GNU Linux-libre 4.19.304-gnu1
[releases.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 /*
592  * State based event timekeeping...
593  *
594  * The basic idea is to use event->state to determine which (if any) time
595  * fields to increment with the current delta. This means we only need to
596  * update timestamps when we change state or when they are explicitly requested
597  * (read).
598  *
599  * Event groups make things a little more complicated, but not terribly so. The
600  * rules for a group are that if the group leader is OFF the entire group is
601  * OFF, irrespecive of what the group member states are. This results in
602  * __perf_effective_state().
603  *
604  * A futher ramification is that when a group leader flips between OFF and
605  * !OFF, we need to update all group member times.
606  *
607  *
608  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
609  * need to make sure the relevant context time is updated before we try and
610  * update our timestamps.
611  */
612
613 static __always_inline enum perf_event_state
614 __perf_effective_state(struct perf_event *event)
615 {
616         struct perf_event *leader = event->group_leader;
617
618         if (leader->state <= PERF_EVENT_STATE_OFF)
619                 return leader->state;
620
621         return event->state;
622 }
623
624 static __always_inline void
625 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
626 {
627         enum perf_event_state state = __perf_effective_state(event);
628         u64 delta = now - event->tstamp;
629
630         *enabled = event->total_time_enabled;
631         if (state >= PERF_EVENT_STATE_INACTIVE)
632                 *enabled += delta;
633
634         *running = event->total_time_running;
635         if (state >= PERF_EVENT_STATE_ACTIVE)
636                 *running += delta;
637 }
638
639 static void perf_event_update_time(struct perf_event *event)
640 {
641         u64 now = perf_event_time(event);
642
643         __perf_update_times(event, now, &event->total_time_enabled,
644                                         &event->total_time_running);
645         event->tstamp = now;
646 }
647
648 static void perf_event_update_sibling_time(struct perf_event *leader)
649 {
650         struct perf_event *sibling;
651
652         for_each_sibling_event(sibling, leader)
653                 perf_event_update_time(sibling);
654 }
655
656 static void
657 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
658 {
659         if (event->state == state)
660                 return;
661
662         perf_event_update_time(event);
663         /*
664          * If a group leader gets enabled/disabled all its siblings
665          * are affected too.
666          */
667         if ((event->state < 0) ^ (state < 0))
668                 perf_event_update_sibling_time(event);
669
670         WRITE_ONCE(event->state, state);
671 }
672
673 #ifdef CONFIG_CGROUP_PERF
674
675 static inline bool
676 perf_cgroup_match(struct perf_event *event)
677 {
678         struct perf_event_context *ctx = event->ctx;
679         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
680
681         /* @event doesn't care about cgroup */
682         if (!event->cgrp)
683                 return true;
684
685         /* wants specific cgroup scope but @cpuctx isn't associated with any */
686         if (!cpuctx->cgrp)
687                 return false;
688
689         /*
690          * Cgroup scoping is recursive.  An event enabled for a cgroup is
691          * also enabled for all its descendant cgroups.  If @cpuctx's
692          * cgroup is a descendant of @event's (the test covers identity
693          * case), it's a match.
694          */
695         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
696                                     event->cgrp->css.cgroup);
697 }
698
699 static inline void perf_detach_cgroup(struct perf_event *event)
700 {
701         css_put(&event->cgrp->css);
702         event->cgrp = NULL;
703 }
704
705 static inline int is_cgroup_event(struct perf_event *event)
706 {
707         return event->cgrp != NULL;
708 }
709
710 static inline u64 perf_cgroup_event_time(struct perf_event *event)
711 {
712         struct perf_cgroup_info *t;
713
714         t = per_cpu_ptr(event->cgrp->info, event->cpu);
715         return t->time;
716 }
717
718 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
719 {
720         struct perf_cgroup_info *info;
721         u64 now;
722
723         now = perf_clock();
724
725         info = this_cpu_ptr(cgrp->info);
726
727         info->time += now - info->timestamp;
728         info->timestamp = now;
729 }
730
731 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
732 {
733         struct perf_cgroup *cgrp = cpuctx->cgrp;
734         struct cgroup_subsys_state *css;
735
736         if (cgrp) {
737                 for (css = &cgrp->css; css; css = css->parent) {
738                         cgrp = container_of(css, struct perf_cgroup, css);
739                         __update_cgrp_time(cgrp);
740                 }
741         }
742 }
743
744 static inline void update_cgrp_time_from_event(struct perf_event *event)
745 {
746         struct perf_cgroup *cgrp;
747
748         /*
749          * ensure we access cgroup data only when needed and
750          * when we know the cgroup is pinned (css_get)
751          */
752         if (!is_cgroup_event(event))
753                 return;
754
755         cgrp = perf_cgroup_from_task(current, event->ctx);
756         /*
757          * Do not update time when cgroup is not active
758          */
759        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
760                 __update_cgrp_time(event->cgrp);
761 }
762
763 static inline void
764 perf_cgroup_set_timestamp(struct task_struct *task,
765                           struct perf_event_context *ctx)
766 {
767         struct perf_cgroup *cgrp;
768         struct perf_cgroup_info *info;
769         struct cgroup_subsys_state *css;
770
771         /*
772          * ctx->lock held by caller
773          * ensure we do not access cgroup data
774          * unless we have the cgroup pinned (css_get)
775          */
776         if (!task || !ctx->nr_cgroups)
777                 return;
778
779         cgrp = perf_cgroup_from_task(task, ctx);
780
781         for (css = &cgrp->css; css; css = css->parent) {
782                 cgrp = container_of(css, struct perf_cgroup, css);
783                 info = this_cpu_ptr(cgrp->info);
784                 info->timestamp = ctx->timestamp;
785         }
786 }
787
788 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
789
790 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
791 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
792
793 /*
794  * reschedule events based on the cgroup constraint of task.
795  *
796  * mode SWOUT : schedule out everything
797  * mode SWIN : schedule in based on cgroup for next
798  */
799 static void perf_cgroup_switch(struct task_struct *task, int mode)
800 {
801         struct perf_cpu_context *cpuctx, *tmp;
802         struct list_head *list;
803         unsigned long flags;
804
805         /*
806          * Disable interrupts and preemption to avoid this CPU's
807          * cgrp_cpuctx_entry to change under us.
808          */
809         local_irq_save(flags);
810
811         list = this_cpu_ptr(&cgrp_cpuctx_list);
812         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
813                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
814
815                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
816                 perf_pmu_disable(cpuctx->ctx.pmu);
817
818                 if (mode & PERF_CGROUP_SWOUT) {
819                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
820                         /*
821                          * must not be done before ctxswout due
822                          * to event_filter_match() in event_sched_out()
823                          */
824                         cpuctx->cgrp = NULL;
825                 }
826
827                 if (mode & PERF_CGROUP_SWIN) {
828                         WARN_ON_ONCE(cpuctx->cgrp);
829                         /*
830                          * set cgrp before ctxsw in to allow
831                          * event_filter_match() to not have to pass
832                          * task around
833                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
834                          * because cgorup events are only per-cpu
835                          */
836                         cpuctx->cgrp = perf_cgroup_from_task(task,
837                                                              &cpuctx->ctx);
838                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
839                 }
840                 perf_pmu_enable(cpuctx->ctx.pmu);
841                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
842         }
843
844         local_irq_restore(flags);
845 }
846
847 static inline void perf_cgroup_sched_out(struct task_struct *task,
848                                          struct task_struct *next)
849 {
850         struct perf_cgroup *cgrp1;
851         struct perf_cgroup *cgrp2 = NULL;
852
853         rcu_read_lock();
854         /*
855          * we come here when we know perf_cgroup_events > 0
856          * we do not need to pass the ctx here because we know
857          * we are holding the rcu lock
858          */
859         cgrp1 = perf_cgroup_from_task(task, NULL);
860         cgrp2 = perf_cgroup_from_task(next, NULL);
861
862         /*
863          * only schedule out current cgroup events if we know
864          * that we are switching to a different cgroup. Otherwise,
865          * do no touch the cgroup events.
866          */
867         if (cgrp1 != cgrp2)
868                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
869
870         rcu_read_unlock();
871 }
872
873 static inline void perf_cgroup_sched_in(struct task_struct *prev,
874                                         struct task_struct *task)
875 {
876         struct perf_cgroup *cgrp1;
877         struct perf_cgroup *cgrp2 = NULL;
878
879         rcu_read_lock();
880         /*
881          * we come here when we know perf_cgroup_events > 0
882          * we do not need to pass the ctx here because we know
883          * we are holding the rcu lock
884          */
885         cgrp1 = perf_cgroup_from_task(task, NULL);
886         cgrp2 = perf_cgroup_from_task(prev, NULL);
887
888         /*
889          * only need to schedule in cgroup events if we are changing
890          * cgroup during ctxsw. Cgroup events were not scheduled
891          * out of ctxsw out if that was not the case.
892          */
893         if (cgrp1 != cgrp2)
894                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
895
896         rcu_read_unlock();
897 }
898
899 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
900                                       struct perf_event_attr *attr,
901                                       struct perf_event *group_leader)
902 {
903         struct perf_cgroup *cgrp;
904         struct cgroup_subsys_state *css;
905         struct fd f = fdget(fd);
906         int ret = 0;
907
908         if (!f.file)
909                 return -EBADF;
910
911         css = css_tryget_online_from_dir(f.file->f_path.dentry,
912                                          &perf_event_cgrp_subsys);
913         if (IS_ERR(css)) {
914                 ret = PTR_ERR(css);
915                 goto out;
916         }
917
918         cgrp = container_of(css, struct perf_cgroup, css);
919         event->cgrp = cgrp;
920
921         /*
922          * all events in a group must monitor
923          * the same cgroup because a task belongs
924          * to only one perf cgroup at a time
925          */
926         if (group_leader && group_leader->cgrp != cgrp) {
927                 perf_detach_cgroup(event);
928                 ret = -EINVAL;
929         }
930 out:
931         fdput(f);
932         return ret;
933 }
934
935 static inline void
936 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
937 {
938         struct perf_cgroup_info *t;
939         t = per_cpu_ptr(event->cgrp->info, event->cpu);
940         event->shadow_ctx_time = now - t->timestamp;
941 }
942
943 /*
944  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
945  * cleared when last cgroup event is removed.
946  */
947 static inline void
948 list_update_cgroup_event(struct perf_event *event,
949                          struct perf_event_context *ctx, bool add)
950 {
951         struct perf_cpu_context *cpuctx;
952         struct list_head *cpuctx_entry;
953
954         if (!is_cgroup_event(event))
955                 return;
956
957         /*
958          * Because cgroup events are always per-cpu events,
959          * this will always be called from the right CPU.
960          */
961         cpuctx = __get_cpu_context(ctx);
962
963         /*
964          * Since setting cpuctx->cgrp is conditional on the current @cgrp
965          * matching the event's cgroup, we must do this for every new event,
966          * because if the first would mismatch, the second would not try again
967          * and we would leave cpuctx->cgrp unset.
968          */
969         if (add && !cpuctx->cgrp) {
970                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
971
972                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
973                         cpuctx->cgrp = cgrp;
974         }
975
976         if (add && ctx->nr_cgroups++)
977                 return;
978         else if (!add && --ctx->nr_cgroups)
979                 return;
980
981         /* no cgroup running */
982         if (!add)
983                 cpuctx->cgrp = NULL;
984
985         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
986         if (add)
987                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
988         else
989                 list_del(cpuctx_entry);
990 }
991
992 #else /* !CONFIG_CGROUP_PERF */
993
994 static inline bool
995 perf_cgroup_match(struct perf_event *event)
996 {
997         return true;
998 }
999
1000 static inline void perf_detach_cgroup(struct perf_event *event)
1001 {}
1002
1003 static inline int is_cgroup_event(struct perf_event *event)
1004 {
1005         return 0;
1006 }
1007
1008 static inline void update_cgrp_time_from_event(struct perf_event *event)
1009 {
1010 }
1011
1012 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_out(struct task_struct *task,
1017                                          struct task_struct *next)
1018 {
1019 }
1020
1021 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1022                                         struct task_struct *task)
1023 {
1024 }
1025
1026 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1027                                       struct perf_event_attr *attr,
1028                                       struct perf_event *group_leader)
1029 {
1030         return -EINVAL;
1031 }
1032
1033 static inline void
1034 perf_cgroup_set_timestamp(struct task_struct *task,
1035                           struct perf_event_context *ctx)
1036 {
1037 }
1038
1039 void
1040 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1041 {
1042 }
1043
1044 static inline void
1045 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1046 {
1047 }
1048
1049 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1050 {
1051         return 0;
1052 }
1053
1054 static inline void
1055 list_update_cgroup_event(struct perf_event *event,
1056                          struct perf_event_context *ctx, bool add)
1057 {
1058 }
1059
1060 #endif
1061
1062 /*
1063  * set default to be dependent on timer tick just
1064  * like original code
1065  */
1066 #define PERF_CPU_HRTIMER (1000 / HZ)
1067 /*
1068  * function must be called with interrupts disabled
1069  */
1070 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1071 {
1072         struct perf_cpu_context *cpuctx;
1073         bool rotations;
1074
1075         lockdep_assert_irqs_disabled();
1076
1077         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1078         rotations = perf_rotate_context(cpuctx);
1079
1080         raw_spin_lock(&cpuctx->hrtimer_lock);
1081         if (rotations)
1082                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1083         else
1084                 cpuctx->hrtimer_active = 0;
1085         raw_spin_unlock(&cpuctx->hrtimer_lock);
1086
1087         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1088 }
1089
1090 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1091 {
1092         struct hrtimer *timer = &cpuctx->hrtimer;
1093         struct pmu *pmu = cpuctx->ctx.pmu;
1094         u64 interval;
1095
1096         /* no multiplexing needed for SW PMU */
1097         if (pmu->task_ctx_nr == perf_sw_context)
1098                 return;
1099
1100         /*
1101          * check default is sane, if not set then force to
1102          * default interval (1/tick)
1103          */
1104         interval = pmu->hrtimer_interval_ms;
1105         if (interval < 1)
1106                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1107
1108         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1109
1110         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1111         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1112         timer->function = perf_mux_hrtimer_handler;
1113 }
1114
1115 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1116 {
1117         struct hrtimer *timer = &cpuctx->hrtimer;
1118         struct pmu *pmu = cpuctx->ctx.pmu;
1119         unsigned long flags;
1120
1121         /* not for SW PMU */
1122         if (pmu->task_ctx_nr == perf_sw_context)
1123                 return 0;
1124
1125         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1126         if (!cpuctx->hrtimer_active) {
1127                 cpuctx->hrtimer_active = 1;
1128                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1129                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1130         }
1131         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1132
1133         return 0;
1134 }
1135
1136 static int perf_mux_hrtimer_restart_ipi(void *arg)
1137 {
1138         return perf_mux_hrtimer_restart(arg);
1139 }
1140
1141 void perf_pmu_disable(struct pmu *pmu)
1142 {
1143         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1144         if (!(*count)++)
1145                 pmu->pmu_disable(pmu);
1146 }
1147
1148 void perf_pmu_enable(struct pmu *pmu)
1149 {
1150         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1151         if (!--(*count))
1152                 pmu->pmu_enable(pmu);
1153 }
1154
1155 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1156
1157 /*
1158  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1159  * perf_event_task_tick() are fully serialized because they're strictly cpu
1160  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1161  * disabled, while perf_event_task_tick is called from IRQ context.
1162  */
1163 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1164 {
1165         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1166
1167         lockdep_assert_irqs_disabled();
1168
1169         WARN_ON(!list_empty(&ctx->active_ctx_list));
1170
1171         list_add(&ctx->active_ctx_list, head);
1172 }
1173
1174 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1175 {
1176         lockdep_assert_irqs_disabled();
1177
1178         WARN_ON(list_empty(&ctx->active_ctx_list));
1179
1180         list_del_init(&ctx->active_ctx_list);
1181 }
1182
1183 static void get_ctx(struct perf_event_context *ctx)
1184 {
1185         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1186 }
1187
1188 static void free_ctx(struct rcu_head *head)
1189 {
1190         struct perf_event_context *ctx;
1191
1192         ctx = container_of(head, struct perf_event_context, rcu_head);
1193         kfree(ctx->task_ctx_data);
1194         kfree(ctx);
1195 }
1196
1197 static void put_ctx(struct perf_event_context *ctx)
1198 {
1199         if (atomic_dec_and_test(&ctx->refcount)) {
1200                 if (ctx->parent_ctx)
1201                         put_ctx(ctx->parent_ctx);
1202                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1203                         put_task_struct(ctx->task);
1204                 call_rcu(&ctx->rcu_head, free_ctx);
1205         }
1206 }
1207
1208 /*
1209  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1210  * perf_pmu_migrate_context() we need some magic.
1211  *
1212  * Those places that change perf_event::ctx will hold both
1213  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1214  *
1215  * Lock ordering is by mutex address. There are two other sites where
1216  * perf_event_context::mutex nests and those are:
1217  *
1218  *  - perf_event_exit_task_context()    [ child , 0 ]
1219  *      perf_event_exit_event()
1220  *        put_event()                   [ parent, 1 ]
1221  *
1222  *  - perf_event_init_context()         [ parent, 0 ]
1223  *      inherit_task_group()
1224  *        inherit_group()
1225  *          inherit_event()
1226  *            perf_event_alloc()
1227  *              perf_init_event()
1228  *                perf_try_init_event() [ child , 1 ]
1229  *
1230  * While it appears there is an obvious deadlock here -- the parent and child
1231  * nesting levels are inverted between the two. This is in fact safe because
1232  * life-time rules separate them. That is an exiting task cannot fork, and a
1233  * spawning task cannot (yet) exit.
1234  *
1235  * But remember that that these are parent<->child context relations, and
1236  * migration does not affect children, therefore these two orderings should not
1237  * interact.
1238  *
1239  * The change in perf_event::ctx does not affect children (as claimed above)
1240  * because the sys_perf_event_open() case will install a new event and break
1241  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1242  * concerned with cpuctx and that doesn't have children.
1243  *
1244  * The places that change perf_event::ctx will issue:
1245  *
1246  *   perf_remove_from_context();
1247  *   synchronize_rcu();
1248  *   perf_install_in_context();
1249  *
1250  * to affect the change. The remove_from_context() + synchronize_rcu() should
1251  * quiesce the event, after which we can install it in the new location. This
1252  * means that only external vectors (perf_fops, prctl) can perturb the event
1253  * while in transit. Therefore all such accessors should also acquire
1254  * perf_event_context::mutex to serialize against this.
1255  *
1256  * However; because event->ctx can change while we're waiting to acquire
1257  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1258  * function.
1259  *
1260  * Lock order:
1261  *    cred_guard_mutex
1262  *      task_struct::perf_event_mutex
1263  *        perf_event_context::mutex
1264  *          perf_event::child_mutex;
1265  *            perf_event_context::lock
1266  *          perf_event::mmap_mutex
1267  *          mmap_sem
1268  *            perf_addr_filters_head::lock
1269  *
1270  *    cpu_hotplug_lock
1271  *      pmus_lock
1272  *        cpuctx->mutex / perf_event_context::mutex
1273  */
1274 static struct perf_event_context *
1275 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1276 {
1277         struct perf_event_context *ctx;
1278
1279 again:
1280         rcu_read_lock();
1281         ctx = READ_ONCE(event->ctx);
1282         if (!atomic_inc_not_zero(&ctx->refcount)) {
1283                 rcu_read_unlock();
1284                 goto again;
1285         }
1286         rcu_read_unlock();
1287
1288         mutex_lock_nested(&ctx->mutex, nesting);
1289         if (event->ctx != ctx) {
1290                 mutex_unlock(&ctx->mutex);
1291                 put_ctx(ctx);
1292                 goto again;
1293         }
1294
1295         return ctx;
1296 }
1297
1298 static inline struct perf_event_context *
1299 perf_event_ctx_lock(struct perf_event *event)
1300 {
1301         return perf_event_ctx_lock_nested(event, 0);
1302 }
1303
1304 static void perf_event_ctx_unlock(struct perf_event *event,
1305                                   struct perf_event_context *ctx)
1306 {
1307         mutex_unlock(&ctx->mutex);
1308         put_ctx(ctx);
1309 }
1310
1311 /*
1312  * This must be done under the ctx->lock, such as to serialize against
1313  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1314  * calling scheduler related locks and ctx->lock nests inside those.
1315  */
1316 static __must_check struct perf_event_context *
1317 unclone_ctx(struct perf_event_context *ctx)
1318 {
1319         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1320
1321         lockdep_assert_held(&ctx->lock);
1322
1323         if (parent_ctx)
1324                 ctx->parent_ctx = NULL;
1325         ctx->generation++;
1326
1327         return parent_ctx;
1328 }
1329
1330 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1331                                 enum pid_type type)
1332 {
1333         u32 nr;
1334         /*
1335          * only top level events have the pid namespace they were created in
1336          */
1337         if (event->parent)
1338                 event = event->parent;
1339
1340         nr = __task_pid_nr_ns(p, type, event->ns);
1341         /* avoid -1 if it is idle thread or runs in another ns */
1342         if (!nr && !pid_alive(p))
1343                 nr = -1;
1344         return nr;
1345 }
1346
1347 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1348 {
1349         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1350 }
1351
1352 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1353 {
1354         return perf_event_pid_type(event, p, PIDTYPE_PID);
1355 }
1356
1357 /*
1358  * If we inherit events we want to return the parent event id
1359  * to userspace.
1360  */
1361 static u64 primary_event_id(struct perf_event *event)
1362 {
1363         u64 id = event->id;
1364
1365         if (event->parent)
1366                 id = event->parent->id;
1367
1368         return id;
1369 }
1370
1371 /*
1372  * Get the perf_event_context for a task and lock it.
1373  *
1374  * This has to cope with with the fact that until it is locked,
1375  * the context could get moved to another task.
1376  */
1377 static struct perf_event_context *
1378 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1379 {
1380         struct perf_event_context *ctx;
1381
1382 retry:
1383         /*
1384          * One of the few rules of preemptible RCU is that one cannot do
1385          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1386          * part of the read side critical section was irqs-enabled -- see
1387          * rcu_read_unlock_special().
1388          *
1389          * Since ctx->lock nests under rq->lock we must ensure the entire read
1390          * side critical section has interrupts disabled.
1391          */
1392         local_irq_save(*flags);
1393         rcu_read_lock();
1394         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1395         if (ctx) {
1396                 /*
1397                  * If this context is a clone of another, it might
1398                  * get swapped for another underneath us by
1399                  * perf_event_task_sched_out, though the
1400                  * rcu_read_lock() protects us from any context
1401                  * getting freed.  Lock the context and check if it
1402                  * got swapped before we could get the lock, and retry
1403                  * if so.  If we locked the right context, then it
1404                  * can't get swapped on us any more.
1405                  */
1406                 raw_spin_lock(&ctx->lock);
1407                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1408                         raw_spin_unlock(&ctx->lock);
1409                         rcu_read_unlock();
1410                         local_irq_restore(*flags);
1411                         goto retry;
1412                 }
1413
1414                 if (ctx->task == TASK_TOMBSTONE ||
1415                     !atomic_inc_not_zero(&ctx->refcount)) {
1416                         raw_spin_unlock(&ctx->lock);
1417                         ctx = NULL;
1418                 } else {
1419                         WARN_ON_ONCE(ctx->task != task);
1420                 }
1421         }
1422         rcu_read_unlock();
1423         if (!ctx)
1424                 local_irq_restore(*flags);
1425         return ctx;
1426 }
1427
1428 /*
1429  * Get the context for a task and increment its pin_count so it
1430  * can't get swapped to another task.  This also increments its
1431  * reference count so that the context can't get freed.
1432  */
1433 static struct perf_event_context *
1434 perf_pin_task_context(struct task_struct *task, int ctxn)
1435 {
1436         struct perf_event_context *ctx;
1437         unsigned long flags;
1438
1439         ctx = perf_lock_task_context(task, ctxn, &flags);
1440         if (ctx) {
1441                 ++ctx->pin_count;
1442                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1443         }
1444         return ctx;
1445 }
1446
1447 static void perf_unpin_context(struct perf_event_context *ctx)
1448 {
1449         unsigned long flags;
1450
1451         raw_spin_lock_irqsave(&ctx->lock, flags);
1452         --ctx->pin_count;
1453         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1454 }
1455
1456 /*
1457  * Update the record of the current time in a context.
1458  */
1459 static void update_context_time(struct perf_event_context *ctx)
1460 {
1461         u64 now = perf_clock();
1462
1463         ctx->time += now - ctx->timestamp;
1464         ctx->timestamp = now;
1465 }
1466
1467 static u64 perf_event_time(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470
1471         if (is_cgroup_event(event))
1472                 return perf_cgroup_event_time(event);
1473
1474         return ctx ? ctx->time : 0;
1475 }
1476
1477 static enum event_type_t get_event_type(struct perf_event *event)
1478 {
1479         struct perf_event_context *ctx = event->ctx;
1480         enum event_type_t event_type;
1481
1482         lockdep_assert_held(&ctx->lock);
1483
1484         /*
1485          * It's 'group type', really, because if our group leader is
1486          * pinned, so are we.
1487          */
1488         if (event->group_leader != event)
1489                 event = event->group_leader;
1490
1491         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1492         if (!ctx->task)
1493                 event_type |= EVENT_CPU;
1494
1495         return event_type;
1496 }
1497
1498 /*
1499  * Helper function to initialize event group nodes.
1500  */
1501 static void init_event_group(struct perf_event *event)
1502 {
1503         RB_CLEAR_NODE(&event->group_node);
1504         event->group_index = 0;
1505 }
1506
1507 /*
1508  * Extract pinned or flexible groups from the context
1509  * based on event attrs bits.
1510  */
1511 static struct perf_event_groups *
1512 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1513 {
1514         if (event->attr.pinned)
1515                 return &ctx->pinned_groups;
1516         else
1517                 return &ctx->flexible_groups;
1518 }
1519
1520 /*
1521  * Helper function to initializes perf_event_group trees.
1522  */
1523 static void perf_event_groups_init(struct perf_event_groups *groups)
1524 {
1525         groups->tree = RB_ROOT;
1526         groups->index = 0;
1527 }
1528
1529 /*
1530  * Compare function for event groups;
1531  *
1532  * Implements complex key that first sorts by CPU and then by virtual index
1533  * which provides ordering when rotating groups for the same CPU.
1534  */
1535 static bool
1536 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1537 {
1538         if (left->cpu < right->cpu)
1539                 return true;
1540         if (left->cpu > right->cpu)
1541                 return false;
1542
1543         if (left->group_index < right->group_index)
1544                 return true;
1545         if (left->group_index > right->group_index)
1546                 return false;
1547
1548         return false;
1549 }
1550
1551 /*
1552  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1553  * key (see perf_event_groups_less). This places it last inside the CPU
1554  * subtree.
1555  */
1556 static void
1557 perf_event_groups_insert(struct perf_event_groups *groups,
1558                          struct perf_event *event)
1559 {
1560         struct perf_event *node_event;
1561         struct rb_node *parent;
1562         struct rb_node **node;
1563
1564         event->group_index = ++groups->index;
1565
1566         node = &groups->tree.rb_node;
1567         parent = *node;
1568
1569         while (*node) {
1570                 parent = *node;
1571                 node_event = container_of(*node, struct perf_event, group_node);
1572
1573                 if (perf_event_groups_less(event, node_event))
1574                         node = &parent->rb_left;
1575                 else
1576                         node = &parent->rb_right;
1577         }
1578
1579         rb_link_node(&event->group_node, parent, node);
1580         rb_insert_color(&event->group_node, &groups->tree);
1581 }
1582
1583 /*
1584  * Helper function to insert event into the pinned or flexible groups.
1585  */
1586 static void
1587 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1588 {
1589         struct perf_event_groups *groups;
1590
1591         groups = get_event_groups(event, ctx);
1592         perf_event_groups_insert(groups, event);
1593 }
1594
1595 /*
1596  * Delete a group from a tree.
1597  */
1598 static void
1599 perf_event_groups_delete(struct perf_event_groups *groups,
1600                          struct perf_event *event)
1601 {
1602         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1603                      RB_EMPTY_ROOT(&groups->tree));
1604
1605         rb_erase(&event->group_node, &groups->tree);
1606         init_event_group(event);
1607 }
1608
1609 /*
1610  * Helper function to delete event from its groups.
1611  */
1612 static void
1613 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1614 {
1615         struct perf_event_groups *groups;
1616
1617         groups = get_event_groups(event, ctx);
1618         perf_event_groups_delete(groups, event);
1619 }
1620
1621 /*
1622  * Get the leftmost event in the @cpu subtree.
1623  */
1624 static struct perf_event *
1625 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1626 {
1627         struct perf_event *node_event = NULL, *match = NULL;
1628         struct rb_node *node = groups->tree.rb_node;
1629
1630         while (node) {
1631                 node_event = container_of(node, struct perf_event, group_node);
1632
1633                 if (cpu < node_event->cpu) {
1634                         node = node->rb_left;
1635                 } else if (cpu > node_event->cpu) {
1636                         node = node->rb_right;
1637                 } else {
1638                         match = node_event;
1639                         node = node->rb_left;
1640                 }
1641         }
1642
1643         return match;
1644 }
1645
1646 /*
1647  * Like rb_entry_next_safe() for the @cpu subtree.
1648  */
1649 static struct perf_event *
1650 perf_event_groups_next(struct perf_event *event)
1651 {
1652         struct perf_event *next;
1653
1654         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1655         if (next && next->cpu == event->cpu)
1656                 return next;
1657
1658         return NULL;
1659 }
1660
1661 /*
1662  * Iterate through the whole groups tree.
1663  */
1664 #define perf_event_groups_for_each(event, groups)                       \
1665         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1666                                 typeof(*event), group_node); event;     \
1667                 event = rb_entry_safe(rb_next(&event->group_node),      \
1668                                 typeof(*event), group_node))
1669
1670 /*
1671  * Add an event from the lists for its context.
1672  * Must be called with ctx->mutex and ctx->lock held.
1673  */
1674 static void
1675 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1676 {
1677         lockdep_assert_held(&ctx->lock);
1678
1679         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1680         event->attach_state |= PERF_ATTACH_CONTEXT;
1681
1682         event->tstamp = perf_event_time(event);
1683
1684         /*
1685          * If we're a stand alone event or group leader, we go to the context
1686          * list, group events are kept attached to the group so that
1687          * perf_group_detach can, at all times, locate all siblings.
1688          */
1689         if (event->group_leader == event) {
1690                 event->group_caps = event->event_caps;
1691                 add_event_to_groups(event, ctx);
1692         }
1693
1694         list_update_cgroup_event(event, ctx, true);
1695
1696         list_add_rcu(&event->event_entry, &ctx->event_list);
1697         ctx->nr_events++;
1698         if (event->attr.inherit_stat)
1699                 ctx->nr_stat++;
1700
1701         ctx->generation++;
1702 }
1703
1704 /*
1705  * Initialize event state based on the perf_event_attr::disabled.
1706  */
1707 static inline void perf_event__state_init(struct perf_event *event)
1708 {
1709         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1710                                               PERF_EVENT_STATE_INACTIVE;
1711 }
1712
1713 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1714 {
1715         int entry = sizeof(u64); /* value */
1716         int size = 0;
1717         int nr = 1;
1718
1719         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1720                 size += sizeof(u64);
1721
1722         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1723                 size += sizeof(u64);
1724
1725         if (read_format & PERF_FORMAT_ID)
1726                 entry += sizeof(u64);
1727
1728         if (read_format & PERF_FORMAT_LOST)
1729                 entry += sizeof(u64);
1730
1731         if (read_format & PERF_FORMAT_GROUP) {
1732                 nr += nr_siblings;
1733                 size += sizeof(u64);
1734         }
1735
1736         /*
1737          * Since perf_event_validate_size() limits this to 16k and inhibits
1738          * adding more siblings, this will never overflow.
1739          */
1740         return size + nr * entry;
1741 }
1742
1743 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1744 {
1745         struct perf_sample_data *data;
1746         u16 size = 0;
1747
1748         if (sample_type & PERF_SAMPLE_IP)
1749                 size += sizeof(data->ip);
1750
1751         if (sample_type & PERF_SAMPLE_ADDR)
1752                 size += sizeof(data->addr);
1753
1754         if (sample_type & PERF_SAMPLE_PERIOD)
1755                 size += sizeof(data->period);
1756
1757         if (sample_type & PERF_SAMPLE_WEIGHT)
1758                 size += sizeof(data->weight);
1759
1760         if (sample_type & PERF_SAMPLE_READ)
1761                 size += event->read_size;
1762
1763         if (sample_type & PERF_SAMPLE_DATA_SRC)
1764                 size += sizeof(data->data_src.val);
1765
1766         if (sample_type & PERF_SAMPLE_TRANSACTION)
1767                 size += sizeof(data->txn);
1768
1769         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1770                 size += sizeof(data->phys_addr);
1771
1772         event->header_size = size;
1773 }
1774
1775 /*
1776  * Called at perf_event creation and when events are attached/detached from a
1777  * group.
1778  */
1779 static void perf_event__header_size(struct perf_event *event)
1780 {
1781         event->read_size =
1782                 __perf_event_read_size(event->attr.read_format,
1783                                        event->group_leader->nr_siblings);
1784         __perf_event_header_size(event, event->attr.sample_type);
1785 }
1786
1787 static void perf_event__id_header_size(struct perf_event *event)
1788 {
1789         struct perf_sample_data *data;
1790         u64 sample_type = event->attr.sample_type;
1791         u16 size = 0;
1792
1793         if (sample_type & PERF_SAMPLE_TID)
1794                 size += sizeof(data->tid_entry);
1795
1796         if (sample_type & PERF_SAMPLE_TIME)
1797                 size += sizeof(data->time);
1798
1799         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1800                 size += sizeof(data->id);
1801
1802         if (sample_type & PERF_SAMPLE_ID)
1803                 size += sizeof(data->id);
1804
1805         if (sample_type & PERF_SAMPLE_STREAM_ID)
1806                 size += sizeof(data->stream_id);
1807
1808         if (sample_type & PERF_SAMPLE_CPU)
1809                 size += sizeof(data->cpu_entry);
1810
1811         event->id_header_size = size;
1812 }
1813
1814 /*
1815  * Check that adding an event to the group does not result in anybody
1816  * overflowing the 64k event limit imposed by the output buffer.
1817  *
1818  * Specifically, check that the read_size for the event does not exceed 16k,
1819  * read_size being the one term that grows with groups size. Since read_size
1820  * depends on per-event read_format, also (re)check the existing events.
1821  *
1822  * This leaves 48k for the constant size fields and things like callchains,
1823  * branch stacks and register sets.
1824  */
1825 static bool perf_event_validate_size(struct perf_event *event)
1826 {
1827         struct perf_event *sibling, *group_leader = event->group_leader;
1828
1829         if (__perf_event_read_size(event->attr.read_format,
1830                                    group_leader->nr_siblings + 1) > 16*1024)
1831                 return false;
1832
1833         if (__perf_event_read_size(group_leader->attr.read_format,
1834                                    group_leader->nr_siblings + 1) > 16*1024)
1835                 return false;
1836
1837         /*
1838          * When creating a new group leader, group_leader->ctx is initialized
1839          * after the size has been validated, but we cannot safely use
1840          * for_each_sibling_event() until group_leader->ctx is set. A new group
1841          * leader cannot have any siblings yet, so we can safely skip checking
1842          * the non-existent siblings.
1843          */
1844         if (event == group_leader)
1845                 return true;
1846
1847         for_each_sibling_event(sibling, group_leader) {
1848                 if (__perf_event_read_size(sibling->attr.read_format,
1849                                            group_leader->nr_siblings + 1) > 16*1024)
1850                         return false;
1851         }
1852
1853         return true;
1854 }
1855
1856 static void perf_group_attach(struct perf_event *event)
1857 {
1858         struct perf_event *group_leader = event->group_leader, *pos;
1859
1860         lockdep_assert_held(&event->ctx->lock);
1861
1862         /*
1863          * We can have double attach due to group movement in perf_event_open.
1864          */
1865         if (event->attach_state & PERF_ATTACH_GROUP)
1866                 return;
1867
1868         event->attach_state |= PERF_ATTACH_GROUP;
1869
1870         if (group_leader == event)
1871                 return;
1872
1873         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1874
1875         group_leader->group_caps &= event->event_caps;
1876
1877         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1878         group_leader->nr_siblings++;
1879         group_leader->group_generation++;
1880
1881         perf_event__header_size(group_leader);
1882
1883         for_each_sibling_event(pos, group_leader)
1884                 perf_event__header_size(pos);
1885 }
1886
1887 /*
1888  * Remove an event from the lists for its context.
1889  * Must be called with ctx->mutex and ctx->lock held.
1890  */
1891 static void
1892 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1893 {
1894         WARN_ON_ONCE(event->ctx != ctx);
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1904
1905         list_update_cgroup_event(event, ctx, false);
1906
1907         ctx->nr_events--;
1908         if (event->attr.inherit_stat)
1909                 ctx->nr_stat--;
1910
1911         list_del_rcu(&event->event_entry);
1912
1913         if (event->group_leader == event)
1914                 del_event_from_groups(event, ctx);
1915
1916         /*
1917          * If event was in error state, then keep it
1918          * that way, otherwise bogus counts will be
1919          * returned on read(). The only way to get out
1920          * of error state is by explicit re-enabling
1921          * of the event
1922          */
1923         if (event->state > PERF_EVENT_STATE_OFF)
1924                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1925
1926         ctx->generation++;
1927 }
1928
1929 static void perf_group_detach(struct perf_event *event)
1930 {
1931         struct perf_event *sibling, *tmp;
1932         struct perf_event_context *ctx = event->ctx;
1933
1934         lockdep_assert_held(&ctx->lock);
1935
1936         /*
1937          * We can have double detach due to exit/hot-unplug + close.
1938          */
1939         if (!(event->attach_state & PERF_ATTACH_GROUP))
1940                 return;
1941
1942         event->attach_state &= ~PERF_ATTACH_GROUP;
1943
1944         /*
1945          * If this is a sibling, remove it from its group.
1946          */
1947         if (event->group_leader != event) {
1948                 list_del_init(&event->sibling_list);
1949                 event->group_leader->nr_siblings--;
1950                 event->group_leader->group_generation++;
1951                 goto out;
1952         }
1953
1954         /*
1955          * If this was a group event with sibling events then
1956          * upgrade the siblings to singleton events by adding them
1957          * to whatever list we are on.
1958          */
1959         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1960
1961                 sibling->group_leader = sibling;
1962                 list_del_init(&sibling->sibling_list);
1963
1964                 /* Inherit group flags from the previous leader */
1965                 sibling->group_caps = event->group_caps;
1966
1967                 if (!RB_EMPTY_NODE(&event->group_node)) {
1968                         add_event_to_groups(sibling, event->ctx);
1969
1970                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1971                                 struct list_head *list = sibling->attr.pinned ?
1972                                         &ctx->pinned_active : &ctx->flexible_active;
1973
1974                                 list_add_tail(&sibling->active_list, list);
1975                         }
1976                 }
1977
1978                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1979         }
1980
1981 out:
1982         perf_event__header_size(event->group_leader);
1983
1984         for_each_sibling_event(tmp, event->group_leader)
1985                 perf_event__header_size(tmp);
1986 }
1987
1988 static bool is_orphaned_event(struct perf_event *event)
1989 {
1990         return event->state == PERF_EVENT_STATE_DEAD;
1991 }
1992
1993 static inline int __pmu_filter_match(struct perf_event *event)
1994 {
1995         struct pmu *pmu = event->pmu;
1996         return pmu->filter_match ? pmu->filter_match(event) : 1;
1997 }
1998
1999 /*
2000  * Check whether we should attempt to schedule an event group based on
2001  * PMU-specific filtering. An event group can consist of HW and SW events,
2002  * potentially with a SW leader, so we must check all the filters, to
2003  * determine whether a group is schedulable:
2004  */
2005 static inline int pmu_filter_match(struct perf_event *event)
2006 {
2007         struct perf_event *sibling;
2008
2009         if (!__pmu_filter_match(event))
2010                 return 0;
2011
2012         for_each_sibling_event(sibling, event) {
2013                 if (!__pmu_filter_match(sibling))
2014                         return 0;
2015         }
2016
2017         return 1;
2018 }
2019
2020 static inline int
2021 event_filter_match(struct perf_event *event)
2022 {
2023         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2024                perf_cgroup_match(event) && pmu_filter_match(event);
2025 }
2026
2027 static void
2028 event_sched_out(struct perf_event *event,
2029                   struct perf_cpu_context *cpuctx,
2030                   struct perf_event_context *ctx)
2031 {
2032         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2033
2034         WARN_ON_ONCE(event->ctx != ctx);
2035         lockdep_assert_held(&ctx->lock);
2036
2037         if (event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         /*
2041          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2042          * we can schedule events _OUT_ individually through things like
2043          * __perf_remove_from_context().
2044          */
2045         list_del_init(&event->active_list);
2046
2047         perf_pmu_disable(event->pmu);
2048
2049         event->pmu->del(event, 0);
2050         event->oncpu = -1;
2051
2052         if (READ_ONCE(event->pending_disable) >= 0) {
2053                 WRITE_ONCE(event->pending_disable, -1);
2054                 state = PERF_EVENT_STATE_OFF;
2055         }
2056         perf_event_set_state(event, state);
2057
2058         if (!is_software_event(event))
2059                 cpuctx->active_oncpu--;
2060         if (!--ctx->nr_active)
2061                 perf_event_ctx_deactivate(ctx);
2062         if (event->attr.freq && event->attr.sample_freq)
2063                 ctx->nr_freq--;
2064         if (event->attr.exclusive || !cpuctx->active_oncpu)
2065                 cpuctx->exclusive = 0;
2066
2067         perf_pmu_enable(event->pmu);
2068 }
2069
2070 static void
2071 group_sched_out(struct perf_event *group_event,
2072                 struct perf_cpu_context *cpuctx,
2073                 struct perf_event_context *ctx)
2074 {
2075         struct perf_event *event;
2076
2077         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2078                 return;
2079
2080         perf_pmu_disable(ctx->pmu);
2081
2082         event_sched_out(group_event, cpuctx, ctx);
2083
2084         /*
2085          * Schedule out siblings (if any):
2086          */
2087         for_each_sibling_event(event, group_event)
2088                 event_sched_out(event, cpuctx, ctx);
2089
2090         perf_pmu_enable(ctx->pmu);
2091
2092         if (group_event->attr.exclusive)
2093                 cpuctx->exclusive = 0;
2094 }
2095
2096 #define DETACH_GROUP    0x01UL
2097
2098 /*
2099  * Cross CPU call to remove a performance event
2100  *
2101  * We disable the event on the hardware level first. After that we
2102  * remove it from the context list.
