GNU Linux-libre 5.19.9-gnu
[releases.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
79 {
80         if (!force_dma_unencrypted(dev))
81                 return 0;
82         return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
83 }
84
85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
86 {
87         int ret;
88
89         if (!force_dma_unencrypted(dev))
90                 return 0;
91         ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
92         if (ret)
93                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
94         return ret;
95 }
96
97 static void __dma_direct_free_pages(struct device *dev, struct page *page,
98                                     size_t size)
99 {
100         if (swiotlb_free(dev, page, size))
101                 return;
102         dma_free_contiguous(dev, page, size);
103 }
104
105 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
106 {
107         struct page *page = swiotlb_alloc(dev, size);
108
109         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110                 swiotlb_free(dev, page, size);
111                 return NULL;
112         }
113
114         return page;
115 }
116
117 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
118                 gfp_t gfp, bool allow_highmem)
119 {
120         int node = dev_to_node(dev);
121         struct page *page = NULL;
122         u64 phys_limit;
123
124         WARN_ON_ONCE(!PAGE_ALIGNED(size));
125
126         if (is_swiotlb_for_alloc(dev))
127                 return dma_direct_alloc_swiotlb(dev, size);
128
129         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
130                                            &phys_limit);
131         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page) {
133                 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134                     (!allow_highmem && PageHighMem(page))) {
135                         dma_free_contiguous(dev, page, size);
136                         page = NULL;
137                 }
138         }
139 again:
140         if (!page)
141                 page = alloc_pages_node(node, gfp, get_order(size));
142         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page, size);
144                 page = NULL;
145
146                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;
150                         goto again;
151                 }
152
153                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;
156                 }
157         }
158
159         return page;
160 }
161
162 /*
163  * Check if a potentially blocking operations needs to dip into the atomic
164  * pools for the given device/gfp.
165  */
166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 {
168         return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 }
170
171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172                 dma_addr_t *dma_handle, gfp_t gfp)
173 {
174         struct page *page;
175         u64 phys_mask;
176         void *ret;
177
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179                 return NULL;
180
181         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
182                                            &phys_mask);
183         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184         if (!page)
185                 return NULL;
186         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187         return ret;
188 }
189
190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191                 dma_addr_t *dma_handle, gfp_t gfp)
192 {
193         struct page *page;
194
195         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196         if (!page)
197                 return NULL;
198
199         /* remove any dirty cache lines on the kernel alias */
200         if (!PageHighMem(page))
201                 arch_dma_prep_coherent(page, size);
202
203         /* return the page pointer as the opaque cookie */
204         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205         return page;
206 }
207
208 void *dma_direct_alloc(struct device *dev, size_t size,
209                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210 {
211         bool remap = false, set_uncached = false;
212         struct page *page;
213         void *ret;
214
215         size = PAGE_ALIGN(size);
216         if (attrs & DMA_ATTR_NO_WARN)
217                 gfp |= __GFP_NOWARN;
218
219         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222
223         if (!dev_is_dma_coherent(dev)) {
224                 /*
225                  * Fallback to the arch handler if it exists.  This should
226                  * eventually go away.
227                  */
228                 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
229                     !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
230                     !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
231                     !is_swiotlb_for_alloc(dev))
232                         return arch_dma_alloc(dev, size, dma_handle, gfp,
233                                               attrs);
234
235                 /*
236                  * If there is a global pool, always allocate from it for
237                  * non-coherent devices.
238                  */
239                 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
240                         return dma_alloc_from_global_coherent(dev, size,
241                                         dma_handle);
242
243                 /*
244                  * Otherwise remap if the architecture is asking for it.  But
245                  * given that remapping memory is a blocking operation we'll
246                  * instead have to dip into the atomic pools.
247                  */
248                 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
249                 if (remap) {
250                         if (dma_direct_use_pool(dev, gfp))
251                                 return dma_direct_alloc_from_pool(dev, size,
252                                                 dma_handle, gfp);
253                 } else {
254                         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
255                                 return NULL;
256                         set_uncached = true;
257                 }
258         }
259
260         /*
261          * Decrypting memory may block, so allocate the memory from the atomic
262          * pools if we can't block.
263          */
264         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
265                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
266
267         /* we always manually zero the memory once we are done */
268         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
269         if (!page)
270                 return NULL;
271
272         /*
273          * dma_alloc_contiguous can return highmem pages depending on a
274          * combination the cma= arguments and per-arch setup.  These need to be
275          * remapped to return a kernel virtual address.
