GNU Linux-libre 4.14.251-gnu1
[releases.git] / kernel / events / callchain.c
1 /*
2  * Performance events callchain code, extracted from core.c:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14 #include <linux/sched/task_stack.h>
15
16 #include "internal.h"
17
18 struct callchain_cpus_entries {
19         struct rcu_head                 rcu_head;
20         struct perf_callchain_entry     *cpu_entries[0];
21 };
22
23 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
24 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
25
26 static inline size_t perf_callchain_entry__sizeof(void)
27 {
28         return (sizeof(struct perf_callchain_entry) +
29                 sizeof(__u64) * (sysctl_perf_event_max_stack +
30                                  sysctl_perf_event_max_contexts_per_stack));
31 }
32
33 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
34 static atomic_t nr_callchain_events;
35 static DEFINE_MUTEX(callchain_mutex);
36 static struct callchain_cpus_entries *callchain_cpus_entries;
37
38
39 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
40                                   struct pt_regs *regs)
41 {
42 }
43
44 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
45                                 struct pt_regs *regs)
46 {
47 }
48
49 static void release_callchain_buffers_rcu(struct rcu_head *head)
50 {
51         struct callchain_cpus_entries *entries;
52         int cpu;
53
54         entries = container_of(head, struct callchain_cpus_entries, rcu_head);
55
56         for_each_possible_cpu(cpu)
57                 kfree(entries->cpu_entries[cpu]);
58
59         kfree(entries);
60 }
61
62 static void release_callchain_buffers(void)
63 {
64         struct callchain_cpus_entries *entries;
65
66         entries = callchain_cpus_entries;
67         RCU_INIT_POINTER(callchain_cpus_entries, NULL);
68         call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
69 }
70
71 static int alloc_callchain_buffers(void)
72 {
73         int cpu;
74         int size;
75         struct callchain_cpus_entries *entries;
76
77         /*
78          * We can't use the percpu allocation API for data that can be
79          * accessed from NMI. Use a temporary manual per cpu allocation
80          * until that gets sorted out.
81          */
82         size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
83
84         entries = kzalloc(size, GFP_KERNEL);
85         if (!entries)
86                 return -ENOMEM;
87
88         size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
89
90         for_each_possible_cpu(cpu) {
91                 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
92                                                          cpu_to_node(cpu));
93                 if (!entries->cpu_entries[cpu])
94                         goto fail;
95         }
96
97         rcu_assign_pointer(callchain_cpus_entries, entries);
98
99         return 0;
100
101 fail:
102         for_each_possible_cpu(cpu)
103                 kfree(entries->cpu_entries[cpu]);
104         kfree(entries);
105
106         return -ENOMEM;
107 }
108
109 int get_callchain_buffers(int event_max_stack)
110 {
111         int err = 0;
112         int count;
113
114         mutex_lock(&callchain_mutex);
115
116         count = atomic_inc_return(&nr_callchain_events);
117         if (WARN_ON_ONCE(count < 1)) {
118                 err = -EINVAL;
119                 goto exit;
120         }
121
122         /*
123          * If requesting per event more than the global cap,
124          * return a different error to help userspace figure
125          * this out.
126          *
127          * And also do it here so that we have &callchain_mutex held.
128          */
129         if (event_max_stack > sysctl_perf_event_max_stack) {
130                 err = -EOVERFLOW;
131                 goto exit;
132         }
133
134         if (count == 1)
135                 err = alloc_callchain_buffers();
136 exit:
137         if (err)
138                 atomic_dec(&nr_callchain_events);
139
140         mutex_unlock(&callchain_mutex);
141
142         return err;
143 }
144
145 void put_callchain_buffers(void)
146 {
147         if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
148                 release_callchain_buffers();
149                 mutex_unlock(&callchain_mutex);
150         }
151 }
152
153 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
154 {
155         int cpu;
156         struct callchain_cpus_entries *entries;
157
158         *rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
159         if (*rctx == -1)
160                 return NULL;
161
162         entries = rcu_dereference(callchain_cpus_entries);
163         if (!entries)
164                 return NULL;
165
166         cpu = smp_processor_id();
167
168         return (((void *)entries->cpu_entries[cpu]) +
169                 (*rctx * perf_callchain_entry__sizeof()));
170 }
171
172 static void
173 put_callchain_entry(int rctx)
174 {
175         put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
176 }
177
178 struct perf_callchain_entry *
179 perf_callchain(struct perf_event *event, struct pt_regs *regs)
180 {
181         bool kernel = !event->attr.exclude_callchain_kernel;
182         bool user   = !event->attr.exclude_callchain_user;
183         /* Disallow cross-task user callchains. */
184         bool crosstask = event->ctx->task && event->ctx->task != current;
185         const u32 max_stack = event->attr.sample_max_stack;
186
187         if (!kernel && !user)
188                 return NULL;
189
190         return get_perf_callchain(regs, 0, kernel, user, max_stack, crosstask, true);
191 }
192
193 struct perf_callchain_entry *
194 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
195                    u32 max_stack, bool crosstask, bool add_mark)
196 {
197         struct perf_callchain_entry *entry;
198         struct perf_callchain_entry_ctx ctx;
199         int rctx;
200
201         entry = get_callchain_entry(&rctx);
202         if (rctx == -1)
203                 return NULL;
204
205         if (!entry)
206                 goto exit_put;
207
208         ctx.entry     = entry;
209         ctx.max_stack = max_stack;
210         ctx.nr        = entry->nr = init_nr;
211         ctx.contexts       = 0;
212         ctx.contexts_maxed = false;
213
214         if (kernel && !user_mode(regs)) {
215                 if (add_mark)
216                         perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
217                 perf_callchain_kernel(&ctx, regs);
218         }
219
220         if (user) {
221                 if (!user_mode(regs)) {
222                         if  (current->mm)
223                                 regs = task_pt_regs(current);
224                         else
225                                 regs = NULL;
226                 }
227
228                 if (regs) {
229                         mm_segment_t fs;
230
231                         if (crosstask)
232                                 goto exit_put;
233
234                         if (add_mark)
235                                 perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
236
237                         fs = get_fs();
238                         set_fs(USER_DS);
239                         perf_callchain_user(&ctx, regs);
240                         set_fs(fs);
241                 }
242         }
243
244 exit_put:
245         put_callchain_entry(rctx);
246
247         return entry;
248 }
249
250 /*
251  * Used for sysctl_perf_event_max_stack and
252  * sysctl_perf_event_max_contexts_per_stack.
253  */
254 int perf_event_max_stack_handler(struct ctl_table *table, int write,
255                                  void __user *buffer, size_t *lenp, loff_t *ppos)
256 {
257         int *value = table->data;
258         int new_value = *value, ret;
259         struct ctl_table new_table = *table;
260
261         new_table.data = &new_value;
262         ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
263         if (ret || !write)
264                 return ret;
265
266         mutex_lock(&callchain_mutex);
267         if (atomic_read(&nr_callchain_events))
268                 ret = -EBUSY;
269         else
270                 *value = new_value;
271
272         mutex_unlock(&callchain_mutex);
273
274         return ret;
275 }