GNU Linux-libre 4.14.313-gnu1
[releases.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         WARN_ON_ONCE(!irqs_disabled());
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         WARN_ON_ONCE(!irqs_disabled());
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 #ifdef CONFIG_CGROUP_PERF
592
593 static inline bool
594 perf_cgroup_match(struct perf_event *event)
595 {
596         struct perf_event_context *ctx = event->ctx;
597         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
598
599         /* @event doesn't care about cgroup */
600         if (!event->cgrp)
601                 return true;
602
603         /* wants specific cgroup scope but @cpuctx isn't associated with any */
604         if (!cpuctx->cgrp)
605                 return false;
606
607         /*
608          * Cgroup scoping is recursive.  An event enabled for a cgroup is
609          * also enabled for all its descendant cgroups.  If @cpuctx's
610          * cgroup is a descendant of @event's (the test covers identity
611          * case), it's a match.
612          */
613         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
614                                     event->cgrp->css.cgroup);
615 }
616
617 static inline void perf_detach_cgroup(struct perf_event *event)
618 {
619         css_put(&event->cgrp->css);
620         event->cgrp = NULL;
621 }
622
623 static inline int is_cgroup_event(struct perf_event *event)
624 {
625         return event->cgrp != NULL;
626 }
627
628 static inline u64 perf_cgroup_event_time(struct perf_event *event)
629 {
630         struct perf_cgroup_info *t;
631
632         t = per_cpu_ptr(event->cgrp->info, event->cpu);
633         return t->time;
634 }
635
636 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
637 {
638         struct perf_cgroup_info *info;
639         u64 now;
640
641         now = perf_clock();
642
643         info = this_cpu_ptr(cgrp->info);
644
645         info->time += now - info->timestamp;
646         info->timestamp = now;
647 }
648
649 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
650 {
651         struct perf_cgroup *cgrp = cpuctx->cgrp;
652         struct cgroup_subsys_state *css;
653
654         if (cgrp) {
655                 for (css = &cgrp->css; css; css = css->parent) {
656                         cgrp = container_of(css, struct perf_cgroup, css);
657                         __update_cgrp_time(cgrp);
658                 }
659         }
660 }
661
662 static inline void update_cgrp_time_from_event(struct perf_event *event)
663 {
664         struct perf_cgroup *cgrp;
665
666         /*
667          * ensure we access cgroup data only when needed and
668          * when we know the cgroup is pinned (css_get)
669          */
670         if (!is_cgroup_event(event))
671                 return;
672
673         cgrp = perf_cgroup_from_task(current, event->ctx);
674         /*
675          * Do not update time when cgroup is not active
676          */
677        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
678                 __update_cgrp_time(event->cgrp);
679 }
680
681 static inline void
682 perf_cgroup_set_timestamp(struct task_struct *task,
683                           struct perf_event_context *ctx)
684 {
685         struct perf_cgroup *cgrp;
686         struct perf_cgroup_info *info;
687         struct cgroup_subsys_state *css;
688
689         /*
690          * ctx->lock held by caller
691          * ensure we do not access cgroup data
692          * unless we have the cgroup pinned (css_get)
693          */
694         if (!task || !ctx->nr_cgroups)
695                 return;
696
697         cgrp = perf_cgroup_from_task(task, ctx);
698
699         for (css = &cgrp->css; css; css = css->parent) {
700                 cgrp = container_of(css, struct perf_cgroup, css);
701                 info = this_cpu_ptr(cgrp->info);
702                 info->timestamp = ctx->timestamp;
703         }
704 }
705
706 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
707
708 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
709 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
710
711 /*
712  * reschedule events based on the cgroup constraint of task.
713  *
714  * mode SWOUT : schedule out everything
715  * mode SWIN : schedule in based on cgroup for next
716  */
717 static void perf_cgroup_switch(struct task_struct *task, int mode)
718 {
719         struct perf_cpu_context *cpuctx, *tmp;
720         struct list_head *list;
721         unsigned long flags;
722
723         /*
724          * Disable interrupts and preemption to avoid this CPU's
725          * cgrp_cpuctx_entry to change under us.
726          */
727         local_irq_save(flags);
728
729         list = this_cpu_ptr(&cgrp_cpuctx_list);
730         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
731                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
732
733                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
734                 perf_pmu_disable(cpuctx->ctx.pmu);
735
736                 if (mode & PERF_CGROUP_SWOUT) {
737                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
738                         /*
739                          * must not be done before ctxswout due
740                          * to event_filter_match() in event_sched_out()
741                          */
742                         cpuctx->cgrp = NULL;
743                 }
744
745                 if (mode & PERF_CGROUP_SWIN) {
746                         WARN_ON_ONCE(cpuctx->cgrp);
747                         /*
748                          * set cgrp before ctxsw in to allow
749                          * event_filter_match() to not have to pass
750                          * task around
751                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
752                          * because cgorup events are only per-cpu
753                          */
754                         cpuctx->cgrp = perf_cgroup_from_task(task,
755                                                              &cpuctx->ctx);
756                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
757                 }
758                 perf_pmu_enable(cpuctx->ctx.pmu);
759                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
760         }
761
762         local_irq_restore(flags);
763 }
764
765 static inline void perf_cgroup_sched_out(struct task_struct *task,
766                                          struct task_struct *next)
767 {
768         struct perf_cgroup *cgrp1;
769         struct perf_cgroup *cgrp2 = NULL;
770
771         rcu_read_lock();
772         /*
773          * we come here when we know perf_cgroup_events > 0
774          * we do not need to pass the ctx here because we know
775          * we are holding the rcu lock
776          */
777         cgrp1 = perf_cgroup_from_task(task, NULL);
778         cgrp2 = perf_cgroup_from_task(next, NULL);
779
780         /*
781          * only schedule out current cgroup events if we know
782          * that we are switching to a different cgroup. Otherwise,
783          * do no touch the cgroup events.
784          */
785         if (cgrp1 != cgrp2)
786                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
787
788         rcu_read_unlock();
789 }
790
791 static inline void perf_cgroup_sched_in(struct task_struct *prev,
792                                         struct task_struct *task)
793 {
794         struct perf_cgroup *cgrp1;
795         struct perf_cgroup *cgrp2 = NULL;
796
797         rcu_read_lock();
798         /*
799          * we come here when we know perf_cgroup_events > 0
800          * we do not need to pass the ctx here because we know
801          * we are holding the rcu lock
802          */
803         cgrp1 = perf_cgroup_from_task(task, NULL);
804         cgrp2 = perf_cgroup_from_task(prev, NULL);
805
806         /*
807          * only need to schedule in cgroup events if we are changing
808          * cgroup during ctxsw. Cgroup events were not scheduled
809          * out of ctxsw out if that was not the case.
810          */
811         if (cgrp1 != cgrp2)
812                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
813
814         rcu_read_unlock();
815 }
816
817 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
818                                       struct perf_event_attr *attr,
819                                       struct perf_event *group_leader)
820 {
821         struct perf_cgroup *cgrp;
822         struct cgroup_subsys_state *css;
823         struct fd f = fdget(fd);
824         int ret = 0;
825
826         if (!f.file)
827                 return -EBADF;
828
829         css = css_tryget_online_from_dir(f.file->f_path.dentry,
830                                          &perf_event_cgrp_subsys);
831         if (IS_ERR(css)) {
832                 ret = PTR_ERR(css);
833                 goto out;
834         }
835
836         cgrp = container_of(css, struct perf_cgroup, css);
837         event->cgrp = cgrp;
838
839         /*
840          * all events in a group must monitor
841          * the same cgroup because a task belongs
842          * to only one perf cgroup at a time
843          */
844         if (group_leader && group_leader->cgrp != cgrp) {
845                 perf_detach_cgroup(event);
846                 ret = -EINVAL;
847         }
848 out:
849         fdput(f);
850         return ret;
851 }
852
853 static inline void
854 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
855 {
856         struct perf_cgroup_info *t;
857         t = per_cpu_ptr(event->cgrp->info, event->cpu);
858         event->shadow_ctx_time = now - t->timestamp;
859 }
860
861 static inline void
862 perf_cgroup_defer_enabled(struct perf_event *event)
863 {
864         /*
865          * when the current task's perf cgroup does not match
866          * the event's, we need to remember to call the
867          * perf_mark_enable() function the first time a task with
868          * a matching perf cgroup is scheduled in.
869          */
870         if (is_cgroup_event(event) && !perf_cgroup_match(event))
871                 event->cgrp_defer_enabled = 1;
872 }
873
874 static inline void
875 perf_cgroup_mark_enabled(struct perf_event *event,
876                          struct perf_event_context *ctx)
877 {
878         struct perf_event *sub;
879         u64 tstamp = perf_event_time(event);
880
881         if (!event->cgrp_defer_enabled)
882                 return;
883
884         event->cgrp_defer_enabled = 0;
885
886         event->tstamp_enabled = tstamp - event->total_time_enabled;
887         list_for_each_entry(sub, &event->sibling_list, group_entry) {
888                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
889                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
890                         sub->cgrp_defer_enabled = 0;
891                 }
892         }
893 }
894
895 /*
896  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
897  * cleared when last cgroup event is removed.
898  */
899 static inline void
900 list_update_cgroup_event(struct perf_event *event,
901                          struct perf_event_context *ctx, bool add)
902 {
903         struct perf_cpu_context *cpuctx;
904         struct list_head *cpuctx_entry;
905
906         if (!is_cgroup_event(event))
907                 return;
908
909         /*
910          * Because cgroup events are always per-cpu events,
911          * this will always be called from the right CPU.
912          */
913         cpuctx = __get_cpu_context(ctx);
914
915         /*
916          * Since setting cpuctx->cgrp is conditional on the current @cgrp
917          * matching the event's cgroup, we must do this for every new event,
918          * because if the first would mismatch, the second would not try again
919          * and we would leave cpuctx->cgrp unset.
920          */
921         if (add && !cpuctx->cgrp) {
922                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
923
924                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
925                         cpuctx->cgrp = cgrp;
926         }
927
928         if (add && ctx->nr_cgroups++)
929                 return;
930         else if (!add && --ctx->nr_cgroups)
931                 return;
932
933         /* no cgroup running */
934         if (!add)
935                 cpuctx->cgrp = NULL;
936
937         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
938         if (add)
939                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
940         else
941                 list_del(cpuctx_entry);
942 }
943
944 #else /* !CONFIG_CGROUP_PERF */
945
946 static inline bool
947 perf_cgroup_match(struct perf_event *event)
948 {
949         return true;
950 }
951
952 static inline void perf_detach_cgroup(struct perf_event *event)
953 {}
954
955 static inline int is_cgroup_event(struct perf_event *event)
956 {
957         return 0;
958 }
959
960 static inline void update_cgrp_time_from_event(struct perf_event *event)
961 {
962 }
963
964 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
965 {
966 }
967
968 static inline void perf_cgroup_sched_out(struct task_struct *task,
969                                          struct task_struct *next)
970 {
971 }
972
973 static inline void perf_cgroup_sched_in(struct task_struct *prev,
974                                         struct task_struct *task)
975 {
976 }
977
978 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
979                                       struct perf_event_attr *attr,
980                                       struct perf_event *group_leader)
981 {
982         return -EINVAL;
983 }
984
985 static inline void
986 perf_cgroup_set_timestamp(struct task_struct *task,
987                           struct perf_event_context *ctx)
988 {
989 }
990
991 void
992 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
993 {
994 }
995
996 static inline void
997 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
998 {
999 }
1000
1001 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1002 {
1003         return 0;
1004 }
1005
1006 static inline void
1007 perf_cgroup_defer_enabled(struct perf_event *event)
1008 {
1009 }
1010
1011 static inline void
1012 perf_cgroup_mark_enabled(struct perf_event *event,
1013                          struct perf_event_context *ctx)
1014 {
1015 }
1016
1017 static inline void
1018 list_update_cgroup_event(struct perf_event *event,
1019                          struct perf_event_context *ctx, bool add)
1020 {
1021 }
1022
1023 #endif
1024
1025 /*
1026  * set default to be dependent on timer tick just
1027  * like original code
1028  */
1029 #define PERF_CPU_HRTIMER (1000 / HZ)
1030 /*
1031  * function must be called with interrupts disabled
1032  */
1033 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1034 {
1035         struct perf_cpu_context *cpuctx;
1036         int rotations = 0;
1037
1038         WARN_ON(!irqs_disabled());
1039
1040         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1041         rotations = perf_rotate_context(cpuctx);
1042
1043         raw_spin_lock(&cpuctx->hrtimer_lock);
1044         if (rotations)
1045                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1046         else
1047                 cpuctx->hrtimer_active = 0;
1048         raw_spin_unlock(&cpuctx->hrtimer_lock);
1049
1050         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1051 }
1052
1053 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1054 {
1055         struct hrtimer *timer = &cpuctx->hrtimer;
1056         struct pmu *pmu = cpuctx->ctx.pmu;
1057         u64 interval;
1058
1059         /* no multiplexing needed for SW PMU */
1060         if (pmu->task_ctx_nr == perf_sw_context)
1061                 return;
1062
1063         /*
1064          * check default is sane, if not set then force to
1065          * default interval (1/tick)
1066          */
1067         interval = pmu->hrtimer_interval_ms;
1068         if (interval < 1)
1069                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1070
1071         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1072
1073         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1074         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1075         timer->function = perf_mux_hrtimer_handler;
1076 }
1077
1078 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1079 {
1080         struct hrtimer *timer = &cpuctx->hrtimer;
1081         struct pmu *pmu = cpuctx->ctx.pmu;
1082         unsigned long flags;
1083
1084         /* not for SW PMU */
1085         if (pmu->task_ctx_nr == perf_sw_context)
1086                 return 0;
1087
1088         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1089         if (!cpuctx->hrtimer_active) {
1090                 cpuctx->hrtimer_active = 1;
1091                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1092                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1093         }
1094         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1095
1096         return 0;
1097 }
1098
1099 void perf_pmu_disable(struct pmu *pmu)
1100 {
1101         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1102         if (!(*count)++)
1103                 pmu->pmu_disable(pmu);
1104 }
1105
1106 void perf_pmu_enable(struct pmu *pmu)
1107 {
1108         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1109         if (!--(*count))
1110                 pmu->pmu_enable(pmu);
1111 }
1112
1113 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1114
1115 /*
1116  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1117  * perf_event_task_tick() are fully serialized because they're strictly cpu
1118  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1119  * disabled, while perf_event_task_tick is called from IRQ context.
1120  */
1121 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1122 {
1123         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1124
1125         WARN_ON(!irqs_disabled());
1126
1127         WARN_ON(!list_empty(&ctx->active_ctx_list));
1128
1129         list_add(&ctx->active_ctx_list, head);
1130 }
1131
1132 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1133 {
1134         WARN_ON(!irqs_disabled());
1135
1136         WARN_ON(list_empty(&ctx->active_ctx_list));
1137
1138         list_del_init(&ctx->active_ctx_list);
1139 }
1140
1141 static void get_ctx(struct perf_event_context *ctx)
1142 {
1143         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1144 }
1145
1146 static void free_ctx(struct rcu_head *head)
1147 {
1148         struct perf_event_context *ctx;
1149
1150         ctx = container_of(head, struct perf_event_context, rcu_head);
1151         kfree(ctx->task_ctx_data);
1152         kfree(ctx);
1153 }
1154
1155 static void put_ctx(struct perf_event_context *ctx)
1156 {
1157         if (atomic_dec_and_test(&ctx->refcount)) {
1158                 if (ctx->parent_ctx)
1159                         put_ctx(ctx->parent_ctx);
1160                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1161                         put_task_struct(ctx->task);
1162                 call_rcu(&ctx->rcu_head, free_ctx);
1163         }
1164 }
1165
1166 /*
1167  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1168  * perf_pmu_migrate_context() we need some magic.
1169  *
1170  * Those places that change perf_event::ctx will hold both
1171  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1172  *
1173  * Lock ordering is by mutex address. There are two other sites where
1174  * perf_event_context::mutex nests and those are:
1175  *
1176  *  - perf_event_exit_task_context()    [ child , 0 ]
1177  *      perf_event_exit_event()
1178  *        put_event()                   [ parent, 1 ]
1179  *
1180  *  - perf_event_init_context()         [ parent, 0 ]
1181  *      inherit_task_group()
1182  *        inherit_group()
1183  *          inherit_event()
1184  *            perf_event_alloc()
1185  *              perf_init_event()
1186  *                perf_try_init_event() [ child , 1 ]
1187  *
1188  * While it appears there is an obvious deadlock here -- the parent and child
1189  * nesting levels are inverted between the two. This is in fact safe because
1190  * life-time rules separate them. That is an exiting task cannot fork, and a
1191  * spawning task cannot (yet) exit.
1192  *
1193  * But remember that that these are parent<->child context relations, and
1194  * migration does not affect children, therefore these two orderings should not
1195  * interact.
1196  *
1197  * The change in perf_event::ctx does not affect children (as claimed above)
1198  * because the sys_perf_event_open() case will install a new event and break
1199  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1200  * concerned with cpuctx and that doesn't have children.
1201  *
1202  * The places that change perf_event::ctx will issue:
1203  *
1204  *   perf_remove_from_context();
1205  *   synchronize_rcu();
1206  *   perf_install_in_context();
1207  *
1208  * to affect the change. The remove_from_context() + synchronize_rcu() should
1209  * quiesce the event, after which we can install it in the new location. This
1210  * means that only external vectors (perf_fops, prctl) can perturb the event
1211  * while in transit. Therefore all such accessors should also acquire
1212  * perf_event_context::mutex to serialize against this.
1213  *
1214  * However; because event->ctx can change while we're waiting to acquire
1215  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1216  * function.
1217  *
1218  * Lock order:
1219  *    cred_guard_mutex
1220  *      task_struct::perf_event_mutex
1221  *        perf_event_context::mutex
1222  *          perf_event::child_mutex;
1223  *            perf_event_context::lock
1224  *          perf_event::mmap_mutex
1225  *          mmap_sem
1226  */
1227 static struct perf_event_context *
1228 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1229 {
1230         struct perf_event_context *ctx;
1231
1232 again:
1233         rcu_read_lock();
1234         ctx = ACCESS_ONCE(event->ctx);
1235         if (!atomic_inc_not_zero(&ctx->refcount)) {
1236                 rcu_read_unlock();
1237                 goto again;
1238         }
1239         rcu_read_unlock();
1240
1241         mutex_lock_nested(&ctx->mutex, nesting);
1242         if (event->ctx != ctx) {
1243                 mutex_unlock(&ctx->mutex);
1244                 put_ctx(ctx);
1245                 goto again;
1246         }
1247
1248         return ctx;
1249 }
1250
1251 static inline struct perf_event_context *
1252 perf_event_ctx_lock(struct perf_event *event)
1253 {
1254         return perf_event_ctx_lock_nested(event, 0);
1255 }
1256
1257 static void perf_event_ctx_unlock(struct perf_event *event,
1258                                   struct perf_event_context *ctx)
1259 {
1260         mutex_unlock(&ctx->mutex);
1261         put_ctx(ctx);
1262 }
1263
1264 /*
1265  * This must be done under the ctx->lock, such as to serialize against
1266  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1267  * calling scheduler related locks and ctx->lock nests inside those.
1268  */
1269 static __must_check struct perf_event_context *
1270 unclone_ctx(struct perf_event_context *ctx)
1271 {
1272         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1273
1274         lockdep_assert_held(&ctx->lock);
1275
1276         if (parent_ctx)
1277                 ctx->parent_ctx = NULL;
1278         ctx->generation++;
1279
1280         return parent_ctx;
1281 }
1282
1283 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1284                                 enum pid_type type)
1285 {
1286         u32 nr;
1287         /*
1288          * only top level events have the pid namespace they were created in
1289          */
1290         if (event->parent)
1291                 event = event->parent;
1292
1293         nr = __task_pid_nr_ns(p, type, event->ns);
1294         /* avoid -1 if it is idle thread or runs in another ns */
1295         if (!nr && !pid_alive(p))
1296                 nr = -1;
1297         return nr;
1298 }
1299
1300 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1301 {
1302         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1303 }
1304
1305 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1306 {
1307         return perf_event_pid_type(event, p, PIDTYPE_PID);
1308 }
1309
1310 /*
1311  * If we inherit events we want to return the parent event id
1312  * to userspace.
1313  */
1314 static u64 primary_event_id(struct perf_event *event)
1315 {
1316         u64 id = event->id;
1317
1318         if (event->parent)
1319                 id = event->parent->id;
1320
1321         return id;
1322 }
1323
1324 /*
1325  * Get the perf_event_context for a task and lock it.
1326  *
1327  * This has to cope with with the fact that until it is locked,
1328  * the context could get moved to another task.
1329  */
1330 static struct perf_event_context *
1331 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1332 {
1333         struct perf_event_context *ctx;
1334
1335 retry:
1336         /*
1337          * One of the few rules of preemptible RCU is that one cannot do
1338          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1339          * part of the read side critical section was irqs-enabled -- see
1340          * rcu_read_unlock_special().
1341          *
1342          * Since ctx->lock nests under rq->lock we must ensure the entire read
1343          * side critical section has interrupts disabled.
1344          */
1345         local_irq_save(*flags);
1346         rcu_read_lock();
1347         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1348         if (ctx) {
1349                 /*
1350                  * If this context is a clone of another, it might
1351                  * get swapped for another underneath us by
1352                  * perf_event_task_sched_out, though the
1353                  * rcu_read_lock() protects us from any context
1354                  * getting freed.  Lock the context and check if it
1355                  * got swapped before we could get the lock, and retry
1356                  * if so.  If we locked the right context, then it
1357                  * can't get swapped on us any more.
1358                  */
1359                 raw_spin_lock(&ctx->lock);
1360                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1361                         raw_spin_unlock(&ctx->lock);
1362                         rcu_read_unlock();
1363                         local_irq_restore(*flags);
1364                         goto retry;
1365                 }
1366
1367                 if (ctx->task == TASK_TOMBSTONE ||
1368                     !atomic_inc_not_zero(&ctx->refcount)) {
1369                         raw_spin_unlock(&ctx->lock);
1370                         ctx = NULL;
1371                 } else {
1372                         WARN_ON_ONCE(ctx->task != task);
1373                 }
1374         }
1375         rcu_read_unlock();
1376         if (!ctx)
1377                 local_irq_restore(*flags);
1378         return ctx;
1379 }
1380
1381 /*
1382  * Get the context for a task and increment its pin_count so it
1383  * can't get swapped to another task.  This also increments its
1384  * reference count so that the context can't get freed.
1385  */
1386 static struct perf_event_context *
1387 perf_pin_task_context(struct task_struct *task, int ctxn)
1388 {
1389         struct perf_event_context *ctx;
1390         unsigned long flags;
1391
1392         ctx = perf_lock_task_context(task, ctxn, &flags);
1393         if (ctx) {
1394                 ++ctx->pin_count;
1395                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1396         }
1397         return ctx;
1398 }
1399
1400 static void perf_unpin_context(struct perf_event_context *ctx)
1401 {
1402         unsigned long flags;
1403
1404         raw_spin_lock_irqsave(&ctx->lock, flags);
1405         --ctx->pin_count;
1406         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1407 }
1408
1409 /*
1410  * Update the record of the current time in a context.
1411  */
1412 static void update_context_time(struct perf_event_context *ctx)
1413 {
1414         u64 now = perf_clock();
1415
1416         ctx->time += now - ctx->timestamp;
1417         ctx->timestamp = now;
1418 }
1419
1420 static u64 perf_event_time(struct perf_event *event)
1421 {
1422         struct perf_event_context *ctx = event->ctx;
1423
1424         if (is_cgroup_event(event))
1425                 return perf_cgroup_event_time(event);
1426
1427         return ctx ? ctx->time : 0;
1428 }
1429
1430 /*
1431  * Update the total_time_enabled and total_time_running fields for a event.
1432  */
1433 static void update_event_times(struct perf_event *event)
1434 {
1435         struct perf_event_context *ctx = event->ctx;
1436         u64 run_end;
1437
1438         lockdep_assert_held(&ctx->lock);
1439
1440         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1441             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1442                 return;
1443
1444         /*
1445          * in cgroup mode, time_enabled represents
1446          * the time the event was enabled AND active
1447          * tasks were in the monitored cgroup. This is
1448          * independent of the activity of the context as
1449          * there may be a mix of cgroup and non-cgroup events.
1450          *
1451          * That is why we treat cgroup events differently
1452          * here.
1453          */
1454         if (is_cgroup_event(event))
1455                 run_end = perf_cgroup_event_time(event);
1456         else if (ctx->is_active)
1457                 run_end = ctx->time;
1458         else
1459                 run_end = event->tstamp_stopped;
1460
1461         event->total_time_enabled = run_end - event->tstamp_enabled;
1462
1463         if (event->state == PERF_EVENT_STATE_INACTIVE)
1464                 run_end = event->tstamp_stopped;
1465         else
1466                 run_end = perf_event_time(event);
1467
1468         event->total_time_running = run_end - event->tstamp_running;
1469
1470 }
1471
1472 /*
1473  * Update total_time_enabled and total_time_running for all events in a group.
1474  */
1475 static void update_group_times(struct perf_event *leader)
1476 {
1477         struct perf_event *event;
1478
1479         update_event_times(leader);
1480         list_for_each_entry(event, &leader->sibling_list, group_entry)
1481                 update_event_times(event);
1482 }
1483
1484 static enum event_type_t get_event_type(struct perf_event *event)
1485 {
1486         struct perf_event_context *ctx = event->ctx;
1487         enum event_type_t event_type;
1488
1489         lockdep_assert_held(&ctx->lock);
1490
1491         /*
1492          * It's 'group type', really, because if our group leader is
1493          * pinned, so are we.
1494          */
1495         if (event->group_leader != event)
1496                 event = event->group_leader;
1497
1498         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1499         if (!ctx->task)
1500                 event_type |= EVENT_CPU;
1501
1502         return event_type;
1503 }
1504
1505 static struct list_head *
1506 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1507 {
1508         if (event->attr.pinned)
1509                 return &ctx->pinned_groups;
1510         else
1511                 return &ctx->flexible_groups;
1512 }
1513
1514 /*
1515  * Add a event from the lists for its context.
1516  * Must be called with ctx->mutex and ctx->lock held.
1517  */
1518 static void
1519 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1520 {
1521         lockdep_assert_held(&ctx->lock);
1522
1523         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1524         event->attach_state |= PERF_ATTACH_CONTEXT;
1525
1526         /*
1527          * If we're a stand alone event or group leader, we go to the context
1528          * list, group events are kept attached to the group so that
1529          * perf_group_detach can, at all times, locate all siblings.
1530          */
1531         if (event->group_leader == event) {
1532                 struct list_head *list;
1533
1534                 event->group_caps = event->event_caps;
1535
1536                 list = ctx_group_list(event, ctx);
1537                 list_add_tail(&event->group_entry, list);
1538         }
1539
1540         list_update_cgroup_event(event, ctx, true);
1541
1542         list_add_rcu(&event->event_entry, &ctx->event_list);
1543         ctx->nr_events++;
1544         if (event->attr.inherit_stat)
1545                 ctx->nr_stat++;
1546
1547         ctx->generation++;
1548 }
1549
1550 /*
1551  * Initialize event state based on the perf_event_attr::disabled.
1552  */
1553 static inline void perf_event__state_init(struct perf_event *event)
1554 {
1555         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1556                                               PERF_EVENT_STATE_INACTIVE;
1557 }
1558
1559 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1560 {
1561         int entry = sizeof(u64); /* value */
1562         int size = 0;
1563         int nr = 1;
1564
1565         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1566                 size += sizeof(u64);
1567
1568         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1569                 size += sizeof(u64);
1570
1571         if (event->attr.read_format & PERF_FORMAT_ID)
1572                 entry += sizeof(u64);
1573
1574         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1575                 nr += nr_siblings;
1576                 size += sizeof(u64);
1577         }
1578
1579         size += entry * nr;
1580         event->read_size = size;
1581 }
1582
1583 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1584 {
1585         struct perf_sample_data *data;
1586         u16 size = 0;
1587
1588         if (sample_type & PERF_SAMPLE_IP)
1589                 size += sizeof(data->ip);
1590
1591         if (sample_type & PERF_SAMPLE_ADDR)
1592                 size += sizeof(data->addr);
1593
1594         if (sample_type & PERF_SAMPLE_PERIOD)
1595                 size += sizeof(data->period);
1596
1597         if (sample_type & PERF_SAMPLE_WEIGHT)
1598                 size += sizeof(data->weight);
1599
1600         if (sample_type & PERF_SAMPLE_READ)
1601                 size += event->read_size;
1602
1603         if (sample_type & PERF_SAMPLE_DATA_SRC)
1604                 size += sizeof(data->data_src.val);
1605
1606         if (sample_type & PERF_SAMPLE_TRANSACTION)
1607                 size += sizeof(data->txn);
1608
1609         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1610                 size += sizeof(data->phys_addr);
1611
1612         event->header_size = size;
1613 }
1614
1615 /*
1616  * Called at perf_event creation and when events are attached/detached from a
1617  * group.
1618  */
1619 static void perf_event__header_size(struct perf_event *event)
1620 {
1621         __perf_event_read_size(event,
1622                                event->group_leader->nr_siblings);
1623         __perf_event_header_size(event, event->attr.sample_type);
1624 }
1625
1626 static void perf_event__id_header_size(struct perf_event *event)
1627 {
1628         struct perf_sample_data *data;
1629         u64 sample_type = event->attr.sample_type;
1630         u16 size = 0;
1631
1632         if (sample_type & PERF_SAMPLE_TID)
1633                 size += sizeof(data->tid_entry);
1634
1635         if (sample_type & PERF_SAMPLE_TIME)
1636                 size += sizeof(data->time);
1637
1638         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1639                 size += sizeof(data->id);
1640
1641         if (sample_type & PERF_SAMPLE_ID)
1642                 size += sizeof(data->id);
1643
1644         if (sample_type & PERF_SAMPLE_STREAM_ID)
1645                 size += sizeof(data->stream_id);
1646
1647         if (sample_type & PERF_SAMPLE_CPU)
1648                 size += sizeof(data->cpu_entry);
1649
1650         event->id_header_size = size;
1651 }
1652
1653 static bool perf_event_validate_size(struct perf_event *event)
1654 {
1655         /*
1656          * The values computed here will be over-written when we actually
1657          * attach the event.
1658          */
1659         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1660         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1661         perf_event__id_header_size(event);
1662
1663         /*
1664          * Sum the lot; should not exceed the 64k limit we have on records.
1665          * Conservative limit to allow for callchains and other variable fields.
1666          */
1667         if (event->read_size + event->header_size +
1668             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1669                 return false;
1670
1671         return true;
1672 }
1673
1674 static void perf_group_attach(struct perf_event *event)
1675 {
1676         struct perf_event *group_leader = event->group_leader, *pos;
1677
1678         lockdep_assert_held(&event->ctx->lock);
1679
1680         /*
1681          * We can have double attach due to group movement in perf_event_open.
1682          */
1683         if (event->attach_state & PERF_ATTACH_GROUP)
1684                 return;
1685
1686         event->attach_state |= PERF_ATTACH_GROUP;
1687
1688         if (group_leader == event)
1689                 return;
1690
1691         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1692
1693         group_leader->group_caps &= event->event_caps;
1694
1695         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1696         group_leader->nr_siblings++;
1697
1698         perf_event__header_size(group_leader);
1699
1700         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1701                 perf_event__header_size(pos);
1702 }
1703
1704 /*
1705  * Remove a event from the lists for its context.
1706  * Must be called with ctx->mutex and ctx->lock held.
1707  */
1708 static void
1709 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1710 {
1711         WARN_ON_ONCE(event->ctx != ctx);
1712         lockdep_assert_held(&ctx->lock);
1713
1714         /*
1715          * We can have double detach due to exit/hot-unplug + close.
1716          */
1717         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1718                 return;
1719
1720         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1721
1722         list_update_cgroup_event(event, ctx, false);
1723
1724         ctx->nr_events--;
1725         if (event->attr.inherit_stat)
1726                 ctx->nr_stat--;
1727
1728         list_del_rcu(&event->event_entry);
1729
1730         if (event->group_leader == event)
1731                 list_del_init(&event->group_entry);
1732
1733         update_group_times(event);
1734
1735         /*
1736          * If event was in error state, then keep it
1737          * that way, otherwise bogus counts will be
1738          * returned on read(). The only way to get out
1739          * of error state is by explicit re-enabling
1740          * of the event
1741          */
1742         if (event->state > PERF_EVENT_STATE_OFF)
1743                 event->state = PERF_EVENT_STATE_OFF;
1744
1745         ctx->generation++;
1746 }
1747
1748 static void perf_group_detach(struct perf_event *event)
1749 {
1750         struct perf_event *sibling, *tmp;
1751         struct list_head *list = NULL;
1752
1753         lockdep_assert_held(&event->ctx->lock);
1754
1755         /*
1756          * We can have double detach due to exit/hot-unplug + close.
1757          */
1758         if (!(event->attach_state & PERF_ATTACH_GROUP))
1759                 return;
1760
1761         event->attach_state &= ~PERF_ATTACH_GROUP;
1762
1763         /*
1764          * If this is a sibling, remove it from its group.
1765          */
1766         if (event->group_leader != event) {
1767                 list_del_init(&event->group_entry);
1768                 event->group_leader->nr_siblings--;
1769                 goto out;
1770         }
1771
1772         if (!list_empty(&event->group_entry))
1773                 list = &event->group_entry;
1774
1775         /*
1776          * If this was a group event with sibling events then
1777          * upgrade the siblings to singleton events by adding them
1778          * to whatever list we are on.
1779          */
1780         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1781                 if (list)
1782                         list_move_tail(&sibling->group_entry, list);
1783                 sibling->group_leader = sibling;
1784
1785                 /* Inherit group flags from the previous leader */
1786                 sibling->group_caps = event->group_caps;
1787
1788                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1789         }
1790
1791 out:
1792         perf_event__header_size(event->group_leader);
1793
1794         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1795                 perf_event__header_size(tmp);
1796 }
1797
1798 static bool is_orphaned_event(struct perf_event *event)
1799 {
1800         return event->state == PERF_EVENT_STATE_DEAD;
1801 }
1802
1803 static inline int __pmu_filter_match(struct perf_event *event)
1804 {
1805         struct pmu *pmu = event->pmu;
1806         return pmu->filter_match ? pmu->filter_match(event) : 1;
1807 }
1808
1809 /*
1810  * Check whether we should attempt to schedule an event group based on
1811  * PMU-specific filtering. An event group can consist of HW and SW events,
1812  * potentially with a SW leader, so we must check all the filters, to
1813  * determine whether a group is schedulable:
1814  */
1815 static inline int pmu_filter_match(struct perf_event *event)
1816 {
1817         struct perf_event *child;
1818
1819         if (!__pmu_filter_match(event))
1820                 return 0;
1821
1822         list_for_each_entry(child, &event->sibling_list, group_entry) {
1823                 if (!__pmu_filter_match(child))
1824                         return 0;
1825         }
1826
1827         return 1;
1828 }
1829
1830 static inline int
1831 event_filter_match(struct perf_event *event)
1832 {
1833         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1834                perf_cgroup_match(event) && pmu_filter_match(event);
1835 }
1836
1837 static void
1838 event_sched_out(struct perf_event *event,
1839                   struct perf_cpu_context *cpuctx,
1840                   struct perf_event_context *ctx)
1841 {
1842         u64 tstamp = perf_event_time(event);
1843         u64 delta;
1844
1845         WARN_ON_ONCE(event->ctx != ctx);
1846         lockdep_assert_held(&ctx->lock);
1847
1848         /*
1849          * An event which could not be activated because of
1850          * filter mismatch still needs to have its timings
1851          * maintained, otherwise bogus information is return
1852          * via read() for time_enabled, time_running:
1853          */
1854         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1855             !event_filter_match(event)) {
1856                 delta = tstamp - event->tstamp_stopped;
1857                 event->tstamp_running += delta;
1858                 event->tstamp_stopped = tstamp;
1859         }
1860
1861         if (event->state != PERF_EVENT_STATE_ACTIVE)
1862                 return;
1863
1864         perf_pmu_disable(event->pmu);
1865
1866         event->tstamp_stopped = tstamp;
1867         event->pmu->del(event, 0);
1868         event->oncpu = -1;
1869         event->state = PERF_EVENT_STATE_INACTIVE;
1870         if (event->pending_disable) {
1871                 event->pending_disable = 0;
1872                 event->state = PERF_EVENT_STATE_OFF;
1873         }
1874
1875         if (!is_software_event(event))
1876                 cpuctx->active_oncpu--;
1877         if (!--ctx->nr_active)
1878                 perf_event_ctx_deactivate(ctx);
1879         if (event->attr.freq && event->attr.sample_freq)
1880                 ctx->nr_freq--;
1881         if (event->attr.exclusive || !cpuctx->active_oncpu)
1882                 cpuctx->exclusive = 0;
1883
1884         perf_pmu_enable(event->pmu);
1885 }
1886
1887 static void
1888 group_sched_out(struct perf_event *group_event,
1889                 struct perf_cpu_context *cpuctx,
1890                 struct perf_event_context *ctx)
1891 {
1892         struct perf_event *event;
1893         int state = group_event->state;
1894
1895         perf_pmu_disable(ctx->pmu);
1896
1897         event_sched_out(group_event, cpuctx, ctx);
1898
1899         /*
1900          * Schedule out siblings (if any):
1901          */
1902         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1903                 event_sched_out(event, cpuctx, ctx);
1904
1905         perf_pmu_enable(ctx->pmu);
1906
1907         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1908                 cpuctx->exclusive = 0;
1909 }
1910
1911 #define DETACH_GROUP    0x01UL
1912
1913 /*
1914  * Cross CPU call to remove a performance event
1915  *
1916  * We disable the event on the hardware level first. After that we
1917  * remove it from the context list.
1918  */
1919 static void
1920 __perf_remove_from_context(struct perf_event *event,
1921                            struct perf_cpu_context *cpuctx,
1922                            struct perf_event_context *ctx,
1923                            void *info)
1924 {
1925         unsigned long flags = (unsigned long)info;
1926
1927         event_sched_out(event, cpuctx, ctx);
1928         if (flags & DETACH_GROUP)
1929                 perf_group_detach(event);
1930         list_del_event(event, ctx);
1931
1932         if (!ctx->nr_events && ctx->is_active) {
1933                 ctx->is_active = 0;
1934                 if (ctx->task) {
1935                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1936                         cpuctx->task_ctx = NULL;
1937                 }
1938         }
1939 }
1940
1941 /*
1942  * Remove the event from a task's (or a CPU's) list of events.
1943  *
1944  * If event->ctx is a cloned context, callers must make sure that
1945  * every task struct that event->ctx->task could possibly point to
1946  * remains valid.  This is OK when called from perf_release since
1947  * that only calls us on the top-level context, which can't be a clone.
1948  * When called from perf_event_exit_task, it's OK because the
1949  * context has been detached from its task.
1950  */
1951 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1952 {
1953         struct perf_event_context *ctx = event->ctx;
1954
1955         lockdep_assert_held(&ctx->mutex);
1956
1957         event_function_call(event, __perf_remove_from_context, (void *)flags);
1958
1959         /*
1960          * The above event_function_call() can NO-OP when it hits
1961          * TASK_TOMBSTONE. In that case we must already have been detached
1962          * from the context (by perf_event_exit_event()) but the grouping
1963          * might still be in-tact.
1964          */
1965         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1966         if ((flags & DETACH_GROUP) &&
1967             (event->attach_state & PERF_ATTACH_GROUP)) {
1968                 /*
1969                  * Since in that case we cannot possibly be scheduled, simply
1970                  * detach now.
