GNU Linux-libre 5.17.9-gnu
[releases.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
79 {
80         if (!force_dma_unencrypted(dev))
81                 return 0;
82         return set_memory_decrypted((unsigned long)vaddr, 1 << get_order(size));
83 }
84
85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
86 {
87         int ret;
88
89         if (!force_dma_unencrypted(dev))
90                 return 0;
91         ret = set_memory_encrypted((unsigned long)vaddr, 1 << get_order(size));
92         if (ret)
93                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
94         return ret;
95 }
96
97 static void __dma_direct_free_pages(struct device *dev, struct page *page,
98                                     size_t size)
99 {
100         if (swiotlb_free(dev, page, size))
101                 return;
102         dma_free_contiguous(dev, page, size);
103 }
104
105 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
106 {
107         struct page *page = swiotlb_alloc(dev, size);
108
109         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110                 swiotlb_free(dev, page, size);
111                 return NULL;
112         }
113
114         return page;
115 }
116
117 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
118                 gfp_t gfp)
119 {
120         int node = dev_to_node(dev);
121         struct page *page = NULL;
122         u64 phys_limit;
123
124         WARN_ON_ONCE(!PAGE_ALIGNED(size));
125
126         if (is_swiotlb_for_alloc(dev))
127                 return dma_direct_alloc_swiotlb(dev, size);
128
129         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
130                                            &phys_limit);
131         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
133                 dma_free_contiguous(dev, page, size);
134                 page = NULL;
135         }
136 again:
137         if (!page)
138                 page = alloc_pages_node(node, gfp, get_order(size));
139         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
140                 dma_free_contiguous(dev, page, size);
141                 page = NULL;
142
143                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
144                     phys_limit < DMA_BIT_MASK(64) &&
145                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
146                         gfp |= GFP_DMA32;
147                         goto again;
148                 }
149
150                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
151                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
152                         goto again;
153                 }
154         }
155
156         return page;
157 }
158
159 /*
160  * Check if a potentially blocking operations needs to dip into the atomic
161  * pools for the given device/gfp.
162  */
163 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
164 {
165         return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
166 }
167
168 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
169                 dma_addr_t *dma_handle, gfp_t gfp)
170 {
171         struct page *page;
172         u64 phys_mask;
173         void *ret;
174
175         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
176                 return NULL;
177
178         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
179                                            &phys_mask);
180         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
181         if (!page)
182                 return NULL;
183         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
184         return ret;
185 }
186
187 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
188                 dma_addr_t *dma_handle, gfp_t gfp)
189 {
190         struct page *page;
191
192         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
193         if (!page)
194                 return NULL;
195
196         /* remove any dirty cache lines on the kernel alias */
197         if (!PageHighMem(page))
198                 arch_dma_prep_coherent(page, size);
199
200         /* return the page pointer as the opaque cookie */
201         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
202         return page;
203 }
204
205 void *dma_direct_alloc(struct device *dev, size_t size,
206                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
207 {
208         bool remap = false, set_uncached = false;
209         struct page *page;
210         void *ret;
211
212         size = PAGE_ALIGN(size);
213         if (attrs & DMA_ATTR_NO_WARN)
214                 gfp |= __GFP_NOWARN;
215
216         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
217             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
218                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
219
220         if (!dev_is_dma_coherent(dev)) {
221                 /*
222                  * Fallback to the arch handler if it exists.  This should
223                  * eventually go away.
224                  */
225                 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
226                     !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
227                     !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
228                     !is_swiotlb_for_alloc(dev))
229                         return arch_dma_alloc(dev, size, dma_handle, gfp,
230                                               attrs);
231
232                 /*
233                  * If there is a global pool, always allocate from it for
234                  * non-coherent devices.
235                  */
236                 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
237                         return dma_alloc_from_global_coherent(dev, size,
238                                         dma_handle);
239
240                 /*
241                  * Otherwise remap if the architecture is asking for it.  But
242                  * given that remapping memory is a blocking operation we'll
243                  * instead have to dip into the atomic pools.
244                  */
245                 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
246                 if (remap) {
247                         if (dma_direct_use_pool(dev, gfp))
248                                 return dma_direct_alloc_from_pool(dev, size,
249                                                 dma_handle, gfp);
250                 } else {
251                         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
252                                 return NULL;
253                         set_uncached = true;
254                 }
255         }
256
257         /*
258          * Decrypting memory may block, so allocate the memory from the atomic
259          * pools if we can't block.
260          */
261         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
262                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
263
264         /* we always manually zero the memory once we are done */
265         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
266         if (!page)
267                 return NULL;
268         if (PageHighMem(page)) {
269                 /*
270                  * Depending on the cma= arguments and per-arch setup,
271                  * dma_alloc_contiguous could return highmem pages.