276          */
277         if (PageHighMem(page)) {
278                 remap = true;
279                 set_uncached = false;
280         }
281
282         if (remap) {
283                 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
284
285                 if (force_dma_unencrypted(dev))
286                         prot = pgprot_decrypted(prot);
287
288                 /* remove any dirty cache lines on the kernel alias */
289                 arch_dma_prep_coherent(page, size);
290
291                 /* create a coherent mapping */
292                 ret = dma_common_contiguous_remap(page, size, prot,
293                                 __builtin_return_address(0));
294                 if (!ret)
295                         goto out_free_pages;
296         } else {
297                 ret = page_address(page);
298                 if (dma_set_decrypted(dev, ret, size))
299                         goto out_free_pages;
300         }
301
302         memset(ret, 0, size);
303
304         if (set_uncached) {
305                 arch_dma_prep_coherent(page, size);
306                 ret = arch_dma_set_uncached(ret, size);
307                 if (IS_ERR(ret))
308                         goto out_encrypt_pages;
309         }
310
311         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
312         return ret;
313
314 out_encrypt_pages:
315         if (dma_set_encrypted(dev, page_address(page), size))
316                 return NULL;
317 out_free_pages:
318         __dma_direct_free_pages(dev, page, size);
319         return NULL;
320 }
321
322 void dma_direct_free(struct device *dev, size_t size,
323                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
324 {
325         unsigned int page_order = get_order(size);
326
327         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
328             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
329                 /* cpu_addr is a struct page cookie, not a kernel address */
330                 dma_free_contiguous(dev, cpu_addr, size);
331                 return;
332         }
333
334         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
335             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
336             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
337             !dev_is_dma_coherent(dev) &&
338             !is_swiotlb_for_alloc(dev)) {
339                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
340                 return;
341         }
342
343         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
344             !dev_is_dma_coherent(dev)) {
345                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
346                         WARN_ON_ONCE(1);
347                 return;
348         }
349
350         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
351         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
352             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
353                 return;
354
355         if (is_vmalloc_addr(cpu_addr)) {
356                 vunmap(cpu_addr);
357         } else {
358                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
359                         arch_dma_clear_uncached(cpu_addr, size);
360                 if (dma_set_encrypted(dev, cpu_addr, size))
361                         return;
362         }
363
364         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
365 }
366
367 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
368                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
369 {
370         struct page *page;
371         void *ret;
372
373         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
374                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
375
376         page = __dma_direct_alloc_pages(dev, size, gfp, false);
377         if (!page)
378                 return NULL;
379
380         ret = page_address(page);
381         if (dma_set_decrypted(dev, ret, size))
382                 goto out_free_pages;
383         memset(ret, 0, size);
384         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
385         return page;
386 out_free_pages:
387         __dma_direct_free_pages(dev, page, size);
388         return NULL;
389 }
390
391 void dma_direct_free_pages(struct device *dev, size_t size,
392                 struct page *page, dma_addr_t dma_addr,
393                 enum dma_data_direction dir)
394 {
395         void *vaddr = page_address(page);
396
397         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
398         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
399             dma_free_from_pool(dev, vaddr, size))
400                 return;
401
402         if (dma_set_encrypted(dev, vaddr, size))
403                 return;
404         __dma_direct_free_pages(dev, page, size);
405 }
406
407 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
408     defined(CONFIG_SWIOTLB)
409 void dma_direct_sync_sg_for_device(struct device *dev,
410                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
411 {
412         struct scatterlist *sg;
413         int i;
414
415         for_each_sg(sgl, sg, nents, i) {
416                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
417
418                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
419                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
420                                                        dir);
421
422                 if (!dev_is_dma_coherent(dev))
423                         arch_sync_dma_for_device(paddr, sg->length,
424                                         dir);
425         }
426 }
427 #endif
428
429 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
430     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
431     defined(CONFIG_SWIOTLB)
432 void dma_direct_sync_sg_for_cpu(struct device *dev,
433                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
434 {
435         struct scatterlist *sg;
436         int i;
437
438         for_each_sg(sgl, sg, nents, i) {
439                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
440
441                 if (!dev_is_dma_coherent(dev))
442                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
443
444                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
445                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
446                                                     dir);
447
448                 if (dir == DMA_FROM_DEVICE)
