *attr,
9584                                     char *page)
9585 {
9586         struct pmu *pmu = dev_get_drvdata(dev);
9587
9588         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9589 }
9590 DEVICE_ATTR_RO(nr_addr_filters);
9591
9592 static struct idr pmu_idr;
9593
9594 static ssize_t
9595 type_show(struct device *dev, struct device_attribute *attr, char *page)
9596 {
9597         struct pmu *pmu = dev_get_drvdata(dev);
9598
9599         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9600 }
9601 static DEVICE_ATTR_RO(type);
9602
9603 static ssize_t
9604 perf_event_mux_interval_ms_show(struct device *dev,
9605                                 struct device_attribute *attr,
9606                                 char *page)
9607 {
9608         struct pmu *pmu = dev_get_drvdata(dev);
9609
9610         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9611 }
9612
9613 static DEFINE_MUTEX(mux_interval_mutex);
9614
9615 static ssize_t
9616 perf_event_mux_interval_ms_store(struct device *dev,
9617                                  struct device_attribute *attr,
9618                                  const char *buf, size_t count)
9619 {
9620         struct pmu *pmu = dev_get_drvdata(dev);
9621         int timer, cpu, ret;
9622
9623         ret = kstrtoint(buf, 0, &timer);
9624         if (ret)
9625                 return ret;
9626
9627         if (timer < 1)
9628                 return -EINVAL;
9629
9630         /* same value, noting to do */
9631         if (timer == pmu->hrtimer_interval_ms)
9632                 return count;
9633
9634         mutex_lock(&mux_interval_mutex);
9635         pmu->hrtimer_interval_ms = timer;
9636
9637         /* update all cpuctx for this PMU */
9638         cpus_read_lock();
9639         for_each_online_cpu(cpu) {
9640                 struct perf_cpu_context *cpuctx;
9641                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9642                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9643
9644                 cpu_function_call(cpu,
9645                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9646         }
9647         cpus_read_unlock();
9648         mutex_unlock(&mux_interval_mutex);
9649
9650         return count;
9651 }
9652 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9653
9654 static struct attribute *pmu_dev_attrs[] = {
9655         &dev_attr_type.attr,
9656         &dev_attr_perf_event_mux_interval_ms.attr,
9657         NULL,
9658 };
9659 ATTRIBUTE_GROUPS(pmu_dev);
9660
9661 static int pmu_bus_running;
9662 static struct bus_type pmu_bus = {
9663         .name           = "event_source",
9664         .dev_groups     = pmu_dev_groups,
9665 };
9666
9667 static void pmu_dev_release(struct device *dev)
9668 {
9669         kfree(dev);
9670 }
9671
9672 static int pmu_dev_alloc(struct pmu *pmu)
9673 {
9674         int ret = -ENOMEM;
9675
9676         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9677         if (!pmu->dev)
9678                 goto out;
9679
9680         pmu->dev->groups = pmu->attr_groups;
9681         device_initialize(pmu->dev);
9682         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9683         if (ret)
9684                 goto free_dev;
9685
9686         dev_set_drvdata(pmu->dev, pmu);
9687         pmu->dev->bus = &pmu_bus;
9688         pmu->dev->release = pmu_dev_release;
9689         ret = device_add(pmu->dev);
9690         if (ret)
9691                 goto free_dev;
9692
9693         /* For PMUs with address filters, throw in an extra attribute: */
9694         if (pmu->nr_addr_filters)
9695                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9696
9697         if (ret)
9698                 goto del_dev;
9699
9700 out:
9701         return ret;
9702
9703 del_dev:
9704         device_del(pmu->dev);
9705
9706 free_dev:
9707         put_device(pmu->dev);
9708         goto out;
9709 }
9710
9711 static struct lock_class_key cpuctx_mutex;
9712 static struct lock_class_key cpuctx_lock;
9713
9714 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9715 {
9716         int cpu, ret;
9717
9718         mutex_lock(&pmus_lock);
9719         ret = -ENOMEM;
9720         pmu->pmu_disable_count = alloc_percpu(int);
9721         if (!pmu->pmu_disable_count)
9722                 goto unlock;
9723
9724         pmu->type = -1;
9725         if (!name)
9726                 goto skip_type;
9727         pmu->name = name;
9728
9729         if (type < 0) {
9730                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9731                 if (type < 0) {
9732                         ret = type;
9733                         goto free_pdc;
9734                 }
9735         }
9736         pmu->type = type;
9737
9738         if (pmu_bus_running) {
9739                 ret = pmu_dev_alloc(pmu);
9740                 if (ret)
9741                         goto free_idr;
9742         }
9743
9744 skip_type:
9745         if (pmu->task_ctx_nr == perf_hw_context) {
9746                 static int hw_context_taken = 0;
9747
9748                 /*
9749                  * Other than systems with heterogeneous CPUs, it never makes
9750                  * sense for two PMUs to share perf_hw_context. PMUs which are
9751                  * uncore must use perf_invalid_context.
9752                  */
9753                 if (WARN_ON_ONCE(hw_context_taken &&
9754                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9755                         pmu->task_ctx_nr = perf_invalid_context;
9756
9757                 hw_context_taken = 1;
9758         }
9759
9760         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9761         if (pmu->pmu_cpu_context)
9762                 goto got_cpu_context;
9763
9764         ret = -ENOMEM;
9765         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9766         if (!pmu->pmu_cpu_context)
9767                 goto free_dev;
9768
9769         for_each_possible_cpu(cpu) {
9770                 struct perf_cpu_context *cpuctx;
9771
9772                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9773                 __perf_event_init_context(&cpuctx->ctx);
9774                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9775                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9776                 cpuctx->ctx.pmu = pmu;
9777                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9778
9779                 __perf_mux_hrtimer_init(cpuctx, cpu);
9780         }
9781
9782 got_cpu_context:
9783         if (!pmu->start_txn) {
9784                 if (pmu->pmu_enable) {
9785                         /*
9786                          * If we have pmu_enable/pmu_disable calls, install
9787                          * transaction stubs that use that to try and batch
9788                          * hardware accesses.
9789                          */
9790                         pmu->start_txn  = perf_pmu_start_txn;
9791                         pmu->commit_txn = perf_pmu_commit_txn;
9792                         pmu->cancel_txn = perf_pmu_cancel_txn;
9793                 } else {
9794                         pmu->start_txn  = perf_pmu_nop_txn;
9795                         pmu->commit_txn = perf_pmu_nop_int;
9796                         pmu->cancel_txn = perf_pmu_nop_void;
9797                 }
9798         }
9799
9800         if (!pmu->pmu_enable) {
9801                 pmu->pmu_enable  = perf_pmu_nop_void;
9802                 pmu->pmu_disable = perf_pmu_nop_void;
9803         }
9804
9805         if (!pmu->check_period)
9806                 pmu->check_period = perf_event_nop_int;
9807
9808         if (!pmu->event_idx)
9809                 pmu->event_idx = perf_event_idx_default;
9810
9811         list_add_rcu(&pmu->entry, &pmus);
9812         atomic_set(&pmu->exclusive_cnt, 0);
9813         ret = 0;
9814 unlock:
9815         mutex_unlock(&pmus_lock);
9816
9817         return ret;
9818
9819 free_dev:
9820         device_del(pmu->dev);
9821         put_device(pmu->dev);
9822
9823 free_idr:
9824         if (pmu->type >= PERF_TYPE_MAX)
9825                 idr_remove(&pmu_idr, pmu->type);
9826
9827 free_pdc:
9828         free_percpu(pmu->pmu_disable_count);
9829         goto unlock;
9830 }
9831 EXPORT_SYMBOL_GPL(perf_pmu_register);
9832
9833 void perf_pmu_unregister(struct pmu *pmu)
9834 {
9835         mutex_lock(&pmus_lock);
9836         list_del_rcu(&pmu->entry);
9837
9838         /*
9839          * We dereference the pmu list under both SRCU and regular RCU, so
9840          * synchronize against both of those.
9841          */
9842         synchronize_srcu(&pmus_srcu);
9843         synchronize_rcu();
9844
9845         free_percpu(pmu->pmu_disable_count);
9846         if (pmu->type >= PERF_TYPE_MAX)
9847                 idr_remove(&pmu_idr, pmu->type);
9848         if (pmu_bus_running) {
9849                 if (pmu->nr_addr_filters)
9850                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9851                 device_del(pmu->dev);
9852                 put_device(pmu->dev);
9853         }
9854         free_pmu_context(pmu);
9855         mutex_unlock(&pmus_lock);
9856 }
9857 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9858
9859 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9860 {
9861         struct perf_event_context *ctx = NULL;
9862         int ret;
9863
9864         if (!try_module_get(pmu->module))
9865                 return -ENODEV;
9866
9867         /*
9868          * A number of pmu->event_init() methods iterate the sibling_list to,
9869          * for example, validate if the group fits on the PMU. Therefore,
9870          * if this is a sibling event, acquire the ctx->mutex to protect
9871          * the sibling_list.