1971                  */
1972                 raw_spin_lock_irq(&ctx->lock);
1973                 perf_group_detach(event);
1974                 raw_spin_unlock_irq(&ctx->lock);
1975         }
1976 }
1977
1978 /*
1979  * Cross CPU call to disable a performance event
1980  */
1981 static void __perf_event_disable(struct perf_event *event,
1982                                  struct perf_cpu_context *cpuctx,
1983                                  struct perf_event_context *ctx,
1984                                  void *info)
1985 {
1986         if (event->state < PERF_EVENT_STATE_INACTIVE)
1987                 return;
1988
1989         update_context_time(ctx);
1990         update_cgrp_time_from_event(event);
1991         update_group_times(event);
1992         if (event == event->group_leader)
1993                 group_sched_out(event, cpuctx, ctx);
1994         else
1995                 event_sched_out(event, cpuctx, ctx);
1996         event->state = PERF_EVENT_STATE_OFF;
1997 }
1998
1999 /*
2000  * Disable a event.
2001  *
2002  * If event->ctx is a cloned context, callers must make sure that
2003  * every task struct that event->ctx->task could possibly point to
2004  * remains valid.  This condition is satisifed when called through
2005  * perf_event_for_each_child or perf_event_for_each because they
2006  * hold the top-level event's child_mutex, so any descendant that
2007  * goes to exit will block in perf_event_exit_event().
2008  *
2009  * When called from perf_pending_event it's OK because event->ctx
2010  * is the current context on this CPU and preemption is disabled,
2011  * hence we can't get into perf_event_task_sched_out for this context.
2012  */
2013 static void _perf_event_disable(struct perf_event *event)
2014 {
2015         struct perf_event_context *ctx = event->ctx;
2016
2017         raw_spin_lock_irq(&ctx->lock);
2018         if (event->state <= PERF_EVENT_STATE_OFF) {
2019                 raw_spin_unlock_irq(&ctx->lock);
2020                 return;
2021         }
2022         raw_spin_unlock_irq(&ctx->lock);
2023
2024         event_function_call(event, __perf_event_disable, NULL);
2025 }
2026
2027 void perf_event_disable_local(struct perf_event *event)
2028 {
2029         event_function_local(event, __perf_event_disable, NULL);
2030 }
2031
2032 /*
2033  * Strictly speaking kernel users cannot create groups and therefore this
2034  * interface does not need the perf_event_ctx_lock() magic.
2035  */
2036 void perf_event_disable(struct perf_event *event)
2037 {
2038         struct perf_event_context *ctx;
2039
2040         ctx = perf_event_ctx_lock(event);
2041         _perf_event_disable(event);
2042         perf_event_ctx_unlock(event, ctx);
2043 }
2044 EXPORT_SYMBOL_GPL(perf_event_disable);
2045
2046 void perf_event_disable_inatomic(struct perf_event *event)
2047 {
2048         event->pending_disable = 1;
2049         irq_work_queue(&event->pending);
2050 }
2051
2052 static void perf_set_shadow_time(struct perf_event *event,
2053                                  struct perf_event_context *ctx,
2054                                  u64 tstamp)
2055 {
2056         /*
2057          * use the correct time source for the time snapshot
2058          *
2059          * We could get by without this by leveraging the
2060          * fact that to get to this function, the caller
2061          * has most likely already called update_context_time()
2062          * and update_cgrp_time_xx() and thus both timestamp
2063          * are identical (or very close). Given that tstamp is,
2064          * already adjusted for cgroup, we could say that:
2065          *    tstamp - ctx->timestamp
2066          * is equivalent to
2067          *    tstamp - cgrp->timestamp.
2068          *
2069          * Then, in perf_output_read(), the calculation would
2070          * work with no changes because:
2071          * - event is guaranteed scheduled in
2072          * - no scheduled out in between
2073          * - thus the timestamp would be the same
2074          *
2075          * But this is a bit hairy.
2076          *
2077          * So instead, we have an explicit cgroup call to remain
2078          * within the time time source all along. We believe it
2079          * is cleaner and simpler to understand.
2080          */
2081         if (is_cgroup_event(event))
2082                 perf_cgroup_set_shadow_time(event, tstamp);
2083         else
2084                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2085 }
2086
2087 #define MAX_INTERRUPTS (~0ULL)
2088
2089 static void perf_log_throttle(struct perf_event *event, int enable);
2090 static void perf_log_itrace_start(struct perf_event *event);
2091
2092 static int
2093 event_sched_in(struct perf_event *event,
2094                  struct perf_cpu_context *cpuctx,
2095                  struct perf_event_context *ctx)
2096 {
2097         u64 tstamp = perf_event_time(event);
2098         int ret = 0;
2099
2100         lockdep_assert_held(&ctx->lock);
2101
2102         if (event->state <= PERF_EVENT_STATE_OFF)
2103                 return 0;
2104
2105         WRITE_ONCE(event->oncpu, smp_processor_id());
2106         /*
2107          * Order event::oncpu write to happen before the ACTIVE state
2108          * is visible.
2109          */
2110         smp_wmb();
2111         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2112
2113         /*
2114          * Unthrottle events, since we scheduled we might have missed several
2115          * ticks already, also for a heavily scheduling task there is little
2116          * guarantee it'll get a tick in a timely manner.
2117          */
2118         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2119                 perf_log_throttle(event, 1);
2120                 event->hw.interrupts = 0;
2121         }
2122
2123         /*
2124          * The new state must be visible before we turn it on in the hardware:
2125          */
2126         smp_wmb();
2127
2128         perf_pmu_disable(event->pmu);
2129
2130         perf_set_shadow_time(event, ctx, tstamp);
2131
2132         perf_log_itrace_start(event);
2133
2134         if (event->pmu->add(event, PERF_EF_START)) {
2135                 event->state = PERF_EVENT_STATE_INACTIVE;
2136                 event->oncpu = -1;
2137                 ret = -EAGAIN;
2138                 goto out;
2139         }
2140
2141         event->tstamp_running += tstamp - event->tstamp_stopped;
2142
2143         if (!is_software_event(event))
2144                 cpuctx->active_oncpu++;
2145         if (!ctx->nr_active++)
2146                 perf_event_ctx_activate(ctx);
2147         if (event->attr.freq && event->attr.sample_freq)
2148                 ctx->nr_freq++;
2149
2150         if (event->attr.exclusive)
2151                 cpuctx->exclusive = 1;
2152
2153 out:
2154         perf_pmu_enable(event->pmu);
2155
2156         return ret;
2157 }
2158
2159 static int
2160 group_sched_in(struct perf_event *group_event,
2161                struct perf_cpu_context *cpuctx,
2162                struct perf_event_context *ctx)
2163 {
2164         struct perf_event *event, *partial_group = NULL;
2165         struct pmu *pmu = ctx->pmu;
2166         u64 now = ctx->time;
2167         bool simulate = false;
2168
2169         if (group_event->state == PERF_EVENT_STATE_OFF)
2170                 return 0;
2171
2172         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2173
2174         if (event_sched_in(group_event, cpuctx, ctx)) {
2175                 pmu->cancel_txn(pmu);
2176                 perf_mux_hrtimer_restart(cpuctx);
2177                 return -EAGAIN;
2178         }
2179
2180         /*
2181          * Schedule in siblings as one group (if any):
2182          */
2183         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2184                 if (event_sched_in(event, cpuctx, ctx)) {
2185                         partial_group = event;
2186                         goto group_error;
2187                 }
2188         }
2189
2190         if (!pmu->commit_txn(pmu))
2191                 return 0;
2192
2193 group_error:
2194         /*
2195          * Groups can be scheduled in as one unit only, so undo any
2196          * partial group before returning:
2197          * The events up to the failed event are scheduled out normally,
2198          * tstamp_stopped will be updated.
2199          *
2200          * The failed events and the remaining siblings need to have
2201          * their timings updated as if they had gone thru event_sched_in()
2202          * and event_sched_out(). This is required to get consistent timings
2203          * across the group. This also takes care of the case where the group
2204          * could never be scheduled by ensuring tstamp_stopped is set to mark
2205          * the time the event was actually stopped, such that time delta
2206          * calculation in update_event_times() is correct.
2207          */
2208         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2209                 if (event == partial_group)
2210                         simulate = true;
2211
2212                 if (simulate) {
2213                         event->tstamp_running += now - event->tstamp_stopped;
2214                         event->tstamp_stopped = now;
2215                 } else {
2216                         event_sched_out(event, cpuctx, ctx);
2217                 }
2218         }
2219         event_sched_out(group_event, cpuctx, ctx);
2220
2221         pmu->cancel_txn(pmu);
2222
2223         perf_mux_hrtimer_restart(cpuctx);
2224
2225         return -EAGAIN;
2226 }
2227
2228 /*
2229  * Work out whether we can put this event group on the CPU now.
2230  */
2231 static int group_can_go_on(struct perf_event *event,
2232                            struct perf_cpu_context *cpuctx,
2233                            int can_add_hw)
2234 {
2235         /*
2236          * Groups consisting entirely of software events can always go on.
2237          */
2238         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2239                 return 1;
2240         /*
2241          * If an exclusive group is already on, no other hardware
2242          * events can go on.
2243          */
2244         if (cpuctx->exclusive)
2245                 return 0;
2246         /*
2247          * If this group is exclusive and there are already
2248          * events on the CPU, it can't go on.
2249          */
2250         if (event->attr.exclusive && cpuctx->active_oncpu)
2251                 return 0;
2252         /*
2253          * Otherwise, try to add it if all previous groups were able
2254          * to go on.
2255          */
2256         return can_add_hw;
2257 }
2258
2259 /*
2260  * Complement to update_event_times(). This computes the tstamp_* values to
2261  * continue 'enabled' state from @now, and effectively discards the time
2262  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2263  * just switched (context) time base).
2264  *
2265  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2266  * cannot have been scheduled in yet. And going into INACTIVE state means
2267  * '@event->tstamp_stopped = @now'.
2268  *
2269  * Thus given the rules of update_event_times():
2270  *
2271  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2272  *   total_time_running = tstamp_stopped - tstamp_running
2273  *
2274  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2275  * tstamp_* values.
2276  */
2277 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2278 {
2279         WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2280
2281         event->tstamp_stopped = now;
2282         event->tstamp_enabled = now - event->total_time_enabled;
2283         event->tstamp_running = now - event->total_time_running;
2284 }
2285
2286 static void add_event_to_ctx(struct perf_event *event,
2287                                struct perf_event_context *ctx)
2288 {
2289         u64 tstamp = perf_event_time(event);
2290
2291         list_add_event(event, ctx);
2292         perf_group_attach(event);
2293         /*
2294          * We can be called with event->state == STATE_OFF when we create with
2295          * .disabled = 1. In that case the IOC_ENABLE will call this function.
2296          */
2297         if (event->state == PERF_EVENT_STATE_INACTIVE)
2298                 __perf_event_enable_time(event, tstamp);
2299 }
2300
2301 static void ctx_sched_out(struct perf_event_context *ctx,
2302                           struct perf_cpu_context *cpuctx,
2303                           enum event_type_t event_type);
2304 static void
2305 ctx_sched_in(struct perf_event_context *ctx,
2306              struct perf_cpu_context *cpuctx,
2307              enum event_type_t event_type,
2308              struct task_struct *task);
2309
2310 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2311                                struct perf_event_context *ctx,
2312                                enum event_type_t event_type)
2313 {
2314         if (!cpuctx->task_ctx)
2315                 return;
2316
2317         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2318                 return;
2319
2320         ctx_sched_out(ctx, cpuctx, event_type);
2321 }
2322
2323 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2324                                 struct perf_event_context *ctx,
2325                                 struct task_struct *task)
2326 {
2327         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2328         if (ctx)
2329                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2330         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2331         if (ctx)
2332                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2333 }
2334
2335 /*
2336  * We want to maintain the following priority of scheduling:
2337  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2338  *  - task pinned (EVENT_PINNED)
2339  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2340  *  - task flexible (EVENT_FLEXIBLE).
2341  *
2342  * In order to avoid unscheduling and scheduling back in everything every
2343  * time an event is added, only do it for the groups of equal priority and
2344  * below.
2345  *
2346  * This can be called after a batch operation on task events, in which case
2347  * event_type is a bit mask of the types of events involved. For CPU events,
2348  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2349  */
2350 static void ctx_resched(struct perf_cpu_context *cpuctx,
2351                         struct perf_event_context *task_ctx,
2352                         enum event_type_t event_type)
2353 {
2354         enum event_type_t ctx_event_type;
2355         bool cpu_event = !!(event_type & EVENT_CPU);
2356
2357         /*
2358          * If pinned groups are involved, flexible groups also need to be
2359          * scheduled out.
2360          */
2361         if (event_type & EVENT_PINNED)
2362                 event_type |= EVENT_FLEXIBLE;
2363
2364         ctx_event_type = event_type & EVENT_ALL;
2365
2366         perf_pmu_disable(cpuctx->ctx.pmu);
2367         if (task_ctx)
2368                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2369
2370         /*
2371          * Decide which cpu ctx groups to schedule out based on the types
2372          * of events that caused rescheduling:
2373          *  - EVENT_CPU: schedule out corresponding groups;
2374          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2375          *  - otherwise, do nothing more.
2376          */
2377         if (cpu_event)
2378                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2379         else if (ctx_event_type & EVENT_PINNED)
2380                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2381
2382         perf_event_sched_in(cpuctx, task_ctx, current);
2383         perf_pmu_enable(cpuctx->ctx.pmu);
2384 }
2385
2386 /*
2387  * Cross CPU call to install and enable a performance event
2388  *
2389  * Very similar to remote_function() + event_function() but cannot assume that
2390  * things like ctx->is_active and cpuctx->task_ctx are set.
2391  */
2392 static int  __perf_install_in_context(void *info)
2393 {
2394         struct perf_event *event = info;
2395         struct perf_event_context *ctx = event->ctx;
2396         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2397         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2398         bool reprogram = true;
2399         int ret = 0;
2400
2401         raw_spin_lock(&cpuctx->ctx.lock);
2402         if (ctx->task) {
2403                 raw_spin_lock(&ctx->lock);
2404                 task_ctx = ctx;
2405
2406                 reprogram = (ctx->task == current);
2407
2408                 /*
2409                  * If the task is running, it must be running on this CPU,
2410                  * otherwise we cannot reprogram things.
2411                  *
2412                  * If its not running, we don't care, ctx->lock will
2413                  * serialize against it becoming runnable.
2414                  */
2415                 if (task_curr(ctx->task) && !reprogram) {
2416                         ret = -ESRCH;
2417                         goto unlock;
2418                 }
2419
2420                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2421         } else if (task_ctx) {
2422                 raw_spin_lock(&task_ctx->lock);
2423         }
2424
2425 #ifdef CONFIG_CGROUP_PERF
2426         if (is_cgroup_event(event)) {
2427                 /*
2428                  * If the current cgroup doesn't match the event's
2429                  * cgroup, we should not try to schedule it.
2430                  */
2431                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2432                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2433                                         event->cgrp->css.cgroup);
2434         }
2435 #endif
2436
2437         if (reprogram) {
2438                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2439                 add_event_to_ctx(event, ctx);
2440                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2441         } else {
2442                 add_event_to_ctx(event, ctx);
2443         }
2444
2445 unlock:
2446         perf_ctx_unlock(cpuctx, task_ctx);
2447
2448         return ret;
2449 }
2450
2451 /*
2452  * Attach a performance event to a context.
2453  *
2454  * Very similar to event_function_call, see comment there.
2455  */
2456 static void
2457 perf_install_in_context(struct perf_event_context *ctx,
2458                         struct perf_event *event,
2459                         int cpu)
2460 {
2461         struct task_struct *task = READ_ONCE(ctx->task);
2462
2463         lockdep_assert_held(&ctx->mutex);
2464
2465         if (event->cpu != -1)
2466                 event->cpu = cpu;
2467
2468         /*
2469          * Ensures that if we can observe event->ctx, both the event and ctx
2470          * will be 'complete'. See perf_iterate_sb_cpu().
2471          */
2472         smp_store_release(&event->ctx, ctx);
2473
2474         if (!task) {
2475                 cpu_function_call(cpu, __perf_install_in_context, event);
2476                 return;
2477         }
2478
2479         /*
2480          * Should not happen, we validate the ctx is still alive before calling.
2481          */
2482         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2483                 return;
2484
2485         /*
2486          * Installing events is tricky because we cannot rely on ctx->is_active
2487          * to be set in case this is the nr_events 0 -> 1 transition.
2488          *
2489          * Instead we use task_curr(), which tells us if the task is running.
2490          * However, since we use task_curr() outside of rq::lock, we can race
2491          * against the actual state. This means the result can be wrong.
2492          *
2493          * If we get a false positive, we retry, this is harmless.
2494          *
2495          * If we get a false negative, things are complicated. If we are after
2496          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2497          * value must be correct. If we're before, it doesn't matter since
2498          * perf_event_context_sched_in() will program the counter.
2499          *
2500          * However, this hinges on the remote context switch having observed
2501          * our task->perf_event_ctxp[] store, such that it will in fact take
2502          * ctx::lock in perf_event_context_sched_in().
2503          *
2504          * We do this by task_function_call(), if the IPI fails to hit the task
2505          * we know any future context switch of task must see the
2506          * perf_event_ctpx[] store.
2507          */
2508
2509         /*
2510          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2511          * task_cpu() load, such that if the IPI then does not find the task
2512          * running, a future context switch of that task must observe the
2513          * store.
2514          */
2515         smp_mb();
2516 again:
2517         if (!task_function_call(task, __perf_install_in_context, event))
2518                 return;
2519
2520         raw_spin_lock_irq(&ctx->lock);
2521         task = ctx->task;
2522         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2523                 /*
2524                  * Cannot happen because we already checked above (which also
2525                  * cannot happen), and we hold ctx->mutex, which serializes us
2526                  * against perf_event_exit_task_context().
2527                  */
2528                 raw_spin_unlock_irq(&ctx->lock);
2529                 return;
2530         }
2531         /*
2532          * If the task is not running, ctx->lock will avoid it becoming so,
2533          * thus we can safely install the event.
2534          */
2535         if (task_curr(task)) {
2536                 raw_spin_unlock_irq(&ctx->lock);
2537                 goto again;
2538         }
2539         add_event_to_ctx(event, ctx);
2540         raw_spin_unlock_irq(&ctx->lock);
2541 }
2542
2543 /*
2544  * Put a event into inactive state and update time fields.
2545  * Enabling the leader of a group effectively enables all
2546  * the group members that aren't explicitly disabled, so we
2547  * have to update their ->tstamp_enabled also.
2548  * Note: this works for group members as well as group leaders
2549  * since the non-leader members' sibling_lists will be empty.
2550  */
2551 static void __perf_event_mark_enabled(struct perf_event *event)
2552 {
2553         struct perf_event *sub;
2554         u64 tstamp = perf_event_time(event);
2555
2556         event->state = PERF_EVENT_STATE_INACTIVE;
2557         __perf_event_enable_time(event, tstamp);
2558         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2559                 /* XXX should not be > INACTIVE if event isn't */
2560                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2561                         __perf_event_enable_time(sub, tstamp);
2562         }
2563 }
2564
2565 /*
2566  * Cross CPU call to enable a performance event
2567  */
2568 static void __perf_event_enable(struct perf_event *event,
2569                                 struct perf_cpu_context *cpuctx,
2570                                 struct perf_event_context *ctx,
2571                                 void *info)
2572 {
2573         struct perf_event *leader = event->group_leader;
2574         struct perf_event_context *task_ctx;
2575
2576         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2577             event->state <= PERF_EVENT_STATE_ERROR)
2578                 return;
2579
2580         if (ctx->is_active)
2581                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2582
2583         __perf_event_mark_enabled(event);
2584
2585         if (!ctx->is_active)
2586                 return;
2587
2588         if (!event_filter_match(event)) {
2589                 if (is_cgroup_event(event))
2590                         perf_cgroup_defer_enabled(event);
2591                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2592                 return;
2593         }
2594
2595         /*
2596          * If the event is in a group and isn't the group leader,
2597          * then don't put it on unless the group is on.
2598          */
2599         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2600                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2601                 return;
2602         }
2603
2604         task_ctx = cpuctx->task_ctx;
2605         if (ctx->task)
2606                 WARN_ON_ONCE(task_ctx != ctx);
2607
2608         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2609 }
2610
2611 /*
2612  * Enable a event.
2613  *
2614  * If event->ctx is a cloned context, callers must make sure that
2615  * every task struct that event->ctx->task could possibly point to
2616  * remains valid.  This condition is satisfied when called through
2617  * perf_event_for_each_child or perf_event_for_each as described
2618  * for perf_event_disable.
2619  */
2620 static void _perf_event_enable(struct perf_event *event)
2621 {
2622         struct perf_event_context *ctx = event->ctx;
2623
2624         raw_spin_lock_irq(&ctx->lock);
2625         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2626             event->state <  PERF_EVENT_STATE_ERROR) {
2627                 raw_spin_unlock_irq(&ctx->lock);
2628                 return;
2629         }
2630
2631         /*
2632          * If the event is in error state, clear that first.
2633          *
2634          * That way, if we see the event in error state below, we know that it
2635          * has gone back into error state, as distinct from the task having
2636          * been scheduled away before the cross-call arrived.
2637          */
2638         if (event->state == PERF_EVENT_STATE_ERROR)
2639                 event->state = PERF_EVENT_STATE_OFF;
2640         raw_spin_unlock_irq(&ctx->lock);
2641
2642         event_function_call(event, __perf_event_enable, NULL);
2643 }
2644
2645 /*
2646  * See perf_event_disable();
2647  */
2648 void perf_event_enable(struct perf_event *event)
2649 {
2650         struct perf_event_context *ctx;
2651
2652         ctx = perf_event_ctx_lock(event);
2653         _perf_event_enable(event);
2654         perf_event_ctx_unlock(event, ctx);
2655 }
2656 EXPORT_SYMBOL_GPL(perf_event_enable);
2657
2658 struct stop_event_data {
2659         struct perf_event       *event;
2660         unsigned int            restart;
2661 };
2662
2663 static int __perf_event_stop(void *info)
2664 {
2665         struct stop_event_data *sd = info;
2666         struct perf_event *event = sd->event;
2667
2668         /* if it's already INACTIVE, do nothing */
2669         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2670                 return 0;
2671
2672         /* matches smp_wmb() in event_sched_in() */
2673         smp_rmb();
2674
2675         /*
2676          * There is a window with interrupts enabled before we get here,
2677          * so we need to check again lest we try to stop another CPU's event.
2678          */
2679         if (READ_ONCE(event->oncpu) != smp_processor_id())
2680                 return -EAGAIN;
2681
2682         event->pmu->stop(event, PERF_EF_UPDATE);
2683
2684         /*
2685          * May race with the actual stop (through perf_pmu_output_stop()),
2686          * but it is only used for events with AUX ring buffer, and such
2687          * events will refuse to restart because of rb::aux_mmap_count==0,
2688          * see comments in perf_aux_output_begin().
2689          *
2690          * Since this is happening on a event-local CPU, no trace is lost
2691          * while restarting.
2692          */
2693         if (sd->restart)
2694                 event->pmu->start(event, 0);
2695
2696         return 0;
2697 }
2698
2699 static int perf_event_stop(struct perf_event *event, int restart)
2700 {
2701         struct stop_event_data sd = {
2702                 .event          = event,
2703                 .restart        = restart,
2704         };
2705         int ret = 0;
2706
2707         do {
2708                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2709                         return 0;
2710
2711                 /* matches smp_wmb() in event_sched_in() */
2712                 smp_rmb();
2713
2714                 /*
2715                  * We only want to restart ACTIVE events, so if the event goes
2716                  * inactive here (event->oncpu==-1), there's nothing more to do;
2717                  * fall through with ret==-ENXIO.
2718                  */
2719                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2720                                         __perf_event_stop, &sd);
2721         } while (ret == -EAGAIN);
2722
2723         return ret;
2724 }
2725
2726 /*
2727  * In order to contain the amount of racy and tricky in the address filter
2728  * configuration management, it is a two part process:
2729  *
2730  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2731  *      we update the addresses of corresponding vmas in
2732  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2733  * (p2) when an event is scheduled in (pmu::add), it calls
2734  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2735  *      if the generation has changed since the previous call.
2736  *
2737  * If (p1) happens while the event is active, we restart it to force (p2).
2738  *
2739  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2740  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2741  *     ioctl;
2742  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2743  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2744  *     for reading;
2745  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2746  *     of exec.
2747  */
2748 void perf_event_addr_filters_sync(struct perf_event *event)
2749 {
2750         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2751
2752         if (!has_addr_filter(event))
2753                 return;
2754
2755         raw_spin_lock(&ifh->lock);
2756         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2757                 event->pmu->addr_filters_sync(event);
2758                 event->hw.addr_filters_gen = event->addr_filters_gen;
2759         }
2760         raw_spin_unlock(&ifh->lock);
2761 }
2762 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2763
2764 static int _perf_event_refresh(struct perf_event *event, int refresh)
2765 {
2766         /*
2767          * not supported on inherited events
2768          */
2769         if (event->attr.inherit || !is_sampling_event(event))
2770                 return -EINVAL;
2771
2772         atomic_add(refresh, &event->event_limit);
2773         _perf_event_enable(event);
2774
2775         return 0;
2776 }
2777
2778 /*
2779  * See perf_event_disable()
2780  */
2781 int perf_event_refresh(struct perf_event *event, int refresh)
2782 {
2783         struct perf_event_context *ctx;
2784         int ret;
2785
2786         ctx = perf_event_ctx_lock(event);
2787         ret = _perf_event_refresh(event, refresh);
2788         perf_event_ctx_unlock(event, ctx);
2789
2790         return ret;
2791 }
2792 EXPORT_SYMBOL_GPL(perf_event_refresh);
2793
2794 static void ctx_sched_out(struct perf_event_context *ctx,
2795                           struct perf_cpu_context *cpuctx,
2796                           enum event_type_t event_type)
2797 {
2798         int is_active = ctx->is_active;
2799         struct perf_event *event;
2800
2801         lockdep_assert_held(&ctx->lock);
2802
2803         if (likely(!ctx->nr_events)) {
2804                 /*
2805                  * See __perf_remove_from_context().
2806                  */
2807                 WARN_ON_ONCE(ctx->is_active);
2808                 if (ctx->task)
2809                         WARN_ON_ONCE(cpuctx->task_ctx);
2810                 return;
2811         }
2812
2813         ctx->is_active &= ~event_type;
2814         if (!(ctx->is_active & EVENT_ALL))
2815                 ctx->is_active = 0;
2816
2817         if (ctx->task) {
2818                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2819                 if (!ctx->is_active)
2820                         cpuctx->task_ctx = NULL;
2821         }
2822
2823         /*
2824          * Always update time if it was set; not only when it changes.
2825          * Otherwise we can 'forget' to update time for any but the last
2826          * context we sched out. For example:
2827          *
2828          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2829          *   ctx_sched_out(.event_type = EVENT_PINNED)
2830          *
2831          * would only update time for the pinned events.
2832          */
2833         if (is_active & EVENT_TIME) {
2834                 /* update (and stop) ctx time */
2835                 update_context_time(ctx);
2836                 update_cgrp_time_from_cpuctx(cpuctx);
2837         }
2838
2839         is_active ^= ctx->is_active; /* changed bits */
2840
2841         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2842                 return;
2843
2844         perf_pmu_disable(ctx->pmu);
2845         if (is_active & EVENT_PINNED) {
2846                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2847                         group_sched_out(event, cpuctx, ctx);
2848         }
2849
2850         if (is_active & EVENT_FLEXIBLE) {
2851                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2852                         group_sched_out(event, cpuctx, ctx);
2853         }
2854         perf_pmu_enable(ctx->pmu);
2855 }
2856
2857 /*
2858  * Test whether two contexts are equivalent, i.e. whether they have both been
2859  * cloned from the same version of the same context.
2860  *
2861  * Equivalence is measured using a generation number in the context that is
2862  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2863  * and list_del_event().
2864  */
2865 static int context_equiv(struct perf_event_context *ctx1,
2866                          struct perf_event_context *ctx2)
2867 {
2868         lockdep_assert_held(&ctx1->lock);
2869         lockdep_assert_held(&ctx2->lock);
2870
2871         /* Pinning disables the swap optimization */
2872         if (ctx1->pin_count || ctx2->pin_count)
2873                 return 0;
2874
2875         /* If ctx1 is the parent of ctx2 */
2876         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2877                 return 1;
2878
2879         /* If ctx2 is the parent of ctx1 */
2880         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2881                 return 1;
2882
2883         /*
2884          * If ctx1 and ctx2 have the same parent; we flatten the parent
2885          * hierarchy, see perf_event_init_context().
2886          */
2887         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2888                         ctx1->parent_gen == ctx2->parent_gen)
2889                 return 1;
2890
2891         /* Unmatched */
2892         return 0;
2893 }
2894
2895 static void __perf_event_sync_stat(struct perf_event *event,
2896                                      struct perf_event *next_event)
2897 {
2898         u64 value;
2899
2900         if (!event->attr.inherit_stat)
2901                 return;
2902
2903         /*
2904          * Update the event value, we cannot use perf_event_read()
2905          * because we're in the middle of a context switch and have IRQs
2906          * disabled, which upsets smp_call_function_single(), however
2907          * we know the event must be on the current CPU, therefore we
2908          * don't need to use it.
2909          */
2910         switch (event->state) {
2911         case PERF_EVENT_STATE_ACTIVE:
2912                 event->pmu->read(event);
2913                 /* fall-through */
2914
2915         case PERF_EVENT_STATE_INACTIVE:
2916                 update_event_times(event);
2917                 break;
2918
2919         default:
2920                 break;
2921         }
2922
2923         /*
2924          * In order to keep per-task stats reliable we need to flip the event
2925          * values when we flip the contexts.
2926          */
2927         value = local64_read(&next_event->count);
2928         value = local64_xchg(&event->count, value);
2929         local64_set(&next_event->count, value);
2930
2931         swap(event->total_time_enabled, next_event->total_time_enabled);
2932         swap(event->total_time_running, next_event->total_time_running);
2933
2934         /*
2935          * Since we swizzled the values, update the user visible data too.
2936          */
2937         perf_event_update_userpage(event);
2938         perf_event_update_userpage(next_event);
2939 }
2940
2941 static void perf_event_sync_stat(struct perf_event_context *ctx,
2942                                    struct perf_event_context *next_ctx)
2943 {
2944         struct perf_event *event, *next_event;
2945
2946         if (!ctx->nr_stat)
2947                 return;
2948
2949         update_context_time(ctx);
2950
2951         event = list_first_entry(&ctx->event_list,
2952                                    struct perf_event, event_entry);
2953
2954         next_event = list_first_entry(&next_ctx->event_list,
2955                                         struct perf_event, event_entry);
2956
2957         while (&event->event_entry != &ctx->event_list &&
2958                &next_event->event_entry != &next_ctx->event_list) {
2959
2960                 __perf_event_sync_stat(event, next_event);
2961
2962                 event = list_next_entry(event, event_entry);
2963                 next_event = list_next_entry(next_event, event_entry);
2964         }
2965 }
2966
2967 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2968                                          struct task_struct *next)
2969 {
2970         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2971         struct perf_event_context *next_ctx;
2972         struct perf_event_context *parent, *next_parent;
2973         struct perf_cpu_context *cpuctx;
2974         int do_switch = 1;
2975
2976         if (likely(!ctx))
2977                 return;
2978
2979         cpuctx = __get_cpu_context(ctx);
2980         if (!cpuctx->task_ctx)
2981                 return;
2982
2983         rcu_read_lock();
2984         next_ctx = next->perf_event_ctxp[ctxn];
2985         if (!next_ctx)
2986                 goto unlock;
2987
2988         parent = rcu_dereference(ctx->parent_ctx);
2989         next_parent = rcu_dereference(next_ctx->parent_ctx);
2990
2991         /* If neither context have a parent context; they cannot be clones. */
2992         if (!parent && !next_parent)
2993                 goto unlock;
2994
2995         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2996                 /*
2997                  * Looks like the two contexts are clones, so we might be
2998                  * able to optimize the context switch.  We lock both
2999                  * contexts and check that they are clones under the
3000                  * lock (including re-checking that neither has been
3001                  * uncloned in the meantime).  It doesn't matter which
3002                  * order we take the locks because no other cpu could
3003                  * be trying to lock both of these tasks.
3004                  */
3005                 raw_spin_lock(&ctx->lock);
3006                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3007                 if (context_equiv(ctx, next_ctx)) {
3008                         WRITE_ONCE(ctx->task, next);
3009                         WRITE_ONCE(next_ctx->task, task);
3010
3011                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3012
3013                         /*
3014                          * RCU_INIT_POINTER here is safe because we've not
3015                          * modified the ctx and the above modification of
3016                          * ctx->task and ctx->task_ctx_data are immaterial
3017                          * since those values are always verified under
3018                          * ctx->lock which we're now holding.
3019                          */
3020                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3021                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3022
3023                         do_switch = 0;
3024
3025                         perf_event_sync_stat(ctx, next_ctx);
3026                 }
3027                 raw_spin_unlock(&next_ctx->lock);
3028                 raw_spin_unlock(&ctx->lock);
3029         }
3030 unlock:
3031         rcu_read_unlock();
3032
3033         if (do_switch) {
3034                 raw_spin_lock(&ctx->lock);
3035                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3036                 raw_spin_unlock(&ctx->lock);
3037         }
3038 }
3039
3040 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3041
3042 void perf_sched_cb_dec(struct pmu *pmu)
3043 {
3044         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3045
3046         this_cpu_dec(perf_sched_cb_usages);
3047
3048         if (!--cpuctx->sched_cb_usage)
3049                 list_del(&cpuctx->sched_cb_entry);
3050 }
3051
3052
3053 void perf_sched_cb_inc(struct pmu *pmu)
3054 {
3055         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3056
3057         if (!cpuctx->sched_cb_usage++)
3058                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3059
3060         this_cpu_inc(perf_sched_cb_usages);
3061 }
3062
3063 /*
3064  * This function provides the context switch callback to the lower code
3065  * layer. It is invoked ONLY when the context switch callback is enabled.
3066  *
3067  * This callback is relevant even to per-cpu events; for example multi event
3068  * PEBS requires this to provide PID/TID information. This requires we flush
3069  * all queued PEBS records before we context switch to a new task.
3070  */
3071 static void perf_pmu_sched_task(struct task_struct *prev,
3072                                 struct task_struct *next,
3073                                 bool sched_in)
3074 {
3075         struct perf_cpu_context *cpuctx;
3076         struct pmu *pmu;
3077
3078         if (prev == next)
3079                 return;
3080
3081         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3082                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3083
3084                 if (WARN_ON_ONCE(!pmu->sched_task))
3085                         continue;
3086
3087                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3088                 perf_pmu_disable(pmu);
3089
3090                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3091
3092                 perf_pmu_enable(pmu);
3093                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3094         }
3095 }
3096
3097 static void perf_event_switch(struct task_struct *task,
3098                               struct task_struct *next_prev, bool sched_in);
3099
3100 #define for_each_task_context_nr(ctxn)                                  \
3101         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3102
3103 /*
3104  * Called from scheduler to remove the events of the current task,
3105  * with interrupts disabled.
3106  *
3107  * We stop each event and update the event value in event->count.
3108  *
3109  * This does not protect us against NMI, but disable()
3110  * sets the disabled bit in the control field of event _before_
3111  * accessing the event control register. If a NMI hits, then it will
3112  * not restart the event.
3113  */
3114 void __perf_event_task_sched_out(struct task_struct *task,
3115                                  struct task_struct *next)
3116 {
3117         int ctxn;
3118
3119         if (__this_cpu_read(perf_sched_cb_usages))
3120                 perf_pmu_sched_task(task, next, false);
3121
3122         if (atomic_read(&nr_switch_events))
3123                 perf_event_switch(task, next, false);
3124
3125         for_each_task_context_nr(ctxn)
3126                 perf_event_context_sched_out(task, ctxn, next);
3127
3128         /*
3129          * if cgroup events exist on this CPU, then we need
3130          * to check if we have to switch out PMU state.
3131          * cgroup event are system-wide mode only
3132          */
3133         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3134                 perf_cgroup_sched_out(task, next);
3135 }
3136
3137 /*
3138  * Called with IRQs disabled
3139  */
3140 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3141                               enum event_type_t event_type)
3142 {
3143         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3144 }
3145
3146 static void
3147 ctx_pinned_sched_in(struct perf_event_context *ctx,
3148                     struct perf_cpu_context *cpuctx)
3149 {
3150         struct perf_event *event;
3151
3152         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3153                 if (event->state <= PERF_EVENT_STATE_OFF)
3154                         continue;
3155                 if (!event_filter_match(event))
3156                         continue;
3157
3158                 /* may need to reset tstamp_enabled */
3159                 if (is_cgroup_event(event))
3160                         perf_cgroup_mark_enabled(event, ctx);
3161
3162                 if (group_can_go_on(event, cpuctx, 1))
3163                         group_sched_in(event, cpuctx, ctx);
3164
3165                 /*
3166                  * If this pinned group hasn't been scheduled,
3167                  * put it in error state.
3168                  */
3169                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3170                         update_group_times(event);
3171                         event->state = PERF_EVENT_STATE_ERROR;
3172                 }
3173         }
3174 }
3175
3176 static void
3177 ctx_flexible_sched_in(struct perf_event_context *ctx,
3178                       struct perf_cpu_context *cpuctx)
3179 {
3180         struct perf_event *event;
3181         int can_add_hw = 1;
3182
3183         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3184                 /* Ignore events in OFF or ERROR state */
3185                 if (event->state <= PERF_EVENT_STATE_OFF)
3186                         continue;
3187                 /*
3188                  * Listen to the 'cpu' scheduling filter constraint
3189                  * of events:
3190                  */
3191                 if (!event_filter_match(event))
3192                         continue;
3193
3194                 /* may need to reset tstamp_enabled */
3195                 if (is_cgroup_event(event))
3196                         perf_cgroup_mark_enabled(event, ctx);
3197
3198                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3199                         if (group_sched_in(event, cpuctx, ctx))
3200                                 can_add_hw = 0;
3201                 }
3202         }
3203 }
3204
3205 static void
3206 ctx_sched_in(struct perf_event_context *ctx,
3207              struct perf_cpu_context *cpuctx,
3208              enum event_type_t event_type,
3209              struct task_struct *task)
3210 {
3211         int is_active = ctx->is_active;
3212         u64 now;
3213
3214         lockdep_assert_held(&ctx->lock);
3215
3216         if (likely(!ctx->nr_events))
3217                 return;
3218
3219         ctx->is_active |= (event_type | EVENT_TIME);
3220         if (ctx->task) {
3221                 if (!is_active)
3222                         cpuctx->task_ctx = ctx;
3223                 else
3224                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3225         }
3226
3227         is_active ^= ctx->is_active; /* changed bits */
3228
3229         if (is_active & EVENT_TIME) {
3230                 /* start ctx time */
3231                 now = perf_clock();
3232                 ctx->timestamp = now;
3233                 perf_cgroup_set_timestamp(task, ctx);
3234         }
3235
3236         /*
3237          * First go through the list and put on any pinned groups
3238          * in order to give them the best chance of going on.
3239          */
3240         if (is_active & EVENT_PINNED)
3241                 ctx_pinned_sched_in(ctx, cpuctx);
3242
3243         /* Then walk through the lower prio flexible groups */
3244         if (is_active & EVENT_FLEXIBLE)
3245                 ctx_flexible_sched_in(ctx, cpuctx);
3246 }
3247
3248 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3249                              enum event_type_t event_type,
3250                              struct task_struct *task)
3251 {
3252         struct perf_event_context *ctx = &cpuctx->ctx;
3253
3254         ctx_sched_in(ctx, cpuctx, event_type, task);
3255 }
3256
3257 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3258                                         struct task_struct *task)
3259 {
3260         struct perf_cpu_context *cpuctx;
3261
3262         cpuctx = __get_cpu_context(ctx);
3263         if (cpuctx->task_ctx == ctx)
3264                 return;
3265
3266         perf_ctx_lock(cpuctx, ctx);
3267         /*
3268          * We must check ctx->nr_events while holding ctx->lock, such
3269          * that we serialize against perf_install_in_context().
