GNU Linux-libre 5.15.72-gnu
[releases.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
79 {
80         if (!force_dma_unencrypted(dev))
81                 return 0;
82         return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
83 }
84
85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
86 {
87         int ret;
88
89         if (!force_dma_unencrypted(dev))
90                 return 0;
91         ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
92         if (ret)
93                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
94         return ret;
95 }
96
97 static void __dma_direct_free_pages(struct device *dev, struct page *page,
98                                     size_t size)
99 {
100         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
101             swiotlb_free(dev, page, size))
102                 return;
103         dma_free_contiguous(dev, page, size);
104 }
105
106 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
107                 gfp_t gfp, bool allow_highmem)
108 {
109         int node = dev_to_node(dev);
110         struct page *page = NULL;
111         u64 phys_limit;
112
113         WARN_ON_ONCE(!PAGE_ALIGNED(size));
114
115         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
116                                            &phys_limit);
117         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
118             is_swiotlb_for_alloc(dev)) {
119                 page = swiotlb_alloc(dev, size);
120                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
121                         __dma_direct_free_pages(dev, page, size);
122                         return NULL;
123                 }
124                 return page;
125         }
126
127         page = dma_alloc_contiguous(dev, size, gfp);
128         if (page) {
129                 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
130                     (!allow_highmem && PageHighMem(page))) {
131                         dma_free_contiguous(dev, page, size);
132                         page = NULL;
133                 }
134         }
135 again:
136         if (!page)
137                 page = alloc_pages_node(node, gfp, get_order(size));
138         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
139                 dma_free_contiguous(dev, page, size);
140                 page = NULL;
141
142                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
143                     phys_limit < DMA_BIT_MASK(64) &&
144                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
145                         gfp |= GFP_DMA32;
146                         goto again;
147                 }
148
149                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
150                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
151                         goto again;
152                 }
153         }
154
155         return page;
156 }
157
158 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
159                 dma_addr_t *dma_handle, gfp_t gfp)
160 {
161         struct page *page;
162         u64 phys_mask;
163         void *ret;
164
165         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
166                                            &phys_mask);
167         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
168         if (!page)
169                 return NULL;
170         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
171         return ret;
172 }
173
174 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
175                 dma_addr_t *dma_handle, gfp_t gfp)
176 {
177         struct page *page;
178
179         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
180         if (!page)
181                 return NULL;
182
183         /* remove any dirty cache lines on the kernel alias */
184         if (!PageHighMem(page))
185                 arch_dma_prep_coherent(page, size);
186
187         /* return the page pointer as the opaque cookie */
188         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
189         return page;
190 }
191
192 void *dma_direct_alloc(struct device *dev, size_t size,
193                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
194 {
195         struct page *page;
196         void *ret;
197
198         size = PAGE_ALIGN(size);
199         if (attrs & DMA_ATTR_NO_WARN)
200                 gfp |= __GFP_NOWARN;
201
202         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
203             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
204                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
205
206         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
207             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
208             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
209             !dev_is_dma_coherent(dev) &&
210             !is_swiotlb_for_alloc(dev))
211                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
212
213         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
214             !dev_is_dma_coherent(dev))
215                 return dma_alloc_from_global_coherent(dev, size, dma_handle);
216
217         /*
218          * Remapping or decrypting memory may block. If either is required and
219          * we can't block, allocate the memory from the atomic pools.
220          * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
221          * set up another device coherent pool by shared-dma-pool and use
222          * dma_alloc_from_dev_coherent instead.
223          */
224         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
225             !gfpflags_allow_blocking(gfp) &&
226             (force_dma_unencrypted(dev) ||
227              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
228               !dev_is_dma_coherent(dev))) &&
229             !is_swiotlb_for_alloc(dev))
230                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
231
232         /* we always manually zero the memory once we are done */
233         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
234         if (!page)
235                 return NULL;
236
237         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
238              !dev_is_dma_coherent(dev)) ||
239             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
240                 /* remove any dirty cache lines on the kernel alias */
241                 arch_dma_prep_coherent(page, size);
242
243                 /* create a coherent mapping */
244                 ret = dma_common_contiguous_remap(page, size,
245                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
246                                 __builtin_return_address(0));
247                 if (!ret)
248                         goto out_free_pages;
249                 memset(ret, 0, size);
250                 goto done;
251         }
252
253         if (PageHighMem(page)) {
254                 /*
255                  * Depending on the cma= arguments and per-arch setup
256                  * dma_alloc_contiguous could return highmem pages.