9872          */
9873         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9874                 /*
9875                  * This ctx->mutex can nest when we're called through
9876                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9877                  */
9878                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9879                                                  SINGLE_DEPTH_NESTING);
9880                 BUG_ON(!ctx);
9881         }
9882
9883         event->pmu = pmu;
9884         ret = pmu->event_init(event);
9885
9886         if (ctx)
9887                 perf_event_ctx_unlock(event->group_leader, ctx);
9888
9889         if (ret)
9890                 module_put(pmu->module);
9891
9892         return ret;
9893 }
9894
9895 static struct pmu *perf_init_event(struct perf_event *event)
9896 {
9897         struct pmu *pmu;
9898         int idx;
9899         int ret;
9900
9901         idx = srcu_read_lock(&pmus_srcu);
9902
9903         /* Try parent's PMU first: */
9904         if (event->parent && event->parent->pmu) {
9905                 pmu = event->parent->pmu;
9906                 ret = perf_try_init_event(pmu, event);
9907                 if (!ret)
9908                         goto unlock;
9909         }
9910
9911         rcu_read_lock();
9912         pmu = idr_find(&pmu_idr, event->attr.type);
9913         rcu_read_unlock();
9914         if (pmu) {
9915                 ret = perf_try_init_event(pmu, event);
9916                 if (ret)
9917                         pmu = ERR_PTR(ret);
9918                 goto unlock;
9919         }
9920
9921         list_for_each_entry_rcu(pmu, &pmus, entry) {
9922                 ret = perf_try_init_event(pmu, event);
9923                 if (!ret)
9924                         goto unlock;
9925
9926                 if (ret != -ENOENT) {
9927                         pmu = ERR_PTR(ret);
9928                         goto unlock;
9929                 }
9930         }
9931         pmu = ERR_PTR(-ENOENT);
9932 unlock:
9933         srcu_read_unlock(&pmus_srcu, idx);
9934
9935         return pmu;
9936 }
9937
9938 static void attach_sb_event(struct perf_event *event)
9939 {
9940         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9941
9942         raw_spin_lock(&pel->lock);
9943         list_add_rcu(&event->sb_list, &pel->list);
9944         raw_spin_unlock(&pel->lock);
9945 }
9946
9947 /*
9948  * We keep a list of all !task (and therefore per-cpu) events
9949  * that need to receive side-band records.
9950  *
9951  * This avoids having to scan all the various PMU per-cpu contexts
9952  * looking for them.
9953  */
9954 static void account_pmu_sb_event(struct perf_event *event)
9955 {
9956         if (is_sb_event(event))
9957                 attach_sb_event(event);
9958 }
9959
9960 static void account_event_cpu(struct perf_event *event, int cpu)
9961 {
9962         if (event->parent)
9963                 return;
9964
9965         if (is_cgroup_event(event))
9966                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9967 }
9968
9969 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9970 static void account_freq_event_nohz(void)
9971 {
9972 #ifdef CONFIG_NO_HZ_FULL
9973         /* Lock so we don't race with concurrent unaccount */
9974         spin_lock(&nr_freq_lock);
9975         if (atomic_inc_return(&nr_freq_events) == 1)
9976                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9977         spin_unlock(&nr_freq_lock);
9978 #endif
9979 }
9980
9981 static void account_freq_event(void)
9982 {
9983         if (tick_nohz_full_enabled())
9984                 account_freq_event_nohz();
9985         else
9986                 atomic_inc(&nr_freq_events);
9987 }
9988
9989
9990 static void account_event(struct perf_event *event)
9991 {
9992         bool inc = false;
9993
9994         if (event->parent)
9995                 return;
9996
9997         if (event->attach_state & PERF_ATTACH_TASK)
9998                 inc = true;
9999         if (event->attr.mmap || event->attr.mmap_data)
10000                 atomic_inc(&nr_mmap_events);
10001         if (event->attr.comm)
10002                 atomic_inc(&nr_comm_events);
10003         if (event->attr.namespaces)
10004                 atomic_inc(&nr_namespaces_events);
10005         if (event->attr.task)
10006                 atomic_inc(&nr_task_events);
10007         if (event->attr.freq)
10008                 account_freq_event();
10009         if (event->attr.context_switch) {
10010                 atomic_inc(&nr_switch_events);
10011                 inc = true;
10012         }
10013         if (has_branch_stack(event))
10014                 inc = true;
10015         if (is_cgroup_event(event))
10016                 inc = true;
10017
10018         if (inc) {
10019                 /*
10020                  * We need the mutex here because static_branch_enable()
10021                  * must complete *before* the perf_sched_count increment
10022                  * becomes visible.
10023                  */
10024                 if (atomic_inc_not_zero(&perf_sched_count))
10025                         goto enabled;
10026
10027                 mutex_lock(&perf_sched_mutex);
10028                 if (!atomic_read(&perf_sched_count)) {
10029                         static_branch_enable(&perf_sched_events);
10030                         /*
10031                          * Guarantee that all CPUs observe they key change and
10032                          * call the perf scheduling hooks before proceeding to
10033                          * install events that need them.
10034                          */
10035                         synchronize_sched();
10036                 }
10037                 /*
10038                  * Now that we have waited for the sync_sched(), allow further
10039                  * increments to by-pass the mutex.
10040                  */
10041                 atomic_inc(&perf_sched_count);
10042                 mutex_unlock(&perf_sched_mutex);
10043         }
10044 enabled:
10045
10046         account_event_cpu(event, event->cpu);
10047
10048         account_pmu_sb_event(event);
10049 }
10050
10051 /*
10052  * Allocate and initialize an event structure
10053  */
10054 static struct perf_event *
10055 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10056                  struct task_struct *task,
10057                  struct perf_event *group_leader,
10058                  struct perf_event *parent_event,
10059                  perf_overflow_handler_t overflow_handler,
10060                  void *context, int cgroup_fd)
10061 {
10062         struct pmu *pmu;
10063         struct perf_event *event;
10064         struct hw_perf_event *hwc;
10065         long err = -EINVAL;
10066
10067         if ((unsigned)cpu >= nr_cpu_ids) {
10068                 if (!task || cpu != -1)
10069                         return ERR_PTR(-EINVAL);
10070         }
10071
10072         event = kzalloc(sizeof(*event), GFP_KERNEL);
10073         if (!event)
10074                 return ERR_PTR(-ENOMEM);
10075
10076         /*
10077          * Single events are their own group leaders, with an
10078          * empty sibling list:
10079          */
10080         if (!group_leader)
10081                 group_leader = event;
10082
10083         mutex_init(&event->child_mutex);
10084         INIT_LIST_HEAD(&event->child_list);
10085
10086         INIT_LIST_HEAD(&event->event_entry);
10087         INIT_LIST_HEAD(&event->sibling_list);
10088         INIT_LIST_HEAD(&event->active_list);
10089         init_event_group(event);
10090         INIT_LIST_HEAD(&event->rb_entry);
10091         INIT_LIST_HEAD(&event->active_entry);
10092         INIT_LIST_HEAD(&event->addr_filters.list);
10093         INIT_HLIST_NODE(&event->hlist_entry);
10094
10095
10096         init_waitqueue_head(&event->waitq);
10097         event->pending_disable = -1;
10098         init_irq_work(&event->pending, perf_pending_event);
10099
10100         mutex_init(&event->mmap_mutex);
10101         raw_spin_lock_init(&event->addr_filters.lock);
10102
10103         atomic_long_set(&event->refcount, 1);
10104         event->cpu              = cpu;
10105         event->attr             = *attr;
10106         event->group_leader     = group_leader;
10107         event->pmu              = NULL;
10108         event->oncpu            = -1;
10109
10110         event->parent           = parent_event;
10111
10112         event->ns               = get_pid_ns(task_active_pid_ns(current));
10113         event->id               = atomic64_inc_return(&perf_event_id);
10114
10115         event->state            = PERF_EVENT_STATE_INACTIVE;
10116
10117         if (task) {
10118                 event->attach_state = PERF_ATTACH_TASK;
10119                 /*
10120                  * XXX pmu::event_init needs to know what task to account to
10121                  * and we cannot use the ctx information because we need the
10122                  * pmu before we get a ctx.
10123                  */
10124                 get_task_struct(task);
10125                 event->hw.target = task;
10126         }
10127
10128         event->clock = &local_clock;
10129         if (parent_event)
10130                 event->clock = parent_event->clock;
10131
10132         if (!overflow_handler && parent_event) {
10133                 overflow_handler = parent_event->overflow_handler;
10134                 context = parent_event->overflow_handler_context;
10135 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10136                 if (overflow_handler == bpf_overflow_handler) {
10137                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10138
10139                         if (IS_ERR(prog)) {
10140                                 err = PTR_ERR(prog);
10141                                 goto err_ns;
10142                         }
10143                         event->prog = prog;
10144                         event->orig_overflow_handler =
10145                                 parent_event->orig_overflow_handler;
10146                 }
10147 #endif
10148         }
10149
10150         if (overflow_handler) {
10151                 event->overflow_handler = overflow_handler;
10152                 event->overflow_handler_context = context;
10153         } else if (is_write_backward(event)){
10154                 event->overflow_handler = perf_event_output_backward;
10155                 event->overflow_handler_context = NULL;
10156         } else {
10157                 event->overflow_handler = perf_event_output_forward;
10158                 event->overflow_handler_context = NULL;
10159         }
10160
10161         perf_event__state_init(event);
10162
10163         pmu = NULL;
10164
10165         hwc = &event->hw;
10166         hwc->sample_period = attr->sample_period;
10167         if (attr->freq && attr->sample_freq)
10168                 hwc->sample_period = 1;
10169         hwc->last_period = hwc->sample_period;
10170
10171         local64_set(&hwc->period_left, hwc->sample_period);
10172
10173         /*
10174          * We currently do not support PERF_SAMPLE_READ on inherited events.