3270          */
3271         if (!ctx->nr_events)
3272                 goto unlock;
3273
3274         perf_pmu_disable(ctx->pmu);
3275         /*
3276          * We want to keep the following priority order:
3277          * cpu pinned (that don't need to move), task pinned,
3278          * cpu flexible, task flexible.
3279          *
3280          * However, if task's ctx is not carrying any pinned
3281          * events, no need to flip the cpuctx's events around.
3282          */
3283         if (!list_empty(&ctx->pinned_groups))
3284                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3285         perf_event_sched_in(cpuctx, ctx, task);
3286         perf_pmu_enable(ctx->pmu);
3287
3288 unlock:
3289         perf_ctx_unlock(cpuctx, ctx);
3290 }
3291
3292 /*
3293  * Called from scheduler to add the events of the current task
3294  * with interrupts disabled.
3295  *
3296  * We restore the event value and then enable it.
3297  *
3298  * This does not protect us against NMI, but enable()
3299  * sets the enabled bit in the control field of event _before_
3300  * accessing the event control register. If a NMI hits, then it will
3301  * keep the event running.
3302  */
3303 void __perf_event_task_sched_in(struct task_struct *prev,
3304                                 struct task_struct *task)
3305 {
3306         struct perf_event_context *ctx;
3307         int ctxn;
3308
3309         /*
3310          * If cgroup events exist on this CPU, then we need to check if we have
3311          * to switch in PMU state; cgroup event are system-wide mode only.
3312          *
3313          * Since cgroup events are CPU events, we must schedule these in before
3314          * we schedule in the task events.
3315          */
3316         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3317                 perf_cgroup_sched_in(prev, task);
3318
3319         for_each_task_context_nr(ctxn) {
3320                 ctx = task->perf_event_ctxp[ctxn];
3321                 if (likely(!ctx))
3322                         continue;
3323
3324                 perf_event_context_sched_in(ctx, task);
3325         }
3326
3327         if (atomic_read(&nr_switch_events))
3328                 perf_event_switch(task, prev, true);
3329
3330         if (__this_cpu_read(perf_sched_cb_usages))
3331                 perf_pmu_sched_task(prev, task, true);
3332 }
3333
3334 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3335 {
3336         u64 frequency = event->attr.sample_freq;
3337         u64 sec = NSEC_PER_SEC;
3338         u64 divisor, dividend;
3339
3340         int count_fls, nsec_fls, frequency_fls, sec_fls;
3341
3342         count_fls = fls64(count);
3343         nsec_fls = fls64(nsec);
3344         frequency_fls = fls64(frequency);
3345         sec_fls = 30;
3346
3347         /*
3348          * We got @count in @nsec, with a target of sample_freq HZ
3349          * the target period becomes:
3350          *
3351          *             @count * 10^9
3352          * period = -------------------
3353          *          @nsec * sample_freq
3354          *
3355          */
3356
3357         /*
3358          * Reduce accuracy by one bit such that @a and @b converge
3359          * to a similar magnitude.
3360          */
3361 #define REDUCE_FLS(a, b)                \
3362 do {                                    \
3363         if (a##_fls > b##_fls) {        \
3364                 a >>= 1;                \
3365                 a##_fls--;              \
3366         } else {                        \
3367                 b >>= 1;                \
3368                 b##_fls--;              \
3369         }                               \
3370 } while (0)
3371
3372         /*
3373          * Reduce accuracy until either term fits in a u64, then proceed with
3374          * the other, so that finally we can do a u64/u64 division.
3375          */
3376         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3377                 REDUCE_FLS(nsec, frequency);
3378                 REDUCE_FLS(sec, count);
3379         }
3380
3381         if (count_fls + sec_fls > 64) {
3382                 divisor = nsec * frequency;
3383
3384                 while (count_fls + sec_fls > 64) {
3385                         REDUCE_FLS(count, sec);
3386                         divisor >>= 1;
3387                 }
3388
3389                 dividend = count * sec;
3390         } else {
3391                 dividend = count * sec;
3392
3393                 while (nsec_fls + frequency_fls > 64) {
3394                         REDUCE_FLS(nsec, frequency);
3395                         dividend >>= 1;
3396                 }
3397
3398                 divisor = nsec * frequency;
3399         }
3400
3401         if (!divisor)
3402                 return dividend;
3403
3404         return div64_u64(dividend, divisor);
3405 }
3406
3407 static DEFINE_PER_CPU(int, perf_throttled_count);
3408 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3409
3410 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3411 {
3412         struct hw_perf_event *hwc = &event->hw;
3413         s64 period, sample_period;
3414         s64 delta;
3415
3416         period = perf_calculate_period(event, nsec, count);
3417
3418         delta = (s64)(period - hwc->sample_period);
3419         delta = (delta + 7) / 8; /* low pass filter */
3420
3421         sample_period = hwc->sample_period + delta;
3422
3423         if (!sample_period)
3424                 sample_period = 1;
3425
3426         hwc->sample_period = sample_period;
3427
3428         if (local64_read(&hwc->period_left) > 8*sample_period) {
3429                 if (disable)
3430                         event->pmu->stop(event, PERF_EF_UPDATE);
3431
3432                 local64_set(&hwc->period_left, 0);
3433
3434                 if (disable)
3435                         event->pmu->start(event, PERF_EF_RELOAD);
3436         }
3437 }
3438
3439 /*
3440  * combine freq adjustment with unthrottling to avoid two passes over the
3441  * events. At the same time, make sure, having freq events does not change
3442  * the rate of unthrottling as that would introduce bias.
3443  */
3444 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3445                                            int needs_unthr)
3446 {
3447         struct perf_event *event;
3448         struct hw_perf_event *hwc;
3449         u64 now, period = TICK_NSEC;
3450         s64 delta;
3451
3452         /*
3453          * only need to iterate over all events iff:
3454          * - context have events in frequency mode (needs freq adjust)
3455          * - there are events to unthrottle on this cpu
3456          */
3457         if (!(ctx->nr_freq || needs_unthr))
3458                 return;
3459
3460         raw_spin_lock(&ctx->lock);
3461         perf_pmu_disable(ctx->pmu);
3462
3463         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3464                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3465                         continue;
3466
3467                 if (!event_filter_match(event))
3468                         continue;
3469
3470                 perf_pmu_disable(event->pmu);
3471
3472                 hwc = &event->hw;
3473
3474                 if (hwc->interrupts == MAX_INTERRUPTS) {
3475                         hwc->interrupts = 0;
3476                         perf_log_throttle(event, 1);
3477                         event->pmu->start(event, 0);
3478                 }
3479
3480                 if (!event->attr.freq || !event->attr.sample_freq)
3481                         goto next;
3482
3483                 /*
3484                  * stop the event and update event->count
3485                  */
3486                 event->pmu->stop(event, PERF_EF_UPDATE);
3487
3488                 now = local64_read(&event->count);
3489                 delta = now - hwc->freq_count_stamp;
3490                 hwc->freq_count_stamp = now;
3491
3492                 /*
3493                  * restart the event
3494                  * reload only if value has changed
3495                  * we have stopped the event so tell that
3496                  * to perf_adjust_period() to avoid stopping it
3497                  * twice.
3498                  */
3499                 if (delta > 0)
3500                         perf_adjust_period(event, period, delta, false);
3501
3502                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3503         next:
3504                 perf_pmu_enable(event->pmu);
3505         }
3506
3507         perf_pmu_enable(ctx->pmu);
3508         raw_spin_unlock(&ctx->lock);
3509 }
3510
3511 /*
3512  * Round-robin a context's events:
3513  */
3514 static void rotate_ctx(struct perf_event_context *ctx)
3515 {
3516         /*
3517          * Rotate the first entry last of non-pinned groups. Rotation might be
3518          * disabled by the inheritance code.
3519          */
3520         if (!ctx->rotate_disable)
3521                 list_rotate_left(&ctx->flexible_groups);
3522 }
3523
3524 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3525 {
3526         struct perf_event_context *ctx = NULL;
3527         int rotate = 0;
3528
3529         if (cpuctx->ctx.nr_events) {
3530                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3531                         rotate = 1;
3532         }
3533
3534         ctx = cpuctx->task_ctx;
3535         if (ctx && ctx->nr_events) {
3536                 if (ctx->nr_events != ctx->nr_active)
3537                         rotate = 1;
3538         }
3539
3540         if (!rotate)
3541                 goto done;
3542
3543         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3544         perf_pmu_disable(cpuctx->ctx.pmu);
3545
3546         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3547         if (ctx)
3548                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3549
3550         rotate_ctx(&cpuctx->ctx);
3551         if (ctx)
3552                 rotate_ctx(ctx);
3553
3554         perf_event_sched_in(cpuctx, ctx, current);
3555
3556         perf_pmu_enable(cpuctx->ctx.pmu);
3557         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3558 done:
3559
3560         return rotate;
3561 }
3562
3563 void perf_event_task_tick(void)
3564 {
3565         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3566         struct perf_event_context *ctx, *tmp;
3567         int throttled;
3568
3569         WARN_ON(!irqs_disabled());
3570
3571         __this_cpu_inc(perf_throttled_seq);
3572         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3573         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3574
3575         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3576                 perf_adjust_freq_unthr_context(ctx, throttled);
3577 }
3578
3579 static int event_enable_on_exec(struct perf_event *event,
3580                                 struct perf_event_context *ctx)
3581 {
3582         if (!event->attr.enable_on_exec)
3583                 return 0;
3584
3585         event->attr.enable_on_exec = 0;
3586         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3587                 return 0;
3588
3589         __perf_event_mark_enabled(event);
3590
3591         return 1;
3592 }
3593
3594 /*
3595  * Enable all of a task's events that have been marked enable-on-exec.
3596  * This expects task == current.
3597  */
3598 static void perf_event_enable_on_exec(int ctxn)
3599 {
3600         struct perf_event_context *ctx, *clone_ctx = NULL;
3601         enum event_type_t event_type = 0;
3602         struct perf_cpu_context *cpuctx;
3603         struct perf_event *event;
3604         unsigned long flags;
3605         int enabled = 0;
3606
3607         local_irq_save(flags);
3608         ctx = current->perf_event_ctxp[ctxn];
3609         if (!ctx || !ctx->nr_events)
3610                 goto out;
3611
3612         cpuctx = __get_cpu_context(ctx);
3613         perf_ctx_lock(cpuctx, ctx);
3614         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3615         list_for_each_entry(event, &ctx->event_list, event_entry) {
3616                 enabled |= event_enable_on_exec(event, ctx);
3617                 event_type |= get_event_type(event);
3618         }
3619
3620         /*
3621          * Unclone and reschedule this context if we enabled any event.
3622          */
3623         if (enabled) {
3624                 clone_ctx = unclone_ctx(ctx);
3625                 ctx_resched(cpuctx, ctx, event_type);
3626         } else {
3627                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3628         }
3629         perf_ctx_unlock(cpuctx, ctx);
3630
3631 out:
3632         local_irq_restore(flags);
3633
3634         if (clone_ctx)
3635                 put_ctx(clone_ctx);
3636 }
3637
3638 struct perf_read_data {
3639         struct perf_event *event;
3640         bool group;
3641         int ret;
3642 };
3643
3644 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3645 {
3646         u16 local_pkg, event_pkg;
3647
3648         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3649                 int local_cpu = smp_processor_id();
3650
3651                 event_pkg = topology_physical_package_id(event_cpu);
3652                 local_pkg = topology_physical_package_id(local_cpu);
3653
3654                 if (event_pkg == local_pkg)
3655                         return local_cpu;
3656         }
3657
3658         return event_cpu;
3659 }
3660
3661 /*
3662  * Cross CPU call to read the hardware event
3663  */
3664 static void __perf_event_read(void *info)
3665 {
3666         struct perf_read_data *data = info;
3667         struct perf_event *sub, *event = data->event;
3668         struct perf_event_context *ctx = event->ctx;
3669         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3670         struct pmu *pmu = event->pmu;
3671
3672         /*
3673          * If this is a task context, we need to check whether it is
3674          * the current task context of this cpu.  If not it has been
3675          * scheduled out before the smp call arrived.  In that case
3676          * event->count would have been updated to a recent sample
3677          * when the event was scheduled out.
3678          */
3679         if (ctx->task && cpuctx->task_ctx != ctx)
3680                 return;
3681
3682         raw_spin_lock(&ctx->lock);
3683         if (ctx->is_active) {
3684                 update_context_time(ctx);
3685                 update_cgrp_time_from_event(event);
3686         }
3687
3688         update_event_times(event);
3689         if (event->state != PERF_EVENT_STATE_ACTIVE)
3690                 goto unlock;
3691
3692         if (!data->group) {
3693                 pmu->read(event);
3694                 data->ret = 0;
3695                 goto unlock;
3696         }
3697
3698         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3699
3700         pmu->read(event);
3701
3702         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3703                 update_event_times(sub);
3704                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3705                         /*
3706                          * Use sibling's PMU rather than @event's since
3707                          * sibling could be on different (eg: software) PMU.
3708                          */
3709                         sub->pmu->read(sub);
3710                 }
3711         }
3712
3713         data->ret = pmu->commit_txn(pmu);
3714
3715 unlock:
3716         raw_spin_unlock(&ctx->lock);
3717 }
3718
3719 static inline u64 perf_event_count(struct perf_event *event)
3720 {
3721         return local64_read(&event->count) + atomic64_read(&event->child_count);
3722 }
3723
3724 /*
3725  * NMI-safe method to read a local event, that is an event that
3726  * is:
3727  *   - either for the current task, or for this CPU
3728  *   - does not have inherit set, for inherited task events
3729  *     will not be local and we cannot read them atomically
3730  *   - must not have a pmu::count method
3731  */
3732 int perf_event_read_local(struct perf_event *event, u64 *value)
3733 {
3734         unsigned long flags;
3735         int ret = 0;
3736
3737         /*
3738          * Disabling interrupts avoids all counter scheduling (context
3739          * switches, timer based rotation and IPIs).
3740          */
3741         local_irq_save(flags);
3742
3743         /*
3744          * It must not be an event with inherit set, we cannot read
3745          * all child counters from atomic context.
3746          */
3747         if (event->attr.inherit) {
3748                 ret = -EOPNOTSUPP;
3749                 goto out;
3750         }
3751
3752         /* If this is a per-task event, it must be for current */
3753         if ((event->attach_state & PERF_ATTACH_TASK) &&
3754             event->hw.target != current) {
3755                 ret = -EINVAL;
3756                 goto out;
3757         }
3758
3759         /* If this is a per-CPU event, it must be for this CPU */
3760         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3761             event->cpu != smp_processor_id()) {
3762                 ret = -EINVAL;
3763                 goto out;
3764         }
3765
3766         /* If this is a pinned event it must be running on this CPU */
3767         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3768                 ret = -EBUSY;
3769                 goto out;
3770         }
3771
3772         /*
3773          * If the event is currently on this CPU, its either a per-task event,
3774          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3775          * oncpu == -1).
3776          */
3777         if (event->oncpu == smp_processor_id())
3778                 event->pmu->read(event);
3779
3780         *value = local64_read(&event->count);
3781 out:
3782         local_irq_restore(flags);
3783
3784         return ret;
3785 }
3786
3787 static int perf_event_read(struct perf_event *event, bool group)
3788 {
3789         int event_cpu, ret = 0;
3790
3791         /*
3792          * If event is enabled and currently active on a CPU, update the
3793          * value in the event structure:
3794          */
3795         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3796                 struct perf_read_data data = {
3797                         .event = event,
3798                         .group = group,
3799                         .ret = 0,
3800                 };
3801
3802                 event_cpu = READ_ONCE(event->oncpu);
3803                 if ((unsigned)event_cpu >= nr_cpu_ids)
3804                         return 0;
3805
3806                 preempt_disable();
3807                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3808
3809                 /*
3810                  * Purposely ignore the smp_call_function_single() return
3811                  * value.
3812                  *
3813                  * If event_cpu isn't a valid CPU it means the event got
3814                  * scheduled out and that will have updated the event count.
3815                  *
3816                  * Therefore, either way, we'll have an up-to-date event count
3817                  * after this.
3818                  */
3819                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3820                 preempt_enable();
3821                 ret = data.ret;
3822         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823                 struct perf_event_context *ctx = event->ctx;
3824                 unsigned long flags;
3825
3826                 raw_spin_lock_irqsave(&ctx->lock, flags);
3827                 /*
3828                  * may read while context is not active
3829                  * (e.g., thread is blocked), in that case
3830                  * we cannot update context time
3831                  */
3832                 if (ctx->is_active) {
3833                         update_context_time(ctx);
3834                         update_cgrp_time_from_event(event);
3835                 }
3836                 if (group)
3837                         update_group_times(event);
3838                 else
3839                         update_event_times(event);
3840                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3841         }
3842
3843         return ret;
3844 }
3845
3846 /*
3847  * Initialize the perf_event context in a task_struct:
3848  */
3849 static void __perf_event_init_context(struct perf_event_context *ctx)
3850 {
3851         raw_spin_lock_init(&ctx->lock);
3852         mutex_init(&ctx->mutex);
3853         INIT_LIST_HEAD(&ctx->active_ctx_list);
3854         INIT_LIST_HEAD(&ctx->pinned_groups);
3855         INIT_LIST_HEAD(&ctx->flexible_groups);
3856         INIT_LIST_HEAD(&ctx->event_list);
3857         atomic_set(&ctx->refcount, 1);
3858 }
3859
3860 static struct perf_event_context *
3861 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3862 {
3863         struct perf_event_context *ctx;
3864
3865         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3866         if (!ctx)
3867                 return NULL;
3868
3869         __perf_event_init_context(ctx);
3870         if (task) {
3871                 ctx->task = task;
3872                 get_task_struct(task);
3873         }
3874         ctx->pmu = pmu;
3875
3876         return ctx;
3877 }
3878
3879 static struct task_struct *
3880 find_lively_task_by_vpid(pid_t vpid)
3881 {
3882         struct task_struct *task;
3883
3884         rcu_read_lock();
3885         if (!vpid)
3886                 task = current;
3887         else
3888                 task = find_task_by_vpid(vpid);
3889         if (task)
3890                 get_task_struct(task);
3891         rcu_read_unlock();
3892
3893         if (!task)
3894                 return ERR_PTR(-ESRCH);
3895
3896         return task;
3897 }
3898
3899 /*
3900  * Returns a matching context with refcount and pincount.
3901  */
3902 static struct perf_event_context *
3903 find_get_context(struct pmu *pmu, struct task_struct *task,
3904                 struct perf_event *event)
3905 {
3906         struct perf_event_context *ctx, *clone_ctx = NULL;
3907         struct perf_cpu_context *cpuctx;
3908         void *task_ctx_data = NULL;
3909         unsigned long flags;
3910         int ctxn, err;
3911         int cpu = event->cpu;
3912
3913         if (!task) {
3914                 /* Must be root to operate on a CPU event: */
3915                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3916                         return ERR_PTR(-EACCES);
3917
3918                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3919                 ctx = &cpuctx->ctx;
3920                 get_ctx(ctx);
3921                 raw_spin_lock_irqsave(&ctx->lock, flags);
3922                 ++ctx->pin_count;
3923                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3924
3925                 return ctx;
3926         }
3927
3928         err = -EINVAL;
3929         ctxn = pmu->task_ctx_nr;
3930         if (ctxn < 0)
3931                 goto errout;
3932
3933         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3934                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3935                 if (!task_ctx_data) {
3936                         err = -ENOMEM;
3937                         goto errout;
3938                 }
3939         }
3940
3941 retry:
3942         ctx = perf_lock_task_context(task, ctxn, &flags);
3943         if (ctx) {
3944                 clone_ctx = unclone_ctx(ctx);
3945                 ++ctx->pin_count;
3946
3947                 if (task_ctx_data && !ctx->task_ctx_data) {
3948                         ctx->task_ctx_data = task_ctx_data;
3949                         task_ctx_data = NULL;
3950                 }
3951                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3952
3953                 if (clone_ctx)
3954                         put_ctx(clone_ctx);
3955         } else {
3956                 ctx = alloc_perf_context(pmu, task);
3957                 err = -ENOMEM;
3958                 if (!ctx)
3959                         goto errout;
3960
3961                 if (task_ctx_data) {
3962                         ctx->task_ctx_data = task_ctx_data;
3963                         task_ctx_data = NULL;
3964                 }
3965
3966                 err = 0;
3967                 mutex_lock(&task->perf_event_mutex);
3968                 /*
3969                  * If it has already passed perf_event_exit_task().
3970                  * we must see PF_EXITING, it takes this mutex too.
3971                  */
3972                 if (task->flags & PF_EXITING)
3973                         err = -ESRCH;
3974                 else if (task->perf_event_ctxp[ctxn])
3975                         err = -EAGAIN;
3976                 else {
3977                         get_ctx(ctx);
3978                         ++ctx->pin_count;
3979                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3980                 }
3981                 mutex_unlock(&task->perf_event_mutex);
3982
3983                 if (unlikely(err)) {
3984                         put_ctx(ctx);
3985
3986                         if (err == -EAGAIN)
3987                                 goto retry;
3988                         goto errout;
3989                 }
3990         }
3991
3992         kfree(task_ctx_data);
3993         return ctx;
3994
3995 errout:
3996         kfree(task_ctx_data);
3997         return ERR_PTR(err);
3998 }
3999
4000 static void perf_event_free_filter(struct perf_event *event);
4001 static void perf_event_free_bpf_prog(struct perf_event *event);
4002
4003 static void free_event_rcu(struct rcu_head *head)
4004 {
4005         struct perf_event *event;
4006
4007         event = container_of(head, struct perf_event, rcu_head);
4008         if (event->ns)
4009                 put_pid_ns(event->ns);
4010         perf_event_free_filter(event);
4011         kfree(event);
4012 }
4013
4014 static void ring_buffer_attach(struct perf_event *event,
4015                                struct ring_buffer *rb);
4016
4017 static void detach_sb_event(struct perf_event *event)
4018 {
4019         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4020
4021         raw_spin_lock(&pel->lock);
4022         list_del_rcu(&event->sb_list);
4023         raw_spin_unlock(&pel->lock);
4024 }
4025
4026 static bool is_sb_event(struct perf_event *event)
4027 {
4028         struct perf_event_attr *attr = &event->attr;
4029
4030         if (event->parent)
4031                 return false;
4032
4033         if (event->attach_state & PERF_ATTACH_TASK)
4034                 return false;
4035
4036         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4037             attr->comm || attr->comm_exec ||
4038             attr->task ||
4039             attr->context_switch)
4040                 return true;
4041         return false;
4042 }
4043
4044 static void unaccount_pmu_sb_event(struct perf_event *event)
4045 {
4046         if (is_sb_event(event))
4047                 detach_sb_event(event);
4048 }
4049
4050 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4051 {
4052         if (event->parent)
4053                 return;
4054
4055         if (is_cgroup_event(event))
4056                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4057 }
4058
4059 #ifdef CONFIG_NO_HZ_FULL
4060 static DEFINE_SPINLOCK(nr_freq_lock);
4061 #endif
4062
4063 static void unaccount_freq_event_nohz(void)
4064 {
4065 #ifdef CONFIG_NO_HZ_FULL
4066         spin_lock(&nr_freq_lock);
4067         if (atomic_dec_and_test(&nr_freq_events))
4068                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4069         spin_unlock(&nr_freq_lock);
4070 #endif
4071 }
4072
4073 static void unaccount_freq_event(void)
4074 {
4075         if (tick_nohz_full_enabled())
4076                 unaccount_freq_event_nohz();
4077         else
4078                 atomic_dec(&nr_freq_events);
4079 }
4080
4081 static void unaccount_event(struct perf_event *event)
4082 {
4083         bool dec = false;
4084
4085         if (event->parent)
4086                 return;
4087
4088         if (event->attach_state & PERF_ATTACH_TASK)
4089                 dec = true;
4090         if (event->attr.mmap || event->attr.mmap_data)
4091                 atomic_dec(&nr_mmap_events);
4092         if (event->attr.comm)
4093                 atomic_dec(&nr_comm_events);
4094         if (event->attr.namespaces)
4095                 atomic_dec(&nr_namespaces_events);
4096         if (event->attr.task)
4097                 atomic_dec(&nr_task_events);
4098         if (event->attr.freq)
4099                 unaccount_freq_event();
4100         if (event->attr.context_switch) {
4101                 dec = true;
4102                 atomic_dec(&nr_switch_events);
4103         }
4104         if (is_cgroup_event(event))
4105                 dec = true;
4106         if (has_branch_stack(event))
4107                 dec = true;
4108
4109         if (dec) {
4110                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4111                         schedule_delayed_work(&perf_sched_work, HZ);
4112         }
4113
4114         unaccount_event_cpu(event, event->cpu);
4115
4116         unaccount_pmu_sb_event(event);
4117 }
4118
4119 static void perf_sched_delayed(struct work_struct *work)
4120 {
4121         mutex_lock(&perf_sched_mutex);
4122         if (atomic_dec_and_test(&perf_sched_count))
4123                 static_branch_disable(&perf_sched_events);
4124         mutex_unlock(&perf_sched_mutex);
4125 }
4126
4127 /*
4128  * The following implement mutual exclusion of events on "exclusive" pmus
4129  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4130  * at a time, so we disallow creating events that might conflict, namely:
4131  *
4132  *  1) cpu-wide events in the presence of per-task events,
4133  *  2) per-task events in the presence of cpu-wide events,
4134  *  3) two matching events on the same context.
4135  *
4136  * The former two cases are handled in the allocation path (perf_event_alloc(),
4137  * _free_event()), the latter -- before the first perf_install_in_context().
4138  */
4139 static int exclusive_event_init(struct perf_event *event)
4140 {
4141         struct pmu *pmu = event->pmu;
4142
4143         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4144                 return 0;
4145
4146         /*
4147          * Prevent co-existence of per-task and cpu-wide events on the
4148          * same exclusive pmu.
4149          *
4150          * Negative pmu::exclusive_cnt means there are cpu-wide
4151          * events on this "exclusive" pmu, positive means there are
4152          * per-task events.
4153          *
4154          * Since this is called in perf_event_alloc() path, event::ctx
4155          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4156          * to mean "per-task event", because unlike other attach states it
4157          * never gets cleared.
4158          */
4159         if (event->attach_state & PERF_ATTACH_TASK) {
4160                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4161                         return -EBUSY;
4162         } else {
4163                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4164                         return -EBUSY;
4165         }
4166
4167         return 0;
4168 }
4169
4170 static void exclusive_event_destroy(struct perf_event *event)
4171 {
4172         struct pmu *pmu = event->pmu;
4173
4174         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4175                 return;
4176
4177         /* see comment in exclusive_event_init() */
4178         if (event->attach_state & PERF_ATTACH_TASK)
4179                 atomic_dec(&pmu->exclusive_cnt);
4180         else
4181                 atomic_inc(&pmu->exclusive_cnt);
4182 }
4183
4184 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4185 {
4186         if ((e1->pmu == e2->pmu) &&
4187             (e1->cpu == e2->cpu ||
4188              e1->cpu == -1 ||
4189              e2->cpu == -1))
4190                 return true;
4191         return false;
4192 }
4193
4194 /* Called under the same ctx::mutex as perf_install_in_context() */
4195 static bool exclusive_event_installable(struct perf_event *event,
4196                                         struct perf_event_context *ctx)
4197 {
4198         struct perf_event *iter_event;
4199         struct pmu *pmu = event->pmu;
4200
4201         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4202                 return true;
4203
4204         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4205                 if (exclusive_event_match(iter_event, event))
4206                         return false;
4207         }
4208
4209         return true;
4210 }
4211
4212 static void perf_addr_filters_splice(struct perf_event *event,
4213                                        struct list_head *head);
4214
4215 static void _free_event(struct perf_event *event)
4216 {
4217         irq_work_sync(&event->pending);
4218
4219         unaccount_event(event);
4220
4221         if (event->rb) {
4222                 /*
4223                  * Can happen when we close an event with re-directed output.
4224                  *
4225                  * Since we have a 0 refcount, perf_mmap_close() will skip
4226                  * over us; possibly making our ring_buffer_put() the last.
4227                  */
4228                 mutex_lock(&event->mmap_mutex);
4229                 ring_buffer_attach(event, NULL);
4230                 mutex_unlock(&event->mmap_mutex);
4231         }
4232
4233         if (is_cgroup_event(event))
4234                 perf_detach_cgroup(event);
4235
4236         if (!event->parent) {
4237                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4238                         put_callchain_buffers();
4239         }
4240
4241         perf_event_free_bpf_prog(event);
4242         perf_addr_filters_splice(event, NULL);
4243         kfree(event->addr_filters_offs);
4244
4245         if (event->destroy)
4246                 event->destroy(event);
4247
4248         if (event->ctx)
4249                 put_ctx(event->ctx);
4250
4251         if (event->hw.target)
4252                 put_task_struct(event->hw.target);
4253
4254         exclusive_event_destroy(event);
4255         module_put(event->pmu->module);
4256
4257         call_rcu(&event->rcu_head, free_event_rcu);
4258 }
4259
4260 /*
4261  * Used to free events which have a known refcount of 1, such as in error paths
4262  * where the event isn't exposed yet and inherited events.
4263  */
4264 static void free_event(struct perf_event *event)
4265 {
4266         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4267                                 "unexpected event refcount: %ld; ptr=%p\n",
4268                                 atomic_long_read(&event->refcount), event)) {
4269                 /* leak to avoid use-after-free */
4270                 return;
4271         }
4272
4273         _free_event(event);
4274 }
4275
4276 /*
4277  * Remove user event from the owner task.
4278  */
4279 static void perf_remove_from_owner(struct perf_event *event)
4280 {
4281         struct task_struct *owner;
4282
4283         rcu_read_lock();
4284         /*
4285          * Matches the smp_store_release() in perf_event_exit_task(). If we
4286          * observe !owner it means the list deletion is complete and we can
4287          * indeed free this event, otherwise we need to serialize on
4288          * owner->perf_event_mutex.
4289          */
4290         owner = READ_ONCE(event->owner);
4291         if (owner) {
4292                 /*
4293                  * Since delayed_put_task_struct() also drops the last
4294                  * task reference we can safely take a new reference
4295                  * while holding the rcu_read_lock().
4296                  */
4297                 get_task_struct(owner);
4298         }
4299         rcu_read_unlock();
4300
4301         if (owner) {
4302                 /*
4303                  * If we're here through perf_event_exit_task() we're already
4304                  * holding ctx->mutex which would be an inversion wrt. the
4305                  * normal lock order.
4306                  *
4307                  * However we can safely take this lock because its the child
4308                  * ctx->mutex.
4309                  */
4310                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4311
4312                 /*
4313                  * We have to re-check the event->owner field, if it is cleared
4314                  * we raced with perf_event_exit_task(), acquiring the mutex
4315                  * ensured they're done, and we can proceed with freeing the
4316                  * event.
4317                  */
4318                 if (event->owner) {
4319                         list_del_init(&event->owner_entry);
4320                         smp_store_release(&event->owner, NULL);
4321                 }
4322                 mutex_unlock(&owner->perf_event_mutex);
4323                 put_task_struct(owner);
4324         }
4325 }
4326
4327 static void put_event(struct perf_event *event)
4328 {
4329         if (!atomic_long_dec_and_test(&event->refcount))
4330                 return;
4331
4332         _free_event(event);
4333 }
4334
4335 /*
4336  * Kill an event dead; while event:refcount will preserve the event
4337  * object, it will not preserve its functionality. Once the last 'user'
4338  * gives up the object, we'll destroy the thing.
4339  */
4340 int perf_event_release_kernel(struct perf_event *event)
4341 {
4342         struct perf_event_context *ctx = event->ctx;
4343         struct perf_event *child, *tmp;
4344
4345         /*
4346          * If we got here through err_file: fput(event_file); we will not have
4347          * attached to a context yet.
4348          */
4349         if (!ctx) {
4350                 WARN_ON_ONCE(event->attach_state &
4351                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4352                 goto no_ctx;
4353         }
4354
4355         if (!is_kernel_event(event))
4356                 perf_remove_from_owner(event);
4357
4358         ctx = perf_event_ctx_lock(event);
4359         WARN_ON_ONCE(ctx->parent_ctx);
4360         perf_remove_from_context(event, DETACH_GROUP);
4361
4362         raw_spin_lock_irq(&ctx->lock);
4363         /*
4364          * Mark this event as STATE_DEAD, there is no external reference to it
4365          * anymore.
4366          *
4367          * Anybody acquiring event->child_mutex after the below loop _must_
4368          * also see this, most importantly inherit_event() which will avoid
4369          * placing more children on the list.
4370          *
4371          * Thus this guarantees that we will in fact observe and kill _ALL_
4372          * child events.
4373          */
4374         event->state = PERF_EVENT_STATE_DEAD;
4375         raw_spin_unlock_irq(&ctx->lock);
4376
4377         perf_event_ctx_unlock(event, ctx);
4378
4379 again:
4380         mutex_lock(&event->child_mutex);
4381         list_for_each_entry(child, &event->child_list, child_list) {
4382
4383                 /*
4384                  * Cannot change, child events are not migrated, see the
4385                  * comment with perf_event_ctx_lock_nested().
4386                  */
4387                 ctx = READ_ONCE(child->ctx);
4388                 /*
4389                  * Since child_mutex nests inside ctx::mutex, we must jump
4390                  * through hoops. We start by grabbing a reference on the ctx.
4391                  *
4392                  * Since the event cannot get freed while we hold the
4393                  * child_mutex, the context must also exist and have a !0
4394                  * reference count.
4395                  */
4396                 get_ctx(ctx);
4397
4398                 /*
4399                  * Now that we have a ctx ref, we can drop child_mutex, and
4400                  * acquire ctx::mutex without fear of it going away. Then we
4401                  * can re-acquire child_mutex.
4402                  */
4403                 mutex_unlock(&event->child_mutex);
4404                 mutex_lock(&ctx->mutex);
4405                 mutex_lock(&event->child_mutex);
4406
4407                 /*
4408                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4409                  * state, if child is still the first entry, it didn't get freed
4410                  * and we can continue doing so.
4411                  */
4412                 tmp = list_first_entry_or_null(&event->child_list,
4413                                                struct perf_event, child_list);
4414                 if (tmp == child) {
4415                         perf_remove_from_context(child, DETACH_GROUP);
4416                         list_del(&child->child_list);
4417                         free_event(child);
4418                         /*
4419                          * This matches the refcount bump in inherit_event();
4420                          * this can't be the last reference.
4421                          */
4422                         put_event(event);
4423                 }
4424
4425                 mutex_unlock(&event->child_mutex);
4426                 mutex_unlock(&ctx->mutex);
4427                 put_ctx(ctx);
4428                 goto again;
4429         }
4430         mutex_unlock(&event->child_mutex);
4431
4432 no_ctx:
4433         put_event(event); /* Must be the 'last' reference */
4434         return 0;
4435 }
4436 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4437
4438 /*
4439  * Called when the last reference to the file is gone.
4440  */
4441 static int perf_release(struct inode *inode, struct file *file)
4442 {
4443         perf_event_release_kernel(file->private_data);
4444         return 0;
4445 }
4446
4447 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4448 {
4449         struct perf_event *child;
4450         u64 total = 0;
4451
4452         *enabled = 0;
4453         *running = 0;
4454
4455         mutex_lock(&event->child_mutex);
4456
4457         (void)perf_event_read(event, false);
4458         total += perf_event_count(event);
4459
4460         *enabled += event->total_time_enabled +
4461                         atomic64_read(&event->child_total_time_enabled);
4462         *running += event->total_time_running +
4463                         atomic64_read(&event->child_total_time_running);
4464
4465         list_for_each_entry(child, &event->child_list, child_list) {
4466                 (void)perf_event_read(child, false);
4467                 total += perf_event_count(child);
4468                 *enabled += child->total_time_enabled;
4469                 *running += child->total_time_running;
4470         }
4471         mutex_unlock(&event->child_mutex);
4472
4473         return total;
4474 }
4475 EXPORT_SYMBOL_GPL(perf_event_read_value);
4476
4477 static int __perf_read_group_add(struct perf_event *leader,
4478                                         u64 read_format, u64 *values)
4479 {
4480         struct perf_event_context *ctx = leader->ctx;
4481         struct perf_event *sub;
4482         unsigned long flags;
4483         int n = 1; /* skip @nr */
4484         int ret;
4485
4486         ret = perf_event_read(leader, true);
4487         if (ret)
4488                 return ret;
4489
4490         raw_spin_lock_irqsave(&ctx->lock, flags);
4491
4492         /*
4493          * Since we co-schedule groups, {enabled,running} times of siblings
4494          * will be identical to those of the leader, so we only publish one
4495          * set.
4496          */
4497         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4498                 values[n++] += leader->total_time_enabled +
4499                         atomic64_read(&leader->child_total_time_enabled);
4500         }
4501
4502         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4503                 values[n++] += leader->total_time_running +
4504                         atomic64_read(&leader->child_total_time_running);
4505         }
4506
4507         /*
4508          * Write {count,id} tuples for every sibling.
4509          */
4510         values[n++] += perf_event_count(leader);
4511         if (read_format & PERF_FORMAT_ID)
4512                 values[n++] = primary_event_id(leader);
4513
4514         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4515                 values[n++] += perf_event_count(sub);
4516                 if (read_format & PERF_FORMAT_ID)
4517                         values[n++] = primary_event_id(sub);
4518         }
4519
4520         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4521         return 0;
4522 }
4523
4524 static int perf_read_group(struct perf_event *event,
4525                                    u64 read_format, char __user *buf)
4526 {
4527         struct perf_event *leader = event->group_leader, *child;
4528         struct perf_event_context *ctx = leader->ctx;
4529         int ret;
4530         u64 *values;
4531
4532         lockdep_assert_held(&ctx->mutex);
4533
4534         values = kzalloc(event->read_size, GFP_KERNEL);
4535         if (!values)
4536                 return -ENOMEM;
4537
4538         values[0] = 1 + leader->nr_siblings;
4539
4540         /*
4541          * By locking the child_mutex of the leader we effectively
4542          * lock the child list of all siblings.. XXX explain how.
4543          */
4544         mutex_lock(&leader->child_mutex);
4545
4546         ret = __perf_read_group_add(leader, read_format, values);
4547         if (ret)
4548                 goto unlock;
4549
4550         list_for_each_entry(child, &leader->child_list, child_list) {
4551                 ret = __perf_read_group_add(child, read_format, values);
4552                 if (ret)
4553                         goto unlock;
4554         }
4555
4556         mutex_unlock(&leader->child_mutex);
4557
4558         ret = event->read_size;
4559         if (copy_to_user(buf, values, event->read_size))
4560                 ret = -EFAULT;
4561         goto out;
4562
4563 unlock:
4564         mutex_unlock(&leader->child_mutex);
4565 out:
4566         kfree(values);
4567         return ret;
4568 }
4569
4570 static int perf_read_one(struct perf_event *event,
4571                                  u64 read_format, char __user *buf)
4572 {
4573         u64 enabled, running;
4574         u64 values[4];
4575         int n = 0;
4576
4577         values[n++] = perf_event_read_value(event, &enabled, &running);
4578         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4579                 values[n++] = enabled;
4580         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4581                 values[n++] = running;
4582         if (read_format & PERF_FORMAT_ID)
4583                 values[n++] = primary_event_id(event);
4584
4585         if (copy_to_user(buf, values, n * sizeof(u64)))
4586                 return -EFAULT;
4587
4588         return n * sizeof(u64);
4589 }
4590
4591 static bool is_event_hup(struct perf_event *event)
4592 {
4593         bool no_children;
4594
4595         if (event->state > PERF_EVENT_STATE_EXIT)
4596                 return false;
4597
4598         mutex_lock(&event->child_mutex);
4599         no_children = list_empty(&event->child_list);
4600         mutex_unlock(&event->child_mutex);
4601         return no_children;
4602 }
4603
4604 /*
4605  * Read the performance event - simple non blocking version for now
4606  */
4607 static ssize_t
4608 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4609 {
4610         u64 read_format = event->attr.read_format;
4611         int ret;
4612
4613         /*
4614          * Return end-of-file for a read on a event that is in
4615          * error state (i.e. because it was pinned but it couldn't be
4616          * scheduled on to the CPU at some point).