449                         arch_dma_mark_clean(paddr, sg->length);
450         }
451
452         if (!dev_is_dma_coherent(dev))
453                 arch_sync_dma_for_cpu_all();
454 }
455
456 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
457                 int nents, enum dma_data_direction dir, unsigned long attrs)
458 {
459         struct scatterlist *sg;
460         int i;
461
462         for_each_sg(sgl, sg, nents, i)
463                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
464                              attrs);
465 }
466 #endif
467
468 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
469                 enum dma_data_direction dir, unsigned long attrs)
470 {
471         int i;
472         struct scatterlist *sg;
473
474         for_each_sg(sgl, sg, nents, i) {
475                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
476                                 sg->offset, sg->length, dir, attrs);
477                 if (sg->dma_address == DMA_MAPPING_ERROR)
478                         goto out_unmap;
479                 sg_dma_len(sg) = sg->length;
480         }
481
482         return nents;
483
484 out_unmap:
485         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
486         return -EIO;
487 }
488
489 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
490                 size_t size, enum dma_data_direction dir, unsigned long attrs)
491 {
492         dma_addr_t dma_addr = paddr;
493
494         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
495                 dev_err_once(dev,
496                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
497                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
498                 WARN_ON_ONCE(1);
499                 return DMA_MAPPING_ERROR;
500         }
501
502         return dma_addr;
503 }
504
505 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
506                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
507                 unsigned long attrs)
508 {
509         struct page *page = dma_direct_to_page(dev, dma_addr);
510         int ret;
511
512         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
513         if (!ret)
514                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
515         return ret;
516 }
517
518 bool dma_direct_can_mmap(struct device *dev)
519 {
520         return dev_is_dma_coherent(dev) ||
521                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
522 }
523
524 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
525                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
526                 unsigned long attrs)
527 {
528         unsigned long user_count = vma_pages(vma);
529         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
530         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
531         int ret = -ENXIO;
532
533         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
534         if (force_dma_unencrypted(dev))
535                 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
536
537         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
538                 return ret;
539         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
540                 return ret;
541
542         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
543                 return -ENXIO;
544         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
545                         user_count << PAGE_SHIFT, vma->vm_page_prot);
546 }
547
548 int dma_direct_supported(struct device *dev, u64 mask)
549 {
550         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
551
552         /*
553          * Because 32-bit DMA masks are so common we expect every architecture
554          * to be able to satisfy them - either by not supporting more physical
555          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
556          * architecture needs to use an IOMMU instead of the direct mapping.
557          */
558         if (mask >= DMA_BIT_MASK(32))
559                 return 1;
560
561         /*
562          * This check needs to be against the actual bit mask value, so use
563          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
564          * part of the check.
565          */
566         if (IS_ENABLED(CONFIG_ZONE_DMA))
567                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
568         return mask >= phys_to_dma_unencrypted(dev, min_mask);
569 }
570
571 size_t dma_direct_max_mapping_size(struct device *dev)
572 {
573         /* If SWIOTLB is active, use its maximum mapping size */
574         if (is_swiotlb_active(dev) &&
575             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
576                 return swiotlb_max_mapping_size(dev);
577         return SIZE_MAX;
578 }
579
580 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
581 {
582         return !dev_is_dma_coherent(dev) ||
583                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
584 }
585
586 /**
587  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
588  * @dev:        device pointer; needed to "own" the alloced memory.
589  * @cpu_start:  beginning of memory region covered by this offset.
590  * @dma_start:  beginning of DMA/PCI region covered by this offset.
591  * @size:       size of the region.
592  *
593  * This is for the simple case of a uniform offset which cannot
594  * be discovered by "dma-ranges".
595  *
596  * It returns -ENOMEM if out of memory, -EINVAL if a map
597  * already exists, 0 otherwise.
598  *
599  * Note: any call to this from a driver is a bug.  The mapping needs
600  * to be described by the device tree or other firmware interfaces.
601  */
602 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
603                          dma_addr_t dma_start, u64 size)
604 {
605         struct bus_dma_region *map;
606         u64 offset = (u64)cpu_start - (u64)dma_start;
607
608         if (dev->dma_range_map) {
609                 dev_err(dev, "attempt to add DMA range to existing map\n");
610                 return -EINVAL;
611         }
612
613         if (!offset)
614                 return 0;
615
616         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
617         if (!map)
618                 return -ENOMEM;
619         map[0].cpu_start = cpu_start;
620         map[0].dma_start = dma_start;
621         map[0].offset = offset;
622         map[0].size = size;
623         dev->dma_range_map = map;
624         return 0;
625 }