2103  */
2104 static void
2105 __perf_remove_from_context(struct perf_event *event,
2106                            struct perf_cpu_context *cpuctx,
2107                            struct perf_event_context *ctx,
2108                            void *info)
2109 {
2110         unsigned long flags = (unsigned long)info;
2111
2112         if (ctx->is_active & EVENT_TIME) {
2113                 update_context_time(ctx);
2114                 update_cgrp_time_from_cpuctx(cpuctx);
2115         }
2116
2117         event_sched_out(event, cpuctx, ctx);
2118         if (flags & DETACH_GROUP)
2119                 perf_group_detach(event);
2120         list_del_event(event, ctx);
2121
2122         if (!ctx->nr_events && ctx->is_active) {
2123                 ctx->is_active = 0;
2124                 ctx->rotate_necessary = 0;
2125                 if (ctx->task) {
2126                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2127                         cpuctx->task_ctx = NULL;
2128                 }
2129         }
2130 }
2131
2132 /*
2133  * Remove the event from a task's (or a CPU's) list of events.
2134  *
2135  * If event->ctx is a cloned context, callers must make sure that
2136  * every task struct that event->ctx->task could possibly point to
2137  * remains valid.  This is OK when called from perf_release since
2138  * that only calls us on the top-level context, which can't be a clone.
2139  * When called from perf_event_exit_task, it's OK because the
2140  * context has been detached from its task.
2141  */
2142 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2143 {
2144         struct perf_event_context *ctx = event->ctx;
2145
2146         lockdep_assert_held(&ctx->mutex);
2147
2148         event_function_call(event, __perf_remove_from_context, (void *)flags);
2149
2150         /*
2151          * The above event_function_call() can NO-OP when it hits
2152          * TASK_TOMBSTONE. In that case we must already have been detached
2153          * from the context (by perf_event_exit_event()) but the grouping
2154          * might still be in-tact.
2155          */
2156         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2157         if ((flags & DETACH_GROUP) &&
2158             (event->attach_state & PERF_ATTACH_GROUP)) {
2159                 /*
2160                  * Since in that case we cannot possibly be scheduled, simply
2161                  * detach now.
2162                  */
2163                 raw_spin_lock_irq(&ctx->lock);
2164                 perf_group_detach(event);
2165                 raw_spin_unlock_irq(&ctx->lock);
2166         }
2167 }
2168
2169 /*
2170  * Cross CPU call to disable a performance event
2171  */
2172 static void __perf_event_disable(struct perf_event *event,
2173                                  struct perf_cpu_context *cpuctx,
2174                                  struct perf_event_context *ctx,
2175                                  void *info)
2176 {
2177         if (event->state < PERF_EVENT_STATE_INACTIVE)
2178                 return;
2179
2180         if (ctx->is_active & EVENT_TIME) {
2181                 update_context_time(ctx);
2182                 update_cgrp_time_from_event(event);
2183         }
2184
2185         if (event == event->group_leader)
2186                 group_sched_out(event, cpuctx, ctx);
2187         else
2188                 event_sched_out(event, cpuctx, ctx);
2189
2190         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2191 }
2192
2193 /*
2194  * Disable an event.
2195  *
2196  * If event->ctx is a cloned context, callers must make sure that
2197  * every task struct that event->ctx->task could possibly point to
2198  * remains valid.  This condition is satisifed when called through
2199  * perf_event_for_each_child or perf_event_for_each because they
2200  * hold the top-level event's child_mutex, so any descendant that
2201  * goes to exit will block in perf_event_exit_event().
2202  *
2203  * When called from perf_pending_event it's OK because event->ctx
2204  * is the current context on this CPU and preemption is disabled,
2205  * hence we can't get into perf_event_task_sched_out for this context.
2206  */
2207 static void _perf_event_disable(struct perf_event *event)
2208 {
2209         struct perf_event_context *ctx = event->ctx;
2210
2211         raw_spin_lock_irq(&ctx->lock);
2212         if (event->state <= PERF_EVENT_STATE_OFF) {
2213                 raw_spin_unlock_irq(&ctx->lock);
2214                 return;
2215         }
2216         raw_spin_unlock_irq(&ctx->lock);
2217
2218         event_function_call(event, __perf_event_disable, NULL);
2219 }
2220
2221 void perf_event_disable_local(struct perf_event *event)
2222 {
2223         event_function_local(event, __perf_event_disable, NULL);
2224 }
2225
2226 /*
2227  * Strictly speaking kernel users cannot create groups and therefore this
2228  * interface does not need the perf_event_ctx_lock() magic.
2229  */
2230 void perf_event_disable(struct perf_event *event)
2231 {
2232         struct perf_event_context *ctx;
2233
2234         ctx = perf_event_ctx_lock(event);
2235         _perf_event_disable(event);
2236         perf_event_ctx_unlock(event, ctx);
2237 }
2238 EXPORT_SYMBOL_GPL(perf_event_disable);
2239
2240 void perf_event_disable_inatomic(struct perf_event *event)
2241 {
2242         WRITE_ONCE(event->pending_disable, smp_processor_id());
2243         /* can fail, see perf_pending_event_disable() */
2244         irq_work_queue(&event->pending);
2245 }
2246
2247 static void perf_set_shadow_time(struct perf_event *event,
2248                                  struct perf_event_context *ctx)
2249 {
2250         /*
2251          * use the correct time source for the time snapshot
2252          *
2253          * We could get by without this by leveraging the
2254          * fact that to get to this function, the caller
2255          * has most likely already called update_context_time()
2256          * and update_cgrp_time_xx() and thus both timestamp
2257          * are identical (or very close). Given that tstamp is,
2258          * already adjusted for cgroup, we could say that:
2259          *    tstamp - ctx->timestamp
2260          * is equivalent to
2261          *    tstamp - cgrp->timestamp.
2262          *
2263          * Then, in perf_output_read(), the calculation would
2264          * work with no changes because:
2265          * - event is guaranteed scheduled in
2266          * - no scheduled out in between
2267          * - thus the timestamp would be the same
2268          *
2269          * But this is a bit hairy.
2270          *
2271          * So instead, we have an explicit cgroup call to remain
2272          * within the time time source all along. We believe it
2273          * is cleaner and simpler to understand.
2274          */
2275         if (is_cgroup_event(event))
2276                 perf_cgroup_set_shadow_time(event, event->tstamp);
2277         else
2278                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2279 }
2280
2281 #define MAX_INTERRUPTS (~0ULL)
2282
2283 static void perf_log_throttle(struct perf_event *event, int enable);
2284 static void perf_log_itrace_start(struct perf_event *event);
2285
2286 static int
2287 event_sched_in(struct perf_event *event,
2288                  struct perf_cpu_context *cpuctx,
2289                  struct perf_event_context *ctx)
2290 {
2291         int ret = 0;
2292
2293         lockdep_assert_held(&ctx->lock);
2294
2295         if (event->state <= PERF_EVENT_STATE_OFF)
2296                 return 0;
2297
2298         WRITE_ONCE(event->oncpu, smp_processor_id());
2299         /*
2300          * Order event::oncpu write to happen before the ACTIVE state is
2301          * visible. This allows perf_event_{stop,read}() to observe the correct
2302          * ->oncpu if it sees ACTIVE.
2303          */
2304         smp_wmb();
2305         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2306
2307         /*
2308          * Unthrottle events, since we scheduled we might have missed several
2309          * ticks already, also for a heavily scheduling task there is little
2310          * guarantee it'll get a tick in a timely manner.
2311          */
2312         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2313                 perf_log_throttle(event, 1);
2314                 event->hw.interrupts = 0;
2315         }
2316
2317         perf_pmu_disable(event->pmu);
2318
2319         perf_set_shadow_time(event, ctx);
2320
2321         perf_log_itrace_start(event);
2322
2323         if (event->pmu->add(event, PERF_EF_START)) {
2324                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2325                 event->oncpu = -1;
2326                 ret = -EAGAIN;
2327                 goto out;
2328         }
2329
2330         if (!is_software_event(event))
2331                 cpuctx->active_oncpu++;
2332         if (!ctx->nr_active++)
2333                 perf_event_ctx_activate(ctx);
2334         if (event->attr.freq && event->attr.sample_freq)
2335                 ctx->nr_freq++;
2336
2337         if (event->attr.exclusive)
2338                 cpuctx->exclusive = 1;
2339
2340 out:
2341         perf_pmu_enable(event->pmu);
2342
2343         return ret;
2344 }
2345
2346 static int
2347 group_sched_in(struct perf_event *group_event,
2348                struct perf_cpu_context *cpuctx,
2349                struct perf_event_context *ctx)
2350 {
2351         struct perf_event *event, *partial_group = NULL;
2352         struct pmu *pmu = ctx->pmu;
2353
2354         if (group_event->state == PERF_EVENT_STATE_OFF)
2355                 return 0;
2356
2357         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2358
2359         if (event_sched_in(group_event, cpuctx, ctx)) {
2360                 pmu->cancel_txn(pmu);
2361                 perf_mux_hrtimer_restart(cpuctx);
2362                 return -EAGAIN;
2363         }
2364
2365         /*
2366          * Schedule in siblings as one group (if any):
2367          */
2368         for_each_sibling_event(event, group_event) {
2369                 if (event_sched_in(event, cpuctx, ctx)) {
2370                         partial_group = event;
2371                         goto group_error;
2372                 }
2373         }
2374
2375         if (!pmu->commit_txn(pmu))
2376                 return 0;
2377
2378 group_error:
2379         /*
2380          * Groups can be scheduled in as one unit only, so undo any
2381          * partial group before returning:
2382          * The events up to the failed event are scheduled out normally.
2383          */
2384         for_each_sibling_event(event, group_event) {
2385                 if (event == partial_group)
2386                         break;
2387
2388                 event_sched_out(event, cpuctx, ctx);
2389         }
2390         event_sched_out(group_event, cpuctx, ctx);
2391
2392         pmu->cancel_txn(pmu);
2393
2394         perf_mux_hrtimer_restart(cpuctx);
2395
2396         return -EAGAIN;
2397 }
2398
2399 /*
2400  * Work out whether we can put this event group on the CPU now.
2401  */
2402 static int group_can_go_on(struct perf_event *event,
2403                            struct perf_cpu_context *cpuctx,
2404                            int can_add_hw)
2405 {
2406         /*
2407          * Groups consisting entirely of software events can always go on.
2408          */
2409         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2410                 return 1;
2411         /*
2412          * If an exclusive group is already on, no other hardware
2413          * events can go on.
2414          */
2415         if (cpuctx->exclusive)
2416                 return 0;
2417         /*
2418          * If this group is exclusive and there are already
2419          * events on the CPU, it can't go on.
2420          */
2421         if (event->attr.exclusive && cpuctx->active_oncpu)
2422                 return 0;
2423         /*
2424          * Otherwise, try to add it if all previous groups were able
2425          * to go on.
2426          */
2427         return can_add_hw;
2428 }
2429
2430 static void add_event_to_ctx(struct perf_event *event,
2431                                struct perf_event_context *ctx)
2432 {
2433         list_add_event(event, ctx);
2434         perf_group_attach(event);
2435 }
2436
2437 static void ctx_sched_out(struct perf_event_context *ctx,
2438                           struct perf_cpu_context *cpuctx,
2439                           enum event_type_t event_type);
2440 static void
2441 ctx_sched_in(struct perf_event_context *ctx,
2442              struct perf_cpu_context *cpuctx,
2443              enum event_type_t event_type,
2444              struct task_struct *task);
2445
2446 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2447                                struct perf_event_context *ctx,
2448                                enum event_type_t event_type)
2449 {
2450         if (!cpuctx->task_ctx)
2451                 return;
2452
2453         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2454                 return;
2455
2456         ctx_sched_out(ctx, cpuctx, event_type);
2457 }
2458
2459 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2460                                 struct perf_event_context *ctx,
2461                                 struct task_struct *task)
2462 {
2463         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2464         if (ctx)
2465                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2466         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2467         if (ctx)
2468                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2469 }
2470
2471 /*
2472  * We want to maintain the following priority of scheduling:
2473  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2474  *  - task pinned (EVENT_PINNED)
2475  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2476  *  - task flexible (EVENT_FLEXIBLE).
2477  *
2478  * In order to avoid unscheduling and scheduling back in everything every
2479  * time an event is added, only do it for the groups of equal priority and
2480  * below.
2481  *
2482  * This can be called after a batch operation on task events, in which case
2483  * event_type is a bit mask of the types of events involved. For CPU events,
2484  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2485  */
2486 static void ctx_resched(struct perf_cpu_context *cpuctx,
2487                         struct perf_event_context *task_ctx,
2488                         enum event_type_t event_type)
2489 {
2490         enum event_type_t ctx_event_type;
2491         bool cpu_event = !!(event_type & EVENT_CPU);
2492
2493         /*
2494          * If pinned groups are involved, flexible groups also need to be
2495          * scheduled out.
2496          */
2497         if (event_type & EVENT_PINNED)
2498                 event_type |= EVENT_FLEXIBLE;
2499
2500         ctx_event_type = event_type & EVENT_ALL;
2501
2502         perf_pmu_disable(cpuctx->ctx.pmu);
2503         if (task_ctx)
2504                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2505
2506         /*
2507          * Decide which cpu ctx groups to schedule out based on the types
2508          * of events that caused rescheduling:
2509          *  - EVENT_CPU: schedule out corresponding groups;
2510          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2511          *  - otherwise, do nothing more.
2512          */
2513         if (cpu_event)
2514                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2515         else if (ctx_event_type & EVENT_PINNED)
2516                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2517
2518         perf_event_sched_in(cpuctx, task_ctx, current);
2519         perf_pmu_enable(cpuctx->ctx.pmu);
2520 }
2521
2522 /*
2523  * Cross CPU call to install and enable a performance event
2524  *
2525  * Very similar to remote_function() + event_function() but cannot assume that
2526  * things like ctx->is_active and cpuctx->task_ctx are set.
2527  */
2528 static int  __perf_install_in_context(void *info)
2529 {
2530         struct perf_event *event = info;
2531         struct perf_event_context *ctx = event->ctx;
2532         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2533         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2534         bool reprogram = true;
2535         int ret = 0;
2536
2537         raw_spin_lock(&cpuctx->ctx.lock);
2538         if (ctx->task) {
2539                 raw_spin_lock(&ctx->lock);
2540                 task_ctx = ctx;
2541
2542                 reprogram = (ctx->task == current);
2543
2544                 /*
2545                  * If the task is running, it must be running on this CPU,
2546                  * otherwise we cannot reprogram things.
2547                  *
2548                  * If its not running, we don't care, ctx->lock will
2549                  * serialize against it becoming runnable.
2550                  */
2551                 if (task_curr(ctx->task) && !reprogram) {
2552                         ret = -ESRCH;
2553                         goto unlock;
2554                 }
2555
2556                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2557         } else if (task_ctx) {
2558                 raw_spin_lock(&task_ctx->lock);
2559         }
2560
2561 #ifdef CONFIG_CGROUP_PERF
2562         if (is_cgroup_event(event)) {
2563                 /*
2564                  * If the current cgroup doesn't match the event's
2565                  * cgroup, we should not try to schedule it.
2566                  */
2567                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2568                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2569                                         event->cgrp->css.cgroup);
2570         }
2571 #endif
2572
2573         if (reprogram) {
2574                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2575                 add_event_to_ctx(event, ctx);
2576                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2577         } else {
2578                 add_event_to_ctx(event, ctx);
2579         }
2580
2581 unlock:
2582         perf_ctx_unlock(cpuctx, task_ctx);
2583
2584         return ret;
2585 }
2586
2587 static bool exclusive_event_installable(struct perf_event *event,
2588                                         struct perf_event_context *ctx);
2589
2590 /*
2591  * Attach a performance event to a context.
2592  *
2593  * Very similar to event_function_call, see comment there.
2594  */
2595 static void
2596 perf_install_in_context(struct perf_event_context *ctx,
2597                         struct perf_event *event,
2598                         int cpu)
2599 {
2600         struct task_struct *task = READ_ONCE(ctx->task);
2601
2602         lockdep_assert_held(&ctx->mutex);
2603
2604         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2605
2606         if (event->cpu != -1)
2607                 event->cpu = cpu;
2608
2609         /*
2610          * Ensures that if we can observe event->ctx, both the event and ctx
2611          * will be 'complete'. See perf_iterate_sb_cpu().
2612          */
2613         smp_store_release(&event->ctx, ctx);
2614
2615         if (!task) {
2616                 cpu_function_call(cpu, __perf_install_in_context, event);
2617                 return;
2618         }
2619
2620         /*
2621          * Should not happen, we validate the ctx is still alive before calling.
2622          */
2623         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2624                 return;
2625
2626         /*
2627          * Installing events is tricky because we cannot rely on ctx->is_active
2628          * to be set in case this is the nr_events 0 -> 1 transition.
2629          *
2630          * Instead we use task_curr(), which tells us if the task is running.
2631          * However, since we use task_curr() outside of rq::lock, we can race
2632          * against the actual state. This means the result can be wrong.
2633          *
2634          * If we get a false positive, we retry, this is harmless.
2635          *
2636          * If we get a false negative, things are complicated. If we are after
2637          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2638          * value must be correct. If we're before, it doesn't matter since
2639          * perf_event_context_sched_in() will program the counter.
2640          *
2641          * However, this hinges on the remote context switch having observed
2642          * our task->perf_event_ctxp[] store, such that it will in fact take
2643          * ctx::lock in perf_event_context_sched_in().
2644          *
2645          * We do this by task_function_call(), if the IPI fails to hit the task
2646          * we know any future context switch of task must see the
2647          * perf_event_ctpx[] store.
2648          */
2649
2650         /*
2651          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2652          * task_cpu() load, such that if the IPI then does not find the task
2653          * running, a future context switch of that task must observe the
2654          * store.
2655          */
2656         smp_mb();
2657 again:
2658         if (!task_function_call(task, __perf_install_in_context, event))
2659                 return;
2660
2661         raw_spin_lock_irq(&ctx->lock);
2662         task = ctx->task;
2663         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2664                 /*
2665                  * Cannot happen because we already checked above (which also
2666                  * cannot happen), and we hold ctx->mutex, which serializes us
2667                  * against perf_event_exit_task_context().
2668                  */
2669                 raw_spin_unlock_irq(&ctx->lock);
2670                 return;
2671         }
2672         /*
2673          * If the task is not running, ctx->lock will avoid it becoming so,
2674          * thus we can safely install the event.
2675          */
2676         if (task_curr(task)) {
2677                 raw_spin_unlock_irq(&ctx->lock);
2678                 goto again;
2679         }
2680         add_event_to_ctx(event, ctx);
2681         raw_spin_unlock_irq(&ctx->lock);
2682 }
2683
2684 /*
2685  * Cross CPU call to enable a performance event
2686  */
2687 static void __perf_event_enable(struct perf_event *event,
2688                                 struct perf_cpu_context *cpuctx,
2689                                 struct perf_event_context *ctx,
2690                                 void *info)
2691 {
2692         struct perf_event *leader = event->group_leader;
2693         struct perf_event_context *task_ctx;
2694
2695         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2696             event->state <= PERF_EVENT_STATE_ERROR)
2697                 return;
2698
2699         if (ctx->is_active)
2700                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2701
2702         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2703
2704         if (!ctx->is_active)
2705                 return;
2706
2707         if (!event_filter_match(event)) {
2708                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2709                 return;
2710         }
2711
2712         /*
2713          * If the event is in a group and isn't the group leader,
2714          * then don't put it on unless the group is on.
2715          */
2716         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2717                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2718                 return;
2719         }
2720
2721         task_ctx = cpuctx->task_ctx;
2722         if (ctx->task)
2723                 WARN_ON_ONCE(task_ctx != ctx);
2724
2725         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2726 }
2727
2728 /*
2729  * Enable an event.
2730  *
2731  * If event->ctx is a cloned context, callers must make sure that
2732  * every task struct that event->ctx->task could possibly point to
2733  * remains valid.  This condition is satisfied when called through
2734  * perf_event_for_each_child or perf_event_for_each as described
2735  * for perf_event_disable.
2736  */
2737 static void _perf_event_enable(struct perf_event *event)
2738 {
2739         struct perf_event_context *ctx = event->ctx;
2740
2741         raw_spin_lock_irq(&ctx->lock);
2742         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2743             event->state <  PERF_EVENT_STATE_ERROR) {
2744                 raw_spin_unlock_irq(&ctx->lock);
2745                 return;
2746         }
2747
2748         /*
2749          * If the event is in error state, clear that first.
2750          *
2751          * That way, if we see the event in error state below, we know that it
2752          * has gone back into error state, as distinct from the task having
2753          * been scheduled away before the cross-call arrived.
2754          */
2755         if (event->state == PERF_EVENT_STATE_ERROR)
2756                 event->state = PERF_EVENT_STATE_OFF;
2757         raw_spin_unlock_irq(&ctx->lock);
2758
2759         event_function_call(event, __perf_event_enable, NULL);
2760 }
2761
2762 /*
2763  * See perf_event_disable();
2764  */
2765 void perf_event_enable(struct perf_event *event)
2766 {
2767         struct perf_event_context *ctx;
2768
2769         ctx = perf_event_ctx_lock(event);
2770         _perf_event_enable(event);
2771         perf_event_ctx_unlock(event, ctx);
2772 }
2773 EXPORT_SYMBOL_GPL(perf_event_enable);
2774
2775 struct stop_event_data {
2776         struct perf_event       *event;
2777         unsigned int            restart;
2778 };
2779
2780 static int __perf_event_stop(void *info)
2781 {
2782         struct stop_event_data *sd = info;
2783         struct perf_event *event = sd->event;
2784
2785         /* if it's already INACTIVE, do nothing */
2786         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2787                 return 0;
2788
2789         /* matches smp_wmb() in event_sched_in() */
2790         smp_rmb();
2791
2792         /*
2793          * There is a window with interrupts enabled before we get here,
2794          * so we need to check again lest we try to stop another CPU's event.
2795          */
2796         if (READ_ONCE(event->oncpu) != smp_processor_id())
2797                 return -EAGAIN;
2798
2799         event->pmu->stop(event, PERF_EF_UPDATE);
2800
2801         /*
2802          * May race with the actual stop (through perf_pmu_output_stop()),
2803          * but it is only used for events with AUX ring buffer, and such
2804          * events will refuse to restart because of rb::aux_mmap_count==0,
2805          * see comments in perf_aux_output_begin().
2806          *
2807          * Since this is happening on an event-local CPU, no trace is lost
2808          * while restarting.
2809          */
2810         if (sd->restart)
2811                 event->pmu->start(event, 0);
2812
2813         return 0;
2814 }
2815
2816 static int perf_event_stop(struct perf_event *event, int restart)
2817 {
2818         struct stop_event_data sd = {
2819                 .event          = event,
2820                 .restart        = restart,
2821         };
2822         int ret = 0;
2823
2824         do {
2825                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2826                         return 0;
2827
2828                 /* matches smp_wmb() in event_sched_in() */
2829                 smp_rmb();
2830
2831                 /*
2832                  * We only want to restart ACTIVE events, so if the event goes
2833                  * inactive here (event->oncpu==-1), there's nothing more to do;
2834                  * fall through with ret==-ENXIO.
2835                  */
2836                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2837                                         __perf_event_stop, &sd);
2838         } while (ret == -EAGAIN);
2839
2840         return ret;
2841 }
2842
2843 /*
2844  * In order to contain the amount of racy and tricky in the address filter
2845  * configuration management, it is a two part process:
2846  *
2847  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2848  *      we update the addresses of corresponding vmas in
2849  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2850  * (p2) when an event is scheduled in (pmu::add), it calls
2851  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2852  *      if the generation has changed since the previous call.
2853  *
2854  * If (p1) happens while the event is active, we restart it to force (p2).
2855  *
2856  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2857  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2858  *     ioctl;
2859  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2860  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2861  *     for reading;
2862  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2863  *     of exec.
2864  */
2865 void perf_event_addr_filters_sync(struct perf_event *event)
2866 {
2867         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2868
2869         if (!has_addr_filter(event))
2870                 return;
2871
2872         raw_spin_lock(&ifh->lock);
2873         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2874                 event->pmu->addr_filters_sync(event);
2875                 event->hw.addr_filters_gen = event->addr_filters_gen;
2876         }
2877         raw_spin_unlock(&ifh->lock);
2878 }
2879 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2880
2881 static int _perf_event_refresh(struct perf_event *event, int refresh)
2882 {
2883         /*
2884          * not supported on inherited events
2885          */
2886         if (event->attr.inherit || !is_sampling_event(event))
2887                 return -EINVAL;
2888
2889         atomic_add(refresh, &event->event_limit);
2890         _perf_event_enable(event);
2891
2892         return 0;
2893 }
2894
2895 /*
2896  * See perf_event_disable()
2897  */
2898 int perf_event_refresh(struct perf_event *event, int refresh)
2899 {
2900         struct perf_event_context *ctx;
2901         int ret;
2902
2903         ctx = perf_event_ctx_lock(event);
2904         ret = _perf_event_refresh(event, refresh);
2905         perf_event_ctx_unlock(event, ctx);
2906
2907         return ret;
2908 }
2909 EXPORT_SYMBOL_GPL(perf_event_refresh);
2910
2911 static int perf_event_modify_breakpoint(struct perf_event *bp,
2912                                          struct perf_event_attr *attr)
2913 {
2914         int err;
2915
2916         _perf_event_disable(bp);
2917
2918         err = modify_user_hw_breakpoint_check(bp, attr, true);
2919
2920         if (!bp->attr.disabled)
2921                 _perf_event_enable(bp);
2922
2923         return err;
2924 }
2925
2926 static int perf_event_modify_attr(struct perf_event *event,
2927                                   struct perf_event_attr *attr)
2928 {
2929         if (event->attr.type != attr->type)
2930                 return -EINVAL;
2931
2932         switch (event->attr.type) {
2933         case PERF_TYPE_BREAKPOINT:
2934                 return perf_event_modify_breakpoint(event, attr);
2935         default:
2936                 /* Place holder for future additions. */
2937                 return -EOPNOTSUPP;
2938         }
2939 }
2940
2941 static void ctx_sched_out(struct perf_event_context *ctx,
2942                           struct perf_cpu_context *cpuctx,
2943                           enum event_type_t event_type)
2944 {
2945         struct perf_event *event, *tmp;
2946         int is_active = ctx->is_active;
2947
2948         lockdep_assert_held(&ctx->lock);
2949
2950         if (likely(!ctx->nr_events)) {
2951                 /*
2952                  * See __perf_remove_from_context().
2953                  */
2954                 WARN_ON_ONCE(ctx->is_active);
2955                 if (ctx->task)
2956                         WARN_ON_ONCE(cpuctx->task_ctx);
2957                 return;
2958         }
2959
2960         ctx->is_active &= ~event_type;
2961         if (!(ctx->is_active & EVENT_ALL))
2962                 ctx->is_active = 0;
2963
2964         if (ctx->task) {
2965                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2966                 if (!ctx->is_active)
2967                         cpuctx->task_ctx = NULL;
2968         }
2969
2970         /*
2971          * Always update time if it was set; not only when it changes.
2972          * Otherwise we can 'forget' to update time for any but the last
2973          * context we sched out. For example:
2974          *
2975          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2976          *   ctx_sched_out(.event_type = EVENT_PINNED)
2977          *
2978          * would only update time for the pinned events.
2979          */
2980         if (is_active & EVENT_TIME) {
2981                 /* update (and stop) ctx time */
2982                 update_context_time(ctx);
2983                 update_cgrp_time_from_cpuctx(cpuctx);
2984         }
2985
2986         is_active ^= ctx->is_active; /* changed bits */
2987
2988         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2989                 return;
2990
2991         perf_pmu_disable(ctx->pmu);
2992         if (is_active & EVENT_PINNED) {
2993                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2994                         group_sched_out(event, cpuctx, ctx);
2995         }
2996
2997         if (is_active & EVENT_FLEXIBLE) {
2998                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2999                         group_sched_out(event, cpuctx, ctx);
3000
3001                 /*
3002                  * Since we cleared EVENT_FLEXIBLE, also clear
3003                  * rotate_necessary, is will be reset by
3004                  * ctx_flexible_sched_in() when needed.
3005                  */
3006                 ctx->rotate_necessary = 0;
3007         }
3008         perf_pmu_enable(ctx->pmu);
3009 }
3010
3011 /*
3012  * Test whether two contexts are equivalent, i.e. whether they have both been
3013  * cloned from the same version of the same context.
3014  *
3015  * Equivalence is measured using a generation number in the context that is
3016  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3017  * and list_del_event().
3018  */
3019 static int context_equiv(struct perf_event_context *ctx1,
3020                          struct perf_event_context *ctx2)
3021 {
3022         lockdep_assert_held(&ctx1->lock);
3023         lockdep_assert_held(&ctx2->lock);
3024
3025         /* Pinning disables the swap optimization */
3026         if (ctx1->pin_count || ctx2->pin_count)
3027                 return 0;
3028
3029         /* If ctx1 is the parent of ctx2 */
3030         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3031                 return 1;
3032
3033         /* If ctx2 is the parent of ctx1 */
3034         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3035                 return 1;
3036
3037         /*
3038          * If ctx1 and ctx2 have the same parent; we flatten the parent
3039          * hierarchy, see perf_event_init_context().
3040          */
3041         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3042                         ctx1->parent_gen == ctx2->parent_gen)
3043                 return 1;
3044
3045         /* Unmatched */
3046         return 0;
3047 }
3048
3049 static void __perf_event_sync_stat(struct perf_event *event,
3050                                      struct perf_event *next_event)
3051 {
3052         u64 value;
3053
3054         if (!event->attr.inherit_stat)
3055                 return;
3056
3057         /*
3058          * Update the event value, we cannot use perf_event_read()
3059          * because we're in the middle of a context switch and have IRQs
3060          * disabled, which upsets smp_call_function_single(), however
3061          * we know the event must be on the current CPU, therefore we
3062          * don't need to use it.
3063          */
3064         if (event->state == PERF_EVENT_STATE_ACTIVE)
3065                 event->pmu->read(event);
3066
3067         perf_event_update_time(event);
3068
3069         /*
3070          * In order to keep per-task stats reliable we need to flip the event
3071          * values when we flip the contexts.
3072          */
3073         value = local64_read(&next_event->count);
3074         value = local64_xchg(&event->count, value);
3075         local64_set(&next_event->count, value);
3076
3077         swap(event->total_time_enabled, next_event->total_time_enabled);
3078         swap(event->total_time_running, next_event->total_time_running);
3079
3080         /*
3081          * Since we swizzled the values, update the user visible data too.
3082          */
3083         perf_event_update_userpage(event);
3084         perf_event_update_userpage(next_event);
3085 }
3086
3087 static void perf_event_sync_stat(struct perf_event_context *ctx,
3088                                    struct perf_event_context *next_ctx)
3089 {
3090         struct perf_event *event, *next_event;
3091
3092         if (!ctx->nr_stat)
3093                 return;
3094
3095         update_context_time(ctx);
3096
3097         event = list_first_entry(&ctx->event_list,
3098                                    struct perf_event, event_entry);
3099
3100         next_event = list_first_entry(&next_ctx->event_list,
3101                                         struct perf_event, event_entry);
3102
3103         while (&event->event_entry != &ctx->event_list &&
3104                &next_event->event_entry != &next_ctx->event_list) {
3105
3106                 __perf_event_sync_stat(event, next_event);
3107
3108                 event = list_next_entry(event, event_entry);
3109                 next_event = list_next_entry(next_event, event_entry);
3110         }
3111 }
3112
3113 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3114                                          struct task_struct *next)
3115 {
3116         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3117         struct perf_event_context *next_ctx;
3118         struct perf_event_context *parent, *next_parent;
3119         struct perf_cpu_context *cpuctx;
3120         int do_switch = 1;
3121
3122         if (likely(!ctx))
3123                 return;
3124
3125         cpuctx = __get_cpu_context(ctx);
3126         if (!cpuctx->task_ctx)
3127                 return;
3128
3129         rcu_read_lock();
3130         next_ctx = next->perf_event_ctxp[ctxn];
3131         if (!next_ctx)
3132                 goto unlock;
3133
3134         parent = rcu_dereference(ctx->parent_ctx);
3135         next_parent = rcu_dereference(next_ctx->parent_ctx);
3136
3137         /* If neither context have a parent context; they cannot be clones. */
3138         if (!parent && !next_parent)
3139                 goto unlock;
3140
3141         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3142                 /*
3143                  * Looks like the two contexts are clones, so we might be
3144                  * able to optimize the context switch.  We lock both
3145                  * contexts and check that they are clones under the
3146                  * lock (including re-checking that neither has been
3147                  * uncloned in the meantime).  It doesn't matter which
3148                  * order we take the locks because no other cpu could
3149                  * be trying to lock both of these tasks.
3150                  */
3151                 raw_spin_lock(&ctx->lock);
3152                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3153                 if (context_equiv(ctx, next_ctx)) {
3154                         WRITE_ONCE(ctx->task, next);
3155                         WRITE_ONCE(next_ctx->task, task);
3156
3157                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3158
3159                         /*
3160                          * RCU_INIT_POINTER here is safe because we've not
3161                          * modified the ctx and the above modification of
3162                          * ctx->task and ctx->task_ctx_data are immaterial
3163                          * since those values are always verified under
3164                          * ctx->lock which we're now holding.
3165                          */
3166                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3167                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3168
3169                         do_switch = 0;
3170
3171                         perf_event_sync_stat(ctx, next_ctx);
3172                 }
3173                 raw_spin_unlock(&next_ctx->lock);
3174                 raw_spin_unlock(&ctx->lock);
3175         }
3176 unlock:
3177         rcu_read_unlock();
3178
3179         if (do_switch) {
3180                 raw_spin_lock(&ctx->lock);
3181                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3182                 raw_spin_unlock(&ctx->lock);
3183         }
3184 }
3185
3186 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3187
3188 void perf_sched_cb_dec(struct pmu *pmu)
3189 {
3190         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3191
3192         this_cpu_dec(perf_sched_cb_usages);
3193
3194         if (!--cpuctx->sched_cb_usage)
3195                 list_del(&cpuctx->sched_cb_entry);
3196 }
3197
3198
3199 void perf_sched_cb_inc(struct pmu *pmu)
3200 {
3201         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3202
3203         if (!cpuctx->sched_cb_usage++)
3204                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3205
3206         this_cpu_inc(perf_sched_cb_usages);
3207 }
3208
3209 /*
3210  * This function provides the context switch callback to the lower code
3211  * layer. It is invoked ONLY when the context switch callback is enabled.
3212  *
3213  * This callback is relevant even to per-cpu events; for example multi event
3214  * PEBS requires this to provide PID/TID information. This requires we flush
3215  * all queued PEBS records before we context switch to a new task.
3216  */
3217 static void perf_pmu_sched_task(struct task_struct *prev,
3218                                 struct task_struct *next,
3219                                 bool sched_in)
3220 {
3221         struct perf_cpu_context *cpuctx;
3222         struct pmu *pmu;
3223
3224         if (prev == next)
3225                 return;
3226
3227         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3228                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3229
3230                 if (WARN_ON_ONCE(!pmu->sched_task))
3231                         continue;
3232
3233                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3234                 perf_pmu_disable(pmu);
3235
3236                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3237
3238                 perf_pmu_enable(pmu);
3239                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3240         }
3241 }
3242
3243 static void perf_event_switch(struct task_struct *task,
3244                               struct task_struct *next_prev, bool sched_in);
3245
3246 #define for_each_task_context_nr(ctxn)                                  \
3247         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3248
3249 /*
3250  * Called from scheduler to remove the events of the current task,
3251  * with interrupts disabled.
3252  *
3253  * We stop each event and update the event value in event->count.
3254  *
3255  * This does not protect us against NMI, but disable()
3256  * sets the disabled bit in the control field of event _before_
3257  * accessing the event control register. If a NMI hits, then it will
3258  * not restart the event.
3259  */
3260 void __perf_event_task_sched_out(struct task_struct *task,
3261                                  struct task_struct *next)
3262 {
3263         int ctxn;
3264
3265         if (__this_cpu_read(perf_sched_cb_usages))
3266                 perf_pmu_sched_task(task, next, false);
3267
3268         if (atomic_read(&nr_switch_events))
3269                 perf_event_switch(task, next, false);
3270
3271         for_each_task_context_nr(ctxn)
3272                 perf_event_context_sched_out(task, ctxn, next);
3273
3274         /*
3275          * if cgroup events exist on this CPU, then we need
3276          * to check if we have to switch out PMU state.
3277          * cgroup event are system-wide mode only
3278          */
3279         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3280                 perf_cgroup_sched_out(task, next);
3281 }
3282
3283 /*
3284  * Called with IRQs disabled
3285  */
3286 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3287                               enum event_type_t event_type)
3288 {
3289         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3290 }
3291
3292 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3293                               int (*func)(struct perf_event *, void *), void *data)
3294 {
3295         struct perf_event **evt, *evt1, *evt2;
3296         int ret;
3297
3298         evt1 = perf_event_groups_first(groups, -1);
3299         evt2 = perf_event_groups_first(groups, cpu);
3300
3301         while (evt1 || evt2) {
3302                 if (evt1 && evt2) {
3303                         if (evt1->group_index < evt2->group_index)
3304                                 evt = &evt1;
3305                         else
3306                                 evt = &evt2;
3307                 } else if (evt1) {
3308                         evt = &evt1;
3309                 } else {
3310                         evt = &evt2;
3311                 }
3312
3313                 ret = func(*evt, data);
3314                 if (ret)
3315                         return ret;
3316
3317                 *evt = perf_event_groups_next(*evt);
3318         }
3319
3320         return 0;
3321 }
3322
3323 struct sched_in_data {
3324         struct perf_event_context *ctx;
3325         struct perf_cpu_context *cpuctx;
3326         int can_add_hw;
3327 };
3328
3329 static int pinned_sched_in(struct perf_event *event, void *data)
3330 {
3331         struct sched_in_data *sid = data;
3332
3333         if (event->state <= PERF_EVENT_STATE_OFF)
3334                 return 0;
3335
3336         if (!event_filter_match(event))
3337                 return 0;
3338
3339         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3340                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3341                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3342         }
3343
3344         /*
3345          * If this pinned group hasn't been scheduled,
3346          * put it in error state.
3347          */
3348         if (event->state == PERF_EVENT_STATE_INACTIVE)
3349                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3350
3351         return 0;
3352 }
3353
3354 static int flexible_sched_in(struct perf_event *event, void *data)
3355 {
3356         struct sched_in_data *sid = data;
3357
3358         if (event->state <= PERF_EVENT_STATE_OFF)
3359                 return 0;
3360
3361         if (!event_filter_match(event))
3362                 return 0;
3363
3364         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3365                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3366                 if (ret) {
3367                         sid->can_add_hw = 0;
3368                         sid->ctx->rotate_necessary = 1;
3369                         return 0;
3370                 }
3371                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3372         }
3373
3374         return 0;
3375 }
3376
3377 static void
3378 ctx_pinned_sched_in(struct perf_event_context *ctx,
3379                     struct perf_cpu_context *cpuctx)
3380 {
3381         struct sched_in_data sid = {
3382                 .ctx = ctx,
3383                 .cpuctx = cpuctx,
3384                 .can_add_hw = 1,
3385         };
3386
3387         visit_groups_merge(&ctx->pinned_groups,
3388                            smp_processor_id(),
3389                            pinned_sched_in, &sid);
3390 }
3391
3392 static void
3393 ctx_flexible_sched_in(struct perf_event_context *ctx,
3394                       struct perf_cpu_context *cpuctx)
3395 {
3396         struct sched_in_data sid = {
3397                 .ctx = ctx,
3398                 .cpuctx = cpuctx,
3399                 .can_add_hw = 1,
3400         };
3401
3402         visit_groups_merge(&ctx->flexible_groups,
3403                            smp_processor_id(),
3404                            flexible_sched_in, &sid);
3405 }
3406
3407 static void
3408 ctx_sched_in(struct perf_event_context *ctx,
3409              struct perf_cpu_context *cpuctx,
3410              enum event_type_t event_type,
3411              struct task_struct *task)
3412 {
3413         int is_active = ctx->is_active;
3414         u64 now;
3415
3416         lockdep_assert_held(&ctx->lock);
3417
3418         if (likely(!ctx->nr_events))
3419                 return;
3420
3421         ctx->is_active |= (event_type | EVENT_TIME);
3422         if (ctx->task) {
3423                 if (!is_active)
3424                         cpuctx->task_ctx = ctx;
3425                 else
3426                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3427         }
3428
3429         is_active ^= ctx->is_active; /* changed bits */
3430
3431         if (is_active & EVENT_TIME) {
3432                 /* start ctx time */
3433                 now = perf_clock();
3434                 ctx->timestamp = now;
3435                 perf_cgroup_set_timestamp(task, ctx);
3436         }
3437
3438         /*
3439          * First go through the list and put on any pinned groups
3440          * in order to give them the best chance of going on.
3441          */
3442         if (is_active & EVENT_PINNED)
3443                 ctx_pinned_sched_in(ctx, cpuctx);
3444
3445         /* Then walk through the lower prio flexible groups */
3446         if (is_active & EVENT_FLEXIBLE)
3447                 ctx_flexible_sched_in(ctx, cpuctx);
3448 }
3449
3450 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3451                              enum event_type_t event_type,
3452                              struct task_struct *task)
3453 {
3454         struct perf_event_context *ctx = &cpuctx->ctx;
3455
3456         ctx_sched_in(ctx, cpuctx, event_type, task);
3457 }
3458
3459 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3460                                         struct task_struct *task)
3461 {
3462         struct perf_cpu_context *cpuctx;
3463
3464         cpuctx = __get_cpu_context(ctx);
3465         if (cpuctx->task_ctx == ctx)
3466                 return;
3467
3468         perf_ctx_lock(cpuctx, ctx);
3469         /*
3470          * We must check ctx->nr_events while holding ctx->lock, such
3471          * that we serialize against perf_install_in_context().