4617          */
4618         if (event->state == PERF_EVENT_STATE_ERROR)
4619                 return 0;
4620
4621         if (count < event->read_size)
4622                 return -ENOSPC;
4623
4624         WARN_ON_ONCE(event->ctx->parent_ctx);
4625         if (read_format & PERF_FORMAT_GROUP)
4626                 ret = perf_read_group(event, read_format, buf);
4627         else
4628                 ret = perf_read_one(event, read_format, buf);
4629
4630         return ret;
4631 }
4632
4633 static ssize_t
4634 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4635 {
4636         struct perf_event *event = file->private_data;
4637         struct perf_event_context *ctx;
4638         int ret;
4639
4640         ctx = perf_event_ctx_lock(event);
4641         ret = __perf_read(event, buf, count);
4642         perf_event_ctx_unlock(event, ctx);
4643
4644         return ret;
4645 }
4646
4647 static unsigned int perf_poll(struct file *file, poll_table *wait)
4648 {
4649         struct perf_event *event = file->private_data;
4650         struct ring_buffer *rb;
4651         unsigned int events = POLLHUP;
4652
4653         poll_wait(file, &event->waitq, wait);
4654
4655         if (is_event_hup(event))
4656                 return events;
4657
4658         /*
4659          * Pin the event->rb by taking event->mmap_mutex; otherwise
4660          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4661          */
4662         mutex_lock(&event->mmap_mutex);
4663         rb = event->rb;
4664         if (rb)
4665                 events = atomic_xchg(&rb->poll, 0);
4666         mutex_unlock(&event->mmap_mutex);
4667         return events;
4668 }
4669
4670 static void _perf_event_reset(struct perf_event *event)
4671 {
4672         (void)perf_event_read(event, false);
4673         local64_set(&event->count, 0);
4674         perf_event_update_userpage(event);
4675 }
4676
4677 /*
4678  * Holding the top-level event's child_mutex means that any
4679  * descendant process that has inherited this event will block
4680  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4681  * task existence requirements of perf_event_enable/disable.
4682  */
4683 static void perf_event_for_each_child(struct perf_event *event,
4684                                         void (*func)(struct perf_event *))
4685 {
4686         struct perf_event *child;
4687
4688         WARN_ON_ONCE(event->ctx->parent_ctx);
4689
4690         mutex_lock(&event->child_mutex);
4691         func(event);
4692         list_for_each_entry(child, &event->child_list, child_list)
4693                 func(child);
4694         mutex_unlock(&event->child_mutex);
4695 }
4696
4697 static void perf_event_for_each(struct perf_event *event,
4698                                   void (*func)(struct perf_event *))
4699 {
4700         struct perf_event_context *ctx = event->ctx;
4701         struct perf_event *sibling;
4702
4703         lockdep_assert_held(&ctx->mutex);
4704
4705         event = event->group_leader;
4706
4707         perf_event_for_each_child(event, func);
4708         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4709                 perf_event_for_each_child(sibling, func);
4710 }
4711
4712 static void __perf_event_period(struct perf_event *event,
4713                                 struct perf_cpu_context *cpuctx,
4714                                 struct perf_event_context *ctx,
4715                                 void *info)
4716 {
4717         u64 value = *((u64 *)info);
4718         bool active;
4719
4720         if (event->attr.freq) {
4721                 event->attr.sample_freq = value;
4722         } else {
4723                 event->attr.sample_period = value;
4724                 event->hw.sample_period = value;
4725         }
4726
4727         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4728         if (active) {
4729                 perf_pmu_disable(ctx->pmu);
4730                 /*
4731                  * We could be throttled; unthrottle now to avoid the tick
4732                  * trying to unthrottle while we already re-started the event.
4733                  */
4734                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4735                         event->hw.interrupts = 0;
4736                         perf_log_throttle(event, 1);
4737                 }
4738                 event->pmu->stop(event, PERF_EF_UPDATE);
4739         }
4740
4741         local64_set(&event->hw.period_left, 0);
4742
4743         if (active) {
4744                 event->pmu->start(event, PERF_EF_RELOAD);
4745                 perf_pmu_enable(ctx->pmu);
4746         }
4747 }
4748
4749 static int perf_event_check_period(struct perf_event *event, u64 value)
4750 {
4751         return event->pmu->check_period(event, value);
4752 }
4753
4754 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4755 {
4756         u64 value;
4757
4758         if (!is_sampling_event(event))
4759                 return -EINVAL;
4760
4761         if (copy_from_user(&value, arg, sizeof(value)))
4762                 return -EFAULT;
4763
4764         if (!value)
4765                 return -EINVAL;
4766
4767         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4768                 return -EINVAL;
4769
4770         if (perf_event_check_period(event, value))
4771                 return -EINVAL;
4772
4773         if (!event->attr.freq && (value & (1ULL << 63)))
4774                 return -EINVAL;
4775
4776         event_function_call(event, __perf_event_period, &value);
4777
4778         return 0;
4779 }
4780
4781 static const struct file_operations perf_fops;
4782
4783 static inline int perf_fget_light(int fd, struct fd *p)
4784 {
4785         struct fd f = fdget(fd);
4786         if (!f.file)
4787                 return -EBADF;
4788
4789         if (f.file->f_op != &perf_fops) {
4790                 fdput(f);
4791                 return -EBADF;
4792         }
4793         *p = f;
4794         return 0;
4795 }
4796
4797 static int perf_event_set_output(struct perf_event *event,
4798                                  struct perf_event *output_event);
4799 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4800 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4801
4802 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4803 {
4804         void (*func)(struct perf_event *);
4805         u32 flags = arg;
4806
4807         switch (cmd) {
4808         case PERF_EVENT_IOC_ENABLE:
4809                 func = _perf_event_enable;
4810                 break;
4811         case PERF_EVENT_IOC_DISABLE:
4812                 func = _perf_event_disable;
4813                 break;
4814         case PERF_EVENT_IOC_RESET:
4815                 func = _perf_event_reset;
4816                 break;
4817
4818         case PERF_EVENT_IOC_REFRESH:
4819                 return _perf_event_refresh(event, arg);
4820
4821         case PERF_EVENT_IOC_PERIOD:
4822                 return perf_event_period(event, (u64 __user *)arg);
4823
4824         case PERF_EVENT_IOC_ID:
4825         {
4826                 u64 id = primary_event_id(event);
4827
4828                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4829                         return -EFAULT;
4830                 return 0;
4831         }
4832
4833         case PERF_EVENT_IOC_SET_OUTPUT:
4834         {
4835                 int ret;
4836                 if (arg != -1) {
4837                         struct perf_event *output_event;
4838                         struct fd output;
4839                         ret = perf_fget_light(arg, &output);
4840                         if (ret)
4841                                 return ret;
4842                         output_event = output.file->private_data;
4843                         ret = perf_event_set_output(event, output_event);
4844                         fdput(output);
4845                 } else {
4846                         ret = perf_event_set_output(event, NULL);
4847                 }
4848                 return ret;
4849         }
4850
4851         case PERF_EVENT_IOC_SET_FILTER:
4852                 return perf_event_set_filter(event, (void __user *)arg);
4853
4854         case PERF_EVENT_IOC_SET_BPF:
4855                 return perf_event_set_bpf_prog(event, arg);
4856
4857         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4858                 struct ring_buffer *rb;
4859
4860                 rcu_read_lock();
4861                 rb = rcu_dereference(event->rb);
4862                 if (!rb || !rb->nr_pages) {
4863                         rcu_read_unlock();
4864                         return -EINVAL;
4865                 }
4866                 rb_toggle_paused(rb, !!arg);
4867                 rcu_read_unlock();
4868                 return 0;
4869         }
4870         default:
4871                 return -ENOTTY;
4872         }
4873
4874         if (flags & PERF_IOC_FLAG_GROUP)
4875                 perf_event_for_each(event, func);
4876         else
4877                 perf_event_for_each_child(event, func);
4878
4879         return 0;
4880 }
4881
4882 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4883 {
4884         struct perf_event *event = file->private_data;
4885         struct perf_event_context *ctx;
4886         long ret;
4887
4888         ctx = perf_event_ctx_lock(event);
4889         ret = _perf_ioctl(event, cmd, arg);
4890         perf_event_ctx_unlock(event, ctx);
4891
4892         return ret;
4893 }
4894
4895 #ifdef CONFIG_COMPAT
4896 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4897                                 unsigned long arg)
4898 {
4899         switch (_IOC_NR(cmd)) {
4900         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4901         case _IOC_NR(PERF_EVENT_IOC_ID):
4902                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4903                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4904                         cmd &= ~IOCSIZE_MASK;
4905                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4906                 }
4907                 break;
4908         }
4909         return perf_ioctl(file, cmd, arg);
4910 }
4911 #else
4912 # define perf_compat_ioctl NULL
4913 #endif
4914
4915 int perf_event_task_enable(void)
4916 {
4917         struct perf_event_context *ctx;
4918         struct perf_event *event;
4919
4920         mutex_lock(&current->perf_event_mutex);
4921         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4922                 ctx = perf_event_ctx_lock(event);
4923                 perf_event_for_each_child(event, _perf_event_enable);
4924                 perf_event_ctx_unlock(event, ctx);
4925         }
4926         mutex_unlock(&current->perf_event_mutex);
4927
4928         return 0;
4929 }
4930
4931 int perf_event_task_disable(void)
4932 {
4933         struct perf_event_context *ctx;
4934         struct perf_event *event;
4935
4936         mutex_lock(&current->perf_event_mutex);
4937         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4938                 ctx = perf_event_ctx_lock(event);
4939                 perf_event_for_each_child(event, _perf_event_disable);
4940                 perf_event_ctx_unlock(event, ctx);
4941         }
4942         mutex_unlock(&current->perf_event_mutex);
4943
4944         return 0;
4945 }
4946
4947 static int perf_event_index(struct perf_event *event)
4948 {
4949         if (event->hw.state & PERF_HES_STOPPED)
4950                 return 0;
4951
4952         if (event->state != PERF_EVENT_STATE_ACTIVE)
4953                 return 0;
4954
4955         return event->pmu->event_idx(event);
4956 }
4957
4958 static void calc_timer_values(struct perf_event *event,
4959                                 u64 *now,
4960                                 u64 *enabled,
4961                                 u64 *running)
4962 {
4963         u64 ctx_time;
4964
4965         *now = perf_clock();
4966         ctx_time = event->shadow_ctx_time + *now;
4967         *enabled = ctx_time - event->tstamp_enabled;
4968         *running = ctx_time - event->tstamp_running;
4969 }
4970
4971 static void perf_event_init_userpage(struct perf_event *event)
4972 {
4973         struct perf_event_mmap_page *userpg;
4974         struct ring_buffer *rb;
4975
4976         rcu_read_lock();
4977         rb = rcu_dereference(event->rb);
4978         if (!rb)
4979                 goto unlock;
4980
4981         userpg = rb->user_page;
4982
4983         /* Allow new userspace to detect that bit 0 is deprecated */
4984         userpg->cap_bit0_is_deprecated = 1;
4985         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4986         userpg->data_offset = PAGE_SIZE;
4987         userpg->data_size = perf_data_size(rb);
4988
4989 unlock:
4990         rcu_read_unlock();
4991 }
4992
4993 void __weak arch_perf_update_userpage(
4994         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4995 {
4996 }
4997
4998 /*
4999  * Callers need to ensure there can be no nesting of this function, otherwise
5000  * the seqlock logic goes bad. We can not serialize this because the arch
5001  * code calls this from NMI context.
5002  */
5003 void perf_event_update_userpage(struct perf_event *event)
5004 {
5005         struct perf_event_mmap_page *userpg;
5006         struct ring_buffer *rb;
5007         u64 enabled, running, now;
5008
5009         rcu_read_lock();
5010         rb = rcu_dereference(event->rb);
5011         if (!rb)
5012                 goto unlock;
5013
5014         /*
5015          * compute total_time_enabled, total_time_running
5016          * based on snapshot values taken when the event
5017          * was last scheduled in.
5018          *
5019          * we cannot simply called update_context_time()
5020          * because of locking issue as we can be called in
5021          * NMI context
5022          */
5023         calc_timer_values(event, &now, &enabled, &running);
5024
5025         userpg = rb->user_page;
5026         /*
5027          * Disable preemption so as to not let the corresponding user-space
5028          * spin too long if we get preempted.
5029          */
5030         preempt_disable();
5031         ++userpg->lock;
5032         barrier();
5033         userpg->index = perf_event_index(event);
5034         userpg->offset = perf_event_count(event);
5035         if (userpg->index)
5036                 userpg->offset -= local64_read(&event->hw.prev_count);
5037
5038         userpg->time_enabled = enabled +
5039                         atomic64_read(&event->child_total_time_enabled);
5040
5041         userpg->time_running = running +
5042                         atomic64_read(&event->child_total_time_running);
5043
5044         arch_perf_update_userpage(event, userpg, now);
5045
5046         barrier();
5047         ++userpg->lock;
5048         preempt_enable();
5049 unlock:
5050         rcu_read_unlock();
5051 }
5052
5053 static int perf_mmap_fault(struct vm_fault *vmf)
5054 {
5055         struct perf_event *event = vmf->vma->vm_file->private_data;
5056         struct ring_buffer *rb;
5057         int ret = VM_FAULT_SIGBUS;
5058
5059         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5060                 if (vmf->pgoff == 0)
5061                         ret = 0;
5062                 return ret;
5063         }
5064
5065         rcu_read_lock();
5066         rb = rcu_dereference(event->rb);
5067         if (!rb)
5068                 goto unlock;
5069
5070         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5071                 goto unlock;
5072
5073         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5074         if (!vmf->page)
5075                 goto unlock;
5076
5077         get_page(vmf->page);
5078         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5079         vmf->page->index   = vmf->pgoff;
5080
5081         ret = 0;
5082 unlock:
5083         rcu_read_unlock();
5084
5085         return ret;
5086 }
5087
5088 static void ring_buffer_attach(struct perf_event *event,
5089                                struct ring_buffer *rb)
5090 {
5091         struct ring_buffer *old_rb = NULL;
5092         unsigned long flags;
5093
5094         if (event->rb) {
5095                 /*
5096                  * Should be impossible, we set this when removing
5097                  * event->rb_entry and wait/clear when adding event->rb_entry.
5098                  */
5099                 WARN_ON_ONCE(event->rcu_pending);
5100
5101                 old_rb = event->rb;
5102                 spin_lock_irqsave(&old_rb->event_lock, flags);
5103                 list_del_rcu(&event->rb_entry);
5104                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5105
5106                 event->rcu_batches = get_state_synchronize_rcu();
5107                 event->rcu_pending = 1;
5108         }
5109
5110         if (rb) {
5111                 if (event->rcu_pending) {
5112                         cond_synchronize_rcu(event->rcu_batches);
5113                         event->rcu_pending = 0;
5114                 }
5115
5116                 spin_lock_irqsave(&rb->event_lock, flags);
5117                 list_add_rcu(&event->rb_entry, &rb->event_list);
5118                 spin_unlock_irqrestore(&rb->event_lock, flags);
5119         }
5120
5121         /*
5122          * Avoid racing with perf_mmap_close(AUX): stop the event
5123          * before swizzling the event::rb pointer; if it's getting
5124          * unmapped, its aux_mmap_count will be 0 and it won't
5125          * restart. See the comment in __perf_pmu_output_stop().
5126          *
5127          * Data will inevitably be lost when set_output is done in
5128          * mid-air, but then again, whoever does it like this is
5129          * not in for the data anyway.
5130          */
5131         if (has_aux(event))
5132                 perf_event_stop(event, 0);
5133
5134         rcu_assign_pointer(event->rb, rb);
5135
5136         if (old_rb) {
5137                 ring_buffer_put(old_rb);
5138                 /*
5139                  * Since we detached before setting the new rb, so that we
5140                  * could attach the new rb, we could have missed a wakeup.
5141                  * Provide it now.
5142                  */
5143                 wake_up_all(&event->waitq);
5144         }
5145 }
5146
5147 static void ring_buffer_wakeup(struct perf_event *event)
5148 {
5149         struct ring_buffer *rb;
5150
5151         rcu_read_lock();
5152         rb = rcu_dereference(event->rb);
5153         if (rb) {
5154                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5155                         wake_up_all(&event->waitq);
5156         }
5157         rcu_read_unlock();
5158 }
5159
5160 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5161 {
5162         struct ring_buffer *rb;
5163
5164         rcu_read_lock();
5165         rb = rcu_dereference(event->rb);
5166         if (rb) {
5167                 if (!atomic_inc_not_zero(&rb->refcount))
5168                         rb = NULL;
5169         }
5170         rcu_read_unlock();
5171
5172         return rb;
5173 }
5174
5175 void ring_buffer_put(struct ring_buffer *rb)
5176 {
5177         if (!atomic_dec_and_test(&rb->refcount))
5178                 return;
5179
5180         WARN_ON_ONCE(!list_empty(&rb->event_list));
5181
5182         call_rcu(&rb->rcu_head, rb_free_rcu);
5183 }
5184
5185 static void perf_mmap_open(struct vm_area_struct *vma)
5186 {
5187         struct perf_event *event = vma->vm_file->private_data;
5188
5189         atomic_inc(&event->mmap_count);
5190         atomic_inc(&event->rb->mmap_count);
5191
5192         if (vma->vm_pgoff)
5193                 atomic_inc(&event->rb->aux_mmap_count);
5194
5195         if (event->pmu->event_mapped)
5196                 event->pmu->event_mapped(event, vma->vm_mm);
5197 }
5198
5199 static void perf_pmu_output_stop(struct perf_event *event);
5200
5201 /*
5202  * A buffer can be mmap()ed multiple times; either directly through the same
5203  * event, or through other events by use of perf_event_set_output().
5204  *
5205  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5206  * the buffer here, where we still have a VM context. This means we need
5207  * to detach all events redirecting to us.
5208  */
5209 static void perf_mmap_close(struct vm_area_struct *vma)
5210 {
5211         struct perf_event *event = vma->vm_file->private_data;
5212         struct ring_buffer *rb = ring_buffer_get(event);
5213         struct user_struct *mmap_user = rb->mmap_user;
5214         int mmap_locked = rb->mmap_locked;
5215         unsigned long size = perf_data_size(rb);
5216         bool detach_rest = false;
5217
5218         if (event->pmu->event_unmapped)
5219                 event->pmu->event_unmapped(event, vma->vm_mm);
5220
5221         /*
5222          * rb->aux_mmap_count will always drop before rb->mmap_count and
5223          * event->mmap_count, so it is ok to use event->mmap_mutex to
5224          * serialize with perf_mmap here.
5225          */
5226         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5227             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5228                 /*
5229                  * Stop all AUX events that are writing to this buffer,
5230                  * so that we can free its AUX pages and corresponding PMU
5231                  * data. Note that after rb::aux_mmap_count dropped to zero,
5232                  * they won't start any more (see perf_aux_output_begin()).
5233                  */
5234                 perf_pmu_output_stop(event);
5235
5236                 /* now it's safe to free the pages */
5237                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5238                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5239
5240                 /* this has to be the last one */
5241                 rb_free_aux(rb);
5242                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5243
5244                 mutex_unlock(&event->mmap_mutex);
5245         }
5246
5247         if (atomic_dec_and_test(&rb->mmap_count))
5248                 detach_rest = true;
5249
5250         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5251                 goto out_put;
5252
5253         ring_buffer_attach(event, NULL);
5254         mutex_unlock(&event->mmap_mutex);
5255
5256         /* If there's still other mmap()s of this buffer, we're done. */
5257         if (!detach_rest)
5258                 goto out_put;
5259
5260         /*
5261          * No other mmap()s, detach from all other events that might redirect
5262          * into the now unreachable buffer. Somewhat complicated by the
5263          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5264          */
5265 again:
5266         rcu_read_lock();
5267         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5268                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5269                         /*
5270                          * This event is en-route to free_event() which will
5271                          * detach it and remove it from the list.
5272                          */
5273                         continue;
5274                 }
5275                 rcu_read_unlock();
5276
5277                 mutex_lock(&event->mmap_mutex);
5278                 /*
5279                  * Check we didn't race with perf_event_set_output() which can
5280                  * swizzle the rb from under us while we were waiting to
5281                  * acquire mmap_mutex.
5282                  *
5283                  * If we find a different rb; ignore this event, a next
5284                  * iteration will no longer find it on the list. We have to
5285                  * still restart the iteration to make sure we're not now
5286                  * iterating the wrong list.
5287                  */
5288                 if (event->rb == rb)
5289                         ring_buffer_attach(event, NULL);
5290
5291                 mutex_unlock(&event->mmap_mutex);
5292                 put_event(event);
5293
5294                 /*
5295                  * Restart the iteration; either we're on the wrong list or
5296                  * destroyed its integrity by doing a deletion.
5297                  */
5298                 goto again;
5299         }
5300         rcu_read_unlock();
5301
5302         /*
5303          * It could be there's still a few 0-ref events on the list; they'll
5304          * get cleaned up by free_event() -- they'll also still have their
5305          * ref on the rb and will free it whenever they are done with it.
5306          *
5307          * Aside from that, this buffer is 'fully' detached and unmapped,
5308          * undo the VM accounting.
5309          */
5310
5311         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5312         vma->vm_mm->pinned_vm -= mmap_locked;
5313         free_uid(mmap_user);
5314
5315 out_put:
5316         ring_buffer_put(rb); /* could be last */
5317 }
5318
5319 static const struct vm_operations_struct perf_mmap_vmops = {
5320         .open           = perf_mmap_open,
5321         .close          = perf_mmap_close, /* non mergable */
5322         .fault          = perf_mmap_fault,
5323         .page_mkwrite   = perf_mmap_fault,
5324 };
5325
5326 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5327 {
5328         struct perf_event *event = file->private_data;
5329         unsigned long user_locked, user_lock_limit;
5330         struct user_struct *user = current_user();
5331         unsigned long locked, lock_limit;
5332         struct ring_buffer *rb = NULL;
5333         unsigned long vma_size;
5334         unsigned long nr_pages;
5335         long user_extra = 0, extra = 0;
5336         int ret = 0, flags = 0;
5337
5338         /*
5339          * Don't allow mmap() of inherited per-task counters. This would
5340          * create a performance issue due to all children writing to the
5341          * same rb.
5342          */
5343         if (event->cpu == -1 && event->attr.inherit)
5344                 return -EINVAL;
5345
5346         if (!(vma->vm_flags & VM_SHARED))
5347                 return -EINVAL;
5348
5349         vma_size = vma->vm_end - vma->vm_start;
5350
5351         if (vma->vm_pgoff == 0) {
5352                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5353         } else {
5354                 /*
5355                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5356                  * mapped, all subsequent mappings should have the same size
5357                  * and offset. Must be above the normal perf buffer.
5358                  */
5359                 u64 aux_offset, aux_size;
5360
5361                 if (!event->rb)
5362                         return -EINVAL;
5363
5364                 nr_pages = vma_size / PAGE_SIZE;
5365
5366                 mutex_lock(&event->mmap_mutex);
5367                 ret = -EINVAL;
5368
5369                 rb = event->rb;
5370                 if (!rb)
5371                         goto aux_unlock;
5372
5373                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5374                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5375
5376                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5377                         goto aux_unlock;
5378
5379                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5380                         goto aux_unlock;
5381
5382                 /* already mapped with a different offset */
5383                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5384                         goto aux_unlock;
5385
5386                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5387                         goto aux_unlock;
5388
5389                 /* already mapped with a different size */
5390                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5391                         goto aux_unlock;
5392
5393                 if (!is_power_of_2(nr_pages))
5394                         goto aux_unlock;
5395
5396                 if (!atomic_inc_not_zero(&rb->mmap_count))
5397                         goto aux_unlock;
5398
5399                 if (rb_has_aux(rb)) {
5400                         atomic_inc(&rb->aux_mmap_count);
5401                         ret = 0;
5402                         goto unlock;
5403                 }
5404
5405                 atomic_set(&rb->aux_mmap_count, 1);
5406                 user_extra = nr_pages;
5407
5408                 goto accounting;
5409         }
5410
5411         /*
5412          * If we have rb pages ensure they're a power-of-two number, so we
5413          * can do bitmasks instead of modulo.
5414          */
5415         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5416                 return -EINVAL;
5417
5418         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5419                 return -EINVAL;
5420
5421         WARN_ON_ONCE(event->ctx->parent_ctx);
5422 again:
5423         mutex_lock(&event->mmap_mutex);
5424         if (event->rb) {
5425                 if (event->rb->nr_pages != nr_pages) {
5426                         ret = -EINVAL;
5427                         goto unlock;
5428                 }
5429
5430                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5431                         /*
5432                          * Raced against perf_mmap_close(); remove the
5433                          * event and try again.
5434                          */
5435                         ring_buffer_attach(event, NULL);
5436                         mutex_unlock(&event->mmap_mutex);
5437                         goto again;
5438                 }
5439
5440                 goto unlock;
5441         }
5442
5443         user_extra = nr_pages + 1;
5444
5445 accounting:
5446         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5447
5448         /*
5449          * Increase the limit linearly with more CPUs:
5450          */
5451         user_lock_limit *= num_online_cpus();
5452
5453         user_locked = atomic_long_read(&user->locked_vm);
5454
5455         /*
5456          * sysctl_perf_event_mlock may have changed, so that
5457          *     user->locked_vm > user_lock_limit
5458          */
5459         if (user_locked > user_lock_limit)
5460                 user_locked = user_lock_limit;
5461         user_locked += user_extra;
5462
5463         if (user_locked > user_lock_limit)
5464                 extra = user_locked - user_lock_limit;
5465
5466         lock_limit = rlimit(RLIMIT_MEMLOCK);
5467         lock_limit >>= PAGE_SHIFT;
5468         locked = vma->vm_mm->pinned_vm + extra;
5469
5470         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5471                 !capable(CAP_IPC_LOCK)) {
5472                 ret = -EPERM;
5473                 goto unlock;
5474         }
5475
5476         WARN_ON(!rb && event->rb);
5477
5478         if (vma->vm_flags & VM_WRITE)
5479                 flags |= RING_BUFFER_WRITABLE;
5480
5481         if (!rb) {
5482                 rb = rb_alloc(nr_pages,
5483                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5484                               event->cpu, flags);
5485
5486                 if (!rb) {
5487                         ret = -ENOMEM;
5488                         goto unlock;
5489                 }
5490
5491                 atomic_set(&rb->mmap_count, 1);
5492                 rb->mmap_user = get_current_user();
5493                 rb->mmap_locked = extra;
5494
5495                 ring_buffer_attach(event, rb);
5496
5497                 perf_event_init_userpage(event);
5498                 perf_event_update_userpage(event);
5499         } else {
5500                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5501                                    event->attr.aux_watermark, flags);
5502                 if (!ret)
5503                         rb->aux_mmap_locked = extra;
5504         }
5505
5506 unlock:
5507         if (!ret) {
5508                 atomic_long_add(user_extra, &user->locked_vm);
5509                 vma->vm_mm->pinned_vm += extra;
5510
5511                 atomic_inc(&event->mmap_count);
5512         } else if (rb) {
5513                 atomic_dec(&rb->mmap_count);
5514         }
5515 aux_unlock:
5516         mutex_unlock(&event->mmap_mutex);
5517
5518         /*
5519          * Since pinned accounting is per vm we cannot allow fork() to copy our
5520          * vma.
5521          */
5522         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5523         vma->vm_ops = &perf_mmap_vmops;
5524
5525         if (event->pmu->event_mapped)
5526                 event->pmu->event_mapped(event, vma->vm_mm);
5527
5528         return ret;
5529 }
5530
5531 static int perf_fasync(int fd, struct file *filp, int on)
5532 {
5533         struct inode *inode = file_inode(filp);
5534         struct perf_event *event = filp->private_data;
5535         int retval;
5536
5537         inode_lock(inode);
5538         retval = fasync_helper(fd, filp, on, &event->fasync);
5539         inode_unlock(inode);
5540
5541         if (retval < 0)
5542                 return retval;
5543
5544         return 0;
5545 }
5546
5547 static const struct file_operations perf_fops = {
5548         .llseek                 = no_llseek,
5549         .release                = perf_release,
5550         .read                   = perf_read,
5551         .poll                   = perf_poll,
5552         .unlocked_ioctl         = perf_ioctl,
5553         .compat_ioctl           = perf_compat_ioctl,
5554         .mmap                   = perf_mmap,
5555         .fasync                 = perf_fasync,
5556 };
5557
5558 /*
5559  * Perf event wakeup
5560  *
5561  * If there's data, ensure we set the poll() state and publish everything
5562  * to user-space before waking everybody up.
5563  */
5564
5565 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5566 {
5567         /* only the parent has fasync state */
5568         if (event->parent)
5569                 event = event->parent;
5570         return &event->fasync;
5571 }
5572
5573 void perf_event_wakeup(struct perf_event *event)
5574 {
5575         ring_buffer_wakeup(event);
5576
5577         if (event->pending_kill) {
5578                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5579                 event->pending_kill = 0;
5580         }
5581 }
5582
5583 static void perf_pending_event(struct irq_work *entry)
5584 {
5585         struct perf_event *event = container_of(entry,
5586                         struct perf_event, pending);
5587         int rctx;
5588
5589         rctx = perf_swevent_get_recursion_context();
5590         /*
5591          * If we 'fail' here, that's OK, it means recursion is already disabled
5592          * and we won't recurse 'further'.
5593          */
5594
5595         if (event->pending_disable) {
5596                 event->pending_disable = 0;
5597                 perf_event_disable_local(event);
5598         }
5599
5600         if (event->pending_wakeup) {
5601                 event->pending_wakeup = 0;
5602                 perf_event_wakeup(event);
5603         }
5604
5605         if (rctx >= 0)
5606                 perf_swevent_put_recursion_context(rctx);
5607 }
5608
5609 /*
5610  * We assume there is only KVM supporting the callbacks.
5611  * Later on, we might change it to a list if there is
5612  * another virtualization implementation supporting the callbacks.
5613  */
5614 struct perf_guest_info_callbacks *perf_guest_cbs;
5615
5616 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5617 {
5618         perf_guest_cbs = cbs;
5619         return 0;
5620 }
5621 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5622
5623 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5624 {
5625         perf_guest_cbs = NULL;
5626         return 0;
5627 }
5628 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5629
5630 static void
5631 perf_output_sample_regs(struct perf_output_handle *handle,
5632                         struct pt_regs *regs, u64 mask)
5633 {
5634         int bit;
5635         DECLARE_BITMAP(_mask, 64);
5636
5637         bitmap_from_u64(_mask, mask);
5638         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5639                 u64 val;
5640
5641                 val = perf_reg_value(regs, bit);
5642                 perf_output_put(handle, val);
5643         }
5644 }
5645
5646 static void perf_sample_regs_user(struct perf_regs *regs_user,
5647                                   struct pt_regs *regs,
5648                                   struct pt_regs *regs_user_copy)
5649 {
5650         if (user_mode(regs)) {
5651                 regs_user->abi = perf_reg_abi(current);
5652                 regs_user->regs = regs;
5653         } else if (!(current->flags & PF_KTHREAD)) {
5654                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5655         } else {
5656                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5657                 regs_user->regs = NULL;
5658         }
5659 }
5660
5661 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5662                                   struct pt_regs *regs)
5663 {
5664         regs_intr->regs = regs;
5665         regs_intr->abi  = perf_reg_abi(current);
5666 }
5667
5668
5669 /*
5670  * Get remaining task size from user stack pointer.
5671  *
5672  * It'd be better to take stack vma map and limit this more
5673  * precisly, but there's no way to get it safely under interrupt,
5674  * so using TASK_SIZE as limit.
5675  */
5676 static u64 perf_ustack_task_size(struct pt_regs *regs)
5677 {
5678         unsigned long addr = perf_user_stack_pointer(regs);
5679
5680         if (!addr || addr >= TASK_SIZE)
5681                 return 0;
5682
5683         return TASK_SIZE - addr;
5684 }
5685
5686 static u16
5687 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5688                         struct pt_regs *regs)
5689 {
5690         u64 task_size;
5691
5692         /* No regs, no stack pointer, no dump. */
5693         if (!regs)
5694                 return 0;
5695
5696         /*
5697          * Check if we fit in with the requested stack size into the:
5698          * - TASK_SIZE
5699          *   If we don't, we limit the size to the TASK_SIZE.
5700          *
5701          * - remaining sample size
5702          *   If we don't, we customize the stack size to
5703          *   fit in to the remaining sample size.
5704          */
5705
5706         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5707         stack_size = min(stack_size, (u16) task_size);
5708
5709         /* Current header size plus static size and dynamic size. */
5710         header_size += 2 * sizeof(u64);
5711
5712         /* Do we fit in with the current stack dump size? */
5713         if ((u16) (header_size + stack_size) < header_size) {
5714                 /*
5715                  * If we overflow the maximum size for the sample,
5716                  * we customize the stack dump size to fit in.
5717                  */
5718                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5719                 stack_size = round_up(stack_size, sizeof(u64));
5720         }
5721
5722         return stack_size;
5723 }
5724
5725 static void
5726 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5727                           struct pt_regs *regs)
5728 {
5729         /* Case of a kernel thread, nothing to dump */
5730         if (!regs) {
5731                 u64 size = 0;
5732                 perf_output_put(handle, size);
5733         } else {
5734                 unsigned long sp;
5735                 unsigned int rem;
5736                 u64 dyn_size;
5737                 mm_segment_t fs;
5738
5739                 /*
5740                  * We dump:
5741                  * static size
5742                  *   - the size requested by user or the best one we can fit
5743                  *     in to the sample max size
5744                  * data
5745                  *   - user stack dump data
5746                  * dynamic size
5747                  *   - the actual dumped size
5748                  */
5749
5750                 /* Static size. */
5751                 perf_output_put(handle, dump_size);
5752
5753                 /* Data. */
5754                 sp = perf_user_stack_pointer(regs);
5755                 fs = get_fs();
5756                 set_fs(USER_DS);
5757                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5758                 set_fs(fs);
5759                 dyn_size = dump_size - rem;
5760
5761                 perf_output_skip(handle, rem);
5762
5763                 /* Dynamic size. */
5764                 perf_output_put(handle, dyn_size);
5765         }
5766 }
5767
5768 static void __perf_event_header__init_id(struct perf_event_header *header,
5769                                          struct perf_sample_data *data,
5770                                          struct perf_event *event,
5771                                          u64 sample_type)
5772 {
5773         data->type = event->attr.sample_type;
5774         header->size += event->id_header_size;
5775
5776         if (sample_type & PERF_SAMPLE_TID) {
5777                 /* namespace issues */
5778                 data->tid_entry.pid = perf_event_pid(event, current);
5779                 data->tid_entry.tid = perf_event_tid(event, current);
5780         }
5781
5782         if (sample_type & PERF_SAMPLE_TIME)
5783                 data->time = perf_event_clock(event);
5784
5785         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5786                 data->id = primary_event_id(event);
5787
5788         if (sample_type & PERF_SAMPLE_STREAM_ID)
5789                 data->stream_id = event->id;
5790
5791         if (sample_type & PERF_SAMPLE_CPU) {
5792                 data->cpu_entry.cpu      = raw_smp_processor_id();
5793                 data->cpu_entry.reserved = 0;
5794         }
5795 }
5796
5797 void perf_event_header__init_id(struct perf_event_header *header,
5798                                 struct perf_sample_data *data,
5799                                 struct perf_event *event)
5800 {
5801         if (event->attr.sample_id_all)
5802                 __perf_event_header__init_id(header, data, event, event->attr.sample_type);
5803 }
5804
5805 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5806                                            struct perf_sample_data *data)
5807 {
5808         u64 sample_type = data->type;
5809
5810         if (sample_type & PERF_SAMPLE_TID)
5811                 perf_output_put(handle, data->tid_entry);
5812
5813         if (sample_type & PERF_SAMPLE_TIME)
5814                 perf_output_put(handle, data->time);
5815
5816         if (sample_type & PERF_SAMPLE_ID)
5817                 perf_output_put(handle, data->id);
5818
5819         if (sample_type & PERF_SAMPLE_STREAM_ID)
5820                 perf_output_put(handle, data->stream_id);
5821
5822         if (sample_type & PERF_SAMPLE_CPU)
5823                 perf_output_put(handle, data->cpu_entry);
5824
5825         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5826                 perf_output_put(handle, data->id);
5827 }
5828
5829 void perf_event__output_id_sample(struct perf_event *event,
5830                                   struct perf_output_handle *handle,
5831                                   struct perf_sample_data *sample)
5832 {
5833         if (event->attr.sample_id_all)
5834                 __perf_event__output_id_sample(handle, sample);
5835 }
5836
5837 static void perf_output_read_one(struct perf_output_handle *handle,
5838                                  struct perf_event *event,
5839                                  u64 enabled, u64 running)
5840 {
5841         u64 read_format = event->attr.read_format;
5842         u64 values[4];
5843         int n = 0;
5844
5845         values[n++] = perf_event_count(event);
5846         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5847                 values[n++] = enabled +
5848                         atomic64_read(&event->child_total_time_enabled);
5849         }
5850         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5851                 values[n++] = running +
5852                         atomic64_read(&event->child_total_time_running);
5853         }
5854         if (read_format & PERF_FORMAT_ID)
5855                 values[n++] = primary_event_id(event);
5856
5857         __output_copy(handle, values, n * sizeof(u64));
5858 }
5859
5860 static void perf_output_read_group(struct perf_output_handle *handle,
5861                             struct perf_event *event,
5862                             u64 enabled, u64 running)
5863 {
5864         struct perf_event *leader = event->group_leader, *sub;
5865         u64 read_format = event->attr.read_format;
5866         u64 values[5];
5867         int n = 0;
5868
5869         values[n++] = 1 + leader->nr_siblings;
5870
5871         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5872                 values[n++] = enabled;
5873
5874         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5875                 values[n++] = running;
5876
5877         if ((leader != event) &&
5878             (leader->state == PERF_EVENT_STATE_ACTIVE))
5879                 leader->pmu->read(leader);
5880
5881         values[n++] = perf_event_count(leader);
5882         if (read_format & PERF_FORMAT_ID)
5883                 values[n++] = primary_event_id(leader);
5884
5885         __output_copy(handle, values, n * sizeof(u64));
5886
5887         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5888                 n = 0;
5889
5890                 if ((sub != event) &&
5891                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5892                         sub->pmu->read(sub);
5893
5894                 values[n++] = perf_event_count(sub);
5895                 if (read_format & PERF_FORMAT_ID)
5896                         values[n++] = primary_event_id(sub);
5897
5898                 __output_copy(handle, values, n * sizeof(u64));
5899         }
5900 }
5901
5902 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5903                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5904
5905 /*
5906  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5907  *
5908  * The problem is that its both hard and excessively expensive to iterate the
5909  * child list, not to mention that its impossible to IPI the children running
5910  * on another CPU, from interrupt/NMI context.
5911  */
5912 static void perf_output_read(struct perf_output_handle *handle,
5913                              struct perf_event *event)
5914 {
5915         u64 enabled = 0, running = 0, now;
5916         u64 read_format = event->attr.read_format;
5917
5918         /*
5919          * compute total_time_enabled, total_time_running
5920          * based on snapshot values taken when the event
5921          * was last scheduled in.