272                  * Without remapping there is no way to return them here, so
273                  * log an error and fail.
274                  */
275                 if (!IS_ENABLED(CONFIG_DMA_REMAP)) {
276                         dev_info(dev, "Rejecting highmem page from CMA.\n");
277                         goto out_free_pages;
278                 }
279                 remap = true;
280                 set_uncached = false;
281         }
282
283         if (remap) {
284                 /* remove any dirty cache lines on the kernel alias */
285                 arch_dma_prep_coherent(page, size);
286
287                 /* create a coherent mapping */
288                 ret = dma_common_contiguous_remap(page, size,
289                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
290                                 __builtin_return_address(0));
291                 if (!ret)
292                         goto out_free_pages;
293         } else {
294                 ret = page_address(page);
295                 if (dma_set_decrypted(dev, ret, size))
296                         goto out_free_pages;
297         }
298
299         memset(ret, 0, size);
300
301         if (set_uncached) {
302                 arch_dma_prep_coherent(page, size);
303                 ret = arch_dma_set_uncached(ret, size);
304                 if (IS_ERR(ret))
305                         goto out_encrypt_pages;
306         }
307
308         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
309         return ret;
310
311 out_encrypt_pages:
312         if (dma_set_encrypted(dev, page_address(page), size))
313                 return NULL;
314 out_free_pages:
315         __dma_direct_free_pages(dev, page, size);
316         return NULL;
317 }
318
319 void dma_direct_free(struct device *dev, size_t size,
320                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
321 {
322         unsigned int page_order = get_order(size);
323
324         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
325             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
326                 /* cpu_addr is a struct page cookie, not a kernel address */
327                 dma_free_contiguous(dev, cpu_addr, size);
328                 return;
329         }
330
331         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
332             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
333             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334             !dev_is_dma_coherent(dev) &&
335             !is_swiotlb_for_alloc(dev)) {
336                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
337                 return;
338         }
339
340         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
341             !dev_is_dma_coherent(dev)) {
342                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
343                         WARN_ON_ONCE(1);
344                 return;
345         }
346
347         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
348         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
349             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
350                 return;
351
352         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
353                 vunmap(cpu_addr);
354         } else {
355                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
356                         arch_dma_clear_uncached(cpu_addr, size);
357                 if (dma_set_encrypted(dev, cpu_addr, 1 << page_order))
358                         return;
359         }
360
361         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
362 }
363
364 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
365                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
366 {
367         struct page *page;
368         void *ret;
369
370         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
371                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
372
373         page = __dma_direct_alloc_pages(dev, size, gfp);
374         if (!page)
375                 return NULL;
376         if (PageHighMem(page)) {
377                 /*
378                  * Depending on the cma= arguments and per-arch setup
379                  * dma_alloc_contiguous could return highmem pages.
380                  * Without remapping there is no way to return them here,
381                  * so log an error and fail.
382                  */
383                 dev_info(dev, "Rejecting highmem page from CMA.\n");
384                 goto out_free_pages;
385         }
386
387         ret = page_address(page);
388         if (dma_set_decrypted(dev, ret, size))
389                 goto out_free_pages;
390         memset(ret, 0, size);
391         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
392         return page;
393 out_free_pages:
394         __dma_direct_free_pages(dev, page, size);
395         return NULL;
396 }
397
398 void dma_direct_free_pages(struct device *dev, size_t size,
399                 struct page *page, dma_addr_t dma_addr,
400                 enum dma_data_direction dir)
401 {
402         unsigned int page_order = get_order(size);
403         void *vaddr = page_address(page);
404
405         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
406         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
407             dma_free_from_pool(dev, vaddr, size))
408                 return;
409
410         if (dma_set_encrypted(dev, vaddr, 1 << page_order))
411                 return;
412         __dma_direct_free_pages(dev, page, size);
413 }
414
415 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
416     defined(CONFIG_SWIOTLB)
417 void dma_direct_sync_sg_for_device(struct device *dev,
418                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
419 {
420         struct scatterlist *sg;
421         int i;
422
423         for_each_sg(sgl, sg, nents, i) {
424                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
425
426                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
427                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
428                                                        dir);
429
430                 if (!dev_is_dma_coherent(dev))
431                         arch_sync_dma_for_device(paddr, sg->length,
432                                         dir);
433         }
434 }
435 #endif
436
437 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
438     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
439     defined(CONFIG_SWIOTLB)
440 void dma_direct_sync_sg_for_cpu(struct device *dev,
441                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
442 {
443         struct scatterlist *sg;
444         int i;
445
446         for_each_sg(sgl, sg, nents, i) {