3472          */
3473         if (!ctx->nr_events)
3474                 goto unlock;
3475
3476         perf_pmu_disable(ctx->pmu);
3477         /*
3478          * We want to keep the following priority order:
3479          * cpu pinned (that don't need to move), task pinned,
3480          * cpu flexible, task flexible.
3481          *
3482          * However, if task's ctx is not carrying any pinned
3483          * events, no need to flip the cpuctx's events around.
3484          */
3485         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3486                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3487         perf_event_sched_in(cpuctx, ctx, task);
3488         perf_pmu_enable(ctx->pmu);
3489
3490 unlock:
3491         perf_ctx_unlock(cpuctx, ctx);
3492 }
3493
3494 /*
3495  * Called from scheduler to add the events of the current task
3496  * with interrupts disabled.
3497  *
3498  * We restore the event value and then enable it.
3499  *
3500  * This does not protect us against NMI, but enable()
3501  * sets the enabled bit in the control field of event _before_
3502  * accessing the event control register. If a NMI hits, then it will
3503  * keep the event running.
3504  */
3505 void __perf_event_task_sched_in(struct task_struct *prev,
3506                                 struct task_struct *task)
3507 {
3508         struct perf_event_context *ctx;
3509         int ctxn;
3510
3511         /*
3512          * If cgroup events exist on this CPU, then we need to check if we have
3513          * to switch in PMU state; cgroup event are system-wide mode only.
3514          *
3515          * Since cgroup events are CPU events, we must schedule these in before
3516          * we schedule in the task events.
3517          */
3518         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3519                 perf_cgroup_sched_in(prev, task);
3520
3521         for_each_task_context_nr(ctxn) {
3522                 ctx = task->perf_event_ctxp[ctxn];
3523                 if (likely(!ctx))
3524                         continue;
3525
3526                 perf_event_context_sched_in(ctx, task);
3527         }
3528
3529         if (atomic_read(&nr_switch_events))
3530                 perf_event_switch(task, prev, true);
3531
3532         if (__this_cpu_read(perf_sched_cb_usages))
3533                 perf_pmu_sched_task(prev, task, true);
3534 }
3535
3536 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3537 {
3538         u64 frequency = event->attr.sample_freq;
3539         u64 sec = NSEC_PER_SEC;
3540         u64 divisor, dividend;
3541
3542         int count_fls, nsec_fls, frequency_fls, sec_fls;
3543
3544         count_fls = fls64(count);
3545         nsec_fls = fls64(nsec);
3546         frequency_fls = fls64(frequency);
3547         sec_fls = 30;
3548
3549         /*
3550          * We got @count in @nsec, with a target of sample_freq HZ
3551          * the target period becomes:
3552          *
3553          *             @count * 10^9
3554          * period = -------------------
3555          *          @nsec * sample_freq
3556          *
3557          */
3558
3559         /*
3560          * Reduce accuracy by one bit such that @a and @b converge
3561          * to a similar magnitude.
3562          */
3563 #define REDUCE_FLS(a, b)                \
3564 do {                                    \
3565         if (a##_fls > b##_fls) {        \
3566                 a >>= 1;                \
3567                 a##_fls--;              \
3568         } else {                        \
3569                 b >>= 1;                \
3570                 b##_fls--;              \
3571         }                               \
3572 } while (0)
3573
3574         /*
3575          * Reduce accuracy until either term fits in a u64, then proceed with
3576          * the other, so that finally we can do a u64/u64 division.
3577          */
3578         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3579                 REDUCE_FLS(nsec, frequency);
3580                 REDUCE_FLS(sec, count);
3581         }
3582
3583         if (count_fls + sec_fls > 64) {
3584                 divisor = nsec * frequency;
3585
3586                 while (count_fls + sec_fls > 64) {
3587                         REDUCE_FLS(count, sec);
3588                         divisor >>= 1;
3589                 }
3590
3591                 dividend = count * sec;
3592         } else {
3593                 dividend = count * sec;
3594
3595                 while (nsec_fls + frequency_fls > 64) {
3596                         REDUCE_FLS(nsec, frequency);
3597                         dividend >>= 1;
3598                 }
3599
3600                 divisor = nsec * frequency;
3601         }
3602
3603         if (!divisor)
3604                 return dividend;
3605
3606         return div64_u64(dividend, divisor);
3607 }
3608
3609 static DEFINE_PER_CPU(int, perf_throttled_count);
3610 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3611
3612 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3613 {
3614         struct hw_perf_event *hwc = &event->hw;
3615         s64 period, sample_period;
3616         s64 delta;
3617
3618         period = perf_calculate_period(event, nsec, count);
3619
3620         delta = (s64)(period - hwc->sample_period);
3621         delta = (delta + 7) / 8; /* low pass filter */
3622
3623         sample_period = hwc->sample_period + delta;
3624
3625         if (!sample_period)
3626                 sample_period = 1;
3627
3628         hwc->sample_period = sample_period;
3629
3630         if (local64_read(&hwc->period_left) > 8*sample_period) {
3631                 if (disable)
3632                         event->pmu->stop(event, PERF_EF_UPDATE);
3633
3634                 local64_set(&hwc->period_left, 0);
3635
3636                 if (disable)
3637                         event->pmu->start(event, PERF_EF_RELOAD);
3638         }
3639 }
3640
3641 /*
3642  * combine freq adjustment with unthrottling to avoid two passes over the
3643  * events. At the same time, make sure, having freq events does not change
3644  * the rate of unthrottling as that would introduce bias.
3645  */
3646 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3647                                            int needs_unthr)
3648 {
3649         struct perf_event *event;
3650         struct hw_perf_event *hwc;
3651         u64 now, period = TICK_NSEC;
3652         s64 delta;
3653
3654         /*
3655          * only need to iterate over all events iff:
3656          * - context have events in frequency mode (needs freq adjust)
3657          * - there are events to unthrottle on this cpu
3658          */
3659         if (!(ctx->nr_freq || needs_unthr))
3660                 return;
3661
3662         raw_spin_lock(&ctx->lock);
3663         perf_pmu_disable(ctx->pmu);
3664
3665         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3666                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3667                         continue;
3668
3669                 if (!event_filter_match(event))
3670                         continue;
3671
3672                 perf_pmu_disable(event->pmu);
3673
3674                 hwc = &event->hw;
3675
3676                 if (hwc->interrupts == MAX_INTERRUPTS) {
3677                         hwc->interrupts = 0;
3678                         perf_log_throttle(event, 1);
3679                         event->pmu->start(event, 0);
3680                 }
3681
3682                 if (!event->attr.freq || !event->attr.sample_freq)
3683                         goto next;
3684
3685                 /*
3686                  * stop the event and update event->count
3687                  */
3688                 event->pmu->stop(event, PERF_EF_UPDATE);
3689
3690                 now = local64_read(&event->count);
3691                 delta = now - hwc->freq_count_stamp;
3692                 hwc->freq_count_stamp = now;
3693
3694                 /*
3695                  * restart the event
3696                  * reload only if value has changed
3697                  * we have stopped the event so tell that
3698                  * to perf_adjust_period() to avoid stopping it
3699                  * twice.
3700                  */
3701                 if (delta > 0)
3702                         perf_adjust_period(event, period, delta, false);
3703
3704                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3705         next:
3706                 perf_pmu_enable(event->pmu);
3707         }
3708
3709         perf_pmu_enable(ctx->pmu);
3710         raw_spin_unlock(&ctx->lock);
3711 }
3712
3713 /*
3714  * Move @event to the tail of the @ctx's elegible events.
3715  */
3716 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3717 {
3718         /*
3719          * Rotate the first entry last of non-pinned groups. Rotation might be
3720          * disabled by the inheritance code.
3721          */
3722         if (ctx->rotate_disable)
3723                 return;
3724
3725         perf_event_groups_delete(&ctx->flexible_groups, event);
3726         perf_event_groups_insert(&ctx->flexible_groups, event);
3727 }
3728
3729 /* pick an event from the flexible_groups to rotate */
3730 static inline struct perf_event *
3731 ctx_event_to_rotate(struct perf_event_context *ctx)
3732 {
3733         struct perf_event *event;
3734
3735         /* pick the first active flexible event */
3736         event = list_first_entry_or_null(&ctx->flexible_active,
3737                                          struct perf_event, active_list);
3738
3739         /* if no active flexible event, pick the first event */
3740         if (!event) {
3741                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3742                                       typeof(*event), group_node);
3743         }
3744
3745         /*
3746          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3747          * finds there are unschedulable events, it will set it again.
3748          */
3749         ctx->rotate_necessary = 0;
3750
3751         return event;
3752 }
3753
3754 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3755 {
3756         struct perf_event *cpu_event = NULL, *task_event = NULL;
3757         struct perf_event_context *task_ctx = NULL;
3758         int cpu_rotate, task_rotate;
3759
3760         /*
3761          * Since we run this from IRQ context, nobody can install new
3762          * events, thus the event count values are stable.
3763          */
3764
3765         cpu_rotate = cpuctx->ctx.rotate_necessary;
3766         task_ctx = cpuctx->task_ctx;
3767         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3768
3769         if (!(cpu_rotate || task_rotate))
3770                 return false;
3771
3772         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3773         perf_pmu_disable(cpuctx->ctx.pmu);
3774
3775         if (task_rotate)
3776                 task_event = ctx_event_to_rotate(task_ctx);
3777         if (cpu_rotate)
3778                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3779
3780         /*
3781          * As per the order given at ctx_resched() first 'pop' task flexible
3782          * and then, if needed CPU flexible.
3783          */
3784         if (task_event || (task_ctx && cpu_event))
3785                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3786         if (cpu_event)
3787                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3788
3789         if (task_event)
3790                 rotate_ctx(task_ctx, task_event);
3791         if (cpu_event)
3792                 rotate_ctx(&cpuctx->ctx, cpu_event);
3793
3794         perf_event_sched_in(cpuctx, task_ctx, current);
3795
3796         perf_pmu_enable(cpuctx->ctx.pmu);
3797         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3798
3799         return true;
3800 }
3801
3802 void perf_event_task_tick(void)
3803 {
3804         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3805         struct perf_event_context *ctx, *tmp;
3806         int throttled;
3807
3808         lockdep_assert_irqs_disabled();
3809
3810         __this_cpu_inc(perf_throttled_seq);
3811         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3812         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3813
3814         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3815                 perf_adjust_freq_unthr_context(ctx, throttled);
3816 }
3817
3818 static int event_enable_on_exec(struct perf_event *event,
3819                                 struct perf_event_context *ctx)
3820 {
3821         if (!event->attr.enable_on_exec)
3822                 return 0;
3823
3824         event->attr.enable_on_exec = 0;
3825         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3826                 return 0;
3827
3828         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3829
3830         return 1;
3831 }
3832
3833 /*
3834  * Enable all of a task's events that have been marked enable-on-exec.
3835  * This expects task == current.
3836  */
3837 static void perf_event_enable_on_exec(int ctxn)
3838 {
3839         struct perf_event_context *ctx, *clone_ctx = NULL;
3840         enum event_type_t event_type = 0;
3841         struct perf_cpu_context *cpuctx;
3842         struct perf_event *event;
3843         unsigned long flags;
3844         int enabled = 0;
3845
3846         local_irq_save(flags);
3847         ctx = current->perf_event_ctxp[ctxn];
3848         if (!ctx || !ctx->nr_events)
3849                 goto out;
3850
3851         cpuctx = __get_cpu_context(ctx);
3852         perf_ctx_lock(cpuctx, ctx);
3853         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3854         list_for_each_entry(event, &ctx->event_list, event_entry) {
3855                 enabled |= event_enable_on_exec(event, ctx);
3856                 event_type |= get_event_type(event);
3857         }
3858
3859         /*
3860          * Unclone and reschedule this context if we enabled any event.
3861          */
3862         if (enabled) {
3863                 clone_ctx = unclone_ctx(ctx);
3864                 ctx_resched(cpuctx, ctx, event_type);
3865         } else {
3866                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3867         }
3868         perf_ctx_unlock(cpuctx, ctx);
3869
3870 out:
3871         local_irq_restore(flags);
3872
3873         if (clone_ctx)
3874                 put_ctx(clone_ctx);
3875 }
3876
3877 struct perf_read_data {
3878         struct perf_event *event;
3879         bool group;
3880         int ret;
3881 };
3882
3883 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3884 {
3885         u16 local_pkg, event_pkg;
3886
3887         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3888                 int local_cpu = smp_processor_id();
3889
3890                 event_pkg = topology_physical_package_id(event_cpu);
3891                 local_pkg = topology_physical_package_id(local_cpu);
3892
3893                 if (event_pkg == local_pkg)
3894                         return local_cpu;
3895         }
3896
3897         return event_cpu;
3898 }
3899
3900 /*
3901  * Cross CPU call to read the hardware event
3902  */
3903 static void __perf_event_read(void *info)
3904 {
3905         struct perf_read_data *data = info;
3906         struct perf_event *sub, *event = data->event;
3907         struct perf_event_context *ctx = event->ctx;
3908         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3909         struct pmu *pmu = event->pmu;
3910
3911         /*
3912          * If this is a task context, we need to check whether it is
3913          * the current task context of this cpu.  If not it has been
3914          * scheduled out before the smp call arrived.  In that case
3915          * event->count would have been updated to a recent sample
3916          * when the event was scheduled out.
3917          */
3918         if (ctx->task && cpuctx->task_ctx != ctx)
3919                 return;
3920
3921         raw_spin_lock(&ctx->lock);
3922         if (ctx->is_active & EVENT_TIME) {
3923                 update_context_time(ctx);
3924                 update_cgrp_time_from_event(event);
3925         }
3926
3927         perf_event_update_time(event);
3928         if (data->group)
3929                 perf_event_update_sibling_time(event);
3930
3931         if (event->state != PERF_EVENT_STATE_ACTIVE)
3932                 goto unlock;
3933
3934         if (!data->group) {
3935                 pmu->read(event);
3936                 data->ret = 0;
3937                 goto unlock;
3938         }
3939
3940         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3941
3942         pmu->read(event);
3943
3944         for_each_sibling_event(sub, event) {
3945                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3946                         /*
3947                          * Use sibling's PMU rather than @event's since
3948                          * sibling could be on different (eg: software) PMU.
3949                          */
3950                         sub->pmu->read(sub);
3951                 }
3952         }
3953
3954         data->ret = pmu->commit_txn(pmu);
3955
3956 unlock:
3957         raw_spin_unlock(&ctx->lock);
3958 }
3959
3960 static inline u64 perf_event_count(struct perf_event *event)
3961 {
3962         return local64_read(&event->count) + atomic64_read(&event->child_count);
3963 }
3964
3965 /*
3966  * NMI-safe method to read a local event, that is an event that
3967  * is:
3968  *   - either for the current task, or for this CPU
3969  *   - does not have inherit set, for inherited task events
3970  *     will not be local and we cannot read them atomically
3971  *   - must not have a pmu::count method
3972  */
3973 int perf_event_read_local(struct perf_event *event, u64 *value,
3974                           u64 *enabled, u64 *running)
3975 {
3976         unsigned long flags;
3977         int ret = 0;
3978
3979         /*
3980          * Disabling interrupts avoids all counter scheduling (context
3981          * switches, timer based rotation and IPIs).
3982          */
3983         local_irq_save(flags);
3984
3985         /*
3986          * It must not be an event with inherit set, we cannot read
3987          * all child counters from atomic context.
3988          */
3989         if (event->attr.inherit) {
3990                 ret = -EOPNOTSUPP;
3991                 goto out;
3992         }
3993
3994         /* If this is a per-task event, it must be for current */
3995         if ((event->attach_state & PERF_ATTACH_TASK) &&
3996             event->hw.target != current) {
3997                 ret = -EINVAL;
3998                 goto out;
3999         }
4000
4001         /* If this is a per-CPU event, it must be for this CPU */
4002         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4003             event->cpu != smp_processor_id()) {
4004                 ret = -EINVAL;
4005                 goto out;
4006         }
4007
4008         /* If this is a pinned event it must be running on this CPU */
4009         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4010                 ret = -EBUSY;
4011                 goto out;
4012         }
4013
4014         /*
4015          * If the event is currently on this CPU, its either a per-task event,
4016          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4017          * oncpu == -1).
4018          */
4019         if (event->oncpu == smp_processor_id())
4020                 event->pmu->read(event);
4021
4022         *value = local64_read(&event->count);
4023         if (enabled || running) {
4024                 u64 now = event->shadow_ctx_time + perf_clock();
4025                 u64 __enabled, __running;
4026
4027                 __perf_update_times(event, now, &__enabled, &__running);
4028                 if (enabled)
4029                         *enabled = __enabled;
4030                 if (running)
4031                         *running = __running;
4032         }
4033 out:
4034         local_irq_restore(flags);
4035
4036         return ret;
4037 }
4038
4039 static int perf_event_read(struct perf_event *event, bool group)
4040 {
4041         enum perf_event_state state = READ_ONCE(event->state);
4042         int event_cpu, ret = 0;
4043
4044         /*
4045          * If event is enabled and currently active on a CPU, update the
4046          * value in the event structure:
4047          */
4048 again:
4049         if (state == PERF_EVENT_STATE_ACTIVE) {
4050                 struct perf_read_data data;
4051
4052                 /*
4053                  * Orders the ->state and ->oncpu loads such that if we see
4054                  * ACTIVE we must also see the right ->oncpu.
4055                  *
4056                  * Matches the smp_wmb() from event_sched_in().
4057                  */
4058                 smp_rmb();
4059
4060                 event_cpu = READ_ONCE(event->oncpu);
4061                 if ((unsigned)event_cpu >= nr_cpu_ids)
4062                         return 0;
4063
4064                 data = (struct perf_read_data){
4065                         .event = event,
4066                         .group = group,
4067                         .ret = 0,
4068                 };
4069
4070                 preempt_disable();
4071                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4072
4073                 /*
4074                  * Purposely ignore the smp_call_function_single() return
4075                  * value.
4076                  *
4077                  * If event_cpu isn't a valid CPU it means the event got
4078                  * scheduled out and that will have updated the event count.
4079                  *
4080                  * Therefore, either way, we'll have an up-to-date event count
4081                  * after this.
4082                  */
4083                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4084                 preempt_enable();
4085                 ret = data.ret;
4086
4087         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4088                 struct perf_event_context *ctx = event->ctx;
4089                 unsigned long flags;
4090
4091                 raw_spin_lock_irqsave(&ctx->lock, flags);
4092                 state = event->state;
4093                 if (state != PERF_EVENT_STATE_INACTIVE) {
4094                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4095                         goto again;
4096                 }
4097
4098                 /*
4099                  * May read while context is not active (e.g., thread is
4100                  * blocked), in that case we cannot update context time
4101                  */
4102                 if (ctx->is_active & EVENT_TIME) {
4103                         update_context_time(ctx);
4104                         update_cgrp_time_from_event(event);
4105                 }
4106
4107                 perf_event_update_time(event);
4108                 if (group)
4109                         perf_event_update_sibling_time(event);
4110                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4111         }
4112
4113         return ret;
4114 }
4115
4116 /*
4117  * Initialize the perf_event context in a task_struct:
4118  */
4119 static void __perf_event_init_context(struct perf_event_context *ctx)
4120 {
4121         raw_spin_lock_init(&ctx->lock);
4122         mutex_init(&ctx->mutex);
4123         INIT_LIST_HEAD(&ctx->active_ctx_list);
4124         perf_event_groups_init(&ctx->pinned_groups);
4125         perf_event_groups_init(&ctx->flexible_groups);
4126         INIT_LIST_HEAD(&ctx->event_list);
4127         INIT_LIST_HEAD(&ctx->pinned_active);
4128         INIT_LIST_HEAD(&ctx->flexible_active);
4129         atomic_set(&ctx->refcount, 1);
4130 }
4131
4132 static struct perf_event_context *
4133 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4134 {
4135         struct perf_event_context *ctx;
4136
4137         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4138         if (!ctx)
4139                 return NULL;
4140
4141         __perf_event_init_context(ctx);
4142         if (task) {
4143                 ctx->task = task;
4144                 get_task_struct(task);
4145         }
4146         ctx->pmu = pmu;
4147
4148         return ctx;
4149 }
4150
4151 static struct task_struct *
4152 find_lively_task_by_vpid(pid_t vpid)
4153 {
4154         struct task_struct *task;
4155
4156         rcu_read_lock();
4157         if (!vpid)
4158                 task = current;
4159         else
4160                 task = find_task_by_vpid(vpid);
4161         if (task)
4162                 get_task_struct(task);
4163         rcu_read_unlock();
4164
4165         if (!task)
4166                 return ERR_PTR(-ESRCH);
4167
4168         return task;
4169 }
4170
4171 /*
4172  * Returns a matching context with refcount and pincount.
4173  */
4174 static struct perf_event_context *
4175 find_get_context(struct pmu *pmu, struct task_struct *task,
4176                 struct perf_event *event)
4177 {
4178         struct perf_event_context *ctx, *clone_ctx = NULL;
4179         struct perf_cpu_context *cpuctx;
4180         void *task_ctx_data = NULL;
4181         unsigned long flags;
4182         int ctxn, err;
4183         int cpu = event->cpu;
4184
4185         if (!task) {
4186                 /* Must be root to operate on a CPU event: */
4187                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4188                         return ERR_PTR(-EACCES);
4189
4190                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4191                 ctx = &cpuctx->ctx;
4192                 get_ctx(ctx);
4193                 raw_spin_lock_irqsave(&ctx->lock, flags);
4194                 ++ctx->pin_count;
4195                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4196
4197                 return ctx;
4198         }
4199
4200         err = -EINVAL;
4201         ctxn = pmu->task_ctx_nr;
4202         if (ctxn < 0)
4203                 goto errout;
4204
4205         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4206                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4207                 if (!task_ctx_data) {
4208                         err = -ENOMEM;
4209                         goto errout;
4210                 }
4211         }
4212
4213 retry:
4214         ctx = perf_lock_task_context(task, ctxn, &flags);
4215         if (ctx) {
4216                 clone_ctx = unclone_ctx(ctx);
4217                 ++ctx->pin_count;
4218
4219                 if (task_ctx_data && !ctx->task_ctx_data) {
4220                         ctx->task_ctx_data = task_ctx_data;
4221                         task_ctx_data = NULL;
4222                 }
4223                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4224
4225                 if (clone_ctx)
4226                         put_ctx(clone_ctx);
4227         } else {
4228                 ctx = alloc_perf_context(pmu, task);
4229                 err = -ENOMEM;
4230                 if (!ctx)
4231                         goto errout;
4232
4233                 if (task_ctx_data) {
4234                         ctx->task_ctx_data = task_ctx_data;
4235                         task_ctx_data = NULL;
4236                 }
4237
4238                 err = 0;
4239                 mutex_lock(&task->perf_event_mutex);
4240                 /*
4241                  * If it has already passed perf_event_exit_task().
4242                  * we must see PF_EXITING, it takes this mutex too.
4243                  */
4244                 if (task->flags & PF_EXITING)
4245                         err = -ESRCH;
4246                 else if (task->perf_event_ctxp[ctxn])
4247                         err = -EAGAIN;
4248                 else {
4249                         get_ctx(ctx);
4250                         ++ctx->pin_count;
4251                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4252                 }
4253                 mutex_unlock(&task->perf_event_mutex);
4254
4255                 if (unlikely(err)) {
4256                         put_ctx(ctx);
4257
4258                         if (err == -EAGAIN)
4259                                 goto retry;
4260                         goto errout;
4261                 }
4262         }
4263
4264         kfree(task_ctx_data);
4265         return ctx;
4266
4267 errout:
4268         kfree(task_ctx_data);
4269         return ERR_PTR(err);
4270 }
4271
4272 static void perf_event_free_filter(struct perf_event *event);
4273 static void perf_event_free_bpf_prog(struct perf_event *event);
4274
4275 static void free_event_rcu(struct rcu_head *head)
4276 {
4277         struct perf_event *event;
4278
4279         event = container_of(head, struct perf_event, rcu_head);
4280         if (event->ns)
4281                 put_pid_ns(event->ns);
4282         perf_event_free_filter(event);
4283         kfree(event);
4284 }
4285
4286 static void ring_buffer_attach(struct perf_event *event,
4287                                struct ring_buffer *rb);
4288
4289 static void detach_sb_event(struct perf_event *event)
4290 {
4291         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4292
4293         raw_spin_lock(&pel->lock);
4294         list_del_rcu(&event->sb_list);
4295         raw_spin_unlock(&pel->lock);
4296 }
4297
4298 static bool is_sb_event(struct perf_event *event)
4299 {
4300         struct perf_event_attr *attr = &event->attr;
4301
4302         if (event->parent)
4303                 return false;
4304
4305         if (event->attach_state & PERF_ATTACH_TASK)
4306                 return false;
4307
4308         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4309             attr->comm || attr->comm_exec ||
4310             attr->task ||
4311             attr->context_switch)
4312                 return true;
4313         return false;
4314 }
4315
4316 static void unaccount_pmu_sb_event(struct perf_event *event)
4317 {
4318         if (is_sb_event(event))
4319                 detach_sb_event(event);
4320 }
4321
4322 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4323 {
4324         if (event->parent)
4325                 return;
4326
4327         if (is_cgroup_event(event))
4328                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4329 }
4330
4331 #ifdef CONFIG_NO_HZ_FULL
4332 static DEFINE_SPINLOCK(nr_freq_lock);
4333 #endif
4334
4335 static void unaccount_freq_event_nohz(void)
4336 {
4337 #ifdef CONFIG_NO_HZ_FULL
4338         spin_lock(&nr_freq_lock);
4339         if (atomic_dec_and_test(&nr_freq_events))
4340                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4341         spin_unlock(&nr_freq_lock);
4342 #endif
4343 }
4344
4345 static void unaccount_freq_event(void)
4346 {
4347         if (tick_nohz_full_enabled())
4348                 unaccount_freq_event_nohz();
4349         else
4350                 atomic_dec(&nr_freq_events);
4351 }
4352
4353 static void unaccount_event(struct perf_event *event)
4354 {
4355         bool dec = false;
4356
4357         if (event->parent)
4358                 return;
4359
4360         if (event->attach_state & PERF_ATTACH_TASK)
4361                 dec = true;
4362         if (event->attr.mmap || event->attr.mmap_data)
4363                 atomic_dec(&nr_mmap_events);
4364         if (event->attr.comm)
4365                 atomic_dec(&nr_comm_events);
4366         if (event->attr.namespaces)
4367                 atomic_dec(&nr_namespaces_events);
4368         if (event->attr.task)
4369                 atomic_dec(&nr_task_events);
4370         if (event->attr.freq)
4371                 unaccount_freq_event();
4372         if (event->attr.context_switch) {
4373                 dec = true;
4374                 atomic_dec(&nr_switch_events);
4375         }
4376         if (is_cgroup_event(event))
4377                 dec = true;
4378         if (has_branch_stack(event))
4379                 dec = true;
4380
4381         if (dec) {
4382                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4383                         schedule_delayed_work(&perf_sched_work, HZ);
4384         }
4385
4386         unaccount_event_cpu(event, event->cpu);
4387
4388         unaccount_pmu_sb_event(event);
4389 }
4390
4391 static void perf_sched_delayed(struct work_struct *work)
4392 {
4393         mutex_lock(&perf_sched_mutex);
4394         if (atomic_dec_and_test(&perf_sched_count))
4395                 static_branch_disable(&perf_sched_events);
4396         mutex_unlock(&perf_sched_mutex);
4397 }
4398
4399 /*
4400  * The following implement mutual exclusion of events on "exclusive" pmus
4401  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4402  * at a time, so we disallow creating events that might conflict, namely:
4403  *
4404  *  1) cpu-wide events in the presence of per-task events,
4405  *  2) per-task events in the presence of cpu-wide events,
4406  *  3) two matching events on the same context.
4407  *
4408  * The former two cases are handled in the allocation path (perf_event_alloc(),
4409  * _free_event()), the latter -- before the first perf_install_in_context().
4410  */
4411 static int exclusive_event_init(struct perf_event *event)
4412 {
4413         struct pmu *pmu = event->pmu;
4414
4415         if (!is_exclusive_pmu(pmu))
4416                 return 0;
4417
4418         /*
4419          * Prevent co-existence of per-task and cpu-wide events on the
4420          * same exclusive pmu.
4421          *
4422          * Negative pmu::exclusive_cnt means there are cpu-wide
4423          * events on this "exclusive" pmu, positive means there are
4424          * per-task events.
4425          *
4426          * Since this is called in perf_event_alloc() path, event::ctx
4427          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4428          * to mean "per-task event", because unlike other attach states it
4429          * never gets cleared.
4430          */
4431         if (event->attach_state & PERF_ATTACH_TASK) {
4432                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4433                         return -EBUSY;
4434         } else {
4435                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4436                         return -EBUSY;
4437         }
4438
4439         return 0;
4440 }
4441
4442 static void exclusive_event_destroy(struct perf_event *event)
4443 {
4444         struct pmu *pmu = event->pmu;
4445
4446         if (!is_exclusive_pmu(pmu))
4447                 return;
4448
4449         /* see comment in exclusive_event_init() */
4450         if (event->attach_state & PERF_ATTACH_TASK)
4451                 atomic_dec(&pmu->exclusive_cnt);
4452         else
4453                 atomic_inc(&pmu->exclusive_cnt);
4454 }
4455
4456 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4457 {
4458         if ((e1->pmu == e2->pmu) &&
4459             (e1->cpu == e2->cpu ||
4460              e1->cpu == -1 ||
4461              e2->cpu == -1))
4462                 return true;
4463         return false;
4464 }
4465
4466 static bool exclusive_event_installable(struct perf_event *event,
4467                                         struct perf_event_context *ctx)
4468 {
4469         struct perf_event *iter_event;
4470         struct pmu *pmu = event->pmu;
4471
4472         lockdep_assert_held(&ctx->mutex);
4473
4474         if (!is_exclusive_pmu(pmu))
4475                 return true;
4476
4477         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4478                 if (exclusive_event_match(iter_event, event))
4479                         return false;
4480         }
4481
4482         return true;
4483 }
4484
4485 static void perf_addr_filters_splice(struct perf_event *event,
4486                                        struct list_head *head);
4487
4488 static void _free_event(struct perf_event *event)
4489 {
4490         irq_work_sync(&event->pending);
4491
4492         unaccount_event(event);
4493
4494         if (event->rb) {
4495                 /*
4496                  * Can happen when we close an event with re-directed output.
4497                  *
4498                  * Since we have a 0 refcount, perf_mmap_close() will skip
4499                  * over us; possibly making our ring_buffer_put() the last.
4500                  */
4501                 mutex_lock(&event->mmap_mutex);
4502                 ring_buffer_attach(event, NULL);
4503                 mutex_unlock(&event->mmap_mutex);
4504         }
4505
4506         if (is_cgroup_event(event))
4507                 perf_detach_cgroup(event);
4508
4509         if (!event->parent) {
4510                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4511                         put_callchain_buffers();
4512         }
4513
4514         perf_event_free_bpf_prog(event);
4515         perf_addr_filters_splice(event, NULL);
4516         kfree(event->addr_filter_ranges);
4517
4518         if (event->destroy)
4519                 event->destroy(event);
4520
4521         /*
4522          * Must be after ->destroy(), due to uprobe_perf_close() using
4523          * hw.target.
4524          */
4525         if (event->hw.target)
4526                 put_task_struct(event->hw.target);
4527
4528         /*
4529          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4530          * all task references must be cleaned up.
4531          */
4532         if (event->ctx)
4533                 put_ctx(event->ctx);
4534
4535         exclusive_event_destroy(event);
4536         module_put(event->pmu->module);
4537
4538         call_rcu(&event->rcu_head, free_event_rcu);
4539 }
4540
4541 /*
4542  * Used to free events which have a known refcount of 1, such as in error paths
4543  * where the event isn't exposed yet and inherited events.
4544  */
4545 static void free_event(struct perf_event *event)
4546 {
4547         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4548                                 "unexpected event refcount: %ld; ptr=%p\n",
4549                                 atomic_long_read(&event->refcount), event)) {
4550                 /* leak to avoid use-after-free */
4551                 return;
4552         }
4553
4554         _free_event(event);
4555 }
4556
4557 /*
4558  * Remove user event from the owner task.
4559  */
4560 static void perf_remove_from_owner(struct perf_event *event)
4561 {
4562         struct task_struct *owner;
4563
4564         rcu_read_lock();
4565         /*
4566          * Matches the smp_store_release() in perf_event_exit_task(). If we
4567          * observe !owner it means the list deletion is complete and we can
4568          * indeed free this event, otherwise we need to serialize on
4569          * owner->perf_event_mutex.
4570          */
4571         owner = READ_ONCE(event->owner);
4572         if (owner) {
4573                 /*
4574                  * Since delayed_put_task_struct() also drops the last
4575                  * task reference we can safely take a new reference
4576                  * while holding the rcu_read_lock().
4577                  */
4578                 get_task_struct(owner);
4579         }
4580         rcu_read_unlock();
4581
4582         if (owner) {
4583                 /*
4584                  * If we're here through perf_event_exit_task() we're already
4585                  * holding ctx->mutex which would be an inversion wrt. the
4586                  * normal lock order.
4587                  *
4588                  * However we can safely take this lock because its the child
4589                  * ctx->mutex.
4590                  */
4591                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4592
4593                 /*
4594                  * We have to re-check the event->owner field, if it is cleared
4595                  * we raced with perf_event_exit_task(), acquiring the mutex
4596                  * ensured they're done, and we can proceed with freeing the
4597                  * event.
4598                  */
4599                 if (event->owner) {
4600                         list_del_init(&event->owner_entry);
4601                         smp_store_release(&event->owner, NULL);
4602                 }
4603                 mutex_unlock(&owner->perf_event_mutex);
4604                 put_task_struct(owner);
4605         }
4606 }
4607
4608 static void put_event(struct perf_event *event)
4609 {
4610         if (!atomic_long_dec_and_test(&event->refcount))
4611                 return;
4612
4613         _free_event(event);
4614 }
4615
4616 /*
4617  * Kill an event dead; while event:refcount will preserve the event
4618  * object, it will not preserve its functionality. Once the last 'user'
4619  * gives up the object, we'll destroy the thing.
4620  */
4621 int perf_event_release_kernel(struct perf_event *event)
4622 {
4623         struct perf_event_context *ctx = event->ctx;
4624         struct perf_event *child, *tmp;
4625         LIST_HEAD(free_list);
4626
4627         /*
4628          * If we got here through err_file: fput(event_file); we will not have
4629          * attached to a context yet.
4630          */
4631         if (!ctx) {
4632                 WARN_ON_ONCE(event->attach_state &
4633                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4634                 goto no_ctx;
4635         }
4636
4637         if (!is_kernel_event(event))
4638                 perf_remove_from_owner(event);
4639
4640         ctx = perf_event_ctx_lock(event);
4641         WARN_ON_ONCE(ctx->parent_ctx);
4642         perf_remove_from_context(event, DETACH_GROUP);
4643
4644         raw_spin_lock_irq(&ctx->lock);
4645         /*
4646          * Mark this event as STATE_DEAD, there is no external reference to it
4647          * anymore.
4648          *
4649          * Anybody acquiring event->child_mutex after the below loop _must_
4650          * also see this, most importantly inherit_event() which will avoid
4651          * placing more children on the list.
4652          *
4653          * Thus this guarantees that we will in fact observe and kill _ALL_
4654          * child events.
4655          */
4656         event->state = PERF_EVENT_STATE_DEAD;
4657         raw_spin_unlock_irq(&ctx->lock);
4658
4659         perf_event_ctx_unlock(event, ctx);
4660
4661 again:
4662         mutex_lock(&event->child_mutex);
4663         list_for_each_entry(child, &event->child_list, child_list) {
4664
4665                 /*
4666                  * Cannot change, child events are not migrated, see the
4667                  * comment with perf_event_ctx_lock_nested().
4668                  */
4669                 ctx = READ_ONCE(child->ctx);
4670                 /*
4671                  * Since child_mutex nests inside ctx::mutex, we must jump
4672                  * through hoops. We start by grabbing a reference on the ctx.
4673                  *
4674                  * Since the event cannot get freed while we hold the
4675                  * child_mutex, the context must also exist and have a !0
4676                  * reference count.
4677                  */
4678                 get_ctx(ctx);
4679
4680                 /*
4681                  * Now that we have a ctx ref, we can drop child_mutex, and
4682                  * acquire ctx::mutex without fear of it going away. Then we
4683                  * can re-acquire child_mutex.
4684                  */
4685                 mutex_unlock(&event->child_mutex);
4686                 mutex_lock(&ctx->mutex);
4687                 mutex_lock(&event->child_mutex);
4688
4689                 /*
4690                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4691                  * state, if child is still the first entry, it didn't get freed
4692                  * and we can continue doing so.
4693                  */
4694                 tmp = list_first_entry_or_null(&event->child_list,
4695                                                struct perf_event, child_list);
4696                 if (tmp == child) {
4697                         perf_remove_from_context(child, DETACH_GROUP);
4698                         list_move(&child->child_list, &free_list);
4699                         /*
4700                          * This matches the refcount bump in inherit_event();
4701                          * this can't be the last reference.
4702                          */
4703                         put_event(event);
4704                 }
4705
4706                 mutex_unlock(&event->child_mutex);
4707                 mutex_unlock(&ctx->mutex);
4708                 put_ctx(ctx);
4709                 goto again;
4710         }
4711         mutex_unlock(&event->child_mutex);
4712
4713         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4714                 void *var = &child->ctx->refcount;
4715
4716                 list_del(&child->child_list);
4717                 free_event(child);
4718
4719                 /*
4720                  * Wake any perf_event_free_task() waiting for this event to be
4721                  * freed.
4722                  */
4723                 smp_mb(); /* pairs with wait_var_event() */
4724                 wake_up_var(var);
4725         }
4726
4727 no_ctx:
4728         put_event(event); /* Must be the 'last' reference */
4729         return 0;
4730 }
4731 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4732
4733 /*
4734  * Called when the last reference to the file is gone.
4735  */
4736 static int perf_release(struct inode *inode, struct file *file)
4737 {
4738         perf_event_release_kernel(file->private_data);
4739         return 0;
4740 }
4741
4742 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4743 {
4744         struct perf_event *child;
4745         u64 total = 0;
4746
4747         *enabled = 0;
4748         *running = 0;
4749
4750         mutex_lock(&event->child_mutex);
4751
4752         (void)perf_event_read(event, false);
4753         total += perf_event_count(event);
4754
4755         *enabled += event->total_time_enabled +
4756                         atomic64_read(&event->child_total_time_enabled);
4757         *running += event->total_time_running +
4758                         atomic64_read(&event->child_total_time_running);
4759
4760         list_for_each_entry(child, &event->child_list, child_list) {
4761                 (void)perf_event_read(child, false);
4762                 total += perf_event_count(child);
4763                 *enabled += child->total_time_enabled;
4764                 *running += child->total_time_running;
4765         }
4766         mutex_unlock(&event->child_mutex);
4767
4768         return total;
4769 }
4770
4771 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4772 {
4773         struct perf_event_context *ctx;
4774         u64 count;
4775
4776         ctx = perf_event_ctx_lock(event);
4777         count = __perf_event_read_value(event, enabled, running);
4778         perf_event_ctx_unlock(event, ctx);
4779
4780         return count;
4781 }
4782 EXPORT_SYMBOL_GPL(perf_event_read_value);
4783
4784 static int __perf_read_group_add(struct perf_event *leader,
4785                                         u64 read_format, u64 *values)
4786 {
4787         struct perf_event_context *ctx = leader->ctx;
4788         struct perf_event *sub, *parent;
4789         unsigned long flags;
4790         int n = 1; /* skip @nr */
4791         int ret;
4792
4793         ret = perf_event_read(leader, true);
4794         if (ret)
4795                 return ret;
4796
4797         raw_spin_lock_irqsave(&ctx->lock, flags);
4798         /*
4799          * Verify the grouping between the parent and child (inherited)
4800          * events is still in tact.
4801          *
4802          * Specifically:
4803          *  - leader->ctx->lock pins leader->sibling_list
4804          *  - parent->child_mutex pins parent->child_list
4805          *  - parent->ctx->mutex pins parent->sibling_list
4806          *
4807          * Because parent->ctx != leader->ctx (and child_list nests inside
4808          * ctx->mutex), group destruction is not atomic between children, also
4809          * see perf_event_release_kernel(). Additionally, parent can grow the
4810          * group.
4811          *
4812          * Therefore it is possible to have parent and child groups in a
4813          * different configuration and summing over such a beast makes no sense
4814          * what so ever.
4815          *
4816          * Reject this.
4817          */
4818         parent = leader->parent;
4819         if (parent &&
4820             (parent->group_generation != leader->group_generation ||
4821              parent->nr_siblings != leader->nr_siblings)) {
4822                 ret = -ECHILD;
4823                 goto unlock;
4824         }
4825
4826         /*
4827          * Since we co-schedule groups, {enabled,running} times of siblings
4828          * will be identical to those of the leader, so we only publish one
4829          * set.
4830          */
4831         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4832                 values[n++] += leader->total_time_enabled +
4833                         atomic64_read(&leader->child_total_time_enabled);
4834         }
4835
4836         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4837                 values[n++] += leader->total_time_running +
4838                         atomic64_read(&leader->child_total_time_running);
4839         }
4840
4841         /*
4842          * Write {count,id} tuples for every sibling.