5922          *
5923          * we cannot simply called update_context_time()
5924          * because of locking issue as we are called in
5925          * NMI context
5926          */
5927         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5928                 calc_timer_values(event, &now, &enabled, &running);
5929
5930         if (event->attr.read_format & PERF_FORMAT_GROUP)
5931                 perf_output_read_group(handle, event, enabled, running);
5932         else
5933                 perf_output_read_one(handle, event, enabled, running);
5934 }
5935
5936 void perf_output_sample(struct perf_output_handle *handle,
5937                         struct perf_event_header *header,
5938                         struct perf_sample_data *data,
5939                         struct perf_event *event)
5940 {
5941         u64 sample_type = data->type;
5942
5943         perf_output_put(handle, *header);
5944
5945         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5946                 perf_output_put(handle, data->id);
5947
5948         if (sample_type & PERF_SAMPLE_IP)
5949                 perf_output_put(handle, data->ip);
5950
5951         if (sample_type & PERF_SAMPLE_TID)
5952                 perf_output_put(handle, data->tid_entry);
5953
5954         if (sample_type & PERF_SAMPLE_TIME)
5955                 perf_output_put(handle, data->time);
5956
5957         if (sample_type & PERF_SAMPLE_ADDR)
5958                 perf_output_put(handle, data->addr);
5959
5960         if (sample_type & PERF_SAMPLE_ID)
5961                 perf_output_put(handle, data->id);
5962
5963         if (sample_type & PERF_SAMPLE_STREAM_ID)
5964                 perf_output_put(handle, data->stream_id);
5965
5966         if (sample_type & PERF_SAMPLE_CPU)
5967                 perf_output_put(handle, data->cpu_entry);
5968
5969         if (sample_type & PERF_SAMPLE_PERIOD)
5970                 perf_output_put(handle, data->period);
5971
5972         if (sample_type & PERF_SAMPLE_READ)
5973                 perf_output_read(handle, event);
5974
5975         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5976                 if (data->callchain) {
5977                         int size = 1;
5978
5979                         if (data->callchain)
5980                                 size += data->callchain->nr;
5981
5982                         size *= sizeof(u64);
5983
5984                         __output_copy(handle, data->callchain, size);
5985                 } else {
5986                         u64 nr = 0;
5987                         perf_output_put(handle, nr);
5988                 }
5989         }
5990
5991         if (sample_type & PERF_SAMPLE_RAW) {
5992                 struct perf_raw_record *raw = data->raw;
5993
5994                 if (raw) {
5995                         struct perf_raw_frag *frag = &raw->frag;
5996
5997                         perf_output_put(handle, raw->size);
5998                         do {
5999                                 if (frag->copy) {
6000                                         __output_custom(handle, frag->copy,
6001                                                         frag->data, frag->size);
6002                                 } else {
6003                                         __output_copy(handle, frag->data,
6004                                                       frag->size);
6005                                 }
6006                                 if (perf_raw_frag_last(frag))
6007                                         break;
6008                                 frag = frag->next;
6009                         } while (1);
6010                         if (frag->pad)
6011                                 __output_skip(handle, NULL, frag->pad);
6012                 } else {
6013                         struct {
6014                                 u32     size;
6015                                 u32     data;
6016                         } raw = {
6017                                 .size = sizeof(u32),
6018                                 .data = 0,
6019                         };
6020                         perf_output_put(handle, raw);
6021                 }
6022         }
6023
6024         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6025                 if (data->br_stack) {
6026                         size_t size;
6027
6028                         size = data->br_stack->nr
6029                              * sizeof(struct perf_branch_entry);
6030
6031                         perf_output_put(handle, data->br_stack->nr);
6032                         perf_output_copy(handle, data->br_stack->entries, size);
6033                 } else {
6034                         /*
6035                          * we always store at least the value of nr
6036                          */
6037                         u64 nr = 0;
6038                         perf_output_put(handle, nr);
6039                 }
6040         }
6041
6042         if (sample_type & PERF_SAMPLE_REGS_USER) {
6043                 u64 abi = data->regs_user.abi;
6044
6045                 /*
6046                  * If there are no regs to dump, notice it through
6047                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6048                  */
6049                 perf_output_put(handle, abi);
6050
6051                 if (abi) {
6052                         u64 mask = event->attr.sample_regs_user;
6053                         perf_output_sample_regs(handle,
6054                                                 data->regs_user.regs,
6055                                                 mask);
6056                 }
6057         }
6058
6059         if (sample_type & PERF_SAMPLE_STACK_USER) {
6060                 perf_output_sample_ustack(handle,
6061                                           data->stack_user_size,
6062                                           data->regs_user.regs);
6063         }
6064
6065         if (sample_type & PERF_SAMPLE_WEIGHT)
6066                 perf_output_put(handle, data->weight);
6067
6068         if (sample_type & PERF_SAMPLE_DATA_SRC)
6069                 perf_output_put(handle, data->data_src.val);
6070
6071         if (sample_type & PERF_SAMPLE_TRANSACTION)
6072                 perf_output_put(handle, data->txn);
6073
6074         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6075                 u64 abi = data->regs_intr.abi;
6076                 /*
6077                  * If there are no regs to dump, notice it through
6078                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6079                  */
6080                 perf_output_put(handle, abi);
6081
6082                 if (abi) {
6083                         u64 mask = event->attr.sample_regs_intr;
6084
6085                         perf_output_sample_regs(handle,
6086                                                 data->regs_intr.regs,
6087                                                 mask);
6088                 }
6089         }
6090
6091         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6092                 perf_output_put(handle, data->phys_addr);
6093
6094         if (!event->attr.watermark) {
6095                 int wakeup_events = event->attr.wakeup_events;
6096
6097                 if (wakeup_events) {
6098                         struct ring_buffer *rb = handle->rb;
6099                         int events = local_inc_return(&rb->events);
6100
6101                         if (events >= wakeup_events) {
6102                                 local_sub(wakeup_events, &rb->events);
6103                                 local_inc(&rb->wakeup);
6104                         }
6105                 }
6106         }
6107 }
6108
6109 static u64 perf_virt_to_phys(u64 virt)
6110 {
6111         u64 phys_addr = 0;
6112
6113         if (!virt)
6114                 return 0;
6115
6116         if (virt >= TASK_SIZE) {
6117                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6118                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6119                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6120                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6121         } else {
6122                 /*
6123                  * Walking the pages tables for user address.
6124                  * Interrupts are disabled, so it prevents any tear down
6125                  * of the page tables.
6126                  * Try IRQ-safe __get_user_pages_fast first.
6127                  * If failed, leave phys_addr as 0.
6128                  */
6129                 if (current->mm != NULL) {
6130                         struct page *p;
6131
6132                         pagefault_disable();
6133                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1) {
6134                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6135                                 put_page(p);
6136                         }
6137                         pagefault_enable();
6138                 }
6139         }
6140
6141         return phys_addr;
6142 }
6143
6144 void perf_prepare_sample(struct perf_event_header *header,
6145                          struct perf_sample_data *data,
6146                          struct perf_event *event,
6147                          struct pt_regs *regs)
6148 {
6149         u64 sample_type = event->attr.sample_type;
6150         u64 filtered_sample_type;
6151
6152         header->type = PERF_RECORD_SAMPLE;
6153         header->size = sizeof(*header) + event->header_size;
6154
6155         header->misc = 0;
6156         header->misc |= perf_misc_flags(regs);
6157
6158         /*
6159          * Clear the sample flags that have already been done by the
6160          * PMU driver.
6161          */
6162         filtered_sample_type = sample_type & ~data->sample_flags;
6163         __perf_event_header__init_id(header, data, event, filtered_sample_type);
6164
6165         if (sample_type & PERF_SAMPLE_IP)
6166                 data->ip = perf_instruction_pointer(regs);
6167
6168         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6169                 int size = 1;
6170
6171                 data->callchain = perf_callchain(event, regs);
6172
6173                 if (data->callchain)
6174                         size += data->callchain->nr;
6175
6176                 header->size += size * sizeof(u64);
6177         }
6178
6179         if (sample_type & PERF_SAMPLE_RAW) {
6180                 struct perf_raw_record *raw = data->raw;
6181                 int size;
6182
6183                 if (raw) {
6184                         struct perf_raw_frag *frag = &raw->frag;
6185                         u32 sum = 0;
6186
6187                         do {
6188                                 sum += frag->size;
6189                                 if (perf_raw_frag_last(frag))
6190                                         break;
6191                                 frag = frag->next;
6192                         } while (1);
6193
6194                         size = round_up(sum + sizeof(u32), sizeof(u64));
6195                         raw->size = size - sizeof(u32);
6196                         frag->pad = raw->size - sum;
6197                 } else {
6198                         size = sizeof(u64);
6199                 }
6200
6201                 header->size += size;
6202         }
6203
6204         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6205                 int size = sizeof(u64); /* nr */
6206                 if (data->br_stack) {
6207                         size += data->br_stack->nr
6208                               * sizeof(struct perf_branch_entry);
6209                 }
6210                 header->size += size;
6211         }
6212
6213         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6214                 perf_sample_regs_user(&data->regs_user, regs,
6215                                       &data->regs_user_copy);
6216
6217         if (sample_type & PERF_SAMPLE_REGS_USER) {
6218                 /* regs dump ABI info */
6219                 int size = sizeof(u64);
6220
6221                 if (data->regs_user.regs) {
6222                         u64 mask = event->attr.sample_regs_user;
6223                         size += hweight64(mask) * sizeof(u64);
6224                 }
6225
6226                 header->size += size;
6227         }
6228
6229         if (sample_type & PERF_SAMPLE_STACK_USER) {
6230                 /*
6231                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6232                  * processed as the last one or have additional check added
6233                  * in case new sample type is added, because we could eat
6234                  * up the rest of the sample size.
6235                  */
6236                 u16 stack_size = event->attr.sample_stack_user;
6237                 u16 size = sizeof(u64);
6238
6239                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6240                                                      data->regs_user.regs);
6241
6242                 /*
6243                  * If there is something to dump, add space for the dump
6244                  * itself and for the field that tells the dynamic size,
6245                  * which is how many have been actually dumped.
6246                  */
6247                 if (stack_size)
6248                         size += sizeof(u64) + stack_size;
6249
6250                 data->stack_user_size = stack_size;
6251                 header->size += size;
6252         }
6253
6254         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6255                 /* regs dump ABI info */
6256                 int size = sizeof(u64);
6257
6258                 perf_sample_regs_intr(&data->regs_intr, regs);
6259
6260                 if (data->regs_intr.regs) {
6261                         u64 mask = event->attr.sample_regs_intr;
6262
6263                         size += hweight64(mask) * sizeof(u64);
6264                 }
6265
6266                 header->size += size;
6267         }
6268
6269         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6270                 data->phys_addr = perf_virt_to_phys(data->addr);
6271 }
6272
6273 static void __always_inline
6274 __perf_event_output(struct perf_event *event,
6275                     struct perf_sample_data *data,
6276                     struct pt_regs *regs,
6277                     int (*output_begin)(struct perf_output_handle *,
6278                                         struct perf_event *,
6279                                         unsigned int))
6280 {
6281         struct perf_output_handle handle;
6282         struct perf_event_header header;
6283
6284         /* protect the callchain buffers */
6285         rcu_read_lock();
6286
6287         perf_prepare_sample(&header, data, event, regs);
6288
6289         if (output_begin(&handle, event, header.size))
6290                 goto exit;
6291
6292         perf_output_sample(&handle, &header, data, event);
6293
6294         perf_output_end(&handle);
6295
6296 exit:
6297         rcu_read_unlock();
6298 }
6299
6300 void
6301 perf_event_output_forward(struct perf_event *event,
6302                          struct perf_sample_data *data,
6303                          struct pt_regs *regs)
6304 {
6305         __perf_event_output(event, data, regs, perf_output_begin_forward);
6306 }
6307
6308 void
6309 perf_event_output_backward(struct perf_event *event,
6310                            struct perf_sample_data *data,
6311                            struct pt_regs *regs)
6312 {
6313         __perf_event_output(event, data, regs, perf_output_begin_backward);
6314 }
6315
6316 void
6317 perf_event_output(struct perf_event *event,
6318                   struct perf_sample_data *data,
6319                   struct pt_regs *regs)
6320 {
6321         __perf_event_output(event, data, regs, perf_output_begin);
6322 }
6323
6324 /*
6325  * read event_id
6326  */
6327
6328 struct perf_read_event {
6329         struct perf_event_header        header;
6330
6331         u32                             pid;
6332         u32                             tid;
6333 };
6334
6335 static void
6336 perf_event_read_event(struct perf_event *event,
6337                         struct task_struct *task)
6338 {
6339         struct perf_output_handle handle;
6340         struct perf_sample_data sample;
6341         struct perf_read_event read_event = {
6342                 .header = {
6343                         .type = PERF_RECORD_READ,
6344                         .misc = 0,
6345                         .size = sizeof(read_event) + event->read_size,
6346                 },
6347                 .pid = perf_event_pid(event, task),
6348                 .tid = perf_event_tid(event, task),
6349         };
6350         int ret;
6351
6352         perf_event_header__init_id(&read_event.header, &sample, event);
6353         ret = perf_output_begin(&handle, event, read_event.header.size);
6354         if (ret)
6355                 return;
6356
6357         perf_output_put(&handle, read_event);
6358         perf_output_read(&handle, event);
6359         perf_event__output_id_sample(event, &handle, &sample);
6360
6361         perf_output_end(&handle);
6362 }
6363
6364 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6365
6366 static void
6367 perf_iterate_ctx(struct perf_event_context *ctx,
6368                    perf_iterate_f output,
6369                    void *data, bool all)
6370 {
6371         struct perf_event *event;
6372
6373         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6374                 if (!all) {
6375                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6376                                 continue;
6377                         if (!event_filter_match(event))
6378                                 continue;
6379                 }
6380
6381                 output(event, data);
6382         }
6383 }
6384
6385 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6386 {
6387         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6388         struct perf_event *event;
6389
6390         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6391                 /*
6392                  * Skip events that are not fully formed yet; ensure that
6393                  * if we observe event->ctx, both event and ctx will be
6394                  * complete enough. See perf_install_in_context().
6395                  */
6396                 if (!smp_load_acquire(&event->ctx))
6397                         continue;
6398
6399                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6400                         continue;
6401                 if (!event_filter_match(event))
6402                         continue;
6403                 output(event, data);
6404         }
6405 }
6406
6407 /*
6408  * Iterate all events that need to receive side-band events.
6409  *
6410  * For new callers; ensure that account_pmu_sb_event() includes
6411  * your event, otherwise it might not get delivered.
6412  */
6413 static void
6414 perf_iterate_sb(perf_iterate_f output, void *data,
6415                struct perf_event_context *task_ctx)
6416 {
6417         struct perf_event_context *ctx;
6418         int ctxn;
6419
6420         rcu_read_lock();
6421         preempt_disable();
6422
6423         /*
6424          * If we have task_ctx != NULL we only notify the task context itself.
6425          * The task_ctx is set only for EXIT events before releasing task
6426          * context.
6427          */
6428         if (task_ctx) {
6429                 perf_iterate_ctx(task_ctx, output, data, false);
6430                 goto done;
6431         }
6432
6433         perf_iterate_sb_cpu(output, data);
6434
6435         for_each_task_context_nr(ctxn) {
6436                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6437                 if (ctx)
6438                         perf_iterate_ctx(ctx, output, data, false);
6439         }
6440 done:
6441         preempt_enable();
6442         rcu_read_unlock();
6443 }
6444
6445 /*
6446  * Clear all file-based filters at exec, they'll have to be
6447  * re-instated when/if these objects are mmapped again.
6448  */
6449 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6450 {
6451         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6452         struct perf_addr_filter *filter;
6453         unsigned int restart = 0, count = 0;
6454         unsigned long flags;
6455
6456         if (!has_addr_filter(event))
6457                 return;
6458
6459         raw_spin_lock_irqsave(&ifh->lock, flags);
6460         list_for_each_entry(filter, &ifh->list, entry) {
6461                 if (filter->path.dentry) {
6462                         event->addr_filters_offs[count] = 0;
6463                         restart++;
6464                 }
6465
6466                 count++;
6467         }
6468
6469         if (restart)
6470                 event->addr_filters_gen++;
6471         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6472
6473         if (restart)
6474                 perf_event_stop(event, 1);
6475 }
6476
6477 void perf_event_exec(void)
6478 {
6479         struct perf_event_context *ctx;
6480         int ctxn;
6481
6482         rcu_read_lock();
6483         for_each_task_context_nr(ctxn) {
6484                 ctx = current->perf_event_ctxp[ctxn];
6485                 if (!ctx)
6486                         continue;
6487
6488                 perf_event_enable_on_exec(ctxn);
6489
6490                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6491                                    true);
6492         }
6493         rcu_read_unlock();
6494 }
6495
6496 struct remote_output {
6497         struct ring_buffer      *rb;
6498         int                     err;
6499 };
6500
6501 static void __perf_event_output_stop(struct perf_event *event, void *data)
6502 {
6503         struct perf_event *parent = event->parent;
6504         struct remote_output *ro = data;
6505         struct ring_buffer *rb = ro->rb;
6506         struct stop_event_data sd = {
6507                 .event  = event,
6508         };
6509
6510         if (!has_aux(event))
6511                 return;
6512
6513         if (!parent)
6514                 parent = event;
6515
6516         /*
6517          * In case of inheritance, it will be the parent that links to the
6518          * ring-buffer, but it will be the child that's actually using it.
6519          *
6520          * We are using event::rb to determine if the event should be stopped,
6521          * however this may race with ring_buffer_attach() (through set_output),
6522          * which will make us skip the event that actually needs to be stopped.
6523          * So ring_buffer_attach() has to stop an aux event before re-assigning
6524          * its rb pointer.
6525          */
6526         if (rcu_dereference(parent->rb) == rb)
6527                 ro->err = __perf_event_stop(&sd);
6528 }
6529
6530 static int __perf_pmu_output_stop(void *info)
6531 {
6532         struct perf_event *event = info;
6533         struct pmu *pmu = event->pmu;
6534         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6535         struct remote_output ro = {
6536                 .rb     = event->rb,
6537         };
6538
6539         rcu_read_lock();
6540         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6541         if (cpuctx->task_ctx)
6542                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6543                                    &ro, false);
6544         rcu_read_unlock();
6545
6546         return ro.err;
6547 }
6548
6549 static void perf_pmu_output_stop(struct perf_event *event)
6550 {
6551         struct perf_event *iter;
6552         int err, cpu;
6553
6554 restart:
6555         rcu_read_lock();
6556         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6557                 /*
6558                  * For per-CPU events, we need to make sure that neither they
6559                  * nor their children are running; for cpu==-1 events it's
6560                  * sufficient to stop the event itself if it's active, since
6561                  * it can't have children.
6562                  */
6563                 cpu = iter->cpu;
6564                 if (cpu == -1)
6565                         cpu = READ_ONCE(iter->oncpu);
6566
6567                 if (cpu == -1)
6568                         continue;
6569
6570                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6571                 if (err == -EAGAIN) {
6572                         rcu_read_unlock();
6573                         goto restart;
6574                 }
6575         }
6576         rcu_read_unlock();
6577 }
6578
6579 /*
6580  * task tracking -- fork/exit
6581  *
6582  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6583  */
6584
6585 struct perf_task_event {
6586         struct task_struct              *task;
6587         struct perf_event_context       *task_ctx;
6588
6589         struct {
6590                 struct perf_event_header        header;
6591
6592                 u32                             pid;
6593                 u32                             ppid;
6594                 u32                             tid;
6595                 u32                             ptid;
6596                 u64                             time;
6597         } event_id;
6598 };
6599
6600 static int perf_event_task_match(struct perf_event *event)
6601 {
6602         return event->attr.comm  || event->attr.mmap ||
6603                event->attr.mmap2 || event->attr.mmap_data ||
6604                event->attr.task;
6605 }
6606
6607 static void perf_event_task_output(struct perf_event *event,
6608                                    void *data)
6609 {
6610         struct perf_task_event *task_event = data;
6611         struct perf_output_handle handle;
6612         struct perf_sample_data sample;
6613         struct task_struct *task = task_event->task;
6614         int ret, size = task_event->event_id.header.size;
6615
6616         if (!perf_event_task_match(event))
6617                 return;
6618
6619         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6620
6621         ret = perf_output_begin(&handle, event,
6622                                 task_event->event_id.header.size);
6623         if (ret)
6624                 goto out;
6625
6626         task_event->event_id.pid = perf_event_pid(event, task);
6627         task_event->event_id.tid = perf_event_tid(event, task);
6628
6629         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
6630                 task_event->event_id.ppid = perf_event_pid(event,
6631                                                         task->real_parent);
6632                 task_event->event_id.ptid = perf_event_pid(event,
6633                                                         task->real_parent);
6634         } else {  /* PERF_RECORD_FORK */
6635                 task_event->event_id.ppid = perf_event_pid(event, current);
6636                 task_event->event_id.ptid = perf_event_tid(event, current);
6637         }
6638
6639         task_event->event_id.time = perf_event_clock(event);
6640
6641         perf_output_put(&handle, task_event->event_id);
6642
6643         perf_event__output_id_sample(event, &handle, &sample);
6644
6645         perf_output_end(&handle);
6646 out:
6647         task_event->event_id.header.size = size;
6648 }
6649
6650 static void perf_event_task(struct task_struct *task,
6651                               struct perf_event_context *task_ctx,
6652                               int new)
6653 {
6654         struct perf_task_event task_event;
6655
6656         if (!atomic_read(&nr_comm_events) &&
6657             !atomic_read(&nr_mmap_events) &&
6658             !atomic_read(&nr_task_events))
6659                 return;
6660
6661         task_event = (struct perf_task_event){
6662                 .task     = task,
6663                 .task_ctx = task_ctx,
6664                 .event_id    = {
6665                         .header = {
6666                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6667                                 .misc = 0,
6668                                 .size = sizeof(task_event.event_id),
6669                         },
6670                         /* .pid  */
6671                         /* .ppid */
6672                         /* .tid  */
6673                         /* .ptid */
6674                         /* .time */
6675                 },
6676         };
6677
6678         perf_iterate_sb(perf_event_task_output,
6679                        &task_event,
6680                        task_ctx);
6681 }
6682
6683 void perf_event_fork(struct task_struct *task)
6684 {
6685         perf_event_task(task, NULL, 1);
6686         perf_event_namespaces(task);
6687 }
6688
6689 /*
6690  * comm tracking
6691  */
6692
6693 struct perf_comm_event {
6694         struct task_struct      *task;
6695         char                    *comm;
6696         int                     comm_size;
6697
6698         struct {
6699                 struct perf_event_header        header;
6700
6701                 u32                             pid;
6702                 u32                             tid;
6703         } event_id;
6704 };
6705
6706 static int perf_event_comm_match(struct perf_event *event)
6707 {
6708         return event->attr.comm;
6709 }
6710
6711 static void perf_event_comm_output(struct perf_event *event,
6712                                    void *data)
6713 {
6714         struct perf_comm_event *comm_event = data;
6715         struct perf_output_handle handle;
6716         struct perf_sample_data sample;
6717         int size = comm_event->event_id.header.size;
6718         int ret;
6719
6720         if (!perf_event_comm_match(event))
6721                 return;
6722
6723         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6724         ret = perf_output_begin(&handle, event,
6725                                 comm_event->event_id.header.size);
6726
6727         if (ret)
6728                 goto out;
6729
6730         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6731         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6732
6733         perf_output_put(&handle, comm_event->event_id);
6734         __output_copy(&handle, comm_event->comm,
6735                                    comm_event->comm_size);
6736
6737         perf_event__output_id_sample(event, &handle, &sample);
6738
6739         perf_output_end(&handle);
6740 out:
6741         comm_event->event_id.header.size = size;
6742 }
6743
6744 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6745 {
6746         char comm[TASK_COMM_LEN];
6747         unsigned int size;
6748
6749         memset(comm, 0, sizeof(comm));
6750         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6751         size = ALIGN(strlen(comm)+1, sizeof(u64));
6752
6753         comm_event->comm = comm;
6754         comm_event->comm_size = size;
6755
6756         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6757
6758         perf_iterate_sb(perf_event_comm_output,
6759                        comm_event,
6760                        NULL);
6761 }
6762
6763 void perf_event_comm(struct task_struct *task, bool exec)
6764 {
6765         struct perf_comm_event comm_event;
6766
6767         if (!atomic_read(&nr_comm_events))
6768                 return;
6769
6770         comm_event = (struct perf_comm_event){
6771                 .task   = task,
6772                 /* .comm      */
6773                 /* .comm_size */
6774                 .event_id  = {
6775                         .header = {
6776                                 .type = PERF_RECORD_COMM,
6777                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6778                                 /* .size */
6779                         },
6780                         /* .pid */
6781                         /* .tid */
6782                 },
6783         };
6784
6785         perf_event_comm_event(&comm_event);
6786 }
6787
6788 /*
6789  * namespaces tracking
6790  */
6791
6792 struct perf_namespaces_event {
6793         struct task_struct              *task;
6794
6795         struct {
6796                 struct perf_event_header        header;
6797
6798                 u32                             pid;
6799                 u32                             tid;
6800                 u64                             nr_namespaces;
6801                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6802         } event_id;
6803 };
6804
6805 static int perf_event_namespaces_match(struct perf_event *event)
6806 {
6807         return event->attr.namespaces;
6808 }
6809
6810 static void perf_event_namespaces_output(struct perf_event *event,
6811                                          void *data)
6812 {
6813         struct perf_namespaces_event *namespaces_event = data;
6814         struct perf_output_handle handle;
6815         struct perf_sample_data sample;
6816         u16 header_size = namespaces_event->event_id.header.size;
6817         int ret;
6818
6819         if (!perf_event_namespaces_match(event))
6820                 return;
6821
6822         perf_event_header__init_id(&namespaces_event->event_id.header,
6823                                    &sample, event);
6824         ret = perf_output_begin(&handle, event,
6825                                 namespaces_event->event_id.header.size);
6826         if (ret)
6827                 goto out;
6828
6829         namespaces_event->event_id.pid = perf_event_pid(event,
6830                                                         namespaces_event->task);
6831         namespaces_event->event_id.tid = perf_event_tid(event,
6832                                                         namespaces_event->task);
6833
6834         perf_output_put(&handle, namespaces_event->event_id);
6835
6836         perf_event__output_id_sample(event, &handle, &sample);
6837
6838         perf_output_end(&handle);
6839 out:
6840         namespaces_event->event_id.header.size = header_size;
6841 }
6842
6843 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6844                                    struct task_struct *task,
6845                                    const struct proc_ns_operations *ns_ops)
6846 {
6847         struct path ns_path;
6848         struct inode *ns_inode;
6849         void *error;
6850
6851         error = ns_get_path(&ns_path, task, ns_ops);
6852         if (!error) {
6853                 ns_inode = ns_path.dentry->d_inode;
6854                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6855                 ns_link_info->ino = ns_inode->i_ino;
6856                 path_put(&ns_path);
6857         }
6858 }
6859
6860 void perf_event_namespaces(struct task_struct *task)
6861 {
6862         struct perf_namespaces_event namespaces_event;
6863         struct perf_ns_link_info *ns_link_info;
6864
6865         if (!atomic_read(&nr_namespaces_events))
6866                 return;
6867
6868         namespaces_event = (struct perf_namespaces_event){
6869                 .task   = task,
6870                 .event_id  = {
6871                         .header = {
6872                                 .type = PERF_RECORD_NAMESPACES,
6873                                 .misc = 0,
6874                                 .size = sizeof(namespaces_event.event_id),
6875                         },
6876                         /* .pid */
6877                         /* .tid */
6878                         .nr_namespaces = NR_NAMESPACES,
6879                         /* .link_info[NR_NAMESPACES] */
6880                 },
6881         };
6882
6883         ns_link_info = namespaces_event.event_id.link_info;
6884
6885         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6886                                task, &mntns_operations);
6887
6888 #ifdef CONFIG_USER_NS
6889         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6890                                task, &userns_operations);
6891 #endif
6892 #ifdef CONFIG_NET_NS
6893         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6894                                task, &netns_operations);
6895 #endif
6896 #ifdef CONFIG_UTS_NS
6897         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6898                                task, &utsns_operations);
6899 #endif
6900 #ifdef CONFIG_IPC_NS
6901         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6902                                task, &ipcns_operations);
6903 #endif
6904 #ifdef CONFIG_PID_NS
6905         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6906                                task, &pidns_operations);
6907 #endif
6908 #ifdef CONFIG_CGROUPS
6909         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6910                                task, &cgroupns_operations);
6911 #endif
6912
6913         perf_iterate_sb(perf_event_namespaces_output,
6914                         &namespaces_event,
6915                         NULL);
6916 }
6917
6918 /*
6919  * mmap tracking
6920  */
6921
6922 struct perf_mmap_event {
6923         struct vm_area_struct   *vma;
6924
6925         const char              *file_name;
6926         int                     file_size;
6927         int                     maj, min;
6928         u64                     ino;
6929         u64                     ino_generation;
6930         u32                     prot, flags;
6931
6932         struct {
6933                 struct perf_event_header        header;
6934
6935                 u32                             pid;
6936                 u32                             tid;
6937                 u64                             start;
6938                 u64                             len;
6939                 u64                             pgoff;
6940         } event_id;
6941 };
6942
6943 static int perf_event_mmap_match(struct perf_event *event,
6944                                  void *data)
6945 {
6946         struct perf_mmap_event *mmap_event = data;
6947         struct vm_area_struct *vma = mmap_event->vma;
6948         int executable = vma->vm_flags & VM_EXEC;
6949
6950         return (!executable && event->attr.mmap_data) ||
6951                (executable && (event->attr.mmap || event->attr.mmap2));
6952 }
6953
6954 static void perf_event_mmap_output(struct perf_event *event,
6955                                    void *data)
6956 {
6957         struct perf_mmap_event *mmap_event = data;
6958         struct perf_output_handle handle;
6959         struct perf_sample_data sample;
6960         int size = mmap_event->event_id.header.size;
6961         u32 type = mmap_event->event_id.header.type;
6962         int ret;
6963
6964         if (!perf_event_mmap_match(event, data))
6965                 return;
6966
6967         if (event->attr.mmap2) {
6968                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6969                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6970                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6971                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6972                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6973                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6974                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6975         }
6976
6977         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6978         ret = perf_output_begin(&handle, event,
6979                                 mmap_event->event_id.header.size);
6980         if (ret)
6981                 goto out;
6982
6983         mmap_event->event_id.pid = perf_event_pid(event, current);
6984         mmap_event->event_id.tid = perf_event_tid(event, current);
6985
6986         perf_output_put(&handle, mmap_event->event_id);
6987
6988         if (event->attr.mmap2) {
6989                 perf_output_put(&handle, mmap_event->maj);
6990                 perf_output_put(&handle, mmap_event->min);
6991                 perf_output_put(&handle, mmap_event->ino);
6992                 perf_output_put(&handle, mmap_event->ino_generation);
6993                 perf_output_put(&handle, mmap_event->prot);
6994                 perf_output_put(&handle, mmap_event->flags);
6995         }
6996
6997         __output_copy(&handle, mmap_event->file_name,
6998                                    mmap_event->file_size);
6999
7000         perf_event__output_id_sample(event, &handle, &sample);
7001
7002         perf_output_end(&handle);
7003 out:
7004         mmap_event->event_id.header.size = size;
7005         mmap_event->event_id.header.type = type;
7006 }
7007
7008 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7009 {
7010         struct vm_area_struct *vma = mmap_event->vma;
7011         struct file *file = vma->vm_file;
7012         int maj = 0, min = 0;
7013         u64 ino = 0, gen = 0;
7014         u32 prot = 0, flags = 0;
7015         unsigned int size;
7016         char tmp[16];
7017         char *buf = NULL;
7018         char *name;
7019
7020         if (vma->vm_flags & VM_READ)
7021                 prot |= PROT_READ;
7022         if (vma->vm_flags & VM_WRITE)
7023                 prot |= PROT_WRITE;
7024         if (vma->vm_flags & VM_EXEC)
7025                 prot |= PROT_EXEC;
7026
7027         if (vma->vm_flags & VM_MAYSHARE)
7028                 flags = MAP_SHARED;
7029         else
7030                 flags = MAP_PRIVATE;
7031
7032         if (vma->vm_flags & VM_DENYWRITE)
7033                 flags |= MAP_DENYWRITE;
7034         if (vma->vm_flags & VM_MAYEXEC)
7035                 flags |= MAP_EXECUTABLE;
7036         if (vma->vm_flags & VM_LOCKED)
7037                 flags |= MAP_LOCKED;
7038         if (vma->vm_flags & VM_HUGETLB)
7039                 flags |= MAP_HUGETLB;
7040
7041         if (file) {
7042                 struct inode *inode;
7043                 dev_t dev;
7044
7045                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7046                 if (!buf) {
7047                         name = "//enomem";
7048                         goto cpy_name;
7049                 }
7050                 /*
7051                  * d_path() works from the end of the rb backwards, so we
7052                  * need to add enough zero bytes after the string to handle
7053                  * the 64bit alignment we do later.
7054                  */
7055                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7056                 if (IS_ERR(name)) {
7057                         name = "//toolong";
7058                         goto cpy_name;
7059                 }
7060                 inode = file_inode(vma->vm_file);
7061                 dev = inode->i_sb->s_dev;
7062                 ino = inode->i_ino;
7063                 gen = inode->i_generation;
7064                 maj = MAJOR(dev);
7065                 min = MINOR(dev);
7066
7067                 goto got_name;
7068         } else {
7069                 if (vma->vm_ops && vma->vm_ops->name) {
7070                         name = (char *) vma->vm_ops->name(vma);
7071                         if (name)
7072                                 goto cpy_name;
7073                 }
7074
7075                 name = (char *)arch_vma_name(vma);
7076                 if (name)
7077                         goto cpy_name;
7078
7079                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7080                                 vma->vm_end >= vma->vm_mm->brk) {
7081                         name = "[heap]";
7082                         goto cpy_name;
7083                 }
7084                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7085                                 vma->vm_end >= vma->vm_mm->start_stack) {
7086                         name = "[stack]";
7087                         goto cpy_name;
7088                 }
7089
7090                 name = "//anon";
7091                 goto cpy_name;
7092         }
7093
7094 cpy_name:
7095         strlcpy(tmp, name, sizeof(tmp));
7096         name = tmp;
7097 got_name:
7098         /*
7099          * Since our buffer works in 8 byte units we need to align our string
7100          * size to a multiple of 8. However, we must guarantee the tail end is
7101          * zero'd out to avoid leaking random bits to userspace.
7102          */
7103         size = strlen(name)+1;
7104         while (!IS_ALIGNED(size, sizeof(u64)))
7105                 name[size++] = '\0';
7106
7107         mmap_event->file_name = name;
7108         mmap_event->file_size = size;
7109         mmap_event->maj = maj;
7110         mmap_event->min = min;
7111         mmap_event->ino = ino;
7112         mmap_event->ino_generation = gen;
7113         mmap_event->prot = prot;
7114         mmap_event->flags = flags;
7115
7116         if (!(vma->vm_flags & VM_EXEC))
7117                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7118
7119         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7120
7121         perf_iterate_sb(perf_event_mmap_output,
7122                        mmap_event,
7123                        NULL);
7124
7125         kfree(buf);
7126 }
7127
7128 /*
7129  * Check whether inode and address range match filter criteria.