447                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
448
449                 if (!dev_is_dma_coherent(dev))
450                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
451
452                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
453                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
454                                                     dir);
455
456                 if (dir == DMA_FROM_DEVICE)
457                         arch_dma_mark_clean(paddr, sg->length);
458         }
459
460         if (!dev_is_dma_coherent(dev))
461                 arch_sync_dma_for_cpu_all();
462 }
463
464 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
465                 int nents, enum dma_data_direction dir, unsigned long attrs)
466 {
467         struct scatterlist *sg;
468         int i;
469
470         for_each_sg(sgl, sg, nents, i)
471                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
472                              attrs);
473 }
474 #endif
475
476 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
477                 enum dma_data_direction dir, unsigned long attrs)
478 {
479         int i;
480         struct scatterlist *sg;
481
482         for_each_sg(sgl, sg, nents, i) {
483                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
484                                 sg->offset, sg->length, dir, attrs);
485                 if (sg->dma_address == DMA_MAPPING_ERROR)
486                         goto out_unmap;
487                 sg_dma_len(sg) = sg->length;
488         }
489
490         return nents;
491
492 out_unmap:
493         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
494         return -EIO;
495 }
496
497 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
498                 size_t size, enum dma_data_direction dir, unsigned long attrs)
499 {
500         dma_addr_t dma_addr = paddr;
501
502         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
503                 dev_err_once(dev,
504                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
505                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
506                 WARN_ON_ONCE(1);
507                 return DMA_MAPPING_ERROR;
508         }
509
510         return dma_addr;
511 }
512
513 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
514                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
515                 unsigned long attrs)
516 {
517         struct page *page = dma_direct_to_page(dev, dma_addr);
518         int ret;
519
520         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
521         if (!ret)
522                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
523         return ret;
524 }
525
526 bool dma_direct_can_mmap(struct device *dev)
527 {
528         return dev_is_dma_coherent(dev) ||
529                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
530 }
531
532 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
533                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
534                 unsigned long attrs)
535 {
536         unsigned long user_count = vma_pages(vma);
537         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
538         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
539         int ret = -ENXIO;
540
541         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
542
543         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
544                 return ret;
545         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
546                 return ret;
547
548         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
549                 return -ENXIO;
550         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
551                         user_count << PAGE_SHIFT, vma->vm_page_prot);
552 }
553
554 int dma_direct_supported(struct device *dev, u64 mask)
555 {
556         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
557
558         /*
559          * Because 32-bit DMA masks are so common we expect every architecture
560          * to be able to satisfy them - either by not supporting more physical
561          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
562          * architecture needs to use an IOMMU instead of the direct mapping.
563          */
564         if (mask >= DMA_BIT_MASK(32))
565                 return 1;
566
567         /*
568          * This check needs to be against the actual bit mask value, so use
569          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
570          * part of the check.
571          */
572         if (IS_ENABLED(CONFIG_ZONE_DMA))
573                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
574         return mask >= phys_to_dma_unencrypted(dev, min_mask);
575 }
576
577 size_t dma_direct_max_mapping_size(struct device *dev)
578 {
579         /* If SWIOTLB is active, use its maximum mapping size */
580         if (is_swiotlb_active(dev) &&
581             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
582                 return swiotlb_max_mapping_size(dev);
583         return SIZE_MAX;
584 }
585
586 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
587 {
588         return !dev_is_dma_coherent(dev) ||
589                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
590 }
591
592 /**
593  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
594  * @dev:        device pointer; needed to "own" the alloced memory.
595  * @cpu_start:  beginning of memory region covered by this offset.
596  * @dma_start:  beginning of DMA/PCI region covered by this offset.
597  * @size:       size of the region.
598  *
599  * This is for the simple case of a uniform offset which cannot
600  * be discovered by "dma-ranges".
601  *
602  * It returns -ENOMEM if out of memory, -EINVAL if a map
603  * already exists, 0 otherwise.
604  *
605  * Note: any call to this from a driver is a bug.  The mapping needs
606  * to be described by the device tree or other firmware interfaces.
607  */
608 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
609                          dma_addr_t dma_start, u64 size)
610 {
611         struct bus_dma_region *map;
612         u64 offset = (u64)cpu_start - (u64)dma_start;
613
614         if (dev->dma_range_map) {
615                 dev_err(dev, "attempt to add DMA range to existing map\n");
616                 return -EINVAL;
617         }
618
619         if (!offset)
620                 return 0;
621
622         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
623         if (!map)
624                 return -ENOMEM;
625         map[0].cpu_start = cpu_start;
626         map[0].dma_start = dma_start;
627         map[0].offset = offset;
628         map[0].size = size;
629         dev->dma_range_map = map;
630         return 0;
631 }