GNU Linux-libre 5.4.257-gnu1
[releases.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25
26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28         if (!dev->dma_mask) {
29                 dev_err_once(dev, "DMA map on device without dma_mask\n");
30         } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31                 dev_err_once(dev,
32                         "overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33                         &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
34         }
35         WARN_ON_ONCE(1);
36 }
37
38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39                 phys_addr_t phys)
40 {
41         if (force_dma_unencrypted(dev))
42                 return __phys_to_dma(dev, phys);
43         return phys_to_dma(dev, phys);
44 }
45
46 u64 dma_direct_get_required_mask(struct device *dev)
47 {
48         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
49         u64 max_dma = phys_to_dma_direct(dev, phys);
50
51         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
52 }
53
54 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
55                 u64 *phys_mask)
56 {
57         if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
58                 dma_mask = dev->bus_dma_mask;
59
60         if (force_dma_unencrypted(dev))
61                 *phys_mask = __dma_to_phys(dev, dma_mask);
62         else
63                 *phys_mask = dma_to_phys(dev, dma_mask);
64
65         /*
66          * Optimistically try the zone that the physical address mask falls
67          * into first.  If that returns memory that isn't actually addressable
68          * we will fallback to the next lower zone and try again.
69          *
70          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
71          * zones.
72          */
73         if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
74                 return GFP_DMA;
75         if (*phys_mask <= DMA_BIT_MASK(32))
76                 return GFP_DMA32;
77         return 0;
78 }
79
80 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
81 {
82         return phys_to_dma_direct(dev, phys) + size - 1 <=
83                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
84 }
85
86 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
87                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
88 {
89         size_t alloc_size = PAGE_ALIGN(size);
90         int node = dev_to_node(dev);
91         struct page *page = NULL;
92         u64 phys_mask;
93
94         if (attrs & DMA_ATTR_NO_WARN)
95                 gfp |= __GFP_NOWARN;
96
97         /* we always manually zero the memory once we are done: */
98         gfp &= ~__GFP_ZERO;
99         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
100                         &phys_mask);
101         page = dma_alloc_contiguous(dev, alloc_size, gfp);
102         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
103                 dma_free_contiguous(dev, page, alloc_size);
104                 page = NULL;
105         }
106 again:
107         if (!page)
108                 page = alloc_pages_node(node, gfp, get_order(alloc_size));
109         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110                 dma_free_contiguous(dev, page, size);
111                 page = NULL;
112
113                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
114                     phys_mask < DMA_BIT_MASK(64) &&
115                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
116                         gfp |= GFP_DMA32;
117                         goto again;
118                 }
119
120                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
121                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
122                         goto again;
123                 }
124         }
125
126         return page;
127 }
128
129 void *dma_direct_alloc_pages(struct device *dev, size_t size,
130                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
131 {
132         struct page *page;
133         void *ret;
134
135         page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
136         if (!page)
137                 return NULL;
138
139         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
140             !force_dma_unencrypted(dev)) {
141                 /* remove any dirty cache lines on the kernel alias */
142                 if (!PageHighMem(page))
143                         arch_dma_prep_coherent(page, size);
144                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
145                 /* return the page pointer as the opaque cookie */
146                 return page;
147         }
148
149         if (PageHighMem(page)) {
150                 /*
151                  * Depending on the cma= arguments and per-arch setup
152                  * dma_alloc_contiguous could return highmem pages.
153                  * Without remapping there is no way to return them here,
154                  * so log an error and fail.
155                  */
156                 dev_info(dev, "Rejecting highmem page from CMA.\n");
157                 __dma_direct_free_pages(dev, size, page);
158                 return NULL;
159         }
160
161         ret = page_address(page);
162         if (force_dma_unencrypted(dev)) {
163                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
164                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
165         } else {
166                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
167         }
168         memset(ret, 0, size);
169
170         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
171             dma_alloc_need_uncached(dev, attrs)) {
172                 arch_dma_prep_coherent(page, size);
173                 ret = uncached_kernel_address(ret);
174         }
175
176         return ret;
177 }
178
179 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
180 {
181         dma_free_contiguous(dev, page, size);
182 }
183
184 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
185                 dma_addr_t dma_addr, unsigned long attrs)
186 {
187         unsigned int page_order = get_order(size);
188
189         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
190             !force_dma_unencrypted(dev)) {
191                 /* cpu_addr is a struct page cookie, not a kernel address */
192                 __dma_direct_free_pages(dev, size, cpu_addr);
193                 return;
194         }
195
196         if (force_dma_unencrypted(dev))
197                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
198
199         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
200             dma_alloc_need_uncached(dev, attrs))
201                 cpu_addr = cached_kernel_address(cpu_addr);
202         __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
203 }
204
205 void *dma_direct_alloc(struct device *dev, size_t size,
206                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
207 {
208         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
209             dma_alloc_need_uncached(dev, attrs))
210                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
211         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
212 }
213
214 void dma_direct_free(struct device *dev, size_t size,
215                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
216 {
217         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
218             dma_alloc_need_uncached(dev, attrs))