10175          * See perf_output_read().
10176          */
10177         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10178                 goto err_ns;
10179
10180         if (!has_branch_stack(event))
10181                 event->attr.branch_sample_type = 0;
10182
10183         if (cgroup_fd != -1) {
10184                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10185                 if (err)
10186                         goto err_ns;
10187         }
10188
10189         pmu = perf_init_event(event);
10190         if (IS_ERR(pmu)) {
10191                 err = PTR_ERR(pmu);
10192                 goto err_ns;
10193         }
10194
10195         err = exclusive_event_init(event);
10196         if (err)
10197                 goto err_pmu;
10198
10199         if (has_addr_filter(event)) {
10200                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10201                                                     sizeof(struct perf_addr_filter_range),
10202                                                     GFP_KERNEL);
10203                 if (!event->addr_filter_ranges) {
10204                         err = -ENOMEM;
10205                         goto err_per_task;
10206                 }
10207
10208                 /*
10209                  * Clone the parent's vma offsets: they are valid until exec()
10210                  * even if the mm is not shared with the parent.
10211                  */
10212                 if (event->parent) {
10213                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10214
10215                         raw_spin_lock_irq(&ifh->lock);
10216                         memcpy(event->addr_filter_ranges,
10217                                event->parent->addr_filter_ranges,
10218                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10219                         raw_spin_unlock_irq(&ifh->lock);
10220                 }
10221
10222                 /* force hw sync on the address filters */
10223                 event->addr_filters_gen = 1;
10224         }
10225
10226         if (!event->parent) {
10227                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10228                         err = get_callchain_buffers(attr->sample_max_stack);
10229                         if (err)
10230                                 goto err_addr_filters;
10231                 }
10232         }
10233
10234         /* symmetric to unaccount_event() in _free_event() */
10235         account_event(event);
10236
10237         return event;
10238
10239 err_addr_filters:
10240         kfree(event->addr_filter_ranges);
10241
10242 err_per_task:
10243         exclusive_event_destroy(event);
10244
10245 err_pmu:
10246         if (event->destroy)
10247                 event->destroy(event);
10248         module_put(pmu->module);
10249 err_ns:
10250         if (is_cgroup_event(event))
10251                 perf_detach_cgroup(event);
10252         if (event->ns)
10253                 put_pid_ns(event->ns);
10254         if (event->hw.target)
10255                 put_task_struct(event->hw.target);
10256         kfree(event);
10257
10258         return ERR_PTR(err);
10259 }
10260
10261 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10262                           struct perf_event_attr *attr)
10263 {
10264         u32 size;
10265         int ret;
10266
10267         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10268                 return -EFAULT;
10269
10270         /*
10271          * zero the full structure, so that a short copy will be nice.
10272          */
10273         memset(attr, 0, sizeof(*attr));
10274
10275         ret = get_user(size, &uattr->size);
10276         if (ret)
10277                 return ret;
10278
10279         if (size > PAGE_SIZE)   /* silly large */
10280                 goto err_size;
10281
10282         if (!size)              /* abi compat */
10283                 size = PERF_ATTR_SIZE_VER0;
10284
10285         if (size < PERF_ATTR_SIZE_VER0)
10286                 goto err_size;
10287
10288         /*
10289          * If we're handed a bigger struct than we know of,
10290          * ensure all the unknown bits are 0 - i.e. new
10291          * user-space does not rely on any kernel feature
10292          * extensions we dont know about yet.
10293          */
10294         if (size > sizeof(*attr)) {
10295                 unsigned char __user *addr;
10296                 unsigned char __user *end;
10297                 unsigned char val;
10298
10299                 addr = (void __user *)uattr + sizeof(*attr);
10300                 end  = (void __user *)uattr + size;
10301
10302                 for (; addr < end; addr++) {
10303                         ret = get_user(val, addr);
10304                         if (ret)
10305                                 return ret;
10306                         if (val)
10307                                 goto err_size;
10308                 }
10309                 size = sizeof(*attr);
10310         }
10311
10312         ret = copy_from_user(attr, uattr, size);
10313         if (ret)
10314                 return -EFAULT;
10315
10316         attr->size = size;
10317
10318         if (attr->__reserved_1)
10319                 return -EINVAL;
10320
10321         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10322                 return -EINVAL;
10323
10324         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10325                 return -EINVAL;
10326
10327         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10328                 u64 mask = attr->branch_sample_type;
10329
10330                 /* only using defined bits */
10331                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10332                         return -EINVAL;
10333
10334                 /* at least one branch bit must be set */
10335                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10336                         return -EINVAL;
10337
10338                 /* propagate priv level, when not set for branch */
10339                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10340
10341                         /* exclude_kernel checked on syscall entry */
10342                         if (!attr->exclude_kernel)
10343                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10344
10345                         if (!attr->exclude_user)
10346                                 mask |= PERF_SAMPLE_BRANCH_USER;
10347
10348                         if (!attr->exclude_hv)
10349                                 mask |= PERF_SAMPLE_BRANCH_HV;
10350                         /*
10351                          * adjust user setting (for HW filter setup)
10352                          */
10353                         attr->branch_sample_type = mask;
10354                 }
10355                 /* privileged levels capture (kernel, hv): check permissions */
10356                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10357                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10358                         return -EACCES;
10359         }
10360
10361         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10362                 ret = perf_reg_validate(attr->sample_regs_user);
10363                 if (ret)
10364                         return ret;
10365         }
10366
10367         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10368                 if (!arch_perf_have_user_stack_dump())
10369                         return -ENOSYS;
10370
10371                 /*
10372                  * We have __u32 type for the size, but so far
10373                  * we can only use __u16 as maximum due to the
10374                  * __u16 sample size limit.
10375                  */
10376                 if (attr->sample_stack_user >= USHRT_MAX)
10377                         return -EINVAL;
10378                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10379                         return -EINVAL;
10380         }
10381
10382         if (!attr->sample_max_stack)
10383                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10384
10385         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10386                 ret = perf_reg_validate(attr->sample_regs_intr);
10387 out:
10388         return ret;
10389
10390 err_size:
10391         put_user(sizeof(*attr), &uattr->size);
10392         ret = -E2BIG;
10393         goto out;
10394 }
10395
10396 static int
10397 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10398 {
10399         struct ring_buffer *rb = NULL;
10400         int ret = -EINVAL;
10401
10402         if (!output_event)
10403                 goto set;
10404
10405         /* don't allow circular references */
10406         if (event == output_event)
10407                 goto out;
10408
10409         /*
10410          * Don't allow cross-cpu buffers
10411          */
10412         if (output_event->cpu != event->cpu)
10413                 goto out;
10414
10415         /*
10416          * If its not a per-cpu rb, it must be the same task.
10417          */
10418         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10419                 goto out;
10420
10421         /*
10422          * Mixing clocks in the same buffer is trouble you don't need.
10423          */
10424         if (output_event->clock != event->clock)
10425                 goto out;
10426
10427         /*
10428          * Either writing ring buffer from beginning or from end.
10429          * Mixing is not allowed.
10430          */
10431         if (is_write_backward(output_event) != is_write_backward(event))
10432                 goto out;
10433
10434         /*
10435          * If both events generate aux data, they must be on the same PMU
10436          */
10437         if (has_aux(event) && has_aux(output_event) &&
10438             event->pmu != output_event->pmu)
10439                 goto out;
10440
10441 set:
10442         mutex_lock(&event->mmap_mutex);
10443         /* Can't redirect output if we've got an active mmap() */
10444         if (atomic_read(&event->mmap_count))
10445                 goto unlock;
10446
10447         if (output_event) {
10448                 /* get the rb we want to redirect to */
10449                 rb = ring_buffer_get(output_event);
10450                 if (!rb)
10451                         goto unlock;
10452         }
10453
10454         ring_buffer_attach(event, rb);
10455
10456         ret = 0;
10457 unlock:
10458         mutex_unlock(&event->mmap_mutex);
10459
10460 out:
10461         return ret;
10462 }
10463
10464 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10465 {
10466         if (b < a)
10467                 swap(a, b);
10468
10469         mutex_lock(a);
10470         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10471 }
10472
10473 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10474 {
10475         bool nmi_safe = false;
10476
10477         switch (clk_id) {
10478         case CLOCK_MONOTONIC:
10479                 event->clock = &ktime_get_mono_fast_ns;
10480                 nmi_safe = true;
10481                 break;
10482
10483         case CLOCK_MONOTONIC_RAW:
10484                 event->clock = &ktime_get_raw_fast_ns;
10485                 nmi_safe = true;
10486                 break;
10487
10488         case CLOCK_REALTIME:
10489                 event->clock = &ktime_get_real_ns;
10490                 break;
10491
10492         case CLOCK_BOOTTIME:
10493                 event->clock = &ktime_get_boot_ns;
10494                 break;
10495
10496         case CLOCK_TAI:
10497                 event->clock = &ktime_get_tai_ns;
10498                 break;
10499
10500         default:
10501                 return -EINVAL;
10502         }
10503
10504         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10505                 return -EINVAL;
10506
10507         return 0;
10508 }
10509
10510 /*
10511  * Variation on perf_event_ctx_lock_nested(), except we take two context
10512  * mutexes.