4843          */
4844         values[n++] += perf_event_count(leader);
4845         if (read_format & PERF_FORMAT_ID)
4846                 values[n++] = primary_event_id(leader);
4847         if (read_format & PERF_FORMAT_LOST)
4848                 values[n++] = atomic64_read(&leader->lost_samples);
4849
4850         for_each_sibling_event(sub, leader) {
4851                 values[n++] += perf_event_count(sub);
4852                 if (read_format & PERF_FORMAT_ID)
4853                         values[n++] = primary_event_id(sub);
4854                 if (read_format & PERF_FORMAT_LOST)
4855                         values[n++] = atomic64_read(&sub->lost_samples);
4856         }
4857
4858 unlock:
4859         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4860         return ret;
4861 }
4862
4863 static int perf_read_group(struct perf_event *event,
4864                                    u64 read_format, char __user *buf)
4865 {
4866         struct perf_event *leader = event->group_leader, *child;
4867         struct perf_event_context *ctx = leader->ctx;
4868         int ret;
4869         u64 *values;
4870
4871         lockdep_assert_held(&ctx->mutex);
4872
4873         values = kzalloc(event->read_size, GFP_KERNEL);
4874         if (!values)
4875                 return -ENOMEM;
4876
4877         values[0] = 1 + leader->nr_siblings;
4878
4879         mutex_lock(&leader->child_mutex);
4880
4881         ret = __perf_read_group_add(leader, read_format, values);
4882         if (ret)
4883                 goto unlock;
4884
4885         list_for_each_entry(child, &leader->child_list, child_list) {
4886                 ret = __perf_read_group_add(child, read_format, values);
4887                 if (ret)
4888                         goto unlock;
4889         }
4890
4891         mutex_unlock(&leader->child_mutex);
4892
4893         ret = event->read_size;
4894         if (copy_to_user(buf, values, event->read_size))
4895                 ret = -EFAULT;
4896         goto out;
4897
4898 unlock:
4899         mutex_unlock(&leader->child_mutex);
4900 out:
4901         kfree(values);
4902         return ret;
4903 }
4904
4905 static int perf_read_one(struct perf_event *event,
4906                                  u64 read_format, char __user *buf)
4907 {
4908         u64 enabled, running;
4909         u64 values[5];
4910         int n = 0;
4911
4912         values[n++] = __perf_event_read_value(event, &enabled, &running);
4913         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4914                 values[n++] = enabled;
4915         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4916                 values[n++] = running;
4917         if (read_format & PERF_FORMAT_ID)
4918                 values[n++] = primary_event_id(event);
4919         if (read_format & PERF_FORMAT_LOST)
4920                 values[n++] = atomic64_read(&event->lost_samples);
4921
4922         if (copy_to_user(buf, values, n * sizeof(u64)))
4923                 return -EFAULT;
4924
4925         return n * sizeof(u64);
4926 }
4927
4928 static bool is_event_hup(struct perf_event *event)
4929 {
4930         bool no_children;
4931
4932         if (event->state > PERF_EVENT_STATE_EXIT)
4933                 return false;
4934
4935         mutex_lock(&event->child_mutex);
4936         no_children = list_empty(&event->child_list);
4937         mutex_unlock(&event->child_mutex);
4938         return no_children;
4939 }
4940
4941 /*
4942  * Read the performance event - simple non blocking version for now
4943  */
4944 static ssize_t
4945 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4946 {
4947         u64 read_format = event->attr.read_format;
4948         int ret;
4949
4950         /*
4951          * Return end-of-file for a read on an event that is in
4952          * error state (i.e. because it was pinned but it couldn't be
4953          * scheduled on to the CPU at some point).
4954          */
4955         if (event->state == PERF_EVENT_STATE_ERROR)
4956                 return 0;
4957
4958         if (count < event->read_size)
4959                 return -ENOSPC;
4960
4961         WARN_ON_ONCE(event->ctx->parent_ctx);
4962         if (read_format & PERF_FORMAT_GROUP)
4963                 ret = perf_read_group(event, read_format, buf);
4964         else
4965                 ret = perf_read_one(event, read_format, buf);
4966
4967         return ret;
4968 }
4969
4970 static ssize_t
4971 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4972 {
4973         struct perf_event *event = file->private_data;
4974         struct perf_event_context *ctx;
4975         int ret;
4976
4977         ctx = perf_event_ctx_lock(event);
4978         ret = __perf_read(event, buf, count);
4979         perf_event_ctx_unlock(event, ctx);
4980
4981         return ret;
4982 }
4983
4984 static __poll_t perf_poll(struct file *file, poll_table *wait)
4985 {
4986         struct perf_event *event = file->private_data;
4987         struct ring_buffer *rb;
4988         __poll_t events = EPOLLHUP;
4989
4990         poll_wait(file, &event->waitq, wait);
4991
4992         if (is_event_hup(event))
4993                 return events;
4994
4995         /*
4996          * Pin the event->rb by taking event->mmap_mutex; otherwise
4997          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4998          */
4999         mutex_lock(&event->mmap_mutex);
5000         rb = event->rb;
5001         if (rb)
5002                 events = atomic_xchg(&rb->poll, 0);
5003         mutex_unlock(&event->mmap_mutex);
5004         return events;
5005 }
5006
5007 static void _perf_event_reset(struct perf_event *event)
5008 {
5009         (void)perf_event_read(event, false);
5010         local64_set(&event->count, 0);
5011         perf_event_update_userpage(event);
5012 }
5013
5014 /*
5015  * Holding the top-level event's child_mutex means that any
5016  * descendant process that has inherited this event will block
5017  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5018  * task existence requirements of perf_event_enable/disable.
5019  */
5020 static void perf_event_for_each_child(struct perf_event *event,
5021                                         void (*func)(struct perf_event *))
5022 {
5023         struct perf_event *child;
5024
5025         WARN_ON_ONCE(event->ctx->parent_ctx);
5026
5027         mutex_lock(&event->child_mutex);
5028         func(event);
5029         list_for_each_entry(child, &event->child_list, child_list)
5030                 func(child);
5031         mutex_unlock(&event->child_mutex);
5032 }
5033
5034 static void perf_event_for_each(struct perf_event *event,
5035                                   void (*func)(struct perf_event *))
5036 {
5037         struct perf_event_context *ctx = event->ctx;
5038         struct perf_event *sibling;
5039
5040         lockdep_assert_held(&ctx->mutex);
5041
5042         event = event->group_leader;
5043
5044         perf_event_for_each_child(event, func);
5045         for_each_sibling_event(sibling, event)
5046                 perf_event_for_each_child(sibling, func);
5047 }
5048
5049 static void __perf_event_period(struct perf_event *event,
5050                                 struct perf_cpu_context *cpuctx,
5051                                 struct perf_event_context *ctx,
5052                                 void *info)
5053 {
5054         u64 value = *((u64 *)info);
5055         bool active;
5056
5057         if (event->attr.freq) {
5058                 event->attr.sample_freq = value;
5059         } else {
5060                 event->attr.sample_period = value;
5061                 event->hw.sample_period = value;
5062         }
5063
5064         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5065         if (active) {
5066                 perf_pmu_disable(ctx->pmu);
5067                 /*
5068                  * We could be throttled; unthrottle now to avoid the tick
5069                  * trying to unthrottle while we already re-started the event.
5070                  */
5071                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5072                         event->hw.interrupts = 0;
5073                         perf_log_throttle(event, 1);
5074                 }
5075                 event->pmu->stop(event, PERF_EF_UPDATE);
5076         }
5077
5078         local64_set(&event->hw.period_left, 0);
5079
5080         if (active) {
5081                 event->pmu->start(event, PERF_EF_RELOAD);
5082                 perf_pmu_enable(ctx->pmu);
5083         }
5084 }
5085
5086 static int perf_event_check_period(struct perf_event *event, u64 value)
5087 {
5088         return event->pmu->check_period(event, value);
5089 }
5090
5091 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5092 {
5093         u64 value;
5094
5095         if (!is_sampling_event(event))
5096                 return -EINVAL;
5097
5098         if (copy_from_user(&value, arg, sizeof(value)))
5099                 return -EFAULT;
5100
5101         if (!value)
5102                 return -EINVAL;
5103
5104         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5105                 return -EINVAL;
5106
5107         if (perf_event_check_period(event, value))
5108                 return -EINVAL;
5109
5110         if (!event->attr.freq && (value & (1ULL << 63)))
5111                 return -EINVAL;
5112
5113         event_function_call(event, __perf_event_period, &value);
5114
5115         return 0;
5116 }
5117
5118 static const struct file_operations perf_fops;
5119
5120 static inline int perf_fget_light(int fd, struct fd *p)
5121 {
5122         struct fd f = fdget(fd);
5123         if (!f.file)
5124                 return -EBADF;
5125
5126         if (f.file->f_op != &perf_fops) {
5127                 fdput(f);
5128                 return -EBADF;
5129         }
5130         *p = f;
5131         return 0;
5132 }
5133
5134 static int perf_event_set_output(struct perf_event *event,
5135                                  struct perf_event *output_event);
5136 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5137 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5138 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5139                           struct perf_event_attr *attr);
5140
5141 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5142 {
5143         void (*func)(struct perf_event *);
5144         u32 flags = arg;
5145
5146         switch (cmd) {
5147         case PERF_EVENT_IOC_ENABLE:
5148                 func = _perf_event_enable;
5149                 break;
5150         case PERF_EVENT_IOC_DISABLE:
5151                 func = _perf_event_disable;
5152                 break;
5153         case PERF_EVENT_IOC_RESET:
5154                 func = _perf_event_reset;
5155                 break;
5156
5157         case PERF_EVENT_IOC_REFRESH:
5158                 return _perf_event_refresh(event, arg);
5159
5160         case PERF_EVENT_IOC_PERIOD:
5161                 return perf_event_period(event, (u64 __user *)arg);
5162
5163         case PERF_EVENT_IOC_ID:
5164         {
5165                 u64 id = primary_event_id(event);
5166
5167                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5168                         return -EFAULT;
5169                 return 0;
5170         }
5171
5172         case PERF_EVENT_IOC_SET_OUTPUT:
5173         {
5174                 int ret;
5175                 if (arg != -1) {
5176                         struct perf_event *output_event;
5177                         struct fd output;
5178                         ret = perf_fget_light(arg, &output);
5179                         if (ret)
5180                                 return ret;
5181                         output_event = output.file->private_data;
5182                         ret = perf_event_set_output(event, output_event);
5183                         fdput(output);
5184                 } else {
5185                         ret = perf_event_set_output(event, NULL);
5186                 }
5187                 return ret;
5188         }
5189
5190         case PERF_EVENT_IOC_SET_FILTER:
5191                 return perf_event_set_filter(event, (void __user *)arg);
5192
5193         case PERF_EVENT_IOC_SET_BPF:
5194                 return perf_event_set_bpf_prog(event, arg);
5195
5196         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5197                 struct ring_buffer *rb;
5198
5199                 rcu_read_lock();
5200                 rb = rcu_dereference(event->rb);
5201                 if (!rb || !rb->nr_pages) {
5202                         rcu_read_unlock();
5203                         return -EINVAL;
5204                 }
5205                 rb_toggle_paused(rb, !!arg);
5206                 rcu_read_unlock();
5207                 return 0;
5208         }
5209
5210         case PERF_EVENT_IOC_QUERY_BPF:
5211                 return perf_event_query_prog_array(event, (void __user *)arg);
5212
5213         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5214                 struct perf_event_attr new_attr;
5215                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5216                                          &new_attr);
5217
5218                 if (err)
5219                         return err;
5220
5221                 return perf_event_modify_attr(event,  &new_attr);
5222         }
5223         default:
5224                 return -ENOTTY;
5225         }
5226
5227         if (flags & PERF_IOC_FLAG_GROUP)
5228                 perf_event_for_each(event, func);
5229         else
5230                 perf_event_for_each_child(event, func);
5231
5232         return 0;
5233 }
5234
5235 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5236 {
5237         struct perf_event *event = file->private_data;
5238         struct perf_event_context *ctx;
5239         long ret;
5240
5241         ctx = perf_event_ctx_lock(event);
5242         ret = _perf_ioctl(event, cmd, arg);
5243         perf_event_ctx_unlock(event, ctx);
5244
5245         return ret;
5246 }
5247
5248 #ifdef CONFIG_COMPAT
5249 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5250                                 unsigned long arg)
5251 {
5252         switch (_IOC_NR(cmd)) {
5253         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5254         case _IOC_NR(PERF_EVENT_IOC_ID):
5255         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5256         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5257                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5258                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5259                         cmd &= ~IOCSIZE_MASK;
5260                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5261                 }
5262                 break;
5263         }
5264         return perf_ioctl(file, cmd, arg);
5265 }
5266 #else
5267 # define perf_compat_ioctl NULL
5268 #endif
5269
5270 int perf_event_task_enable(void)
5271 {
5272         struct perf_event_context *ctx;
5273         struct perf_event *event;
5274
5275         mutex_lock(&current->perf_event_mutex);
5276         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5277                 ctx = perf_event_ctx_lock(event);
5278                 perf_event_for_each_child(event, _perf_event_enable);
5279                 perf_event_ctx_unlock(event, ctx);
5280         }
5281         mutex_unlock(&current->perf_event_mutex);
5282
5283         return 0;
5284 }
5285
5286 int perf_event_task_disable(void)
5287 {
5288         struct perf_event_context *ctx;
5289         struct perf_event *event;
5290
5291         mutex_lock(&current->perf_event_mutex);
5292         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5293                 ctx = perf_event_ctx_lock(event);
5294                 perf_event_for_each_child(event, _perf_event_disable);
5295                 perf_event_ctx_unlock(event, ctx);
5296         }
5297         mutex_unlock(&current->perf_event_mutex);
5298
5299         return 0;
5300 }
5301
5302 static int perf_event_index(struct perf_event *event)
5303 {
5304         if (event->hw.state & PERF_HES_STOPPED)
5305                 return 0;
5306
5307         if (event->state != PERF_EVENT_STATE_ACTIVE)
5308                 return 0;
5309
5310         return event->pmu->event_idx(event);
5311 }
5312
5313 static void calc_timer_values(struct perf_event *event,
5314                                 u64 *now,
5315                                 u64 *enabled,
5316                                 u64 *running)
5317 {
5318         u64 ctx_time;
5319
5320         *now = perf_clock();
5321         ctx_time = event->shadow_ctx_time + *now;
5322         __perf_update_times(event, ctx_time, enabled, running);
5323 }
5324
5325 static void perf_event_init_userpage(struct perf_event *event)
5326 {
5327         struct perf_event_mmap_page *userpg;
5328         struct ring_buffer *rb;
5329
5330         rcu_read_lock();
5331         rb = rcu_dereference(event->rb);
5332         if (!rb)
5333                 goto unlock;
5334
5335         userpg = rb->user_page;
5336
5337         /* Allow new userspace to detect that bit 0 is deprecated */
5338         userpg->cap_bit0_is_deprecated = 1;
5339         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5340         userpg->data_offset = PAGE_SIZE;
5341         userpg->data_size = perf_data_size(rb);
5342
5343 unlock:
5344         rcu_read_unlock();
5345 }
5346
5347 void __weak arch_perf_update_userpage(
5348         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5349 {
5350 }
5351
5352 /*
5353  * Callers need to ensure there can be no nesting of this function, otherwise
5354  * the seqlock logic goes bad. We can not serialize this because the arch
5355  * code calls this from NMI context.
5356  */
5357 void perf_event_update_userpage(struct perf_event *event)
5358 {
5359         struct perf_event_mmap_page *userpg;
5360         struct ring_buffer *rb;
5361         u64 enabled, running, now;
5362
5363         rcu_read_lock();
5364         rb = rcu_dereference(event->rb);
5365         if (!rb)
5366                 goto unlock;
5367
5368         /*
5369          * compute total_time_enabled, total_time_running
5370          * based on snapshot values taken when the event
5371          * was last scheduled in.
5372          *
5373          * we cannot simply called update_context_time()
5374          * because of locking issue as we can be called in
5375          * NMI context
5376          */
5377         calc_timer_values(event, &now, &enabled, &running);
5378
5379         userpg = rb->user_page;
5380         /*
5381          * Disable preemption to guarantee consistent time stamps are stored to
5382          * the user page.
5383          */
5384         preempt_disable();
5385         ++userpg->lock;
5386         barrier();
5387         userpg->index = perf_event_index(event);
5388         userpg->offset = perf_event_count(event);
5389         if (userpg->index)
5390                 userpg->offset -= local64_read(&event->hw.prev_count);
5391
5392         userpg->time_enabled = enabled +
5393                         atomic64_read(&event->child_total_time_enabled);
5394
5395         userpg->time_running = running +
5396                         atomic64_read(&event->child_total_time_running);
5397
5398         arch_perf_update_userpage(event, userpg, now);
5399
5400         barrier();
5401         ++userpg->lock;
5402         preempt_enable();
5403 unlock:
5404         rcu_read_unlock();
5405 }
5406 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5407
5408 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5409 {
5410         struct perf_event *event = vmf->vma->vm_file->private_data;
5411         struct ring_buffer *rb;
5412         vm_fault_t ret = VM_FAULT_SIGBUS;
5413
5414         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5415                 if (vmf->pgoff == 0)
5416                         ret = 0;
5417                 return ret;
5418         }
5419
5420         rcu_read_lock();
5421         rb = rcu_dereference(event->rb);
5422         if (!rb)
5423                 goto unlock;
5424
5425         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5426                 goto unlock;
5427
5428         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5429         if (!vmf->page)
5430                 goto unlock;
5431
5432         get_page(vmf->page);
5433         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5434         vmf->page->index   = vmf->pgoff;
5435
5436         ret = 0;
5437 unlock:
5438         rcu_read_unlock();
5439
5440         return ret;
5441 }
5442
5443 static void ring_buffer_attach(struct perf_event *event,
5444                                struct ring_buffer *rb)
5445 {
5446         struct ring_buffer *old_rb = NULL;
5447         unsigned long flags;
5448
5449         if (event->rb) {
5450                 /*
5451                  * Should be impossible, we set this when removing
5452                  * event->rb_entry and wait/clear when adding event->rb_entry.
5453                  */
5454                 WARN_ON_ONCE(event->rcu_pending);
5455
5456                 old_rb = event->rb;
5457                 spin_lock_irqsave(&old_rb->event_lock, flags);
5458                 list_del_rcu(&event->rb_entry);
5459                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5460
5461                 event->rcu_batches = get_state_synchronize_rcu();
5462                 event->rcu_pending = 1;
5463         }
5464
5465         if (rb) {
5466                 if (event->rcu_pending) {
5467                         cond_synchronize_rcu(event->rcu_batches);
5468                         event->rcu_pending = 0;
5469                 }
5470
5471                 spin_lock_irqsave(&rb->event_lock, flags);
5472                 list_add_rcu(&event->rb_entry, &rb->event_list);
5473                 spin_unlock_irqrestore(&rb->event_lock, flags);
5474         }
5475
5476         /*
5477          * Avoid racing with perf_mmap_close(AUX): stop the event
5478          * before swizzling the event::rb pointer; if it's getting
5479          * unmapped, its aux_mmap_count will be 0 and it won't
5480          * restart. See the comment in __perf_pmu_output_stop().
5481          *
5482          * Data will inevitably be lost when set_output is done in
5483          * mid-air, but then again, whoever does it like this is
5484          * not in for the data anyway.
5485          */
5486         if (has_aux(event))
5487                 perf_event_stop(event, 0);
5488
5489         rcu_assign_pointer(event->rb, rb);
5490
5491         if (old_rb) {
5492                 ring_buffer_put(old_rb);
5493                 /*
5494                  * Since we detached before setting the new rb, so that we
5495                  * could attach the new rb, we could have missed a wakeup.
5496                  * Provide it now.
5497                  */
5498                 wake_up_all(&event->waitq);
5499         }
5500 }
5501
5502 static void ring_buffer_wakeup(struct perf_event *event)
5503 {
5504         struct ring_buffer *rb;
5505
5506         rcu_read_lock();
5507         rb = rcu_dereference(event->rb);
5508         if (rb) {
5509                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5510                         wake_up_all(&event->waitq);
5511         }
5512         rcu_read_unlock();
5513 }
5514
5515 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5516 {
5517         struct ring_buffer *rb;
5518
5519         rcu_read_lock();
5520         rb = rcu_dereference(event->rb);
5521         if (rb) {
5522                 if (!atomic_inc_not_zero(&rb->refcount))
5523                         rb = NULL;
5524         }
5525         rcu_read_unlock();
5526
5527         return rb;
5528 }
5529
5530 void ring_buffer_put(struct ring_buffer *rb)
5531 {
5532         if (!atomic_dec_and_test(&rb->refcount))
5533                 return;
5534
5535         WARN_ON_ONCE(!list_empty(&rb->event_list));
5536
5537         call_rcu(&rb->rcu_head, rb_free_rcu);
5538 }
5539
5540 static void perf_mmap_open(struct vm_area_struct *vma)
5541 {
5542         struct perf_event *event = vma->vm_file->private_data;
5543
5544         atomic_inc(&event->mmap_count);
5545         atomic_inc(&event->rb->mmap_count);
5546
5547         if (vma->vm_pgoff)
5548                 atomic_inc(&event->rb->aux_mmap_count);
5549
5550         if (event->pmu->event_mapped)
5551                 event->pmu->event_mapped(event, vma->vm_mm);
5552 }
5553
5554 static void perf_pmu_output_stop(struct perf_event *event);
5555
5556 /*
5557  * A buffer can be mmap()ed multiple times; either directly through the same
5558  * event, or through other events by use of perf_event_set_output().
5559  *
5560  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5561  * the buffer here, where we still have a VM context. This means we need
5562  * to detach all events redirecting to us.
5563  */
5564 static void perf_mmap_close(struct vm_area_struct *vma)
5565 {
5566         struct perf_event *event = vma->vm_file->private_data;
5567         struct ring_buffer *rb = ring_buffer_get(event);
5568         struct user_struct *mmap_user = rb->mmap_user;
5569         int mmap_locked = rb->mmap_locked;
5570         unsigned long size = perf_data_size(rb);
5571         bool detach_rest = false;
5572
5573         if (event->pmu->event_unmapped)
5574                 event->pmu->event_unmapped(event, vma->vm_mm);
5575
5576         /*
5577          * rb->aux_mmap_count will always drop before rb->mmap_count and
5578          * event->mmap_count, so it is ok to use event->mmap_mutex to
5579          * serialize with perf_mmap here.
5580          */
5581         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5582             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5583                 /*
5584                  * Stop all AUX events that are writing to this buffer,
5585                  * so that we can free its AUX pages and corresponding PMU
5586                  * data. Note that after rb::aux_mmap_count dropped to zero,
5587                  * they won't start any more (see perf_aux_output_begin()).
5588                  */
5589                 perf_pmu_output_stop(event);
5590
5591                 /* now it's safe to free the pages */
5592                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5593                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5594
5595                 /* this has to be the last one */
5596                 rb_free_aux(rb);
5597                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5598
5599                 mutex_unlock(&event->mmap_mutex);
5600         }
5601
5602         if (atomic_dec_and_test(&rb->mmap_count))
5603                 detach_rest = true;
5604
5605         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5606                 goto out_put;
5607
5608         ring_buffer_attach(event, NULL);
5609         mutex_unlock(&event->mmap_mutex);
5610
5611         /* If there's still other mmap()s of this buffer, we're done. */
5612         if (!detach_rest)
5613                 goto out_put;
5614
5615         /*
5616          * No other mmap()s, detach from all other events that might redirect
5617          * into the now unreachable buffer. Somewhat complicated by the
5618          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5619          */
5620 again:
5621         rcu_read_lock();
5622         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5623                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5624                         /*
5625                          * This event is en-route to free_event() which will
5626                          * detach it and remove it from the list.
5627                          */
5628                         continue;
5629                 }
5630                 rcu_read_unlock();
5631
5632                 mutex_lock(&event->mmap_mutex);
5633                 /*
5634                  * Check we didn't race with perf_event_set_output() which can
5635                  * swizzle the rb from under us while we were waiting to
5636                  * acquire mmap_mutex.
5637                  *
5638                  * If we find a different rb; ignore this event, a next
5639                  * iteration will no longer find it on the list. We have to
5640                  * still restart the iteration to make sure we're not now
5641                  * iterating the wrong list.
5642                  */
5643                 if (event->rb == rb)
5644                         ring_buffer_attach(event, NULL);
5645
5646                 mutex_unlock(&event->mmap_mutex);
5647                 put_event(event);
5648
5649                 /*
5650                  * Restart the iteration; either we're on the wrong list or
5651                  * destroyed its integrity by doing a deletion.
5652                  */
5653                 goto again;
5654         }
5655         rcu_read_unlock();
5656
5657         /*
5658          * It could be there's still a few 0-ref events on the list; they'll
5659          * get cleaned up by free_event() -- they'll also still have their
5660          * ref on the rb and will free it whenever they are done with it.
5661          *
5662          * Aside from that, this buffer is 'fully' detached and unmapped,
5663          * undo the VM accounting.
5664          */
5665
5666         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5667         vma->vm_mm->pinned_vm -= mmap_locked;
5668         free_uid(mmap_user);
5669
5670 out_put:
5671         ring_buffer_put(rb); /* could be last */
5672 }
5673
5674 static const struct vm_operations_struct perf_mmap_vmops = {
5675         .open           = perf_mmap_open,
5676         .close          = perf_mmap_close, /* non mergable */
5677         .fault          = perf_mmap_fault,
5678         .page_mkwrite   = perf_mmap_fault,
5679 };
5680
5681 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5682 {
5683         struct perf_event *event = file->private_data;
5684         unsigned long user_locked, user_lock_limit;
5685         struct user_struct *user = current_user();
5686         unsigned long locked, lock_limit;
5687         struct ring_buffer *rb = NULL;
5688         unsigned long vma_size;
5689         unsigned long nr_pages;
5690         long user_extra = 0, extra = 0;
5691         int ret = 0, flags = 0;
5692
5693         /*
5694          * Don't allow mmap() of inherited per-task counters. This would
5695          * create a performance issue due to all children writing to the
5696          * same rb.
5697          */
5698         if (event->cpu == -1 && event->attr.inherit)
5699                 return -EINVAL;
5700
5701         if (!(vma->vm_flags & VM_SHARED))
5702                 return -EINVAL;
5703
5704         vma_size = vma->vm_end - vma->vm_start;
5705
5706         if (vma->vm_pgoff == 0) {
5707                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5708         } else {
5709                 /*
5710                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5711                  * mapped, all subsequent mappings should have the same size
5712                  * and offset. Must be above the normal perf buffer.
5713                  */
5714                 u64 aux_offset, aux_size;
5715
5716                 if (!event->rb)
5717                         return -EINVAL;
5718
5719                 nr_pages = vma_size / PAGE_SIZE;
5720
5721                 mutex_lock(&event->mmap_mutex);
5722                 ret = -EINVAL;
5723
5724                 rb = event->rb;
5725                 if (!rb)
5726                         goto aux_unlock;
5727
5728                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5729                 aux_size = READ_ONCE(rb->user_page->aux_size);
5730
5731                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5732                         goto aux_unlock;
5733
5734                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5735                         goto aux_unlock;
5736
5737                 /* already mapped with a different offset */
5738                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5739                         goto aux_unlock;
5740
5741                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5742                         goto aux_unlock;
5743
5744                 /* already mapped with a different size */
5745                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5746                         goto aux_unlock;
5747
5748                 if (!is_power_of_2(nr_pages))
5749                         goto aux_unlock;
5750
5751                 if (!atomic_inc_not_zero(&rb->mmap_count))
5752                         goto aux_unlock;
5753
5754                 if (rb_has_aux(rb)) {
5755                         atomic_inc(&rb->aux_mmap_count);
5756                         ret = 0;
5757                         goto unlock;
5758                 }
5759
5760                 atomic_set(&rb->aux_mmap_count, 1);
5761                 user_extra = nr_pages;
5762
5763                 goto accounting;
5764         }
5765
5766         /*
5767          * If we have rb pages ensure they're a power-of-two number, so we
5768          * can do bitmasks instead of modulo.
5769          */
5770         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5771                 return -EINVAL;
5772
5773         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5774                 return -EINVAL;
5775
5776         WARN_ON_ONCE(event->ctx->parent_ctx);
5777 again:
5778         mutex_lock(&event->mmap_mutex);
5779         if (event->rb) {
5780                 if (event->rb->nr_pages != nr_pages) {
5781                         ret = -EINVAL;
5782                         goto unlock;
5783                 }
5784
5785                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5786                         /*
5787                          * Raced against perf_mmap_close(); remove the
5788                          * event and try again.
5789                          */
5790                         ring_buffer_attach(event, NULL);
5791                         mutex_unlock(&event->mmap_mutex);
5792                         goto again;
5793                 }
5794
5795                 goto unlock;
5796         }
5797
5798         user_extra = nr_pages + 1;
5799
5800 accounting:
5801         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5802
5803         /*
5804          * Increase the limit linearly with more CPUs:
5805          */
5806         user_lock_limit *= num_online_cpus();
5807
5808         user_locked = atomic_long_read(&user->locked_vm);
5809
5810         /*
5811          * sysctl_perf_event_mlock may have changed, so that
5812          *     user->locked_vm > user_lock_limit
5813          */
5814         if (user_locked > user_lock_limit)
5815                 user_locked = user_lock_limit;
5816         user_locked += user_extra;
5817
5818         if (user_locked > user_lock_limit)
5819                 extra = user_locked - user_lock_limit;
5820
5821         lock_limit = rlimit(RLIMIT_MEMLOCK);
5822         lock_limit >>= PAGE_SHIFT;
5823         locked = vma->vm_mm->pinned_vm + extra;
5824
5825         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5826                 !capable(CAP_IPC_LOCK)) {
5827                 ret = -EPERM;
5828                 goto unlock;
5829         }
5830
5831         WARN_ON(!rb && event->rb);
5832
5833         if (vma->vm_flags & VM_WRITE)
5834                 flags |= RING_BUFFER_WRITABLE;
5835
5836         if (!rb) {
5837                 rb = rb_alloc(nr_pages,
5838                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5839                               event->cpu, flags);
5840
5841                 if (!rb) {
5842                         ret = -ENOMEM;
5843                         goto unlock;
5844                 }
5845
5846                 atomic_set(&rb->mmap_count, 1);
5847                 rb->mmap_user = get_current_user();
5848                 rb->mmap_locked = extra;
5849
5850                 ring_buffer_attach(event, rb);
5851
5852                 perf_event_init_userpage(event);
5853                 perf_event_update_userpage(event);
5854         } else {
5855                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5856                                    event->attr.aux_watermark, flags);
5857                 if (!ret)
5858                         rb->aux_mmap_locked = extra;
5859         }
5860
5861 unlock:
5862         if (!ret) {
5863                 atomic_long_add(user_extra, &user->locked_vm);
5864                 vma->vm_mm->pinned_vm += extra;
5865
5866                 atomic_inc(&event->mmap_count);
5867         } else if (rb) {
5868                 atomic_dec(&rb->mmap_count);
5869         }
5870 aux_unlock:
5871         mutex_unlock(&event->mmap_mutex);
5872
5873         /*
5874          * Since pinned accounting is per vm we cannot allow fork() to copy our
5875          * vma.
5876          */
5877         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5878         vma->vm_ops = &perf_mmap_vmops;
5879
5880         if (event->pmu->event_mapped)
5881                 event->pmu->event_mapped(event, vma->vm_mm);
5882
5883         return ret;
5884 }
5885
5886 static int perf_fasync(int fd, struct file *filp, int on)
5887 {
5888         struct inode *inode = file_inode(filp);
5889         struct perf_event *event = filp->private_data;
5890         int retval;
5891
5892         inode_lock(inode);
5893         retval = fasync_helper(fd, filp, on, &event->fasync);
5894         inode_unlock(inode);
5895
5896         if (retval < 0)
5897                 return retval;
5898
5899         return 0;
5900 }
5901
5902 static const struct file_operations perf_fops = {
5903         .llseek                 = no_llseek,
5904         .release                = perf_release,
5905         .read                   = perf_read,
5906         .poll                   = perf_poll,
5907         .unlocked_ioctl         = perf_ioctl,
5908         .compat_ioctl           = perf_compat_ioctl,
5909         .mmap                   = perf_mmap,
5910         .fasync                 = perf_fasync,
5911 };
5912
5913 /*
5914  * Perf event wakeup
5915  *
5916  * If there's data, ensure we set the poll() state and publish everything
5917  * to user-space before waking everybody up.
5918  */
5919
5920 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5921 {
5922         /* only the parent has fasync state */
5923         if (event->parent)
5924                 event = event->parent;
5925         return &event->fasync;
5926 }
5927
5928 void perf_event_wakeup(struct perf_event *event)
5929 {
5930         ring_buffer_wakeup(event);
5931
5932         if (event->pending_kill) {
5933                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5934                 event->pending_kill = 0;
5935         }
5936 }
5937
5938 static void perf_pending_event_disable(struct perf_event *event)
5939 {
5940         int cpu = READ_ONCE(event->pending_disable);
5941
5942         if (cpu < 0)
5943                 return;
5944
5945         if (cpu == smp_processor_id()) {
5946                 WRITE_ONCE(event->pending_disable, -1);
5947                 perf_event_disable_local(event);
5948                 return;
5949         }
5950
5951         /*
5952          *  CPU-A                       CPU-B
5953          *
5954          *  perf_event_disable_inatomic()
5955          *    @pending_disable = CPU-A;
5956          *    irq_work_queue();
5957          *
5958          *  sched-out
5959          *    @pending_disable = -1;
5960          *
5961          *                              sched-in
5962          *                              perf_event_disable_inatomic()
5963          *                                @pending_disable = CPU-B;
5964          *                                irq_work_queue(); // FAILS
5965          *
5966          *  irq_work_run()
5967          *    perf_pending_event()
5968          *
5969          * But the event runs on CPU-B and wants disabling there.
5970          */
5971         irq_work_queue_on(&event->pending, cpu);
5972 }
5973
5974 static void perf_pending_event(struct irq_work *entry)
5975 {
5976         struct perf_event *event = container_of(entry, struct perf_event, pending);
5977         int rctx;
5978
5979         rctx = perf_swevent_get_recursion_context();
5980         /*
5981          * If we 'fail' here, that's OK, it means recursion is already disabled
5982          * and we won't recurse 'further'.
5983          */
5984
5985         perf_pending_event_disable(event);
5986
5987         if (event->pending_wakeup) {
5988                 event->pending_wakeup = 0;
5989                 perf_event_wakeup(event);
5990         }
5991
5992         if (rctx >= 0)
5993                 perf_swevent_put_recursion_context(rctx);
5994 }
5995
5996 /*
5997  * We assume there is only KVM supporting the callbacks.
5998  * Later on, we might change it to a list if there is
5999  * another virtualization implementation supporting the callbacks.
6000  */
6001 struct perf_guest_info_callbacks *perf_guest_cbs;
6002
6003 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6004 {
6005         perf_guest_cbs = cbs;
6006         return 0;
6007 }
6008 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6009
6010 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6011 {
6012         perf_guest_cbs = NULL;
6013         return 0;
6014 }
6015 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6016
6017 static void
6018 perf_output_sample_regs(struct perf_output_handle *handle,
6019                         struct pt_regs *regs, u64 mask)
6020 {
6021         int bit;
6022         DECLARE_BITMAP(_mask, 64);
6023
6024         bitmap_from_u64(_mask, mask);
6025         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6026                 u64 val;
6027
6028                 val = perf_reg_value(regs, bit);
6029                 perf_output_put(handle, val);
6030         }
6031 }
6032
6033 static void perf_sample_regs_user(struct perf_regs *regs_user,
6034                                   struct pt_regs *regs,
6035                                   struct pt_regs *regs_user_copy)
6036 {
6037         if (user_mode(regs)) {
6038                 regs_user->abi = perf_reg_abi(current);
6039                 regs_user->regs = regs;
6040         } else if (!(current->flags & PF_KTHREAD)) {
6041                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6042         } else {
6043                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6044                 regs_user->regs = NULL;
6045         }
6046 }
6047
6048 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6049                                   struct pt_regs *regs)
6050 {
6051         regs_intr->regs = regs;
6052         regs_intr->abi  = perf_reg_abi(current);
6053 }
6054
6055
6056 /*
6057  * Get remaining task size from user stack pointer.
6058  *
6059  * It'd be better to take stack vma map and limit this more
6060  * precisly, but there's no way to get it safely under interrupt,
6061  * so using TASK_SIZE as limit.
6062  */
6063 static u64 perf_ustack_task_size(struct pt_regs *regs)
6064 {
6065         unsigned long addr = perf_user_stack_pointer(regs);
6066
6067         if (!addr || addr >= TASK_SIZE)
6068                 return 0;
6069
6070         return TASK_SIZE - addr;
6071 }
6072
6073 static u16
6074 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6075                         struct pt_regs *regs)
6076 {
6077         u64 task_size;
6078
6079         /* No regs, no stack pointer, no dump. */
6080         if (!regs)
6081                 return 0;
6082
6083         /*
6084          * Check if we fit in with the requested stack size into the:
6085          * - TASK_SIZE
6086          *   If we don't, we limit the size to the TASK_SIZE.
6087          *
6088          * - remaining sample size
6089          *   If we don't, we customize the stack size to
6090          *   fit in to the remaining sample size.
6091          */
6092
6093         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6094         stack_size = min(stack_size, (u16) task_size);
6095
6096         /* Current header size plus static size and dynamic size. */
6097         header_size += 2 * sizeof(u64);
6098
6099         /* Do we fit in with the current stack dump size? */
6100         if ((u16) (header_size + stack_size) < header_size) {
6101                 /*
6102                  * If we overflow the maximum size for the sample,
6103                  * we customize the stack dump size to fit in.
6104                  */
6105                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6106                 stack_size = round_up(stack_size, sizeof(u64));
6107         }
6108
6109         return stack_size;
6110 }
6111
6112 static void
6113 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6114                           struct pt_regs *regs)
6115 {
6116         /* Case of a kernel thread, nothing to dump */
6117         if (!regs) {
6118                 u64 size = 0;
6119                 perf_output_put(handle, size);
6120         } else {
6121                 unsigned long sp;
6122                 unsigned int rem;
6123                 u64 dyn_size;
6124                 mm_segment_t fs;
6125
6126                 /*
6127                  * We dump:
6128                  * static size
6129                  *   - the size requested by user or the best one we can fit
6130                  *     in to the sample max size
6131                  * data
6132                  *   - user stack dump data
6133                  * dynamic size
6134                  *   - the actual dumped size
6135                  */
6136
6137                 /* Static size. */
6138                 perf_output_put(handle, dump_size);
6139
6140                 /* Data. */
6141                 sp = perf_user_stack_pointer(regs);
6142                 fs = get_fs();
6143                 set_fs(USER_DS);
6144                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6145                 set_fs(fs);
6146                 dyn_size = dump_size - rem;
6147
6148                 perf_output_skip(handle, rem);
6149
6150                 /* Dynamic size. */
6151                 perf_output_put(handle, dyn_size);
6152         }
6153 }
6154
6155 static void __perf_event_header__init_id(struct perf_event_header *header,
6156                                          struct perf_sample_data *data,
6157                                          struct perf_event *event)
6158 {
6159         u64 sample_type = event->attr.sample_type;
6160
6161         data->type = sample_type;
6162         header->size += event->id_header_size;
6163
6164         if (sample_type & PERF_SAMPLE_TID) {
6165                 /* namespace issues */
6166                 data->tid_entry.pid = perf_event_pid(event, current);
6167                 data->tid_entry.tid = perf_event_tid(event, current);
6168         }
6169
6170         if (sample_type & PERF_SAMPLE_TIME)
6171                 data->time = perf_event_clock(event);
6172
6173         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6174                 data->id = primary_event_id(event);
6175
6176         if (sample_type & PERF_SAMPLE_STREAM_ID)
6177                 data->stream_id = event->id;
6178
6179         if (sample_type & PERF_SAMPLE_CPU) {
6180                 data->cpu_entry.cpu      = raw_smp_processor_id();
6181                 data->cpu_entry.reserved = 0;
6182         }
6183 }
6184
6185 void perf_event_header__init_id(struct perf_event_header *header,
6186                                 struct perf_sample_data *data,
6187                                 struct perf_event *event)
6188 {
6189         if (event->attr.sample_id_all)
6190                 __perf_event_header__init_id(header, data, event);
6191 }
6192
6193 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6194                                            struct perf_sample_data *data)
6195 {
6196         u64 sample_type = data->type;
6197
6198         if (sample_type & PERF_SAMPLE_TID)
6199                 perf_output_put(handle, data->tid_entry);
6200
6201         if (sample_type & PERF_SAMPLE_TIME)
6202                 perf_output_put(handle, data->time);
6203
6204         if (sample_type & PERF_SAMPLE_ID)
6205                 perf_output_put(handle, data->id);
6206
6207         if (sample_type & PERF_SAMPLE_STREAM_ID)
6208                 perf_output_put(handle, data->stream_id);
6209
6210         if (sample_type & PERF_SAMPLE_CPU)
6211                 perf_output_put(handle, data->cpu_entry);
6212
6213         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6214                 perf_output_put(handle, data->id);
6215 }
6216
6217 void perf_event__output_id_sample(struct perf_event *event,
6218                                   struct perf_output_handle *handle,
6219                                   struct perf_sample_data *sample)
6220 {
6221         if (event->attr.sample_id_all)
6222                 __perf_event__output_id_sample(handle, sample);
6223 }
6224
6225 static void perf_output_read_one(struct perf_output_handle *handle,
6226                                  struct perf_event *event,
6227                                  u64 enabled, u64 running)
6228 {
6229         u64 read_format = event->attr.read_format;
6230         u64 values[5];
6231         int n = 0;
6232
6233         values[n++] = perf_event_count(event);
6234         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6235                 values[n++] = enabled +
6236                         atomic64_read(&event->child_total_time_enabled);
6237         }
6238         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6239                 values[n++] = running +
6240                         atomic64_read(&event->child_total_time_running);
6241         }
6242         if (read_format & PERF_FORMAT_ID)
6243                 values[n++] = primary_event_id(event);
6244         if (read_format & PERF_FORMAT_LOST)
6245                 values[n++] = atomic64_read(&event->lost_samples);
6246
6247         __output_copy(handle, values, n * sizeof(u64));
6248 }
6249
6250 static void perf_output_read_group(struct perf_output_handle *handle,
6251                             struct perf_event *event,
6252                             u64 enabled, u64 running)
6253 {
6254         struct perf_event *leader = event->group_leader, *sub;
6255         u64 read_format = event->attr.read_format;
6256         u64 values[6];
6257         int n = 0;
6258
6259         values[n++] = 1 + leader->nr_siblings;
6260
6261         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6262                 values[n++] = enabled;
6263
6264         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6265                 values[n++] = running;
6266
6267         if ((leader != event) &&
6268             (leader->state == PERF_EVENT_STATE_ACTIVE))
6269                 leader->pmu->read(leader);
6270
6271         values[n++] = perf_event_count(leader);
6272         if (read_format & PERF_FORMAT_ID)
6273                 values[n++] = primary_event_id(leader);
6274         if (read_format & PERF_FORMAT_LOST)
6275                 values[n++] = atomic64_read(&leader->lost_samples);
6276
6277         __output_copy(handle, values, n * sizeof(u64));
6278
6279         for_each_sibling_event(sub, leader) {
6280                 n = 0;
6281
6282                 if ((sub != event) &&
6283                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6284                         sub->pmu->read(sub);
6285
6286                 values[n++] = perf_event_count(sub);
6287                 if (read_format & PERF_FORMAT_ID)
6288                         values[n++] = primary_event_id(sub);
6289                 if (read_format & PERF_FORMAT_LOST)
6290                         values[n++] = atomic64_read(&sub->lost_samples);
6291
6292                 __output_copy(handle, values, n * sizeof(u64));
6293         }
6294 }
6295
6296 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6297                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6298
6299 /*
6300  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6301  *
6302  * The problem is that its both hard and excessively expensive to iterate the
6303  * child list, not to mention that its impossible to IPI the children running
6304  * on another CPU, from interrupt/NMI context.