257                  * Without remapping there is no way to return them here,
258                  * so log an error and fail.
259                  */
260                 dev_info(dev, "Rejecting highmem page from CMA.\n");
261                 goto out_free_pages;
262         }
263
264         ret = page_address(page);
265         if (dma_set_decrypted(dev, ret, size))
266                 goto out_free_pages;
267         memset(ret, 0, size);
268
269         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
270             !dev_is_dma_coherent(dev)) {
271                 arch_dma_prep_coherent(page, size);
272                 ret = arch_dma_set_uncached(ret, size);
273                 if (IS_ERR(ret))
274                         goto out_encrypt_pages;
275         }
276 done:
277         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
278         return ret;
279
280 out_encrypt_pages:
281         if (dma_set_encrypted(dev, page_address(page), size))
282                 return NULL;
283 out_free_pages:
284         __dma_direct_free_pages(dev, page, size);
285         return NULL;
286 }
287
288 void dma_direct_free(struct device *dev, size_t size,
289                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
290 {
291         unsigned int page_order = get_order(size);
292
293         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
294             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
295                 /* cpu_addr is a struct page cookie, not a kernel address */
296                 dma_free_contiguous(dev, cpu_addr, size);
297                 return;
298         }
299
300         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
301             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
302             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
303             !dev_is_dma_coherent(dev) &&
304             !is_swiotlb_for_alloc(dev)) {
305                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
306                 return;
307         }
308
309         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
310             !dev_is_dma_coherent(dev)) {
311                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
312                         WARN_ON_ONCE(1);
313                 return;
314         }
315
316         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
317         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
318             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
319                 return;
320
321         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
322                 vunmap(cpu_addr);
323         } else {
324                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
325                         arch_dma_clear_uncached(cpu_addr, size);
326                 if (dma_set_encrypted(dev, cpu_addr, size))
327                         return;
328         }
329
330         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
331 }
332
333 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
334                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
335 {
336         struct page *page;
337         void *ret;
338
339         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
340             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
341             !is_swiotlb_for_alloc(dev))
342                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
343
344         page = __dma_direct_alloc_pages(dev, size, gfp, false);
345         if (!page)
346                 return NULL;
347
348         ret = page_address(page);
349         if (dma_set_decrypted(dev, ret, size))
350                 goto out_free_pages;
351         memset(ret, 0, size);
352         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
353         return page;
354 out_free_pages:
355         __dma_direct_free_pages(dev, page, size);
356         return NULL;
357 }
358
359 void dma_direct_free_pages(struct device *dev, size_t size,
360                 struct page *page, dma_addr_t dma_addr,
361                 enum dma_data_direction dir)
362 {
363         void *vaddr = page_address(page);
364
365         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
366         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
367             dma_free_from_pool(dev, vaddr, size))
368                 return;
369
370         if (dma_set_encrypted(dev, vaddr, size))
371                 return;
372         __dma_direct_free_pages(dev, page, size);
373 }
374
375 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
376     defined(CONFIG_SWIOTLB)
377 void dma_direct_sync_sg_for_device(struct device *dev,
378                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
379 {
380         struct scatterlist *sg;
381         int i;
382
383         for_each_sg(sgl, sg, nents, i) {
384                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
385
386                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
387                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
388                                                        dir);
389
390                 if (!dev_is_dma_coherent(dev))
391                         arch_sync_dma_for_device(paddr, sg->length,
392                                         dir);
393         }
394 }
395 #endif
396
397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
398     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
399     defined(CONFIG_SWIOTLB)
400 void dma_direct_sync_sg_for_cpu(struct device *dev,
401                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
402 {
403         struct scatterlist *sg;
404         int i;
405
406         for_each_sg(sgl, sg, nents, i) {
407                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
408
409                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
411
412                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
413                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
414                                                     dir);
415
416                 if (dir == DMA_FROM_DEVICE)
417                         arch_dma_mark_clean(paddr, sg->length);
418         }
419
420         if (!dev_is_dma_coherent(dev))