10513  */
10514 static struct perf_event_context *
10515 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10516                              struct perf_event_context *ctx)
10517 {
10518         struct perf_event_context *gctx;
10519
10520 again:
10521         rcu_read_lock();
10522         gctx = READ_ONCE(group_leader->ctx);
10523         if (!atomic_inc_not_zero(&gctx->refcount)) {
10524                 rcu_read_unlock();
10525                 goto again;
10526         }
10527         rcu_read_unlock();
10528
10529         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10530
10531         if (group_leader->ctx != gctx) {
10532                 mutex_unlock(&ctx->mutex);
10533                 mutex_unlock(&gctx->mutex);
10534                 put_ctx(gctx);
10535                 goto again;
10536         }
10537
10538         return gctx;
10539 }
10540
10541 /**
10542  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10543  *
10544  * @attr_uptr:  event_id type attributes for monitoring/sampling
10545  * @pid:                target pid
10546  * @cpu:                target cpu
10547  * @group_fd:           group leader event fd
10548  */
10549 SYSCALL_DEFINE5(perf_event_open,
10550                 struct perf_event_attr __user *, attr_uptr,
10551                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10552 {
10553         struct perf_event *group_leader = NULL, *output_event = NULL;
10554         struct perf_event *event, *sibling;
10555         struct perf_event_attr attr;
10556         struct perf_event_context *ctx, *uninitialized_var(gctx);
10557         struct file *event_file = NULL;
10558         struct fd group = {NULL, 0};
10559         struct task_struct *task = NULL;
10560         struct pmu *pmu;
10561         int event_fd;
10562         int move_group = 0;
10563         int err;
10564         int f_flags = O_RDWR;
10565         int cgroup_fd = -1;
10566
10567         /* for future expandability... */
10568         if (flags & ~PERF_FLAG_ALL)
10569                 return -EINVAL;
10570
10571         err = perf_copy_attr(attr_uptr, &attr);
10572         if (err)
10573                 return err;
10574
10575         if (!attr.exclude_kernel) {
10576                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10577                         return -EACCES;
10578         }
10579
10580         if (attr.namespaces) {
10581                 if (!capable(CAP_SYS_ADMIN))
10582                         return -EACCES;
10583         }
10584
10585         if (attr.freq) {
10586                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10587                         return -EINVAL;
10588         } else {
10589                 if (attr.sample_period & (1ULL << 63))
10590                         return -EINVAL;
10591         }
10592
10593         /* Only privileged users can get physical addresses */
10594         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10595             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10596                 return -EACCES;
10597
10598         /*
10599          * In cgroup mode, the pid argument is used to pass the fd
10600          * opened to the cgroup directory in cgroupfs. The cpu argument
10601          * designates the cpu on which to monitor threads from that
10602          * cgroup.
10603          */
10604         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10605                 return -EINVAL;
10606
10607         if (flags & PERF_FLAG_FD_CLOEXEC)
10608                 f_flags |= O_CLOEXEC;
10609
10610         event_fd = get_unused_fd_flags(f_flags);
10611         if (event_fd < 0)
10612                 return event_fd;
10613
10614         if (group_fd != -1) {
10615                 err = perf_fget_light(group_fd, &group);
10616                 if (err)
10617                         goto err_fd;
10618                 group_leader = group.file->private_data;
10619                 if (flags & PERF_FLAG_FD_OUTPUT)
10620                         output_event = group_leader;
10621                 if (flags & PERF_FLAG_FD_NO_GROUP)
10622                         group_leader = NULL;
10623         }
10624
10625         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10626                 task = find_lively_task_by_vpid(pid);
10627                 if (IS_ERR(task)) {
10628                         err = PTR_ERR(task);
10629                         goto err_group_fd;
10630                 }
10631         }
10632
10633         if (task && group_leader &&
10634             group_leader->attr.inherit != attr.inherit) {
10635                 err = -EINVAL;
10636                 goto err_task;
10637         }
10638
10639         if (task) {
10640                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10641                 if (err)
10642                         goto err_task;
10643
10644                 /*
10645                  * Reuse ptrace permission checks for now.
10646                  *
10647                  * We must hold cred_guard_mutex across this and any potential
10648                  * perf_install_in_context() call for this new event to
10649                  * serialize against exec() altering our credentials (and the
10650                  * perf_event_exit_task() that could imply).
10651                  */
10652                 err = -EACCES;
10653                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10654                         goto err_cred;
10655         }
10656
10657         if (flags & PERF_FLAG_PID_CGROUP)
10658                 cgroup_fd = pid;
10659
10660         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10661                                  NULL, NULL, cgroup_fd);
10662         if (IS_ERR(event)) {
10663                 err = PTR_ERR(event);
10664                 goto err_cred;
10665         }
10666
10667         if (is_sampling_event(event)) {
10668                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10669                         err = -EOPNOTSUPP;
10670                         goto err_alloc;
10671                 }
10672         }
10673
10674         /*
10675          * Special case software events and allow them to be part of
10676          * any hardware group.
10677          */
10678         pmu = event->pmu;
10679
10680         if (attr.use_clockid) {
10681                 err = perf_event_set_clock(event, attr.clockid);
10682                 if (err)
10683                         goto err_alloc;
10684         }
10685
10686         if (pmu->task_ctx_nr == perf_sw_context)
10687                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10688
10689         if (group_leader) {
10690                 if (is_software_event(event) &&
10691                     !in_software_context(group_leader)) {
10692                         /*
10693                          * If the event is a sw event, but the group_leader
10694                          * is on hw context.
10695                          *
10696                          * Allow the addition of software events to hw
10697                          * groups, this is safe because software events
10698                          * never fail to schedule.
10699                          */
10700                         pmu = group_leader->ctx->pmu;
10701                 } else if (!is_software_event(event) &&
10702                            is_software_event(group_leader) &&
10703                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10704                         /*
10705                          * In case the group is a pure software group, and we
10706                          * try to add a hardware event, move the whole group to
10707                          * the hardware context.
10708                          */
10709                         move_group = 1;
10710                 }
10711         }
10712
10713         /*
10714          * Get the target context (task or percpu):
10715          */
10716         ctx = find_get_context(pmu, task, event);
10717         if (IS_ERR(ctx)) {
10718                 err = PTR_ERR(ctx);
10719                 goto err_alloc;
10720         }
10721
10722         /*
10723          * Look up the group leader (we will attach this event to it):
10724          */
10725         if (group_leader) {
10726                 err = -EINVAL;
10727
10728                 /*
10729                  * Do not allow a recursive hierarchy (this new sibling
10730                  * becoming part of another group-sibling):
10731                  */
10732                 if (group_leader->group_leader != group_leader)
10733                         goto err_context;
10734
10735                 /* All events in a group should have the same clock */
10736                 if (group_leader->clock != event->clock)
10737                         goto err_context;
10738
10739                 /*
10740                  * Make sure we're both events for the same CPU;
10741                  * grouping events for different CPUs is broken; since
10742                  * you can never concurrently schedule them anyhow.
10743                  */
10744                 if (group_leader->cpu != event->cpu)
10745                         goto err_context;
10746
10747                 /*
10748                  * Make sure we're both on the same task, or both
10749                  * per-CPU events.
10750                  */
10751                 if (group_leader->ctx->task != ctx->task)
10752                         goto err_context;
10753
10754                 /*
10755                  * Do not allow to attach to a group in a different task
10756                  * or CPU context. If we're moving SW events, we'll fix
10757                  * this up later, so allow that.
10758                  */
10759                 if (!move_group && group_leader->ctx != ctx)
10760                         goto err_context;
10761
10762                 /*
10763                  * Only a group leader can be exclusive or pinned
10764                  */
10765                 if (attr.exclusive || attr.pinned)
10766                         goto err_context;
10767         }
10768
10769         if (output_event) {
10770                 err = perf_event_set_output(event, output_event);
10771                 if (err)
10772                         goto err_context;
10773         }
10774
10775         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10776                                         f_flags);
10777         if (IS_ERR(event_file)) {
10778                 err = PTR_ERR(event_file);
10779                 event_file = NULL;
10780                 goto err_context;
10781         }
10782
10783         if (move_group) {
10784                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10785
10786                 if (gctx->task == TASK_TOMBSTONE) {
10787                         err = -ESRCH;
10788                         goto err_locked;
10789                 }
10790
10791                 /*
10792                  * Check if we raced against another sys_perf_event_open() call
10793                  * moving the software group underneath us.
10794                  */
10795                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10796                         /*
10797                          * If someone moved the group out from under us, check
10798                          * if this new event wound up on the same ctx, if so
10799                          * its the regular !move_group case, otherwise fail.