6305  */
6306 static void perf_output_read(struct perf_output_handle *handle,
6307                              struct perf_event *event)
6308 {
6309         u64 enabled = 0, running = 0, now;
6310         u64 read_format = event->attr.read_format;
6311
6312         /*
6313          * compute total_time_enabled, total_time_running
6314          * based on snapshot values taken when the event
6315          * was last scheduled in.
6316          *
6317          * we cannot simply called update_context_time()
6318          * because of locking issue as we are called in
6319          * NMI context
6320          */
6321         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6322                 calc_timer_values(event, &now, &enabled, &running);
6323
6324         if (event->attr.read_format & PERF_FORMAT_GROUP)
6325                 perf_output_read_group(handle, event, enabled, running);
6326         else
6327                 perf_output_read_one(handle, event, enabled, running);
6328 }
6329
6330 void perf_output_sample(struct perf_output_handle *handle,
6331                         struct perf_event_header *header,
6332                         struct perf_sample_data *data,
6333                         struct perf_event *event)
6334 {
6335         u64 sample_type = data->type;
6336
6337         perf_output_put(handle, *header);
6338
6339         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6340                 perf_output_put(handle, data->id);
6341
6342         if (sample_type & PERF_SAMPLE_IP)
6343                 perf_output_put(handle, data->ip);
6344
6345         if (sample_type & PERF_SAMPLE_TID)
6346                 perf_output_put(handle, data->tid_entry);
6347
6348         if (sample_type & PERF_SAMPLE_TIME)
6349                 perf_output_put(handle, data->time);
6350
6351         if (sample_type & PERF_SAMPLE_ADDR)
6352                 perf_output_put(handle, data->addr);
6353
6354         if (sample_type & PERF_SAMPLE_ID)
6355                 perf_output_put(handle, data->id);
6356
6357         if (sample_type & PERF_SAMPLE_STREAM_ID)
6358                 perf_output_put(handle, data->stream_id);
6359
6360         if (sample_type & PERF_SAMPLE_CPU)
6361                 perf_output_put(handle, data->cpu_entry);
6362
6363         if (sample_type & PERF_SAMPLE_PERIOD)
6364                 perf_output_put(handle, data->period);
6365
6366         if (sample_type & PERF_SAMPLE_READ)
6367                 perf_output_read(handle, event);
6368
6369         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6370                 int size = 1;
6371
6372                 size += data->callchain->nr;
6373                 size *= sizeof(u64);
6374                 __output_copy(handle, data->callchain, size);
6375         }
6376
6377         if (sample_type & PERF_SAMPLE_RAW) {
6378                 struct perf_raw_record *raw = data->raw;
6379
6380                 if (raw) {
6381                         struct perf_raw_frag *frag = &raw->frag;
6382
6383                         perf_output_put(handle, raw->size);
6384                         do {
6385                                 if (frag->copy) {
6386                                         __output_custom(handle, frag->copy,
6387                                                         frag->data, frag->size);
6388                                 } else {
6389                                         __output_copy(handle, frag->data,
6390                                                       frag->size);
6391                                 }
6392                                 if (perf_raw_frag_last(frag))
6393                                         break;
6394                                 frag = frag->next;
6395                         } while (1);
6396                         if (frag->pad)
6397                                 __output_skip(handle, NULL, frag->pad);
6398                 } else {
6399                         struct {
6400                                 u32     size;
6401                                 u32     data;
6402                         } raw = {
6403                                 .size = sizeof(u32),
6404                                 .data = 0,
6405                         };
6406                         perf_output_put(handle, raw);
6407                 }
6408         }
6409
6410         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6411                 if (data->br_stack) {
6412                         size_t size;
6413
6414                         size = data->br_stack->nr
6415                              * sizeof(struct perf_branch_entry);
6416
6417                         perf_output_put(handle, data->br_stack->nr);
6418                         perf_output_copy(handle, data->br_stack->entries, size);
6419                 } else {
6420                         /*
6421                          * we always store at least the value of nr
6422                          */
6423                         u64 nr = 0;
6424                         perf_output_put(handle, nr);
6425                 }
6426         }
6427
6428         if (sample_type & PERF_SAMPLE_REGS_USER) {
6429                 u64 abi = data->regs_user.abi;
6430
6431                 /*
6432                  * If there are no regs to dump, notice it through
6433                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6434                  */
6435                 perf_output_put(handle, abi);
6436
6437                 if (abi) {
6438                         u64 mask = event->attr.sample_regs_user;
6439                         perf_output_sample_regs(handle,
6440                                                 data->regs_user.regs,
6441                                                 mask);
6442                 }
6443         }
6444
6445         if (sample_type & PERF_SAMPLE_STACK_USER) {
6446                 perf_output_sample_ustack(handle,
6447                                           data->stack_user_size,
6448                                           data->regs_user.regs);
6449         }
6450
6451         if (sample_type & PERF_SAMPLE_WEIGHT)
6452                 perf_output_put(handle, data->weight);
6453
6454         if (sample_type & PERF_SAMPLE_DATA_SRC)
6455                 perf_output_put(handle, data->data_src.val);
6456
6457         if (sample_type & PERF_SAMPLE_TRANSACTION)
6458                 perf_output_put(handle, data->txn);
6459
6460         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6461                 u64 abi = data->regs_intr.abi;
6462                 /*
6463                  * If there are no regs to dump, notice it through
6464                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6465                  */
6466                 perf_output_put(handle, abi);
6467
6468                 if (abi) {
6469                         u64 mask = event->attr.sample_regs_intr;
6470
6471                         perf_output_sample_regs(handle,
6472                                                 data->regs_intr.regs,
6473                                                 mask);
6474                 }
6475         }
6476
6477         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6478                 perf_output_put(handle, data->phys_addr);
6479
6480         if (!event->attr.watermark) {
6481                 int wakeup_events = event->attr.wakeup_events;
6482
6483                 if (wakeup_events) {
6484                         struct ring_buffer *rb = handle->rb;
6485                         int events = local_inc_return(&rb->events);
6486
6487                         if (events >= wakeup_events) {
6488                                 local_sub(wakeup_events, &rb->events);
6489                                 local_inc(&rb->wakeup);
6490                         }
6491                 }
6492         }
6493 }
6494
6495 static u64 perf_virt_to_phys(u64 virt)
6496 {
6497         u64 phys_addr = 0;
6498
6499         if (!virt)
6500                 return 0;
6501
6502         if (virt >= TASK_SIZE) {
6503                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6504                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6505                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6506                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6507         } else {
6508                 /*
6509                  * Walking the pages tables for user address.
6510                  * Interrupts are disabled, so it prevents any tear down
6511                  * of the page tables.
6512                  * Try IRQ-safe __get_user_pages_fast first.
6513                  * If failed, leave phys_addr as 0.
6514                  */
6515                 if (current->mm != NULL) {
6516                         struct page *p;
6517
6518                         pagefault_disable();
6519                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1) {
6520                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6521                                 put_page(p);
6522                         }
6523                         pagefault_enable();
6524                 }
6525         }
6526
6527         return phys_addr;
6528 }
6529
6530 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6531
6532 struct perf_callchain_entry *
6533 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6534 {
6535         bool kernel = !event->attr.exclude_callchain_kernel;
6536         bool user   = !event->attr.exclude_callchain_user;
6537         /* Disallow cross-task user callchains. */
6538         bool crosstask = event->ctx->task && event->ctx->task != current;
6539         const u32 max_stack = event->attr.sample_max_stack;
6540         struct perf_callchain_entry *callchain;
6541
6542         if (!kernel && !user)
6543                 return &__empty_callchain;
6544
6545         callchain = get_perf_callchain(regs, 0, kernel, user,
6546                                        max_stack, crosstask, true);
6547         return callchain ?: &__empty_callchain;
6548 }
6549
6550 void perf_prepare_sample(struct perf_event_header *header,
6551                          struct perf_sample_data *data,
6552                          struct perf_event *event,
6553                          struct pt_regs *regs)
6554 {
6555         u64 sample_type = event->attr.sample_type;
6556
6557         header->type = PERF_RECORD_SAMPLE;
6558         header->size = sizeof(*header) + event->header_size;
6559
6560         header->misc = 0;
6561         header->misc |= perf_misc_flags(regs);
6562
6563         __perf_event_header__init_id(header, data, event);
6564
6565         if (sample_type & PERF_SAMPLE_IP)
6566                 data->ip = perf_instruction_pointer(regs);
6567
6568         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6569                 int size = 1;
6570
6571                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6572                         data->callchain = perf_callchain(event, regs);
6573
6574                 size += data->callchain->nr;
6575
6576                 header->size += size * sizeof(u64);
6577         }
6578
6579         if (sample_type & PERF_SAMPLE_RAW) {
6580                 struct perf_raw_record *raw = data->raw;
6581                 int size;
6582
6583                 if (raw) {
6584                         struct perf_raw_frag *frag = &raw->frag;
6585                         u32 sum = 0;
6586
6587                         do {
6588                                 sum += frag->size;
6589                                 if (perf_raw_frag_last(frag))
6590                                         break;
6591                                 frag = frag->next;
6592                         } while (1);
6593
6594                         size = round_up(sum + sizeof(u32), sizeof(u64));
6595                         raw->size = size - sizeof(u32);
6596                         frag->pad = raw->size - sum;
6597                 } else {
6598                         size = sizeof(u64);
6599                 }
6600
6601                 header->size += size;
6602         }
6603
6604         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6605                 int size = sizeof(u64); /* nr */
6606                 if (data->br_stack) {
6607                         size += data->br_stack->nr
6608                               * sizeof(struct perf_branch_entry);
6609                 }
6610                 header->size += size;
6611         }
6612
6613         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6614                 perf_sample_regs_user(&data->regs_user, regs,
6615                                       &data->regs_user_copy);
6616
6617         if (sample_type & PERF_SAMPLE_REGS_USER) {
6618                 /* regs dump ABI info */
6619                 int size = sizeof(u64);
6620
6621                 if (data->regs_user.regs) {
6622                         u64 mask = event->attr.sample_regs_user;
6623                         size += hweight64(mask) * sizeof(u64);
6624                 }
6625
6626                 header->size += size;
6627         }
6628
6629         if (sample_type & PERF_SAMPLE_STACK_USER) {
6630                 /*
6631                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6632                  * processed as the last one or have additional check added
6633                  * in case new sample type is added, because we could eat
6634                  * up the rest of the sample size.
6635                  */
6636                 u16 stack_size = event->attr.sample_stack_user;
6637                 u16 size = sizeof(u64);
6638
6639                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6640                                                      data->regs_user.regs);
6641
6642                 /*
6643                  * If there is something to dump, add space for the dump
6644                  * itself and for the field that tells the dynamic size,
6645                  * which is how many have been actually dumped.
6646                  */
6647                 if (stack_size)
6648                         size += sizeof(u64) + stack_size;
6649
6650                 data->stack_user_size = stack_size;
6651                 header->size += size;
6652         }
6653
6654         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6655                 /* regs dump ABI info */
6656                 int size = sizeof(u64);
6657
6658                 perf_sample_regs_intr(&data->regs_intr, regs);
6659
6660                 if (data->regs_intr.regs) {
6661                         u64 mask = event->attr.sample_regs_intr;
6662
6663                         size += hweight64(mask) * sizeof(u64);
6664                 }
6665
6666                 header->size += size;
6667         }
6668
6669         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6670                 data->phys_addr = perf_virt_to_phys(data->addr);
6671 }
6672
6673 static __always_inline void
6674 __perf_event_output(struct perf_event *event,
6675                     struct perf_sample_data *data,
6676                     struct pt_regs *regs,
6677                     int (*output_begin)(struct perf_output_handle *,
6678                                         struct perf_event *,
6679                                         unsigned int))
6680 {
6681         struct perf_output_handle handle;
6682         struct perf_event_header header;
6683
6684         /* protect the callchain buffers */
6685         rcu_read_lock();
6686
6687         perf_prepare_sample(&header, data, event, regs);
6688
6689         if (output_begin(&handle, event, header.size))
6690                 goto exit;
6691
6692         perf_output_sample(&handle, &header, data, event);
6693
6694         perf_output_end(&handle);
6695
6696 exit:
6697         rcu_read_unlock();
6698 }
6699
6700 void
6701 perf_event_output_forward(struct perf_event *event,
6702                          struct perf_sample_data *data,
6703                          struct pt_regs *regs)
6704 {
6705         __perf_event_output(event, data, regs, perf_output_begin_forward);
6706 }
6707
6708 void
6709 perf_event_output_backward(struct perf_event *event,
6710                            struct perf_sample_data *data,
6711                            struct pt_regs *regs)
6712 {
6713         __perf_event_output(event, data, regs, perf_output_begin_backward);
6714 }
6715
6716 void
6717 perf_event_output(struct perf_event *event,
6718                   struct perf_sample_data *data,
6719                   struct pt_regs *regs)
6720 {
6721         __perf_event_output(event, data, regs, perf_output_begin);
6722 }
6723
6724 /*
6725  * read event_id
6726  */
6727
6728 struct perf_read_event {
6729         struct perf_event_header        header;
6730
6731         u32                             pid;
6732         u32                             tid;
6733 };
6734
6735 static void
6736 perf_event_read_event(struct perf_event *event,
6737                         struct task_struct *task)
6738 {
6739         struct perf_output_handle handle;
6740         struct perf_sample_data sample;
6741         struct perf_read_event read_event = {
6742                 .header = {
6743                         .type = PERF_RECORD_READ,
6744                         .misc = 0,
6745                         .size = sizeof(read_event) + event->read_size,
6746                 },
6747                 .pid = perf_event_pid(event, task),
6748                 .tid = perf_event_tid(event, task),
6749         };
6750         int ret;
6751
6752         perf_event_header__init_id(&read_event.header, &sample, event);
6753         ret = perf_output_begin(&handle, event, read_event.header.size);
6754         if (ret)
6755                 return;
6756
6757         perf_output_put(&handle, read_event);
6758         perf_output_read(&handle, event);
6759         perf_event__output_id_sample(event, &handle, &sample);
6760
6761         perf_output_end(&handle);
6762 }
6763
6764 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6765
6766 static void
6767 perf_iterate_ctx(struct perf_event_context *ctx,
6768                    perf_iterate_f output,
6769                    void *data, bool all)
6770 {
6771         struct perf_event *event;
6772
6773         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6774                 if (!all) {
6775                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6776                                 continue;
6777                         if (!event_filter_match(event))
6778                                 continue;
6779                 }
6780
6781                 output(event, data);
6782         }
6783 }
6784
6785 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6786 {
6787         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6788         struct perf_event *event;
6789
6790         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6791                 /*
6792                  * Skip events that are not fully formed yet; ensure that
6793                  * if we observe event->ctx, both event and ctx will be
6794                  * complete enough. See perf_install_in_context().
6795                  */
6796                 if (!smp_load_acquire(&event->ctx))
6797                         continue;
6798
6799                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6800                         continue;
6801                 if (!event_filter_match(event))
6802                         continue;
6803                 output(event, data);
6804         }
6805 }
6806
6807 /*
6808  * Iterate all events that need to receive side-band events.
6809  *
6810  * For new callers; ensure that account_pmu_sb_event() includes
6811  * your event, otherwise it might not get delivered.
6812  */
6813 static void
6814 perf_iterate_sb(perf_iterate_f output, void *data,
6815                struct perf_event_context *task_ctx)
6816 {
6817         struct perf_event_context *ctx;
6818         int ctxn;
6819
6820         rcu_read_lock();
6821         preempt_disable();
6822
6823         /*
6824          * If we have task_ctx != NULL we only notify the task context itself.
6825          * The task_ctx is set only for EXIT events before releasing task
6826          * context.
6827          */
6828         if (task_ctx) {
6829                 perf_iterate_ctx(task_ctx, output, data, false);
6830                 goto done;
6831         }
6832
6833         perf_iterate_sb_cpu(output, data);
6834
6835         for_each_task_context_nr(ctxn) {
6836                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6837                 if (ctx)
6838                         perf_iterate_ctx(ctx, output, data, false);
6839         }
6840 done:
6841         preempt_enable();
6842         rcu_read_unlock();
6843 }
6844
6845 /*
6846  * Clear all file-based filters at exec, they'll have to be
6847  * re-instated when/if these objects are mmapped again.
6848  */
6849 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6850 {
6851         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6852         struct perf_addr_filter *filter;
6853         unsigned int restart = 0, count = 0;
6854         unsigned long flags;
6855
6856         if (!has_addr_filter(event))
6857                 return;
6858
6859         raw_spin_lock_irqsave(&ifh->lock, flags);
6860         list_for_each_entry(filter, &ifh->list, entry) {
6861                 if (filter->path.dentry) {
6862                         event->addr_filter_ranges[count].start = 0;
6863                         event->addr_filter_ranges[count].size = 0;
6864                         restart++;
6865                 }
6866
6867                 count++;
6868         }
6869
6870         if (restart)
6871                 event->addr_filters_gen++;
6872         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6873
6874         if (restart)
6875                 perf_event_stop(event, 1);
6876 }
6877
6878 void perf_event_exec(void)
6879 {
6880         struct perf_event_context *ctx;
6881         int ctxn;
6882
6883         rcu_read_lock();
6884         for_each_task_context_nr(ctxn) {
6885                 ctx = current->perf_event_ctxp[ctxn];
6886                 if (!ctx)
6887                         continue;
6888
6889                 perf_event_enable_on_exec(ctxn);
6890
6891                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6892                                    true);
6893         }
6894         rcu_read_unlock();
6895 }
6896
6897 struct remote_output {
6898         struct ring_buffer      *rb;
6899         int                     err;
6900 };
6901
6902 static void __perf_event_output_stop(struct perf_event *event, void *data)
6903 {
6904         struct perf_event *parent = event->parent;
6905         struct remote_output *ro = data;
6906         struct ring_buffer *rb = ro->rb;
6907         struct stop_event_data sd = {
6908                 .event  = event,
6909         };
6910
6911         if (!has_aux(event))
6912                 return;
6913
6914         if (!parent)
6915                 parent = event;
6916
6917         /*
6918          * In case of inheritance, it will be the parent that links to the
6919          * ring-buffer, but it will be the child that's actually using it.
6920          *
6921          * We are using event::rb to determine if the event should be stopped,
6922          * however this may race with ring_buffer_attach() (through set_output),
6923          * which will make us skip the event that actually needs to be stopped.
6924          * So ring_buffer_attach() has to stop an aux event before re-assigning
6925          * its rb pointer.
6926          */
6927         if (rcu_dereference(parent->rb) == rb)
6928                 ro->err = __perf_event_stop(&sd);
6929 }
6930
6931 static int __perf_pmu_output_stop(void *info)
6932 {
6933         struct perf_event *event = info;
6934         struct pmu *pmu = event->ctx->pmu;
6935         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6936         struct remote_output ro = {
6937                 .rb     = event->rb,
6938         };
6939
6940         rcu_read_lock();
6941         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6942         if (cpuctx->task_ctx)
6943                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6944                                    &ro, false);
6945         rcu_read_unlock();
6946
6947         return ro.err;
6948 }
6949
6950 static void perf_pmu_output_stop(struct perf_event *event)
6951 {
6952         struct perf_event *iter;
6953         int err, cpu;
6954
6955 restart:
6956         rcu_read_lock();
6957         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6958                 /*
6959                  * For per-CPU events, we need to make sure that neither they
6960                  * nor their children are running; for cpu==-1 events it's
6961                  * sufficient to stop the event itself if it's active, since
6962                  * it can't have children.
6963                  */
6964                 cpu = iter->cpu;
6965                 if (cpu == -1)
6966                         cpu = READ_ONCE(iter->oncpu);
6967
6968                 if (cpu == -1)
6969                         continue;
6970
6971                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6972                 if (err == -EAGAIN) {
6973                         rcu_read_unlock();
6974                         goto restart;
6975                 }
6976         }
6977         rcu_read_unlock();
6978 }
6979
6980 /*
6981  * task tracking -- fork/exit
6982  *
6983  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6984  */
6985
6986 struct perf_task_event {
6987         struct task_struct              *task;
6988         struct perf_event_context       *task_ctx;
6989
6990         struct {
6991                 struct perf_event_header        header;
6992
6993                 u32                             pid;
6994                 u32                             ppid;
6995                 u32                             tid;
6996                 u32                             ptid;
6997                 u64                             time;
6998         } event_id;
6999 };
7000
7001 static int perf_event_task_match(struct perf_event *event)
7002 {
7003         return event->attr.comm  || event->attr.mmap ||
7004                event->attr.mmap2 || event->attr.mmap_data ||
7005                event->attr.task;
7006 }
7007
7008 static void perf_event_task_output(struct perf_event *event,
7009                                    void *data)
7010 {
7011         struct perf_task_event *task_event = data;
7012         struct perf_output_handle handle;
7013         struct perf_sample_data sample;
7014         struct task_struct *task = task_event->task;
7015         int ret, size = task_event->event_id.header.size;
7016
7017         if (!perf_event_task_match(event))
7018                 return;
7019
7020         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7021
7022         ret = perf_output_begin(&handle, event,
7023                                 task_event->event_id.header.size);
7024         if (ret)
7025                 goto out;
7026
7027         task_event->event_id.pid = perf_event_pid(event, task);
7028         task_event->event_id.tid = perf_event_tid(event, task);
7029
7030         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7031                 task_event->event_id.ppid = perf_event_pid(event,
7032                                                         task->real_parent);
7033                 task_event->event_id.ptid = perf_event_pid(event,
7034                                                         task->real_parent);
7035         } else {  /* PERF_RECORD_FORK */
7036                 task_event->event_id.ppid = perf_event_pid(event, current);
7037                 task_event->event_id.ptid = perf_event_tid(event, current);
7038         }
7039
7040         task_event->event_id.time = perf_event_clock(event);
7041
7042         perf_output_put(&handle, task_event->event_id);
7043
7044         perf_event__output_id_sample(event, &handle, &sample);
7045
7046         perf_output_end(&handle);
7047 out:
7048         task_event->event_id.header.size = size;
7049 }
7050
7051 static void perf_event_task(struct task_struct *task,
7052                               struct perf_event_context *task_ctx,
7053                               int new)
7054 {
7055         struct perf_task_event task_event;
7056
7057         if (!atomic_read(&nr_comm_events) &&
7058             !atomic_read(&nr_mmap_events) &&
7059             !atomic_read(&nr_task_events))
7060                 return;
7061
7062         task_event = (struct perf_task_event){
7063                 .task     = task,
7064                 .task_ctx = task_ctx,
7065                 .event_id    = {
7066                         .header = {
7067                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7068                                 .misc = 0,
7069                                 .size = sizeof(task_event.event_id),
7070                         },
7071                         /* .pid  */
7072                         /* .ppid */
7073                         /* .tid  */
7074                         /* .ptid */
7075                         /* .time */
7076                 },
7077         };
7078
7079         perf_iterate_sb(perf_event_task_output,
7080                        &task_event,
7081                        task_ctx);
7082 }
7083
7084 void perf_event_fork(struct task_struct *task)
7085 {
7086         perf_event_task(task, NULL, 1);
7087         perf_event_namespaces(task);
7088 }
7089
7090 /*
7091  * comm tracking
7092  */
7093
7094 struct perf_comm_event {
7095         struct task_struct      *task;
7096         char                    *comm;
7097         int                     comm_size;
7098
7099         struct {
7100                 struct perf_event_header        header;
7101
7102                 u32                             pid;
7103                 u32                             tid;
7104         } event_id;
7105 };
7106
7107 static int perf_event_comm_match(struct perf_event *event)
7108 {
7109         return event->attr.comm;
7110 }
7111
7112 static void perf_event_comm_output(struct perf_event *event,
7113                                    void *data)
7114 {
7115         struct perf_comm_event *comm_event = data;
7116         struct perf_output_handle handle;
7117         struct perf_sample_data sample;
7118         int size = comm_event->event_id.header.size;
7119         int ret;
7120
7121         if (!perf_event_comm_match(event))
7122                 return;
7123
7124         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7125         ret = perf_output_begin(&handle, event,
7126                                 comm_event->event_id.header.size);
7127
7128         if (ret)
7129                 goto out;
7130
7131         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7132         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7133
7134         perf_output_put(&handle, comm_event->event_id);
7135         __output_copy(&handle, comm_event->comm,
7136                                    comm_event->comm_size);
7137
7138         perf_event__output_id_sample(event, &handle, &sample);
7139
7140         perf_output_end(&handle);
7141 out:
7142         comm_event->event_id.header.size = size;
7143 }
7144
7145 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7146 {
7147         char comm[TASK_COMM_LEN];
7148         unsigned int size;
7149
7150         memset(comm, 0, sizeof(comm));
7151         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7152         size = ALIGN(strlen(comm)+1, sizeof(u64));
7153
7154         comm_event->comm = comm;
7155         comm_event->comm_size = size;
7156
7157         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7158
7159         perf_iterate_sb(perf_event_comm_output,
7160                        comm_event,
7161                        NULL);
7162 }
7163
7164 void perf_event_comm(struct task_struct *task, bool exec)
7165 {
7166         struct perf_comm_event comm_event;
7167
7168         if (!atomic_read(&nr_comm_events))
7169                 return;
7170
7171         comm_event = (struct perf_comm_event){
7172                 .task   = task,
7173                 /* .comm      */
7174                 /* .comm_size */
7175                 .event_id  = {
7176                         .header = {
7177                                 .type = PERF_RECORD_COMM,
7178                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7179                                 /* .size */
7180                         },
7181                         /* .pid */
7182                         /* .tid */
7183                 },
7184         };
7185
7186         perf_event_comm_event(&comm_event);
7187 }
7188
7189 /*
7190  * namespaces tracking
7191  */
7192
7193 struct perf_namespaces_event {
7194         struct task_struct              *task;
7195
7196         struct {
7197                 struct perf_event_header        header;
7198
7199                 u32                             pid;
7200                 u32                             tid;
7201                 u64                             nr_namespaces;
7202                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7203         } event_id;
7204 };
7205
7206 static int perf_event_namespaces_match(struct perf_event *event)
7207 {
7208         return event->attr.namespaces;
7209 }
7210
7211 static void perf_event_namespaces_output(struct perf_event *event,
7212                                          void *data)
7213 {
7214         struct perf_namespaces_event *namespaces_event = data;
7215         struct perf_output_handle handle;
7216         struct perf_sample_data sample;
7217         u16 header_size = namespaces_event->event_id.header.size;
7218         int ret;
7219
7220         if (!perf_event_namespaces_match(event))
7221                 return;
7222
7223         perf_event_header__init_id(&namespaces_event->event_id.header,
7224                                    &sample, event);
7225         ret = perf_output_begin(&handle, event,
7226                                 namespaces_event->event_id.header.size);
7227         if (ret)
7228                 goto out;
7229
7230         namespaces_event->event_id.pid = perf_event_pid(event,
7231                                                         namespaces_event->task);
7232         namespaces_event->event_id.tid = perf_event_tid(event,
7233                                                         namespaces_event->task);
7234
7235         perf_output_put(&handle, namespaces_event->event_id);
7236
7237         perf_event__output_id_sample(event, &handle, &sample);
7238
7239         perf_output_end(&handle);
7240 out:
7241         namespaces_event->event_id.header.size = header_size;
7242 }
7243
7244 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7245                                    struct task_struct *task,
7246                                    const struct proc_ns_operations *ns_ops)
7247 {
7248         struct path ns_path;
7249         struct inode *ns_inode;
7250         void *error;
7251
7252         error = ns_get_path(&ns_path, task, ns_ops);
7253         if (!error) {
7254                 ns_inode = ns_path.dentry->d_inode;
7255                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7256                 ns_link_info->ino = ns_inode->i_ino;
7257                 path_put(&ns_path);
7258         }
7259 }
7260
7261 void perf_event_namespaces(struct task_struct *task)
7262 {
7263         struct perf_namespaces_event namespaces_event;
7264         struct perf_ns_link_info *ns_link_info;
7265
7266         if (!atomic_read(&nr_namespaces_events))
7267                 return;
7268
7269         namespaces_event = (struct perf_namespaces_event){
7270                 .task   = task,
7271                 .event_id  = {
7272                         .header = {
7273                                 .type = PERF_RECORD_NAMESPACES,
7274                                 .misc = 0,
7275                                 .size = sizeof(namespaces_event.event_id),
7276                         },
7277                         /* .pid */
7278                         /* .tid */
7279                         .nr_namespaces = NR_NAMESPACES,
7280                         /* .link_info[NR_NAMESPACES] */
7281                 },
7282         };
7283
7284         ns_link_info = namespaces_event.event_id.link_info;
7285
7286         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7287                                task, &mntns_operations);
7288
7289 #ifdef CONFIG_USER_NS
7290         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7291                                task, &userns_operations);
7292 #endif
7293 #ifdef CONFIG_NET_NS
7294         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7295                                task, &netns_operations);
7296 #endif
7297 #ifdef CONFIG_UTS_NS
7298         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7299                                task, &utsns_operations);
7300 #endif
7301 #ifdef CONFIG_IPC_NS
7302         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7303                                task, &ipcns_operations);
7304 #endif
7305 #ifdef CONFIG_PID_NS
7306         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7307                                task, &pidns_operations);
7308 #endif
7309 #ifdef CONFIG_CGROUPS
7310         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7311                                task, &cgroupns_operations);
7312 #endif
7313
7314         perf_iterate_sb(perf_event_namespaces_output,
7315                         &namespaces_event,
7316                         NULL);
7317 }
7318
7319 /*
7320  * mmap tracking
7321  */
7322
7323 struct perf_mmap_event {
7324         struct vm_area_struct   *vma;
7325
7326         const char              *file_name;
7327         int                     file_size;
7328         int                     maj, min;
7329         u64                     ino;
7330         u64                     ino_generation;
7331         u32                     prot, flags;
7332
7333         struct {
7334                 struct perf_event_header        header;
7335
7336                 u32                             pid;
7337                 u32                             tid;
7338                 u64                             start;
7339                 u64                             len;
7340                 u64                             pgoff;
7341         } event_id;
7342 };
7343
7344 static int perf_event_mmap_match(struct perf_event *event,
7345                                  void *data)
7346 {
7347         struct perf_mmap_event *mmap_event = data;
7348         struct vm_area_struct *vma = mmap_event->vma;
7349         int executable = vma->vm_flags & VM_EXEC;
7350
7351         return (!executable && event->attr.mmap_data) ||
7352                (executable && (event->attr.mmap || event->attr.mmap2));
7353 }
7354
7355 static void perf_event_mmap_output(struct perf_event *event,
7356                                    void *data)
7357 {
7358         struct perf_mmap_event *mmap_event = data;
7359         struct perf_output_handle handle;
7360         struct perf_sample_data sample;
7361         int size = mmap_event->event_id.header.size;
7362         u32 type = mmap_event->event_id.header.type;
7363         int ret;
7364
7365         if (!perf_event_mmap_match(event, data))
7366                 return;
7367
7368         if (event->attr.mmap2) {
7369                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7370                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7371                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7372                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7373                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7374                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7375                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7376         }
7377
7378         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7379         ret = perf_output_begin(&handle, event,
7380                                 mmap_event->event_id.header.size);
7381         if (ret)
7382                 goto out;
7383
7384         mmap_event->event_id.pid = perf_event_pid(event, current);
7385         mmap_event->event_id.tid = perf_event_tid(event, current);
7386
7387         perf_output_put(&handle, mmap_event->event_id);
7388
7389         if (event->attr.mmap2) {
7390                 perf_output_put(&handle, mmap_event->maj);
7391                 perf_output_put(&handle, mmap_event->min);
7392                 perf_output_put(&handle, mmap_event->ino);
7393                 perf_output_put(&handle, mmap_event->ino_generation);
7394                 perf_output_put(&handle, mmap_event->prot);
7395                 perf_output_put(&handle, mmap_event->flags);
7396         }
7397
7398         __output_copy(&handle, mmap_event->file_name,
7399                                    mmap_event->file_size);
7400
7401         perf_event__output_id_sample(event, &handle, &sample);
7402
7403         perf_output_end(&handle);
7404 out:
7405         mmap_event->event_id.header.size = size;
7406         mmap_event->event_id.header.type = type;
7407 }
7408
7409 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7410 {
7411         struct vm_area_struct *vma = mmap_event->vma;
7412         struct file *file = vma->vm_file;
7413         int maj = 0, min = 0;
7414         u64 ino = 0, gen = 0;
7415         u32 prot = 0, flags = 0;
7416         unsigned int size;
7417         char tmp[16];
7418         char *buf = NULL;
7419         char *name;
7420
7421         if (vma->vm_flags & VM_READ)
7422                 prot |= PROT_READ;
7423         if (vma->vm_flags & VM_WRITE)
7424                 prot |= PROT_WRITE;
7425         if (vma->vm_flags & VM_EXEC)
7426                 prot |= PROT_EXEC;
7427
7428         if (vma->vm_flags & VM_MAYSHARE)
7429                 flags = MAP_SHARED;
7430         else
7431                 flags = MAP_PRIVATE;
7432
7433         if (vma->vm_flags & VM_DENYWRITE)
7434                 flags |= MAP_DENYWRITE;
7435         if (vma->vm_flags & VM_MAYEXEC)
7436                 flags |= MAP_EXECUTABLE;
7437         if (vma->vm_flags & VM_LOCKED)
7438                 flags |= MAP_LOCKED;
7439         if (vma->vm_flags & VM_HUGETLB)
7440                 flags |= MAP_HUGETLB;
7441
7442         if (file) {
7443                 struct inode *inode;
7444                 dev_t dev;
7445
7446                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7447                 if (!buf) {
7448                         name = "//enomem";
7449                         goto cpy_name;
7450                 }
7451                 /*
7452                  * d_path() works from the end of the rb backwards, so we
7453                  * need to add enough zero bytes after the string to handle
7454                  * the 64bit alignment we do later.
7455                  */
7456                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7457                 if (IS_ERR(name)) {
7458                         name = "//toolong";
7459                         goto cpy_name;
7460                 }
7461                 inode = file_inode(vma->vm_file);
7462                 dev = inode->i_sb->s_dev;
7463                 ino = inode->i_ino;
7464                 gen = inode->i_generation;
7465                 maj = MAJOR(dev);
7466                 min = MINOR(dev);
7467
7468                 goto got_name;
7469         } else {
7470                 if (vma->vm_ops && vma->vm_ops->name) {
7471                         name = (char *) vma->vm_ops->name(vma);
7472                         if (name)
7473                                 goto cpy_name;
7474                 }
7475
7476                 name = (char *)arch_vma_name(vma);
7477                 if (name)
7478                         goto cpy_name;
7479
7480                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7481                                 vma->vm_end >= vma->vm_mm->brk) {
7482                         name = "[heap]";
7483                         goto cpy_name;
7484                 }
7485                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7486                                 vma->vm_end >= vma->vm_mm->start_stack) {
7487                         name = "[stack]";
7488                         goto cpy_name;
7489                 }
7490
7491                 name = "//anon";
7492                 goto cpy_name;
7493         }
7494
7495 cpy_name:
7496         strlcpy(tmp, name, sizeof(tmp));
7497         name = tmp;
7498 got_name:
7499         /*
7500          * Since our buffer works in 8 byte units we need to align our string
7501          * size to a multiple of 8. However, we must guarantee the tail end is
7502          * zero'd out to avoid leaking random bits to userspace.
7503          */
7504         size = strlen(name)+1;
7505         while (!IS_ALIGNED(size, sizeof(u64)))
7506                 name[size++] = '\0';
7507
7508         mmap_event->file_name = name;
7509         mmap_event->file_size = size;
7510         mmap_event->maj = maj;
7511         mmap_event->min = min;
7512         mmap_event->ino = ino;
7513         mmap_event->ino_generation = gen;
7514         mmap_event->prot = prot;
7515         mmap_event->flags = flags;
7516
7517         if (!(vma->vm_flags & VM_EXEC))
7518                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7519
7520         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7521
7522         perf_iterate_sb(perf_event_mmap_output,
7523                        mmap_event,
7524                        NULL);
7525
7526         kfree(buf);
7527 }
7528
7529 /*
7530  * Check whether inode and address range match filter criteria.