421                 arch_sync_dma_for_cpu_all();
422 }
423
424 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
425                 int nents, enum dma_data_direction dir, unsigned long attrs)
426 {
427         struct scatterlist *sg;
428         int i;
429
430         for_each_sg(sgl, sg, nents, i)
431                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
432                              attrs);
433 }
434 #endif
435
436 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
437                 enum dma_data_direction dir, unsigned long attrs)
438 {
439         int i;
440         struct scatterlist *sg;
441
442         for_each_sg(sgl, sg, nents, i) {
443                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
444                                 sg->offset, sg->length, dir, attrs);
445                 if (sg->dma_address == DMA_MAPPING_ERROR)
446                         goto out_unmap;
447                 sg_dma_len(sg) = sg->length;
448         }
449
450         return nents;
451
452 out_unmap:
453         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
454         return -EIO;
455 }
456
457 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
458                 size_t size, enum dma_data_direction dir, unsigned long attrs)
459 {
460         dma_addr_t dma_addr = paddr;
461
462         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
463                 dev_err_once(dev,
464                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
465                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
466                 WARN_ON_ONCE(1);
467                 return DMA_MAPPING_ERROR;
468         }
469
470         return dma_addr;
471 }
472
473 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
474                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
475                 unsigned long attrs)
476 {
477         struct page *page = dma_direct_to_page(dev, dma_addr);
478         int ret;
479
480         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
481         if (!ret)
482                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
483         return ret;
484 }
485
486 bool dma_direct_can_mmap(struct device *dev)
487 {
488         return dev_is_dma_coherent(dev) ||
489                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
490 }
491
492 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
493                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
494                 unsigned long attrs)
495 {
496         unsigned long user_count = vma_pages(vma);
497         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
498         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
499         int ret = -ENXIO;
500
501         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
502
503         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
504                 return ret;
505         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
506                 return ret;
507
508         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
509                 return -ENXIO;
510         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
511                         user_count << PAGE_SHIFT, vma->vm_page_prot);
512 }
513
514 int dma_direct_supported(struct device *dev, u64 mask)
515 {
516         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
517
518         /*
519          * Because 32-bit DMA masks are so common we expect every architecture
520          * to be able to satisfy them - either by not supporting more physical
521          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
522          * architecture needs to use an IOMMU instead of the direct mapping.
523          */
524         if (mask >= DMA_BIT_MASK(32))
525                 return 1;
526
527         /*
528          * This check needs to be against the actual bit mask value, so use
529          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
530          * part of the check.
531          */
532         if (IS_ENABLED(CONFIG_ZONE_DMA))
533                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
534         return mask >= phys_to_dma_unencrypted(dev, min_mask);
535 }
536
537 size_t dma_direct_max_mapping_size(struct device *dev)
538 {
539         /* If SWIOTLB is active, use its maximum mapping size */
540         if (is_swiotlb_active(dev) &&
541             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
542                 return swiotlb_max_mapping_size(dev);
543         return SIZE_MAX;
544 }
545
546 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
547 {
548         return !dev_is_dma_coherent(dev) ||
549                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
550 }
551
552 /**
553  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
554  * @dev:        device pointer; needed to "own" the alloced memory.
555  * @cpu_start:  beginning of memory region covered by this offset.
556  * @dma_start:  beginning of DMA/PCI region covered by this offset.
557  * @size:       size of the region.
558  *
559  * This is for the simple case of a uniform offset which cannot
560  * be discovered by "dma-ranges".
561  *
562  * It returns -ENOMEM if out of memory, -EINVAL if a map
563  * already exists, 0 otherwise.
564  *
565  * Note: any call to this from a driver is a bug.  The mapping needs
566  * to be described by the device tree or other firmware interfaces.
567  */
568 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
569                          dma_addr_t dma_start, u64 size)
570 {
571         struct bus_dma_region *map;
572         u64 offset = (u64)cpu_start - (u64)dma_start;
573
574         if (dev->dma_range_map) {
575                 dev_err(dev, "attempt to add DMA range to existing map\n");
576                 return -EINVAL;
577         }
578
579         if (!offset)
580                 return 0;
581
582         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
583         if (!map)
584                 return -ENOMEM;
585         map[0].cpu_start = cpu_start;
586         map[0].dma_start = dma_start;
587         map[0].offset = offset;
588         map[0].size = size;
589         dev->dma_range_map = map;
590         return 0;
591 }