10800                          */
10801                         if (gctx != ctx) {
10802                                 err = -EINVAL;
10803                                 goto err_locked;
10804                         } else {
10805                                 perf_event_ctx_unlock(group_leader, gctx);
10806                                 move_group = 0;
10807                         }
10808                 }
10809
10810                 /*
10811                  * Failure to create exclusive events returns -EBUSY.
10812                  */
10813                 err = -EBUSY;
10814                 if (!exclusive_event_installable(group_leader, ctx))
10815                         goto err_locked;
10816
10817                 for_each_sibling_event(sibling, group_leader) {
10818                         if (!exclusive_event_installable(sibling, ctx))
10819                                 goto err_locked;
10820                 }
10821         } else {
10822                 mutex_lock(&ctx->mutex);
10823         }
10824
10825         if (ctx->task == TASK_TOMBSTONE) {
10826                 err = -ESRCH;
10827                 goto err_locked;
10828         }
10829
10830         if (!perf_event_validate_size(event)) {
10831                 err = -E2BIG;
10832                 goto err_locked;
10833         }
10834
10835         if (!task) {
10836                 /*
10837                  * Check if the @cpu we're creating an event for is online.
10838                  *
10839                  * We use the perf_cpu_context::ctx::mutex to serialize against
10840                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10841                  */
10842                 struct perf_cpu_context *cpuctx =
10843                         container_of(ctx, struct perf_cpu_context, ctx);
10844
10845                 if (!cpuctx->online) {
10846                         err = -ENODEV;
10847                         goto err_locked;
10848                 }
10849         }
10850
10851
10852         /*
10853          * Must be under the same ctx::mutex as perf_install_in_context(),
10854          * because we need to serialize with concurrent event creation.
10855          */
10856         if (!exclusive_event_installable(event, ctx)) {
10857                 err = -EBUSY;
10858                 goto err_locked;
10859         }
10860
10861         WARN_ON_ONCE(ctx->parent_ctx);
10862
10863         /*
10864          * This is the point on no return; we cannot fail hereafter. This is
10865          * where we start modifying current state.
10866          */
10867
10868         if (move_group) {
10869                 /*
10870                  * See perf_event_ctx_lock() for comments on the details
10871                  * of swizzling perf_event::ctx.
10872                  */
10873                 perf_remove_from_context(group_leader, 0);
10874                 put_ctx(gctx);
10875
10876                 for_each_sibling_event(sibling, group_leader) {
10877                         perf_remove_from_context(sibling, 0);
10878                         put_ctx(gctx);
10879                 }
10880
10881                 /*
10882                  * Wait for everybody to stop referencing the events through
10883                  * the old lists, before installing it on new lists.
10884                  */
10885                 synchronize_rcu();
10886
10887                 /*
10888                  * Install the group siblings before the group leader.
10889                  *
10890                  * Because a group leader will try and install the entire group
10891                  * (through the sibling list, which is still in-tact), we can
10892                  * end up with siblings installed in the wrong context.
10893                  *
10894                  * By installing siblings first we NO-OP because they're not
10895                  * reachable through the group lists.
10896                  */
10897                 for_each_sibling_event(sibling, group_leader) {
10898                         perf_event__state_init(sibling);
10899                         perf_install_in_context(ctx, sibling, sibling->cpu);
10900                         get_ctx(ctx);
10901                 }
10902
10903                 /*
10904                  * Removing from the context ends up with disabled
10905                  * event. What we want here is event in the initial
10906                  * startup state, ready to be add into new context.
10907                  */
10908                 perf_event__state_init(group_leader);
10909                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10910                 get_ctx(ctx);
10911         }
10912
10913         /*
10914          * Precalculate sample_data sizes; do while holding ctx::mutex such
10915          * that we're serialized against further additions and before
10916          * perf_install_in_context() which is the point the event is active and
10917          * can use these values.
10918          */
10919         perf_event__header_size(event);
10920         perf_event__id_header_size(event);
10921
10922         event->owner = current;
10923
10924         perf_install_in_context(ctx, event, event->cpu);
10925         perf_unpin_context(ctx);
10926
10927         if (move_group)
10928                 perf_event_ctx_unlock(group_leader, gctx);
10929         mutex_unlock(&ctx->mutex);
10930
10931         if (task) {
10932                 mutex_unlock(&task->signal->cred_guard_mutex);
10933                 put_task_struct(task);
10934         }
10935
10936         mutex_lock(&current->perf_event_mutex);
10937         list_add_tail(&event->owner_entry, &current->perf_event_list);
10938         mutex_unlock(&current->perf_event_mutex);
10939
10940         /*
10941          * Drop the reference on the group_event after placing the
10942          * new event on the sibling_list. This ensures destruction
10943          * of the group leader will find the pointer to itself in
10944          * perf_group_detach().
10945          */
10946         fdput(group);
10947         fd_install(event_fd, event_file);
10948         return event_fd;
10949
10950 err_locked:
10951         if (move_group)
10952                 perf_event_ctx_unlock(group_leader, gctx);
10953         mutex_unlock(&ctx->mutex);
10954 /* err_file: */
10955         fput(event_file);
10956 err_context:
10957         perf_unpin_context(ctx);
10958         put_ctx(ctx);
10959 err_alloc:
10960         /*
10961          * If event_file is set, the fput() above will have called ->release()
10962          * and that will take care of freeing the event.
10963          */
10964         if (!event_file)
10965                 free_event(event);
10966 err_cred:
10967         if (task)
10968                 mutex_unlock(&task->signal->cred_guard_mutex);
10969 err_task:
10970         if (task)
10971                 put_task_struct(task);
10972 err_group_fd:
10973         fdput(group);
10974 err_fd:
10975         put_unused_fd(event_fd);
10976         return err;
10977 }
10978
10979 /**
10980  * perf_event_create_kernel_counter
10981  *
10982  * @attr: attributes of the counter to create
10983  * @cpu: cpu in which the counter is bound
10984  * @task: task to profile (NULL for percpu)
10985  */
10986 struct perf_event *
10987 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10988                                  struct task_struct *task,
10989                                  perf_overflow_handler_t overflow_handler,
10990                                  void *context)
10991 {
10992         struct perf_event_context *ctx;
10993         struct perf_event *event;
10994         int err;
10995
10996         /*
10997          * Get the target context (task or percpu):
10998          */
10999
11000         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11001                                  overflow_handler, context, -1);
11002         if (IS_ERR(event)) {
11003                 err = PTR_ERR(event);
11004                 goto err;
11005         }
11006
11007         /* Mark owner so we could distinguish it from user events. */
11008         event->owner = TASK_TOMBSTONE;
11009
11010         ctx = find_get_context(event->pmu, task, event);
11011         if (IS_ERR(ctx)) {
11012                 err = PTR_ERR(ctx);
11013                 goto err_free;
11014         }
11015
11016         WARN_ON_ONCE(ctx->parent_ctx);
11017         mutex_lock(&ctx->mutex);
11018         if (ctx->task == TASK_TOMBSTONE) {
11019                 err = -ESRCH;
11020                 goto err_unlock;
11021         }
11022
11023         if (!task) {
11024                 /*
11025                  * Check if the @cpu we're creating an event for is online.
11026                  *
11027                  * We use the perf_cpu_context::ctx::mutex to serialize against
11028                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11029                  */
11030                 struct perf_cpu_context *cpuctx =
11031                         container_of(ctx, struct perf_cpu_context, ctx);
11032                 if (!cpuctx->online) {
11033                         err = -ENODEV;
11034                         goto err_unlock;
11035                 }
11036         }
11037
11038         if (!exclusive_event_installable(event, ctx)) {
11039                 err = -EBUSY;
11040                 goto err_unlock;
11041         }
11042
11043         perf_install_in_context(ctx, event, event->cpu);
11044         perf_unpin_context(ctx);
11045         mutex_unlock(&ctx->mutex);
11046
11047         return event;
11048
11049 err_unlock:
11050         mutex_unlock(&ctx->mutex);
11051         perf_unpin_context(ctx);
11052         put_ctx(ctx);
11053 err_free:
11054         free_event(event);
11055 err:
11056         return ERR_PTR(err);
11057 }
11058 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11059
11060 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11061 {
11062         struct perf_event_context *src_ctx;
11063         struct perf_event_context *dst_ctx;
11064         struct perf_event *event, *tmp;
11065         LIST_HEAD(events);
11066
11067         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11068         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11069
11070         /*
11071          * See perf_event_ctx_lock() for comments on the details
11072          * of swizzling perf_event::ctx.
11073          */
11074         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11075         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11076                                  event_entry) {
11077                 perf_remove_from_context(event, 0);
11078                 unaccount_event_cpu(event, src_cpu);
11079                 put_ctx(src_ctx);
11080                 list_add(&event->migrate_entry, &events);
11081         }
11082
11083         /*
11084          * Wait for the events to quiesce before re-instating them.
11085          */
11086         synchronize_rcu();
11087
11088         /*
11089          * Re-instate events in 2 passes.
11090          *
11091          * Skip over group leaders and only install siblings on this first
11092          * pass, siblings will not get enabled without a leader, however a
11093          * leader will enable its siblings, even if those are still on the old
11094          * context.