219                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
220         else
221                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
222 }
223
224 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
225     defined(CONFIG_SWIOTLB)
226 void dma_direct_sync_single_for_device(struct device *dev,
227                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
228 {
229         phys_addr_t paddr = dma_to_phys(dev, addr);
230
231         if (unlikely(is_swiotlb_buffer(paddr)))
232                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
233
234         if (!dev_is_dma_coherent(dev))
235                 arch_sync_dma_for_device(paddr, size, dir);
236 }
237 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
238
239 void dma_direct_sync_sg_for_device(struct device *dev,
240                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
241 {
242         struct scatterlist *sg;
243         int i;
244
245         for_each_sg(sgl, sg, nents, i) {
246                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
247
248                 if (unlikely(is_swiotlb_buffer(paddr)))
249                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
250                                         dir, SYNC_FOR_DEVICE);
251
252                 if (!dev_is_dma_coherent(dev))
253                         arch_sync_dma_for_device(paddr, sg->length,
254                                         dir);
255         }
256 }
257 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
258 #endif
259
260 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
261     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
262     defined(CONFIG_SWIOTLB)
263 void dma_direct_sync_single_for_cpu(struct device *dev,
264                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
265 {
266         phys_addr_t paddr = dma_to_phys(dev, addr);
267
268         if (!dev_is_dma_coherent(dev)) {
269                 arch_sync_dma_for_cpu(paddr, size, dir);
270                 arch_sync_dma_for_cpu_all();
271         }
272
273         if (unlikely(is_swiotlb_buffer(paddr)))
274                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
275 }
276 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
277
278 void dma_direct_sync_sg_for_cpu(struct device *dev,
279                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
280 {
281         struct scatterlist *sg;
282         int i;
283
284         for_each_sg(sgl, sg, nents, i) {
285                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
286
287                 if (!dev_is_dma_coherent(dev))
288                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
289
290                 if (unlikely(is_swiotlb_buffer(paddr)))
291                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
292                                         SYNC_FOR_CPU);
293         }
294
295         if (!dev_is_dma_coherent(dev))
296                 arch_sync_dma_for_cpu_all();
297 }
298 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
299
300 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
301                 size_t size, enum dma_data_direction dir, unsigned long attrs)
302 {
303         phys_addr_t phys = dma_to_phys(dev, addr);
304
305         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
306                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
307
308         if (unlikely(is_swiotlb_buffer(phys)))
309                 swiotlb_tbl_unmap_single(dev, phys, size, size, dir,
310                                          attrs | DMA_ATTR_SKIP_CPU_SYNC);
311 }
312 EXPORT_SYMBOL(dma_direct_unmap_page);
313
314 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
315                 int nents, enum dma_data_direction dir, unsigned long attrs)
316 {
317         struct scatterlist *sg;
318         int i;
319
320         for_each_sg(sgl, sg, nents, i)
321                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
322                              attrs);
323 }
324 EXPORT_SYMBOL(dma_direct_unmap_sg);
325 #endif
326
327 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
328                 size_t size)
329 {
330         return swiotlb_force != SWIOTLB_FORCE &&
331                 dma_capable(dev, dma_addr, size);
332 }
333
334 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
335                 unsigned long offset, size_t size, enum dma_data_direction dir,
336                 unsigned long attrs)
337 {
338         phys_addr_t phys = page_to_phys(page) + offset;
339         dma_addr_t dma_addr = phys_to_dma(dev, phys);
340
341         if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
342             !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
343                 report_addr(dev, dma_addr, size);
344                 return DMA_MAPPING_ERROR;
345         }
346
347         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
348                 arch_sync_dma_for_device(phys, size, dir);
349         return dma_addr;
350 }
351 EXPORT_SYMBOL(dma_direct_map_page);
352
353 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
354                 enum dma_data_direction dir, unsigned long attrs)
355 {
356         int i;
357         struct scatterlist *sg;
358
359         for_each_sg(sgl, sg, nents, i) {
360                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
361                                 sg->offset, sg->length, dir, attrs);
362                 if (sg->dma_address == DMA_MAPPING_ERROR)
363                         goto out_unmap;
364                 sg_dma_len(sg) = sg->length;
365         }
366
367         return nents;
368
369 out_unmap:
370         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
371         return 0;
372 }
373 EXPORT_SYMBOL(dma_direct_map_sg);
374
375 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
376                 size_t size, enum dma_data_direction dir, unsigned long attrs)
377 {
378         dma_addr_t dma_addr = paddr;
379
380         if (unlikely(!dma_capable(dev, dma_addr, size))) {
381                 report_addr(dev, dma_addr, size);
382                 return DMA_MAPPING_ERROR;
383         }
384
385         return dma_addr;
386 }
387 EXPORT_SYMBOL(dma_direct_map_resource);
388
389 /*
390  * Because 32-bit DMA masks are so common we expect every architecture to be
391  * able to satisfy them - either by not supporting more physical memory, or by
392  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
393  * use an IOMMU instead of the direct mapping.
394  */
395 int dma_direct_supported(struct device *dev, u64 mask)
396 {
397         u64 min_mask;
398
399         if (IS_ENABLED(CONFIG_ZONE_DMA))
400                 min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
401         else
402                 min_mask = DMA_BIT_MASK(32);
403
404         min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
405
406         /*
407          * This check needs to be against the actual bit mask value, so
408          * use __phys_to_dma() here so that the SME encryption mask isn't
409          * part of the check.
410          */
411         return mask >= __phys_to_dma(dev, min_mask);
412 }
413
414 size_t dma_direct_max_mapping_size(struct device *dev)
415 {
416         /* If SWIOTLB is active, use its maximum mapping size */
417         if (is_swiotlb_active() &&
418             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
419                 return swiotlb_max_mapping_size(dev);
420         return SIZE_MAX;
421 }