7130  */
7131 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7132                                      struct file *file, unsigned long offset,
7133                                      unsigned long size)
7134 {
7135         /* d_inode(NULL) won't be equal to any mapped user-space file */
7136         if (!filter->path.dentry)
7137                 return false;
7138
7139         if (d_inode(filter->path.dentry) != file_inode(file))
7140                 return false;
7141
7142         if (filter->offset > offset + size)
7143                 return false;
7144
7145         if (filter->offset + filter->size < offset)
7146                 return false;
7147
7148         return true;
7149 }
7150
7151 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7152 {
7153         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7154         struct vm_area_struct *vma = data;
7155         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7156         struct file *file = vma->vm_file;
7157         struct perf_addr_filter *filter;
7158         unsigned int restart = 0, count = 0;
7159
7160         if (!has_addr_filter(event))
7161                 return;
7162
7163         if (!file)
7164                 return;
7165
7166         raw_spin_lock_irqsave(&ifh->lock, flags);
7167         list_for_each_entry(filter, &ifh->list, entry) {
7168                 if (perf_addr_filter_match(filter, file, off,
7169                                              vma->vm_end - vma->vm_start)) {
7170                         event->addr_filters_offs[count] = vma->vm_start;
7171                         restart++;
7172                 }
7173
7174                 count++;
7175         }
7176
7177         if (restart)
7178                 event->addr_filters_gen++;
7179         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7180
7181         if (restart)
7182                 perf_event_stop(event, 1);
7183 }
7184
7185 /*
7186  * Adjust all task's events' filters to the new vma
7187  */
7188 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7189 {
7190         struct perf_event_context *ctx;
7191         int ctxn;
7192
7193         /*
7194          * Data tracing isn't supported yet and as such there is no need
7195          * to keep track of anything that isn't related to executable code:
7196          */
7197         if (!(vma->vm_flags & VM_EXEC))
7198                 return;
7199
7200         rcu_read_lock();
7201         for_each_task_context_nr(ctxn) {
7202                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7203                 if (!ctx)
7204                         continue;
7205
7206                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7207         }
7208         rcu_read_unlock();
7209 }
7210
7211 void perf_event_mmap(struct vm_area_struct *vma)
7212 {
7213         struct perf_mmap_event mmap_event;
7214
7215         if (!atomic_read(&nr_mmap_events))
7216                 return;
7217
7218         mmap_event = (struct perf_mmap_event){
7219                 .vma    = vma,
7220                 /* .file_name */
7221                 /* .file_size */
7222                 .event_id  = {
7223                         .header = {
7224                                 .type = PERF_RECORD_MMAP,
7225                                 .misc = PERF_RECORD_MISC_USER,
7226                                 /* .size */
7227                         },
7228                         /* .pid */
7229                         /* .tid */
7230                         .start  = vma->vm_start,
7231                         .len    = vma->vm_end - vma->vm_start,
7232                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7233                 },
7234                 /* .maj (attr_mmap2 only) */
7235                 /* .min (attr_mmap2 only) */
7236                 /* .ino (attr_mmap2 only) */
7237                 /* .ino_generation (attr_mmap2 only) */
7238                 /* .prot (attr_mmap2 only) */
7239                 /* .flags (attr_mmap2 only) */
7240         };
7241
7242         perf_addr_filters_adjust(vma);
7243         perf_event_mmap_event(&mmap_event);
7244 }
7245
7246 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7247                           unsigned long size, u64 flags)
7248 {
7249         struct perf_output_handle handle;
7250         struct perf_sample_data sample;
7251         struct perf_aux_event {
7252                 struct perf_event_header        header;
7253                 u64                             offset;
7254                 u64                             size;
7255                 u64                             flags;
7256         } rec = {
7257                 .header = {
7258                         .type = PERF_RECORD_AUX,
7259                         .misc = 0,
7260                         .size = sizeof(rec),
7261                 },
7262                 .offset         = head,
7263                 .size           = size,
7264                 .flags          = flags,
7265         };
7266         int ret;
7267
7268         perf_event_header__init_id(&rec.header, &sample, event);
7269         ret = perf_output_begin(&handle, event, rec.header.size);
7270
7271         if (ret)
7272                 return;
7273
7274         perf_output_put(&handle, rec);
7275         perf_event__output_id_sample(event, &handle, &sample);
7276
7277         perf_output_end(&handle);
7278 }
7279
7280 /*
7281  * Lost/dropped samples logging
7282  */
7283 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7284 {
7285         struct perf_output_handle handle;
7286         struct perf_sample_data sample;
7287         int ret;
7288
7289         struct {
7290                 struct perf_event_header        header;
7291                 u64                             lost;
7292         } lost_samples_event = {
7293                 .header = {
7294                         .type = PERF_RECORD_LOST_SAMPLES,
7295                         .misc = 0,
7296                         .size = sizeof(lost_samples_event),
7297                 },
7298                 .lost           = lost,
7299         };
7300
7301         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7302
7303         ret = perf_output_begin(&handle, event,
7304                                 lost_samples_event.header.size);
7305         if (ret)
7306                 return;
7307
7308         perf_output_put(&handle, lost_samples_event);
7309         perf_event__output_id_sample(event, &handle, &sample);
7310         perf_output_end(&handle);
7311 }
7312
7313 /*
7314  * context_switch tracking
7315  */
7316
7317 struct perf_switch_event {
7318         struct task_struct      *task;
7319         struct task_struct      *next_prev;
7320
7321         struct {
7322                 struct perf_event_header        header;
7323                 u32                             next_prev_pid;
7324                 u32                             next_prev_tid;
7325         } event_id;
7326 };
7327
7328 static int perf_event_switch_match(struct perf_event *event)
7329 {
7330         return event->attr.context_switch;
7331 }
7332
7333 static void perf_event_switch_output(struct perf_event *event, void *data)
7334 {
7335         struct perf_switch_event *se = data;
7336         struct perf_output_handle handle;
7337         struct perf_sample_data sample;
7338         int ret;
7339
7340         if (!perf_event_switch_match(event))
7341                 return;
7342
7343         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7344         if (event->ctx->task) {
7345                 se->event_id.header.type = PERF_RECORD_SWITCH;
7346                 se->event_id.header.size = sizeof(se->event_id.header);
7347         } else {
7348                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7349                 se->event_id.header.size = sizeof(se->event_id);
7350                 se->event_id.next_prev_pid =
7351                                         perf_event_pid(event, se->next_prev);
7352                 se->event_id.next_prev_tid =
7353                                         perf_event_tid(event, se->next_prev);
7354         }
7355
7356         perf_event_header__init_id(&se->event_id.header, &sample, event);
7357
7358         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7359         if (ret)
7360                 return;
7361
7362         if (event->ctx->task)
7363                 perf_output_put(&handle, se->event_id.header);
7364         else
7365                 perf_output_put(&handle, se->event_id);
7366
7367         perf_event__output_id_sample(event, &handle, &sample);
7368
7369         perf_output_end(&handle);
7370 }
7371
7372 static void perf_event_switch(struct task_struct *task,
7373                               struct task_struct *next_prev, bool sched_in)
7374 {
7375         struct perf_switch_event switch_event;
7376
7377         /* N.B. caller checks nr_switch_events != 0 */
7378
7379         switch_event = (struct perf_switch_event){
7380                 .task           = task,
7381                 .next_prev      = next_prev,
7382                 .event_id       = {
7383                         .header = {
7384                                 /* .type */
7385                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7386                                 /* .size */
7387                         },
7388                         /* .next_prev_pid */
7389                         /* .next_prev_tid */
7390                 },
7391         };
7392
7393         perf_iterate_sb(perf_event_switch_output,
7394                        &switch_event,
7395                        NULL);
7396 }
7397
7398 /*
7399  * IRQ throttle logging
7400  */
7401
7402 static void perf_log_throttle(struct perf_event *event, int enable)
7403 {
7404         struct perf_output_handle handle;
7405         struct perf_sample_data sample;
7406         int ret;
7407
7408         struct {
7409                 struct perf_event_header        header;
7410                 u64                             time;
7411                 u64                             id;
7412                 u64                             stream_id;
7413         } throttle_event = {
7414                 .header = {
7415                         .type = PERF_RECORD_THROTTLE,
7416                         .misc = 0,
7417                         .size = sizeof(throttle_event),
7418                 },
7419                 .time           = perf_event_clock(event),
7420                 .id             = primary_event_id(event),
7421                 .stream_id      = event->id,
7422         };
7423
7424         if (enable)
7425                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7426
7427         perf_event_header__init_id(&throttle_event.header, &sample, event);
7428
7429         ret = perf_output_begin(&handle, event,
7430                                 throttle_event.header.size);
7431         if (ret)
7432                 return;
7433
7434         perf_output_put(&handle, throttle_event);
7435         perf_event__output_id_sample(event, &handle, &sample);
7436         perf_output_end(&handle);
7437 }
7438
7439 void perf_event_itrace_started(struct perf_event *event)
7440 {
7441         event->attach_state |= PERF_ATTACH_ITRACE;
7442 }
7443
7444 static void perf_log_itrace_start(struct perf_event *event)
7445 {
7446         struct perf_output_handle handle;
7447         struct perf_sample_data sample;
7448         struct perf_aux_event {
7449                 struct perf_event_header        header;
7450                 u32                             pid;
7451                 u32                             tid;
7452         } rec;
7453         int ret;
7454
7455         if (event->parent)
7456                 event = event->parent;
7457
7458         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7459             event->attach_state & PERF_ATTACH_ITRACE)
7460                 return;
7461
7462         rec.header.type = PERF_RECORD_ITRACE_START;
7463         rec.header.misc = 0;
7464         rec.header.size = sizeof(rec);
7465         rec.pid = perf_event_pid(event, current);
7466         rec.tid = perf_event_tid(event, current);
7467
7468         perf_event_header__init_id(&rec.header, &sample, event);
7469         ret = perf_output_begin(&handle, event, rec.header.size);
7470
7471         if (ret)
7472                 return;
7473
7474         perf_output_put(&handle, rec);
7475         perf_event__output_id_sample(event, &handle, &sample);
7476
7477         perf_output_end(&handle);
7478 }
7479
7480 static int
7481 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7482 {
7483         struct hw_perf_event *hwc = &event->hw;
7484         int ret = 0;
7485         u64 seq;
7486
7487         seq = __this_cpu_read(perf_throttled_seq);
7488         if (seq != hwc->interrupts_seq) {
7489                 hwc->interrupts_seq = seq;
7490                 hwc->interrupts = 1;
7491         } else {
7492                 hwc->interrupts++;
7493                 if (unlikely(throttle
7494                              && hwc->interrupts >= max_samples_per_tick)) {
7495                         __this_cpu_inc(perf_throttled_count);
7496                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7497                         hwc->interrupts = MAX_INTERRUPTS;
7498                         perf_log_throttle(event, 0);
7499                         ret = 1;
7500                 }
7501         }
7502
7503         if (event->attr.freq) {
7504                 u64 now = perf_clock();
7505                 s64 delta = now - hwc->freq_time_stamp;
7506
7507                 hwc->freq_time_stamp = now;
7508
7509                 if (delta > 0 && delta < 2*TICK_NSEC)
7510                         perf_adjust_period(event, delta, hwc->last_period, true);
7511         }
7512
7513         return ret;
7514 }
7515
7516 int perf_event_account_interrupt(struct perf_event *event)
7517 {
7518         return __perf_event_account_interrupt(event, 1);
7519 }
7520
7521 /*
7522  * Generic event overflow handling, sampling.
7523  */
7524
7525 static int __perf_event_overflow(struct perf_event *event,
7526                                    int throttle, struct perf_sample_data *data,
7527                                    struct pt_regs *regs)
7528 {
7529         int events = atomic_read(&event->event_limit);
7530         int ret = 0;
7531
7532         /*
7533          * Non-sampling counters might still use the PMI to fold short
7534          * hardware counters, ignore those.
7535          */
7536         if (unlikely(!is_sampling_event(event)))
7537                 return 0;
7538
7539         ret = __perf_event_account_interrupt(event, throttle);
7540
7541         /*
7542          * XXX event_limit might not quite work as expected on inherited
7543          * events
7544          */
7545
7546         event->pending_kill = POLL_IN;
7547         if (events && atomic_dec_and_test(&event->event_limit)) {
7548                 ret = 1;
7549                 event->pending_kill = POLL_HUP;
7550
7551                 perf_event_disable_inatomic(event);
7552         }
7553
7554         READ_ONCE(event->overflow_handler)(event, data, regs);
7555
7556         if (*perf_event_fasync(event) && event->pending_kill) {
7557                 event->pending_wakeup = 1;
7558                 irq_work_queue(&event->pending);
7559         }
7560
7561         return ret;
7562 }
7563
7564 int perf_event_overflow(struct perf_event *event,
7565                           struct perf_sample_data *data,
7566                           struct pt_regs *regs)
7567 {
7568         return __perf_event_overflow(event, 1, data, regs);
7569 }
7570
7571 /*
7572  * Generic software event infrastructure
7573  */
7574
7575 struct swevent_htable {
7576         struct swevent_hlist            *swevent_hlist;
7577         struct mutex                    hlist_mutex;
7578         int                             hlist_refcount;
7579
7580         /* Recursion avoidance in each contexts */
7581         int                             recursion[PERF_NR_CONTEXTS];
7582 };
7583
7584 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7585
7586 /*
7587  * We directly increment event->count and keep a second value in
7588  * event->hw.period_left to count intervals. This period event
7589  * is kept in the range [-sample_period, 0] so that we can use the
7590  * sign as trigger.
7591  */
7592
7593 u64 perf_swevent_set_period(struct perf_event *event)
7594 {
7595         struct hw_perf_event *hwc = &event->hw;
7596         u64 period = hwc->last_period;
7597         u64 nr, offset;
7598         s64 old, val;
7599
7600         hwc->last_period = hwc->sample_period;
7601
7602 again:
7603         old = val = local64_read(&hwc->period_left);
7604         if (val < 0)
7605                 return 0;
7606
7607         nr = div64_u64(period + val, period);
7608         offset = nr * period;
7609         val -= offset;
7610         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7611                 goto again;
7612
7613         return nr;
7614 }
7615
7616 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7617                                     struct perf_sample_data *data,
7618                                     struct pt_regs *regs)
7619 {
7620         struct hw_perf_event *hwc = &event->hw;
7621         int throttle = 0;
7622
7623         if (!overflow)
7624                 overflow = perf_swevent_set_period(event);
7625
7626         if (hwc->interrupts == MAX_INTERRUPTS)
7627                 return;
7628
7629         for (; overflow; overflow--) {
7630                 if (__perf_event_overflow(event, throttle,
7631                                             data, regs)) {
7632                         /*
7633                          * We inhibit the overflow from happening when
7634                          * hwc->interrupts == MAX_INTERRUPTS.
7635                          */
7636                         break;
7637                 }
7638                 throttle = 1;
7639         }
7640 }
7641
7642 static void perf_swevent_event(struct perf_event *event, u64 nr,
7643                                struct perf_sample_data *data,
7644                                struct pt_regs *regs)
7645 {
7646         struct hw_perf_event *hwc = &event->hw;
7647
7648         local64_add(nr, &event->count);
7649
7650         if (!regs)
7651                 return;
7652
7653         if (!is_sampling_event(event))
7654                 return;
7655
7656         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7657                 data->period = nr;
7658                 return perf_swevent_overflow(event, 1, data, regs);
7659         } else
7660                 data->period = event->hw.last_period;
7661
7662         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7663                 return perf_swevent_overflow(event, 1, data, regs);
7664
7665         if (local64_add_negative(nr, &hwc->period_left))
7666                 return;
7667
7668         perf_swevent_overflow(event, 0, data, regs);
7669 }
7670
7671 static int perf_exclude_event(struct perf_event *event,
7672                               struct pt_regs *regs)
7673 {
7674         if (event->hw.state & PERF_HES_STOPPED)
7675                 return 1;
7676
7677         if (regs) {
7678                 if (event->attr.exclude_user && user_mode(regs))
7679                         return 1;
7680
7681                 if (event->attr.exclude_kernel && !user_mode(regs))
7682                         return 1;
7683         }
7684
7685         return 0;
7686 }
7687
7688 static int perf_swevent_match(struct perf_event *event,
7689                                 enum perf_type_id type,
7690                                 u32 event_id,
7691                                 struct perf_sample_data *data,
7692                                 struct pt_regs *regs)
7693 {
7694         if (event->attr.type != type)
7695                 return 0;
7696
7697         if (event->attr.config != event_id)
7698                 return 0;
7699
7700         if (perf_exclude_event(event, regs))
7701                 return 0;
7702
7703         return 1;
7704 }
7705
7706 static inline u64 swevent_hash(u64 type, u32 event_id)
7707 {
7708         u64 val = event_id | (type << 32);
7709
7710         return hash_64(val, SWEVENT_HLIST_BITS);
7711 }
7712
7713 static inline struct hlist_head *
7714 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7715 {
7716         u64 hash = swevent_hash(type, event_id);
7717
7718         return &hlist->heads[hash];
7719 }
7720
7721 /* For the read side: events when they trigger */
7722 static inline struct hlist_head *
7723 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7724 {
7725         struct swevent_hlist *hlist;
7726
7727         hlist = rcu_dereference(swhash->swevent_hlist);
7728         if (!hlist)
7729                 return NULL;
7730
7731         return __find_swevent_head(hlist, type, event_id);
7732 }
7733
7734 /* For the event head insertion and removal in the hlist */
7735 static inline struct hlist_head *
7736 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7737 {
7738         struct swevent_hlist *hlist;
7739         u32 event_id = event->attr.config;
7740         u64 type = event->attr.type;
7741
7742         /*
7743          * Event scheduling is always serialized against hlist allocation
7744          * and release. Which makes the protected version suitable here.
7745          * The context lock guarantees that.
7746          */
7747         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7748                                           lockdep_is_held(&event->ctx->lock));
7749         if (!hlist)
7750                 return NULL;
7751
7752         return __find_swevent_head(hlist, type, event_id);
7753 }
7754
7755 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7756                                     u64 nr,
7757                                     struct perf_sample_data *data,
7758                                     struct pt_regs *regs)
7759 {
7760         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7761         struct perf_event *event;
7762         struct hlist_head *head;
7763
7764         rcu_read_lock();
7765         head = find_swevent_head_rcu(swhash, type, event_id);
7766         if (!head)
7767                 goto end;
7768
7769         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7770                 if (perf_swevent_match(event, type, event_id, data, regs))
7771                         perf_swevent_event(event, nr, data, regs);
7772         }
7773 end:
7774         rcu_read_unlock();
7775 }
7776
7777 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7778
7779 int perf_swevent_get_recursion_context(void)
7780 {
7781         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7782
7783         return get_recursion_context(swhash->recursion);
7784 }
7785 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7786
7787 void perf_swevent_put_recursion_context(int rctx)
7788 {
7789         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7790
7791         put_recursion_context(swhash->recursion, rctx);
7792 }
7793
7794 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7795 {
7796         struct perf_sample_data data;
7797
7798         if (WARN_ON_ONCE(!regs))
7799                 return;
7800
7801         perf_sample_data_init(&data, addr, 0);
7802         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7803 }
7804
7805 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7806 {
7807         int rctx;
7808
7809         preempt_disable_notrace();
7810         rctx = perf_swevent_get_recursion_context();
7811         if (unlikely(rctx < 0))
7812                 goto fail;
7813
7814         ___perf_sw_event(event_id, nr, regs, addr);
7815
7816         perf_swevent_put_recursion_context(rctx);
7817 fail:
7818         preempt_enable_notrace();
7819 }
7820
7821 static void perf_swevent_read(struct perf_event *event)
7822 {
7823 }
7824
7825 static int perf_swevent_add(struct perf_event *event, int flags)
7826 {
7827         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7828         struct hw_perf_event *hwc = &event->hw;
7829         struct hlist_head *head;
7830
7831         if (is_sampling_event(event)) {
7832                 hwc->last_period = hwc->sample_period;
7833                 perf_swevent_set_period(event);
7834         }
7835
7836         hwc->state = !(flags & PERF_EF_START);
7837
7838         head = find_swevent_head(swhash, event);
7839         if (WARN_ON_ONCE(!head))
7840                 return -EINVAL;
7841
7842         hlist_add_head_rcu(&event->hlist_entry, head);
7843         perf_event_update_userpage(event);
7844
7845         return 0;
7846 }
7847
7848 static void perf_swevent_del(struct perf_event *event, int flags)
7849 {
7850         hlist_del_rcu(&event->hlist_entry);
7851 }
7852
7853 static void perf_swevent_start(struct perf_event *event, int flags)
7854 {
7855         event->hw.state = 0;
7856 }
7857
7858 static void perf_swevent_stop(struct perf_event *event, int flags)
7859 {
7860         event->hw.state = PERF_HES_STOPPED;
7861 }
7862
7863 /* Deref the hlist from the update side */
7864 static inline struct swevent_hlist *
7865 swevent_hlist_deref(struct swevent_htable *swhash)
7866 {
7867         return rcu_dereference_protected(swhash->swevent_hlist,
7868                                          lockdep_is_held(&swhash->hlist_mutex));
7869 }
7870
7871 static void swevent_hlist_release(struct swevent_htable *swhash)
7872 {
7873         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7874
7875         if (!hlist)
7876                 return;
7877
7878         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7879         kfree_rcu(hlist, rcu_head);
7880 }
7881
7882 static void swevent_hlist_put_cpu(int cpu)
7883 {
7884         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7885
7886         mutex_lock(&swhash->hlist_mutex);
7887
7888         if (!--swhash->hlist_refcount)
7889                 swevent_hlist_release(swhash);
7890
7891         mutex_unlock(&swhash->hlist_mutex);
7892 }
7893
7894 static void swevent_hlist_put(void)
7895 {
7896         int cpu;
7897
7898         for_each_possible_cpu(cpu)
7899                 swevent_hlist_put_cpu(cpu);
7900 }
7901
7902 static int swevent_hlist_get_cpu(int cpu)
7903 {
7904         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7905         int err = 0;
7906
7907         mutex_lock(&swhash->hlist_mutex);
7908         if (!swevent_hlist_deref(swhash) &&
7909             cpumask_test_cpu(cpu, perf_online_mask)) {
7910                 struct swevent_hlist *hlist;
7911
7912                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7913                 if (!hlist) {
7914                         err = -ENOMEM;
7915                         goto exit;
7916                 }
7917                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7918         }
7919         swhash->hlist_refcount++;
7920 exit:
7921         mutex_unlock(&swhash->hlist_mutex);
7922
7923         return err;
7924 }
7925
7926 static int swevent_hlist_get(void)
7927 {
7928         int err, cpu, failed_cpu;
7929
7930         mutex_lock(&pmus_lock);
7931         for_each_possible_cpu(cpu) {
7932                 err = swevent_hlist_get_cpu(cpu);
7933                 if (err) {
7934                         failed_cpu = cpu;
7935                         goto fail;
7936                 }
7937         }
7938         mutex_unlock(&pmus_lock);
7939         return 0;
7940 fail:
7941         for_each_possible_cpu(cpu) {
7942                 if (cpu == failed_cpu)
7943                         break;
7944                 swevent_hlist_put_cpu(cpu);
7945         }
7946         mutex_unlock(&pmus_lock);
7947         return err;
7948 }
7949
7950 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7951
7952 static void sw_perf_event_destroy(struct perf_event *event)
7953 {
7954         u64 event_id = event->attr.config;
7955
7956         WARN_ON(event->parent);
7957
7958         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7959         swevent_hlist_put();
7960 }
7961
7962 static int perf_swevent_init(struct perf_event *event)
7963 {
7964         u64 event_id = event->attr.config;
7965
7966         if (event->attr.type != PERF_TYPE_SOFTWARE)
7967                 return -ENOENT;
7968
7969         /*
7970          * no branch sampling for software events
7971          */
7972         if (has_branch_stack(event))
7973                 return -EOPNOTSUPP;
7974
7975         switch (event_id) {
7976         case PERF_COUNT_SW_CPU_CLOCK:
7977         case PERF_COUNT_SW_TASK_CLOCK:
7978                 return -ENOENT;
7979
7980         default:
7981                 break;
7982         }
7983
7984         if (event_id >= PERF_COUNT_SW_MAX)
7985                 return -ENOENT;
7986
7987         if (!event->parent) {
7988                 int err;
7989
7990                 err = swevent_hlist_get();
7991                 if (err)
7992                         return err;
7993
7994                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7995                 event->destroy = sw_perf_event_destroy;
7996         }
7997
7998         return 0;
7999 }
8000
8001 static struct pmu perf_swevent = {
8002         .task_ctx_nr    = perf_sw_context,
8003
8004         .capabilities   = PERF_PMU_CAP_NO_NMI,
8005
8006         .event_init     = perf_swevent_init,
8007         .add            = perf_swevent_add,
8008         .del            = perf_swevent_del,
8009         .start          = perf_swevent_start,
8010         .stop           = perf_swevent_stop,
8011         .read           = perf_swevent_read,
8012 };
8013
8014 #ifdef CONFIG_EVENT_TRACING
8015
8016 static int perf_tp_filter_match(struct perf_event *event,
8017                                 struct perf_sample_data *data)
8018 {
8019         void *record = data->raw->frag.data;
8020
8021         /* only top level events have filters set */
8022         if (event->parent)
8023                 event = event->parent;
8024
8025         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8026                 return 1;
8027         return 0;
8028 }
8029
8030 static int perf_tp_event_match(struct perf_event *event,
8031                                 struct perf_sample_data *data,
8032                                 struct pt_regs *regs)
8033 {
8034         if (event->hw.state & PERF_HES_STOPPED)
8035                 return 0;
8036         /*
8037          * All tracepoints are from kernel-space.
8038          */
8039         if (event->attr.exclude_kernel)
8040                 return 0;
8041
8042         if (!perf_tp_filter_match(event, data))
8043                 return 0;
8044
8045         return 1;
8046 }
8047
8048 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8049                                struct trace_event_call *call, u64 count,
8050                                struct pt_regs *regs, struct hlist_head *head,
8051                                struct task_struct *task)
8052 {
8053         struct bpf_prog *prog = call->prog;
8054
8055         if (prog) {
8056                 *(struct pt_regs **)raw_data = regs;
8057                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
8058                         perf_swevent_put_recursion_context(rctx);
8059                         return;
8060                 }
8061         }
8062         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8063                       rctx, task, NULL);
8064 }
8065 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8066
8067 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8068                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8069                    struct task_struct *task, struct perf_event *event)
8070 {
8071         struct perf_sample_data data;
8072
8073         struct perf_raw_record raw = {
8074                 .frag = {
8075                         .size = entry_size,
8076                         .data = record,
8077                 },
8078         };
8079
8080         perf_sample_data_init(&data, 0, 0);
8081         data.raw = &raw;
8082
8083         perf_trace_buf_update(record, event_type);
8084
8085         /* Use the given event instead of the hlist */
8086         if (event) {
8087                 if (perf_tp_event_match(event, &data, regs))
8088                         perf_swevent_event(event, count, &data, regs);
8089         } else {
8090                 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8091                         if (perf_tp_event_match(event, &data, regs))
8092                                 perf_swevent_event(event, count, &data, regs);
8093                 }
8094         }
8095
8096         /*
8097          * If we got specified a target task, also iterate its context and
8098          * deliver this event there too.
8099          */
8100         if (task && task != current) {
8101                 struct perf_event_context *ctx;
8102                 struct trace_entry *entry = record;
8103
8104                 rcu_read_lock();
8105                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8106                 if (!ctx)
8107                         goto unlock;
8108
8109                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8110                         if (event->cpu != smp_processor_id())
8111                                 continue;
8112                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8113                                 continue;
8114                         if (event->attr.config != entry->type)
8115                                 continue;
8116                         if (perf_tp_event_match(event, &data, regs))
8117                                 perf_swevent_event(event, count, &data, regs);
8118                 }
8119 unlock:
8120                 rcu_read_unlock();
8121         }
8122
8123         perf_swevent_put_recursion_context(rctx);
8124 }
8125 EXPORT_SYMBOL_GPL(perf_tp_event);
8126
8127 static void tp_perf_event_destroy(struct perf_event *event)
8128 {
8129         perf_trace_destroy(event);
8130 }
8131
8132 static int perf_tp_event_init(struct perf_event *event)
8133 {
8134         int err;
8135
8136         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8137                 return -ENOENT;
8138
8139         /*
8140          * no branch sampling for tracepoint events
8141          */
8142         if (has_branch_stack(event))
8143                 return -EOPNOTSUPP;
8144
8145         err = perf_trace_init(event);
8146         if (err)
8147                 return err;
8148
8149         event->destroy = tp_perf_event_destroy;
8150
8151         return 0;
8152 }
8153
8154 static struct pmu perf_tracepoint = {
8155         .task_ctx_nr    = perf_sw_context,
8156
8157         .event_init     = perf_tp_event_init,
8158         .add            = perf_trace_add,
8159         .del            = perf_trace_del,
8160         .start          = perf_swevent_start,
8161         .stop           = perf_swevent_stop,
8162         .read           = perf_swevent_read,
8163 };
8164
8165 static inline void perf_tp_register(void)
8166 {
8167         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8168 }
8169
8170 static void perf_event_free_filter(struct perf_event *event)
8171 {
8172         ftrace_profile_free_filter(event);
8173 }
8174
8175 #ifdef CONFIG_BPF_SYSCALL
8176 static void bpf_overflow_handler(struct perf_event *event,
8177                                  struct perf_sample_data *data,
8178                                  struct pt_regs *regs)
8179 {
8180         struct bpf_perf_event_data_kern ctx = {
8181                 .data = data,
8182                 .regs = regs,
8183         };
8184         int ret = 0;
8185
8186         preempt_disable();
8187         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8188                 goto out;
8189         rcu_read_lock();
8190         ret = BPF_PROG_RUN(event->prog, &ctx);
8191         rcu_read_unlock();
8192 out:
8193         __this_cpu_dec(bpf_prog_active);
8194         preempt_enable();
8195         if (!ret)
8196                 return;
8197
8198         event->orig_overflow_handler(event, data, regs);
8199 }
8200
8201 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8202 {
8203         struct bpf_prog *prog;
8204
8205         if (event->overflow_handler_context)
8206                 /* hw breakpoint or kernel counter */
8207                 return -EINVAL;
8208
8209         if (event->prog)
8210                 return -EEXIST;
8211
8212         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8213         if (IS_ERR(prog))
8214                 return PTR_ERR(prog);
8215
8216         event->prog = prog;
8217         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8218         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8219         return 0;
8220 }
8221
8222 static void perf_event_free_bpf_handler(struct perf_event *event)
8223 {
8224         struct bpf_prog *prog = event->prog;
8225
8226         if (!prog)
8227                 return;
8228
8229         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8230         event->prog = NULL;
8231         bpf_prog_put(prog);
8232 }
8233 #else
8234 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8235 {
8236         return -EOPNOTSUPP;
8237 }
8238 static void perf_event_free_bpf_handler(struct perf_event *event)
8239 {
8240 }
8241 #endif
8242
8243 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8244 {
8245         bool is_kprobe, is_tracepoint, is_syscall_tp;
8246         struct bpf_prog *prog;
8247
8248         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8249                 return perf_event_set_bpf_handler(event, prog_fd);
8250
8251         if (event->tp_event->prog)
8252                 return -EEXIST;
8253
8254         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8255         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8256         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8257         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8258                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8259                 return -EINVAL;
8260
8261         prog = bpf_prog_get(prog_fd);
8262         if (IS_ERR(prog))
8263                 return PTR_ERR(prog);
8264
8265         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8266             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8267             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8268                 /* valid fd, but invalid bpf program type */
8269                 bpf_prog_put(prog);
8270                 return -EINVAL;
8271         }
8272
8273         if (is_tracepoint || is_syscall_tp) {
8274                 int off = trace_event_get_offsets(event->tp_event);
8275
8276                 if (prog->aux->max_ctx_offset > off) {
8277                         bpf_prog_put(prog);
8278                         return -EACCES;
8279                 }
8280         }
8281         event->tp_event->prog = prog;
8282         event->tp_event->bpf_prog_owner = event;
8283
8284         return 0;
8285 }
8286
8287 static void perf_event_free_bpf_prog(struct perf_event *event)
8288 {
8289         struct bpf_prog *prog;
8290
8291         perf_event_free_bpf_handler(event);
8292
8293         if (!event->tp_event)
8294                 return;
8295
8296         prog = event->tp_event->prog;
8297         if (prog && event->tp_event->bpf_prog_owner == event) {
8298                 event->tp_event->prog = NULL;
8299                 bpf_prog_put(prog);
8300         }
8301 }
8302
8303 #else
8304
8305 static inline void perf_tp_register(void)
8306 {
8307 }
8308
8309 static void perf_event_free_filter(struct perf_event *event)
8310 {
8311 }
8312
8313 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8314 {
8315         return -ENOENT;
8316 }
8317
8318 static void perf_event_free_bpf_prog(struct perf_event *event)
8319 {
8320 }
8321 #endif /* CONFIG_EVENT_TRACING */
8322
8323 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8324 void perf_bp_event(struct perf_event *bp, void *data)
8325 {
8326         struct perf_sample_data sample;
8327         struct pt_regs *regs = data;
8328
8329         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8330
8331         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8332                 perf_swevent_event(bp, 1, &sample, regs);
8333 }
8334 #endif
8335
8336 /*
8337  * Allocate a new address filter
8338  */
8339 static struct perf_addr_filter *
8340 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8341 {
8342         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8343         struct perf_addr_filter *filter;
8344
8345         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8346         if (!filter)
8347                 return NULL;
8348
8349         INIT_LIST_HEAD(&filter->entry);
8350         list_add_tail(&filter->entry, filters);
8351
8352         return filter;
8353 }
8354
8355 static void free_filters_list(struct list_head *filters)
8356 {
8357         struct perf_addr_filter *filter, *iter;
8358
8359         list_for_each_entry_safe(filter, iter, filters, entry) {
8360                 path_put(&filter->path);
8361                 list_del(&filter->entry);
8362                 kfree(filter);
8363         }
8364 }
8365
8366 /*
8367  * Free existing address filters and optionally install new ones
8368  */
8369 static void perf_addr_filters_splice(struct perf_event *event,
8370                                      struct list_head *head)
8371 {
8372         unsigned long flags;
8373         LIST_HEAD(list);
8374
8375         if (!has_addr_filter(event))
8376                 return;
8377
8378         /* don't bother with children, they don't have their own filters */
8379         if (event->parent)
8380                 return;
8381
8382         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8383
8384         list_splice_init(&event->addr_filters.list, &list);
8385         if (head)
8386                 list_splice(head, &event->addr_filters.list);
8387
8388         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8389
8390         free_filters_list(&list);
8391 }
8392
8393 /*
8394  * Scan through mm's vmas and see if one of them matches the
8395  * @filter; if so, adjust filter's address range.
8396  * Called with mm::mmap_sem down for reading.
8397  */
8398 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8399                                             struct mm_struct *mm)
8400 {
8401         struct vm_area_struct *vma;
8402
8403         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8404                 struct file *file = vma->vm_file;
8405                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8406                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8407
8408                 if (!file)
8409                         continue;
8410
8411                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8412                         continue;
8413
8414                 return vma->vm_start;
8415         }
8416
8417         return 0;
8418 }
8419
8420 /*
8421  * Update event's address range filters based on the
8422  * task's existing mappings, if any.
8423  */
8424 static void perf_event_addr_filters_apply(struct perf_event *event)
8425 {
8426         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8427         struct task_struct *task = READ_ONCE(event->ctx->task);
8428         struct perf_addr_filter *filter;
8429         struct mm_struct *mm = NULL;
8430         unsigned int count = 0;
8431         unsigned long flags;
8432
8433         /*
8434          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8435          * will stop on the parent's child_mutex that our caller is also holding
8436          */
8437         if (task == TASK_TOMBSTONE)
8438                 return;
8439
8440         if (!ifh->nr_file_filters)
8441                 return;
8442
8443         mm = get_task_mm(task);
8444         if (!mm)
8445                 goto restart;
8446
8447         down_read(&mm->mmap_sem);
8448
8449         raw_spin_lock_irqsave(&ifh->lock, flags);
8450         list_for_each_entry(filter, &ifh->list, entry) {
8451                 event->addr_filters_offs[count] = 0;
8452
8453                 /*
8454                  * Adjust base offset if the filter is associated to a binary
8455                  * that needs to be mapped:
8456                  */
8457                 if (filter->path.dentry)
8458                         event->addr_filters_offs[count] =
8459                                 perf_addr_filter_apply(filter, mm);
8460
8461                 count++;
8462         }
8463
8464         event->addr_filters_gen++;
8465         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8466
8467         up_read(&mm->mmap_sem);
8468
8469         mmput(mm);
8470
8471 restart:
8472         perf_event_stop(event, 1);
8473 }
8474
8475 /*
8476  * Address range filtering: limiting the data to certain
8477  * instruction address ranges. Filters are ioctl()ed to us from
8478  * userspace as ascii strings.
8479  *
8480  * Filter string format:
8481  *
8482  * ACTION RANGE_SPEC
8483  * where ACTION is one of the
8484  *  * "filter": limit the trace to this region
8485  *  * "start": start tracing from this address
8486  *  * "stop": stop tracing at this address/region;
8487  * RANGE_SPEC is
8488  *  * for kernel addresses: <start address>[/<size>]
8489  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8490  *
8491  * if <size> is not specified, the range is treated as a single address.
8492  */
8493 enum {
8494         IF_ACT_NONE = -1,
8495         IF_ACT_FILTER,
8496         IF_ACT_START,
8497         IF_ACT_STOP,
8498         IF_SRC_FILE,
8499         IF_SRC_KERNEL,
8500         IF_SRC_FILEADDR,
8501         IF_SRC_KERNELADDR,
8502 };
8503
8504 enum {
8505         IF_STATE_ACTION = 0,
8506         IF_STATE_SOURCE,
8507         IF_STATE_END,
8508 };
8509
8510 static const match_table_t if_tokens = {
8511         { IF_ACT_FILTER,        "filter" },
8512         { IF_ACT_START,         "start" },
8513         { IF_ACT_STOP,          "stop" },
8514         { IF_SRC_FILE,          "%u/%u@%s" },
8515         { IF_SRC_KERNEL,        "%u/%u" },
8516         { IF_SRC_FILEADDR,      "%u@%s" },
8517         { IF_SRC_KERNELADDR,    "%u" },
8518         { IF_ACT_NONE,          NULL },
8519 };
8520
8521 /*
8522  * Address filter string parser
8523  */
8524 static int
8525 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8526                              struct list_head *filters)
8527 {
8528         struct perf_addr_filter *filter = NULL;
8529         char *start, *orig, *filename = NULL;
8530         substring_t args[MAX_OPT_ARGS];
8531         int state = IF_STATE_ACTION, token;
8532         unsigned int kernel = 0;
8533         int ret = -EINVAL;
8534
8535         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8536         if (!fstr)
8537                 return -ENOMEM;
8538
8539         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8540                 ret = -EINVAL;
8541
8542                 if (!*start)
8543                         continue;
8544
8545                 /* filter definition begins */
8546                 if (state == IF_STATE_ACTION) {
8547                         filter = perf_addr_filter_new(event, filters);
8548                         if (!filter)
8549                                 goto fail;
8550                 }
8551
8552                 token = match_token(start, if_tokens, args);
8553                 switch (token) {
8554                 case IF_ACT_FILTER:
8555                 case IF_ACT_START:
8556                         filter->filter = 1;
8557
8558                 case IF_ACT_STOP:
8559                         if (state != IF_STATE_ACTION)
8560                                 goto fail;
8561
8562                         state = IF_STATE_SOURCE;
8563                         break;
8564
8565                 case IF_SRC_KERNELADDR:
8566                 case IF_SRC_KERNEL:
8567                         kernel = 1;
8568
8569                 case IF_SRC_FILEADDR:
8570                 case IF_SRC_FILE:
8571                         if (state != IF_STATE_SOURCE)
8572                                 goto fail;
8573
8574                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8575                                 filter->range = 1;
8576
8577                         *args[0].to = 0;
8578                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8579                         if (ret)
8580                                 goto fail;
8581
8582                         if (filter->range) {
8583                                 *args[1].to = 0;
8584                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8585                                 if (ret)
8586                                         goto fail;
8587                         }
8588
8589                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8590                                 int fpos = filter->range ? 2 : 1;
8591
8592                                 kfree(filename);
8593                                 filename = match_strdup(&args[fpos]);
8594                                 if (!filename) {
8595                                         ret = -ENOMEM;
8596                                         goto fail;
8597                                 }
8598                         }
8599
8600                         state = IF_STATE_END;
8601                         break;
8602
8603                 default:
8604                         goto fail;
8605                 }
8606
8607                 /*
8608                  * Filter definition is fully parsed, validate and install it.
8609                  * Make sure that it doesn't contradict itself or the event's
8610                  * attribute.
8611                  */
8612                 if (state == IF_STATE_END) {
8613                         ret = -EINVAL;
8614                         if (kernel && event->attr.exclude_kernel)
8615                                 goto fail;
8616
8617                         if (!kernel) {
8618                                 if (!filename)
8619                                         goto fail;
8620
8621                                 /*
8622                                  * For now, we only support file-based filters
8623                                  * in per-task events; doing so for CPU-wide
8624                                  * events requires additional context switching
8625                                  * trickery, since same object code will be
8626                                  * mapped at different virtual addresses in
8627                                  * different processes.
8628                                  */
8629                                 ret = -EOPNOTSUPP;
8630                                 if (!event->ctx->task)
8631                                         goto fail;
8632
8633                                 /* look up the path and grab its inode */
8634                                 ret = kern_path(filename, LOOKUP_FOLLOW,
8635                                                 &filter->path);
8636                                 if (ret)
8637                                         goto fail;
8638
8639                                 ret = -EINVAL;
8640                                 if (!filter->path.dentry ||
8641                                     !S_ISREG(d_inode(filter->path.dentry)
8642                                              ->i_mode))
8643                                         goto fail;
8644
8645                                 event->addr_filters.nr_file_filters++;
8646                         }
8647
8648                         /* ready to consume more filters */
8649                         kfree(filename);
8650                         filename = NULL;
8651                         state = IF_STATE_ACTION;
8652                         filter = NULL;
8653                         kernel = 0;
8654                 }
8655         }
8656
8657         if (state != IF_STATE_ACTION)
8658                 goto fail;
8659
8660         kfree(filename);
8661         kfree(orig);
8662
8663         return 0;
8664
8665 fail:
8666         kfree(filename);
8667         free_filters_list(filters);
8668         kfree(orig);
8669
8670         return ret;
8671 }
8672
8673 static int
8674 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8675 {
8676         LIST_HEAD(filters);
8677         int ret;
8678
8679         /*
8680          * Since this is called in perf_ioctl() path, we're already holding
8681          * ctx::mutex.
8682          */
8683         lockdep_assert_held(&event->ctx->mutex);
8684
8685         if (WARN_ON_ONCE(event->parent))
8686                 return -EINVAL;
8687
8688         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8689         if (ret)
8690                 goto fail_clear_files;
8691
8692         ret = event->pmu->addr_filters_validate(&filters);
8693         if (ret)
8694                 goto fail_free_filters;
8695
8696         /* remove existing filters, if any */
8697         perf_addr_filters_splice(event, &filters);
8698
8699         /* install new filters */
8700         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8701
8702         return ret;
8703
8704 fail_free_filters:
8705         free_filters_list(&filters);
8706
8707 fail_clear_files:
8708         event->addr_filters.nr_file_filters = 0;
8709
8710         return ret;
8711 }
8712
8713 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8714 {
8715         char *filter_str;
8716         int ret = -EINVAL;
8717
8718         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8719             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8720             !has_addr_filter(event))
8721                 return -EINVAL;
8722
8723         filter_str = strndup_user(arg, PAGE_SIZE);
8724         if (IS_ERR(filter_str))
8725                 return PTR_ERR(filter_str);
8726
8727         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8728             event->attr.type == PERF_TYPE_TRACEPOINT)
8729                 ret = ftrace_profile_set_filter(event, event->attr.config,
8730                                                 filter_str);
8731         else if (has_addr_filter(event))
8732                 ret = perf_event_set_addr_filter(event, filter_str);
8733
8734         kfree(filter_str);
8735         return ret;
8736 }
8737
8738 /*
8739  * hrtimer based swevent callback
8740  */
8741
8742 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8743 {
8744         enum hrtimer_restart ret = HRTIMER_RESTART;
8745         struct perf_sample_data data;
8746         struct pt_regs *regs;
8747         struct perf_event *event;
8748         u64 period;
8749
8750         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8751
8752         if (event->state != PERF_EVENT_STATE_ACTIVE)
8753                 return HRTIMER_NORESTART;
8754
8755         event->pmu->read(event);
8756
8757         perf_sample_data_init(&data, 0, event->hw.last_period);
8758         regs = get_irq_regs();
8759
8760         if (regs && !perf_exclude_event(event, regs)) {
8761                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8762                         if (__perf_event_overflow(event, 1, &data, regs))
8763                                 ret = HRTIMER_NORESTART;
8764         }
8765
8766         period = max_t(u64, 10000, event->hw.sample_period);
8767         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8768
8769         return ret;
8770 }
8771
8772 static void perf_swevent_start_hrtimer(struct perf_event *event)
8773 {
8774         struct hw_perf_event *hwc = &event->hw;
8775         s64 period;
8776
8777         if (!is_sampling_event(event))
8778                 return;
8779
8780         period = local64_read(&hwc->period_left);
8781         if (period) {
8782                 if (period < 0)
8783                         period = 10000;
8784
8785                 local64_set(&hwc->period_left, 0);
8786         } else {
8787                 period = max_t(u64, 10000, hwc->sample_period);
8788         }
8789         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8790                       HRTIMER_MODE_REL_PINNED);
8791 }
8792
8793 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8794 {
8795         struct hw_perf_event *hwc = &event->hw;
8796
8797         if (is_sampling_event(event)) {
8798                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8799                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8800
8801                 hrtimer_cancel(&hwc->hrtimer);
8802         }
8803 }
8804
8805 static void perf_swevent_init_hrtimer(struct perf_event *event)
8806 {
8807         struct hw_perf_event *hwc = &event->hw;
8808
8809         if (!is_sampling_event(event))
8810                 return;
8811
8812         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8813         hwc->hrtimer.function = perf_swevent_hrtimer;
8814
8815         /*
8816          * Since hrtimers have a fixed rate, we can do a static freq->period
8817          * mapping and avoid the whole period adjust feedback stuff.