11095          */
11096         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11097                 if (event->group_leader == event)
11098                         continue;
11099
11100                 list_del(&event->migrate_entry);
11101                 if (event->state >= PERF_EVENT_STATE_OFF)
11102                         event->state = PERF_EVENT_STATE_INACTIVE;
11103                 account_event_cpu(event, dst_cpu);
11104                 perf_install_in_context(dst_ctx, event, dst_cpu);
11105                 get_ctx(dst_ctx);
11106         }
11107
11108         /*
11109          * Once all the siblings are setup properly, install the group leaders
11110          * to make it go.
11111          */
11112         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11113                 list_del(&event->migrate_entry);
11114                 if (event->state >= PERF_EVENT_STATE_OFF)
11115                         event->state = PERF_EVENT_STATE_INACTIVE;
11116                 account_event_cpu(event, dst_cpu);
11117                 perf_install_in_context(dst_ctx, event, dst_cpu);
11118                 get_ctx(dst_ctx);
11119         }
11120         mutex_unlock(&dst_ctx->mutex);
11121         mutex_unlock(&src_ctx->mutex);
11122 }
11123 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11124
11125 static void sync_child_event(struct perf_event *child_event,
11126                                struct task_struct *child)
11127 {
11128         struct perf_event *parent_event = child_event->parent;
11129         u64 child_val;
11130
11131         if (child_event->attr.inherit_stat)
11132                 perf_event_read_event(child_event, child);
11133
11134         child_val = perf_event_count(child_event);
11135
11136         /*
11137          * Add back the child's count to the parent's count:
11138          */
11139         atomic64_add(child_val, &parent_event->child_count);
11140         atomic64_add(child_event->total_time_enabled,
11141                      &parent_event->child_total_time_enabled);
11142         atomic64_add(child_event->total_time_running,
11143                      &parent_event->child_total_time_running);
11144 }
11145
11146 static void
11147 perf_event_exit_event(struct perf_event *child_event,
11148                       struct perf_event_context *child_ctx,
11149                       struct task_struct *child)
11150 {
11151         struct perf_event *parent_event = child_event->parent;
11152
11153         /*
11154          * Do not destroy the 'original' grouping; because of the context
11155          * switch optimization the original events could've ended up in a
11156          * random child task.
11157          *
11158          * If we were to destroy the original group, all group related
11159          * operations would cease to function properly after this random
11160          * child dies.
11161          *
11162          * Do destroy all inherited groups, we don't care about those
11163          * and being thorough is better.
11164          */
11165         raw_spin_lock_irq(&child_ctx->lock);
11166         WARN_ON_ONCE(child_ctx->is_active);
11167
11168         if (parent_event)
11169                 perf_group_detach(child_event);
11170         list_del_event(child_event, child_ctx);
11171         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11172         raw_spin_unlock_irq(&child_ctx->lock);
11173
11174         /*
11175          * Parent events are governed by their filedesc, retain them.
11176          */
11177         if (!parent_event) {
11178                 perf_event_wakeup(child_event);
11179                 return;
11180         }
11181         /*
11182          * Child events can be cleaned up.
11183          */
11184
11185         sync_child_event(child_event, child);
11186
11187         /*
11188          * Remove this event from the parent's list
11189          */
11190         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11191         mutex_lock(&parent_event->child_mutex);
11192         list_del_init(&child_event->child_list);
11193         mutex_unlock(&parent_event->child_mutex);
11194
11195         /*
11196          * Kick perf_poll() for is_event_hup().
11197          */
11198         perf_event_wakeup(parent_event);
11199         free_event(child_event);
11200         put_event(parent_event);
11201 }
11202
11203 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11204 {
11205         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11206         struct perf_event *child_event, *next;
11207
11208         WARN_ON_ONCE(child != current);
11209
11210         child_ctx = perf_pin_task_context(child, ctxn);
11211         if (!child_ctx)
11212                 return;
11213
11214         /*
11215          * In order to reduce the amount of tricky in ctx tear-down, we hold
11216          * ctx::mutex over the entire thing. This serializes against almost
11217          * everything that wants to access the ctx.
11218          *
11219          * The exception is sys_perf_event_open() /
11220          * perf_event_create_kernel_count() which does find_get_context()
11221          * without ctx::mutex (it cannot because of the move_group double mutex
11222          * lock thing). See the comments in perf_install_in_context().
11223          */
11224         mutex_lock(&child_ctx->mutex);
11225
11226         /*
11227          * In a single ctx::lock section, de-schedule the events and detach the
11228          * context from the task such that we cannot ever get it scheduled back
11229          * in.
11230          */
11231         raw_spin_lock_irq(&child_ctx->lock);
11232         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11233
11234         /*
11235          * Now that the context is inactive, destroy the task <-> ctx relation
11236          * and mark the context dead.
11237          */
11238         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11239         put_ctx(child_ctx); /* cannot be last */
11240         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11241         put_task_struct(current); /* cannot be last */
11242
11243         clone_ctx = unclone_ctx(child_ctx);
11244         raw_spin_unlock_irq(&child_ctx->lock);
11245
11246         if (clone_ctx)
11247                 put_ctx(clone_ctx);
11248
11249         /*
11250          * Report the task dead after unscheduling the events so that we
11251          * won't get any samples after PERF_RECORD_EXIT. We can however still
11252          * get a few PERF_RECORD_READ events.
11253          */
11254         perf_event_task(child, child_ctx, 0);
11255
11256         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11257                 perf_event_exit_event(child_event, child_ctx, child);
11258
11259         mutex_unlock(&child_ctx->mutex);
11260
11261         put_ctx(child_ctx);
11262 }
11263
11264 /*
11265  * When a child task exits, feed back event values to parent events.
11266  *
11267  * Can be called with cred_guard_mutex held when called from
11268  * install_exec_creds().
11269  */
11270 void perf_event_exit_task(struct task_struct *child)
11271 {
11272         struct perf_event *event, *tmp;
11273         int ctxn;
11274
11275         mutex_lock(&child->perf_event_mutex);
11276         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11277                                  owner_entry) {
11278                 list_del_init(&event->owner_entry);
11279
11280                 /*
11281                  * Ensure the list deletion is visible before we clear
11282                  * the owner, closes a race against perf_release() where
11283                  * we need to serialize on the owner->perf_event_mutex.
11284                  */
11285                 smp_store_release(&event->owner, NULL);
11286         }
11287         mutex_unlock(&child->perf_event_mutex);
11288
11289         for_each_task_context_nr(ctxn)
11290                 perf_event_exit_task_context(child, ctxn);
11291
11292         /*
11293          * The perf_event_exit_task_context calls perf_event_task
11294          * with child's task_ctx, which generates EXIT events for
11295          * child contexts and sets child->perf_event_ctxp[] to NULL.
11296          * At this point we need to send EXIT events to cpu contexts.
11297          */
11298         perf_event_task(child, NULL, 0);
11299 }
11300
11301 static void perf_free_event(struct perf_event *event,
11302                             struct perf_event_context *ctx)
11303 {
11304         struct perf_event *parent = event->parent;
11305
11306         if (WARN_ON_ONCE(!parent))
11307                 return;
11308
11309         mutex_lock(&parent->child_mutex);
11310         list_del_init(&event->child_list);
11311         mutex_unlock(&parent->child_mutex);
11312
11313         put_event(parent);
11314
11315         raw_spin_lock_irq(&ctx->lock);
11316         perf_group_detach(event);
11317         list_del_event(event, ctx);
11318         raw_spin_unlock_irq(&ctx->lock);
11319         free_event(event);
11320 }
11321
11322 /*
11323  * Free a context as created by inheritance by perf_event_init_task() below,
11324  * used by fork() in case of fail.
11325  *
11326  * Even though the task has never lived, the context and events have been
11327  * exposed through the child_list, so we must take care tearing it all down.
11328  */
11329 void perf_event_free_task(struct task_struct *task)
11330 {
11331         struct perf_event_context *ctx;
11332         struct perf_event *event, *tmp;
11333         int ctxn;
11334
11335         for_each_task_context_nr(ctxn) {
11336                 ctx = task->perf_event_ctxp[ctxn];
11337                 if (!ctx)
11338                         continue;
11339
11340                 mutex_lock(&ctx->mutex);
11341                 raw_spin_lock_irq(&ctx->lock);
11342                 /*
11343                  * Destroy the task <-> ctx relation and mark the context dead.
11344                  *
11345                  * This is important because even though the task hasn't been
11346                  * exposed yet the context has been (through child_list).
11347                  */
11348                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11349                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11350                 put_task_struct(task); /* cannot be last */
11351                 raw_spin_unlock_irq(&ctx->lock);
11352
11353                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11354                         perf_free_event(event, ctx);
11355
11356                 mutex_unlock(&ctx->mutex);
11357
11358                 /*
11359                  * perf_event_release_kernel() could've stolen some of our
11360                  * child events and still have them on its free_list. In that
11361                  * case we must wait for these events to have been freed (in
11362                  * particular all their references to this task must've been
11363                  * dropped).
11364                  *
11365                  * Without this copy_process() will unconditionally free this
11366                  * task (irrespective of its reference count) and
11367                  * _free_event()'s put_task_struct(event->hw.target) will be a
11368                  * use-after-free.
11369                  *
11370                  * Wait for all events to drop their context reference.