7531  */
7532 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7533                                      struct file *file, unsigned long offset,
7534                                      unsigned long size)
7535 {
7536         /* d_inode(NULL) won't be equal to any mapped user-space file */
7537         if (!filter->path.dentry)
7538                 return false;
7539
7540         if (d_inode(filter->path.dentry) != file_inode(file))
7541                 return false;
7542
7543         if (filter->offset > offset + size)
7544                 return false;
7545
7546         if (filter->offset + filter->size < offset)
7547                 return false;
7548
7549         return true;
7550 }
7551
7552 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7553                                         struct vm_area_struct *vma,
7554                                         struct perf_addr_filter_range *fr)
7555 {
7556         unsigned long vma_size = vma->vm_end - vma->vm_start;
7557         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7558         struct file *file = vma->vm_file;
7559
7560         if (!perf_addr_filter_match(filter, file, off, vma_size))
7561                 return false;
7562
7563         if (filter->offset < off) {
7564                 fr->start = vma->vm_start;
7565                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7566         } else {
7567                 fr->start = vma->vm_start + filter->offset - off;
7568                 fr->size = min(vma->vm_end - fr->start, filter->size);
7569         }
7570
7571         return true;
7572 }
7573
7574 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7575 {
7576         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7577         struct vm_area_struct *vma = data;
7578         struct perf_addr_filter *filter;
7579         unsigned int restart = 0, count = 0;
7580         unsigned long flags;
7581
7582         if (!has_addr_filter(event))
7583                 return;
7584
7585         if (!vma->vm_file)
7586                 return;
7587
7588         raw_spin_lock_irqsave(&ifh->lock, flags);
7589         list_for_each_entry(filter, &ifh->list, entry) {
7590                 if (perf_addr_filter_vma_adjust(filter, vma,
7591                                                 &event->addr_filter_ranges[count]))
7592                         restart++;
7593
7594                 count++;
7595         }
7596
7597         if (restart)
7598                 event->addr_filters_gen++;
7599         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7600
7601         if (restart)
7602                 perf_event_stop(event, 1);
7603 }
7604
7605 /*
7606  * Adjust all task's events' filters to the new vma
7607  */
7608 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7609 {
7610         struct perf_event_context *ctx;
7611         int ctxn;
7612
7613         /*
7614          * Data tracing isn't supported yet and as such there is no need
7615          * to keep track of anything that isn't related to executable code:
7616          */
7617         if (!(vma->vm_flags & VM_EXEC))
7618                 return;
7619
7620         rcu_read_lock();
7621         for_each_task_context_nr(ctxn) {
7622                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7623                 if (!ctx)
7624                         continue;
7625
7626                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7627         }
7628         rcu_read_unlock();
7629 }
7630
7631 void perf_event_mmap(struct vm_area_struct *vma)
7632 {
7633         struct perf_mmap_event mmap_event;
7634
7635         if (!atomic_read(&nr_mmap_events))
7636                 return;
7637
7638         mmap_event = (struct perf_mmap_event){
7639                 .vma    = vma,
7640                 /* .file_name */
7641                 /* .file_size */
7642                 .event_id  = {
7643                         .header = {
7644                                 .type = PERF_RECORD_MMAP,
7645                                 .misc = PERF_RECORD_MISC_USER,
7646                                 /* .size */
7647                         },
7648                         /* .pid */
7649                         /* .tid */
7650                         .start  = vma->vm_start,
7651                         .len    = vma->vm_end - vma->vm_start,
7652                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7653                 },
7654                 /* .maj (attr_mmap2 only) */
7655                 /* .min (attr_mmap2 only) */
7656                 /* .ino (attr_mmap2 only) */
7657                 /* .ino_generation (attr_mmap2 only) */
7658                 /* .prot (attr_mmap2 only) */
7659                 /* .flags (attr_mmap2 only) */
7660         };
7661
7662         perf_addr_filters_adjust(vma);
7663         perf_event_mmap_event(&mmap_event);
7664 }
7665
7666 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7667                           unsigned long size, u64 flags)
7668 {
7669         struct perf_output_handle handle;
7670         struct perf_sample_data sample;
7671         struct perf_aux_event {
7672                 struct perf_event_header        header;
7673                 u64                             offset;
7674                 u64                             size;
7675                 u64                             flags;
7676         } rec = {
7677                 .header = {
7678                         .type = PERF_RECORD_AUX,
7679                         .misc = 0,
7680                         .size = sizeof(rec),
7681                 },
7682                 .offset         = head,
7683                 .size           = size,
7684                 .flags          = flags,
7685         };
7686         int ret;
7687
7688         perf_event_header__init_id(&rec.header, &sample, event);
7689         ret = perf_output_begin(&handle, event, rec.header.size);
7690
7691         if (ret)
7692                 return;
7693
7694         perf_output_put(&handle, rec);
7695         perf_event__output_id_sample(event, &handle, &sample);
7696
7697         perf_output_end(&handle);
7698 }
7699
7700 /*
7701  * Lost/dropped samples logging
7702  */
7703 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7704 {
7705         struct perf_output_handle handle;
7706         struct perf_sample_data sample;
7707         int ret;
7708
7709         struct {
7710                 struct perf_event_header        header;
7711                 u64                             lost;
7712         } lost_samples_event = {
7713                 .header = {
7714                         .type = PERF_RECORD_LOST_SAMPLES,
7715                         .misc = 0,
7716                         .size = sizeof(lost_samples_event),
7717                 },
7718                 .lost           = lost,
7719         };
7720
7721         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7722
7723         ret = perf_output_begin(&handle, event,
7724                                 lost_samples_event.header.size);
7725         if (ret)
7726                 return;
7727
7728         perf_output_put(&handle, lost_samples_event);
7729         perf_event__output_id_sample(event, &handle, &sample);
7730         perf_output_end(&handle);
7731 }
7732
7733 /*
7734  * context_switch tracking
7735  */
7736
7737 struct perf_switch_event {
7738         struct task_struct      *task;
7739         struct task_struct      *next_prev;
7740
7741         struct {
7742                 struct perf_event_header        header;
7743                 u32                             next_prev_pid;
7744                 u32                             next_prev_tid;
7745         } event_id;
7746 };
7747
7748 static int perf_event_switch_match(struct perf_event *event)
7749 {
7750         return event->attr.context_switch;
7751 }
7752
7753 static void perf_event_switch_output(struct perf_event *event, void *data)
7754 {
7755         struct perf_switch_event *se = data;
7756         struct perf_output_handle handle;
7757         struct perf_sample_data sample;
7758         int ret;
7759
7760         if (!perf_event_switch_match(event))
7761                 return;
7762
7763         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7764         if (event->ctx->task) {
7765                 se->event_id.header.type = PERF_RECORD_SWITCH;
7766                 se->event_id.header.size = sizeof(se->event_id.header);
7767         } else {
7768                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7769                 se->event_id.header.size = sizeof(se->event_id);
7770                 se->event_id.next_prev_pid =
7771                                         perf_event_pid(event, se->next_prev);
7772                 se->event_id.next_prev_tid =
7773                                         perf_event_tid(event, se->next_prev);
7774         }
7775
7776         perf_event_header__init_id(&se->event_id.header, &sample, event);
7777
7778         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7779         if (ret)
7780                 return;
7781
7782         if (event->ctx->task)
7783                 perf_output_put(&handle, se->event_id.header);
7784         else
7785                 perf_output_put(&handle, se->event_id);
7786
7787         perf_event__output_id_sample(event, &handle, &sample);
7788
7789         perf_output_end(&handle);
7790 }
7791
7792 static void perf_event_switch(struct task_struct *task,
7793                               struct task_struct *next_prev, bool sched_in)
7794 {
7795         struct perf_switch_event switch_event;
7796
7797         /* N.B. caller checks nr_switch_events != 0 */
7798
7799         switch_event = (struct perf_switch_event){
7800                 .task           = task,
7801                 .next_prev      = next_prev,
7802                 .event_id       = {
7803                         .header = {
7804                                 /* .type */
7805                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7806                                 /* .size */
7807                         },
7808                         /* .next_prev_pid */
7809                         /* .next_prev_tid */
7810                 },
7811         };
7812
7813         if (!sched_in && task->state == TASK_RUNNING)
7814                 switch_event.event_id.header.misc |=
7815                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7816
7817         perf_iterate_sb(perf_event_switch_output,
7818                        &switch_event,
7819                        NULL);
7820 }
7821
7822 /*
7823  * IRQ throttle logging
7824  */
7825
7826 static void perf_log_throttle(struct perf_event *event, int enable)
7827 {
7828         struct perf_output_handle handle;
7829         struct perf_sample_data sample;
7830         int ret;
7831
7832         struct {
7833                 struct perf_event_header        header;
7834                 u64                             time;
7835                 u64                             id;
7836                 u64                             stream_id;
7837         } throttle_event = {
7838                 .header = {
7839                         .type = PERF_RECORD_THROTTLE,
7840                         .misc = 0,
7841                         .size = sizeof(throttle_event),
7842                 },
7843                 .time           = perf_event_clock(event),
7844                 .id             = primary_event_id(event),
7845                 .stream_id      = event->id,
7846         };
7847
7848         if (enable)
7849                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7850
7851         perf_event_header__init_id(&throttle_event.header, &sample, event);
7852
7853         ret = perf_output_begin(&handle, event,
7854                                 throttle_event.header.size);
7855         if (ret)
7856                 return;
7857
7858         perf_output_put(&handle, throttle_event);
7859         perf_event__output_id_sample(event, &handle, &sample);
7860         perf_output_end(&handle);
7861 }
7862
7863 void perf_event_itrace_started(struct perf_event *event)
7864 {
7865         event->attach_state |= PERF_ATTACH_ITRACE;
7866 }
7867
7868 static void perf_log_itrace_start(struct perf_event *event)
7869 {
7870         struct perf_output_handle handle;
7871         struct perf_sample_data sample;
7872         struct perf_aux_event {
7873                 struct perf_event_header        header;
7874                 u32                             pid;
7875                 u32                             tid;
7876         } rec;
7877         int ret;
7878
7879         if (event->parent)
7880                 event = event->parent;
7881
7882         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7883             event->attach_state & PERF_ATTACH_ITRACE)
7884                 return;
7885
7886         rec.header.type = PERF_RECORD_ITRACE_START;
7887         rec.header.misc = 0;
7888         rec.header.size = sizeof(rec);
7889         rec.pid = perf_event_pid(event, current);
7890         rec.tid = perf_event_tid(event, current);
7891
7892         perf_event_header__init_id(&rec.header, &sample, event);
7893         ret = perf_output_begin(&handle, event, rec.header.size);
7894
7895         if (ret)
7896                 return;
7897
7898         perf_output_put(&handle, rec);
7899         perf_event__output_id_sample(event, &handle, &sample);
7900
7901         perf_output_end(&handle);
7902 }
7903
7904 static int
7905 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7906 {
7907         struct hw_perf_event *hwc = &event->hw;
7908         int ret = 0;
7909         u64 seq;
7910
7911         seq = __this_cpu_read(perf_throttled_seq);
7912         if (seq != hwc->interrupts_seq) {
7913                 hwc->interrupts_seq = seq;
7914                 hwc->interrupts = 1;
7915         } else {
7916                 hwc->interrupts++;
7917                 if (unlikely(throttle &&
7918                              hwc->interrupts > max_samples_per_tick)) {
7919                         __this_cpu_inc(perf_throttled_count);
7920                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7921                         hwc->interrupts = MAX_INTERRUPTS;
7922                         perf_log_throttle(event, 0);
7923                         ret = 1;
7924                 }
7925         }
7926
7927         if (event->attr.freq) {
7928                 u64 now = perf_clock();
7929                 s64 delta = now - hwc->freq_time_stamp;
7930
7931                 hwc->freq_time_stamp = now;
7932
7933                 if (delta > 0 && delta < 2*TICK_NSEC)
7934                         perf_adjust_period(event, delta, hwc->last_period, true);
7935         }
7936
7937         return ret;
7938 }
7939
7940 int perf_event_account_interrupt(struct perf_event *event)
7941 {
7942         return __perf_event_account_interrupt(event, 1);
7943 }
7944
7945 /*
7946  * Generic event overflow handling, sampling.
7947  */
7948
7949 static int __perf_event_overflow(struct perf_event *event,
7950                                    int throttle, struct perf_sample_data *data,
7951                                    struct pt_regs *regs)
7952 {
7953         int events = atomic_read(&event->event_limit);
7954         int ret = 0;
7955
7956         /*
7957          * Non-sampling counters might still use the PMI to fold short
7958          * hardware counters, ignore those.
7959          */
7960         if (unlikely(!is_sampling_event(event)))
7961                 return 0;
7962
7963         ret = __perf_event_account_interrupt(event, throttle);
7964
7965         /*
7966          * XXX event_limit might not quite work as expected on inherited
7967          * events
7968          */
7969
7970         event->pending_kill = POLL_IN;
7971         if (events && atomic_dec_and_test(&event->event_limit)) {
7972                 ret = 1;
7973                 event->pending_kill = POLL_HUP;
7974
7975                 perf_event_disable_inatomic(event);
7976         }
7977
7978         READ_ONCE(event->overflow_handler)(event, data, regs);
7979
7980         if (*perf_event_fasync(event) && event->pending_kill) {
7981                 event->pending_wakeup = 1;
7982                 irq_work_queue(&event->pending);
7983         }
7984
7985         return ret;
7986 }
7987
7988 int perf_event_overflow(struct perf_event *event,
7989                           struct perf_sample_data *data,
7990                           struct pt_regs *regs)
7991 {
7992         return __perf_event_overflow(event, 1, data, regs);
7993 }
7994
7995 /*
7996  * Generic software event infrastructure
7997  */
7998
7999 struct swevent_htable {
8000         struct swevent_hlist            *swevent_hlist;
8001         struct mutex                    hlist_mutex;
8002         int                             hlist_refcount;
8003
8004         /* Recursion avoidance in each contexts */
8005         int                             recursion[PERF_NR_CONTEXTS];
8006 };
8007
8008 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8009
8010 /*
8011  * We directly increment event->count and keep a second value in
8012  * event->hw.period_left to count intervals. This period event
8013  * is kept in the range [-sample_period, 0] so that we can use the
8014  * sign as trigger.
8015  */
8016
8017 u64 perf_swevent_set_period(struct perf_event *event)
8018 {
8019         struct hw_perf_event *hwc = &event->hw;
8020         u64 period = hwc->last_period;
8021         u64 nr, offset;
8022         s64 old, val;
8023
8024         hwc->last_period = hwc->sample_period;
8025
8026 again:
8027         old = val = local64_read(&hwc->period_left);
8028         if (val < 0)
8029                 return 0;
8030
8031         nr = div64_u64(period + val, period);
8032         offset = nr * period;
8033         val -= offset;
8034         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8035                 goto again;
8036
8037         return nr;
8038 }
8039
8040 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8041                                     struct perf_sample_data *data,
8042                                     struct pt_regs *regs)
8043 {
8044         struct hw_perf_event *hwc = &event->hw;
8045         int throttle = 0;
8046
8047         if (!overflow)
8048                 overflow = perf_swevent_set_period(event);
8049
8050         if (hwc->interrupts == MAX_INTERRUPTS)
8051                 return;
8052
8053         for (; overflow; overflow--) {
8054                 if (__perf_event_overflow(event, throttle,
8055                                             data, regs)) {
8056                         /*
8057                          * We inhibit the overflow from happening when
8058                          * hwc->interrupts == MAX_INTERRUPTS.
8059                          */
8060                         break;
8061                 }
8062                 throttle = 1;
8063         }
8064 }
8065
8066 static void perf_swevent_event(struct perf_event *event, u64 nr,
8067                                struct perf_sample_data *data,
8068                                struct pt_regs *regs)
8069 {
8070         struct hw_perf_event *hwc = &event->hw;
8071
8072         local64_add(nr, &event->count);
8073
8074         if (!regs)
8075                 return;
8076
8077         if (!is_sampling_event(event))
8078                 return;
8079
8080         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8081                 data->period = nr;
8082                 return perf_swevent_overflow(event, 1, data, regs);
8083         } else
8084                 data->period = event->hw.last_period;
8085
8086         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8087                 return perf_swevent_overflow(event, 1, data, regs);
8088
8089         if (local64_add_negative(nr, &hwc->period_left))
8090                 return;
8091
8092         perf_swevent_overflow(event, 0, data, regs);
8093 }
8094
8095 static int perf_exclude_event(struct perf_event *event,
8096                               struct pt_regs *regs)
8097 {
8098         if (event->hw.state & PERF_HES_STOPPED)
8099                 return 1;
8100
8101         if (regs) {
8102                 if (event->attr.exclude_user && user_mode(regs))
8103                         return 1;
8104
8105                 if (event->attr.exclude_kernel && !user_mode(regs))
8106                         return 1;
8107         }
8108
8109         return 0;
8110 }
8111
8112 static int perf_swevent_match(struct perf_event *event,
8113                                 enum perf_type_id type,
8114                                 u32 event_id,
8115                                 struct perf_sample_data *data,
8116                                 struct pt_regs *regs)
8117 {
8118         if (event->attr.type != type)
8119                 return 0;
8120
8121         if (event->attr.config != event_id)
8122                 return 0;
8123
8124         if (perf_exclude_event(event, regs))
8125                 return 0;
8126
8127         return 1;
8128 }
8129
8130 static inline u64 swevent_hash(u64 type, u32 event_id)
8131 {
8132         u64 val = event_id | (type << 32);
8133
8134         return hash_64(val, SWEVENT_HLIST_BITS);
8135 }
8136
8137 static inline struct hlist_head *
8138 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8139 {
8140         u64 hash = swevent_hash(type, event_id);
8141
8142         return &hlist->heads[hash];
8143 }
8144
8145 /* For the read side: events when they trigger */
8146 static inline struct hlist_head *
8147 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8148 {
8149         struct swevent_hlist *hlist;
8150
8151         hlist = rcu_dereference(swhash->swevent_hlist);
8152         if (!hlist)
8153                 return NULL;
8154
8155         return __find_swevent_head(hlist, type, event_id);
8156 }
8157
8158 /* For the event head insertion and removal in the hlist */
8159 static inline struct hlist_head *
8160 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8161 {
8162         struct swevent_hlist *hlist;
8163         u32 event_id = event->attr.config;
8164         u64 type = event->attr.type;
8165
8166         /*
8167          * Event scheduling is always serialized against hlist allocation
8168          * and release. Which makes the protected version suitable here.
8169          * The context lock guarantees that.
8170          */
8171         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8172                                           lockdep_is_held(&event->ctx->lock));
8173         if (!hlist)
8174                 return NULL;
8175
8176         return __find_swevent_head(hlist, type, event_id);
8177 }
8178
8179 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8180                                     u64 nr,
8181                                     struct perf_sample_data *data,
8182                                     struct pt_regs *regs)
8183 {
8184         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8185         struct perf_event *event;
8186         struct hlist_head *head;
8187
8188         rcu_read_lock();
8189         head = find_swevent_head_rcu(swhash, type, event_id);
8190         if (!head)
8191                 goto end;
8192
8193         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8194                 if (perf_swevent_match(event, type, event_id, data, regs))
8195                         perf_swevent_event(event, nr, data, regs);
8196         }
8197 end:
8198         rcu_read_unlock();
8199 }
8200
8201 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8202
8203 int perf_swevent_get_recursion_context(void)
8204 {
8205         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8206
8207         return get_recursion_context(swhash->recursion);
8208 }
8209 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8210
8211 void perf_swevent_put_recursion_context(int rctx)
8212 {
8213         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8214
8215         put_recursion_context(swhash->recursion, rctx);
8216 }
8217
8218 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8219 {
8220         struct perf_sample_data data;
8221
8222         if (WARN_ON_ONCE(!regs))
8223                 return;
8224
8225         perf_sample_data_init(&data, addr, 0);
8226         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8227 }
8228
8229 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8230 {
8231         int rctx;
8232
8233         preempt_disable_notrace();
8234         rctx = perf_swevent_get_recursion_context();
8235         if (unlikely(rctx < 0))
8236                 goto fail;
8237
8238         ___perf_sw_event(event_id, nr, regs, addr);
8239
8240         perf_swevent_put_recursion_context(rctx);
8241 fail:
8242         preempt_enable_notrace();
8243 }
8244
8245 static void perf_swevent_read(struct perf_event *event)
8246 {
8247 }
8248
8249 static int perf_swevent_add(struct perf_event *event, int flags)
8250 {
8251         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8252         struct hw_perf_event *hwc = &event->hw;
8253         struct hlist_head *head;
8254
8255         if (is_sampling_event(event)) {
8256                 hwc->last_period = hwc->sample_period;
8257                 perf_swevent_set_period(event);
8258         }
8259
8260         hwc->state = !(flags & PERF_EF_START);
8261
8262         head = find_swevent_head(swhash, event);
8263         if (WARN_ON_ONCE(!head))
8264                 return -EINVAL;
8265
8266         hlist_add_head_rcu(&event->hlist_entry, head);
8267         perf_event_update_userpage(event);
8268
8269         return 0;
8270 }
8271
8272 static void perf_swevent_del(struct perf_event *event, int flags)
8273 {
8274         hlist_del_rcu(&event->hlist_entry);
8275 }
8276
8277 static void perf_swevent_start(struct perf_event *event, int flags)
8278 {
8279         event->hw.state = 0;
8280 }
8281
8282 static void perf_swevent_stop(struct perf_event *event, int flags)
8283 {
8284         event->hw.state = PERF_HES_STOPPED;
8285 }
8286
8287 /* Deref the hlist from the update side */
8288 static inline struct swevent_hlist *
8289 swevent_hlist_deref(struct swevent_htable *swhash)
8290 {
8291         return rcu_dereference_protected(swhash->swevent_hlist,
8292                                          lockdep_is_held(&swhash->hlist_mutex));
8293 }
8294
8295 static void swevent_hlist_release(struct swevent_htable *swhash)
8296 {
8297         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8298
8299         if (!hlist)
8300                 return;
8301
8302         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8303         kfree_rcu(hlist, rcu_head);
8304 }
8305
8306 static void swevent_hlist_put_cpu(int cpu)
8307 {
8308         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8309
8310         mutex_lock(&swhash->hlist_mutex);
8311
8312         if (!--swhash->hlist_refcount)
8313                 swevent_hlist_release(swhash);
8314
8315         mutex_unlock(&swhash->hlist_mutex);
8316 }
8317
8318 static void swevent_hlist_put(void)
8319 {
8320         int cpu;
8321
8322         for_each_possible_cpu(cpu)
8323                 swevent_hlist_put_cpu(cpu);
8324 }
8325
8326 static int swevent_hlist_get_cpu(int cpu)
8327 {
8328         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8329         int err = 0;
8330
8331         mutex_lock(&swhash->hlist_mutex);
8332         if (!swevent_hlist_deref(swhash) &&
8333             cpumask_test_cpu(cpu, perf_online_mask)) {
8334                 struct swevent_hlist *hlist;
8335
8336                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8337                 if (!hlist) {
8338                         err = -ENOMEM;
8339                         goto exit;
8340                 }
8341                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8342         }
8343         swhash->hlist_refcount++;
8344 exit:
8345         mutex_unlock(&swhash->hlist_mutex);
8346
8347         return err;
8348 }
8349
8350 static int swevent_hlist_get(void)
8351 {
8352         int err, cpu, failed_cpu;
8353
8354         mutex_lock(&pmus_lock);
8355         for_each_possible_cpu(cpu) {
8356                 err = swevent_hlist_get_cpu(cpu);
8357                 if (err) {
8358                         failed_cpu = cpu;
8359                         goto fail;
8360                 }
8361         }
8362         mutex_unlock(&pmus_lock);
8363         return 0;
8364 fail:
8365         for_each_possible_cpu(cpu) {
8366                 if (cpu == failed_cpu)
8367                         break;
8368                 swevent_hlist_put_cpu(cpu);
8369         }
8370         mutex_unlock(&pmus_lock);
8371         return err;
8372 }
8373
8374 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8375
8376 static void sw_perf_event_destroy(struct perf_event *event)
8377 {
8378         u64 event_id = event->attr.config;
8379
8380         WARN_ON(event->parent);
8381
8382         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8383         swevent_hlist_put();
8384 }
8385
8386 static int perf_swevent_init(struct perf_event *event)
8387 {
8388         u64 event_id = event->attr.config;
8389
8390         if (event->attr.type != PERF_TYPE_SOFTWARE)
8391                 return -ENOENT;
8392
8393         /*
8394          * no branch sampling for software events
8395          */
8396         if (has_branch_stack(event))
8397                 return -EOPNOTSUPP;
8398
8399         switch (event_id) {
8400         case PERF_COUNT_SW_CPU_CLOCK:
8401         case PERF_COUNT_SW_TASK_CLOCK:
8402                 return -ENOENT;
8403
8404         default:
8405                 break;
8406         }
8407
8408         if (event_id >= PERF_COUNT_SW_MAX)
8409                 return -ENOENT;
8410
8411         if (!event->parent) {
8412                 int err;
8413
8414                 err = swevent_hlist_get();
8415                 if (err)
8416                         return err;
8417
8418                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8419                 event->destroy = sw_perf_event_destroy;
8420         }
8421
8422         return 0;
8423 }
8424
8425 static struct pmu perf_swevent = {
8426         .task_ctx_nr    = perf_sw_context,
8427
8428         .capabilities   = PERF_PMU_CAP_NO_NMI,
8429
8430         .event_init     = perf_swevent_init,
8431         .add            = perf_swevent_add,
8432         .del            = perf_swevent_del,
8433         .start          = perf_swevent_start,
8434         .stop           = perf_swevent_stop,
8435         .read           = perf_swevent_read,
8436 };
8437
8438 #ifdef CONFIG_EVENT_TRACING
8439
8440 static int perf_tp_filter_match(struct perf_event *event,
8441                                 struct perf_sample_data *data)
8442 {
8443         void *record = data->raw->frag.data;
8444
8445         /* only top level events have filters set */
8446         if (event->parent)
8447                 event = event->parent;
8448
8449         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8450                 return 1;
8451         return 0;
8452 }
8453
8454 static int perf_tp_event_match(struct perf_event *event,
8455                                 struct perf_sample_data *data,
8456                                 struct pt_regs *regs)
8457 {
8458         if (event->hw.state & PERF_HES_STOPPED)
8459                 return 0;
8460         /*
8461          * All tracepoints are from kernel-space.
8462          */
8463         if (event->attr.exclude_kernel)
8464                 return 0;
8465
8466         if (!perf_tp_filter_match(event, data))
8467                 return 0;
8468
8469         return 1;
8470 }
8471
8472 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8473                                struct trace_event_call *call, u64 count,
8474                                struct pt_regs *regs, struct hlist_head *head,
8475                                struct task_struct *task)
8476 {
8477         if (bpf_prog_array_valid(call)) {
8478                 *(struct pt_regs **)raw_data = regs;
8479                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8480                         perf_swevent_put_recursion_context(rctx);
8481                         return;
8482                 }
8483         }
8484         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8485                       rctx, task);
8486 }
8487 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8488
8489 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8490                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8491                    struct task_struct *task)
8492 {
8493         struct perf_sample_data data;
8494         struct perf_event *event;
8495
8496         struct perf_raw_record raw = {
8497                 .frag = {
8498                         .size = entry_size,
8499                         .data = record,
8500                 },
8501         };
8502
8503         perf_sample_data_init(&data, 0, 0);
8504         data.raw = &raw;
8505
8506         perf_trace_buf_update(record, event_type);
8507
8508         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8509                 if (perf_tp_event_match(event, &data, regs))
8510                         perf_swevent_event(event, count, &data, regs);
8511         }
8512
8513         /*
8514          * If we got specified a target task, also iterate its context and
8515          * deliver this event there too.
8516          */
8517         if (task && task != current) {
8518                 struct perf_event_context *ctx;
8519                 struct trace_entry *entry = record;
8520
8521                 rcu_read_lock();
8522                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8523                 if (!ctx)
8524                         goto unlock;
8525
8526                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8527                         if (event->cpu != smp_processor_id())
8528                                 continue;
8529                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8530                                 continue;
8531                         if (event->attr.config != entry->type)
8532                                 continue;
8533                         if (perf_tp_event_match(event, &data, regs))
8534                                 perf_swevent_event(event, count, &data, regs);
8535                 }
8536 unlock:
8537                 rcu_read_unlock();
8538         }
8539
8540         perf_swevent_put_recursion_context(rctx);
8541 }
8542 EXPORT_SYMBOL_GPL(perf_tp_event);
8543
8544 static void tp_perf_event_destroy(struct perf_event *event)
8545 {
8546         perf_trace_destroy(event);
8547 }
8548
8549 static int perf_tp_event_init(struct perf_event *event)
8550 {
8551         int err;
8552
8553         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8554                 return -ENOENT;
8555
8556         /*
8557          * no branch sampling for tracepoint events
8558          */
8559         if (has_branch_stack(event))
8560                 return -EOPNOTSUPP;
8561
8562         err = perf_trace_init(event);
8563         if (err)
8564                 return err;
8565
8566         event->destroy = tp_perf_event_destroy;
8567
8568         return 0;
8569 }
8570
8571 static struct pmu perf_tracepoint = {
8572         .task_ctx_nr    = perf_sw_context,
8573
8574         .event_init     = perf_tp_event_init,
8575         .add            = perf_trace_add,
8576         .del            = perf_trace_del,
8577         .start          = perf_swevent_start,
8578         .stop           = perf_swevent_stop,
8579         .read           = perf_swevent_read,
8580 };
8581
8582 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8583 /*
8584  * Flags in config, used by dynamic PMU kprobe and uprobe
8585  * The flags should match following PMU_FORMAT_ATTR().
8586  *
8587  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8588  *                               if not set, create kprobe/uprobe
8589  */
8590 enum perf_probe_config {
8591         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8592 };
8593
8594 PMU_FORMAT_ATTR(retprobe, "config:0");
8595
8596 static struct attribute *probe_attrs[] = {
8597         &format_attr_retprobe.attr,
8598         NULL,
8599 };
8600
8601 static struct attribute_group probe_format_group = {
8602         .name = "format",
8603         .attrs = probe_attrs,
8604 };
8605
8606 static const struct attribute_group *probe_attr_groups[] = {
8607         &probe_format_group,
8608         NULL,
8609 };
8610 #endif
8611
8612 #ifdef CONFIG_KPROBE_EVENTS
8613 static int perf_kprobe_event_init(struct perf_event *event);
8614 static struct pmu perf_kprobe = {
8615         .task_ctx_nr    = perf_sw_context,
8616         .event_init     = perf_kprobe_event_init,
8617         .add            = perf_trace_add,
8618         .del            = perf_trace_del,
8619         .start          = perf_swevent_start,
8620         .stop           = perf_swevent_stop,
8621         .read           = perf_swevent_read,
8622         .attr_groups    = probe_attr_groups,
8623 };
8624
8625 static int perf_kprobe_event_init(struct perf_event *event)
8626 {
8627         int err;
8628         bool is_retprobe;
8629
8630         if (event->attr.type != perf_kprobe.type)
8631                 return -ENOENT;
8632
8633         if (!capable(CAP_SYS_ADMIN))
8634                 return -EACCES;
8635
8636         /*
8637          * no branch sampling for probe events
8638          */
8639         if (has_branch_stack(event))
8640                 return -EOPNOTSUPP;
8641
8642         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8643         err = perf_kprobe_init(event, is_retprobe);
8644         if (err)
8645                 return err;
8646
8647         event->destroy = perf_kprobe_destroy;
8648
8649         return 0;
8650 }
8651 #endif /* CONFIG_KPROBE_EVENTS */
8652
8653 #ifdef CONFIG_UPROBE_EVENTS
8654 static int perf_uprobe_event_init(struct perf_event *event);
8655 static struct pmu perf_uprobe = {
8656         .task_ctx_nr    = perf_sw_context,
8657         .event_init     = perf_uprobe_event_init,
8658         .add            = perf_trace_add,
8659         .del            = perf_trace_del,
8660         .start          = perf_swevent_start,
8661         .stop           = perf_swevent_stop,
8662         .read           = perf_swevent_read,
8663         .attr_groups    = probe_attr_groups,
8664 };
8665
8666 static int perf_uprobe_event_init(struct perf_event *event)
8667 {
8668         int err;
8669         bool is_retprobe;
8670
8671         if (event->attr.type != perf_uprobe.type)
8672                 return -ENOENT;
8673
8674         if (!capable(CAP_SYS_ADMIN))
8675                 return -EACCES;
8676
8677         /*
8678          * no branch sampling for probe events
8679          */
8680         if (has_branch_stack(event))
8681                 return -EOPNOTSUPP;
8682
8683         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8684         err = perf_uprobe_init(event, is_retprobe);
8685         if (err)
8686                 return err;
8687
8688         event->destroy = perf_uprobe_destroy;
8689
8690         return 0;
8691 }
8692 #endif /* CONFIG_UPROBE_EVENTS */
8693
8694 static inline void perf_tp_register(void)
8695 {
8696         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8697 #ifdef CONFIG_KPROBE_EVENTS
8698         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8699 #endif
8700 #ifdef CONFIG_UPROBE_EVENTS
8701         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8702 #endif
8703 }
8704
8705 static void perf_event_free_filter(struct perf_event *event)
8706 {
8707         ftrace_profile_free_filter(event);
8708 }
8709
8710 #ifdef CONFIG_BPF_SYSCALL
8711 static void bpf_overflow_handler(struct perf_event *event,
8712                                  struct perf_sample_data *data,
8713                                  struct pt_regs *regs)
8714 {
8715         struct bpf_perf_event_data_kern ctx = {
8716                 .data = data,
8717                 .event = event,
8718         };
8719         int ret = 0;
8720
8721         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8722         preempt_disable();
8723         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8724                 goto out;
8725         rcu_read_lock();
8726         ret = BPF_PROG_RUN(event->prog, &ctx);
8727         rcu_read_unlock();
8728 out:
8729         __this_cpu_dec(bpf_prog_active);
8730         preempt_enable();
8731         if (!ret)
8732                 return;
8733
8734         event->orig_overflow_handler(event, data, regs);
8735 }
8736
8737 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8738 {
8739         struct bpf_prog *prog;
8740
8741         if (event->overflow_handler_context)
8742                 /* hw breakpoint or kernel counter */
8743                 return -EINVAL;
8744
8745         if (event->prog)
8746                 return -EEXIST;
8747
8748         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8749         if (IS_ERR(prog))
8750                 return PTR_ERR(prog);
8751
8752         event->prog = prog;
8753         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8754         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8755         return 0;
8756 }
8757
8758 static void perf_event_free_bpf_handler(struct perf_event *event)
8759 {
8760         struct bpf_prog *prog = event->prog;
8761
8762         if (!prog)
8763                 return;
8764
8765         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8766         event->prog = NULL;
8767         bpf_prog_put(prog);
8768 }
8769 #else
8770 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8771 {
8772         return -EOPNOTSUPP;
8773 }
8774 static void perf_event_free_bpf_handler(struct perf_event *event)
8775 {
8776 }
8777 #endif
8778
8779 /*
8780  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8781  * with perf_event_open()
8782  */
8783 static inline bool perf_event_is_tracing(struct perf_event *event)
8784 {
8785         if (event->pmu == &perf_tracepoint)
8786                 return true;
8787 #ifdef CONFIG_KPROBE_EVENTS
8788         if (event->pmu == &perf_kprobe)
8789                 return true;
8790 #endif
8791 #ifdef CONFIG_UPROBE_EVENTS
8792         if (event->pmu == &perf_uprobe)
8793                 return true;
8794 #endif
8795         return false;
8796 }
8797
8798 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8799 {
8800         bool is_kprobe, is_tracepoint, is_syscall_tp;
8801         struct bpf_prog *prog;
8802         int ret;
8803
8804         if (!perf_event_is_tracing(event))
8805                 return perf_event_set_bpf_handler(event, prog_fd);
8806
8807         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8808         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8809         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8810         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8811                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8812                 return -EINVAL;
8813
8814         prog = bpf_prog_get(prog_fd);
8815         if (IS_ERR(prog))
8816                 return PTR_ERR(prog);
8817
8818         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8819             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8820             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8821                 /* valid fd, but invalid bpf program type */
8822                 bpf_prog_put(prog);
8823                 return -EINVAL;
8824         }
8825
8826         /* Kprobe override only works for kprobes, not uprobes. */
8827         if (prog->kprobe_override &&
8828             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8829                 bpf_prog_put(prog);
8830                 return -EINVAL;
8831         }
8832
8833         if (is_tracepoint || is_syscall_tp) {
8834                 int off = trace_event_get_offsets(event->tp_event);
8835
8836                 if (prog->aux->max_ctx_offset > off) {
8837                         bpf_prog_put(prog);
8838                         return -EACCES;
8839                 }
8840         }
8841
8842         ret = perf_event_attach_bpf_prog(event, prog);
8843         if (ret)
8844                 bpf_prog_put(prog);
8845         return ret;
8846 }
8847
8848 static void perf_event_free_bpf_prog(struct perf_event *event)
8849 {
8850         if (!perf_event_is_tracing(event)) {
8851                 perf_event_free_bpf_handler(event);
8852                 return;
8853         }
8854         perf_event_detach_bpf_prog(event);
8855 }
8856
8857 #else
8858
8859 static inline void perf_tp_register(void)
8860 {
8861 }
8862
8863 static void perf_event_free_filter(struct perf_event *event)
8864 {
8865 }
8866
8867 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8868 {
8869         return -ENOENT;
8870 }
8871
8872 static void perf_event_free_bpf_prog(struct perf_event *event)
8873 {
8874 }
8875 #endif /* CONFIG_EVENT_TRACING */
8876
8877 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8878 void perf_bp_event(struct perf_event *bp, void *data)
8879 {
8880         struct perf_sample_data sample;
8881         struct pt_regs *regs = data;
8882
8883         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8884
8885         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8886                 perf_swevent_event(bp, 1, &sample, regs);
8887 }
8888 #endif
8889
8890 /*
8891  * Allocate a new address filter
8892  */
8893 static struct perf_addr_filter *
8894 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8895 {
8896         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8897         struct perf_addr_filter *filter;
8898
8899         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8900         if (!filter)
8901                 return NULL;
8902
8903         INIT_LIST_HEAD(&filter->entry);
8904         list_add_tail(&filter->entry, filters);
8905
8906         return filter;
8907 }
8908
8909 static void free_filters_list(struct list_head *filters)
8910 {
8911         struct perf_addr_filter *filter, *iter;
8912
8913         list_for_each_entry_safe(filter, iter, filters, entry) {
8914                 path_put(&filter->path);
8915                 list_del(&filter->entry);
8916                 kfree(filter);
8917         }
8918 }
8919
8920 /*
8921  * Free existing address filters and optionally install new ones
8922  */
8923 static void perf_addr_filters_splice(struct perf_event *event,
8924                                      struct list_head *head)
8925 {
8926         unsigned long flags;
8927         LIST_HEAD(list);
8928
8929         if (!has_addr_filter(event))
8930                 return;
8931
8932         /* don't bother with children, they don't have their own filters */
8933         if (event->parent)
8934                 return;
8935
8936         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8937
8938         list_splice_init(&event->addr_filters.list, &list);
8939         if (head)
8940                 list_splice(head, &event->addr_filters.list);
8941
8942         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8943
8944         free_filters_list(&list);
8945 }
8946
8947 /*
8948  * Scan through mm's vmas and see if one of them matches the
8949  * @filter; if so, adjust filter's address range.
8950  * Called with mm::mmap_sem down for reading.
8951  */
8952 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
8953                                    struct mm_struct *mm,
8954                                    struct perf_addr_filter_range *fr)
8955 {
8956         struct vm_area_struct *vma;
8957
8958         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8959                 if (!vma->vm_file)
8960                         continue;
8961
8962                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
8963                         return;
8964         }
8965 }
8966
8967 /*
8968  * Update event's address range filters based on the
8969  * task's existing mappings, if any.
8970  */
8971 static void perf_event_addr_filters_apply(struct perf_event *event)
8972 {
8973         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8974         struct task_struct *task = READ_ONCE(event->ctx->task);
8975         struct perf_addr_filter *filter;
8976         struct mm_struct *mm = NULL;
8977         unsigned int count = 0;
8978         unsigned long flags;
8979
8980         /*
8981          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8982          * will stop on the parent's child_mutex that our caller is also holding
8983          */
8984         if (task == TASK_TOMBSTONE)
8985                 return;
8986
8987         if (ifh->nr_file_filters) {
8988                 mm = get_task_mm(task);
8989                 if (!mm)
8990                         goto restart;
8991
8992                 down_read(&mm->mmap_sem);
8993         }
8994
8995         raw_spin_lock_irqsave(&ifh->lock, flags);
8996         list_for_each_entry(filter, &ifh->list, entry) {
8997                 if (filter->path.dentry) {
8998                         /*
8999                          * Adjust base offset if the filter is associated to a
9000                          * binary that needs to be mapped:
9001                          */
9002                         event->addr_filter_ranges[count].start = 0;
9003                         event->addr_filter_ranges[count].size = 0;
9004
9005                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9006                 } else {
9007                         event->addr_filter_ranges[count].start = filter->offset;
9008                         event->addr_filter_ranges[count].size  = filter->size;
9009                 }
9010
9011                 count++;
9012         }
9013
9014         event->addr_filters_gen++;
9015         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9016
9017         if (ifh->nr_file_filters) {
9018                 up_read(&mm->mmap_sem);
9019
9020                 mmput(mm);
9021         }
9022
9023 restart:
9024         perf_event_stop(event, 1);
9025 }
9026
9027 /*
9028  * Address range filtering: limiting the data to certain
9029  * instruction address ranges. Filters are ioctl()ed to us from
9030  * userspace as ascii strings.
9031  *
9032  * Filter string format:
9033  *
9034  * ACTION RANGE_SPEC
9035  * where ACTION is one of the
9036  *  * "filter": limit the trace to this region
9037  *  * "start": start tracing from this address
9038  *  * "stop": stop tracing at this address/region;
9039  * RANGE_SPEC is
9040  *  * for kernel addresses: <start address>[/<size>]
9041  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9042  *
9043  * if <size> is not specified or is zero, the range is treated as a single
9044  * address; not valid for ACTION=="filter".
9045  */
9046 enum {
9047         IF_ACT_NONE = -1,
9048         IF_ACT_FILTER,
9049         IF_ACT_START,
9050         IF_ACT_STOP,
9051         IF_SRC_FILE,
9052         IF_SRC_KERNEL,
9053         IF_SRC_FILEADDR,
9054         IF_SRC_KERNELADDR,
9055 };
9056
9057 enum {
9058         IF_STATE_ACTION = 0,
9059         IF_STATE_SOURCE,
9060         IF_STATE_END,
9061 };
9062
9063 static const match_table_t if_tokens = {
9064         { IF_ACT_FILTER,        "filter" },
9065         { IF_ACT_START,         "start" },
9066         { IF_ACT_STOP,          "stop" },
9067         { IF_SRC_FILE,          "%u/%u@%s" },
9068         { IF_SRC_KERNEL,        "%u/%u" },
9069         { IF_SRC_FILEADDR,      "%u@%s" },
9070         { IF_SRC_KERNELADDR,    "%u" },
9071         { IF_ACT_NONE,          NULL },
9072 };
9073
9074 /*
9075  * Address filter string parser
9076  */
9077 static int
9078 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9079                              struct list_head *filters)
9080 {
9081         struct perf_addr_filter *filter = NULL;
9082         char *start, *orig, *filename = NULL;
9083         substring_t args[MAX_OPT_ARGS];
9084         int state = IF_STATE_ACTION, token;
9085         unsigned int kernel = 0;
9086         int ret = -EINVAL;
9087
9088         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9089         if (!fstr)
9090                 return -ENOMEM;
9091
9092         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9093                 static const enum perf_addr_filter_action_t actions[] = {
9094                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9095                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9096                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9097                 };
9098                 ret = -EINVAL;
9099
9100                 if (!*start)
9101                         continue;
9102
9103                 /* filter definition begins */
9104                 if (state == IF_STATE_ACTION) {
9105                         filter = perf_addr_filter_new(event, filters);
9106                         if (!filter)
9107                                 goto fail;
9108                 }
9109
9110                 token = match_token(start, if_tokens, args);
9111                 switch (token) {
9112                 case IF_ACT_FILTER:
9113                 case IF_ACT_START:
9114                 case IF_ACT_STOP:
9115                         if (state != IF_STATE_ACTION)
9116                                 goto fail;
9117
9118                         filter->action = actions[token];
9119                         state = IF_STATE_SOURCE;
9120                         break;
9121
9122                 case IF_SRC_KERNELADDR:
9123                 case IF_SRC_KERNEL:
9124                         kernel = 1;
9125
9126                 case IF_SRC_FILEADDR:
9127                 case IF_SRC_FILE:
9128                         if (state != IF_STATE_SOURCE)
9129                                 goto fail;
9130
9131                         *args[0].to = 0;
9132                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9133                         if (ret)
9134                                 goto fail;
9135
9136                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9137                                 *args[1].to = 0;
9138                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9139                                 if (ret)
9140                                         goto fail;
9141                         }
9142
9143                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9144                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9145
9146                                 kfree(filename);
9147                                 filename = match_strdup(&args[fpos]);
9148                                 if (!filename) {
9149                                         ret = -ENOMEM;
9150                                         goto fail;
9151                                 }
9152                         }
9153
9154                         state = IF_STATE_END;
9155                         break;
9156
9157                 default:
9158                         goto fail;
9159                 }
9160
9161                 /*
9162                  * Filter definition is fully parsed, validate and install it.
9163                  * Make sure that it doesn't contradict itself or the event's
9164                  * attribute.
9165                  */
9166                 if (state == IF_STATE_END) {
9167                         ret = -EINVAL;
9168                         if (kernel && event->attr.exclude_kernel)
9169                                 goto fail;
9170
9171                         /*
9172                          * ACTION "filter" must have a non-zero length region
9173                          * specified.
9174                          */
9175                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9176                             !filter->size)
9177                                 goto fail;
9178
9179                         if (!kernel) {
9180                                 if (!filename)
9181                                         goto fail;
9182
9183                                 /*
9184                                  * For now, we only support file-based filters
9185                                  * in per-task events; doing so for CPU-wide
9186                                  * events requires additional context switching
9187                                  * trickery, since same object code will be
9188                                  * mapped at different virtual addresses in
9189                                  * different processes.
9190                                  */
9191                                 ret = -EOPNOTSUPP;
9192                                 if (!event->ctx->task)
9193                                         goto fail;
9194
9195                                 /* look up the path and grab its inode */
9196                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9197                                                 &filter->path);
9198                                 if (ret)
9199                                         goto fail;
9200
9201                                 ret = -EINVAL;
9202                                 if (!filter->path.dentry ||
9203                                     !S_ISREG(d_inode(filter->path.dentry)
9204                                              ->i_mode))
9205                                         goto fail;
9206
9207                                 event->addr_filters.nr_file_filters++;
9208                         }
9209
9210                         /* ready to consume more filters */
9211                         kfree(filename);
9212                         filename = NULL;
9213                         state = IF_STATE_ACTION;
9214                         filter = NULL;
9215                         kernel = 0;
9216                 }
9217         }
9218
9219         if (state != IF_STATE_ACTION)
9220                 goto fail;
9221
9222         kfree(filename);
9223         kfree(orig);
9224
9225         return 0;
9226
9227 fail:
9228         kfree(filename);
9229         free_filters_list(filters);
9230         kfree(orig);
9231
9232         return ret;
9233 }
9234
9235 static int
9236 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9237 {
9238         LIST_HEAD(filters);
9239         int ret;
9240
9241         /*
9242          * Since this is called in perf_ioctl() path, we're already holding
9243          * ctx::mutex.