8818          */
8819         if (event->attr.freq) {
8820                 long freq = event->attr.sample_freq;
8821
8822                 event->attr.sample_period = NSEC_PER_SEC / freq;
8823                 hwc->sample_period = event->attr.sample_period;
8824                 local64_set(&hwc->period_left, hwc->sample_period);
8825                 hwc->last_period = hwc->sample_period;
8826                 event->attr.freq = 0;
8827         }
8828 }
8829
8830 /*
8831  * Software event: cpu wall time clock
8832  */
8833
8834 static void cpu_clock_event_update(struct perf_event *event)
8835 {
8836         s64 prev;
8837         u64 now;
8838
8839         now = local_clock();
8840         prev = local64_xchg(&event->hw.prev_count, now);
8841         local64_add(now - prev, &event->count);
8842 }
8843
8844 static void cpu_clock_event_start(struct perf_event *event, int flags)
8845 {
8846         local64_set(&event->hw.prev_count, local_clock());
8847         perf_swevent_start_hrtimer(event);
8848 }
8849
8850 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8851 {
8852         perf_swevent_cancel_hrtimer(event);
8853         cpu_clock_event_update(event);
8854 }
8855
8856 static int cpu_clock_event_add(struct perf_event *event, int flags)
8857 {
8858         if (flags & PERF_EF_START)
8859                 cpu_clock_event_start(event, flags);
8860         perf_event_update_userpage(event);
8861
8862         return 0;
8863 }
8864
8865 static void cpu_clock_event_del(struct perf_event *event, int flags)
8866 {
8867         cpu_clock_event_stop(event, flags);
8868 }
8869
8870 static void cpu_clock_event_read(struct perf_event *event)
8871 {
8872         cpu_clock_event_update(event);
8873 }
8874
8875 static int cpu_clock_event_init(struct perf_event *event)
8876 {
8877         if (event->attr.type != PERF_TYPE_SOFTWARE)
8878                 return -ENOENT;
8879
8880         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8881                 return -ENOENT;
8882
8883         /*
8884          * no branch sampling for software events
8885          */
8886         if (has_branch_stack(event))
8887                 return -EOPNOTSUPP;
8888
8889         perf_swevent_init_hrtimer(event);
8890
8891         return 0;
8892 }
8893
8894 static struct pmu perf_cpu_clock = {
8895         .task_ctx_nr    = perf_sw_context,
8896
8897         .capabilities   = PERF_PMU_CAP_NO_NMI,
8898
8899         .event_init     = cpu_clock_event_init,
8900         .add            = cpu_clock_event_add,
8901         .del            = cpu_clock_event_del,
8902         .start          = cpu_clock_event_start,
8903         .stop           = cpu_clock_event_stop,
8904         .read           = cpu_clock_event_read,
8905 };
8906
8907 /*
8908  * Software event: task time clock
8909  */
8910
8911 static void task_clock_event_update(struct perf_event *event, u64 now)
8912 {
8913         u64 prev;
8914         s64 delta;
8915
8916         prev = local64_xchg(&event->hw.prev_count, now);
8917         delta = now - prev;
8918         local64_add(delta, &event->count);
8919 }
8920
8921 static void task_clock_event_start(struct perf_event *event, int flags)
8922 {
8923         local64_set(&event->hw.prev_count, event->ctx->time);
8924         perf_swevent_start_hrtimer(event);
8925 }
8926
8927 static void task_clock_event_stop(struct perf_event *event, int flags)
8928 {
8929         perf_swevent_cancel_hrtimer(event);
8930         task_clock_event_update(event, event->ctx->time);
8931 }
8932
8933 static int task_clock_event_add(struct perf_event *event, int flags)
8934 {
8935         if (flags & PERF_EF_START)
8936                 task_clock_event_start(event, flags);
8937         perf_event_update_userpage(event);
8938
8939         return 0;
8940 }
8941
8942 static void task_clock_event_del(struct perf_event *event, int flags)
8943 {
8944         task_clock_event_stop(event, PERF_EF_UPDATE);
8945 }
8946
8947 static void task_clock_event_read(struct perf_event *event)
8948 {
8949         u64 now = perf_clock();
8950         u64 delta = now - event->ctx->timestamp;
8951         u64 time = event->ctx->time + delta;
8952
8953         task_clock_event_update(event, time);
8954 }
8955
8956 static int task_clock_event_init(struct perf_event *event)
8957 {
8958         if (event->attr.type != PERF_TYPE_SOFTWARE)
8959                 return -ENOENT;
8960
8961         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8962                 return -ENOENT;
8963
8964         /*
8965          * no branch sampling for software events
8966          */
8967         if (has_branch_stack(event))
8968                 return -EOPNOTSUPP;
8969
8970         perf_swevent_init_hrtimer(event);
8971
8972         return 0;
8973 }
8974
8975 static struct pmu perf_task_clock = {
8976         .task_ctx_nr    = perf_sw_context,
8977
8978         .capabilities   = PERF_PMU_CAP_NO_NMI,
8979
8980         .event_init     = task_clock_event_init,
8981         .add            = task_clock_event_add,
8982         .del            = task_clock_event_del,
8983         .start          = task_clock_event_start,
8984         .stop           = task_clock_event_stop,
8985         .read           = task_clock_event_read,
8986 };
8987
8988 static void perf_pmu_nop_void(struct pmu *pmu)
8989 {
8990 }
8991
8992 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8993 {
8994 }
8995
8996 static int perf_pmu_nop_int(struct pmu *pmu)
8997 {
8998         return 0;
8999 }
9000
9001 static int perf_event_nop_int(struct perf_event *event, u64 value)
9002 {
9003         return 0;
9004 }
9005
9006 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9007
9008 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9009 {
9010         __this_cpu_write(nop_txn_flags, flags);
9011
9012         if (flags & ~PERF_PMU_TXN_ADD)
9013                 return;
9014
9015         perf_pmu_disable(pmu);
9016 }
9017
9018 static int perf_pmu_commit_txn(struct pmu *pmu)
9019 {
9020         unsigned int flags = __this_cpu_read(nop_txn_flags);
9021
9022         __this_cpu_write(nop_txn_flags, 0);
9023
9024         if (flags & ~PERF_PMU_TXN_ADD)
9025                 return 0;
9026
9027         perf_pmu_enable(pmu);
9028         return 0;
9029 }
9030
9031 static void perf_pmu_cancel_txn(struct pmu *pmu)
9032 {
9033         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9034
9035         __this_cpu_write(nop_txn_flags, 0);
9036
9037         if (flags & ~PERF_PMU_TXN_ADD)
9038                 return;
9039
9040         perf_pmu_enable(pmu);
9041 }
9042
9043 static int perf_event_idx_default(struct perf_event *event)
9044 {
9045         return 0;
9046 }
9047
9048 /*
9049  * Ensures all contexts with the same task_ctx_nr have the same
9050  * pmu_cpu_context too.
9051  */
9052 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9053 {
9054         struct pmu *pmu;
9055
9056         if (ctxn < 0)
9057                 return NULL;
9058
9059         list_for_each_entry(pmu, &pmus, entry) {
9060                 if (pmu->task_ctx_nr == ctxn)
9061                         return pmu->pmu_cpu_context;
9062         }
9063
9064         return NULL;
9065 }
9066
9067 static void free_pmu_context(struct pmu *pmu)
9068 {
9069         /*
9070          * Static contexts such as perf_sw_context have a global lifetime
9071          * and may be shared between different PMUs. Avoid freeing them
9072          * when a single PMU is going away.
9073          */
9074         if (pmu->task_ctx_nr > perf_invalid_context)
9075                 return;
9076
9077         free_percpu(pmu->pmu_cpu_context);
9078 }
9079
9080 /*
9081  * Let userspace know that this PMU supports address range filtering:
9082  */
9083 static ssize_t nr_addr_filters_show(struct device *dev,
9084                                     struct device_attribute *attr,
9085                                     char *page)
9086 {
9087         struct pmu *pmu = dev_get_drvdata(dev);
9088
9089         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9090 }
9091 DEVICE_ATTR_RO(nr_addr_filters);
9092
9093 static struct idr pmu_idr;
9094
9095 static ssize_t
9096 type_show(struct device *dev, struct device_attribute *attr, char *page)
9097 {
9098         struct pmu *pmu = dev_get_drvdata(dev);
9099
9100         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9101 }
9102 static DEVICE_ATTR_RO(type);
9103
9104 static ssize_t
9105 perf_event_mux_interval_ms_show(struct device *dev,
9106                                 struct device_attribute *attr,
9107                                 char *page)
9108 {
9109         struct pmu *pmu = dev_get_drvdata(dev);
9110
9111         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9112 }
9113
9114 static DEFINE_MUTEX(mux_interval_mutex);
9115
9116 static ssize_t
9117 perf_event_mux_interval_ms_store(struct device *dev,
9118                                  struct device_attribute *attr,
9119                                  const char *buf, size_t count)
9120 {
9121         struct pmu *pmu = dev_get_drvdata(dev);
9122         int timer, cpu, ret;
9123
9124         ret = kstrtoint(buf, 0, &timer);
9125         if (ret)
9126                 return ret;
9127
9128         if (timer < 1)
9129                 return -EINVAL;
9130
9131         /* same value, noting to do */
9132         if (timer == pmu->hrtimer_interval_ms)
9133                 return count;
9134
9135         mutex_lock(&mux_interval_mutex);
9136         pmu->hrtimer_interval_ms = timer;
9137
9138         /* update all cpuctx for this PMU */
9139         cpus_read_lock();
9140         for_each_online_cpu(cpu) {
9141                 struct perf_cpu_context *cpuctx;
9142                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9143                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9144
9145                 cpu_function_call(cpu,
9146                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9147         }
9148         cpus_read_unlock();
9149         mutex_unlock(&mux_interval_mutex);
9150
9151         return count;
9152 }
9153 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9154
9155 static struct attribute *pmu_dev_attrs[] = {
9156         &dev_attr_type.attr,
9157         &dev_attr_perf_event_mux_interval_ms.attr,
9158         NULL,
9159 };
9160 ATTRIBUTE_GROUPS(pmu_dev);
9161
9162 static int pmu_bus_running;
9163 static struct bus_type pmu_bus = {
9164         .name           = "event_source",
9165         .dev_groups     = pmu_dev_groups,
9166 };
9167
9168 static void pmu_dev_release(struct device *dev)
9169 {
9170         kfree(dev);
9171 }
9172
9173 static int pmu_dev_alloc(struct pmu *pmu)
9174 {
9175         int ret = -ENOMEM;
9176
9177         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9178         if (!pmu->dev)
9179                 goto out;
9180
9181         pmu->dev->groups = pmu->attr_groups;
9182         device_initialize(pmu->dev);
9183
9184         dev_set_drvdata(pmu->dev, pmu);
9185         pmu->dev->bus = &pmu_bus;
9186         pmu->dev->release = pmu_dev_release;
9187
9188         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9189         if (ret)
9190                 goto free_dev;
9191
9192         ret = device_add(pmu->dev);
9193         if (ret)
9194                 goto free_dev;
9195
9196         /* For PMUs with address filters, throw in an extra attribute: */
9197         if (pmu->nr_addr_filters)
9198                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9199
9200         if (ret)
9201                 goto del_dev;
9202
9203 out:
9204         return ret;
9205
9206 del_dev:
9207         device_del(pmu->dev);
9208
9209 free_dev:
9210         put_device(pmu->dev);
9211         goto out;
9212 }
9213
9214 static struct lock_class_key cpuctx_mutex;
9215 static struct lock_class_key cpuctx_lock;
9216
9217 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9218 {
9219         int cpu, ret;
9220
9221         mutex_lock(&pmus_lock);
9222         ret = -ENOMEM;
9223         pmu->pmu_disable_count = alloc_percpu(int);
9224         if (!pmu->pmu_disable_count)
9225                 goto unlock;
9226
9227         pmu->type = -1;
9228         if (!name)
9229                 goto skip_type;
9230         pmu->name = name;
9231
9232         if (type < 0) {
9233                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9234                 if (type < 0) {
9235                         ret = type;
9236                         goto free_pdc;
9237                 }
9238         }
9239         pmu->type = type;
9240
9241         if (pmu_bus_running) {
9242                 ret = pmu_dev_alloc(pmu);
9243                 if (ret)
9244                         goto free_idr;
9245         }
9246
9247 skip_type:
9248         if (pmu->task_ctx_nr == perf_hw_context) {
9249                 static int hw_context_taken = 0;
9250
9251                 /*
9252                  * Other than systems with heterogeneous CPUs, it never makes
9253                  * sense for two PMUs to share perf_hw_context. PMUs which are
9254                  * uncore must use perf_invalid_context.
9255                  */
9256                 if (WARN_ON_ONCE(hw_context_taken &&
9257                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9258                         pmu->task_ctx_nr = perf_invalid_context;
9259
9260                 hw_context_taken = 1;
9261         }
9262
9263         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9264         if (pmu->pmu_cpu_context)
9265                 goto got_cpu_context;
9266
9267         ret = -ENOMEM;
9268         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9269         if (!pmu->pmu_cpu_context)
9270                 goto free_dev;
9271
9272         for_each_possible_cpu(cpu) {
9273                 struct perf_cpu_context *cpuctx;
9274
9275                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9276                 __perf_event_init_context(&cpuctx->ctx);
9277                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9278                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9279                 cpuctx->ctx.pmu = pmu;
9280                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9281
9282                 __perf_mux_hrtimer_init(cpuctx, cpu);
9283         }
9284
9285 got_cpu_context:
9286         if (!pmu->start_txn) {
9287                 if (pmu->pmu_enable) {
9288                         /*
9289                          * If we have pmu_enable/pmu_disable calls, install
9290                          * transaction stubs that use that to try and batch
9291                          * hardware accesses.
9292                          */
9293                         pmu->start_txn  = perf_pmu_start_txn;
9294                         pmu->commit_txn = perf_pmu_commit_txn;
9295                         pmu->cancel_txn = perf_pmu_cancel_txn;
9296                 } else {
9297                         pmu->start_txn  = perf_pmu_nop_txn;
9298                         pmu->commit_txn = perf_pmu_nop_int;
9299                         pmu->cancel_txn = perf_pmu_nop_void;
9300                 }
9301         }
9302
9303         if (!pmu->pmu_enable) {
9304                 pmu->pmu_enable  = perf_pmu_nop_void;
9305                 pmu->pmu_disable = perf_pmu_nop_void;
9306         }
9307
9308         if (!pmu->check_period)
9309                 pmu->check_period = perf_event_nop_int;
9310
9311         if (!pmu->event_idx)
9312                 pmu->event_idx = perf_event_idx_default;
9313
9314         list_add_rcu(&pmu->entry, &pmus);
9315         atomic_set(&pmu->exclusive_cnt, 0);
9316         ret = 0;
9317 unlock:
9318         mutex_unlock(&pmus_lock);
9319
9320         return ret;
9321
9322 free_dev:
9323         device_del(pmu->dev);
9324         put_device(pmu->dev);
9325
9326 free_idr:
9327         if (pmu->type >= PERF_TYPE_MAX)
9328                 idr_remove(&pmu_idr, pmu->type);
9329
9330 free_pdc:
9331         free_percpu(pmu->pmu_disable_count);
9332         goto unlock;
9333 }
9334 EXPORT_SYMBOL_GPL(perf_pmu_register);
9335
9336 void perf_pmu_unregister(struct pmu *pmu)
9337 {
9338         mutex_lock(&pmus_lock);
9339         list_del_rcu(&pmu->entry);
9340
9341         /*
9342          * We dereference the pmu list under both SRCU and regular RCU, so
9343          * synchronize against both of those.
9344          */
9345         synchronize_srcu(&pmus_srcu);
9346         synchronize_rcu();
9347
9348         free_percpu(pmu->pmu_disable_count);
9349         if (pmu->type >= PERF_TYPE_MAX)
9350                 idr_remove(&pmu_idr, pmu->type);
9351         if (pmu_bus_running) {
9352                 if (pmu->nr_addr_filters)
9353                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9354                 device_del(pmu->dev);
9355                 put_device(pmu->dev);
9356         }
9357         free_pmu_context(pmu);
9358         mutex_unlock(&pmus_lock);
9359 }
9360 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9361
9362 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9363 {
9364         struct perf_event_context *ctx = NULL;
9365         int ret;
9366
9367         if (!try_module_get(pmu->module))
9368                 return -ENODEV;
9369
9370         if (event->group_leader != event) {
9371                 /*
9372                  * This ctx->mutex can nest when we're called through
9373                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9374                  */
9375                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9376                                                  SINGLE_DEPTH_NESTING);
9377                 BUG_ON(!ctx);
9378         }
9379
9380         event->pmu = pmu;
9381         ret = pmu->event_init(event);
9382
9383         if (ctx)
9384                 perf_event_ctx_unlock(event->group_leader, ctx);
9385
9386         if (ret)
9387                 module_put(pmu->module);
9388
9389         return ret;
9390 }
9391
9392 static struct pmu *perf_init_event(struct perf_event *event)
9393 {
9394         struct pmu *pmu;
9395         int idx;
9396         int ret;
9397
9398         idx = srcu_read_lock(&pmus_srcu);
9399
9400         /* Try parent's PMU first: */
9401         if (event->parent && event->parent->pmu) {
9402                 pmu = event->parent->pmu;
9403                 ret = perf_try_init_event(pmu, event);
9404                 if (!ret)
9405                         goto unlock;
9406         }
9407
9408         rcu_read_lock();
9409         pmu = idr_find(&pmu_idr, event->attr.type);
9410         rcu_read_unlock();
9411         if (pmu) {
9412                 ret = perf_try_init_event(pmu, event);
9413                 if (ret)
9414                         pmu = ERR_PTR(ret);
9415                 goto unlock;
9416         }
9417
9418         list_for_each_entry_rcu(pmu, &pmus, entry) {
9419                 ret = perf_try_init_event(pmu, event);
9420                 if (!ret)
9421                         goto unlock;
9422
9423                 if (ret != -ENOENT) {
9424                         pmu = ERR_PTR(ret);
9425                         goto unlock;
9426                 }
9427         }
9428         pmu = ERR_PTR(-ENOENT);
9429 unlock:
9430         srcu_read_unlock(&pmus_srcu, idx);
9431
9432         return pmu;
9433 }
9434
9435 static void attach_sb_event(struct perf_event *event)
9436 {
9437         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9438
9439         raw_spin_lock(&pel->lock);
9440         list_add_rcu(&event->sb_list, &pel->list);
9441         raw_spin_unlock(&pel->lock);
9442 }
9443
9444 /*
9445  * We keep a list of all !task (and therefore per-cpu) events
9446  * that need to receive side-band records.
9447  *
9448  * This avoids having to scan all the various PMU per-cpu contexts
9449  * looking for them.
9450  */
9451 static void account_pmu_sb_event(struct perf_event *event)
9452 {
9453         if (is_sb_event(event))
9454                 attach_sb_event(event);
9455 }
9456
9457 static void account_event_cpu(struct perf_event *event, int cpu)
9458 {
9459         if (event->parent)
9460                 return;
9461
9462         if (is_cgroup_event(event))
9463                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9464 }
9465
9466 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9467 static void account_freq_event_nohz(void)
9468 {
9469 #ifdef CONFIG_NO_HZ_FULL
9470         /* Lock so we don't race with concurrent unaccount */
9471         spin_lock(&nr_freq_lock);
9472         if (atomic_inc_return(&nr_freq_events) == 1)
9473                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9474         spin_unlock(&nr_freq_lock);
9475 #endif
9476 }
9477
9478 static void account_freq_event(void)
9479 {
9480         if (tick_nohz_full_enabled())
9481                 account_freq_event_nohz();
9482         else
9483                 atomic_inc(&nr_freq_events);
9484 }
9485
9486
9487 static void account_event(struct perf_event *event)
9488 {
9489         bool inc = false;
9490
9491         if (event->parent)
9492                 return;
9493
9494         if (event->attach_state & PERF_ATTACH_TASK)
9495                 inc = true;
9496         if (event->attr.mmap || event->attr.mmap_data)
9497                 atomic_inc(&nr_mmap_events);
9498         if (event->attr.comm)
9499                 atomic_inc(&nr_comm_events);
9500         if (event->attr.namespaces)
9501                 atomic_inc(&nr_namespaces_events);
9502         if (event->attr.task)
9503                 atomic_inc(&nr_task_events);
9504         if (event->attr.freq)
9505                 account_freq_event();
9506         if (event->attr.context_switch) {
9507                 atomic_inc(&nr_switch_events);
9508                 inc = true;
9509         }
9510         if (has_branch_stack(event))
9511                 inc = true;
9512         if (is_cgroup_event(event))
9513                 inc = true;
9514
9515         if (inc) {
9516                 if (atomic_inc_not_zero(&perf_sched_count))
9517                         goto enabled;
9518
9519                 mutex_lock(&perf_sched_mutex);
9520                 if (!atomic_read(&perf_sched_count)) {
9521                         static_branch_enable(&perf_sched_events);
9522                         /*
9523                          * Guarantee that all CPUs observe they key change and
9524                          * call the perf scheduling hooks before proceeding to
9525                          * install events that need them.
9526                          */
9527                         synchronize_sched();
9528                 }
9529                 /*
9530                  * Now that we have waited for the sync_sched(), allow further
9531                  * increments to by-pass the mutex.
9532                  */
9533                 atomic_inc(&perf_sched_count);
9534                 mutex_unlock(&perf_sched_mutex);
9535         }
9536 enabled:
9537
9538         account_event_cpu(event, event->cpu);
9539
9540         account_pmu_sb_event(event);
9541 }
9542
9543 /*
9544  * Allocate and initialize a event structure
9545  */
9546 static struct perf_event *
9547 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9548                  struct task_struct *task,
9549                  struct perf_event *group_leader,
9550                  struct perf_event *parent_event,
9551                  perf_overflow_handler_t overflow_handler,
9552                  void *context, int cgroup_fd)
9553 {
9554         struct pmu *pmu;
9555         struct perf_event *event;
9556         struct hw_perf_event *hwc;
9557         long err = -EINVAL;
9558
9559         if ((unsigned)cpu >= nr_cpu_ids) {
9560                 if (!task || cpu != -1)
9561                         return ERR_PTR(-EINVAL);
9562         }
9563
9564         event = kzalloc(sizeof(*event), GFP_KERNEL);
9565         if (!event)
9566                 return ERR_PTR(-ENOMEM);
9567
9568         /*
9569          * Single events are their own group leaders, with an
9570          * empty sibling list:
9571          */
9572         if (!group_leader)
9573                 group_leader = event;
9574
9575         mutex_init(&event->child_mutex);
9576         INIT_LIST_HEAD(&event->child_list);
9577
9578         INIT_LIST_HEAD(&event->group_entry);
9579         INIT_LIST_HEAD(&event->event_entry);
9580         INIT_LIST_HEAD(&event->sibling_list);
9581         INIT_LIST_HEAD(&event->rb_entry);
9582         INIT_LIST_HEAD(&event->active_entry);
9583         INIT_LIST_HEAD(&event->addr_filters.list);
9584         INIT_HLIST_NODE(&event->hlist_entry);
9585
9586
9587         init_waitqueue_head(&event->waitq);
9588         init_irq_work(&event->pending, perf_pending_event);
9589
9590         mutex_init(&event->mmap_mutex);
9591         raw_spin_lock_init(&event->addr_filters.lock);
9592
9593         atomic_long_set(&event->refcount, 1);
9594         event->cpu              = cpu;
9595         event->attr             = *attr;
9596         event->group_leader     = group_leader;
9597         event->pmu              = NULL;
9598         event->oncpu            = -1;
9599
9600         event->parent           = parent_event;
9601
9602         event->ns               = get_pid_ns(task_active_pid_ns(current));
9603         event->id               = atomic64_inc_return(&perf_event_id);
9604
9605         event->state            = PERF_EVENT_STATE_INACTIVE;
9606
9607         if (task) {
9608                 event->attach_state = PERF_ATTACH_TASK;
9609                 /*
9610                  * XXX pmu::event_init needs to know what task to account to
9611                  * and we cannot use the ctx information because we need the
9612                  * pmu before we get a ctx.
9613                  */
9614                 get_task_struct(task);
9615                 event->hw.target = task;
9616         }
9617
9618         event->clock = &local_clock;
9619         if (parent_event)
9620                 event->clock = parent_event->clock;
9621
9622         if (!overflow_handler && parent_event) {
9623                 overflow_handler = parent_event->overflow_handler;
9624                 context = parent_event->overflow_handler_context;
9625 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9626                 if (overflow_handler == bpf_overflow_handler) {
9627                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9628
9629                         if (IS_ERR(prog)) {
9630                                 err = PTR_ERR(prog);
9631                                 goto err_ns;
9632                         }
9633                         event->prog = prog;
9634                         event->orig_overflow_handler =
9635                                 parent_event->orig_overflow_handler;
9636                 }
9637 #endif
9638         }
9639
9640         if (overflow_handler) {
9641                 event->overflow_handler = overflow_handler;
9642                 event->overflow_handler_context = context;
9643         } else if (is_write_backward(event)){
9644                 event->overflow_handler = perf_event_output_backward;
9645                 event->overflow_handler_context = NULL;
9646         } else {
9647                 event->overflow_handler = perf_event_output_forward;
9648                 event->overflow_handler_context = NULL;
9649         }
9650
9651         perf_event__state_init(event);
9652
9653         pmu = NULL;
9654
9655         hwc = &event->hw;
9656         hwc->sample_period = attr->sample_period;
9657         if (attr->freq && attr->sample_freq)
9658                 hwc->sample_period = 1;
9659         hwc->last_period = hwc->sample_period;
9660
9661         local64_set(&hwc->period_left, hwc->sample_period);
9662
9663         /*
9664          * We currently do not support PERF_SAMPLE_READ on inherited events.
9665          * See perf_output_read().
9666          */
9667         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9668                 goto err_ns;
9669
9670         if (!has_branch_stack(event))
9671                 event->attr.branch_sample_type = 0;
9672
9673         if (cgroup_fd != -1) {
9674                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9675                 if (err)
9676                         goto err_ns;
9677         }
9678
9679         pmu = perf_init_event(event);
9680         if (IS_ERR(pmu)) {
9681                 err = PTR_ERR(pmu);
9682                 goto err_ns;
9683         }
9684
9685         err = exclusive_event_init(event);
9686         if (err)
9687                 goto err_pmu;
9688
9689         if (has_addr_filter(event)) {
9690                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9691                                                    sizeof(unsigned long),
9692                                                    GFP_KERNEL);
9693                 if (!event->addr_filters_offs) {
9694                         err = -ENOMEM;
9695                         goto err_per_task;
9696                 }
9697
9698                 /* force hw sync on the address filters */
9699                 event->addr_filters_gen = 1;
9700         }
9701
9702         if (!event->parent) {
9703                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9704                         err = get_callchain_buffers(attr->sample_max_stack);
9705                         if (err)
9706                                 goto err_addr_filters;
9707                 }
9708         }
9709
9710         /* symmetric to unaccount_event() in _free_event() */
9711         account_event(event);
9712
9713         return event;
9714
9715 err_addr_filters:
9716         kfree(event->addr_filters_offs);
9717
9718 err_per_task:
9719         exclusive_event_destroy(event);
9720
9721 err_pmu:
9722         if (event->destroy)
9723                 event->destroy(event);
9724         module_put(pmu->module);
9725 err_ns:
9726         if (is_cgroup_event(event))
9727                 perf_detach_cgroup(event);
9728         if (event->ns)
9729                 put_pid_ns(event->ns);
9730         if (event->hw.target)
9731                 put_task_struct(event->hw.target);
9732         kfree(event);
9733
9734         return ERR_PTR(err);
9735 }
9736
9737 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9738                           struct perf_event_attr *attr)
9739 {
9740         u32 size;
9741         int ret;
9742
9743         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9744                 return -EFAULT;
9745
9746         /*
9747          * zero the full structure, so that a short copy will be nice.
9748          */
9749         memset(attr, 0, sizeof(*attr));
9750
9751         ret = get_user(size, &uattr->size);
9752         if (ret)
9753                 return ret;
9754
9755         if (size > PAGE_SIZE)   /* silly large */
9756                 goto err_size;
9757
9758         if (!size)              /* abi compat */
9759                 size = PERF_ATTR_SIZE_VER0;
9760
9761         if (size < PERF_ATTR_SIZE_VER0)
9762                 goto err_size;
9763
9764         /*
9765          * If we're handed a bigger struct than we know of,
9766          * ensure all the unknown bits are 0 - i.e. new
9767          * user-space does not rely on any kernel feature
9768          * extensions we dont know about yet.
9769          */
9770         if (size > sizeof(*attr)) {
9771                 unsigned char __user *addr;
9772                 unsigned char __user *end;
9773                 unsigned char val;
9774
9775                 addr = (void __user *)uattr + sizeof(*attr);
9776                 end  = (void __user *)uattr + size;
9777
9778                 for (; addr < end; addr++) {
9779                         ret = get_user(val, addr);
9780                         if (ret)
9781                                 return ret;
9782                         if (val)
9783                                 goto err_size;
9784                 }
9785                 size = sizeof(*attr);
9786         }
9787
9788         ret = copy_from_user(attr, uattr, size);
9789         if (ret)
9790                 return -EFAULT;
9791
9792         attr->size = size;
9793
9794         if (attr->__reserved_1)
9795                 return -EINVAL;
9796
9797         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9798                 return -EINVAL;
9799
9800         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9801                 return -EINVAL;
9802
9803         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9804                 u64 mask = attr->branch_sample_type;
9805
9806                 /* only using defined bits */
9807                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9808                         return -EINVAL;
9809
9810                 /* at least one branch bit must be set */
9811                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9812                         return -EINVAL;
9813
9814                 /* propagate priv level, when not set for branch */
9815                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9816
9817                         /* exclude_kernel checked on syscall entry */
9818                         if (!attr->exclude_kernel)
9819                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9820
9821                         if (!attr->exclude_user)
9822                                 mask |= PERF_SAMPLE_BRANCH_USER;
9823
9824                         if (!attr->exclude_hv)
9825                                 mask |= PERF_SAMPLE_BRANCH_HV;
9826                         /*
9827                          * adjust user setting (for HW filter setup)
9828                          */
9829                         attr->branch_sample_type = mask;
9830                 }
9831                 /* privileged levels capture (kernel, hv): check permissions */
9832                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9833                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9834                         return -EACCES;
9835         }
9836
9837         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9838                 ret = perf_reg_validate(attr->sample_regs_user);
9839                 if (ret)
9840                         return ret;
9841         }
9842
9843         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9844                 if (!arch_perf_have_user_stack_dump())
9845                         return -ENOSYS;
9846
9847                 /*
9848                  * We have __u32 type for the size, but so far
9849                  * we can only use __u16 as maximum due to the
9850                  * __u16 sample size limit.
9851                  */
9852                 if (attr->sample_stack_user >= USHRT_MAX)
9853                         return -EINVAL;
9854                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9855                         return -EINVAL;
9856         }
9857
9858         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9859                 ret = perf_reg_validate(attr->sample_regs_intr);
9860 out:
9861         return ret;
9862
9863 err_size:
9864         put_user(sizeof(*attr), &uattr->size);
9865         ret = -E2BIG;
9866         goto out;
9867 }
9868
9869 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9870 {
9871         if (b < a)
9872                 swap(a, b);
9873
9874         mutex_lock(a);
9875         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9876 }
9877
9878 static int
9879 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9880 {
9881         struct ring_buffer *rb = NULL;
9882         int ret = -EINVAL;
9883
9884         if (!output_event) {
9885                 mutex_lock(&event->mmap_mutex);
9886                 goto set;
9887         }
9888
9889         /* don't allow circular references */
9890         if (event == output_event)
9891                 goto out;
9892
9893         /*
9894          * Don't allow cross-cpu buffers
9895          */
9896         if (output_event->cpu != event->cpu)
9897                 goto out;
9898
9899         /*
9900          * If its not a per-cpu rb, it must be the same task.
9901          */
9902         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
9903                 goto out;
9904
9905         /*
9906          * Mixing clocks in the same buffer is trouble you don't need.
9907          */
9908         if (output_event->clock != event->clock)
9909                 goto out;
9910
9911         /*
9912          * Either writing ring buffer from beginning or from end.
9913          * Mixing is not allowed.
9914          */
9915         if (is_write_backward(output_event) != is_write_backward(event))
9916                 goto out;
9917
9918         /*
9919          * If both events generate aux data, they must be on the same PMU
9920          */
9921         if (has_aux(event) && has_aux(output_event) &&
9922             event->pmu != output_event->pmu)
9923                 goto out;
9924
9925         /*
9926          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
9927          * output_event is already on rb->event_list, and the list iteration
9928          * restarts after every removal, it is guaranteed this new event is
9929          * observed *OR* if output_event is already removed, it's guaranteed we
9930          * observe !rb->mmap_count.
9931          */
9932         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
9933 set:
9934         /* Can't redirect output if we've got an active mmap() */
9935         if (atomic_read(&event->mmap_count))
9936                 goto unlock;
9937
9938         if (output_event) {
9939                 /* get the rb we want to redirect to */
9940                 rb = ring_buffer_get(output_event);
9941                 if (!rb)
9942                         goto unlock;
9943
9944                 /* did we race against perf_mmap_close() */
9945                 if (!atomic_read(&rb->mmap_count)) {
9946                         ring_buffer_put(rb);
9947                         goto unlock;
9948                 }
9949         }
9950
9951         ring_buffer_attach(event, rb);
9952
9953         ret = 0;
9954 unlock:
9955         mutex_unlock(&event->mmap_mutex);
9956         if (output_event)
9957                 mutex_unlock(&output_event->mmap_mutex);
9958
9959 out:
9960         return ret;
9961 }
9962
9963 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9964 {
9965         bool nmi_safe = false;
9966
9967         switch (clk_id) {
9968         case CLOCK_MONOTONIC:
9969                 event->clock = &ktime_get_mono_fast_ns;
9970                 nmi_safe = true;
9971                 break;
9972
9973         case CLOCK_MONOTONIC_RAW:
9974                 event->clock = &ktime_get_raw_fast_ns;
9975                 nmi_safe = true;
9976                 break;
9977
9978         case CLOCK_REALTIME:
9979                 event->clock = &ktime_get_real_ns;
9980                 break;
9981
9982         case CLOCK_BOOTTIME:
9983                 event->clock = &ktime_get_boot_ns;
9984                 break;
9985
9986         case CLOCK_TAI:
9987                 event->clock = &ktime_get_tai_ns;
9988                 break;
9989
9990         default:
9991                 return -EINVAL;
9992         }
9993
9994         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9995                 return -EINVAL;
9996
9997         return 0;
9998 }
9999
10000 /*
10001  * Variation on perf_event_ctx_lock_nested(), except we take two context
10002  * mutexes.
10003  */
10004 static struct perf_event_context *
10005 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10006                              struct perf_event_context *ctx)
10007 {
10008         struct perf_event_context *gctx;
10009
10010 again:
10011         rcu_read_lock();
10012         gctx = READ_ONCE(group_leader->ctx);
10013         if (!atomic_inc_not_zero(&gctx->refcount)) {
10014                 rcu_read_unlock();
10015                 goto again;
10016         }
10017         rcu_read_unlock();
10018
10019         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10020
10021         if (group_leader->ctx != gctx) {
10022                 mutex_unlock(&ctx->mutex);
10023                 mutex_unlock(&gctx->mutex);
10024                 put_ctx(gctx);
10025                 goto again;
10026         }
10027
10028         return gctx;
10029 }
10030
10031 /**
10032  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10033  *
10034  * @attr_uptr:  event_id type attributes for monitoring/sampling
10035  * @pid:                target pid
10036  * @cpu:                target cpu
10037  * @group_fd:           group leader event fd
10038  */
10039 SYSCALL_DEFINE5(perf_event_open,
10040                 struct perf_event_attr __user *, attr_uptr,
10041                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10042 {
10043         struct perf_event *group_leader = NULL, *output_event = NULL;
10044         struct perf_event *event, *sibling;
10045         struct perf_event_attr attr;
10046         struct perf_event_context *ctx, *uninitialized_var(gctx);
10047         struct file *event_file = NULL;
10048         struct fd group = {NULL, 0};
10049         struct task_struct *task = NULL;
10050         struct pmu *pmu;
10051         int event_fd;
10052         int move_group = 0;
10053         int err;
10054         int f_flags = O_RDWR;
10055         int cgroup_fd = -1;
10056
10057         /* for future expandability... */
10058         if (flags & ~PERF_FLAG_ALL)
10059                 return -EINVAL;
10060
10061         err = perf_copy_attr(attr_uptr, &attr);
10062         if (err)
10063                 return err;
10064
10065         if (!attr.exclude_kernel) {
10066                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10067                         return -EACCES;
10068         }
10069
10070         if (attr.namespaces) {
10071                 if (!capable(CAP_SYS_ADMIN))
10072                         return -EACCES;
10073         }
10074
10075         if (attr.freq) {
10076                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10077                         return -EINVAL;
10078         } else {
10079                 if (attr.sample_period & (1ULL << 63))
10080                         return -EINVAL;
10081         }
10082
10083         /* Only privileged users can get physical addresses */
10084         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10085             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10086                 return -EACCES;
10087
10088         if (!attr.sample_max_stack)
10089                 attr.sample_max_stack = sysctl_perf_event_max_stack;
10090
10091         /*
10092          * In cgroup mode, the pid argument is used to pass the fd
10093          * opened to the cgroup directory in cgroupfs. The cpu argument
10094          * designates the cpu on which to monitor threads from that
10095          * cgroup.
10096          */
10097         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10098                 return -EINVAL;
10099
10100         if (flags & PERF_FLAG_FD_CLOEXEC)
10101                 f_flags |= O_CLOEXEC;
10102
10103         event_fd = get_unused_fd_flags(f_flags);
10104         if (event_fd < 0)
10105                 return event_fd;
10106
10107         if (group_fd != -1) {
10108                 err = perf_fget_light(group_fd, &group);
10109                 if (err)
10110                         goto err_fd;
10111                 group_leader = group.file->private_data;
10112                 if (flags & PERF_FLAG_FD_OUTPUT)
10113                         output_event = group_leader;
10114                 if (flags & PERF_FLAG_FD_NO_GROUP)
10115                         group_leader = NULL;
10116         }
10117
10118         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10119                 task = find_lively_task_by_vpid(pid);
10120                 if (IS_ERR(task)) {
10121                         err = PTR_ERR(task);
10122                         goto err_group_fd;
10123                 }
10124         }
10125
10126         if (task && group_leader &&
10127             group_leader->attr.inherit != attr.inherit) {
10128                 err = -EINVAL;
10129                 goto err_task;
10130         }
10131
10132         if (task) {
10133                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10134                 if (err)
10135                         goto err_task;
10136
10137                 /*
10138                  * Reuse ptrace permission checks for now.