11371                  */
11372                 wait_var_event(&ctx->refcount, atomic_read(&ctx->refcount) == 1);
11373                 put_ctx(ctx); /* must be last */
11374         }
11375 }
11376
11377 void perf_event_delayed_put(struct task_struct *task)
11378 {
11379         int ctxn;
11380
11381         for_each_task_context_nr(ctxn)
11382                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11383 }
11384
11385 struct file *perf_event_get(unsigned int fd)
11386 {
11387         struct file *file;
11388
11389         file = fget_raw(fd);
11390         if (!file)
11391                 return ERR_PTR(-EBADF);
11392
11393         if (file->f_op != &perf_fops) {
11394                 fput(file);
11395                 return ERR_PTR(-EBADF);
11396         }
11397
11398         return file;
11399 }
11400
11401 const struct perf_event *perf_get_event(struct file *file)
11402 {
11403         if (file->f_op != &perf_fops)
11404                 return ERR_PTR(-EINVAL);
11405
11406         return file->private_data;
11407 }
11408
11409 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11410 {
11411         if (!event)
11412                 return ERR_PTR(-EINVAL);
11413
11414         return &event->attr;
11415 }
11416
11417 /*
11418  * Inherit an event from parent task to child task.
11419  *
11420  * Returns:
11421  *  - valid pointer on success
11422  *  - NULL for orphaned events
11423  *  - IS_ERR() on error
11424  */
11425 static struct perf_event *
11426 inherit_event(struct perf_event *parent_event,
11427               struct task_struct *parent,
11428               struct perf_event_context *parent_ctx,
11429               struct task_struct *child,
11430               struct perf_event *group_leader,
11431               struct perf_event_context *child_ctx)
11432 {
11433         enum perf_event_state parent_state = parent_event->state;
11434         struct perf_event *child_event;
11435         unsigned long flags;
11436
11437         /*
11438          * Instead of creating recursive hierarchies of events,
11439          * we link inherited events back to the original parent,
11440          * which has a filp for sure, which we use as the reference
11441          * count:
11442          */
11443         if (parent_event->parent)
11444                 parent_event = parent_event->parent;
11445
11446         child_event = perf_event_alloc(&parent_event->attr,
11447                                            parent_event->cpu,
11448                                            child,
11449                                            group_leader, parent_event,
11450                                            NULL, NULL, -1);
11451         if (IS_ERR(child_event))
11452                 return child_event;
11453
11454
11455         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11456             !child_ctx->task_ctx_data) {
11457                 struct pmu *pmu = child_event->pmu;
11458
11459                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11460                                                    GFP_KERNEL);
11461                 if (!child_ctx->task_ctx_data) {
11462                         free_event(child_event);
11463                         return ERR_PTR(-ENOMEM);
11464                 }
11465         }
11466
11467         /*
11468          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11469          * must be under the same lock in order to serialize against
11470          * perf_event_release_kernel(), such that either we must observe
11471          * is_orphaned_event() or they will observe us on the child_list.
11472          */
11473         mutex_lock(&parent_event->child_mutex);
11474         if (is_orphaned_event(parent_event) ||
11475             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11476                 mutex_unlock(&parent_event->child_mutex);
11477                 /* task_ctx_data is freed with child_ctx */
11478                 free_event(child_event);
11479                 return NULL;
11480         }
11481
11482         get_ctx(child_ctx);
11483
11484         /*
11485          * Make the child state follow the state of the parent event,
11486          * not its attr.disabled bit.  We hold the parent's mutex,
11487          * so we won't race with perf_event_{en, dis}able_family.
11488          */
11489         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11490                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11491         else
11492                 child_event->state = PERF_EVENT_STATE_OFF;
11493
11494         if (parent_event->attr.freq) {
11495                 u64 sample_period = parent_event->hw.sample_period;
11496                 struct hw_perf_event *hwc = &child_event->hw;
11497
11498                 hwc->sample_period = sample_period;
11499                 hwc->last_period   = sample_period;
11500
11501                 local64_set(&hwc->period_left, sample_period);
11502         }
11503
11504         child_event->ctx = child_ctx;
11505         child_event->overflow_handler = parent_event->overflow_handler;
11506         child_event->overflow_handler_context
11507                 = parent_event->overflow_handler_context;
11508
11509         /*
11510          * Precalculate sample_data sizes
11511          */
11512         perf_event__header_size(child_event);
11513         perf_event__id_header_size(child_event);
11514
11515         /*
11516          * Link it up in the child's context:
11517          */
11518         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11519         add_event_to_ctx(child_event, child_ctx);
11520         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11521
11522         /*
11523          * Link this into the parent event's child list
11524          */
11525         list_add_tail(&child_event->child_list, &parent_event->child_list);
11526         mutex_unlock(&parent_event->child_mutex);
11527
11528         return child_event;
11529 }
11530
11531 /*
11532  * Inherits an event group.
11533  *
11534  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11535  * This matches with perf_event_release_kernel() removing all child events.
11536  *
11537  * Returns:
11538  *  - 0 on success
11539  *  - <0 on error
11540  */
11541 static int inherit_group(struct perf_event *parent_event,
11542               struct task_struct *parent,
11543               struct perf_event_context *parent_ctx,
11544               struct task_struct *child,
11545               struct perf_event_context *child_ctx)
11546 {
11547         struct perf_event *leader;
11548         struct perf_event *sub;
11549         struct perf_event *child_ctr;
11550
11551         leader = inherit_event(parent_event, parent, parent_ctx,
11552                                  child, NULL, child_ctx);
11553         if (IS_ERR(leader))
11554                 return PTR_ERR(leader);
11555         /*
11556          * @leader can be NULL here because of is_orphaned_event(). In this
11557          * case inherit_event() will create individual events, similar to what
11558          * perf_group_detach() would do anyway.
11559          */
11560         for_each_sibling_event(sub, parent_event) {
11561                 child_ctr = inherit_event(sub, parent, parent_ctx,
11562                                             child, leader, child_ctx);
11563                 if (IS_ERR(child_ctr))
11564                         return PTR_ERR(child_ctr);
11565         }
11566         return 0;
11567 }
11568
11569 /*
11570  * Creates the child task context and tries to inherit the event-group.
11571  *
11572  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11573  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11574  * consistent with perf_event_release_kernel() removing all child events.
11575  *
11576  * Returns:
11577  *  - 0 on success
11578  *  - <0 on error
11579  */
11580 static int
11581 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11582                    struct perf_event_context *parent_ctx,
11583                    struct task_struct *child, int ctxn,
11584                    int *inherited_all)
11585 {
11586         int ret;
11587         struct perf_event_context *child_ctx;
11588
11589         if (!event->attr.inherit) {
11590                 *inherited_all = 0;
11591                 return 0;
11592         }
11593
11594         child_ctx = child->perf_event_ctxp[ctxn];
11595         if (!child_ctx) {
11596                 /*
11597                  * This is executed from the parent task context, so
11598                  * inherit events that have been marked for cloning.
11599                  * First allocate and initialize a context for the
11600                  * child.
11601                  */
11602                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11603                 if (!child_ctx)
11604                         return -ENOMEM;
11605
11606                 child->perf_event_ctxp[ctxn] = child_ctx;
11607         }
11608
11609         ret = inherit_group(event, parent, parent_ctx,
11610                             child, child_ctx);
11611
11612         if (ret)
11613                 *inherited_all = 0;
11614
11615         return ret;
11616 }
11617
11618 /*
11619  * Initialize the perf_event context in task_struct
11620  */
11621 static int perf_event_init_context(struct task_struct *child, int ctxn)
11622 {
11623         struct perf_event_context *child_ctx, *parent_ctx;
11624         struct perf_event_context *cloned_ctx;
11625         struct perf_event *event;
11626         struct task_struct *parent = current;
11627         int inherited_all = 1;
11628         unsigned long flags;
11629         int ret = 0;
11630
11631         if (likely(!parent->perf_event_ctxp[ctxn]))
11632                 return 0;
11633
11634         /*
11635          * If the parent's context is a clone, pin it so it won't get
11636          * swapped under us.
11637          */
11638         parent_ctx = perf_pin_task_context(parent, ctxn);
11639         if (!parent_ctx)
11640                 return 0;
11641
11642         /*
11643          * No need to check if parent_ctx != NULL here; since we saw
11644          * it non-NULL earlier, the only reason for it to become NULL
11645          * is if we exit, and since we're currently in the middle of
11646          * a fork we can't be exiting at the same time.
11647          */
11648
11649         /*
11650          * Lock the parent list. No need to lock the child - not PID
11651          * hashed yet and not running, so nobody can access it.
11652          */
11653         mutex_lock(&parent_ctx->mutex);
11654
11655         /*
11656          * We dont have to disable NMIs - we are only looking at
11657          * the list, not manipulating it:
11658          */
11659         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11660                 ret = inherit_task_group(event, parent, parent_ctx,
11661                                          child, ctxn, &inherited_all);
11662                 if (ret)
11663                         goto out_unlock;
11664         }
11665
11666         /*
11667          * We can't hold ctx->lock when iterating the ->flexible_group list due
11668          * to allocations, but we need to prevent rotation because
11669          * rotate_ctx() will change the list from interrupt context.