9244          */
9245         lockdep_assert_held(&event->ctx->mutex);
9246
9247         if (WARN_ON_ONCE(event->parent))
9248                 return -EINVAL;
9249
9250         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9251         if (ret)
9252                 goto fail_clear_files;
9253
9254         ret = event->pmu->addr_filters_validate(&filters);
9255         if (ret)
9256                 goto fail_free_filters;
9257
9258         /* remove existing filters, if any */
9259         perf_addr_filters_splice(event, &filters);
9260
9261         /* install new filters */
9262         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9263
9264         return ret;
9265
9266 fail_free_filters:
9267         free_filters_list(&filters);
9268
9269 fail_clear_files:
9270         event->addr_filters.nr_file_filters = 0;
9271
9272         return ret;
9273 }
9274
9275 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9276 {
9277         int ret = -EINVAL;
9278         char *filter_str;
9279
9280         filter_str = strndup_user(arg, PAGE_SIZE);
9281         if (IS_ERR(filter_str))
9282                 return PTR_ERR(filter_str);
9283
9284 #ifdef CONFIG_EVENT_TRACING
9285         if (perf_event_is_tracing(event)) {
9286                 struct perf_event_context *ctx = event->ctx;
9287
9288                 /*
9289                  * Beware, here be dragons!!
9290                  *
9291                  * the tracepoint muck will deadlock against ctx->mutex, but
9292                  * the tracepoint stuff does not actually need it. So
9293                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9294                  * already have a reference on ctx.
9295                  *
9296                  * This can result in event getting moved to a different ctx,
9297                  * but that does not affect the tracepoint state.
9298                  */
9299                 mutex_unlock(&ctx->mutex);
9300                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9301                 mutex_lock(&ctx->mutex);
9302         } else
9303 #endif
9304         if (has_addr_filter(event))
9305                 ret = perf_event_set_addr_filter(event, filter_str);
9306
9307         kfree(filter_str);
9308         return ret;
9309 }
9310
9311 /*
9312  * hrtimer based swevent callback
9313  */
9314
9315 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9316 {
9317         enum hrtimer_restart ret = HRTIMER_RESTART;
9318         struct perf_sample_data data;
9319         struct pt_regs *regs;
9320         struct perf_event *event;
9321         u64 period;
9322
9323         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9324
9325         if (event->state != PERF_EVENT_STATE_ACTIVE)
9326                 return HRTIMER_NORESTART;
9327
9328         event->pmu->read(event);
9329
9330         perf_sample_data_init(&data, 0, event->hw.last_period);
9331         regs = get_irq_regs();
9332
9333         if (regs && !perf_exclude_event(event, regs)) {
9334                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9335                         if (__perf_event_overflow(event, 1, &data, regs))
9336                                 ret = HRTIMER_NORESTART;
9337         }
9338
9339         period = max_t(u64, 10000, event->hw.sample_period);
9340         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9341
9342         return ret;
9343 }
9344
9345 static void perf_swevent_start_hrtimer(struct perf_event *event)
9346 {
9347         struct hw_perf_event *hwc = &event->hw;
9348         s64 period;
9349
9350         if (!is_sampling_event(event))
9351                 return;
9352
9353         period = local64_read(&hwc->period_left);
9354         if (period) {
9355                 if (period < 0)
9356                         period = 10000;
9357
9358                 local64_set(&hwc->period_left, 0);
9359         } else {
9360                 period = max_t(u64, 10000, hwc->sample_period);
9361         }
9362         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9363                       HRTIMER_MODE_REL_PINNED);
9364 }
9365
9366 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9367 {
9368         struct hw_perf_event *hwc = &event->hw;
9369
9370         if (is_sampling_event(event)) {
9371                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9372                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9373
9374                 hrtimer_cancel(&hwc->hrtimer);
9375         }
9376 }
9377
9378 static void perf_swevent_init_hrtimer(struct perf_event *event)
9379 {
9380         struct hw_perf_event *hwc = &event->hw;
9381
9382         if (!is_sampling_event(event))
9383                 return;
9384
9385         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9386         hwc->hrtimer.function = perf_swevent_hrtimer;
9387
9388         /*
9389          * Since hrtimers have a fixed rate, we can do a static freq->period
9390          * mapping and avoid the whole period adjust feedback stuff.
9391          */
9392         if (event->attr.freq) {
9393                 long freq = event->attr.sample_freq;
9394
9395                 event->attr.sample_period = NSEC_PER_SEC / freq;
9396                 hwc->sample_period = event->attr.sample_period;
9397                 local64_set(&hwc->period_left, hwc->sample_period);
9398                 hwc->last_period = hwc->sample_period;
9399                 event->attr.freq = 0;
9400         }
9401 }
9402
9403 /*
9404  * Software event: cpu wall time clock
9405  */
9406
9407 static void cpu_clock_event_update(struct perf_event *event)
9408 {
9409         s64 prev;
9410         u64 now;
9411
9412         now = local_clock();
9413         prev = local64_xchg(&event->hw.prev_count, now);
9414         local64_add(now - prev, &event->count);
9415 }
9416
9417 static void cpu_clock_event_start(struct perf_event *event, int flags)
9418 {
9419         local64_set(&event->hw.prev_count, local_clock());
9420         perf_swevent_start_hrtimer(event);
9421 }
9422
9423 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9424 {
9425         perf_swevent_cancel_hrtimer(event);
9426         cpu_clock_event_update(event);
9427 }
9428
9429 static int cpu_clock_event_add(struct perf_event *event, int flags)
9430 {
9431         if (flags & PERF_EF_START)
9432                 cpu_clock_event_start(event, flags);
9433         perf_event_update_userpage(event);
9434
9435         return 0;
9436 }
9437
9438 static void cpu_clock_event_del(struct perf_event *event, int flags)
9439 {
9440         cpu_clock_event_stop(event, flags);
9441 }
9442
9443 static void cpu_clock_event_read(struct perf_event *event)
9444 {
9445         cpu_clock_event_update(event);
9446 }
9447
9448 static int cpu_clock_event_init(struct perf_event *event)
9449 {
9450         if (event->attr.type != PERF_TYPE_SOFTWARE)
9451                 return -ENOENT;
9452
9453         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9454                 return -ENOENT;
9455
9456         /*
9457          * no branch sampling for software events
9458          */
9459         if (has_branch_stack(event))
9460                 return -EOPNOTSUPP;
9461
9462         perf_swevent_init_hrtimer(event);
9463
9464         return 0;
9465 }
9466
9467 static struct pmu perf_cpu_clock = {
9468         .task_ctx_nr    = perf_sw_context,
9469
9470         .capabilities   = PERF_PMU_CAP_NO_NMI,
9471
9472         .event_init     = cpu_clock_event_init,
9473         .add            = cpu_clock_event_add,
9474         .del            = cpu_clock_event_del,
9475         .start          = cpu_clock_event_start,
9476         .stop           = cpu_clock_event_stop,
9477         .read           = cpu_clock_event_read,
9478 };
9479
9480 /*
9481  * Software event: task time clock
9482  */
9483
9484 static void task_clock_event_update(struct perf_event *event, u64 now)
9485 {
9486         u64 prev;
9487         s64 delta;
9488
9489         prev = local64_xchg(&event->hw.prev_count, now);
9490         delta = now - prev;
9491         local64_add(delta, &event->count);
9492 }
9493
9494 static void task_clock_event_start(struct perf_event *event, int flags)
9495 {
9496         local64_set(&event->hw.prev_count, event->ctx->time);
9497         perf_swevent_start_hrtimer(event);
9498 }
9499
9500 static void task_clock_event_stop(struct perf_event *event, int flags)
9501 {
9502         perf_swevent_cancel_hrtimer(event);
9503         task_clock_event_update(event, event->ctx->time);
9504 }
9505
9506 static int task_clock_event_add(struct perf_event *event, int flags)
9507 {
9508         if (flags & PERF_EF_START)
9509                 task_clock_event_start(event, flags);
9510         perf_event_update_userpage(event);
9511
9512         return 0;
9513 }
9514
9515 static void task_clock_event_del(struct perf_event *event, int flags)
9516 {
9517         task_clock_event_stop(event, PERF_EF_UPDATE);
9518 }
9519
9520 static void task_clock_event_read(struct perf_event *event)
9521 {
9522         u64 now = perf_clock();
9523         u64 delta = now - event->ctx->timestamp;
9524         u64 time = event->ctx->time + delta;
9525
9526         task_clock_event_update(event, time);
9527 }
9528
9529 static int task_clock_event_init(struct perf_event *event)
9530 {
9531         if (event->attr.type != PERF_TYPE_SOFTWARE)
9532                 return -ENOENT;
9533
9534         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9535                 return -ENOENT;
9536
9537         /*
9538          * no branch sampling for software events
9539          */
9540         if (has_branch_stack(event))
9541                 return -EOPNOTSUPP;
9542
9543         perf_swevent_init_hrtimer(event);
9544
9545         return 0;
9546 }
9547
9548 static struct pmu perf_task_clock = {
9549         .task_ctx_nr    = perf_sw_context,
9550
9551         .capabilities   = PERF_PMU_CAP_NO_NMI,
9552
9553         .event_init     = task_clock_event_init,
9554         .add            = task_clock_event_add,
9555         .del            = task_clock_event_del,
9556         .start          = task_clock_event_start,
9557         .stop           = task_clock_event_stop,
9558         .read           = task_clock_event_read,
9559 };
9560
9561 static void perf_pmu_nop_void(struct pmu *pmu)
9562 {
9563 }
9564
9565 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9566 {
9567 }
9568
9569 static int perf_pmu_nop_int(struct pmu *pmu)
9570 {
9571         return 0;
9572 }
9573
9574 static int perf_event_nop_int(struct perf_event *event, u64 value)
9575 {
9576         return 0;
9577 }
9578
9579 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9580
9581 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9582 {
9583         __this_cpu_write(nop_txn_flags, flags);
9584
9585         if (flags & ~PERF_PMU_TXN_ADD)
9586                 return;
9587
9588         perf_pmu_disable(pmu);
9589 }
9590
9591 static int perf_pmu_commit_txn(struct pmu *pmu)
9592 {
9593         unsigned int flags = __this_cpu_read(nop_txn_flags);
9594
9595         __this_cpu_write(nop_txn_flags, 0);
9596
9597         if (flags & ~PERF_PMU_TXN_ADD)
9598                 return 0;
9599
9600         perf_pmu_enable(pmu);
9601         return 0;
9602 }
9603
9604 static void perf_pmu_cancel_txn(struct pmu *pmu)
9605 {
9606         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9607
9608         __this_cpu_write(nop_txn_flags, 0);
9609
9610         if (flags & ~PERF_PMU_TXN_ADD)
9611                 return;
9612
9613         perf_pmu_enable(pmu);
9614 }
9615
9616 static int perf_event_idx_default(struct perf_event *event)
9617 {
9618         return 0;
9619 }
9620
9621 /*
9622  * Ensures all contexts with the same task_ctx_nr have the same
9623  * pmu_cpu_context too.
9624  */
9625 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9626 {
9627         struct pmu *pmu;
9628
9629         if (ctxn < 0)
9630                 return NULL;
9631
9632         list_for_each_entry(pmu, &pmus, entry) {
9633                 if (pmu->task_ctx_nr == ctxn)
9634                         return pmu->pmu_cpu_context;
9635         }
9636
9637         return NULL;
9638 }
9639
9640 static void free_pmu_context(struct pmu *pmu)
9641 {
9642         /*
9643          * Static contexts such as perf_sw_context have a global lifetime
9644          * and may be shared between different PMUs. Avoid freeing them
9645          * when a single PMU is going away.
9646          */
9647         if (pmu->task_ctx_nr > perf_invalid_context)
9648                 return;
9649
9650         free_percpu(pmu->pmu_cpu_context);
9651 }
9652
9653 /*
9654  * Let userspace know that this PMU supports address range filtering:
9655  */
9656 static ssize_t nr_addr_filters_show(struct device *dev,
9657                                     struct device_attribute *attr,
9658                                     char *page)
9659 {
9660         struct pmu *pmu = dev_get_drvdata(dev);
9661
9662         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9663 }
9664 DEVICE_ATTR_RO(nr_addr_filters);
9665
9666 static struct idr pmu_idr;
9667
9668 static ssize_t
9669 type_show(struct device *dev, struct device_attribute *attr, char *page)
9670 {
9671         struct pmu *pmu = dev_get_drvdata(dev);
9672
9673         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9674 }
9675 static DEVICE_ATTR_RO(type);
9676
9677 static ssize_t
9678 perf_event_mux_interval_ms_show(struct device *dev,
9679                                 struct device_attribute *attr,
9680                                 char *page)
9681 {
9682         struct pmu *pmu = dev_get_drvdata(dev);
9683
9684         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9685 }
9686
9687 static DEFINE_MUTEX(mux_interval_mutex);
9688
9689 static ssize_t
9690 perf_event_mux_interval_ms_store(struct device *dev,
9691                                  struct device_attribute *attr,
9692                                  const char *buf, size_t count)
9693 {
9694         struct pmu *pmu = dev_get_drvdata(dev);
9695         int timer, cpu, ret;
9696
9697         ret = kstrtoint(buf, 0, &timer);
9698         if (ret)
9699                 return ret;
9700
9701         if (timer < 1)
9702                 return -EINVAL;
9703
9704         /* same value, noting to do */
9705         if (timer == pmu->hrtimer_interval_ms)
9706                 return count;
9707
9708         mutex_lock(&mux_interval_mutex);
9709         pmu->hrtimer_interval_ms = timer;
9710
9711         /* update all cpuctx for this PMU */
9712         cpus_read_lock();
9713         for_each_online_cpu(cpu) {
9714                 struct perf_cpu_context *cpuctx;
9715                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9716                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9717
9718                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpuctx);
9719         }
9720         cpus_read_unlock();
9721         mutex_unlock(&mux_interval_mutex);
9722
9723         return count;
9724 }
9725 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9726
9727 static struct attribute *pmu_dev_attrs[] = {
9728         &dev_attr_type.attr,
9729         &dev_attr_perf_event_mux_interval_ms.attr,
9730         NULL,
9731 };
9732 ATTRIBUTE_GROUPS(pmu_dev);
9733
9734 static int pmu_bus_running;
9735 static struct bus_type pmu_bus = {
9736         .name           = "event_source",
9737         .dev_groups     = pmu_dev_groups,
9738 };
9739
9740 static void pmu_dev_release(struct device *dev)
9741 {
9742         kfree(dev);
9743 }
9744
9745 static int pmu_dev_alloc(struct pmu *pmu)
9746 {
9747         int ret = -ENOMEM;
9748
9749         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9750         if (!pmu->dev)
9751                 goto out;
9752
9753         pmu->dev->groups = pmu->attr_groups;
9754         device_initialize(pmu->dev);
9755
9756         dev_set_drvdata(pmu->dev, pmu);
9757         pmu->dev->bus = &pmu_bus;
9758         pmu->dev->release = pmu_dev_release;
9759
9760         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9761         if (ret)
9762                 goto free_dev;
9763
9764         ret = device_add(pmu->dev);
9765         if (ret)
9766                 goto free_dev;
9767
9768         /* For PMUs with address filters, throw in an extra attribute: */
9769         if (pmu->nr_addr_filters)
9770                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9771
9772         if (ret)
9773                 goto del_dev;
9774
9775 out:
9776         return ret;
9777
9778 del_dev:
9779         device_del(pmu->dev);
9780
9781 free_dev:
9782         put_device(pmu->dev);
9783         goto out;
9784 }
9785
9786 static struct lock_class_key cpuctx_mutex;
9787 static struct lock_class_key cpuctx_lock;
9788
9789 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9790 {
9791         int cpu, ret;
9792
9793         mutex_lock(&pmus_lock);
9794         ret = -ENOMEM;
9795         pmu->pmu_disable_count = alloc_percpu(int);
9796         if (!pmu->pmu_disable_count)
9797                 goto unlock;
9798
9799         pmu->type = -1;
9800         if (!name)
9801                 goto skip_type;
9802         pmu->name = name;
9803
9804         if (type < 0) {
9805                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9806                 if (type < 0) {
9807                         ret = type;
9808                         goto free_pdc;
9809                 }
9810         }
9811         pmu->type = type;
9812
9813         if (pmu_bus_running) {
9814                 ret = pmu_dev_alloc(pmu);
9815                 if (ret)
9816                         goto free_idr;
9817         }
9818
9819 skip_type:
9820         if (pmu->task_ctx_nr == perf_hw_context) {
9821                 static int hw_context_taken = 0;
9822
9823                 /*
9824                  * Other than systems with heterogeneous CPUs, it never makes
9825                  * sense for two PMUs to share perf_hw_context. PMUs which are
9826                  * uncore must use perf_invalid_context.
9827                  */
9828                 if (WARN_ON_ONCE(hw_context_taken &&
9829                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9830                         pmu->task_ctx_nr = perf_invalid_context;
9831
9832                 hw_context_taken = 1;
9833         }
9834
9835         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9836         if (pmu->pmu_cpu_context)
9837                 goto got_cpu_context;
9838
9839         ret = -ENOMEM;
9840         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9841         if (!pmu->pmu_cpu_context)
9842                 goto free_dev;
9843
9844         for_each_possible_cpu(cpu) {
9845                 struct perf_cpu_context *cpuctx;
9846
9847                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9848                 __perf_event_init_context(&cpuctx->ctx);
9849                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9850                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9851                 cpuctx->ctx.pmu = pmu;
9852                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9853
9854                 __perf_mux_hrtimer_init(cpuctx, cpu);
9855         }
9856
9857 got_cpu_context:
9858         if (!pmu->start_txn) {
9859                 if (pmu->pmu_enable) {
9860                         /*
9861                          * If we have pmu_enable/pmu_disable calls, install
9862                          * transaction stubs that use that to try and batch
9863                          * hardware accesses.
9864                          */
9865                         pmu->start_txn  = perf_pmu_start_txn;
9866                         pmu->commit_txn = perf_pmu_commit_txn;
9867                         pmu->cancel_txn = perf_pmu_cancel_txn;
9868                 } else {
9869                         pmu->start_txn  = perf_pmu_nop_txn;
9870                         pmu->commit_txn = perf_pmu_nop_int;
9871                         pmu->cancel_txn = perf_pmu_nop_void;
9872                 }
9873         }
9874
9875         if (!pmu->pmu_enable) {
9876                 pmu->pmu_enable  = perf_pmu_nop_void;
9877                 pmu->pmu_disable = perf_pmu_nop_void;
9878         }
9879
9880         if (!pmu->check_period)
9881                 pmu->check_period = perf_event_nop_int;
9882
9883         if (!pmu->event_idx)
9884                 pmu->event_idx = perf_event_idx_default;
9885
9886         list_add_rcu(&pmu->entry, &pmus);
9887         atomic_set(&pmu->exclusive_cnt, 0);
9888         ret = 0;
9889 unlock:
9890         mutex_unlock(&pmus_lock);
9891
9892         return ret;
9893
9894 free_dev:
9895         device_del(pmu->dev);
9896         put_device(pmu->dev);
9897
9898 free_idr:
9899         if (pmu->type >= PERF_TYPE_MAX)
9900                 idr_remove(&pmu_idr, pmu->type);
9901
9902 free_pdc:
9903         free_percpu(pmu->pmu_disable_count);
9904         goto unlock;
9905 }
9906 EXPORT_SYMBOL_GPL(perf_pmu_register);
9907
9908 void perf_pmu_unregister(struct pmu *pmu)
9909 {
9910         mutex_lock(&pmus_lock);
9911         list_del_rcu(&pmu->entry);
9912
9913         /*
9914          * We dereference the pmu list under both SRCU and regular RCU, so
9915          * synchronize against both of those.
9916          */
9917         synchronize_srcu(&pmus_srcu);
9918         synchronize_rcu();
9919
9920         free_percpu(pmu->pmu_disable_count);
9921         if (pmu->type >= PERF_TYPE_MAX)
9922                 idr_remove(&pmu_idr, pmu->type);
9923         if (pmu_bus_running) {
9924                 if (pmu->nr_addr_filters)
9925                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9926                 device_del(pmu->dev);
9927                 put_device(pmu->dev);
9928         }
9929         free_pmu_context(pmu);
9930         mutex_unlock(&pmus_lock);
9931 }
9932 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9933
9934 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9935 {
9936         struct perf_event_context *ctx = NULL;
9937         int ret;
9938
9939         if (!try_module_get(pmu->module))
9940                 return -ENODEV;
9941
9942         /*
9943          * A number of pmu->event_init() methods iterate the sibling_list to,
9944          * for example, validate if the group fits on the PMU. Therefore,
9945          * if this is a sibling event, acquire the ctx->mutex to protect
9946          * the sibling_list.
9947          */
9948         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9949                 /*
9950                  * This ctx->mutex can nest when we're called through
9951                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9952                  */
9953                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9954                                                  SINGLE_DEPTH_NESTING);
9955                 BUG_ON(!ctx);
9956         }
9957
9958         event->pmu = pmu;
9959         ret = pmu->event_init(event);
9960
9961         if (ctx)
9962                 perf_event_ctx_unlock(event->group_leader, ctx);
9963
9964         if (ret)
9965                 module_put(pmu->module);
9966
9967         return ret;
9968 }
9969
9970 static struct pmu *perf_init_event(struct perf_event *event)
9971 {
9972         struct pmu *pmu;
9973         int idx;
9974         int ret;
9975
9976         idx = srcu_read_lock(&pmus_srcu);
9977
9978         /* Try parent's PMU first: */
9979         if (event->parent && event->parent->pmu) {
9980                 pmu = event->parent->pmu;
9981                 ret = perf_try_init_event(pmu, event);
9982                 if (!ret)
9983                         goto unlock;
9984         }
9985
9986         rcu_read_lock();
9987         pmu = idr_find(&pmu_idr, event->attr.type);
9988         rcu_read_unlock();
9989         if (pmu) {
9990                 ret = perf_try_init_event(pmu, event);
9991                 if (ret)
9992                         pmu = ERR_PTR(ret);
9993                 goto unlock;
9994         }
9995
9996         list_for_each_entry_rcu(pmu, &pmus, entry) {
9997                 ret = perf_try_init_event(pmu, event);
9998                 if (!ret)
9999                         goto unlock;
10000
10001                 if (ret != -ENOENT) {
10002                         pmu = ERR_PTR(ret);
10003                         goto unlock;
10004                 }
10005         }
10006         pmu = ERR_PTR(-ENOENT);
10007 unlock:
10008         srcu_read_unlock(&pmus_srcu, idx);
10009
10010         return pmu;
10011 }
10012
10013 static void attach_sb_event(struct perf_event *event)
10014 {
10015         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10016
10017         raw_spin_lock(&pel->lock);
10018         list_add_rcu(&event->sb_list, &pel->list);
10019         raw_spin_unlock(&pel->lock);
10020 }
10021
10022 /*
10023  * We keep a list of all !task (and therefore per-cpu) events
10024  * that need to receive side-band records.
10025  *
10026  * This avoids having to scan all the various PMU per-cpu contexts
10027  * looking for them.
10028  */
10029 static void account_pmu_sb_event(struct perf_event *event)
10030 {
10031         if (is_sb_event(event))
10032                 attach_sb_event(event);
10033 }
10034
10035 static void account_event_cpu(struct perf_event *event, int cpu)
10036 {
10037         if (event->parent)
10038                 return;
10039
10040         if (is_cgroup_event(event))
10041                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10042 }
10043
10044 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10045 static void account_freq_event_nohz(void)
10046 {
10047 #ifdef CONFIG_NO_HZ_FULL
10048         /* Lock so we don't race with concurrent unaccount */
10049         spin_lock(&nr_freq_lock);
10050         if (atomic_inc_return(&nr_freq_events) == 1)
10051                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10052         spin_unlock(&nr_freq_lock);
10053 #endif
10054 }
10055
10056 static void account_freq_event(void)
10057 {
10058         if (tick_nohz_full_enabled())
10059                 account_freq_event_nohz();
10060         else
10061                 atomic_inc(&nr_freq_events);
10062 }
10063
10064
10065 static void account_event(struct perf_event *event)
10066 {
10067         bool inc = false;
10068
10069         if (event->parent)
10070                 return;
10071
10072         if (event->attach_state & PERF_ATTACH_TASK)
10073                 inc = true;
10074         if (event->attr.mmap || event->attr.mmap_data)
10075                 atomic_inc(&nr_mmap_events);
10076         if (event->attr.comm)
10077                 atomic_inc(&nr_comm_events);
10078         if (event->attr.namespaces)
10079                 atomic_inc(&nr_namespaces_events);
10080         if (event->attr.task)
10081                 atomic_inc(&nr_task_events);
10082         if (event->attr.freq)
10083                 account_freq_event();
10084         if (event->attr.context_switch) {
10085                 atomic_inc(&nr_switch_events);
10086                 inc = true;
10087         }
10088         if (has_branch_stack(event))
10089                 inc = true;
10090         if (is_cgroup_event(event))
10091                 inc = true;
10092
10093         if (inc) {
10094                 /*
10095                  * We need the mutex here because static_branch_enable()
10096                  * must complete *before* the perf_sched_count increment
10097                  * becomes visible.
10098                  */
10099                 if (atomic_inc_not_zero(&perf_sched_count))
10100                         goto enabled;
10101
10102                 mutex_lock(&perf_sched_mutex);
10103                 if (!atomic_read(&perf_sched_count)) {
10104                         static_branch_enable(&perf_sched_events);
10105                         /*
10106                          * Guarantee that all CPUs observe they key change and
10107                          * call the perf scheduling hooks before proceeding to
10108                          * install events that need them.
10109                          */
10110                         synchronize_sched();
10111                 }
10112                 /*
10113                  * Now that we have waited for the sync_sched(), allow further
10114                  * increments to by-pass the mutex.
10115                  */
10116                 atomic_inc(&perf_sched_count);
10117                 mutex_unlock(&perf_sched_mutex);
10118         }
10119 enabled:
10120
10121         account_event_cpu(event, event->cpu);
10122
10123         account_pmu_sb_event(event);
10124 }
10125
10126 /*
10127  * Allocate and initialize an event structure
10128  */
10129 static struct perf_event *
10130 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10131                  struct task_struct *task,
10132                  struct perf_event *group_leader,
10133                  struct perf_event *parent_event,
10134                  perf_overflow_handler_t overflow_handler,
10135                  void *context, int cgroup_fd)
10136 {
10137         struct pmu *pmu;
10138         struct perf_event *event;
10139         struct hw_perf_event *hwc;
10140         long err = -EINVAL;
10141
10142         if ((unsigned)cpu >= nr_cpu_ids) {
10143                 if (!task || cpu != -1)
10144                         return ERR_PTR(-EINVAL);
10145         }
10146
10147         event = kzalloc(sizeof(*event), GFP_KERNEL);
10148         if (!event)
10149                 return ERR_PTR(-ENOMEM);
10150
10151         /*
10152          * Single events are their own group leaders, with an
10153          * empty sibling list:
10154          */
10155         if (!group_leader)
10156                 group_leader = event;
10157
10158         mutex_init(&event->child_mutex);
10159         INIT_LIST_HEAD(&event->child_list);
10160
10161         INIT_LIST_HEAD(&event->event_entry);
10162         INIT_LIST_HEAD(&event->sibling_list);
10163         INIT_LIST_HEAD(&event->active_list);
10164         init_event_group(event);
10165         INIT_LIST_HEAD(&event->rb_entry);
10166         INIT_LIST_HEAD(&event->active_entry);
10167         INIT_LIST_HEAD(&event->addr_filters.list);
10168         INIT_HLIST_NODE(&event->hlist_entry);
10169
10170
10171         init_waitqueue_head(&event->waitq);
10172         event->pending_disable = -1;
10173         init_irq_work(&event->pending, perf_pending_event);
10174
10175         mutex_init(&event->mmap_mutex);
10176         raw_spin_lock_init(&event->addr_filters.lock);
10177
10178         atomic_long_set(&event->refcount, 1);
10179         event->cpu              = cpu;
10180         event->attr             = *attr;
10181         event->group_leader     = group_leader;
10182         event->pmu              = NULL;
10183         event->oncpu            = -1;
10184
10185         event->parent           = parent_event;
10186
10187         event->ns               = get_pid_ns(task_active_pid_ns(current));
10188         event->id               = atomic64_inc_return(&perf_event_id);
10189
10190         event->state            = PERF_EVENT_STATE_INACTIVE;
10191
10192         if (task) {
10193                 event->attach_state = PERF_ATTACH_TASK;
10194                 /*
10195                  * XXX pmu::event_init needs to know what task to account to
10196                  * and we cannot use the ctx information because we need the
10197                  * pmu before we get a ctx.
10198                  */
10199                 get_task_struct(task);
10200                 event->hw.target = task;
10201         }
10202
10203         event->clock = &local_clock;
10204         if (parent_event)
10205                 event->clock = parent_event->clock;
10206
10207         if (!overflow_handler && parent_event) {
10208                 overflow_handler = parent_event->overflow_handler;
10209                 context = parent_event->overflow_handler_context;
10210 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10211                 if (overflow_handler == bpf_overflow_handler) {
10212                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10213
10214                         if (IS_ERR(prog)) {
10215                                 err = PTR_ERR(prog);
10216                                 goto err_ns;
10217                         }
10218                         event->prog = prog;
10219                         event->orig_overflow_handler =
10220                                 parent_event->orig_overflow_handler;
10221                 }
10222 #endif
10223         }
10224
10225         if (overflow_handler) {
10226                 event->overflow_handler = overflow_handler;
10227                 event->overflow_handler_context = context;
10228         } else if (is_write_backward(event)){
10229                 event->overflow_handler = perf_event_output_backward;
10230                 event->overflow_handler_context = NULL;
10231         } else {
10232                 event->overflow_handler = perf_event_output_forward;
10233                 event->overflow_handler_context = NULL;
10234         }
10235
10236         perf_event__state_init(event);
10237
10238         pmu = NULL;
10239
10240         hwc = &event->hw;
10241         hwc->sample_period = attr->sample_period;
10242         if (attr->freq && attr->sample_freq)
10243                 hwc->sample_period = 1;
10244         hwc->last_period = hwc->sample_period;
10245
10246         local64_set(&hwc->period_left, hwc->sample_period);
10247
10248         /*
10249          * We currently do not support PERF_SAMPLE_READ on inherited events.
10250          * See perf_output_read().
10251          */
10252         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10253                 goto err_ns;
10254
10255         if (!has_branch_stack(event))
10256                 event->attr.branch_sample_type = 0;
10257
10258         if (cgroup_fd != -1) {
10259                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10260                 if (err)
10261                         goto err_ns;
10262         }
10263
10264         pmu = perf_init_event(event);
10265         if (IS_ERR(pmu)) {
10266                 err = PTR_ERR(pmu);
10267                 goto err_ns;
10268         }
10269
10270         err = exclusive_event_init(event);
10271         if (err)
10272                 goto err_pmu;
10273
10274         if (has_addr_filter(event)) {
10275                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10276                                                     sizeof(struct perf_addr_filter_range),
10277                                                     GFP_KERNEL);
10278                 if (!event->addr_filter_ranges) {
10279                         err = -ENOMEM;
10280                         goto err_per_task;
10281                 }
10282
10283                 /*
10284                  * Clone the parent's vma offsets: they are valid until exec()
10285                  * even if the mm is not shared with the parent.
10286                  */
10287                 if (event->parent) {
10288                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10289
10290                         raw_spin_lock_irq(&ifh->lock);
10291                         memcpy(event->addr_filter_ranges,
10292                                event->parent->addr_filter_ranges,
10293                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10294                         raw_spin_unlock_irq(&ifh->lock);
10295                 }
10296
10297                 /* force hw sync on the address filters */
10298                 event->addr_filters_gen = 1;
10299         }
10300
10301         if (!event->parent) {
10302                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10303                         err = get_callchain_buffers(attr->sample_max_stack);
10304                         if (err)
10305                                 goto err_addr_filters;
10306                 }
10307         }
10308
10309         /* symmetric to unaccount_event() in _free_event() */
10310         account_event(event);
10311
10312         return event;
10313
10314 err_addr_filters:
10315         kfree(event->addr_filter_ranges);
10316
10317 err_per_task:
10318         exclusive_event_destroy(event);
10319
10320 err_pmu:
10321         if (event->destroy)
10322                 event->destroy(event);
10323         module_put(pmu->module);
10324 err_ns:
10325         if (is_cgroup_event(event))
10326                 perf_detach_cgroup(event);
10327         if (event->ns)
10328                 put_pid_ns(event->ns);
10329         if (event->hw.target)
10330                 put_task_struct(event->hw.target);
10331         kfree(event);
10332
10333         return ERR_PTR(err);
10334 }
10335
10336 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10337                           struct perf_event_attr *attr)
10338 {
10339         u32 size;
10340         int ret;
10341
10342         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10343                 return -EFAULT;
10344
10345         /*
10346          * zero the full structure, so that a short copy will be nice.
10347          */
10348         memset(attr, 0, sizeof(*attr));
10349
10350         ret = get_user(size, &uattr->size);
10351         if (ret)
10352                 return ret;
10353
10354         if (size > PAGE_SIZE)   /* silly large */
10355                 goto err_size;
10356
10357         if (!size)              /* abi compat */
10358                 size = PERF_ATTR_SIZE_VER0;
10359
10360         if (size < PERF_ATTR_SIZE_VER0)
10361                 goto err_size;
10362
10363         /*
10364          * If we're handed a bigger struct than we know of,
10365          * ensure all the unknown bits are 0 - i.e. new
10366          * user-space does not rely on any kernel feature
10367          * extensions we dont know about yet.
10368          */
10369         if (size > sizeof(*attr)) {
10370                 unsigned char __user *addr;
10371                 unsigned char __user *end;
10372                 unsigned char val;
10373
10374                 addr = (void __user *)uattr + sizeof(*attr);
10375                 end  = (void __user *)uattr + size;
10376
10377                 for (; addr < end; addr++) {
10378                         ret = get_user(val, addr);
10379                         if (ret)
10380                                 return ret;
10381                         if (val)
10382                                 goto err_size;
10383                 }
10384                 size = sizeof(*attr);
10385         }
10386
10387         ret = copy_from_user(attr, uattr, size);
10388         if (ret)
10389                 return -EFAULT;
10390
10391         attr->size = size;
10392
10393         if (attr->__reserved_1)
10394                 return -EINVAL;
10395
10396         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10397                 return -EINVAL;
10398
10399         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10400                 return -EINVAL;
10401
10402         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10403                 u64 mask = attr->branch_sample_type;
10404
10405                 /* only using defined bits */
10406                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10407                         return -EINVAL;
10408
10409                 /* at least one branch bit must be set */
10410                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10411                         return -EINVAL;
10412
10413                 /* propagate priv level, when not set for branch */
10414                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10415
10416                         /* exclude_kernel checked on syscall entry */
10417                         if (!attr->exclude_kernel)
10418                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10419
10420                         if (!attr->exclude_user)
10421                                 mask |= PERF_SAMPLE_BRANCH_USER;
10422
10423                         if (!attr->exclude_hv)
10424                                 mask |= PERF_SAMPLE_BRANCH_HV;
10425                         /*
10426                          * adjust user setting (for HW filter setup)
10427                          */
10428                         attr->branch_sample_type = mask;
10429                 }
10430                 /* privileged levels capture (kernel, hv): check permissions */
10431                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10432                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10433                         return -EACCES;
10434         }
10435
10436         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10437                 ret = perf_reg_validate(attr->sample_regs_user);
10438                 if (ret)
10439                         return ret;
10440         }
10441
10442         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10443                 if (!arch_perf_have_user_stack_dump())
10444                         return -ENOSYS;
10445
10446                 /*
10447                  * We have __u32 type for the size, but so far
10448                  * we can only use __u16 as maximum due to the
10449                  * __u16 sample size limit.
10450                  */
10451                 if (attr->sample_stack_user >= USHRT_MAX)
10452                         return -EINVAL;
10453                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10454                         return -EINVAL;
10455         }
10456
10457         if (!attr->sample_max_stack)
10458                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10459
10460         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10461                 ret = perf_reg_validate(attr->sample_regs_intr);
10462 out:
10463         return ret;
10464
10465 err_size:
10466         put_user(sizeof(*attr), &uattr->size);
10467         ret = -E2BIG;
10468         goto out;
10469 }
10470
10471 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10472 {
10473         if (b < a)
10474                 swap(a, b);
10475
10476         mutex_lock(a);
10477         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10478 }
10479
10480 static int
10481 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10482 {
10483         struct ring_buffer *rb = NULL;
10484         int ret = -EINVAL;
10485
10486         if (!output_event) {
10487                 mutex_lock(&event->mmap_mutex);
10488                 goto set;
10489         }
10490
10491         /* don't allow circular references */
10492         if (event == output_event)
10493                 goto out;
10494
10495         /*
10496          * Don't allow cross-cpu buffers
10497          */
10498         if (output_event->cpu != event->cpu)
10499                 goto out;
10500
10501         /*
10502          * If its not a per-cpu rb, it must be the same task.
10503          */
10504         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
10505                 goto out;
10506
10507         /*
10508          * Mixing clocks in the same buffer is trouble you don't need.
10509          */
10510         if (output_event->clock != event->clock)
10511                 goto out;
10512
10513         /*
10514          * Either writing ring buffer from beginning or from end.
10515          * Mixing is not allowed.
10516          */
10517         if (is_write_backward(output_event) != is_write_backward(event))
10518                 goto out;
10519
10520         /*
10521          * If both events generate aux data, they must be on the same PMU
10522          */
10523         if (has_aux(event) && has_aux(output_event) &&
10524             event->pmu != output_event->pmu)
10525                 goto out;
10526
10527         /*
10528          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
10529          * output_event is already on rb->event_list, and the list iteration
10530          * restarts after every removal, it is guaranteed this new event is
10531          * observed *OR* if output_event is already removed, it's guaranteed we
10532          * observe !rb->mmap_count.
10533          */
10534         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
10535 set:
10536         /* Can't redirect output if we've got an active mmap() */
10537         if (atomic_read(&event->mmap_count))
10538                 goto unlock;
10539
10540         if (output_event) {
10541                 /* get the rb we want to redirect to */
10542                 rb = ring_buffer_get(output_event);
10543                 if (!rb)
10544                         goto unlock;
10545
10546                 /* did we race against perf_mmap_close() */
10547                 if (!atomic_read(&rb->mmap_count)) {
10548                         ring_buffer_put(rb);
10549                         goto unlock;
10550                 }
10551         }
10552
10553         ring_buffer_attach(event, rb);
10554
10555         ret = 0;
10556 unlock:
10557         mutex_unlock(&event->mmap_mutex);
10558         if (output_event)
10559                 mutex_unlock(&output_event->mmap_mutex);
10560
10561 out:
10562         return ret;
10563 }
10564
10565 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10566 {
10567         bool nmi_safe = false;
10568
10569         switch (clk_id) {
10570         case CLOCK_MONOTONIC:
10571                 event->clock = &ktime_get_mono_fast_ns;
10572                 nmi_safe = true;
10573                 break;
10574
10575         case CLOCK_MONOTONIC_RAW:
10576                 event->clock = &ktime_get_raw_fast_ns;
10577                 nmi_safe = true;
10578                 break;
10579
10580         case CLOCK_REALTIME:
10581                 event->clock = &ktime_get_real_ns;
10582                 break;
10583
10584         case CLOCK_BOOTTIME:
10585                 event->clock = &ktime_get_boot_ns;
10586                 break;
10587
10588         case CLOCK_TAI:
10589                 event->clock = &ktime_get_tai_ns;
10590                 break;
10591
10592         default:
10593                 return -EINVAL;
10594         }
10595
10596         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10597                 return -EINVAL;
10598
10599         return 0;
10600 }
10601
10602 /*
10603  * Variation on perf_event_ctx_lock_nested(), except we take two context
10604  * mutexes.
10605  */
10606 static struct perf_event_context *
10607 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10608                              struct perf_event_context *ctx)
10609 {
10610         struct perf_event_context *gctx;
10611
10612 again:
10613         rcu_read_lock();
10614         gctx = READ_ONCE(group_leader->ctx);
10615         if (!atomic_inc_not_zero(&gctx->refcount)) {
10616                 rcu_read_unlock();
10617                 goto again;
10618         }
10619         rcu_read_unlock();
10620
10621         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10622
10623         if (group_leader->ctx != gctx) {
10624                 mutex_unlock(&ctx->mutex);
10625                 mutex_unlock(&gctx->mutex);
10626                 put_ctx(gctx);
10627                 goto again;
10628         }
10629
10630         return gctx;
10631 }
10632
10633 /**
10634  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10635  *
10636  * @attr_uptr:  event_id type attributes for monitoring/sampling
10637  * @pid:                target pid
10638  * @cpu:                target cpu
10639  * @group_fd:           group leader event fd
10640  */
10641 SYSCALL_DEFINE5(perf_event_open,
10642                 struct perf_event_attr __user *, attr_uptr,
10643                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10644 {
10645         struct perf_event *group_leader = NULL, *output_event = NULL;
10646         struct perf_event *event, *sibling;
10647         struct perf_event_attr attr;
10648         struct perf_event_context *ctx, *gctx;
10649         struct file *event_file = NULL;
10650         struct fd group = {NULL, 0};
10651         struct task_struct *task = NULL;
10652         struct pmu *pmu;
10653         int event_fd;
10654         int move_group = 0;
10655         int err;
10656         int f_flags = O_RDWR;
10657         int cgroup_fd = -1;
10658
10659         /* for future expandability... */
10660         if (flags & ~PERF_FLAG_ALL)
10661                 return -EINVAL;
10662
10663         err = perf_copy_attr(attr_uptr, &attr);
10664         if (err)
10665                 return err;
10666
10667         if (!attr.exclude_kernel) {
10668                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10669                         return -EACCES;
10670         }
10671
10672         if (attr.namespaces) {
10673                 if (!capable(CAP_SYS_ADMIN))
10674                         return -EACCES;
10675         }
10676
10677         if (attr.freq) {
10678                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10679                         return -EINVAL;
10680         } else {
10681                 if (attr.sample_period & (1ULL << 63))
10682                         return -EINVAL;
10683         }
10684
10685         /* Only privileged users can get physical addresses */
10686         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10687             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10688                 return -EACCES;
10689
10690         /*
10691          * In cgroup mode, the pid argument is used to pass the fd
10692          * opened to the cgroup directory in cgroupfs. The cpu argument
10693          * designates the cpu on which to monitor threads from that
10694          * cgroup.