10139                  *
10140                  * We must hold cred_guard_mutex across this and any potential
10141                  * perf_install_in_context() call for this new event to
10142                  * serialize against exec() altering our credentials (and the
10143                  * perf_event_exit_task() that could imply).
10144                  */
10145                 err = -EACCES;
10146                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10147                         goto err_cred;
10148         }
10149
10150         if (flags & PERF_FLAG_PID_CGROUP)
10151                 cgroup_fd = pid;
10152
10153         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10154                                  NULL, NULL, cgroup_fd);
10155         if (IS_ERR(event)) {
10156                 err = PTR_ERR(event);
10157                 goto err_cred;
10158         }
10159
10160         if (is_sampling_event(event)) {
10161                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10162                         err = -EOPNOTSUPP;
10163                         goto err_alloc;
10164                 }
10165         }
10166
10167         /*
10168          * Special case software events and allow them to be part of
10169          * any hardware group.
10170          */
10171         pmu = event->pmu;
10172
10173         if (attr.use_clockid) {
10174                 err = perf_event_set_clock(event, attr.clockid);
10175                 if (err)
10176                         goto err_alloc;
10177         }
10178
10179         if (pmu->task_ctx_nr == perf_sw_context)
10180                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10181
10182         if (group_leader &&
10183             (is_software_event(event) != is_software_event(group_leader))) {
10184                 if (is_software_event(event)) {
10185                         /*
10186                          * If event and group_leader are not both a software
10187                          * event, and event is, then group leader is not.
10188                          *
10189                          * Allow the addition of software events to !software
10190                          * groups, this is safe because software events never
10191                          * fail to schedule.
10192                          */
10193                         pmu = group_leader->pmu;
10194                 } else if (is_software_event(group_leader) &&
10195                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10196                         /*
10197                          * In case the group is a pure software group, and we
10198                          * try to add a hardware event, move the whole group to
10199                          * the hardware context.
10200                          */
10201                         move_group = 1;
10202                 }
10203         }
10204
10205         /*
10206          * Get the target context (task or percpu):
10207          */
10208         ctx = find_get_context(pmu, task, event);
10209         if (IS_ERR(ctx)) {
10210                 err = PTR_ERR(ctx);
10211                 goto err_alloc;
10212         }
10213
10214         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10215                 err = -EBUSY;
10216                 goto err_context;
10217         }
10218
10219         /*
10220          * Look up the group leader (we will attach this event to it):
10221          */
10222         if (group_leader) {
10223                 err = -EINVAL;
10224
10225                 /*
10226                  * Do not allow a recursive hierarchy (this new sibling
10227                  * becoming part of another group-sibling):
10228                  */
10229                 if (group_leader->group_leader != group_leader)
10230                         goto err_context;
10231
10232                 /* All events in a group should have the same clock */
10233                 if (group_leader->clock != event->clock)
10234                         goto err_context;
10235
10236                 /*
10237                  * Make sure we're both events for the same CPU;
10238                  * grouping events for different CPUs is broken; since
10239                  * you can never concurrently schedule them anyhow.
10240                  */
10241                 if (group_leader->cpu != event->cpu)
10242                         goto err_context;
10243
10244                 /*
10245                  * Make sure we're both on the same task, or both
10246                  * per-CPU events.
10247                  */
10248                 if (group_leader->ctx->task != ctx->task)
10249                         goto err_context;
10250
10251                 /*
10252                  * Do not allow to attach to a group in a different task
10253                  * or CPU context. If we're moving SW events, we'll fix
10254                  * this up later, so allow that.
10255                  *
10256                  * Racy, not holding group_leader->ctx->mutex, see comment with
10257                  * perf_event_ctx_lock().
10258                  */
10259                 if (!move_group && group_leader->ctx != ctx)
10260                         goto err_context;
10261
10262                 /*
10263                  * Only a group leader can be exclusive or pinned
10264                  */
10265                 if (attr.exclusive || attr.pinned)
10266                         goto err_context;
10267         }
10268
10269         if (output_event) {
10270                 err = perf_event_set_output(event, output_event);
10271                 if (err)
10272                         goto err_context;
10273         }
10274
10275         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10276                                         f_flags);
10277         if (IS_ERR(event_file)) {
10278                 err = PTR_ERR(event_file);
10279                 event_file = NULL;
10280                 goto err_context;
10281         }
10282
10283         if (move_group) {
10284                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10285
10286                 if (gctx->task == TASK_TOMBSTONE) {
10287                         err = -ESRCH;
10288                         goto err_locked;
10289                 }
10290
10291                 /*
10292                  * Check if we raced against another sys_perf_event_open() call
10293                  * moving the software group underneath us.
10294                  */
10295                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10296                         /*
10297                          * If someone moved the group out from under us, check
10298                          * if this new event wound up on the same ctx, if so
10299                          * its the regular !move_group case, otherwise fail.
10300                          */
10301                         if (gctx != ctx) {
10302                                 err = -EINVAL;
10303                                 goto err_locked;
10304                         } else {
10305                                 perf_event_ctx_unlock(group_leader, gctx);
10306                                 move_group = 0;
10307                                 goto not_move_group;
10308                         }
10309                 }
10310         } else {
10311                 mutex_lock(&ctx->mutex);
10312
10313                 /*
10314                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
10315                  * see the group_leader && !move_group test earlier.
10316                  */
10317                 if (group_leader && group_leader->ctx != ctx) {
10318                         err = -EINVAL;
10319                         goto err_locked;
10320                 }
10321         }
10322 not_move_group:
10323
10324         if (ctx->task == TASK_TOMBSTONE) {
10325                 err = -ESRCH;
10326                 goto err_locked;
10327         }
10328
10329         if (!perf_event_validate_size(event)) {
10330                 err = -E2BIG;
10331                 goto err_locked;
10332         }
10333
10334         if (!task) {
10335                 /*
10336                  * Check if the @cpu we're creating an event for is online.
10337                  *
10338                  * We use the perf_cpu_context::ctx::mutex to serialize against
10339                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10340                  */
10341                 struct perf_cpu_context *cpuctx =
10342                         container_of(ctx, struct perf_cpu_context, ctx);
10343
10344                 if (!cpuctx->online) {
10345                         err = -ENODEV;
10346                         goto err_locked;
10347                 }
10348         }
10349
10350
10351         /*
10352          * Must be under the same ctx::mutex as perf_install_in_context(),
10353          * because we need to serialize with concurrent event creation.
10354          */
10355         if (!exclusive_event_installable(event, ctx)) {
10356                 /* exclusive and group stuff are assumed mutually exclusive */
10357                 WARN_ON_ONCE(move_group);
10358
10359                 err = -EBUSY;
10360                 goto err_locked;
10361         }
10362
10363         WARN_ON_ONCE(ctx->parent_ctx);
10364
10365         /*
10366          * This is the point on no return; we cannot fail hereafter. This is
10367          * where we start modifying current state.
10368          */
10369
10370         if (move_group) {
10371                 /*
10372                  * See perf_event_ctx_lock() for comments on the details
10373                  * of swizzling perf_event::ctx.
10374                  */
10375                 perf_remove_from_context(group_leader, 0);
10376                 put_ctx(gctx);
10377
10378                 list_for_each_entry(sibling, &group_leader->sibling_list,
10379                                     group_entry) {
10380                         perf_remove_from_context(sibling, 0);
10381                         put_ctx(gctx);
10382                 }
10383
10384                 /*
10385                  * Wait for everybody to stop referencing the events through
10386                  * the old lists, before installing it on new lists.
10387                  */
10388                 synchronize_rcu();
10389
10390                 /*
10391                  * Install the group siblings before the group leader.
10392                  *
10393                  * Because a group leader will try and install the entire group
10394                  * (through the sibling list, which is still in-tact), we can
10395                  * end up with siblings installed in the wrong context.
10396                  *
10397                  * By installing siblings first we NO-OP because they're not
10398                  * reachable through the group lists.
10399                  */
10400                 list_for_each_entry(sibling, &group_leader->sibling_list,
10401                                     group_entry) {
10402                         perf_event__state_init(sibling);
10403                         perf_install_in_context(ctx, sibling, sibling->cpu);
10404                         get_ctx(ctx);
10405                 }
10406
10407                 /*
10408                  * Removing from the context ends up with disabled
10409                  * event. What we want here is event in the initial
10410                  * startup state, ready to be add into new context.
10411                  */
10412                 perf_event__state_init(group_leader);
10413                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10414                 get_ctx(ctx);
10415         }
10416
10417         /*
10418          * Precalculate sample_data sizes; do while holding ctx::mutex such
10419          * that we're serialized against further additions and before
10420          * perf_install_in_context() which is the point the event is active and
10421          * can use these values.
10422          */
10423         perf_event__header_size(event);
10424         perf_event__id_header_size(event);
10425
10426         event->owner = current;
10427
10428         perf_install_in_context(ctx, event, event->cpu);
10429         perf_unpin_context(ctx);
10430
10431         if (move_group)
10432                 perf_event_ctx_unlock(group_leader, gctx);
10433         mutex_unlock(&ctx->mutex);
10434
10435         if (task) {
10436                 mutex_unlock(&task->signal->cred_guard_mutex);
10437                 put_task_struct(task);
10438         }
10439
10440         mutex_lock(&current->perf_event_mutex);
10441         list_add_tail(&event->owner_entry, &current->perf_event_list);
10442         mutex_unlock(&current->perf_event_mutex);
10443
10444         /*
10445          * Drop the reference on the group_event after placing the
10446          * new event on the sibling_list. This ensures destruction
10447          * of the group leader will find the pointer to itself in
10448          * perf_group_detach().
10449          */
10450         fdput(group);
10451         fd_install(event_fd, event_file);
10452         return event_fd;
10453
10454 err_locked:
10455         if (move_group)
10456                 perf_event_ctx_unlock(group_leader, gctx);
10457         mutex_unlock(&ctx->mutex);
10458 /* err_file: */
10459         fput(event_file);
10460 err_context:
10461         perf_unpin_context(ctx);
10462         put_ctx(ctx);
10463 err_alloc:
10464         /*
10465          * If event_file is set, the fput() above will have called ->release()
10466          * and that will take care of freeing the event.
10467          */
10468         if (!event_file)
10469                 free_event(event);
10470 err_cred:
10471         if (task)
10472                 mutex_unlock(&task->signal->cred_guard_mutex);
10473 err_task:
10474         if (task)
10475                 put_task_struct(task);
10476 err_group_fd:
10477         fdput(group);
10478 err_fd:
10479         put_unused_fd(event_fd);
10480         return err;
10481 }
10482
10483 /**
10484  * perf_event_create_kernel_counter
10485  *
10486  * @attr: attributes of the counter to create
10487  * @cpu: cpu in which the counter is bound
10488  * @task: task to profile (NULL for percpu)
10489  */
10490 struct perf_event *
10491 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10492                                  struct task_struct *task,
10493                                  perf_overflow_handler_t overflow_handler,
10494                                  void *context)
10495 {
10496         struct perf_event_context *ctx;
10497         struct perf_event *event;
10498         int err;
10499
10500         /*
10501          * Get the target context (task or percpu):
10502          */
10503
10504         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10505                                  overflow_handler, context, -1);
10506         if (IS_ERR(event)) {
10507                 err = PTR_ERR(event);
10508                 goto err;
10509         }
10510
10511         /* Mark owner so we could distinguish it from user events. */
10512         event->owner = TASK_TOMBSTONE;
10513
10514         ctx = find_get_context(event->pmu, task, event);
10515         if (IS_ERR(ctx)) {
10516                 err = PTR_ERR(ctx);
10517                 goto err_free;
10518         }
10519
10520         WARN_ON_ONCE(ctx->parent_ctx);
10521         mutex_lock(&ctx->mutex);
10522         if (ctx->task == TASK_TOMBSTONE) {
10523                 err = -ESRCH;
10524                 goto err_unlock;
10525         }
10526
10527         if (!task) {
10528                 /*
10529                  * Check if the @cpu we're creating an event for is online.
10530                  *
10531                  * We use the perf_cpu_context::ctx::mutex to serialize against
10532                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10533                  */
10534                 struct perf_cpu_context *cpuctx =
10535                         container_of(ctx, struct perf_cpu_context, ctx);
10536                 if (!cpuctx->online) {
10537                         err = -ENODEV;
10538                         goto err_unlock;
10539                 }
10540         }
10541
10542         if (!exclusive_event_installable(event, ctx)) {
10543                 err = -EBUSY;
10544                 goto err_unlock;
10545         }
10546
10547         perf_install_in_context(ctx, event, event->cpu);
10548         perf_unpin_context(ctx);
10549         mutex_unlock(&ctx->mutex);
10550
10551         return event;
10552
10553 err_unlock:
10554         mutex_unlock(&ctx->mutex);
10555         perf_unpin_context(ctx);
10556         put_ctx(ctx);
10557 err_free:
10558         free_event(event);
10559 err:
10560         return ERR_PTR(err);
10561 }
10562 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10563
10564 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10565 {
10566         struct perf_event_context *src_ctx;
10567         struct perf_event_context *dst_ctx;
10568         struct perf_event *event, *tmp;
10569         LIST_HEAD(events);
10570
10571         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10572         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10573
10574         /*
10575          * See perf_event_ctx_lock() for comments on the details
10576          * of swizzling perf_event::ctx.
10577          */
10578         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10579         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10580                                  event_entry) {
10581                 perf_remove_from_context(event, 0);
10582                 unaccount_event_cpu(event, src_cpu);
10583                 put_ctx(src_ctx);
10584                 list_add(&event->migrate_entry, &events);
10585         }
10586
10587         /*
10588          * Wait for the events to quiesce before re-instating them.
10589          */
10590         synchronize_rcu();
10591
10592         /*
10593          * Re-instate events in 2 passes.
10594          *
10595          * Skip over group leaders and only install siblings on this first
10596          * pass, siblings will not get enabled without a leader, however a
10597          * leader will enable its siblings, even if those are still on the old
10598          * context.
10599          */
10600         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10601                 if (event->group_leader == event)
10602                         continue;
10603
10604                 list_del(&event->migrate_entry);
10605                 if (event->state >= PERF_EVENT_STATE_OFF)
10606                         event->state = PERF_EVENT_STATE_INACTIVE;
10607                 account_event_cpu(event, dst_cpu);
10608                 perf_install_in_context(dst_ctx, event, dst_cpu);
10609                 get_ctx(dst_ctx);
10610         }
10611
10612         /*
10613          * Once all the siblings are setup properly, install the group leaders
10614          * to make it go.
10615          */
10616         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10617                 list_del(&event->migrate_entry);
10618                 if (event->state >= PERF_EVENT_STATE_OFF)
10619                         event->state = PERF_EVENT_STATE_INACTIVE;
10620                 account_event_cpu(event, dst_cpu);
10621                 perf_install_in_context(dst_ctx, event, dst_cpu);
10622                 get_ctx(dst_ctx);
10623         }
10624         mutex_unlock(&dst_ctx->mutex);
10625         mutex_unlock(&src_ctx->mutex);
10626 }
10627 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10628
10629 static void sync_child_event(struct perf_event *child_event,
10630                                struct task_struct *child)
10631 {
10632         struct perf_event *parent_event = child_event->parent;
10633         u64 child_val;
10634
10635         if (child_event->attr.inherit_stat)
10636                 perf_event_read_event(child_event, child);
10637
10638         child_val = perf_event_count(child_event);
10639
10640         /*
10641          * Add back the child's count to the parent's count:
10642          */
10643         atomic64_add(child_val, &parent_event->child_count);
10644         atomic64_add(child_event->total_time_enabled,
10645                      &parent_event->child_total_time_enabled);
10646         atomic64_add(child_event->total_time_running,
10647                      &parent_event->child_total_time_running);
10648 }
10649
10650 static void
10651 perf_event_exit_event(struct perf_event *child_event,
10652                       struct perf_event_context *child_ctx,
10653                       struct task_struct *child)
10654 {
10655         struct perf_event *parent_event = child_event->parent;
10656
10657         /*
10658          * Do not destroy the 'original' grouping; because of the context
10659          * switch optimization the original events could've ended up in a
10660          * random child task.
10661          *
10662          * If we were to destroy the original group, all group related
10663          * operations would cease to function properly after this random
10664          * child dies.
10665          *
10666          * Do destroy all inherited groups, we don't care about those
10667          * and being thorough is better.
10668          */
10669         raw_spin_lock_irq(&child_ctx->lock);
10670         WARN_ON_ONCE(child_ctx->is_active);
10671
10672         if (parent_event)
10673                 perf_group_detach(child_event);
10674         list_del_event(child_event, child_ctx);
10675         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10676         raw_spin_unlock_irq(&child_ctx->lock);
10677
10678         /*
10679          * Parent events are governed by their filedesc, retain them.
10680          */
10681         if (!parent_event) {
10682                 perf_event_wakeup(child_event);
10683                 return;
10684         }
10685         /*
10686          * Child events can be cleaned up.
10687          */
10688
10689         sync_child_event(child_event, child);
10690
10691         /*
10692          * Remove this event from the parent's list
10693          */
10694         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10695         mutex_lock(&parent_event->child_mutex);
10696         list_del_init(&child_event->child_list);
10697         mutex_unlock(&parent_event->child_mutex);
10698
10699         /*
10700          * Kick perf_poll() for is_event_hup().
10701          */
10702         perf_event_wakeup(parent_event);
10703         free_event(child_event);
10704         put_event(parent_event);
10705 }
10706
10707 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10708 {
10709         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10710         struct perf_event *child_event, *next;
10711
10712         WARN_ON_ONCE(child != current);
10713
10714         child_ctx = perf_pin_task_context(child, ctxn);
10715         if (!child_ctx)
10716                 return;
10717
10718         /*
10719          * In order to reduce the amount of tricky in ctx tear-down, we hold
10720          * ctx::mutex over the entire thing. This serializes against almost
10721          * everything that wants to access the ctx.
10722          *
10723          * The exception is sys_perf_event_open() /
10724          * perf_event_create_kernel_count() which does find_get_context()
10725          * without ctx::mutex (it cannot because of the move_group double mutex
10726          * lock thing). See the comments in perf_install_in_context().
10727          */
10728         mutex_lock(&child_ctx->mutex);
10729
10730         /*
10731          * In a single ctx::lock section, de-schedule the events and detach the
10732          * context from the task such that we cannot ever get it scheduled back
10733          * in.
10734          */
10735         raw_spin_lock_irq(&child_ctx->lock);
10736         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10737
10738         /*
10739          * Now that the context is inactive, destroy the task <-> ctx relation
10740          * and mark the context dead.
10741          */
10742         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10743         put_ctx(child_ctx); /* cannot be last */
10744         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10745         put_task_struct(current); /* cannot be last */
10746
10747         clone_ctx = unclone_ctx(child_ctx);
10748         raw_spin_unlock_irq(&child_ctx->lock);
10749
10750         if (clone_ctx)
10751                 put_ctx(clone_ctx);
10752
10753         /*
10754          * Report the task dead after unscheduling the events so that we
10755          * won't get any samples after PERF_RECORD_EXIT. We can however still
10756          * get a few PERF_RECORD_READ events.
10757          */
10758         perf_event_task(child, child_ctx, 0);
10759
10760         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10761                 perf_event_exit_event(child_event, child_ctx, child);
10762
10763         mutex_unlock(&child_ctx->mutex);
10764
10765         put_ctx(child_ctx);
10766 }
10767
10768 /*
10769  * When a child task exits, feed back event values to parent events.
10770  *
10771  * Can be called with cred_guard_mutex held when called from
10772  * install_exec_creds().
10773  */
10774 void perf_event_exit_task(struct task_struct *child)
10775 {
10776         struct perf_event *event, *tmp;
10777         int ctxn;
10778
10779         mutex_lock(&child->perf_event_mutex);
10780         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10781                                  owner_entry) {
10782                 list_del_init(&event->owner_entry);
10783
10784                 /*
10785                  * Ensure the list deletion is visible before we clear
10786                  * the owner, closes a race against perf_release() where
10787                  * we need to serialize on the owner->perf_event_mutex.
10788                  */
10789                 smp_store_release(&event->owner, NULL);
10790         }
10791         mutex_unlock(&child->perf_event_mutex);
10792
10793         for_each_task_context_nr(ctxn)
10794                 perf_event_exit_task_context(child, ctxn);
10795
10796         /*
10797          * The perf_event_exit_task_context calls perf_event_task
10798          * with child's task_ctx, which generates EXIT events for
10799          * child contexts and sets child->perf_event_ctxp[] to NULL.
10800          * At this point we need to send EXIT events to cpu contexts.
10801          */
10802         perf_event_task(child, NULL, 0);
10803 }
10804
10805 static void perf_free_event(struct perf_event *event,
10806                             struct perf_event_context *ctx)
10807 {
10808         struct perf_event *parent = event->parent;
10809
10810         if (WARN_ON_ONCE(!parent))
10811                 return;
10812
10813         mutex_lock(&parent->child_mutex);
10814         list_del_init(&event->child_list);
10815         mutex_unlock(&parent->child_mutex);
10816
10817         put_event(parent);
10818
10819         raw_spin_lock_irq(&ctx->lock);
10820         perf_group_detach(event);
10821         list_del_event(event, ctx);
10822         raw_spin_unlock_irq(&ctx->lock);
10823         free_event(event);
10824 }
10825
10826 /*
10827  * Free an unexposed, unused context as created by inheritance by
10828  * perf_event_init_task below, used by fork() in case of fail.
10829  *
10830  * Not all locks are strictly required, but take them anyway to be nice and
10831  * help out with the lockdep assertions.
10832  */
10833 void perf_event_free_task(struct task_struct *task)
10834 {
10835         struct perf_event_context *ctx;
10836         struct perf_event *event, *tmp;
10837         int ctxn;
10838
10839         for_each_task_context_nr(ctxn) {
10840                 ctx = task->perf_event_ctxp[ctxn];
10841                 if (!ctx)
10842                         continue;
10843
10844                 mutex_lock(&ctx->mutex);
10845                 raw_spin_lock_irq(&ctx->lock);
10846                 /*
10847                  * Destroy the task <-> ctx relation and mark the context dead.
10848                  *
10849                  * This is important because even though the task hasn't been
10850                  * exposed yet the context has been (through child_list).
10851                  */
10852                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10853                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10854                 put_task_struct(task); /* cannot be last */
10855                 raw_spin_unlock_irq(&ctx->lock);
10856
10857                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10858                         perf_free_event(event, ctx);
10859
10860                 mutex_unlock(&ctx->mutex);
10861                 put_ctx(ctx);
10862         }
10863 }
10864
10865 void perf_event_delayed_put(struct task_struct *task)
10866 {
10867         int ctxn;
10868
10869         for_each_task_context_nr(ctxn)
10870                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10871 }
10872
10873 struct file *perf_event_get(unsigned int fd)
10874 {
10875         struct file *file;
10876
10877         file = fget_raw(fd);
10878         if (!file)
10879                 return ERR_PTR(-EBADF);
10880
10881         if (file->f_op != &perf_fops) {
10882                 fput(file);
10883                 return ERR_PTR(-EBADF);
10884         }
10885
10886         return file;
10887 }
10888
10889 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10890 {
10891         if (!event)
10892                 return ERR_PTR(-EINVAL);
10893
10894         return &event->attr;
10895 }
10896
10897 /*
10898  * Inherit a event from parent task to child task.
10899  *
10900  * Returns:
10901  *  - valid pointer on success
10902  *  - NULL for orphaned events
10903  *  - IS_ERR() on error
10904  */
10905 static struct perf_event *
10906 inherit_event(struct perf_event *parent_event,
10907               struct task_struct *parent,
10908               struct perf_event_context *parent_ctx,
10909               struct task_struct *child,
10910               struct perf_event *group_leader,
10911               struct perf_event_context *child_ctx)
10912 {
10913         enum perf_event_active_state parent_state = parent_event->state;
10914         struct perf_event *child_event;
10915         unsigned long flags;
10916
10917         /*
10918          * Instead of creating recursive hierarchies of events,
10919          * we link inherited events back to the original parent,
10920          * which has a filp for sure, which we use as the reference
10921          * count:
10922          */
10923         if (parent_event->parent)
10924                 parent_event = parent_event->parent;
10925
10926         child_event = perf_event_alloc(&parent_event->attr,
10927                                            parent_event->cpu,
10928                                            child,
10929                                            group_leader, parent_event,
10930                                            NULL, NULL, -1);
10931         if (IS_ERR(child_event))
10932                 return child_event;
10933
10934         /*
10935          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10936          * must be under the same lock in order to serialize against
10937          * perf_event_release_kernel(), such that either we must observe
10938          * is_orphaned_event() or they will observe us on the child_list.
10939          */
10940         mutex_lock(&parent_event->child_mutex);
10941         if (is_orphaned_event(parent_event) ||
10942             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10943                 mutex_unlock(&parent_event->child_mutex);
10944                 free_event(child_event);
10945                 return NULL;
10946         }
10947
10948         get_ctx(child_ctx);
10949
10950         /*
10951          * Make the child state follow the state of the parent event,
10952          * not its attr.disabled bit.  We hold the parent's mutex,
10953          * so we won't race with perf_event_{en, dis}able_family.
10954          */
10955         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10956                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10957         else
10958                 child_event->state = PERF_EVENT_STATE_OFF;
10959
10960         if (parent_event->attr.freq) {
10961                 u64 sample_period = parent_event->hw.sample_period;
10962                 struct hw_perf_event *hwc = &child_event->hw;
10963
10964                 hwc->sample_period = sample_period;
10965                 hwc->last_period   = sample_period;
10966
10967                 local64_set(&hwc->period_left, sample_period);
10968         }
10969
10970         child_event->ctx = child_ctx;
10971         child_event->overflow_handler = parent_event->overflow_handler;
10972         child_event->overflow_handler_context
10973                 = parent_event->overflow_handler_context;
10974
10975         /*
10976          * Precalculate sample_data sizes
10977          */
10978         perf_event__header_size(child_event);
10979         perf_event__id_header_size(child_event);
10980
10981         /*
10982          * Link it up in the child's context:
10983          */
10984         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10985         add_event_to_ctx(child_event, child_ctx);
10986         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10987
10988         /*
10989          * Link this into the parent event's child list
10990          */
10991         list_add_tail(&child_event->child_list, &parent_event->child_list);
10992         mutex_unlock(&parent_event->child_mutex);
10993
10994         return child_event;
10995 }
10996
10997 /*
10998  * Inherits an event group.
10999  *
11000  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11001  * This matches with perf_event_release_kernel() removing all child events.
11002  *
11003  * Returns:
11004  *  - 0 on success
11005  *  - <0 on error
11006  */
11007 static int inherit_group(struct perf_event *parent_event,
11008               struct task_struct *parent,
11009               struct perf_event_context *parent_ctx,
11010               struct task_struct *child,
11011               struct perf_event_context *child_ctx)
11012 {
11013         struct perf_event *leader;
11014         struct perf_event *sub;
11015         struct perf_event *child_ctr;
11016
11017         leader = inherit_event(parent_event, parent, parent_ctx,
11018                                  child, NULL, child_ctx);
11019         if (IS_ERR(leader))
11020                 return PTR_ERR(leader);
11021         /*
11022          * @leader can be NULL here because of is_orphaned_event(). In this
11023          * case inherit_event() will create individual events, similar to what
11024          * perf_group_detach() would do anyway.
11025          */
11026         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
11027                 child_ctr = inherit_event(sub, parent, parent_ctx,
11028                                             child, leader, child_ctx);
11029                 if (IS_ERR(child_ctr))
11030                         return PTR_ERR(child_ctr);
11031         }
11032         return 0;
11033 }
11034
11035 /*
11036  * Creates the child task context and tries to inherit the event-group.
11037  *
11038  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11039  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11040  * consistent with perf_event_release_kernel() removing all child events.
11041  *
11042  * Returns:
11043  *  - 0 on success
11044  *  - <0 on error
11045  */
11046 static int
11047 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11048                    struct perf_event_context *parent_ctx,
11049                    struct task_struct *child, int ctxn,
11050                    int *inherited_all)
11051 {
11052         int ret;
11053         struct perf_event_context *child_ctx;
11054
11055         if (!event->attr.inherit) {
11056                 *inherited_all = 0;
11057                 return 0;
11058         }
11059
11060         child_ctx = child->perf_event_ctxp[ctxn];
11061         if (!child_ctx) {
11062                 /*
11063                  * This is executed from the parent task context, so
11064                  * inherit events that have been marked for cloning.
11065                  * First allocate and initialize a context for the
11066                  * child.
11067                  */
11068                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11069                 if (!child_ctx)
11070                         return -ENOMEM;
11071
11072                 child->perf_event_ctxp[ctxn] = child_ctx;
11073         }
11074
11075         ret = inherit_group(event, parent, parent_ctx,
11076                             child, child_ctx);
11077
11078         if (ret)
11079                 *inherited_all = 0;
11080
11081         return ret;
11082 }
11083
11084 /*
11085  * Initialize the perf_event context in task_struct
11086  */
11087 static int perf_event_init_context(struct task_struct *child, int ctxn)
11088 {
11089         struct perf_event_context *child_ctx, *parent_ctx;
11090         struct perf_event_context *cloned_ctx;
11091         struct perf_event *event;
11092         struct task_struct *parent = current;
11093         int inherited_all = 1;
11094         unsigned long flags;
11095         int ret = 0;
11096
11097         if (likely(!parent->perf_event_ctxp[ctxn]))
11098                 return 0;
11099
11100         /*
11101          * If the parent's context is a clone, pin it so it won't get
11102          * swapped under us.
11103          */
11104         parent_ctx = perf_pin_task_context(parent, ctxn);
11105         if (!parent_ctx)
11106                 return 0;
11107
11108         /*
11109          * No need to check if parent_ctx != NULL here; since we saw
11110          * it non-NULL earlier, the only reason for it to become NULL
11111          * is if we exit, and since we're currently in the middle of
11112          * a fork we can't be exiting at the same time.
11113          */
11114
11115         /*
11116          * Lock the parent list. No need to lock the child - not PID
11117          * hashed yet and not running, so nobody can access it.
11118          */
11119         mutex_lock(&parent_ctx->mutex);
11120
11121         /*
11122          * We dont have to disable NMIs - we are only looking at
11123          * the list, not manipulating it:
11124          */
11125         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
11126                 ret = inherit_task_group(event, parent, parent_ctx,
11127                                          child, ctxn, &inherited_all);
11128                 if (ret)
11129                         goto out_unlock;
11130         }
11131
11132         /*
11133          * We can't hold ctx->lock when iterating the ->flexible_group list due
11134          * to allocations, but we need to prevent rotation because
11135          * rotate_ctx() will change the list from interrupt context.
11136          */
11137         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11138         parent_ctx->rotate_disable = 1;
11139         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11140
11141         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11142                 ret = inherit_task_group(event, parent, parent_ctx,
11143                                          child, ctxn, &inherited_all);
11144                 if (ret)
11145                         goto out_unlock;
11146         }
11147
11148         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11149         parent_ctx->rotate_disable = 0;
11150
11151         child_ctx = child->perf_event_ctxp[ctxn];
11152
11153         if (child_ctx && inherited_all) {
11154                 /*
11155                  * Mark the child context as a clone of the parent
11156                  * context, or of whatever the parent is a clone of.
11157                  *
11158                  * Note that if the parent is a clone, the holding of
11159                  * parent_ctx->lock avoids it from being uncloned.
11160                  */
11161                 cloned_ctx = parent_ctx->parent_ctx;
11162                 if (cloned_ctx) {
11163                         child_ctx->parent_ctx = cloned_ctx;
11164                         child_ctx->parent_gen = parent_ctx->parent_gen;
11165                 } else {
11166                         child_ctx->parent_ctx = parent_ctx;
11167                         child_ctx->parent_gen = parent_ctx->generation;
11168                 }
11169                 get_ctx(child_ctx->parent_ctx);
11170         }
11171
11172         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11173 out_unlock:
11174         mutex_unlock(&parent_ctx->mutex);
11175
11176         perf_unpin_context(parent_ctx);
11177         put_ctx(parent_ctx);
11178
11179         return ret;
11180 }
11181
11182 /*
11183  * Initialize the perf_event context in task_struct
11184  */
11185 int perf_event_init_task(struct task_struct *child)
11186 {
11187         int ctxn, ret;
11188
11189         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11190         mutex_init(&child->perf_event_mutex);
11191         INIT_LIST_HEAD(&child->perf_event_list);
11192
11193         for_each_task_context_nr(ctxn) {
11194                 ret = perf_event_init_context(child, ctxn);
11195                 if (ret) {
11196                         perf_event_free_task(child);
11197                         return ret;
11198                 }
11199         }
11200
11201         return 0;
11202 }
11203
11204 static void __init perf_event_init_all_cpus(void)
11205 {
11206         struct swevent_htable *swhash;
11207         int cpu;
11208
11209         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11210
11211         for_each_possible_cpu(cpu) {
11212                 swhash = &per_cpu(swevent_htable, cpu);
11213                 mutex_init(&swhash->hlist_mutex);
11214                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11215
11216                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11217                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11218
11219 #ifdef CONFIG_CGROUP_PERF
11220                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11221 #endif
11222                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11223         }
11224 }
11225
11226 void perf_swevent_init_cpu(unsigned int cpu)
11227 {
11228         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11229
11230         mutex_lock(&swhash->hlist_mutex);
11231         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11232                 struct swevent_hlist *hlist;
11233
11234                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11235                 WARN_ON(!hlist);
11236                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11237         }
11238         mutex_unlock(&swhash->hlist_mutex);
11239 }
11240
11241 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11242 static void __perf_event_exit_context(void *__info)
11243 {
11244         struct perf_event_context *ctx = __info;
11245         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11246         struct perf_event *event;
11247
11248         raw_spin_lock(&ctx->lock);
11249         list_for_each_entry(event, &ctx->event_list, event_entry)
11250                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11251         raw_spin_unlock(&ctx->lock);
11252 }
11253
11254 static void perf_event_exit_cpu_context(int cpu)
11255 {
11256         struct perf_cpu_context *cpuctx;
11257         struct perf_event_context *ctx;
11258         struct pmu *pmu;
11259
11260         mutex_lock(&pmus_lock);
11261         list_for_each_entry(pmu, &pmus, entry) {
11262                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11263                 ctx = &cpuctx->ctx;
11264
11265                 mutex_lock(&ctx->mutex);
11266                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11267                 cpuctx->online = 0;
11268                 mutex_unlock(&ctx->mutex);
11269         }
11270         cpumask_clear_cpu(cpu, perf_online_mask);
11271         mutex_unlock(&pmus_lock);
11272 }
11273 #else
11274
11275 static void perf_event_exit_cpu_context(int cpu) { }
11276
11277 #endif
11278
11279 int perf_event_init_cpu(unsigned int cpu)
11280 {
11281         struct perf_cpu_context *cpuctx;
11282         struct perf_event_context *ctx;
11283         struct pmu *pmu;
11284
11285         perf_swevent_init_cpu(cpu);
11286
11287         mutex_lock(&pmus_lock);
11288         cpumask_set_cpu(cpu, perf_online_mask);
11289         list_for_each_entry(pmu, &pmus, entry) {
11290                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11291                 ctx = &cpuctx->ctx;
11292
11293                 mutex_lock(&ctx->mutex);
11294                 cpuctx->online = 1;
11295                 mutex_unlock(&ctx->mutex);
11296         }
11297         mutex_unlock(&pmus_lock);
11298
11299         return 0;
11300 }
11301
11302 int perf_event_exit_cpu(unsigned int cpu)
11303 {
11304         perf_event_exit_cpu_context(cpu);
11305         return 0;
11306 }
11307
11308 static int
11309 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11310 {
11311         int cpu;
11312
11313         for_each_online_cpu(cpu)
11314                 perf_event_exit_cpu(cpu);
11315
11316         return NOTIFY_OK;
11317 }
11318
11319 /*
11320  * Run the perf reboot notifier at the very last possible moment so that
11321  * the generic watchdog code runs as long as possible.
11322  */
11323 static struct notifier_block perf_reboot_notifier = {
11324         .notifier_call = perf_reboot,
11325         .priority = INT_MIN,
11326 };
11327
11328 void __init perf_event_init(void)
11329 {
11330         int ret;
11331
11332         idr_init(&pmu_idr);
11333
11334         perf_event_init_all_cpus();
11335         init_srcu_struct(&pmus_srcu);
11336         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11337         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11338         perf_pmu_register(&perf_task_clock, NULL, -1);
11339         perf_tp_register();
11340         perf_event_init_cpu(smp_processor_id());
11341         register_reboot_notifier(&perf_reboot_notifier);
11342
11343         ret = init_hw_breakpoint();
11344         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11345
11346         /*
11347          * Build time assertion that we keep the data_head at the intended
11348          * location.  IOW, validation we got the __reserved[] size right.
11349          */
11350         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11351                      != 1024);
11352 }
11353
11354 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11355                               char *page)
11356 {
11357         struct perf_pmu_events_attr *pmu_attr =
11358                 container_of(attr, struct perf_pmu_events_attr, attr);
11359
11360         if (pmu_attr->event_str)
11361                 return sprintf(page, "%s\n", pmu_attr->event_str);
11362
11363         return 0;
11364 }
11365 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11366
11367 static int __init perf_event_sysfs_init(void)
11368 {
11369         struct pmu *pmu;
11370         int ret;
11371
11372         mutex_lock(&pmus_lock);
11373
11374         ret = bus_register(&pmu_bus);
11375         if (ret)
11376                 goto unlock;
11377
11378         list_for_each_entry(pmu, &pmus, entry) {
11379                 if (!pmu->name || pmu->type < 0)
11380                         continue;
11381
11382                 ret = pmu_dev_alloc(pmu);
11383                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11384         }
11385         pmu_bus_running = 1;
11386         ret = 0;
11387
11388 unlock:
11389         mutex_unlock(&pmus_lock);
11390
11391         return ret;
11392 }
11393 device_initcall(perf_event_sysfs_init);
11394
11395 #ifdef CONFIG_CGROUP_PERF
11396 static struct cgroup_subsys_state *
11397 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11398 {
11399         struct perf_cgroup *jc;
11400
11401         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11402         if (!jc)
11403                 return ERR_PTR(-ENOMEM);
11404
11405         jc->info = alloc_percpu(struct perf_cgroup_info);
11406         if (!jc->info) {
11407                 kfree(jc);
11408                 return ERR_PTR(-ENOMEM);
11409         }
11410
11411         return &jc->css;
11412 }
11413
11414 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11415 {
11416         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11417
11418         free_percpu(jc->info);
11419         kfree(jc);
11420 }
11421
11422 static int __perf_cgroup_move(void *info)
11423 {
11424         struct task_struct *task = info;
11425         rcu_read_lock();
11426         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11427         rcu_read_unlock();
11428         return 0;
11429 }
11430
11431 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11432 {
11433         struct task_struct *task;
11434         struct cgroup_subsys_state *css;
11435
11436         cgroup_taskset_for_each(task, css, tset)
11437                 task_function_call(task, __perf_cgroup_move, task);
11438 }
11439
11440 struct cgroup_subsys perf_event_cgrp_subsys = {
11441         .css_alloc      = perf_cgroup_css_alloc,
11442         .css_free       = perf_cgroup_css_free,
11443         .attach         = perf_cgroup_attach,
11444         /*
11445          * Implicitly enable on dfl hierarchy so that perf events can
11446          * always be filtered by cgroup2 path as long as perf_event
11447          * controller is not mounted on a legacy hierarchy.
11448          */
11449         .implicit_on_dfl = true,
11450         .threaded       = true,
11451 };
11452 #endif /* CONFIG_CGROUP_PERF */