11670          */
11671         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11672         parent_ctx->rotate_disable = 1;
11673         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11674
11675         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11676                 ret = inherit_task_group(event, parent, parent_ctx,
11677                                          child, ctxn, &inherited_all);
11678                 if (ret)
11679                         goto out_unlock;
11680         }
11681
11682         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11683         parent_ctx->rotate_disable = 0;
11684
11685         child_ctx = child->perf_event_ctxp[ctxn];
11686
11687         if (child_ctx && inherited_all) {
11688                 /*
11689                  * Mark the child context as a clone of the parent
11690                  * context, or of whatever the parent is a clone of.
11691                  *
11692                  * Note that if the parent is a clone, the holding of
11693                  * parent_ctx->lock avoids it from being uncloned.
11694                  */
11695                 cloned_ctx = parent_ctx->parent_ctx;
11696                 if (cloned_ctx) {
11697                         child_ctx->parent_ctx = cloned_ctx;
11698                         child_ctx->parent_gen = parent_ctx->parent_gen;
11699                 } else {
11700                         child_ctx->parent_ctx = parent_ctx;
11701                         child_ctx->parent_gen = parent_ctx->generation;
11702                 }
11703                 get_ctx(child_ctx->parent_ctx);
11704         }
11705
11706         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11707 out_unlock:
11708         mutex_unlock(&parent_ctx->mutex);
11709
11710         perf_unpin_context(parent_ctx);
11711         put_ctx(parent_ctx);
11712
11713         return ret;
11714 }
11715
11716 /*
11717  * Initialize the perf_event context in task_struct
11718  */
11719 int perf_event_init_task(struct task_struct *child)
11720 {
11721         int ctxn, ret;
11722
11723         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11724         mutex_init(&child->perf_event_mutex);
11725         INIT_LIST_HEAD(&child->perf_event_list);
11726
11727         for_each_task_context_nr(ctxn) {
11728                 ret = perf_event_init_context(child, ctxn);
11729                 if (ret) {
11730                         perf_event_free_task(child);
11731                         return ret;
11732                 }
11733         }
11734
11735         return 0;
11736 }
11737
11738 static void __init perf_event_init_all_cpus(void)
11739 {
11740         struct swevent_htable *swhash;
11741         int cpu;
11742
11743         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11744
11745         for_each_possible_cpu(cpu) {
11746                 swhash = &per_cpu(swevent_htable, cpu);
11747                 mutex_init(&swhash->hlist_mutex);
11748                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11749
11750                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11751                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11752
11753 #ifdef CONFIG_CGROUP_PERF
11754                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11755 #endif
11756                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11757         }
11758 }
11759
11760 void perf_swevent_init_cpu(unsigned int cpu)
11761 {
11762         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11763
11764         mutex_lock(&swhash->hlist_mutex);
11765         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11766                 struct swevent_hlist *hlist;
11767
11768                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11769                 WARN_ON(!hlist);
11770                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11771         }
11772         mutex_unlock(&swhash->hlist_mutex);
11773 }
11774
11775 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11776 static void __perf_event_exit_context(void *__info)
11777 {
11778         struct perf_event_context *ctx = __info;
11779         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11780         struct perf_event *event;
11781
11782         raw_spin_lock(&ctx->lock);
11783         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11784         list_for_each_entry(event, &ctx->event_list, event_entry)
11785                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11786         raw_spin_unlock(&ctx->lock);
11787 }
11788
11789 static void perf_event_exit_cpu_context(int cpu)
11790 {
11791         struct perf_cpu_context *cpuctx;
11792         struct perf_event_context *ctx;
11793         struct pmu *pmu;
11794
11795         mutex_lock(&pmus_lock);
11796         list_for_each_entry(pmu, &pmus, entry) {
11797                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11798                 ctx = &cpuctx->ctx;
11799
11800                 mutex_lock(&ctx->mutex);
11801                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11802                 cpuctx->online = 0;
11803                 mutex_unlock(&ctx->mutex);
11804         }
11805         cpumask_clear_cpu(cpu, perf_online_mask);
11806         mutex_unlock(&pmus_lock);
11807 }
11808 #else
11809
11810 static void perf_event_exit_cpu_context(int cpu) { }
11811
11812 #endif
11813
11814 int perf_event_init_cpu(unsigned int cpu)
11815 {
11816         struct perf_cpu_context *cpuctx;
11817         struct perf_event_context *ctx;
11818         struct pmu *pmu;
11819
11820         perf_swevent_init_cpu(cpu);
11821
11822         mutex_lock(&pmus_lock);
11823         cpumask_set_cpu(cpu, perf_online_mask);
11824         list_for_each_entry(pmu, &pmus, entry) {
11825                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11826                 ctx = &cpuctx->ctx;
11827
11828                 mutex_lock(&ctx->mutex);
11829                 cpuctx->online = 1;
11830                 mutex_unlock(&ctx->mutex);
11831         }
11832         mutex_unlock(&pmus_lock);
11833
11834         return 0;
11835 }
11836
11837 int perf_event_exit_cpu(unsigned int cpu)
11838 {
11839         perf_event_exit_cpu_context(cpu);
11840         return 0;
11841 }
11842
11843 static int
11844 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11845 {
11846         int cpu;
11847
11848         for_each_online_cpu(cpu)
11849                 perf_event_exit_cpu(cpu);
11850
11851         return NOTIFY_OK;
11852 }
11853
11854 /*
11855  * Run the perf reboot notifier at the very last possible moment so that
11856  * the generic watchdog code runs as long as possible.
11857  */
11858 static struct notifier_block perf_reboot_notifier = {
11859         .notifier_call = perf_reboot,
11860         .priority = INT_MIN,
11861 };
11862
11863 void __init perf_event_init(void)
11864 {
11865         int ret;
11866
11867         idr_init(&pmu_idr);
11868
11869         perf_event_init_all_cpus();
11870         init_srcu_struct(&pmus_srcu);
11871         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11872         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11873         perf_pmu_register(&perf_task_clock, NULL, -1);
11874         perf_tp_register();
11875         perf_event_init_cpu(smp_processor_id());
11876         register_reboot_notifier(&perf_reboot_notifier);
11877
11878         ret = init_hw_breakpoint();
11879         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11880
11881         /*
11882          * Build time assertion that we keep the data_head at the intended
11883          * location.  IOW, validation we got the __reserved[] size right.
11884          */
11885         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11886                      != 1024);
11887 }
11888
11889 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11890                               char *page)
11891 {
11892         struct perf_pmu_events_attr *pmu_attr =
11893                 container_of(attr, struct perf_pmu_events_attr, attr);
11894
11895         if (pmu_attr->event_str)
11896                 return sprintf(page, "%s\n", pmu_attr->event_str);
11897
11898         return 0;
11899 }
11900 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11901
11902 static int __init perf_event_sysfs_init(void)
11903 {
11904         struct pmu *pmu;
11905         int ret;
11906
11907         mutex_lock(&pmus_lock);
11908
11909         ret = bus_register(&pmu_bus);
11910         if (ret)
11911                 goto unlock;
11912
11913         list_for_each_entry(pmu, &pmus, entry) {
11914                 if (!pmu->name || pmu->type < 0)
11915                         continue;
11916
11917                 ret = pmu_dev_alloc(pmu);
11918                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11919         }
11920         pmu_bus_running = 1;
11921         ret = 0;
11922
11923 unlock:
11924         mutex_unlock(&pmus_lock);
11925
11926         return ret;
11927 }
11928 device_initcall(perf_event_sysfs_init);
11929
11930 #ifdef CONFIG_CGROUP_PERF
11931 static struct cgroup_subsys_state *
11932 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11933 {
11934         struct perf_cgroup *jc;
11935
11936         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11937         if (!jc)
11938                 return ERR_PTR(-ENOMEM);
11939
11940         jc->info = alloc_percpu(struct perf_cgroup_info);
11941         if (!jc->info) {
11942                 kfree(jc);
11943                 return ERR_PTR(-ENOMEM);
11944         }
11945
11946         return &jc->css;
11947 }
11948
11949 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11950 {
11951         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11952
11953         free_percpu(jc->info);
11954         kfree(jc);
11955 }
11956
11957 static int __perf_cgroup_move(void *info)
11958 {
11959         struct task_struct *task = info;
11960         rcu_read_lock();
11961         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11962         rcu_read_unlock();
11963         return 0;
11964 }
11965
11966 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11967 {
11968         struct task_struct *task;
11969         struct cgroup_subsys_state *css;
11970
11971         cgroup_taskset_for_each(task, css, tset)
11972                 task_function_call(task, __perf_cgroup_move, task);
11973 }
11974
11975 struct cgroup_subsys perf_event_cgrp_subsys = {
11976         .css_alloc      = perf_cgroup_css_alloc,
11977         .css_free       = perf_cgroup_css_free,
11978         .attach         = perf_cgroup_attach,
11979         /*
11980          * Implicitly enable on dfl hierarchy so that perf events can
11981          * always be filtered by cgroup2 path as long as perf_event
11982          * controller is not mounted on a legacy hierarchy.
11983          */
11984         .implicit_on_dfl = true,
11985         .threaded       = true,
11986 };
11987 #endif /* CONFIG_CGROUP_PERF */