10695          */
10696         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10697                 return -EINVAL;
10698
10699         if (flags & PERF_FLAG_FD_CLOEXEC)
10700                 f_flags |= O_CLOEXEC;
10701
10702         event_fd = get_unused_fd_flags(f_flags);
10703         if (event_fd < 0)
10704                 return event_fd;
10705
10706         if (group_fd != -1) {
10707                 err = perf_fget_light(group_fd, &group);
10708                 if (err)
10709                         goto err_fd;
10710                 group_leader = group.file->private_data;
10711                 if (flags & PERF_FLAG_FD_OUTPUT)
10712                         output_event = group_leader;
10713                 if (flags & PERF_FLAG_FD_NO_GROUP)
10714                         group_leader = NULL;
10715         }
10716
10717         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10718                 task = find_lively_task_by_vpid(pid);
10719                 if (IS_ERR(task)) {
10720                         err = PTR_ERR(task);
10721                         goto err_group_fd;
10722                 }
10723         }
10724
10725         if (task && group_leader &&
10726             group_leader->attr.inherit != attr.inherit) {
10727                 err = -EINVAL;
10728                 goto err_task;
10729         }
10730
10731         if (task) {
10732                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10733                 if (err)
10734                         goto err_task;
10735
10736                 /*
10737                  * Reuse ptrace permission checks for now.
10738                  *
10739                  * We must hold cred_guard_mutex across this and any potential
10740                  * perf_install_in_context() call for this new event to
10741                  * serialize against exec() altering our credentials (and the
10742                  * perf_event_exit_task() that could imply).
10743                  */
10744                 err = -EACCES;
10745                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10746                         goto err_cred;
10747         }
10748
10749         if (flags & PERF_FLAG_PID_CGROUP)
10750                 cgroup_fd = pid;
10751
10752         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10753                                  NULL, NULL, cgroup_fd);
10754         if (IS_ERR(event)) {
10755                 err = PTR_ERR(event);
10756                 goto err_cred;
10757         }
10758
10759         if (is_sampling_event(event)) {
10760                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10761                         err = -EOPNOTSUPP;
10762                         goto err_alloc;
10763                 }
10764         }
10765
10766         /*
10767          * Special case software events and allow them to be part of
10768          * any hardware group.
10769          */
10770         pmu = event->pmu;
10771
10772         if (attr.use_clockid) {
10773                 err = perf_event_set_clock(event, attr.clockid);
10774                 if (err)
10775                         goto err_alloc;
10776         }
10777
10778         if (pmu->task_ctx_nr == perf_sw_context)
10779                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10780
10781         if (group_leader) {
10782                 if (is_software_event(event) &&
10783                     !in_software_context(group_leader)) {
10784                         /*
10785                          * If the event is a sw event, but the group_leader
10786                          * is on hw context.
10787                          *
10788                          * Allow the addition of software events to hw
10789                          * groups, this is safe because software events
10790                          * never fail to schedule.
10791                          */
10792                         pmu = group_leader->ctx->pmu;
10793                 } else if (!is_software_event(event) &&
10794                            is_software_event(group_leader) &&
10795                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10796                         /*
10797                          * In case the group is a pure software group, and we
10798                          * try to add a hardware event, move the whole group to
10799                          * the hardware context.
10800                          */
10801                         move_group = 1;
10802                 }
10803         }
10804
10805         /*
10806          * Get the target context (task or percpu):
10807          */
10808         ctx = find_get_context(pmu, task, event);
10809         if (IS_ERR(ctx)) {
10810                 err = PTR_ERR(ctx);
10811                 goto err_alloc;
10812         }
10813
10814         /*
10815          * Look up the group leader (we will attach this event to it):
10816          */
10817         if (group_leader) {
10818                 err = -EINVAL;
10819
10820                 /*
10821                  * Do not allow a recursive hierarchy (this new sibling
10822                  * becoming part of another group-sibling):
10823                  */
10824                 if (group_leader->group_leader != group_leader)
10825                         goto err_context;
10826
10827                 /* All events in a group should have the same clock */
10828                 if (group_leader->clock != event->clock)
10829                         goto err_context;
10830
10831                 /*
10832                  * Make sure we're both events for the same CPU;
10833                  * grouping events for different CPUs is broken; since
10834                  * you can never concurrently schedule them anyhow.
10835                  */
10836                 if (group_leader->cpu != event->cpu)
10837                         goto err_context;
10838
10839                 /*
10840                  * Make sure we're both on the same task, or both
10841                  * per-CPU events.
10842                  */
10843                 if (group_leader->ctx->task != ctx->task)
10844                         goto err_context;
10845
10846                 /*
10847                  * Do not allow to attach to a group in a different task
10848                  * or CPU context. If we're moving SW events, we'll fix
10849                  * this up later, so allow that.
10850                  *
10851                  * Racy, not holding group_leader->ctx->mutex, see comment with
10852                  * perf_event_ctx_lock().
10853                  */
10854                 if (!move_group && group_leader->ctx != ctx)
10855                         goto err_context;
10856
10857                 /*
10858                  * Only a group leader can be exclusive or pinned
10859                  */
10860                 if (attr.exclusive || attr.pinned)
10861                         goto err_context;
10862         }
10863
10864         if (output_event) {
10865                 err = perf_event_set_output(event, output_event);
10866                 if (err)
10867                         goto err_context;
10868         }
10869
10870         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10871                                         f_flags);
10872         if (IS_ERR(event_file)) {
10873                 err = PTR_ERR(event_file);
10874                 event_file = NULL;
10875                 goto err_context;
10876         }
10877
10878         if (move_group) {
10879                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10880
10881                 if (gctx->task == TASK_TOMBSTONE) {
10882                         err = -ESRCH;
10883                         goto err_locked;
10884                 }
10885
10886                 /*
10887                  * Check if we raced against another sys_perf_event_open() call
10888                  * moving the software group underneath us.
10889                  */
10890                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10891                         /*
10892                          * If someone moved the group out from under us, check
10893                          * if this new event wound up on the same ctx, if so
10894                          * its the regular !move_group case, otherwise fail.
10895                          */
10896                         if (gctx != ctx) {
10897                                 err = -EINVAL;
10898                                 goto err_locked;
10899                         } else {
10900                                 perf_event_ctx_unlock(group_leader, gctx);
10901                                 move_group = 0;
10902                                 goto not_move_group;
10903                         }
10904                 }
10905
10906                 /*
10907                  * Failure to create exclusive events returns -EBUSY.
10908                  */
10909                 err = -EBUSY;
10910                 if (!exclusive_event_installable(group_leader, ctx))
10911                         goto err_locked;
10912
10913                 for_each_sibling_event(sibling, group_leader) {
10914                         if (!exclusive_event_installable(sibling, ctx))
10915                                 goto err_locked;
10916                 }
10917         } else {
10918                 mutex_lock(&ctx->mutex);
10919
10920                 /*
10921                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
10922                  * see the group_leader && !move_group test earlier.
10923                  */
10924                 if (group_leader && group_leader->ctx != ctx) {
10925                         err = -EINVAL;
10926                         goto err_locked;
10927                 }
10928         }
10929 not_move_group:
10930
10931         if (ctx->task == TASK_TOMBSTONE) {
10932                 err = -ESRCH;
10933                 goto err_locked;
10934         }
10935
10936         if (!perf_event_validate_size(event)) {
10937                 err = -E2BIG;
10938                 goto err_locked;
10939         }
10940
10941         if (!task) {
10942                 /*
10943                  * Check if the @cpu we're creating an event for is online.
10944                  *
10945                  * We use the perf_cpu_context::ctx::mutex to serialize against
10946                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10947                  */
10948                 struct perf_cpu_context *cpuctx =
10949                         container_of(ctx, struct perf_cpu_context, ctx);
10950
10951                 if (!cpuctx->online) {
10952                         err = -ENODEV;
10953                         goto err_locked;
10954                 }
10955         }
10956
10957
10958         /*
10959          * Must be under the same ctx::mutex as perf_install_in_context(),
10960          * because we need to serialize with concurrent event creation.
10961          */
10962         if (!exclusive_event_installable(event, ctx)) {
10963                 err = -EBUSY;
10964                 goto err_locked;
10965         }
10966
10967         WARN_ON_ONCE(ctx->parent_ctx);
10968
10969         /*
10970          * This is the point on no return; we cannot fail hereafter. This is
10971          * where we start modifying current state.
10972          */
10973
10974         if (move_group) {
10975                 /*
10976                  * See perf_event_ctx_lock() for comments on the details
10977                  * of swizzling perf_event::ctx.
10978                  */
10979                 perf_remove_from_context(group_leader, 0);
10980                 put_ctx(gctx);
10981
10982                 for_each_sibling_event(sibling, group_leader) {
10983                         perf_remove_from_context(sibling, 0);
10984                         put_ctx(gctx);
10985                 }
10986
10987                 /*
10988                  * Wait for everybody to stop referencing the events through
10989                  * the old lists, before installing it on new lists.
10990                  */
10991                 synchronize_rcu();
10992
10993                 /*
10994                  * Install the group siblings before the group leader.
10995                  *
10996                  * Because a group leader will try and install the entire group
10997                  * (through the sibling list, which is still in-tact), we can
10998                  * end up with siblings installed in the wrong context.
10999                  *
11000                  * By installing siblings first we NO-OP because they're not
11001                  * reachable through the group lists.
11002                  */
11003                 for_each_sibling_event(sibling, group_leader) {
11004                         perf_event__state_init(sibling);
11005                         perf_install_in_context(ctx, sibling, sibling->cpu);
11006                         get_ctx(ctx);
11007                 }
11008
11009                 /*
11010                  * Removing from the context ends up with disabled
11011                  * event. What we want here is event in the initial
11012                  * startup state, ready to be add into new context.
11013                  */
11014                 perf_event__state_init(group_leader);
11015                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11016                 get_ctx(ctx);
11017         }
11018
11019         /*
11020          * Precalculate sample_data sizes; do while holding ctx::mutex such
11021          * that we're serialized against further additions and before
11022          * perf_install_in_context() which is the point the event is active and
11023          * can use these values.
11024          */
11025         perf_event__header_size(event);
11026         perf_event__id_header_size(event);
11027
11028         event->owner = current;
11029
11030         perf_install_in_context(ctx, event, event->cpu);
11031         perf_unpin_context(ctx);
11032
11033         if (move_group)
11034                 perf_event_ctx_unlock(group_leader, gctx);
11035         mutex_unlock(&ctx->mutex);
11036
11037         if (task) {
11038                 mutex_unlock(&task->signal->cred_guard_mutex);
11039                 put_task_struct(task);
11040         }
11041
11042         mutex_lock(&current->perf_event_mutex);
11043         list_add_tail(&event->owner_entry, &current->perf_event_list);
11044         mutex_unlock(&current->perf_event_mutex);
11045
11046         /*
11047          * Drop the reference on the group_event after placing the
11048          * new event on the sibling_list. This ensures destruction
11049          * of the group leader will find the pointer to itself in
11050          * perf_group_detach().
11051          */
11052         fdput(group);
11053         fd_install(event_fd, event_file);
11054         return event_fd;
11055
11056 err_locked:
11057         if (move_group)
11058                 perf_event_ctx_unlock(group_leader, gctx);
11059         mutex_unlock(&ctx->mutex);
11060 /* err_file: */
11061         fput(event_file);
11062 err_context:
11063         perf_unpin_context(ctx);
11064         put_ctx(ctx);
11065 err_alloc:
11066         /*
11067          * If event_file is set, the fput() above will have called ->release()
11068          * and that will take care of freeing the event.
11069          */
11070         if (!event_file)
11071                 free_event(event);
11072 err_cred:
11073         if (task)
11074                 mutex_unlock(&task->signal->cred_guard_mutex);
11075 err_task:
11076         if (task)
11077                 put_task_struct(task);
11078 err_group_fd:
11079         fdput(group);
11080 err_fd:
11081         put_unused_fd(event_fd);
11082         return err;
11083 }
11084
11085 /**
11086  * perf_event_create_kernel_counter
11087  *
11088  * @attr: attributes of the counter to create
11089  * @cpu: cpu in which the counter is bound
11090  * @task: task to profile (NULL for percpu)
11091  */
11092 struct perf_event *
11093 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11094                                  struct task_struct *task,
11095                                  perf_overflow_handler_t overflow_handler,
11096                                  void *context)
11097 {
11098         struct perf_event_context *ctx;
11099         struct perf_event *event;
11100         int err;
11101
11102         /*
11103          * Get the target context (task or percpu):
11104          */
11105
11106         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11107                                  overflow_handler, context, -1);
11108         if (IS_ERR(event)) {
11109                 err = PTR_ERR(event);
11110                 goto err;
11111         }
11112
11113         /* Mark owner so we could distinguish it from user events. */
11114         event->owner = TASK_TOMBSTONE;
11115
11116         ctx = find_get_context(event->pmu, task, event);
11117         if (IS_ERR(ctx)) {
11118                 err = PTR_ERR(ctx);
11119                 goto err_free;
11120         }
11121
11122         WARN_ON_ONCE(ctx->parent_ctx);
11123         mutex_lock(&ctx->mutex);
11124         if (ctx->task == TASK_TOMBSTONE) {
11125                 err = -ESRCH;
11126                 goto err_unlock;
11127         }
11128
11129         if (!task) {
11130                 /*
11131                  * Check if the @cpu we're creating an event for is online.
11132                  *
11133                  * We use the perf_cpu_context::ctx::mutex to serialize against
11134                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11135                  */
11136                 struct perf_cpu_context *cpuctx =
11137                         container_of(ctx, struct perf_cpu_context, ctx);
11138                 if (!cpuctx->online) {
11139                         err = -ENODEV;
11140                         goto err_unlock;
11141                 }
11142         }
11143
11144         if (!exclusive_event_installable(event, ctx)) {
11145                 err = -EBUSY;
11146                 goto err_unlock;
11147         }
11148
11149         perf_install_in_context(ctx, event, event->cpu);
11150         perf_unpin_context(ctx);
11151         mutex_unlock(&ctx->mutex);
11152
11153         return event;
11154
11155 err_unlock:
11156         mutex_unlock(&ctx->mutex);
11157         perf_unpin_context(ctx);
11158         put_ctx(ctx);
11159 err_free:
11160         free_event(event);
11161 err:
11162         return ERR_PTR(err);
11163 }
11164 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11165
11166 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11167 {
11168         struct perf_event_context *src_ctx;
11169         struct perf_event_context *dst_ctx;
11170         struct perf_event *event, *tmp;
11171         LIST_HEAD(events);
11172
11173         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11174         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11175
11176         /*
11177          * See perf_event_ctx_lock() for comments on the details
11178          * of swizzling perf_event::ctx.
11179          */
11180         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11181         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11182                                  event_entry) {
11183                 perf_remove_from_context(event, 0);
11184                 unaccount_event_cpu(event, src_cpu);
11185                 put_ctx(src_ctx);
11186                 list_add(&event->migrate_entry, &events);
11187         }
11188
11189         /*
11190          * Wait for the events to quiesce before re-instating them.
11191          */
11192         synchronize_rcu();
11193
11194         /*
11195          * Re-instate events in 2 passes.
11196          *
11197          * Skip over group leaders and only install siblings on this first
11198          * pass, siblings will not get enabled without a leader, however a
11199          * leader will enable its siblings, even if those are still on the old
11200          * context.
11201          */
11202         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11203                 if (event->group_leader == event)
11204                         continue;
11205
11206                 list_del(&event->migrate_entry);
11207                 if (event->state >= PERF_EVENT_STATE_OFF)
11208                         event->state = PERF_EVENT_STATE_INACTIVE;
11209                 account_event_cpu(event, dst_cpu);
11210                 perf_install_in_context(dst_ctx, event, dst_cpu);
11211                 get_ctx(dst_ctx);
11212         }
11213
11214         /*
11215          * Once all the siblings are setup properly, install the group leaders
11216          * to make it go.
11217          */
11218         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11219                 list_del(&event->migrate_entry);
11220                 if (event->state >= PERF_EVENT_STATE_OFF)
11221                         event->state = PERF_EVENT_STATE_INACTIVE;
11222                 account_event_cpu(event, dst_cpu);
11223                 perf_install_in_context(dst_ctx, event, dst_cpu);
11224                 get_ctx(dst_ctx);
11225         }
11226         mutex_unlock(&dst_ctx->mutex);
11227         mutex_unlock(&src_ctx->mutex);
11228 }
11229 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11230
11231 static void sync_child_event(struct perf_event *child_event,
11232                                struct task_struct *child)
11233 {
11234         struct perf_event *parent_event = child_event->parent;
11235         u64 child_val;
11236
11237         if (child_event->attr.inherit_stat)
11238                 perf_event_read_event(child_event, child);
11239
11240         child_val = perf_event_count(child_event);
11241
11242         /*
11243          * Add back the child's count to the parent's count:
11244          */
11245         atomic64_add(child_val, &parent_event->child_count);
11246         atomic64_add(child_event->total_time_enabled,
11247                      &parent_event->child_total_time_enabled);
11248         atomic64_add(child_event->total_time_running,
11249                      &parent_event->child_total_time_running);
11250 }
11251
11252 static void
11253 perf_event_exit_event(struct perf_event *child_event,
11254                       struct perf_event_context *child_ctx,
11255                       struct task_struct *child)
11256 {
11257         struct perf_event *parent_event = child_event->parent;
11258
11259         /*
11260          * Do not destroy the 'original' grouping; because of the context
11261          * switch optimization the original events could've ended up in a
11262          * random child task.
11263          *
11264          * If we were to destroy the original group, all group related
11265          * operations would cease to function properly after this random
11266          * child dies.
11267          *
11268          * Do destroy all inherited groups, we don't care about those
11269          * and being thorough is better.
11270          */
11271         raw_spin_lock_irq(&child_ctx->lock);
11272         WARN_ON_ONCE(child_ctx->is_active);
11273
11274         if (parent_event)
11275                 perf_group_detach(child_event);
11276         list_del_event(child_event, child_ctx);
11277         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11278         raw_spin_unlock_irq(&child_ctx->lock);
11279
11280         /*
11281          * Parent events are governed by their filedesc, retain them.
11282          */
11283         if (!parent_event) {
11284                 perf_event_wakeup(child_event);
11285                 return;
11286         }
11287         /*
11288          * Child events can be cleaned up.
11289          */
11290
11291         sync_child_event(child_event, child);
11292
11293         /*
11294          * Remove this event from the parent's list
11295          */
11296         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11297         mutex_lock(&parent_event->child_mutex);
11298         list_del_init(&child_event->child_list);
11299         mutex_unlock(&parent_event->child_mutex);
11300
11301         /*
11302          * Kick perf_poll() for is_event_hup().
11303          */
11304         perf_event_wakeup(parent_event);
11305         free_event(child_event);
11306         put_event(parent_event);
11307 }
11308
11309 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11310 {
11311         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11312         struct perf_event *child_event, *next;
11313
11314         WARN_ON_ONCE(child != current);
11315
11316         child_ctx = perf_pin_task_context(child, ctxn);
11317         if (!child_ctx)
11318                 return;
11319
11320         /*
11321          * In order to reduce the amount of tricky in ctx tear-down, we hold
11322          * ctx::mutex over the entire thing. This serializes against almost
11323          * everything that wants to access the ctx.
11324          *
11325          * The exception is sys_perf_event_open() /
11326          * perf_event_create_kernel_count() which does find_get_context()
11327          * without ctx::mutex (it cannot because of the move_group double mutex
11328          * lock thing). See the comments in perf_install_in_context().
11329          */
11330         mutex_lock(&child_ctx->mutex);
11331
11332         /*
11333          * In a single ctx::lock section, de-schedule the events and detach the
11334          * context from the task such that we cannot ever get it scheduled back
11335          * in.
11336          */
11337         raw_spin_lock_irq(&child_ctx->lock);
11338         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11339
11340         /*
11341          * Now that the context is inactive, destroy the task <-> ctx relation
11342          * and mark the context dead.
11343          */
11344         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11345         put_ctx(child_ctx); /* cannot be last */
11346         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11347         put_task_struct(current); /* cannot be last */
11348
11349         clone_ctx = unclone_ctx(child_ctx);
11350         raw_spin_unlock_irq(&child_ctx->lock);
11351
11352         if (clone_ctx)
11353                 put_ctx(clone_ctx);
11354
11355         /*
11356          * Report the task dead after unscheduling the events so that we
11357          * won't get any samples after PERF_RECORD_EXIT. We can however still
11358          * get a few PERF_RECORD_READ events.
11359          */
11360         perf_event_task(child, child_ctx, 0);
11361
11362         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11363                 perf_event_exit_event(child_event, child_ctx, child);
11364
11365         mutex_unlock(&child_ctx->mutex);
11366
11367         put_ctx(child_ctx);
11368 }
11369
11370 /*
11371  * When a child task exits, feed back event values to parent events.
11372  *
11373  * Can be called with cred_guard_mutex held when called from
11374  * install_exec_creds().
11375  */
11376 void perf_event_exit_task(struct task_struct *child)
11377 {
11378         struct perf_event *event, *tmp;
11379         int ctxn;
11380
11381         mutex_lock(&child->perf_event_mutex);
11382         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11383                                  owner_entry) {
11384                 list_del_init(&event->owner_entry);
11385
11386                 /*
11387                  * Ensure the list deletion is visible before we clear
11388                  * the owner, closes a race against perf_release() where
11389                  * we need to serialize on the owner->perf_event_mutex.
11390                  */
11391                 smp_store_release(&event->owner, NULL);
11392         }
11393         mutex_unlock(&child->perf_event_mutex);
11394
11395         for_each_task_context_nr(ctxn)
11396                 perf_event_exit_task_context(child, ctxn);
11397
11398         /*
11399          * The perf_event_exit_task_context calls perf_event_task
11400          * with child's task_ctx, which generates EXIT events for
11401          * child contexts and sets child->perf_event_ctxp[] to NULL.
11402          * At this point we need to send EXIT events to cpu contexts.
11403          */
11404         perf_event_task(child, NULL, 0);
11405 }
11406
11407 static void perf_free_event(struct perf_event *event,
11408                             struct perf_event_context *ctx)
11409 {
11410         struct perf_event *parent = event->parent;
11411
11412         if (WARN_ON_ONCE(!parent))
11413                 return;
11414
11415         mutex_lock(&parent->child_mutex);
11416         list_del_init(&event->child_list);
11417         mutex_unlock(&parent->child_mutex);
11418
11419         put_event(parent);
11420
11421         raw_spin_lock_irq(&ctx->lock);
11422         perf_group_detach(event);
11423         list_del_event(event, ctx);
11424         raw_spin_unlock_irq(&ctx->lock);
11425         free_event(event);
11426 }
11427
11428 /*
11429  * Free a context as created by inheritance by perf_event_init_task() below,
11430  * used by fork() in case of fail.
11431  *
11432  * Even though the task has never lived, the context and events have been
11433  * exposed through the child_list, so we must take care tearing it all down.
11434  */
11435 void perf_event_free_task(struct task_struct *task)
11436 {
11437         struct perf_event_context *ctx;
11438         struct perf_event *event, *tmp;
11439         int ctxn;
11440
11441         for_each_task_context_nr(ctxn) {
11442                 ctx = task->perf_event_ctxp[ctxn];
11443                 if (!ctx)
11444                         continue;
11445
11446                 mutex_lock(&ctx->mutex);
11447                 raw_spin_lock_irq(&ctx->lock);
11448                 /*
11449                  * Destroy the task <-> ctx relation and mark the context dead.
11450                  *
11451                  * This is important because even though the task hasn't been
11452                  * exposed yet the context has been (through child_list).
11453                  */
11454                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11455                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11456                 put_task_struct(task); /* cannot be last */
11457                 raw_spin_unlock_irq(&ctx->lock);
11458
11459                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11460                         perf_free_event(event, ctx);
11461
11462                 mutex_unlock(&ctx->mutex);
11463
11464                 /*
11465                  * perf_event_release_kernel() could've stolen some of our
11466                  * child events and still have them on its free_list. In that
11467                  * case we must wait for these events to have been freed (in
11468                  * particular all their references to this task must've been
11469                  * dropped).
11470                  *
11471                  * Without this copy_process() will unconditionally free this
11472                  * task (irrespective of its reference count) and
11473                  * _free_event()'s put_task_struct(event->hw.target) will be a
11474                  * use-after-free.
11475                  *
11476                  * Wait for all events to drop their context reference.
11477                  */
11478                 wait_var_event(&ctx->refcount, atomic_read(&ctx->refcount) == 1);
11479                 put_ctx(ctx); /* must be last */
11480         }
11481 }
11482
11483 void perf_event_delayed_put(struct task_struct *task)
11484 {
11485         int ctxn;
11486
11487         for_each_task_context_nr(ctxn)
11488                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11489 }
11490
11491 struct file *perf_event_get(unsigned int fd)
11492 {
11493         struct file *file;
11494
11495         file = fget_raw(fd);
11496         if (!file)
11497                 return ERR_PTR(-EBADF);
11498
11499         if (file->f_op != &perf_fops) {
11500                 fput(file);
11501                 return ERR_PTR(-EBADF);
11502         }
11503
11504         return file;
11505 }
11506
11507 const struct perf_event *perf_get_event(struct file *file)
11508 {
11509         if (file->f_op != &perf_fops)
11510                 return ERR_PTR(-EINVAL);
11511
11512         return file->private_data;
11513 }
11514
11515 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11516 {
11517         if (!event)
11518                 return ERR_PTR(-EINVAL);
11519
11520         return &event->attr;
11521 }
11522
11523 /*
11524  * Inherit an event from parent task to child task.
11525  *
11526  * Returns:
11527  *  - valid pointer on success
11528  *  - NULL for orphaned events
11529  *  - IS_ERR() on error
11530  */
11531 static struct perf_event *
11532 inherit_event(struct perf_event *parent_event,
11533               struct task_struct *parent,
11534               struct perf_event_context *parent_ctx,
11535               struct task_struct *child,
11536               struct perf_event *group_leader,
11537               struct perf_event_context *child_ctx)
11538 {
11539         enum perf_event_state parent_state = parent_event->state;
11540         struct perf_event *child_event;
11541         unsigned long flags;
11542
11543         /*
11544          * Instead of creating recursive hierarchies of events,
11545          * we link inherited events back to the original parent,
11546          * which has a filp for sure, which we use as the reference
11547          * count:
11548          */
11549         if (parent_event->parent)
11550                 parent_event = parent_event->parent;
11551
11552         child_event = perf_event_alloc(&parent_event->attr,
11553                                            parent_event->cpu,
11554                                            child,
11555                                            group_leader, parent_event,
11556                                            NULL, NULL, -1);
11557         if (IS_ERR(child_event))
11558                 return child_event;
11559
11560
11561         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11562             !child_ctx->task_ctx_data) {
11563                 struct pmu *pmu = child_event->pmu;
11564
11565                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11566                                                    GFP_KERNEL);
11567                 if (!child_ctx->task_ctx_data) {
11568                         free_event(child_event);
11569                         return ERR_PTR(-ENOMEM);
11570                 }
11571         }
11572
11573         /*
11574          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11575          * must be under the same lock in order to serialize against
11576          * perf_event_release_kernel(), such that either we must observe
11577          * is_orphaned_event() or they will observe us on the child_list.
11578          */
11579         mutex_lock(&parent_event->child_mutex);
11580         if (is_orphaned_event(parent_event) ||
11581             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11582                 mutex_unlock(&parent_event->child_mutex);
11583                 /* task_ctx_data is freed with child_ctx */
11584                 free_event(child_event);
11585                 return NULL;
11586         }
11587
11588         get_ctx(child_ctx);
11589
11590         /*
11591          * Make the child state follow the state of the parent event,
11592          * not its attr.disabled bit.  We hold the parent's mutex,
11593          * so we won't race with perf_event_{en, dis}able_family.
11594          */
11595         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11596                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11597         else
11598                 child_event->state = PERF_EVENT_STATE_OFF;
11599
11600         if (parent_event->attr.freq) {
11601                 u64 sample_period = parent_event->hw.sample_period;
11602                 struct hw_perf_event *hwc = &child_event->hw;
11603
11604                 hwc->sample_period = sample_period;
11605                 hwc->last_period   = sample_period;
11606
11607                 local64_set(&hwc->period_left, sample_period);
11608         }
11609
11610         child_event->ctx = child_ctx;
11611         child_event->overflow_handler = parent_event->overflow_handler;
11612         child_event->overflow_handler_context
11613                 = parent_event->overflow_handler_context;
11614
11615         /*
11616          * Precalculate sample_data sizes
11617          */
11618         perf_event__header_size(child_event);
11619         perf_event__id_header_size(child_event);
11620
11621         /*
11622          * Link it up in the child's context:
11623          */
11624         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11625         add_event_to_ctx(child_event, child_ctx);
11626         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11627
11628         /*
11629          * Link this into the parent event's child list
11630          */
11631         list_add_tail(&child_event->child_list, &parent_event->child_list);
11632         mutex_unlock(&parent_event->child_mutex);
11633
11634         return child_event;
11635 }
11636
11637 /*
11638  * Inherits an event group.
11639  *
11640  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11641  * This matches with perf_event_release_kernel() removing all child events.
11642  *
11643  * Returns:
11644  *  - 0 on success
11645  *  - <0 on error
11646  */
11647 static int inherit_group(struct perf_event *parent_event,
11648               struct task_struct *parent,
11649               struct perf_event_context *parent_ctx,
11650               struct task_struct *child,
11651               struct perf_event_context *child_ctx)
11652 {
11653         struct perf_event *leader;
11654         struct perf_event *sub;
11655         struct perf_event *child_ctr;
11656
11657         leader = inherit_event(parent_event, parent, parent_ctx,
11658                                  child, NULL, child_ctx);
11659         if (IS_ERR(leader))
11660                 return PTR_ERR(leader);
11661         /*
11662          * @leader can be NULL here because of is_orphaned_event(). In this
11663          * case inherit_event() will create individual events, similar to what
11664          * perf_group_detach() would do anyway.
11665          */
11666         for_each_sibling_event(sub, parent_event) {
11667                 child_ctr = inherit_event(sub, parent, parent_ctx,
11668                                             child, leader, child_ctx);
11669                 if (IS_ERR(child_ctr))
11670                         return PTR_ERR(child_ctr);
11671         }
11672         if (leader)
11673                 leader->group_generation = parent_event->group_generation;
11674         return 0;
11675 }
11676
11677 /*
11678  * Creates the child task context and tries to inherit the event-group.
11679  *
11680  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11681  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11682  * consistent with perf_event_release_kernel() removing all child events.
11683  *
11684  * Returns:
11685  *  - 0 on success
11686  *  - <0 on error
11687  */
11688 static int
11689 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11690                    struct perf_event_context *parent_ctx,
11691                    struct task_struct *child, int ctxn,
11692                    int *inherited_all)
11693 {
11694         int ret;
11695         struct perf_event_context *child_ctx;
11696
11697         if (!event->attr.inherit) {
11698                 *inherited_all = 0;
11699                 return 0;
11700         }
11701
11702         child_ctx = child->perf_event_ctxp[ctxn];
11703         if (!child_ctx) {
11704                 /*
11705                  * This is executed from the parent task context, so
11706                  * inherit events that have been marked for cloning.
11707                  * First allocate and initialize a context for the
11708                  * child.
11709                  */
11710                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11711                 if (!child_ctx)
11712                         return -ENOMEM;
11713
11714                 child->perf_event_ctxp[ctxn] = child_ctx;
11715         }
11716
11717         ret = inherit_group(event, parent, parent_ctx,
11718                             child, child_ctx);
11719
11720         if (ret)
11721                 *inherited_all = 0;
11722
11723         return ret;
11724 }
11725
11726 /*
11727  * Initialize the perf_event context in task_struct
11728  */
11729 static int perf_event_init_context(struct task_struct *child, int ctxn)
11730 {
11731         struct perf_event_context *child_ctx, *parent_ctx;
11732         struct perf_event_context *cloned_ctx;
11733         struct perf_event *event;
11734         struct task_struct *parent = current;
11735         int inherited_all = 1;
11736         unsigned long flags;
11737         int ret = 0;
11738
11739         if (likely(!parent->perf_event_ctxp[ctxn]))
11740                 return 0;
11741
11742         /*
11743          * If the parent's context is a clone, pin it so it won't get
11744          * swapped under us.
11745          */
11746         parent_ctx = perf_pin_task_context(parent, ctxn);
11747         if (!parent_ctx)
11748                 return 0;
11749
11750         /*
11751          * No need to check if parent_ctx != NULL here; since we saw
11752          * it non-NULL earlier, the only reason for it to become NULL
11753          * is if we exit, and since we're currently in the middle of
11754          * a fork we can't be exiting at the same time.
11755          */
11756
11757         /*
11758          * Lock the parent list. No need to lock the child - not PID
11759          * hashed yet and not running, so nobody can access it.
11760          */
11761         mutex_lock(&parent_ctx->mutex);
11762
11763         /*
11764          * We dont have to disable NMIs - we are only looking at
11765          * the list, not manipulating it:
11766          */
11767         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11768                 ret = inherit_task_group(event, parent, parent_ctx,
11769                                          child, ctxn, &inherited_all);
11770                 if (ret)
11771                         goto out_unlock;
11772         }
11773
11774         /*
11775          * We can't hold ctx->lock when iterating the ->flexible_group list due
11776          * to allocations, but we need to prevent rotation because
11777          * rotate_ctx() will change the list from interrupt context.
11778          */
11779         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11780         parent_ctx->rotate_disable = 1;
11781         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11782
11783         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11784                 ret = inherit_task_group(event, parent, parent_ctx,
11785                                          child, ctxn, &inherited_all);
11786                 if (ret)
11787                         goto out_unlock;
11788         }
11789
11790         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11791         parent_ctx->rotate_disable = 0;
11792
11793         child_ctx = child->perf_event_ctxp[ctxn];
11794
11795         if (child_ctx && inherited_all) {
11796                 /*
11797                  * Mark the child context as a clone of the parent
11798                  * context, or of whatever the parent is a clone of.
11799                  *
11800                  * Note that if the parent is a clone, the holding of
11801                  * parent_ctx->lock avoids it from being uncloned.
11802                  */
11803                 cloned_ctx = parent_ctx->parent_ctx;
11804                 if (cloned_ctx) {
11805                         child_ctx->parent_ctx = cloned_ctx;
11806                         child_ctx->parent_gen = parent_ctx->parent_gen;
11807                 } else {
11808                         child_ctx->parent_ctx = parent_ctx;
11809                         child_ctx->parent_gen = parent_ctx->generation;
11810                 }
11811                 get_ctx(child_ctx->parent_ctx);
11812         }
11813
11814         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11815 out_unlock:
11816         mutex_unlock(&parent_ctx->mutex);
11817
11818         perf_unpin_context(parent_ctx);
11819         put_ctx(parent_ctx);
11820
11821         return ret;
11822 }
11823
11824 /*
11825  * Initialize the perf_event context in task_struct
11826  */
11827 int perf_event_init_task(struct task_struct *child)
11828 {
11829         int ctxn, ret;
11830
11831         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11832         mutex_init(&child->perf_event_mutex);
11833         INIT_LIST_HEAD(&child->perf_event_list);
11834
11835         for_each_task_context_nr(ctxn) {
11836                 ret = perf_event_init_context(child, ctxn);
11837                 if (ret) {
11838                         perf_event_free_task(child);
11839                         return ret;
11840                 }
11841         }
11842
11843         return 0;
11844 }
11845
11846 static void __init perf_event_init_all_cpus(void)
11847 {
11848         struct swevent_htable *swhash;
11849         int cpu;
11850
11851         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11852
11853         for_each_possible_cpu(cpu) {
11854                 swhash = &per_cpu(swevent_htable, cpu);
11855                 mutex_init(&swhash->hlist_mutex);
11856                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11857
11858                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11859                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11860
11861 #ifdef CONFIG_CGROUP_PERF
11862                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11863 #endif
11864                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11865         }
11866 }
11867
11868 void perf_swevent_init_cpu(unsigned int cpu)
11869 {
11870         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11871
11872         mutex_lock(&swhash->hlist_mutex);
11873         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11874                 struct swevent_hlist *hlist;
11875
11876                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11877                 WARN_ON(!hlist);
11878                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11879         }
11880         mutex_unlock(&swhash->hlist_mutex);
11881 }
11882
11883 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11884 static void __perf_event_exit_context(void *__info)
11885 {
11886         struct perf_event_context *ctx = __info;
11887         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11888         struct perf_event *event;
11889
11890         raw_spin_lock(&ctx->lock);
11891         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11892         list_for_each_entry(event, &ctx->event_list, event_entry)
11893                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11894         raw_spin_unlock(&ctx->lock);
11895 }
11896
11897 static void perf_event_exit_cpu_context(int cpu)
11898 {
11899         struct perf_cpu_context *cpuctx;
11900         struct perf_event_context *ctx;
11901         struct pmu *pmu;
11902
11903         mutex_lock(&pmus_lock);
11904         list_for_each_entry(pmu, &pmus, entry) {
11905                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11906                 ctx = &cpuctx->ctx;
11907
11908                 mutex_lock(&ctx->mutex);
11909                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11910                 cpuctx->online = 0;
11911                 mutex_unlock(&ctx->mutex);
11912         }
11913         cpumask_clear_cpu(cpu, perf_online_mask);
11914         mutex_unlock(&pmus_lock);
11915 }
11916 #else
11917
11918 static void perf_event_exit_cpu_context(int cpu) { }
11919
11920 #endif
11921
11922 int perf_event_init_cpu(unsigned int cpu)
11923 {
11924         struct perf_cpu_context *cpuctx;
11925         struct perf_event_context *ctx;
11926         struct pmu *pmu;
11927
11928         perf_swevent_init_cpu(cpu);
11929
11930         mutex_lock(&pmus_lock);
11931         cpumask_set_cpu(cpu, perf_online_mask);
11932         list_for_each_entry(pmu, &pmus, entry) {
11933                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11934                 ctx = &cpuctx->ctx;
11935
11936                 mutex_lock(&ctx->mutex);
11937                 cpuctx->online = 1;
11938                 mutex_unlock(&ctx->mutex);
11939         }
11940         mutex_unlock(&pmus_lock);
11941
11942         return 0;
11943 }
11944
11945 int perf_event_exit_cpu(unsigned int cpu)
11946 {
11947         perf_event_exit_cpu_context(cpu);
11948         return 0;
11949 }
11950
11951 static int
11952 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11953 {
11954         int cpu;
11955
11956         for_each_online_cpu(cpu)
11957                 perf_event_exit_cpu(cpu);
11958
11959         return NOTIFY_OK;
11960 }
11961
11962 /*
11963  * Run the perf reboot notifier at the very last possible moment so that
11964  * the generic watchdog code runs as long as possible.
11965  */
11966 static struct notifier_block perf_reboot_notifier = {
11967         .notifier_call = perf_reboot,
11968         .priority = INT_MIN,
11969 };
11970
11971 void __init perf_event_init(void)
11972 {
11973         int ret;
11974
11975         idr_init(&pmu_idr);
11976
11977         perf_event_init_all_cpus();
11978         init_srcu_struct(&pmus_srcu);
11979         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11980         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11981         perf_pmu_register(&perf_task_clock, NULL, -1);
11982         perf_tp_register();
11983         perf_event_init_cpu(smp_processor_id());
11984         register_reboot_notifier(&perf_reboot_notifier);
11985
11986         ret = init_hw_breakpoint();
11987         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11988
11989         /*
11990          * Build time assertion that we keep the data_head at the intended
11991          * location.  IOW, validation we got the __reserved[] size right.
11992          */
11993         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11994                      != 1024);
11995 }
11996
11997 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11998                               char *page)
11999 {
12000         struct perf_pmu_events_attr *pmu_attr =
12001                 container_of(attr, struct perf_pmu_events_attr, attr);
12002
12003         if (pmu_attr->event_str)
12004                 return sprintf(page, "%s\n", pmu_attr->event_str);
12005
12006         return 0;
12007 }
12008 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12009
12010 static int __init perf_event_sysfs_init(void)
12011 {
12012         struct pmu *pmu;
12013         int ret;
12014
12015         mutex_lock(&pmus_lock);
12016
12017         ret = bus_register(&pmu_bus);
12018         if (ret)
12019                 goto unlock;
12020
12021         list_for_each_entry(pmu, &pmus, entry) {
12022                 if (!pmu->name || pmu->type < 0)
12023                         continue;
12024
12025                 ret = pmu_dev_alloc(pmu);
12026                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12027         }
12028         pmu_bus_running = 1;
12029         ret = 0;
12030
12031 unlock:
12032         mutex_unlock(&pmus_lock);
12033
12034         return ret;
12035 }
12036 device_initcall(perf_event_sysfs_init);
12037
12038 #ifdef CONFIG_CGROUP_PERF
12039 static struct cgroup_subsys_state *
12040 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12041 {
12042         struct perf_cgroup *jc;
12043
12044         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12045         if (!jc)
12046                 return ERR_PTR(-ENOMEM);
12047
12048         jc->info = alloc_percpu(struct perf_cgroup_info);
12049         if (!jc->info) {
12050                 kfree(jc);
12051                 return ERR_PTR(-ENOMEM);
12052         }
12053
12054         return &jc->css;
12055 }
12056
12057 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12058 {
12059         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12060
12061         free_percpu(jc->info);
12062         kfree(jc);
12063 }
12064
12065 static int __perf_cgroup_move(void *info)
12066 {
12067         struct task_struct *task = info;
12068         rcu_read_lock();
12069         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12070         rcu_read_unlock();
12071         return 0;
12072 }
12073
12074 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12075 {
12076         struct task_struct *task;
12077         struct cgroup_subsys_state *css;
12078
12079         cgroup_taskset_for_each(task, css, tset)
12080                 task_function_call(task, __perf_cgroup_move, task);
12081 }
12082
12083 struct cgroup_subsys perf_event_cgrp_subsys = {
12084         .css_alloc      = perf_cgroup_css_alloc,
12085         .css_free       = perf_cgroup_css_free,
12086         .attach         = perf_cgroup_attach,
12087         /*
12088          * Implicitly enable on dfl hierarchy so that perf events can
12089          * always be filtered by cgroup2 path as long as perf_event
12090          * controller is not mounted on a legacy hierarchy.
12091          */
12092         .implicit_on_dfl = true,
12093         .threaded       = true,
12094 };
12095 #endif /* CONFIG_CGROUP_PERF */